
ADAPTIVE RESOURCE MANAGEMENT SCHEMES FOR WEB SERVICES

A Dissertation

by

HEUNG KI LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2009

Major Subject: Computer Science

ADAPTIVE RESOURCE MANAGEMENT SCHEMES FOR WEB SERVICES

A Dissertation

by

HEUNG KI LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Eun Jung Kim
Committee Members, Riccardo Bettati

Rabi N. Mahapatra
Deepa Kundur
Ki Hwan Yum

Head of Department, Valerie E. Taylor

December 2009

Major Subject: Computer Science

iii

ABSTRACT

Adaptive Resource Management Schemes for Web Services. (December 2009)

Heung Ki Lee, B.S., Chungnam University;

M.S., Chungnam University

Chair of Advisory Committee: Dr. Eun Jung Kim

Web cluster systems provide cost-effective solutions when scalable and reliable

web services are required. However, as the number of servers in web cluster systems

increase, web cluster systems incur long and unpredictable delays to manage servers.

This study presents the efficient management schemes for web cluster systems.

First of all, we propose an efficient request distribution scheme in web cluster

systems. Distributor-based systems forward user requests to a balanced set of waiting

servers in complete transparency to the users. The policy employed in forwarding

requests from the frontend distributor to the backend servers plays an important

role in the overall system performance. In this study, we present a proactive request

distribution (ProRD) to provide an intelligent distribution at the distributor.

Second, we propose the heuristic memory management schemes through a web

prefetching scheme. For this study, we design a Double Prediction-by-Partial-Match

Scheme (DPS) that can be adapted to the modern web frameworks. In addition, we

present an Adaptive Rate Controller (ARC) to determine the prefetch rate depending

on the memory status dynamically. For evaluating the prefetch gain in a server node,

we implement an Apache module.

Lastly, we design an adaptive web streaming system in wireless networks. The

rapid growth of new wireless and mobile devices accessing the internet has contributed

to a whole new level of heterogeneity in web streaming systems. Particularly, in-home

networks have also increased in heterogeneity by using various devices such as laptops,

iv

cell phone and PDAs. In our study, a set-top box(STB) is the access pointer between

the internet and a home network. We design an ActiveSTB which has a capability of

buffering and quality adaptation based on the estimation for the available bandwidth

in the wireless LAN.

v

To My Family

vi

ACKNOWLEDGMENTS

First of all, I offer my sincerest gratitude to my supervisor, Eun Jun Kim.

She encouraged me in challenging new problems and finding the solutions. I also

appreciate my committee members, Dr. Riccardo Bettati, Dr. Rabi N. Mahapatra,

Dr. Deepa Kundur and Dr. Ki Hwan Yum, for supporting me as I completed my

research.

I also appreciate my friends, colleagues, and department faculty and staff for my

experience at Texas A&M University. To design efficient simulation for web service,

I was supported by Gopinath Vageesan who is very kind and smart. I also appreciate

Baik Song An who had a discussion on streaming service with me. In addition,

I got help from Dr. Pyoung Soo Mah and Kyoung Ill Kim from Electronics and

Telecommunications Research Institute. I have been blessed to have worked with

friendly members.

I appreciate my parents for supporting me throughout all my studies at Texas

A&M University. Finally, I give my credit my wife, So Jong Kang, and my daughter,

Hae Jee Lee. Without their support, I could not have completed my work.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Web Request Distribution 3

B. Web Prefetch Scheme . 4

C. Web Streaming Service . 6

II REQUEST DISTRIBUTION . 10

A. Background . 10

1. Weighted Round Robin 10

2. Locality Aware Request Distribution 11

3. Power Aware Request Distribution 12

B. Motivation . 13

1. Distributor Based Web Cluster System 13

2. HTTP 1.0 vs HTTP 1.1 14

3. Layer-4 Switches and Layer-7 Switches 15

4. Web Server on Kernel Mode 16

C. Proactive Request Distribution (ProRD) 17

1. Distribution Policy . 17

a. Group Request Distribution 17

b. Memory Aware Request Distribution (MARD) . . 19

2. Diagram of Distribution 20

D. Experimental Results . 21

1. Switch Time Measurement 22

2. Simulation . 23

III WEB PREFETCH SCHEME 29

A. Background . 29

1. Web Prefetch Schemes 29

2. System Prefetch Schemes 30

B. Motivation . 32

1. HTTP 1.1 Framework 32

2. Web Cache Scheme in Cluster Environments 33

3. Web Prefetch Scheme in Cluster Environments 34

C. Adaptive Web Prefetch Scheme 35

viii

CHAPTER Page

1. Double P.P.M. Scheme (DPS) 35

2. Adaptive Rate Controller (ARC) 37

D. Prefetch Memory Management 41

1. Insertion of Web Objects to Prefetch Memory 42

2. Deletion of Web Objects from Prefetch Memory 43

3. Retrieval of Web Objects from Prefetch Memory . . . 43

E. Performance Evaluation 43

1. System Configuration 43

2. Evaluation Results . 46

a. Request Distribution 47

b. Web Prefetch Schemes 49

c. Usage of Prefetch Memory 55

IV ADAPTIVE STREAMING SERVICE 59

A. Background . 59

1. Bandwidth Estimation in Wired Network 59

2. Bandwidth Estimation in Wireless Network 61

3. Cross-layer Scheme . 62

4. Active Intermediate Node 63

B. Motivation . 64

1. Scalable Streaming Service 64

2. Bandwidth Estimation 65

3. 802.11 Wireless Standard 66

a. Network Allocation Vector 66

b. Multiple Transmission Rate 67

C. IdleGap . 68

1. Network Idle Vector (NIV) 69

2. Estimation Scheme . 70

a. Capacity . 70

b. Idle Rate . 71

3. System Model . 72

D. ActiveSTB . 72

1. Drop of Residual Data 73

2. Drop of Corrupted Data 75

E. Experimental Results . 77

1. Scalable Multimedia 77

2. Simulation Configuration 80

3. Streaming Service . 81

ix

CHAPTER Page

4. IdleGap . 82

5. ActiveSTB . 84

V CONCLUSIONS . 91

A. Web Switch Scheme . 91

B. Web Prefetch Scheme . 92

C. Web Streaming Scheme . 93

REFERENCES . 94

APPENDIX A . 108

APPENDIX B . 115

APPENDIX C . 119

VITA . 124

x

LIST OF TABLES

TABLE Page

I Switch Elapsed Time . 23

II Simulation Parameters (Request Distribution Simulation) 24

III The Frequency of Request to the Embedded Objects 34

IV Simulation Parameters (Web Prefetch Scheme) 45

V Requests to the Embedded Objects 46

VI Packet Transmission and Validation Calculation Variables 76

VII Scalable Streams . 78

VIII Scalable Stream Scenario 1 . 78

IX Scalable Stream Scenario 2 . 79

xi

LIST OF FIGURES

FIGURE Page

1 Distributor-based Web Cluster System 2

2 Streaming Service in Wireless LAN 8

3 Distribution in ProRD . 19

4 Web Prefetch Cluster System . 20

5 Flow Chart for Distribution in ProRD 22

6 Response Time under Various Distribution Schemes 25

7 Number of Hits . 27

8 Load Balance of the Incoming Requests 28

9 Persistent HTTP and Web Pipeline 33

10 Double P.P.M. Scheme . 36

11 Prefetch Efficiency . 37

12 Web Prefetch Memory Management 42

13 Kernel Components in Disk I/O Operation 44

14 Standard Deviation of Distribution (TAMU, NASA) 48

15 Missed Requests . 49

16 Web Response Time in Prefetch Schemes (TAMU, ClarkNet) 50

17 Number of Disk Access (ClarkNet, SpecWeb2005-1) 51

18 Number of Hits on Memory (SpecWeb2005-1, SpecWeb2005-2) 53

xii

FIGURE Page

19 Disk Access Time on the Demanding Requests (SpecWeb2005-1,

SpecWeb2005-2) . 55

20 Prefetched Blocks (NASA, SpecWeb2005-1) 56

21 Usage of Prefetched Blocks (TAMU, NASA) 57

22 Network Allocation Vector . 67

23 Network Idle Vector . 70

24 IdleGap . 73

25 Early Drop for Residual Multimedia Stream 74

26 Simulation Environment . 80

27 Active STB Packet Management . 81

28 Estimated Bandwidth with Cross Traffic 83

29 Estimated Bandwidth with Different Packet Sizes 84

30 The Size of Decoded Streams (Amazing Caves, To The Limit) 85

31 The Early Dropped Stream (Amazing Caves, Simpsons) 87

32 The Indirect Loss (I Am Legend, To The Limit) 88

33 The Ratio between Sent Size and Decoded Size (Bourne Ultima-

tum, Simpsons) . 89

34 Standard Deviation of Distribution (ClarkNet, SpecWeb2005-1,

SpecWeb2005-2) . 108

35 Web Response Time in Prefetch Schemes (NASA, SpecWeb2005-

1, SpecWeb2005-2) . 109

36 Number of Disk Access (NASA, ClarkNet, SpecWeb2005-1) 110

37 Number of Hits on Memory (TAMU, NASA, ClarkNet) 111

xiii

FIGURE Page

38 Disk Access Time on the Demanding Requests (TAMU, NASA,

ClarkNet) . 112

39 Prefetched Blocks (TAMU, ClarkNet, SpecWeb2005-2) 113

40 Usage of Prefetched Blocks (ClarkNet, SpecWeb2005-1, SpecWeb2005-

2) . 114

41 The Size of Decoded Streams (Bourne Ultimatum, I Am Legend,

Simpsons) . 115

42 The Early Dropped Stream (Bourne Ultimatum, I Am Legend, To

The Limit) . 116

43 The Indirect Loss (Amazing Caves, Bourne Ultimatum, Simpsons) . . 117

44 The Ratio between Sent Size and Decoded Size (Amazing Caves,

I Am Legend, To The Limit) . 118

45 The Size of the Decoded Stream of the Amazing Caves under

Various Startup Delay . 119

46 The Size of the Decoded Stream of the Bourne Ultimatum under

Various Startup Delay . 120

47 The Size of the Decoded Stream of the I Am Legend under Various

Startup Delay . 121

48 The Size of the Decoded Stream of the Simpsons under Various

Startup Delay . 122

49 The Size of the Decoded Stream of the To The Limit under Var-

ious Startup Delay . 123

1

CHAPTER I

INTRODUCTION

Cluster systems have been increasingly applied to web servers, file distribution and

database transactions for their load sharing and high-performance capabilities. Com-

mercial servers like Google configure thousands of PCs (about 15,000 nodes) to handle

the high volume of traffic. The design of distributed web servers has been a major

research thrust to improve response times. Web clients still experience long and un-

predictable delays when retrieving web pages from the cluster systems. It has been

observed that web servers contribute to approximately 40 percent of the overall de-

lay [1], and this delay is likely to grow with the increasing use of dynamic contents.

Web cluster systems incur an additional delay in analyzing the incoming request and

forwarding the request to one of the backend servers. Therefore, the delay at the

web server is a critical component which has to be reduced to achieve performance

enhancement of web cluster systems.

For reducing the delay, previous studies can be classified into two groups: system

management [2, 3, 4, 5, 6, 7] and service design [8, 9, 10, 11]. In the system

management, it is critical to decide which node processes incoming requests. Each

backend server has a different status on memory usage and CPU workload based

on previous requests. Therefore, the design of distribution determines the overall

delay in web cluster systems. We propose an efficient distribution scheme through

grouping web requests. Other approaches in the system management reduce the

delay through preprocessing incoming requests. Preparing incoming requests achieve

the performance enhancement without new equipment. In this study, a proactive

The journal model is IEEE Transactions on Automatic Control.

2

web processing scheme is suggested using the relation between web requests. Service

design manages the heavy-loaded services such as web streaming. Heavy loaded

services consume a lot of memory and available bandwidth in the network. The

inefficient web service wastes the system resources and increases the delay. We propose

an estimation scheme for available resource and a management scheme for removal of

unnecessary system efforts.

In this study, we explore web cluster designs in three domains and investigate

the scheme for performance enhancement with each domain. One domain is the

design of request distribution. Among the different architectures in the cluster-based

servers, the distributor-based systems have been widely deployed as shown in Fig. 1.

The distributors determine the overall performance in web cluster systems. Another

domain is the prefetch scheme in backend servers. In Fig. 1, backend servers are

located behind distributor and process the incoming requests. The last domain is

efficient web streaming. Recent web sites provide streaming service to web users. It

is critical to know how much streaming data can be transmitted. This dissertation

includes the design studies for web cluster in the following directions.

Fig. 1. Distributor-based Web Cluster System

3

A. Web Request Distribution

In locality-based request distribution schemes, the distributor contacts the dispatcher

to obtain the locality information. If the page is located in the same backend server,

the request is serviced directly. Otherwise, the distributor forwards the request to

the backend server that has a better locality for the file. The role of the dispatcher

is to specify the locality of the requested files to the distributor. The forwarding of

the requests from the distributor to the backend servers is carried out in complete

transparency to the users. A handoff protocol and TCP splicing are employed in most

cases to make the transition smooth and transparent [3, 12, 13]. The requests are

forwarded to the set of backend servers based on a certain policy. LARD (Locality

Aware Request Distribution) [3], PARD (Power Aware Request Distribution) [14]

and WRR (Weighted Round Robin) are a few of the most prolifically adopted policies.

The policies focus on improving efficiency, power conservation and load balancing,

respectively.

In this study, we present a new proactive request distribution scheme (ProRD),

which reduces the delay at the web server by bundling requests. We improve the

distribution policy by dispatching the requests based on the analysis of the log files of

web servers. The general user navigation pattern, user behavior and general website

organization are some of the critical information that is extracted from the web server

log files. This information is made available for the distributor to discern and classify

the incoming requests and perform the dispatch to the appropriate backend server.

Also, our ProRD provides memory aware request distribution which distributes in-

coming requests to the prefetch-enabled backend servers efficiently. Locality-based

distribution policy is commonly accepted to improve the performance using the lo-

cality of incoming requests. However, it may choose which non-uniform distribution

4

can use up the memory at the particular backend server. Our ProRD reduces the

performance drop with the efficient memory management at cluster environments.

B. Web Prefetch Scheme

To solve the delay problem of the web cluster system, there have been many studies

[15, 16, 17, 18] on the main memory management such as web cache schemes and

web prefetch schemes. Although web cache schemes reduce the network and I/O

bandwidth consumption, they still suffer from a low hit rate, stale data and inefficient

resource management. [19] shows that an inefficient web cache management, also

called the Slashdot effect caused the crash of a major news web site. In addition,

the frequent update of web objects reduces the hit rate and disturbs the efficient web

cache management. Although web cache space is unlimited, it cannot update the

large volume of web objects properly.

Web prefetch schemes overcome the limitation of web cache mechanisms through

pre-processing contents before a user request comes. Web prefetch schemes predict

future requests through web log file analysis and prepare the expected requests before

receiving web objects. By relocating the expected web data into the memory, it can

achieve efficient resource management and increase the hit rate on memory. Compared

with web cache schemes, web prefetch schemes focus on the spatial locality of objects

when current requests are related with previous requests. Web prefetch schemes

increase the bandwidth utilization and reduce or hide the latency due to bottleneck

at the web server. However, despite these benefits, three difficulties prevent prefetch

schemes from being exploited in web cluster systems. First, it is difficult to find

which objects are related with the incoming requests. At the server side, web access

patterns are difficult to predict because of the web cache mechanism. Second, it

5

is difficult to find an optimal prefetch rate. Too aggressive prefetch schemes may

hurt overall performance due to the shortage of memory. Furthermore, in modern

web frameworks, there is a trade-off between consuming available memory space and

increasing the performance of web systems. Persistent HTTP requires the dedicated

memory for web server processes even in idle time. Also, allowing multiple connections

per client may lead to the shortage of memory. Finally, a prefetch scheme in a web

cluster system should be considered along with an efficient resource management.

Inappropriate resource management drains the resource of one backend server, while

other backend servers have the available resource.

To overcome these difficulties, we design adaptive web prefetch schemes for web

cluster environments. Our prefetch schemes decide which web objects are to be

prefetched by considering memory status of the web cluster system. When processing

the incoming request, backend servers prefetch related web objects depending on the

local memory situation and report the list of the prefetched web objects to the web

distributor. Our adaptive scheme consists of two components: Double Prediction-by-

Partial-Match Scheme (DPS) and Adaptive Rate Controller (ARC). First, we design

a dynamic web prediction scheme called Double Prediction-by-Partial-Match Scheme

(DPS). Web access patterns in web systems are dynamic depending on the location

of a client. When web objects are stored in an intermediate node, requests to those

cached objects do not reach the web server. Also, persistent HTTP and multiple

connections from a client eliminate time intervals between consecutive requests which

give the opportunity to prefetch web objects. In addition, the performance of the

web prefetch scheme is dependent on the workload [20]. The DPS scheme solves

the problem by providing the adaptiveness that handles the client’s random access

pattern.

Second, we suggest Adaptive Rate Controller (ARC) that provides an adaptive

6

prefetch rate at run time. In multiprocessing environments, web processes allocate

memory by their needs. In modern web frameworks, persistent HTTP improves the

performance through avoiding the frequent network connection establishment and web

server process creation. However, it requires the dedicated memory for web server

processes even in idle time. Also, a modern web client uses multiple connections to

improve the web throughput. However, it consumes a lot of memory of web servers

because several web processes are dedicated at one client. We cannot provide the

system with unlimited memory, therefore aggressive prefetch schemes can interfere

with demand requests from the same client or other clients. For improving the per-

formance of prefetch schemes, the ARC scheme prefetches web objects depending on

the memory status.

Recent works [21, 22, 23, 18] show that the unorganized and simply aggressive

web prefetch schemes cannot improve performance and even increase the processing

time of user request. Aggressive prefetch schemes also consume the memory for

prefetching useless objects at the selected server. It can cause the delay in the overall

web cluster system. Our schemes avoid the skewed distribution of requests in the web

cluster system.

C. Web Streaming Service

This research provides a solution to networking issues related to web streaming ser-

vice in the wireless home environment. Competitive pricing of home-based network

electronic devices has caused the home network to rapidly increase in complexity.

Home networks consist of various network devices from multiple vendors and dif-

ferent hardware generations that are added to the home over time. Also internet

access in home environments has significantly increased and is deeply heterogeneous.

7

The rapid and widespread usage of the internet has given rise to an increase in de-

mand for web streaming service. There has been significant increase in user requests

for streaming audio/visual information over the internet in order to be accepted as

an alternative by the mass television audiences. In addition, Wireless Local Area

Networks (WLANs) make multimedia streams commonplace, and terminals are di-

versifying into hand-held devices such as personal digital assistants (PDAs), laptops

and audio/video players. These heterogeneous devices have different access patterns

and mobility [24].

Heterogenous multimedia streaming service has led to many technical challenges

that must be addressed in the two areas of video coding and networking. One such

method that addresses the challenge associated with multimedia streaming and net-

working is scalability. Scalability plays a crucial role in delivering the best possible

video quality over various environments [25, 26]. Even though multimedia scalable

streaming service provides various rate multimedia contents, there are still problems

in estimating the point in time to change the bit rate of the transmitted bit stream.

Estimating the available network bandwidth in a WLAN is very challenging and

crucial for multimedia streaming services. Although there can be various wireless

environments where multimedia streaming services are provided, we mainly focus on

the LAN/WAN shown in Fig. 2. In this figure, an Internet-based Set Top Box (STB)

is the interface between a wired network and a wireless network. STBs receive the

television signal, run the interactive applications and transfer the digital TV signal to

the TV. STBs are becoming key devices in home entertainment networks, not only to

receive digital television, but also as a residential gateway to deliver multiple services

as well. STBs in home networks have gained in flexibility and modularity, therefore,

the functionality of the STB may be distributed between a main device and several

peripherals, all interconnected by an Ethernet or wireless network.

8

Fig. 2. Streaming Service in Wireless LAN

In scalable multimedia streaming services, it is very critical for the STB to know

the available wireless network bandwidth. The STB serves as a bottleneck for the

server and heterogeneous client devices, and the bottleneck determines the quality

of a delivered multimedia to each end-user. In a wireless network, the IEEE 802.11

protocol in Distributed Co-ordination Function (DCF) mode, based on CSMA/CA

algorithm, is becoming very popular. Previous works [11, 27, 28] based on the band-

width estimation of wired environments are not applicable to wireless networks that

use the DCF protocol. Multimedia streaming is a soft real-time service where each

frame is delay-sensitive. Swiftness and availability is critical for real time systems.

During bandwidth deviations, the rate of the transmitted multimedia streams should

be changed expeditiously. The accuracy of previous works, Spruce [11] and Probe-

Gap [28], is dependent on probing time and the volume of the packets for probing.

ProbeGap produces good estimates at low cross traffic rates (2 Mbps cross traf-

fic regardless of the cross traffic packet size); however, it significantly overestimates

available bandwidth when the cross traffic is high (4 Mbps cross traffic generated with

300-byte packets) [28]. Influence by cross traffic on probe packet sequences causes

probe packets in sequences to be split up or even lost. Our contribution in this study

9

is two-fold. First, we suggest IdleGap, which is a bandwidth estimation tool for a

real-time system in a wireless network and is independent of cross traffic. Second, our

STB, ActiveSTB, will be to forward a partially buffered stream to a client to allow

a user to view quality playback of video, and additionally simultaneously perform

quality-adaptation to change in network bandwidth.

This dissertation is organized as follows. Chapter II explains the ProRD scheme

for enhancing the distribution policy at distributor. In Chapter III, we present the

prefetch designs in web cluster environments based on web access patterns. Chapter

IV presents some issues in web streaming scheme through wireless networks, followed

by the conclusion in Chapter V.

10

CHAPTER II

REQUEST DISTRIBUTION

Distributor decides the overall performance of web cluster systems. Many studies

[3, 29, 14] provide the solution on performance enhancement. However, they did not

consider about the structure of web documents and the relation between requests.

A. Background

Of the various policies that are employed at the distributor, the policies that provide

better load balancing among the backend servers, better efficiency and considerable

power conservation are the most preferred. In this chapter, we would review the

existing distribution schemes including weighted round robin, locality aware request

distribution and power aware request distribution.

1. Weighted Round Robin

The choice of the policy is very critical for the efficient operation of the system. The

weighted round robin policy is applied based on the current load at the backend

servers. The policy is applied at the distributor, where the requests are forwarded

to the backend servers. The distributor maintains the record of the current load

at the backend servers and it forwards the request from the client, based on this

information. The request is forwarded to the least loaded backend server among the

bunch of servers. The request forwarding is thus weighted based on the current load

on the servers. The server that is most loaded is relieved off the load by forwarding

the requests to the least loaded server. So, at any given point of time, the load is

evenly balanced among all the available servers and thus providing very good load

balancing.

11

The main drawback of the system is that it does not concern about the locality

of the requests As the system does not consider the locality of the data among the

backend servers, the even requests to same objects land up in different servers and

incur large disk latencies. This increases the response time of the servers and hence the

throughput. Considering this, power and locality based request distribution policies

have more significance.

2. Locality Aware Request Distribution

The major drawback of the weighted round robin is that it incurs a large amount of

disk latency by not considering the locality of the data in the backend server memory.

Our simulation of the weighted round robin shows that during worst case, this could

generate an unacceptable amount of disk latency in the backend server and lead to

increased response time of the server and reduced throughput. This causes large

delays to be experienced by the clients and brings down the performance of the whole

system. To overcome this, locality aware request distribution [3, 29] employs locality

based distribution policy at the distributor and strives to increase the memory hits

at the backend server rather than the disk latency.

The distributor maintains the table of previous request distribution. When a

new request arrives at the distributor, requested object is looked up in the distributor

table and the corresponding server is identified. The request is forwarded always to

that server for that particular objects. By this assignment, the request will incur

disk latency only during the first initial assignment to that backend server. The

consecutive requests of the same object end up as server memory hits, since it has

already been fetched from the disk and is now in the memory. Once the requests

starts overflowing at one of the servers, one of the least loaded servers is added to

serve the requested object and the server set for the requested object starts growing.

12

Similarly, when a server becomes underutilized, a server is removed from the server

set.

But, the major drawback of the locality aware request distribution system is that

it too does not take into consideration about the multiple connections from a client

and persistent HTTP. This incurs the memory shortage of the some backend servers,

even though other backend servers have enough available memory.

3. Power Aware Request Distribution

Power aware request distribution takes a great consideration to reduce power con-

sumption of the cluster system, and hence, power aware request distribution [14] is

the most efficient policy in terms of power saving among the three policies. Power

aware request distribution employs the ON-OFF Model; any backend server, which is

idle, is turned off, and backend servers are turned on whenever they are required to

serve requests. In [14], they assume that power is equal to its maximum power when

it is ON and simply zero when it is OFF. Turning off unused server is considered to

be the best way to save power. However, this policy brings more number of disk la-

tency than locality aware request distribution scheme. Whenever backend servers are

turned ON, the data stored in the backend server memory is completely deleted. This

causes a lot of disk latency as distributor forwards requests to the backend servers.

Furthermore, there are startup delay and shutdown delay when backend servers are

turned ON and OFF, respectively. While the startup delay results during the booting

up of the operating System, the shutdown delay is a period between pruning the idle

backend server from service mode and shutting it down. E. V. Carrera et al., [2] have

proposed a technique to conserve energy in network servers using a multi-speed disk

technology. The idea is to use two disks with different speed to emulate a multi-speed

disk. Thus multi-speed disk concepts need to be applied to achieve this kind of op-

13

timization. When the load is hits higher than a pre-defined threshold, the disk with

fast response time serves it, and vice versa. E. Pinheiro et al., [30] have proposed

a dynamic cluster reconfiguration technique., to bring down the energy consumption

in servers. In this technique, a cluster node is dynamically added or removed to the

cluster system based on the their purpose.

B. Motivation

1. Distributor Based Web Cluster System

Among different architectures in the web cluster system, the distributor-based systems

have been widely adopted as shown in Fig. 1. These systems have a web distributor

that forwards the requests to any of the backend servers. The web distributor selects

the backend server based on its own policy. Forwarding of the requests from the

distributor to the backend servers is carried out in complete transparency with the

web users using Handoff protocol and TCP splicing scheme. Locality Aware Request

Distribution (LARD) [3, 29], Power Aware Request Distribution (PARD) [14] and

Weighted Round Robin (WRR) are a few of the most prolifically adopted policies,

which focus on improving efficiency, power conservation and load balance respectively.

Locality-based request distribution forms the heart of the system. The policy

that we use mimics the LARD [3, 29] system. The distributor reads the header of

the incoming requests and looks up the distributor table to determine the locality of

the file among the backend servers. Once a backend server is chosen, the distribu-

tor forwards the request to that backend server and hands-off the connection. The

backend server then replies back to the requesting client with the requested file. The

choice of the backend server depends on the lookup at the distributor table and the

current load conditions at the server. The algorithm uses the load thresholds for

14

determining the load conditions at the backend server. Loadlow stands for the lower

load threshold, below which the server is considered to be underutilized. Similarly,

Loadhigh stands for the higher load threshold, above which the server is considered to

be heavily loaded. It increases the locality on each backend server.

On power conservation standpoint, many researchers have previously proposed

schemes to tackle power consumption. E. Pinheiro et al., [30] proposed a dynamic

cluster reconfiguration technique to bring down the power consumption in servers. In

Power-Aware Request Distribution (PARD) [14], a simple power scheme was adopted

to conserve power. It used a simple ON-OFF Model, where any backend server,

which was idle, was turned OFF. And backend servers were turned ON whenever

the demand for service increased. However, this policy suffered from a performance

viewpoint. PARD does not have performance enhancement measures and also reduced

the locality of the files by wiping off the contents of the memory which is being turned

OFF. Startup delay and cold miss of a server to turn ON from OFF state could incur

the degradation of the performance at web cluster system.

2. HTTP 1.0 vs HTTP 1.1

When web client requests a HTML document, the requests to main object and its

embedded objects are sending to web server sequentially. For releasing the overhead

on web transactions, HTTP 1.1 provides two schemes including persistent-HTTP

and web pipeline as default. In HTTP 1.0, each request requires the separate TCP

connections, while multiple web requests over HTTP 1.1 can be processed at a time.

In addition, HTTP 1.1 save the workload to manage the TCP connections in web

hosts such as clients, proxies and servers. However, HTTP 1.1 makes it difficult for

web distributor to read each requested file. Web distributor can read only the first

request and distribute it with locality. Other following requests should be distributed

15

into the backend server to take care of the first request. These following requests over

HTTP 1.1 drop the locality in the web cluster system which increased the response

time for the requests. The enhancement of the locality of the forwarded requests save

the response time in web cluster systems. Also, prefetching and data placement at

the backend server enhance the performance of web cluster systems. In this study,

we propose a new proactive request distribution (ProRD) scheme, which reduces the

delay at cluster-based web server by bundling requests and prefetching them.

3. Layer-4 Switches and Layer-7 Switches

In the web cluster system, each node has their own address and process the forwarded

requests and web switch can access the each node using their address. Web switch

decides the overall performance in web cluster system. Therefore, various scheme

are suggested to improve the performance in web cluster system. We can classify

the switch techniques into two groups based on protocol stacks where web switch

decides which backend nodes processes the incoming requests. First group is that web

switch distributed the incoming requests in the layer 4, while other groups decides the

backend node to process the incoming requests in the layer 7. Two schemes provide

the different switching schemes based on the different policy.

In the Layer-4 scheme, web switch preform web switch with the ignorance about

the requested web objects. When clients send requests into the web server, they

should establish the TCP connection. When web switch receives the TCP SYN

packet from clients, web switch decides which backend server processes the incoming

requests. It can save the distribution time in web switch, because web switch do not

need to access the contests. However, they cannot provide the intelligent distribution

depending on the requested objects.

After extracting the name of requested objects, Layer-7 web switch decides which

16

backend nodes process the incoming requests. Therefore, web switch should process

the TCP connection from clients, and establish the connection to the backend servers.

Web switch cannot provide the fast distribution such as Layer-4 web switch. It takes

time to process TCP connection and decode the HTTP packets from clients. However,

Layer-7 switch can provide the intelligent distribution based on the requested objects.

They can increase the locality of requested file.

The main difference of two schemes are the connection management. In the layer-

4 scheme, web switch just forwards the packet through one TCP connection such as

router. Therefore, packets from clients can send to the backend server directly, and

also backend server can reply to the client without the assistance. However, Layer-7

switch provides the separate TCP connections between client and server. The packets

from clients are decoded by Layer-7 web switch and web switch wraps it following by

the HTTP protocol stack.

4. Web Server on Kernel Mode

For minimizing the processed event, web server was working in the kernel mode. In

the general web system, kernel detected the receiving event from network device.

After completion of three-way TCP handshake, kernel received the data with user

request then copy received data to user area. Besides, process and response of end-

user’s request lead the transition between kernel mode and user mode. For saving

the switch time between kernel mode and user mode, web server cached web contents

on the kernel mode [31, 32]. Scalable Web Cache (SWC) [31] working on windows

2000 TCP/IP, while kHTTPd [32] and Tux [1] handled socket interface in Linux.

kHTTPd could not handle dynamic contents, so it needed the back up server to

handle dynamic contents. TUX was the integrated web server in operating system

and could handle even dynamic contents. In [33], even though the rate of dynamic

17

contents and static contents in the workload determined the speed of request, TUX

outperformed other web servers in static contents.

C. Proactive Request Distribution (ProRD)

Layer-7 web switch scheme provide the intelligent distribution scheme. But, it suffers

from the distribution delay. Our ProRD scheme save the distribution time while it

provides the efficient distribution using web structures.

1. Distribution Policy

Our ProRD scheme provides two policy to improve the performance of the web cluster

systems. First of all, a ProRD classifies the incoming requests into groups including

main request and sub requests. And it provides the selective distribution. Secondly,

they provides the memory aware request distribution to avoid the creation of new

web processes.

a. Group Request Distribution

From our observation, web clients send requests for embedded objects and expected

web pages immediately after the requests to main object are replied from the backend

server. To release the overhead at the web distributor, ProRD distributes the bundle

of requests into the same backend server. In general, the web log files contain the

history of user requests that let us know the relations between the main page and

the embedded object, the user navigation patterns and the classification of web pages

according to user requests. Based on the extracted information, the web distributor

in a ProRD scheme can distribute a bundle of requests, rather than only one request.

Like the locality distribution scheme [3, 29], our ProRD scheme stores the dis-

18

tribution information in their own memory. Also, our ProRD scheme distributes the

requests into the backend server that processed the previous requests to the same

objects. This scheme can increases the locality using the distribution information.

When requests are distributed, web switch extracts the requested object and search

the requested object in the the table for distribution information. It takes time

to search the previous distribution information and re-establish TCP connection to

backend server in the cluster. ProRD avoids the full distribution to the whole re-

quests from client. The embedded objects are followed by the main object, therefore

ProRD distributes the only main objects and just forwards the embedded objects to

the backend server that process the main object.

When backend server provide the prefetch scheme to decrease the response time,

ProRD scheme receives the prefetched objects from backend server and stores the

information. It forwards the requests to the backend server that prefetched the re-

quested objects based on the stored information. If distributor does not provide the

prefetched information. Prefetch scheme in backend server leads the miss to increas-

ing response time and wasting the bandwidth between memory and disk, the ProRD

scheme can save response time to web users in prefetch hit.

In Fig. 3, when HTML document A is requested on the established persistent

HTTP, the embedded objects in HTML document A are prefetched to the memory

on the backend server. It saves the response time the following requests to embed-

ded objects. When requests to embedded objects are incoming, the backend server

then replies to web user based on prefetched embedded objects. As web objects are

prefetched on the prefetch memory of the backend servers, the list of the prefetched

files are updated at the distributor. When the load of the server exceeds threshold, a

ProRD selects a new backend server for the migration of the prefetched web objects

from the heavy-loaded backend.

19

Fig. 3. Distribution in ProRD

b. Memory Aware Request Distribution (MARD)

As in Fig. 4, there are two groups of nodes in a web cluster system; web distributor

and backend nodes. A web distributor forwards incoming requests to backend servers

based on its policy. In our simulation, a distributor uses a locality-based distribution

and TCP splicing scheme.

In process-based web servers such as Apache or ISS, there are several idle pro-

cesses waiting for new clients. When there are inefficient idle processes, the web server

creates a new web process and consumes the memory space which could be used to

cache file otherwise. Therefore, unnecessary web processes decrease the benefit of the

buffer cache in the web server. To avoid the skewed distribution, a ProRD checks

the number of idle web processes of backend servers. Our ProRD does not forward

a new request to those with inefficient idle process. A ProRD prevents the memory

shortage due to too many web processes that decrease the cached or prefetched web

objects.

Web distributor updates the distribution table after distribution of the incoming

20

request and the acquisition of prefetch information. When distributor has the history

information or prefetch information, the requests are forwarded into the connected

backend server that satisfy the load and the number of connections. If not, distributor

selects the optimal backend server for incoming request and store distribution history

into distribution table for next decision.

Fig. 4. Web Prefetch Cluster System

2. Diagram of Distribution

Because the distributor of a web cluster system is the bottleneck of the system, an

efficient distribution policy is critical to improve the performance of the system. In

a ProRD, the distribution policy is composed of several steps. In Fig. 5, the white

boxes show the procedure for previous LARD schemes. The light grey boxes and dark

grey box are for ProRD without MARD and ProRD with MARD, respectively.

21

First, the distributor reads the incoming request. Fig. 5 illustrates the steps

involved in distributing the incoming requests. The first step is shown as ’read the

incoming request’ process in Fig. 5. At the second step, ProRD classify the requests

into two groups including main objects and embedded objects. When the incoming

requests are for the embedded objects and already establish TCP connection with

one backend server, the requests are just forwarding to the already selected backend

server. The distributor selects a backend server based on a record of prefetched

objects and previous distributions at the third step. Before forwarding the incoming

requests, they checks the selected backend servers. When the number of connections

exceeds the threshold or number of the idle web processes are not enough, ProRD

finds the other backend servers. Finally, a ProRD does not find the backend server

to process the incoming requests in the previous steps, it checks whether the request

is the first request or not after TCP establishment. When the request is not first, the

incoming request is just forwarded into the already selected backend server. If not, a

ProRD distributes the incoming request into the least loaded backend server. When

the content is not available on the memory of the backend server, the requests incur

misses.

Our ProRD avoids the shortage of the memory, then increases the hit rate on

the memory and decreases the number of dispatch hits dramatically and improves

the performance of the cluster system.

D. Experimental Results

The simulation model consists of a distributor and backend servers. Our model is

scalable to any number of backend servers and we show that results are consistent

with 4 to 12 backend servers. The model emulates a real-time cluster system with

22

Fig. 5. Flow Chart for Distribution in ProRD

request queues at the distributor and the backend servers.

1. Switch Time Measurement

For estimation of the elapsed time for web switching, we modify the real web switch

program, ’Layer-7 Web Switch’. When the incoming requests are coming into the

web cluster, web switch process it following the one of four cases including ’switch

hit’, ’switch miss but reuse’, ’switch miss and reconnect’ and ’switch forward’. When

the web switch find the previous switch information then just forwards the incoming

requests to the backend server followed by previous information. In ’switch miss but

reuse’ and ’switch miss and reconnect’, web switch should re-distribute the incoming

requests into other backend server at even the ’switch hit’. In the ’switch miss but

reuse’, web switch selects the previous backend server, so they just reuse the TCP

23

connections with backend server. However, web switch selects the other backend

server at the ’switch miss and reconnect’ and requires the new TCP connection with

the selected backend server. The ’switch forward’ is for the ’Layer-4 web switch’.

Table I. Switch Elapsed Time

Switch Hit Switch Miss But Reuse Switch Miss And Reconnect Switch Forward

90.444 MS 92.088 MS 2362.927 MS 40 MS

Table I shows the elapsed time for web switch. We install the simple client and

modified web switch at the machine and forward the incoming requests into other

computer. Computer has Intel Core 2 duo processors and two GB memory. The

whole computers are connected by the 100 Mbps Ethernet.

A simple web client sends the requests to the web switch, then web switch for-

wards the incoming requests into backend server. After receiving it, the backend

server replies the dummy packet into the web switch. Finally, web switch forwards

the packets from web server into simple web clients. We test 1000 requests using the

implemented machine at each case. The ’Switch Forward’ provides the web switch

without analysing web contents. And, the ’Switch Forward’ can save the contents de-

livery between kernel and user. The elapsed time of ’Switch Miss But Reuse’ added

the time for the distribution decision and the elapsed time of ’Switch Hit’. But,

the decision time is not distinguishable. However, it takes time to re-establish TCP

connections with other backend server.

2. Simulation

Simulations have been carried out by implementing the proposed algorithms using the

CSim [36] and DiskSim [34]. The program is a scalable, user configurable cluster with

realistic system and disk queues. Additionally, we have implemented the round robin

24

Table II. Simulation Parameters (Request Distribution Simulation)

Backend Server

Parameter Value

Physical Memory 512 MB

Kernel Space 100 MB

Web Process Size 20 MB

Disk Latency Provided by DiskSim [34]

Memory Latency (Hit) 500 Mbps

Network Latency 100 Mbps

Web Distributor

Switch Hit/miss/forward in Table I

Session Time 15 Seconds [35]

Web Client

Concurrent Connection Up to 4

scheme, the original LARD scheme, the persistent LARD, the ProRD without MARD

scheme and a ProRD with MARD scheme. The simulation code emulates a cluster

system, which takes any log file in common log format as the input. The log files used

for the simulations are the request logs to the Texas A&M University CS department

website, NASA and ClarkNet log files. The following metrics are closely monitored

for evaluating the performance of the system: Average Response Time, Hit Rate

and Access Time. We compare our policy, ProRD with MARD and ProRD without

MARD, against the existing distribution scheme including round robin, the original

LARD and the persistent LARD. The original LARD and the persistent LARD are

suggested for increasing the locality, while we design ProRD without MARD that

avoids the web process creation.

25

Table II shows the configuration in the simulation for evaluating the ProRD

system. The physical memory in the system is 512 MB. Kernel consumes the 100 MB

in the memory. We assume that web process is created at each incoming request and

requires 20 MB. We embedded the ’DiskSim’ simulator in our simulator to configure

the disk access time. It takes 500 Mbps for web process to access a page in the

memory, while transmission speed of the LAN is 100 Mbps. The connection between

web client and server has sustained 15 seconds without web transaction. Also, web

client can establish multiple connections with web server. We assume that web client

establish four connections with web server.

RR Ori−LARD P−LARD N−ProRD M−ProRD
0

5000

10000

15000
TAMU

Distribution Scheme

R
es

po
ns

e
T

im
e

(M
S

)

RR Ori−LARD P−LARD N−ProRD M−ProRD
0

2000

4000

6000
NASA

Distribution Scheme

R
es

po
ns

e
T

im
e

(M
S

)

RR Ori−LARD P−LARD N−ProRD M−ProRD
0

5

10

15
x 10

4 ClarkNet

Distribution Scheme

R
es

po
ns

e
T

im
e

(M
S

)

Fig. 6. Response Time under Various Distribution Schemes

26

Fig. 6 shows the response time under distribution scheme. X axes show the

distribution scheme and Y axes stand for the response time. In the X axes, the

’RR’, the ’Ori-LARD’ and the ’P-LARD’ are the existing distribution schemes and

show round robin, original LARD and persistent LARD, respectively. ’N-ProRD ’

and ’M-ProRD ’ stands for ProRD without MARD and ProRD with MARD. Even

though the round robin scheme provides the fast distribution to the incoming requests,

the overall response time is increasing. It does not care the requested contents and

lose the locality of cluster system. The original LARD and the persistent LARD

distribution scheme provide the short response time, because they provide the high

locality for requests distribution. However, it can cause the unequal load balance and

the shortage of the memory. Finally, it loses the data from the memory. Even though

ProRD without MARD increases the performance for avoiding the unnecessary web

process creation. Our ProRD with MARD provides the fast distribution and high

locality.

In Fig. 7, ProRD and extended LARD schemes show the high hit on the memory.

Both of them can provides the high locality that increase the number of hit. But,

the extended LARD schemes checks the every requests from client. It can make

the overhead on the distributor. The persistent-HTTP reuse the TCP connections,

therefore client can send several requests into web cluster. The extended LARD

should distribute all of them one by one. The round robin scheme loses the chance

to improve the performance because they do not care about the requested contents.

The original LARD and persistent LARD scheme increases the unequal distribution

of the incoming requests and cause the shortage of the memory.

Fig. 8 shows standard deviation of the number of the requests that are processed

at backend server. To process the incoming request, the round robin scheme just

selects the node one by one. But, the standard deviate of the round-robin scheme

27

RR Ori−LARD P−LARD N−ProRD M−ProRD
0

2

4

6
x 10

4 TAMU

Distribution Scheme

N
o

of
 H

its

RR Ori−LARD P−LARD N−LARD M−ProRD
0

1

2

3

4
x 10

5 NASA

Distribution Scheme

N
o

of
 H

its

RR Ori−LARD P−LARD N−ProRD M−ProRD
0

2

4

6
x 10

5 ClarkNet

Distribution Scheme

N
o

of
 H

its

Fig. 7. Number of Hits

is not zero. The reason is that the client using the persistent-HTTP clients can

send the different number of requests in one TCP connection. The original LARD

and the persistent LARD increase the unequal distribution. The persistent LARD

re-distribute the every requests, so it increase the unequal distribution. Our ProRD

shows the low standard deviation that shows the good load-balance in the web cluster

system.

28

RR Ori−LARD P−LARD N−ProRD M−ProRD
0

5000

10000

15000
TAMU

Distribution Scheme

S
ta

nd
ar

d
D

ev
ia

tio
n

RR Ori−LARD P−LARD N−ProRD M−ProRD
0

1

2

3
x 10

5 NASA

Distribution Scheme

S
ta

nd
ar

d
D

ev
ia

tio
n

RR Ori−LARD P−LARD N−ProRD M−ProRD
0

5

10

15
x 10

4 ClarkNet

Distribution Scheme

S
ta

nd
ar

d
D

ev
ia

tio
n

Fig. 8. Load Balance of the Incoming Requests

29

CHAPTER III

WEB PREFETCH SCHEME

A. Background

Prefetch scheme is used in various area for performance enhancement of the web

cluster system. Especially, the performance of web systems are improved through

web prefetch scheme. Prefetch schemes are composed of two sub schemes including

prediction schemes and management schemes.

1. Web Prefetch Schemes

Web prefetch schemes are roughly classified into two groups; short-term prefetch

schemes and long-term prefetch schemes. Short-term prefetch schemes predict future

requests based on the recent historical information. [37] proposes the prefetch algo-

rithm for a general file system. [38, 39] predict the next incoming requests using the

N-th order Markov models. [39] suggests heuristic schemes to reduce high complexity

at a multi-level Markov models.

The Prediction-by-Partial-Match (P.P.M.) models complement N-th Markov model.

The order of the Markov model increases not only the accuracy but also the complex-

ity at the same time. P.P.M. schemes predict the future incoming requests using the

top-n related objects [4, 40, 6] or objects with confident threshold [41, 42, 43]. In

[40], they search the long sequences for frequently accessed patterns. [44] suggests

dynamic P.P.M. models. The recent research evaluates the prediction schemes [7, 20].

The long-term prefetch scheme defines clusters of web objects using access pat-

terns, then prefetches web objects in the unit of a cluster. [45, 46] provide replacement

policies for Content Distribution Network (CDN) platform, while [47, 48] suggest the

30

replacement algorithm for mobile environments. [49] provides a hierarchical cluster-

ing system that groups search results into several folders. In [50], a divide-and-merge

scheme creates the cluster of web objects by combinational approaches between top-

down and bottom-up schemes. [51] suggests the modified proxy model to prefetch

the embedded objects from the web server. [52] provides a web cluster scheme using

a vector model and semantic power.

Hybrid prefetch schemes integrate the short-term prefetch based on the Markov

model and the long-term prefetch using cluster scheme. [53] suggests the combi-

national prediction scheme of existing models including Markov models, sequential

association rules, association rules and cluster schemes. [54] generates Significant

Usage Patterns based on abstraction techniques and also provides the path between

Significant Usage Patterns using the Markov model. [55, 56, 57] create the cluster

based on their policy including Expectation-Maximization [56], CitationCluster [55]

or K-means cluster scheme [57]. After generating the cluster, they use the Markov

model to find the relationship between clusters of web objects. Although the hybrid

scheme provides the benefit of both short-term and long-term schemes, it does not

support the memory-consuming modern web frameworks.

2. System Prefetch Schemes

System prefetching techniques are widely studied for improving the system perfor-

mance including system design approaches, compiler-aided approaches and dynamic

approaches.

System design approaches improve the performance of memory management

through prefetching scheme. [58] analyzes the workload on the virtual channels and

suggests the management scheme for virtual channel buffers, while [15] provides the

management framework for prefetch that divides the main system memory. [59] pro-

31

vides the two separate queues for holding sequential data and random-accessed data.

In [16], the researches evaluate the four sequential prefetching algorithms. They use

the threshold value for reducing the two non-beneficial effects from sequential prefetch

including cache pollution and prefetch wastage. In compiler-aided approaches, the

compiler makes the information for prefetching, then the helper thread organizes the

prefetch based on compiler-generated information. [60] suggests the hybrid prefetch

schemes between software prefetch schemes and hardware. The compiler generates

the five classes of hints that the prefetch engine used for the prefetch. In [61], the

compiler builds the acyclic blocks for the prefetch where the embedded information

is used for handling pointer-intensive application. [17] provides the compiler that

generates the pre-computing slice (p-slice) for handling inter-threaded dependencies.

After generating the p-slice, it selects the spawning pair based on the dependency of

p-slice for increasing the parallelism.

The dynamic schemes provides the adaptiveness at run time using hardware

monitoring or preprocessing information. [62] optimizes the helper thread on CMP

environments. They assign the helper threads on the idle processor and control the

threads including the main thread and the helper thread using the shared memory.

In [63], they provide the dynamic scheme to optimize the prefetch and control the

helper thread based on the hardware information [64] minimizes the overhead of

dynamic prefetching scheme using the co-location between the helper thread and the

main thread. [23, 18] provide the optimal prefetch scheme for multi-level cache

environments through optimizing low-level prefetching with the awareness of upper-

level prefetching. [65] provides the Karma that supports the optimal cache solution

by minimizing the overall disk access time.

32

B. Motivation

Many studies [42, 45, 7, 20, 44, 46, 51] have been carried out to design effective web

prefetch mechanisms. However, existing prefetch schemes fail to provide a solution

that is suitable for modern web frameworks. They do not perform well in conjunction

with persistent HTTP, web cache schemes or request distribution schemes in a cluster

environment.

1. HTTP 1.1 Framework

The HTTP 1.1. framework gives the small chance to prefetch embedded objects

because of web pipeline. Generally, an HTML file contains a number of embedded

objects. Web clients request the main HTML file to a server, then receive it. After

analyzing the received main HTML file, web clients make the list of its embedded

objects in the received main HTML file and request them to the web server. With

HTTP 1.0, web clients establish new connection whenever it requests an object. A

client with HTTP 1.1 reuses a connection for multiple requests using persistent HTTP.

In Fig. 9, a web client with HTTP 1.0 has intervals between requests, while there

is only one interval between the main object and its embedded objects with HTTP

1.1. These intervals between requests allow the web server to predict and prefetch the

next requested web objects. In HTTP 1.0, there are intervals between consecutive

requests that give the chance to prefetch the predicted embedded objects, while HTTP

1.1 makes it difficult to prefetch them. Web servers using HTTP 1.1, therefore, can

prefetch embedded objects in the interval between the request to main object and the

requests to embedded objects.

33

Fig. 9. Persistent HTTP and Web Pipeline

2. Web Cache Scheme in Cluster Environments

Incoming access pattern to the main object and the embedded objects in the web

cluster server is random, while requests to the embedded objects follow request to

the main object sequentially at clients or proxy servers. In general, web clients request

the whole related embedded objects after processing the main object. However, we

observe that only some embedded objects are requested after the main object. Table

III shows the request frequencies of ten embedded objects after requesting ’main.html’

in Computer Science and Engineering at Texas A&M University. Five embedded

objects are frequently requested, while others have less than hundred requests.

One reason is that proxy servers provide some objects to the client directly if the

requested objects are in the cache. The requests replied by the proxy server will not

be transferred to the web server. In addition, the configuration of the web documents

such as duration time and random objects can make the inequality of web access

pattern. This random access pattern causes the misprediction. The misprediction

34

does not only lose the chance to enhance the performance but also wastes the I/O

and network bandwidth.

Table III. The Frequency of Request to the Embedded Objects

Index Name Request

1 /html4/front.css 517

2 /html4/global.css 517

3 /images/bin.jpg 477

4 /images/header.jpg 473

5 /images/LOOK.gif 446

6 /images/random/01 75

7 /images/random/06 69

8 /images/random/07 66

9 /images/random/09 66

10 /images/random/010 62

3. Web Prefetch Scheme in Cluster Environments

The distribution policy has influence on the effectiveness of the prefetch scheme in the

web cluster system. The distribution policy in a web cluster system plays a crucial

role in system performance [3, 29, 14]. Especially, the locality-based request distri-

bution schemes [3, 29] enhance the performance of the web cluster systems through

the efficient memory management of backend servers. When a client establishes one

connection, prefetch schemes can be exploited in locality based distribution scheme.

However, admission control for multiple connections per client, which is a new feature

of HTTP 1.1, increases the difficulty of prefetching in web cluster environments. A

web cluster handles multiple connections from the same client independently. There-

35

fore, different backend servers in the web cluster reply to the same client. When a

backend server prefetches the predicted objects, it is not guaranteed that the next

incoming request will be forwarded to the backend server which has the web objects

through prefetch. To handle multiple connections, the distributor should keep the

prefetch information in the backend server of the web cluster system.

Moreover, the locality-based schemes with prefetching fail to achieve load bal-

ancing. The more files are prefetched at the backend servers, the more requests are

forwarded to them. It results in consuming available memory space in the backend

servers, and degrading the performance of the web cluster systems. A simply ag-

gressive prefetch scheme may increase the inequality of request distribution and drop

performance in web the cluster systems dramatically.

C. Adaptive Web Prefetch Scheme

To overcome the difficulty of the prefetch scheme at web cluster system, it is required

the adaptive management scheme in web cluster environments. Prefetch schemes are

composed of prediction of incoming requests and rate control of prefetch. We propose

the adaptive prediction and rate control in web cluster systems using double P.P.M.

scheme (DPS) and adaptive rate controller (ARC).

1. Double P.P.M. Scheme (DPS)

Although the previous works [57, 56, 55] provide hybrid schemes which lie between

short-term and long-term approaches, they do not consider the modern web frame-

works and cluster environments. At the server’s side, access patterns are dynamic

depending on the location of web clients and configuration of objects. The prefetch

scheme at the server’s side must be able to tolerate the randomness of access patterns.

36

Fig. 10. Double P.P.M. Scheme

We propose a two-level hybrid scheme, referred to as DPS. DPS handles the

main and embedded objects in different ways. Fig. 10 shows how DPS finds the

relationship between web objects from web log files. For the first step, DPS classifies

web objects into a number of groups each of which consists of one main object and its

related embedded objects. During the grouping of web objects, DPS makes the record

of the intra-section relationship defined by the request frequency of embedded objects

after the request of the main object. DPS differentiates a the main object from the

embedded objects according to the file extensions. Web objects with file extension

such as ’html’, ’php’ and ’jsp’ are classified into main objects. In Fig. 10, gray circles,

white circles and arrows denote main objects, embedded objects and relationships,

respectively. Each arrow has a prediction value which shows the probability that

the request of an embedded object will follow that of a main object. In Fig. 10,

37

DPS finds three groups including ’A’, ’B’ and ’C’. In the second step, DPS searches

for the inter-section relationship between groups. DPS focuses on only the access

to main objects that is representative of the group. In this step, DPS defines the

access to main objects as the access to their corresponding groups. In Fig. 10, DPS

detects two access patterns to main objects including ’A → B → C’ and ’A → C →
B’. Although access patterns are changed by the web cache or configuration of web

objects, DPS can find access patterns of objects accurately.

2. Adaptive Rate Controller (ARC)

Using the relationship information provided by DPS, Adaptive Rate Controller (ARC)

calculates the prefetch rate dynamically. It determines which objects should be

prefetched considering memory status. Memory is one of the critical resources in

web server system. Aggressive prefetch schemes does not always guarantee the per-

formance enhancement.

No−P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Hit Rate

R
es

po
ns

e
T

im
e

(M
ic

ro
 S

ec
)

1M File 100K File 10K File 1K File

Fig. 11. Prefetch Efficiency

Fig. 11 shows the response time over the variable hit rate of the prefetched

38

data. We use 100 file groups for each file size; 1MB, 100KB, 10KB and 1KB. A file

group includes 20 files of the same size. A client selects one group, and then generates

requests to two files in the group at an interval of 2 seconds. After processing the

first incoming request, the web server prefetches one file from the disk. The client

creates the requests to the prefetched object or non-prefetched object according to the

test configurations. With less than 10% hit rates, it takes longer than non-prefetch

scheme. This result proves that the inefficient memory management degrades the

performance in the web server system. It is a critical problem to figure out which

files are prefetched in the memory.

We should formulate system improvements considering disk workloads and mem-

ory status. The following equation shows the access improvement.

P = RT −RT
′
, (3.1)

where RT and RT
′
are the average response time without prefetching the predicted

object and the average response time with prefetching the predicted object, respec-

tively. ARC manages the prefetch memory for P in equation (3.1) to be positive. A

web server is modeled by employing an M/G/1 round-robin queuing system where

web server processes share one CPU and disk. Also, all cached pages in buffer cache

have the same access probability in the future. First, the average response time (RT)

in a web system is

RT = Hsys × Tmem + (1−Hsys)× Tdisk, (3.2)

where Hsys, Tmem and Tdisk are the hit rate of memory, memory transmission and disk

response time, respectively. Tdisk is the disk response time denoted by (DS)/(1− ρ),

where DS is the disk service time and ρ is the disk utilization. Disk utilization, ρ, is

the miss rate of memory multiplied by the disk service time, DS. The miss rate of

39

memory is λ× (1−Hsys), where λ is the request rate to a page.

When requests hit on memory, requested pages are located in the prefetch mem-

ory or the buffer cache. Thus, Hsys is Hpref + Hbuf , where Hpref is the hit rate of

prefetch memory and Hbuf is the hit rate of buffer cache. We drive equation (3.2) to

equation (3.3) as follows.

RT = (Hpref + Hbuf)× Tmem + Fsys × DS

∆
, (3.3)

where Fsys is the miss rate of memory, the same as 1−Hsys. ∆ is 1− λ×Fsys×DS.

Hpref and Hbuf are the hit rates of prefetch memory and buffer cache, respectively.

When the requested page misses on memory, the response time becomes (DS)/∆,

which is greater than zero. Also, DS and ∆ are greater than zero.

∆ = 1− λ× Fsys ×DS > 0 (3.4)

When there is not enough space to prefetch related files, operating systems re-

move some cached objects in buffer cache to increase available memory space. It

increases the hit rate of prefetch memory, while decreasing the hit rate of buffer

cache. After prefetching related files, the average response time (RT
′
) is defined as

below.

RT
′
= (Hpref

′
+ Hbuf

′
)× Tmem + Fsys

′ × DS

∆′ (3.5)

where Hpref
′
, Hbuf

′
and Fsys

′
are the hit rate of prefetch memory, the hit rate of buffer

cache and the miss rate of memory, respectively. ∆
′
is 1 − λ

′ × Fsys
′ × DS, where

λ
′
is the request rate to a page. When the requested page misses, the response time

becomes (DS)/(1 − λ
′ × Fsys

′ × DS), which is greater than zero. Also, DS and ∆
′

are greater than zero.

40

∆
′
= 1− λ

′ × Fsys
′ ×DS > 0 (3.6)

The access time to cached objects in memory is negligible, therefore Tmem becomes

zero. We rewrite equation (3.1) as below.

P = RT −RT
′
=

DS × (Fsys ×∆
′ − Fsys

′ ×∆)

∆×∆′ (3.7)

For P in equation (3.7) to be positive, ∆, ∆
′
, DS and Fsys ×∆

′ − Fsys
′ ×∆ should

be also positive. In equations (3.4) and (3.6), ∆ and ∆
′
are greater than zero. DS is

positive, because it is the disk service time. Therefore, Fsys×∆
′−Fsys

′×∆ should be

greater than zero. In equation (3.5), ∆
′
is 1−λ

′×Fsys
′×DS. Fsys×∆

′−Fsys
′×∆ > 0

is rewritten as below.

Fsys − λ
′ × Fsys

′ × Fsys ×DS − Fsys
′

+ λ× Fsys
′ × Fsys ×DS > 0 (3.8)

Web prefetch system processes not only demanded requests but also prefetch

requests. Therefore, λ
′
is the sum of λ for demanded requests and λpref for prefetch

requests. We rewrite inequality (3.8) to (3.9).

Fsys
′
<

Fsys

1 + λpref × Fsys ×DS
(3.9)

Fsys
′
is 1−Hpref

′−Hbuf
′
, where Hpref

′
and Hbuf

′
are the hit rates of prefetch memory

and buffer cache, respectively. We assume the cached objects have the same prob-

ability to be accessed in the future. Therefore, all pages in buffer cache contribute

uniformly to the Hbuf . When N(B) pages are in buffer cache, each page contributes

(Hbuf)/(N(B)) to the cache hit ratio. When more objects are prefetched, Hpref
′
in-

creases. Hpref
′
is the sum of Hpref and Hpred where Hpred is the prediction value of

41

prefetched files.

Hpred > 1 − Hpref −Hbuf × N(B)−N(R)

N(B)

− Fsys

1 + λpref × Fsys ×DS
, (3.10)

where N(B) and N(R) are the buffer cache size and the released buffer size for

prefetched object, respectively. To maximize the performance improvement, our web

predictor monitors the hit rate and size of the buffer cache, and then prefetches web

objects which satisfy inequality (3.10). We get prediction values from DPS, while the

hit rate and size of buffer cache are obtained using PAPI [66] and ’meminfo’ in Linux

Kernel.

D. Prefetch Memory Management

For management of prefetch memory, our prefetch scheme has two hash tables; one

table obtains the information for the transition graph generated by DPS and the

other table includes the information for the prefetched file on the user memory. The

transition table helps the prefetch process to predict the future requests. In Fig.

12, the prefetch table has the prediction values that show access probability to the

prefetched objects. There are prefetch process in the backend nodes that manages to

prefetch the predicted objects.

A web server has two kinds of processes; web server processes and web prefetch

process. Web processes handle the incoming requests and web prefetch process sup-

ports the prefetch scheme for the next incoming requests. In the memory of backend

servers, there are four space groups including system area, web server process area,

prefetch memory area and buffer cache area. System area is used for system man-

agement processes such as kernel, network management processes, I/O management

42

Fig. 12. Web Prefetch Memory Management

processes and security management processes. Web server process area is for running

web server processes. Prefetch memory area holds the prefetched objects and prefetch

information, and buffer cache area keeps files for the improvement of the performance

of I/O. Our ARC increases the efficiency of I/O.

1. Insertion of Web Objects to Prefetch Memory

After replying the requested file to the client, the prefetch process predicts the file

which can be requested in the future. After making the list of the predicted files, the

prefetch process checks whether the file is already prefetched or not in the prefetch

table. If it is already prefetched, the prediction value of the prefetched object is

increased. If not prefetched, the prefetch process reads from the buffer cache area or

the disk and stores them it in the prefetch memory. After prefetching the predicted

43

file, the prefetch process reports the list of the prefetched files to the distributor.

In Fig. 12, the web process 1 prefetches two web objects including ’front.jpg’ and

’back.jpg’, while the web process 5 prefetched only the file ’front.jpg’.

2. Deletion of Web Objects from Prefetch Memory

After terminating the web connection to access, the prediction value of the prefetch

file is decreased. If the prediction value is 0, the prefetched file is deleted from the

prefetch memory. In Fig. 12, if connections with the ’web proc 1’ and the ’web proc

9’ are terminated, ’back.jpg’ is deleted from the prefetched memory.

3. Retrieval of Web Objects from Prefetch Memory

When a new request is incoming, the web predictor checks whether the requested

object is already prefetched or not. If the requested web object is prefetched, the

prefetch process gives the access point of the prefetched file to the web server. Then,

the web server processes the incoming request without disk access. If not, the web

server handles incoming requests as normal.

E. Performance Evaluation

1. System Configuration

Our simulator is composed of two days of web traces, a web analyzer and a web

cluster simulator. The web analyzer obtains the relation information based on the

first day’s web traces. Then, the web cluster simulator simulates prefetch schemes

using the second day’s web traces and the information from the web analyzer.

Fig. 13 shows the detailed kernel components related with file I/O operation.

We design the memory management module in the web cluster system running on the

44

Fig. 13. Kernel Components in Disk I/O Operation

Linux kernel 2.6. When the web server processes access web objects including files

through the kernel, kernel components work together to improve I/O performance.

The buffer cache releases the overhead of disks reducing the number of I/O requests

to disks. The I/O prefetch module reads consecutive blocks in advance, while I/O

cluster module reads a cluster of blocks at a time. We design I/O operation in

our simulator based on the Linux kernel’s I/O prefetch and cluster schemes. The

least frequency used (LRU) scheme is employed as a cache replacement policy in our

simulation. The web cluster system is configured with one web distributor and four

backend servers. Each backend server has its own disk that contains the whole web

objects. In addition, the disk simulator, DiskSim [34], is embedded in our simulator

for accurate low-level I/O simulation. The simulation parameters are shown in Table

IV.

45

Table IV. Simulation Parameters (Web Prefetch Scheme)

Backend Server

Parameter Value

Physical Memory 512 MB

Kernel Space 100 MB

Web Process Size 20 MB

Disk Latency Provided by DiskSim [34]

Memory Latency (Hit) 500 Mbps

Network Latency 100 Mbps

Web Distributor

Splice Hit 90.44 in Table I

Splice Miss 2362.927 in Table I

Session Time 15 Seconds [35]

Web Client

Concurrent Connection Up to 4

We measure the size of the kernel memory and web server processes while run-

ning Apache 2.2 on the Linux Kernel 2.6.18. Each web client can create up to four

connections for delivering web documents, and each backend server maintains 5 to 10

idle web processes for future requests.

To measure the duration time of distributing requests, we install the simple client

and modified distributor at a machine. Computer has Intel Core 2 duo processor and

two GB memory. The local area network operates at the speed of 100 Mbps. A

simple web client sends the requests to the distributor, then the web switch forwards

the incoming requests into backend server. After receiving it, the backend server

replies the dummy packet into the web switch. Finally, the distributor relays the

46

packets from web server into simple web clients. The simple web clients measure

the elapsed time during the request processing. We test 1000 requests using the

implemented machine at hit/miss cases.

In the simulation, the web distributor process the incoming requests using the

locality-based request distribution. Too much web connections in persistent HTTP

consume the whole available memory and even use the swap area. The web distributor

controls the maximum number of connections to avoid the memory saturation in the

backend servers.

Table V. Requests to the Embedded Objects

Name Day 1 Day 2 HTTP

CS TAMU 25479 20018 HTTP 1.1

NASA 64714 60265 HTTP 1.0

ClarkNet 210908 229944 HTTP 1.0

SPECweb2005-1 6304 116302 HTTP 1.1

SPECweb2005-2 12018 116045 HTTP 1.1

Table V shows three real traces from web sites including Department of Com-

puter Science and Engineering in Texas A&M University, NASA and ClarkNet. Also,

we use two synthetic traces from SPECweb2005 benchmark [67]. Although web

clients use HTTP 1.0 in the ClarkNet and NASA workloads, we assume that they

use the persistent HTTP.

2. Evaluation Results

For evaluating the performance of our adaptive schemes, we compare two scenarios

including distribution without prefetch scheme and various prefetch schemes. First,

we compare the performance of distribution schemes including round robin, LARD,

47

persistent LARD and ProRD. We select the most efficient distribution scheme and

apply it to various prefetch schemes. Second, we compare the performance of our

adaptive prefetch scheme to the existing P.P.M. schemes [43, 40] and cluster schemes

[45, 46]. Our adaptive scheme uses DPS to get the relation information of web objects

and ARC to dynamically calculate the threshold value for prefetching. P.P.M. and

cluster schemes use six different static threshold values including ’0.0’, ’0.2’, ’0.4’.

’0.6’, ’0.8’ and ’1.0’. For the completeness of our study, we also include results of

non-prefetching scheme.

a. Request Distribution

Fig. 14 shows request distribution in backend nodes under ClarkNet workload. X

axis represents prefetch schemes and Y axis denotes standard deviation of incoming

requests. First 12 entries in X axis show the static schemes using P.P.M and cluster

schemes. NO P and ADA denote non-prefetching and our adaptive prefetch schemes,

respectively. We run the simulations in three different orders for each prediction

scheme. The first order scheme predict the future requests based on only one previous

request, while the second order scheme and the third order scheme uses two and three

requests for the future request predictions. When web prefetch schemes cannot find

future requests at high-order prediction, they use low-order prediction. In the case

of aggressive prefetch schemes, they try to prefetch more objects in some of backend

nodes, which results in a skewed request distribution. However, ADA distributes

requests almost as fairly as a non-prefetch scheme. We use the ProRD distribution

scheme at the overall prefetch schemes in the simulation. Fig. 14 shows the result of

the simulation for TAMU and ClarkNet workloads. The results of other workloads

show in Appendix A.

Fig. 15 shows how many requests are not provided by the web cluster schemes. X

48

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0 NO_P ADA
0

2000

4000

6000

8000

10000
TAMU

Prefetch Scheme

N
o

.
o

f
R

e
q

u
e

st

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0 NO_P ADA
0

1

2

3

4
x 10

4 NASA

Prefetch Scheme

N
o

.
o

f
R

e
q

u
e

st

1st Order 2nd Order 3rd Order

Fig. 14. Standard Deviation of Distribution (TAMU, NASA)

axis in the graph shows the prediction schemes in the simulation, while Y axis means

the number of the missed requests in ClarkNet workload. At other workloads, web

cluster systems can handle the whole request. However, the ClarkNet workload incurs

the missed requests because of the shortage of the memory. Basically, backend servers

limits the number of web processes and connections, because too many web processes

consume the whole memory and incur the swap operation. In Fig. 14, the aggressive

schemes provide the skewed distributions of incoming requests. It multiplies memory

consumption to handle the web client and prefetched objects. Therefore, memory

shortage causes the missed requests. In the 0.0 threshold, the cluster scheme has more

missed requests than P.P.M. schemes, while the P.P.M. schemes lose more requests

49

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

10

20

30

40

50

60
Clark Net

Prefetch Scheme

M
is

se
d

R
eq

ue
st

s

1st Order 2nd Order 3rd Order

Fig. 15. Missed Requests

than the cluster schemes at the 0.2, 0.4 and 0.8 thresholds. Under the 0.2, 0.4 and 0.8

thresholds, the P.P.M. schemes prefetch more objects than the cluster schemes in the

figure on page 56. P.P.M. schemes consume more memory to handle the prefetched

objects and increases the probability to miss the request.

b. Web Prefetch Schemes

In Fig. 16, Y axis denotes the response time from web cluster system and X axis

represents prefetch schemes. First 12 entries in X axis show the static schemes using

P.P.M and cluster schemes. NO P and ADA denote non-prefetching and our adaptive

prefetch schemes, respectively. We run the simulations in three different orders for

each prediction scheme. The first order scheme predict the future requests based

on only one previous request, while the second order scheme and the third order

scheme uses two and three requests for the future request predictions. When web

prefetch schemes cannot find future requests at high-order prediction, they use low-

50

order prediction.

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0 NO_P ADA
0

1000

2000

3000

4000

5000

6000
TAMU

Prefetch Scheme

R
e

sp
o

n
se

 T
im

e
 (

M
S

)

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0 NO_P ADA
0

2000

4000

6000

8000

10000
Clark Net

Prefetch Scheme

R
e

sp
o

n
se

 T
im

e
 (

M
S

)

1st Order 2nd Order 3rd Order

Fig. 16. Web Response Time in Prefetch Schemes (TAMU, ClarkNet)

In Fig. 16, ADA scheme outperforms others by maximum 40 percent. In light

web workloads such as TAMU and NASA, aggressive web prefetch schemes reduce

the response time. They move web objects on the memory to enhance the hit rate

and reduce the access to the disk. However, in heavy workloads such as ClarkNet,

aggressive prefetch schemes increase the response time. The prefetch scheme with 0.4

threshold shows the best response time among the static schemes. It shows that ag-

gressive prefetch schemes increase the overheads of the web cluster system. Although

a high-order prediction scheme gives more accurate prediction of future requests,

the performance gap between high and low order is not distinguishable. High-order

51

schemes even show worse performance than low-order schemes, as in threshold 1 of

TAMU or threshold 0.8 and 1 of ClarkNet. Cluster schemes prefetch more web ob-

jects at low threshold than P.P.M. schemes. This makes cluster schemes show the

fast response time with high hit on prefetch memory. With high threshold, cluster

schemes do not find the web objects over the threshold. Therefore, P.P.M. schemes

show similar to or better performance than cluster schemes at a high threshold. Fig.

16 shows the result of simulation for TAMU and ClarkNet, while other results show

Appendix A.

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

0.5

1

1.5

2
x 10

5 Clark Net

Prefetch Scheme

N
o

.
o

f
D

is
k

A
cc

e
ss

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

1000

2000

3000

4000

5000

6000
SpecWeb2005−1

Prefetch Scheme

N
o

.
o

f
D

is
k

A
cc

e
ss

On Demand Prefetch

Fig. 17. Number of Disk Access (ClarkNet, SpecWeb2005-1)

Fig. 17 shows the number of disk access of web servers to retrieve web objects.

The black bar shows the accesses to the requested web objects, while white bars

52

means the number of accesses to web objects for prefetch. ’No P’ schemes do not

have the white sections, because it does not prefetch. In the simulation of TAMU

workload, prefetch scheme with low threshold has more disk access than prefetch

scheme with high threshold. The prefetch scheme with low threshold do frequent

disk access to prefetch web objects. Even though they incur the overheads on the

storage, the prefetch schemes with low threshold reduce the disk access to the re-

quested web objects. In the NASA workloads, the client uses HTTP 1.0 that has the

interval between requests. P.P.M. schemes predict future requests during each inter-

val, while cluster schemes handles the bundle of requests only when main requests

are incoming. P.P.M. schemes provide more accurate prediction and reduces the fre-

quency of disk access on the demanding time. In the ClarkNet workloads, prefetch

schemes with low threshold does not reduce the disk access, and frequent disk accesses

increase the response time due to high overheads. In the SpecWeb2005 workloads,

clients establish HTTP connections using HTTP 1.1 that reuses the TCP connection

for HTTP requests. Cluster schemes provide more accurate prediction than P.P.M.

scheme. ’C 1 0’ cluster scheme in SpecWeb2005-1 workload removes the cached web

objects on the memory that will be accessed in the future. Fig. 17 shows the result

of the simulation for ClarkNet and SpecWeb2005-1 workloads. The results of other

workloads show in Appendix A.

Fig. 18 shows the number of the hit on the prefetch memory and the buffer cache.

The prefetch memory is allocated on the user memory, while buffer cache is allocated

on the kernel memory. The numbers of hit on the kernel memory is reduced when the

number of hits on prefetch memory are increased. If memory has available space, the

prefetch scheme loads the objects without removing objects in the memory. When

the whole memory is occupied, it takes the available memory from releasing the buffer

cache. When web objects are prefetched, they reduce the probability of the hit on the

53

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

0.5

1

1.5

2
x 10

5 SpecWeb2005−1

Prefetch Scheme

N
o

.
o

f
M

e
m

o
ry

 H
it

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

1

2

3

4
x 10

5 SpecWeb2005−2

Prefetch Scheme

N
o

.
o

f
M

e
m

o
ry

 H
it

Prefetch Memory Buffer Cache

Fig. 18. Number of Hits on Memory (SpecWeb2005-1, SpecWeb2005-2)

kernel memory. The ADA prefetch scheme under ClarkNet workload show the high

numbers of hit on the prefetch memory and buffer cache at same time. The ADA

controls the prefetch rate in order to avoid a drop of efficiency of the buffer cache.

The ’C 0 0’ prefetch scheme in ClarkNet workload increases the hit rate of prefetch

memory, but reduces the hit rate of buffer cache. Therefore, the ’C 0 0’ prefetch

scheme shows longer response time than the ’C 0 4’ prefetch scheme in Fig. 16. When

a web cluster runs on the TAMU and NASA workloads, the prefetch scheme with low

threshold shows the high numbers of hit on the prefetch memory. Because few web

objects strongly related with the requested web objects, the prefetch scheme with

high threshold loads small number of web objects into the memory. SpecWeb2005-1

54

workloads show the high relationship between web objects. The numbers of hit on

prefetch memory are higher than other schemes. The ADA shows the high numbers

of hit on the prefetch memory. But, it is not the highest one in prefetch scheme.

The ’P 0 0’ and the ’P 0 2’ prefetch schemes are higher that other schemes, but it

reduces the numbers of hit on buffer cache. In the SpecWeb2005-2 workloads, the

numbers of hit on the memory of the ADA scheme shows the different pattern where

the numbers of hit on prefetch memory is higher than aggressive prefetch schemes.

The ADA scheme manages the prefetch memory efficiently. Fig. 18 shows the result

of the simulation for SpecWeb2005-1 and SpecWeb2005-2 workloads. The results of

other workloads show in Appendix A.

Fig. 19 shows the average access time to the disk when web processes access the

requested web objects. Web processes has zero disk access time when the requested

file in the memory. At the miss of the requested objects, web processes take the

suitable time to get object from disk. The heavy disk workloads such as ClarkNet

and SpecWeb2005-2 incur the long disk access time. The TAMU workload and the

SpecWeb2005-1 workload can access the web objects in the disk in a short time.

In the TAMU and NASA workloads, aggressive schemes reduce the disk access time,

because it increases the hit of the requested web objects. However, aggressive schemes

in the ClakrNet workload shows the long disk access time. Aggressive schemes in

ClarkNet workload have the similar numbers of hit as other schemes, but it accesses

disk frequently for prefetching web objects. Therefore, it increases the average access

time to the disk. In the SpecWeb2005-1 workload, the ’C 1 0’ scheme has the frequent

access to the disk at the demanding time in Fig. 18. As a result, the ’C 1 0’ scheme

shows longer disk access time than even ’NO P’ scheme. In the SpecWeb2005-2

workloads, ’C 0 6’, ’C 0 8’ and ’C 1 0’ schemes have no hit on the prefetched memory

and access to disk. Therefore, the disk access times in ’C 0 6’, ’C 0 8’ and ’C 1 0’

55

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

5

10

15
x 10

6 SpecWeb2005−1

Prefetch Scheme

A
cc

e
ss

 T
im

e
 (

M
S

)

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

5

10

15
x 10

7 SpecWeb2005−2

Prefetch Scheme

A
cc

e
ss

 T
im

e
 (

M
S

)

1st Order 2nd Order 3rd Order

Fig. 19. Disk Access Time on the Demanding Requests (SpecWeb2005-1,

SpecWeb2005-2)

schemes are similar. Fig. 19 shows the result of the simulation for SpecWeb2005-1

and SpecWeb2005-2 workloads. The results of other workloads show in Appendix A.

c. Usage of Prefetch Memory

Fig. 20 shows how many objects are prefetched under various prefetch schemes. X

axis is the prefetch scheme in the simulation, while Y axis shows the number of the

prefetched block. When web processes access the file in the disk, they read it by 256

bytes. Aggressive schemes prefetch more web obejcts than other schemes. The ’ADA’

scheme prefetches more web objects than even ’C 0 0’ schemes in SpecWeb2005-1 and

56

NASA workloads. The ’ADA’ scheme distributes avoids the skewed distribution in

Fig. 14. But the ’C 0 0’ scheme keeps forwarding requests into the same backend

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

2

4

6

8
x 10

5 NASA

Prefetch Scheme

N
o
.

o
f
P

re
fe

tc
h
e

d
 B

lo
ck

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

0.5

1

1.5

2

2.5

3
x 10

5 SpecWeb2005−1

Prefetch Scheme

N
o
.
o
f
P

re
fe

tc
h
e
d

 B
lo

ck

1st Order 2nd Order 3rd Order

Fig. 20. Prefetched Blocks (NASA, SpecWeb2005-1)

server for increasing the numbers of hit on the prefetch memory. In a cluster scheme,

one cluster has lots of web objects at a low threshold, while the number of objects in

a cluster is decreased at a high threshold. At the high threshold prediction scheme,

the P.P.M. schemes prefetches more web objects than cluster schemes. Other results

except SpecWeb2005-1 and NASA workloads in Fig. 20 show in Appendix A.

Fig. 21 shows the usage of the prefetched block. X axis represents the prefetch

schemes in the simulation, while Y axis shows that the accesses of the prefetched block

are divided by the number of prefetched block. Even though aggressive schemes show

57

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

5

10

15
TAMU

Prefetch Scheme

U
sa

g
e
 o

f
P

re
fe

tc
h
 (

%
)

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

10

20

30

40

50

60
NASA

Prefetch Scheme

U
sa

g
e
 o

f
P

re
fe

tc
h
 (

%
)

1st Order
2nd Order
3rd Order

Fig. 21. Usage of Prefetched Blocks (TAMU, NASA)

the high numbers of hit on the prefetch memory, it prefetches the block that is not

accessed at the future requests. The ADA scheme has a low usage of prefetched

blocks. The ADA scheme in the ClarkNet workload has a low efficiency on prefetched

block. Even though ’C 0 0’ scheme prefetches more web objects and shows higher

numbers of hit on prefetch memory in Fig. 18 and Fig. 20, it increases the overhead

on the I/O system and low numbers of hit on the buffer cache in Fig. 18 and Fig. 19.

Prediction schemes with the 1.0 threshold shows the lower usage than prediction

schemes with lower thresholds. In the TAMU workload, ’C 0 0’ schemes shows the

highest usage. ’P 0 6’ scheme has the highest usage of prefetched block in the NASA

workload. The frequency of the web objects can make the misprediction in each

58

prediction scheme. For example, when requests to object A are logged at two times,

requests to object B are incoming at two times following by requests to A and request

to object C is incoming at only one time. The relationship between object A and

object B is 1.0, while the relationship between A and C is 0.5. But it can also

happen accidentally. This misprediction decreases the usage of prefetched object in

the prediction scheme with high threshold. In SpecWeb2005-1 and SpecWeb2005-

2 workloads, some prefetched schemes show over 100 percent usage on prefetched

object. Web preocesses can access the objects that are already prefetched by other

web processes. It can increases the usage by over 100 percent in prediction scheme.

Fig. 21 shows the result of simulation for TAMU and ClarkNet, while other results

show Appendix A.

DPS has a great advantage in modern web framework compared with P.P.M

and cluster schemes. It can tolerate the randomness of access patterns caused by

web caches or clients. ARC monitors the hit rate and the size of the buffer cache

and calculates the optimal prefetch threshold dynamically. It makes a decision of

prefetching using the dynamic threshold and relationship information provided by

DPS. Since the optimal prefetch rate keeps changing over time depending on the

system condition, using the static threshold values is not a good solution to manage

the system properly. A prefetch rate that is too high drops the performance through

the shortage of memory and I/O bandwidth, and a prefetch rate that is too low loses

the chance to improve the performance through prefetching.

59

CHAPTER IV

ADAPTIVE STREAMING SERVICE

A. Background

Multimedia streaming service consumes lots of bandwidth in the network systems.

For the management of multimedia streaming, many previous studies retrieve infor-

mation from network and system. Based on the information, clients or intermediate

node handle multimedia streaming efficiently. In the streaming service, bandwidth es-

timation decide the quality of streams and provide the efficient stream. This chapter

shows the previous work for estimating the available bandwidth.

1. Bandwidth Estimation in Wired Network

Since the introduction of Cprobe [8], a method for estimating bandwidth using Inter-

net Control Message Protocol (ICMP) packet trains, many tools have been suggested.

The basic scheme in the available bandwidth estimation used a statistical analysis of

the received probe packets in the destination node. The existing schemes are classified

into two groups; probe gap [11, 10, 68] and probe rates [9, 10, 69].

In probe rate schemes, the comparison of the incoming rate from the sender side

to the outgoing rate reveals the incoming rate to be less than or equal to the available

bandwidth of the probing link: Pathload, PTR and TOPP.

In the Pathload [27], the scheme can measure the available bandwidth and capac-

ity at a same time. They define the available bandwidth as the maximum throughput

that can provide to a application. For measuring the accurate available bandwidth,

they consider the dynamic path selection and different classes service. Even though

they design the scheme in real time application, they are suffering from the heavy

60

probe packet stream. PTR [10] focus on searching the sending rate at source node

that equals to the arriving rate at destination node. For obtaining the sending rate,

PTR finds that the initial packet pair gap affects the arriving rate. Based on the

arriving rate, PTR obtains the available bandwidth of the probing link. TOPP [69]

is one of the famous probe gap schemes. It is a new end-to-end probing and analysis

method through three sub schemes. Using the linear regression scheme, they remove

the parameter to estimate the available bandwidth. However, it is suffering from the

long probing time because of probing the link and analysing the result.

Probe rate schemes increases the transmitted packets to the destination and

takes time to get the available bandwidth of the probing link. Real-time system such

as multimedia streaming service is sensitive to the retrieval time of streaming packet

because the delayed multimedia streaming data cannot be used in the multimedia pre-

sentation. The long probing time in the available bandwidth drops the performance

on multimedia streaming service. Probe gap schemes use the interval of consecutive

probe packets, since the interval or gap between probe packets is increased in heavy

cross traffic: Spruce, IGI and Delphi

Spruce [11] is estimation tool for the measurement of the available bandwidth.

For measuring the available bandwidth, it checks the gap between the probe pack-

ets. Then, spruce calculates the number of the bytes between two probe packets

using inter-probe space. Spruce scheme uses the a poisson process to handle the

gap between probe packet. IGI [10] is similar scheme to the PTR that is one of

probe rate schemes. IGI also decides the initial gap between probe packets, then

gets the available bandwidth of the probing link. However, IGI focus on calculating

the background traffic load, while PTR calculates packet receiving rates. During the

bandwidth estimation, Delphi [68] use the heuristic and parametric model and queu-

ing theory. It also changed the traffic rate of probe stream depending on the network

61

status. The Delphi estimates the accurate available bandwidth at high cross traffic,

while it overestimates the available bandwidth at low cross traffic.

2. Bandwidth Estimation in Wireless Network

The estimation schemes in wired network assume the ’first-come-first-served’ for eval-

uating the available bandwidth, while wireless network environments control the dis-

tributed manner. This leads the false expectation to probe the available bandwidth

to the link. In multimedia streaming service, underestimation of the link can lose the

chance to serve the high quality of multimedia, while overestimation can increase the

packet loss and indirect loss that the even transmitted packet cannot be used.

Wireless networks are error-prone and distribute the control scheme to avoid

collisions. Therefore, it makes the difficult to detect the exact available bandwidth

in a wireless network. In Probegap [28], the idle time in the link is the milestone

for bandwidth estimation of a wireless network. They make the graph on the delayed

time in received probe packet, then find transition point in the graph to know the

available bandwidth. The multimedia streaming service is critical to the delay time.

Also, it is difficult to search for the transition point in the graph in heavy cross traffic.

TOPP [70, 71] is one scheme of the probe rate in wired networks. They are looking for

the input rate that is the same as the output rate to estimate the available bandwidth

in wireless network environments. However, they are suffering from long probing

times, because of the increased linear traffic of probing packets. SLoPS [72, 27]

increases the probing traffic for the fast estimation of available bandwidth. SLoPS

is able to estimate the range of the available bandwidth, but it is not accurate.

In multimedia streaming services, this inaccuracy estimation decreases the serviced

multimedia quality.

62

3. Cross-layer Scheme

Recent research [73, 74, 75, 76] on mobile multimedia streaming has proven the good

performance of a cross layer scheme better than a single layer scheme.

In [77], they provide the embedded real-time schedule in the operating system.

In the real-time system, each job has their own dead line. They develop the scheme

to handle jobs using the statical distribution. Also they suggest the GRACE-OS to

handle the jobs efficiently. [76] presents the voltage scaling algorithm for adjust-

ing multimedia application to CPU speeds in mobile multimedia systems. In the

multimedia stream, the frame size is different depending on the frame type and the

relationship between frames. When decoder decodes the frame with the low rates,

they save the power to use the low voltage. However, they use the high voltage to

decode the large frame. [74] provides the adaptation scheme of video quality and

the efficient power management scheme through minimizing the energy consumption.

They suggest the the low level architectural schemes and OS power-saving schemes.

They design the middle ware to provide the power reduction. [73] tunes the system

parameter in the unified framework through sublayer interactions using cross-layer

schemes. They design the adaptive and unified framework through the feedback in-

formation.

In addition, cross layer scheme is used for supporting the optimal power manage-

ment scheme in wireless multimedia streaming service through cross-layer schemes.

[78] analysed the error management scheme through cross-layer scheme considering

transmission power and delay. In [79], cross-layer scheme between application-layer

and MAC-layer provides the adaptive multimedia transmission scheme in wireless

environments. [80] presented the energy efficient error control scheme in multimedia

multicast in wireless environment through cross-layer scheme. [81] coordinates three

63

layers and error detection and recovery scheme that presents error detection in the

hardware layer, error recovery scheme in middleware and error-resilient encoding in

the application layer.

4. Active Intermediate Node

There have been a handful of studies that show how an active intermediate node can

improve service quality for multimedia streaming service [82, 83, 84, 85, 86].

Some client can not support the high quality stream because of some limita-

tions such as network or power. In the [82, 83], they suggest that the intermediate

node change the quality of the streams using the multimedia transcode. It can save

the available bandwidth between server and intermediate node and decrease the re-

sponse time to the client. In [84, 87], intermediate node increase the efficiency on

the streaming service. The late packets cannot be decoded at client and just waste

the bandwidth of the link. For the efficient stream service, the late packets should

be removed as soon as possible. [84, 87] checks the jitter of the packet based on

the packet delay. If some packets exceed the threshold value, an intermediate node

eliminates the delay the packet.

For recovering the missed packet, [85] suggests the adaptive retransmission in

the streaming service. It is difficult to decide whether packets are retransmitted or

not. If retransmitted packets are arrived too lately, they just consume the available

bandwidth of the link. To solve the problem, they check the presentation time of the

multimedia data in the packet. The proxy retransmits the packets that can be arrived

on time. [86] suggests that intermediate node helps the stream service. When the

client joins the ongoing broadcasting, it waits the receiving the initial streams. If

the intermediate node has the initial streams, they forward the initial stream to the

client, clients can play stream without startup delay.

64

Currently, there are not enough study for handling the environmental variation,

such as the available bandwidth or lost packet, have not been studied so far. An STB

is also an intermediate node for streaming service and has four major components:

a network interface, an MPEG decoder, graphics overlay and an presentation engine

[88].

B. Motivation

Wireless Local Area Networks (WLANs) are becoming more and more popular at-

tracting the interest of researchers, system integrators and computer manufacturers.

For providing good quality of the multimedia streaming service, variable scheme are

used in wireless network including scalable multimedia, bandwidth estimation and

collision avoidance.

1. Scalable Streaming Service

In the heterogeneous network environments, scalable multimedia streaming service

can provide the acceptable quality to multimedia users through scalable video cod-

ing. A traditional scalable streaming service contains spatial scalability and temporal

scalability based on the quality base layer and enhancement layer, respectively. The

spatial scalable scheme divides the large frame into a small base frame and additional

data that improve the quality of the base frame. The temporal scalable scheme groups

frames with high frame rate per second (FPS) into several groups of frames with low

FPS.

In the recent scalable streaming service, the packet-based scalability allows the

fast bit adaptation. The multimedia streaming data are contained into the network

abstraction layer (NAL) packets. NAL has three parameters including dependency id,

65

temporal id and quality id that stands for spatial scalability, temporal scalability and

SNR scalability, respecively [89].

Multi-layer streams through scalable multimedia streaming service can make

the multimedia server to provide the various multimedia clients with different envi-

ronments and capabilities. Even though scalable multimedia streaming service can

provide the several layers streams instead of a large stream, detection schemes are re-

quired for the adaptation of scalable service. It is critical for scalable stream services

to decide when he quality of multimedia stream is changed.

2. Bandwidth Estimation

Bandwidth estimation is a prerequisite problem for real-time applications in wireless

networks. There are two factors making this problem unique. First of all, unlike wired

networks, traditional ’first-come-first-served’ is not used to schedule bandwidth among

connections in wireless networks. To avoid collisions in wireless networks, nodes are

arranged in a distributed manner. This arrangement causes bandwidth estimation

methods in wired networks using intervals [11, 10, 68] or rates [70, 69, 27, 72]

inapplicable for bandwidth estimation in wireless networks. Secondly, they create the

probe stream for estimation that consumes the bandwidth for streaming service.

[28, 90] suggested that idle time of a link in a wireless network can be a major

milestone for estimating the available bandwidth as follows. In equation (4.1), let C

be the capacity of the wireless network. Idle rate indicates the rate at which the link

is idle. Then the AB, available bandwidth, can be obtained by the following product.

AB = C × Idle rate (4.1)

However, previous schemes [28, 90] using this equation cause too much over-

66

head to be used in a real-time system for the estimation of the available bandwidth.

[28] requires the probe stream for bandwidth estimation, and results show multiple

incorrect estimated values in heavy traffic. [90] also captures the whole packet in the

wireless network and analyzed the captured packet. It requires the heavy CPU load

and network I/O operation. For real-time applications such as multimedia streams,

it is difficult to use these schemes; therefore, we introduce an efficient scheme to

calculate the idle rate.

3. 802.11 Wireless Standard

The IEEE 802.11 protocol [91, 92] is the dominant standard for WLANs and employs

the Distributed Coordination Function (DCF) as the essential Medium Access Control

(MAC) method.

a. Network Allocation Vector

DCF defines two access mechanisms to employ packet transmission; the default, two-

way handshaking technique called basic access and the optional four-way handshaking

RTS/CTS reservation scheme. The RTS/CTS scheme involves the transmission of the

short request-to-send (RTS) and clear-to-send (CTS). It controls packets prior to the

transmission of the actual data packet. Since collisions may occur only on the RTS

packets and are detected by the lack of the CTS response, the RTS/CTS scheme

results in an increase on system performance by reducing the duration of collisions,

especially when long data packets are transmitted. The RTS/CTS scheme is also

employed to result in a better performance in the presence of hidden stations. When

two nodes in a wireless network share the same access point (AP) but cannot hear

each other, one node will not be able to know whether the other node is already

using shared resource, that is, the wireless channel. For addressing this hidden node

67

problem, each node uses the NAV that shows how long other nodes allocate the link

in the IEEE 802. DCF MAC protocol. Even though a node is located at a place

where it cannot reach other active nodes, the node can know whether another node is

already using the wireless network by checking its NAV. In Fig. 22, when the sender

sends RTS request to send (RTS) to the receiver (AP), Other-1 node that is reachable

from sender updates its NAV. However, Other-2 node does not update NAV, because

it is not reachable from sender. When the receiver sends clear to send (CTS), Other-2

node updates its NAV. The idle time in the wireless network can then be estimated

from the NAV information.

Fig. 22. Network Allocation Vector

b. Multiple Transmission Rate

Based on channel coding schemes, the physical layers (PHY) supports multiple trans-

mission rates. In 802.11b [92], PHY provides four transmission rates of 1Mbps,

2Mbps, 5.5Mbps and 11Mbps, while eight transmission rates including 6Mbps, 9Mbps,

12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps and 54Mbps are supported by PHY in

802.11a [91]. Even though 802.11 determine the various transmission rates in each

68

standard, negotiation of transmission rate is not specified. Two schemes are widely

adapted in transmission rate adjustment. One scheme provides transmission adap-

tation based on Signal to Noise Ration (SNR) [93, 94]. Other one is based on the

history of the acknowledgment (ACK) reception that is suggested by Lucent Tech-

nologies WaveLan-II [95]. In the failure of receiving two consecutive ACK frames, the

negotiated transmission rate is lower.

C. IdleGap

All nodes in a WLAN share the same resource; that is, a wireless channel. If a node in

a WLAN is utilizing the resource, the additional node(s) should await the release of

the wireless channel. The whole bandwidth is consumed by other nodes or available

to any node in a wireless network in equation (4.2).

Btotal = Bavailable + Bconsumed

Bconsumed =
n∑

i=0

B(i) (4.2)

where Btotal, Bavailable, Bconsumed, n and B(i) is the total bandwidth, available band-

width, consumed bandwidth, number of node in wireless networks and the consuming

bandwidth by nodei, respectively. For multimedia streaming service, it is critical to

know how much bandwidth is allowed. When Nodei received the multimedia stream-

ing service, Nodei can consume the B(i) + Bavailable bandwidth. B(i) can be known

as how many data can be received from multimedia server.

However, it is difficult to estimate the available bandwidth in a wireless networks.

In equation (4.1), the capacity and idle rate of wireless link is critical to estimate the

available bandwidth. Unlike the wired network, wireless networks like IEEE 802.11

supports multiple transmission rate depending on the environments including error

69

rate and location. Also, the hidden node problem makes it difficult the estimation of

the idle rate in wireless link.

1. Network Idle Vector (NIV)

To estimate the idle rate in wireless networks, we build the vector in the MAC layer.

When node transmits packet through IEEE 802 protocols stack, each packet includes

time information that shows how much time the link is allocated. NAV table stored

the information when the link will be available. However, it is not considered about

the duration time of link allocation. In addition, NAV is updated only when other

node transmit the packet. For the estimation of idle rate, we embedded the network

idle vector (NIV) in MAC layer for storing busy time of the link. When packets are

received from other nodes or are transmitted, NIV update the duration time in a

time slot. N slots in NIV contain the busy time of the link at each time slot. In

Fig. 23, AP can reach the whole nodes, while Node 1 cannot receive the packet from

Node 3, directly. After receiving the RTS packet at time r0, Node 1 knows that AP

allocates link for packet transmission from r0 to r1. During the time from t0 to t1,

the idle time of the link is r0 − t0. After finishing the data transmission from AP

to Node1, Node 3 transmits the data into AP. Node 1 is located outside of Node 3’s

transmission range, therefore RTS from Node 3 can not reach into Node 1. Node 1

does not update the NIV table into busy status during time r2. After receiving the

CTS from AP, Node 1 changes the status of NIV table at duration time (r4 − r3).

In the time from t2 to t1, idle rate is (r3 − r1)/(t2 − t1). The link in the wireless

network is used during the whole time t2 to t3, Node 2 and AP use the link from r4

to t3 during the time from r4 to r3.

70

Fig. 23. Network Idle Vector

2. Estimation Scheme

a. Capacity

IEEE 802.11 like IEEE 802.11a, IEEE 802.11b or IEEE 802.11g provides multiple

transmission rate. In addition, collision avoidance scheme requires management time

for packet transactions including RTS, CTS, Defer Time and short inter frame space

(SIFS). In previous works [11, 10, 68, 70, 69, 27, 72, 28, 90], they consider the capacity

of link as physical transmission rate. However, 802.11 protocols use the management

packets for avoiding the collision. It takes time to transmit and receive management

packets. Therefore, the capacity can be changed the packet size and error rate. It

requires the adaptive scheme for the measurement of capacity in wireless link.

The duration time, RTi, in the 802.11 protocols are calculated in the Mac layer for

71

RTS/CTS scheme. Our module, Idle Module, retrieves the data size, RSi, whenever

packets are coming. Then, our Idle Module measures the dynamic capacity in wireless

link using equation (4.3).

C =
RSi

RTi

(4.3)

b. Idle Rate

All nodes in a WLAN share the same resource; that is, a wireless channel. If a node

in a WLAN use wireless channel, the additional node(s) should await the release of

the wireless channel. During a transmission in a WLAN, a node can be one of the

following: sender, receiver, or onlooker. If a node transmits data to another node, it

is a sender. A node is a receiver if receives data. Finally, when a node does not join

the transmission, it is an onlooker.

The busy time of the link can be estimated by adding up all the transactions of

nodes in the network as depicted in equation (4.4). Here Tl is the busy time of link l

and TT (i, j) indicates the transaction time between nodes i and j.

Tl =
1

2
×

n∑

i=1

n∑

j=1

(TT(i,j)) (4.4)

Unfortunately, we cannot know all the transaction times form the nodes in the

network. In addition, obtaining the transaction information can increase network

traffic, hence affecting current traffic on the network. Therefore, we propose to obtain

all the necessary information from one node in the network as follows. The transaction

time of node i can be obtained via the sum of the sending and receiving times to/from

node i (TT (i, j) = STi + RTi, where STi is the sending time from node i to j and

RTi is the receiving time from node j to i). though a node is located at a place

where it cannot reach For the transaction time between other nodes, we can get

72

theonlooking time from the NAV in node i that is updated in other node transactions

(TT (i, j) = OTi , where OTi is the onlooking time at node i). Therefore, we can

estimate the busy time Tl in any node i in the network as shown in 4.5.

Tl = STi + RTi + OTi (4.5)

Idle rate = 1− busytime

totalelapsedtime
(4.6)

We can then obtain Idle rate using the busy time:

3. System Model

We propose to add an Idle Module in the MAC layer of a node in the network. This

module obtains the busy time Tl from (a) and (b) in Fig. 24. The transaction time

of node can be obtained through accessing outgoing and incoming packets STi + RTi

between the network layer and the link/mac layer in Fig. 24. The update process of

the NAV triggers the Idle Module to update its value. An application can access the

Idle Module to get the idle rate, 1 − (busytime)/(totalelapsedtime). Then applying

the idle rate and link capacity C in equation (4.3) , the estimated bandwidth of the

link can be calculated with minimal effort.

D. ActiveSTB

ActiveSTB acts as gateway to downstream heterogeneous clients and also performs

quality-adaptation to various network bandwidths, while simultaneously forwarding

the buffered stream allowing a client to view quality playback of multimedia stream.

ActiveSTB is designed to efficiently manage the wireless transmission of the multime-

dia stream by early dropping of useless data and estimating the available bandwidth.

The removal of useless multimedia streaming data from the ActiveSTB cache

73

Fig. 24. IdleGap

can save the bandwidth of network. Loss in scalable streaming service has two clas-

sifications: indirect loss and direct loss. For efficiently managing the wireless link,

our ActiveSTB saves the bandwidth of wireless link by eliminating indirect loss that

packet are transmitted not decoded.

1. Drop of Residual Data

In the scalable multimedia streaming, each layer has the different priority. Base

layer stream has high priority, while enhancement layer stream has low priority in

scalable stream service. When the available bandwidth cannot accommodate whole

frames in scalable stream, some enhancement layers are removed for smoothing the

scalable multimedia service. An high quality stream service can cause the congestion

in wireless channel and make the unexpected delay in multimedia delivery, while an

low-quality streaming service lose the chance to provide the better service to the user.

Our active scheme determines the adaptive quality for scalable streams in wireless

channel.

74

Fig. 25. Early Drop for Residual Multimedia Stream

Fig. 25 shows the architecture for the adaptive scalable multimedia streams. In

Fig. 25, the stream controller provides the feedback information on the status of

estimated bandwidth, EBi, and cached stream. Based on the information, the early

drop controller decides how much data are transferred into client. Each GoV in the

scalable streams has their own time stamp for decoding, TS. The time stamp at the

initial GoV in the streams are configured as 0. Our ActiveSTB extracts the time

information from the packets. It takes time to deliver the packets into client, DNi.

The client starts to decode the received packets after buffering the initial GoVs, Binit.

We assume that gap between GoV is same, T . For playing scalable stream at PTi,

the client should receive them before access them, RTi.

RTi < PTi (4.7)

For satisfying fomula 4.7, scalable streams are delivered into client before the

cached stream in the buffer are running out. Our ActiveSTB transmits each stream

at STi into client considering the decoding time, TS. Also, decoder consumes the

GoV considering the decoding time, j. So, equation (4.7) is driven into equation

75

(4.8).

DNi < Binit −RT0 {StartupDelay} (4.8)

DNi < PTi−1 − PTj {PlayingV ideo}

< PT0 + TS × {i− 1} − PT0 − TS × j

< TS × {i− j − 1}

In equation (4.8), DNi can be calculated by multiplying size of multimedia data,

SMi, and estimated available bandwidth, EBi.

SMi <
Binit −RT0

EBi

{StartupDelay} (4.9)

SMi <
TS × {i− j − 1}

EBi

{PlayingV ideo}

Therefore, multimedia stream that satisfies equation (4.9) can be arrived on the client

side before decoding streams.

2. Drop of Corrupted Data

In Fig. 25, each GoV in the scalable multimedia stream contains four layers that

include a base layer and three enhancement layers. Decoding a layer requires the

referred other layers because of the hierarchical relationship between layers. When

the ActiveSTB notices that third layer in a GoV is incomplete, so both the third and

the forth layers in the GoV are early dropped in the STB and not forwarded to client.

This early dropping decreases bandwidth consumption by eliminating corrupted mul-

timedia data.

QoS of streaming multimedia data is determined by not only the amount of

direct loss but also one of indirect loss. The ActiveSTB transmits the only acceptable

multimedia data. Table VI shows the variables used for stream packet transmission

76

and validation equations.

Table VI. Packet Transmission and Validation Calculation Variables

Gg The gth GoV in the multimedia stream

Lg,l The lth layer at the gth GoV

Pg,l,s The sth packet in the lth layer at the gth GoV

NG Number of GoVs in multimedia stream

NLg Number of layers in GoV(g)

NPgl Number of packets in the lth layer at the gth GoV

PLR Packet loss rate

Sizegl Size of the lth layer at the gth GoV

In equation (4.10), the server divides l layer in g GoV multimedia stream into

several packets for transmitting:

Lgl =
NPgl⋃

i=0

Pgli (4.10)

When a layer is complete with all available packets, a client can decode the received

layers. One packet loss can cause other packets in the same layer and referring layer

to be thrown away. The safe transmission of all packets in l layer ensures that the

multimedia data at l layer is valid for decoding as in equation (4.11).

V alid network(Lgl) =
NPgl∏

i=0

(1− PLR(Pgli)) (4.11)

Each layer has a hierarchical relationship with other layers as shown as in equation

77

(4.12):

V alid decode(Lgl) =
Lgl∏

j=0

NPgl∏

i=0

(1− PLR(Pgli)) (4.12)

To reduce a waste of available bandwidth on wireless channel, we filter out corrupted

layers before transmission over the shared wireless channel as shown in equation

(4.14), while complete layers are transmitted to a client through wireless channel as

shown in equation (4.13):

Complete(NG) =
NG∑

g=0

(
NLg∑

l=0

(Size(L)

×
Lgl∏

j=0

NPgl∏

i=0

(1− PLR(Pgli)))) (4.13)

Filtered(NG) =
NG∑

g=0

(
NLg∑

l=0

(Size(L)

× (1−
Lgl∏

j=0

NPgl∏

i=0

(1− PLR(Pgli))))) (4.14)

E. Experimental Results

To evaluate the performance of our IdleGap method, tests were run using the NS-2

simulator. As shown in Fig. 26, there are seven nodes including three wired nodes,

three wireless nodes and an AP. In the wired network, the capacity of the link was

set to 100Mbps, while the capacity in wireless network was set to 1 or 10Mbps.

1. Scalable Multimedia

Table VII shows five H.264 streams for the simulation. Five streams include three

movie trailers and two scenic video clips. The streams are divided into five or six sub

streams using Joint Scalable Video Model (JSVM) codes [101]. During the creation

of sub layers from one streams, we configured three factors including quantization,

78

Table VII. Scalable Streams

Frame Name Encoding Type Number of Frames

Amazing Caves [96] Scenario 1 2031

Bourne Ultimatum [97] Scenario 1 2125

I Am Legend [98] Scenario 1 2397

Simpsons [99] Scenario 2 1568

To The Limit [100] Scenario 2 919

space and frame rate.

Table VIII. Scalable Stream Scenario 1

QP Frame Rates Frame Size

Layer 0 38.0 15 320 × 240

Layer 1 32.0 30 320 × 240

Layer 2 30.0 30(15) 320 × 240 (640 × 480)

Layer 3 28.0 30 640 × 480

Layer 4 26.0 30(15) 640 × 480 (1280 × 960)

We create five scalable stream H.264 video following two scenarios. Table VIII

shows the scenario 1. We divided one stream into five sub streams. Base stream

contains 320 × 240 frames, 15 frame per second and 38 quantization value. When

the whole enhanced layers are added into scalable streams, quality of video is enhanced

upto 1280 × 960 frames, 30 frames per second and 26 quantization value. The size of

79

frame in layer 2 is larger than one in layer 1, while the frame rate is lower thanlayer

1. When layer 0, 1 and 2 layers are decoded, some frames are decoded at larger size

(640 × 480) and other frames are decoded at small size (320 × 240). The layer 4 in

scenario 1 gets lower frame rate than layer 3 in scenario 1. In scenario 1, we create

high quality scalable streams, low quantization value means that non-zero Huffman

codes is increasing. In addition, large frame size also multiplied the size of scalable

stream. However, it can provide the high quality of scalable stream service.

Table IX. Scalable Stream Scenario 2

QP Frame Rates Frame Size

Layer 0 38.0 15 160 × 120

Layer 1 38.0 30 160 × 120

Layer 2 38.0 30(15) 160 × 120 (320 × 240)

Layer 3 34.0 30 320 × 240

Layer 4 34.0 30(15) 320 × 240 (640 × 480)

Layer 5 32.0 30 640 × 480

Table IX shows the scenario 2 that makes low quality streams with high quanti-

zation values and small frame size. It can increase the probability to send the frame

when the network are congested. ’Amazing Caves ’, ’Bourne Ultimatum’ and ’I am

legned ’ are encoded with high quality followed by scenario 1, while ’Simpsons ’ and

’To The Limit ’ are encoded into low quality streams.

80

2. Simulation Configuration

In Fig. 26, the AP involves three connections: the Wired Node 1 to the Wireless Node

2, the Wired Node 2 to the Wireless Node 1, and the Wired Node 3 to the Wireless

Node 3. The Wired Nodes 1 and 2 generate the cross traffic. The Wired Node 3

transmits stream dta into the Wireless Node 3. We evaluate the estimation scheme

including IdleGap, ProbeGap, Pathload and Spruce. The three step simulation for

Fig. 26. Simulation Environment

streaming service is conducted using JSVM, merger and NS-2 simulator. First of

all, JSVM divides the original stream into several layers, and then logs the size and

decoding time information of each layer in terms of GoV. Secondly, the NS-2 network

simulation is conducted using the log file generated by JSVM, and tracks when the

packets are arrived into the client. Lastly, our merger decides whether packets are

valid using the arrival time of packets, the decoding time of frames and startup delay.

At the network simulation step, we have three connections including streaming service

81

and two cross traffic. Multimedia server transmits the multimedia data into STB

that caches and forwards the cached data into clients using wireless connection. The

maximum of bandwidth of wireless channel is 10 Mbps.

3. Streaming Service

For reducing the indirect loss, it is critical to detect which packets contain the cor-

rupted frame. MPEG Standards provide the start code and resync code for skipping

the corrupted data. However, STB should scan the whole received packets for finding

the start code and resync code. It creates too much overhead on the STB. When mul-

timedia server divides the frame into the packets, we add more information including

frame no, frame seq, layer id and frame flag in the header of the packet. frame no,

frame seq and layer id show the frame number, sequence number and stream id. The

frame flag stands for the status of the frame. ’0’, ’1’ and ’2’ in the frame flag means

the middle, first and last packet in the frame, respectively.

Fig. 27. Active STB Packet Management

In Fig. 27, the first, second, third, forth and fifth field in the header shows

frame no, frame seq, layer id, frame flag and data, respectively. For inspecting the

82

packets, ActiveSTB checks whether to set the first bit (01) in the first packet and

the second bit (10) in the last packet in the layer. After checking first and second

packets, the ActiveSTB scans the whole middle packets in the layer using frame seq

field. If the ActiveSTB finds layers where some packets are missing, the layer with

missing packet and sub layers eliminated from buffer in the ActiveSTB. In Fig. 27,

the third layer in frame 0 miss the packet with frame seq 1. Therefore, the first layer

and second layer in the frame are transmitted to the client through wireless link. In

the frame 1, the first bit in the frame flag of the first packet at the third layer is not

set. Only the first and second layers are transmitted. The first packet in the second

layer set the first and second bits (11) at the same time. It means that the packet

contains the whole data in the second layer in frame 1.

4. IdleGap

We evaluate 4 estimation schemes and none-estimation scheme in multimedia stream-

ing service in wireless network. None stands for none-estimation scheme that the

whole cached streams are forwarded into the client. Spruce, Pathload and ProbeGap

are stands for spruce scheme, probegap scheme and pathload scheme, respectively.

Fig. 28 shows the estimated available bandwidth value for each algorithm. The

capacity of the wireless network in our simulation is 10 Mbps. Probing time for each

algorithm is 4000 seconds and 800 probing packets are allowed. In light cross-traffic,

the ProbeGap and Sprce produce bandwidth estimation reflective of measured avail-

able bandwidth values. However, they provides the unacceptable results in heavy-

cross traffic. The ProbeGap shows multiple transition points over 4 Mbps cross-traffic.

The estimated results fluctuate wildly in heavy cross traffic. In [11], the intra pair

gap is set to the transmission time of the narrow link. This causes the underesti-

mation of the available bandwidth for the link. The intra pair gap is calibrated to

83

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
0

2

4

6

8

10

12
x 10

6

Cross Traffic (Mbps)

Es
tim

ate
d A

va
ila

ble
 B

an
dw

idt
h (

Mb
ps

)

Spruce Pathload ProbeGap Idle Gap

Fig. 28. Estimated Bandwidth with Cross Traffic

reflect the available 4.0 Mbps with no cross-traffic. Even after the calibration, Spruce

overestimates the bandwidth severely with more than 4.0 Mbps cross-traffic. Wireless

communication requires lots of management packets, therefore available bandwidth

are reduced. It makes the high drop rates of probe packets. Thus, the estimated

bandwidth value becomes polluted. This cause the overestimation of the available

bandwidth. The IdleGap, which uses NIV to estimate bandwidth, shows the closest

match to the real bandwidth. After 4.0 Mbps cross-traffic, the saturation of wire-

less link occurs due to the overhead of the wireless network such as defer time and

RTS/CTS.

In Fig. 29, the estimated idle times in the AP and node 3 are depicted with

different packet sizes of the same cross-traffic. Cross-traffic in the simulation is 1

Mbps that consumes 10 percent of capacity in 802.11b and the packet size is changed

from 128 to 1024 bytes. We observe that packet sizes between 512 and 896 bytes

provide more accurate estimation. The estimated idle time with the small size packet

84

Fig. 29. Estimated Bandwidth with Different Packet Sizes

is smaller than the one with the large size packet. In order to transmit a packet, the

sender should send the RTS, CTS, and ACK to the receiver. The frequent transmis-

sion of small packets increases this overhead. That is why the IdleGap underestimates

the available bandwidth with small size packets. On the other hand, with the largest

size packets (1024 bytes), the estimated idle time is also decreased slightly. During

the transmission, the large packet is broken into several fragments in the Mac layer to

reduce the error rate, which again causes overhead. Estimated bandwidth in the AP

inclines to be smaller than the one in node 3. If node 3 is a hidden node, it receives

only the CTS, not the RTS. Then, node 3 cannot detect the busy time gap between

the RTS and the CTS.

5. ActiveSTB

When cross traffic exceeds into 4 Mbps. Most multimedia data are not transmitted.

Even though they are transmitted, the cannot be used at the decoder because of the

85

severe indirect loss. Therefore, we consider only when cross traffic are lower than 4

Mbps.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1

1.5

2
x 10

7 Amazing Caves

Cross Traffic (Mbps)

D
e

co
d

e
d

 S
tr

e
a

m
 (

B
yt

e
s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6

8

10
x 10

6 To The Limit

Cross Traffic (Mbps)

D
e

co
d

e
d

 S
tr

e
a

m
 (

B
yt

e
s)

Spruce Pathload ProbeGap None Idle Gap

Fig. 30. The Size of Decoded Streams (Amazing Caves, To The Limit)

Fig. 30 shows how many multimedia data are decoded at the client. X-axis

shows cross traffic, while Y-axis stands for the size of decoded stream. The None

estimation scheme transmits the whole layer into the client. Wireless channel cannot

support the bandwidth to transmit the layers. Therefore, most of them cannot arrive

before decoder use them. The Pathload estimation scheme creates the heavy probe

packet streams to calculate the available bandwidth. Probe packet stream consumes

the bandwidth even for streaming service. The Spruce and the ProbeGap schemes

show better results than the pathload scheme. Their probe packet streams are not

86

heavier than the pathload scheme, so they provides high quality multimedia service

into a client. In the Amazing Caves and the Bourne Ultimatum streams, the Spruce

scheme shows the better results than the ProbeGap scheme. However, the ProbeGap

scheme can decode more data than the Spruce scheme in the Simpson and the To

The Limit streams. The Spruce scheme overestimates the available bandwidth in

the wireless link. It can give the chance to transmit the more multimedia data in

low workload. However, it can increase network congestion at the heavy workload or

heavy cross traffic.

The ActiveSTB drops some multimedia streams based on the estimated available

bandwidth. After receiving the feedback from the client, the ActiveSTB checks the

size of the cached multimedia, and then decided how much data are transmitted

into the client. Much streaming data creates the congestion in wireless network, but

low streaming data lose the chance to improve the quality of multimedia streaming

service. The results using other streams except Amazing Caves and To The Limit

show in Appendix B.

In Fig. 31, x-axis shows the cross traffic and y-axis is for how much data are

dropped into the client. The ’None’ estimation scheme transmits the whole cached

stream into the client, so the ActiveSTB does not drop the cached stream. In most

cases, the Pathload scheme underestimate the available bandwidth in wireless channel.

It cause to drop more multimedia stream data. The Spruce scheme overestimates

the available bandwidth and drops the small multimedia stream data. However, it

cause the network congestion and decrease the size of the decoded stream data. In

the Amazing Caves stream, the Spruce scheme sends more data to the client and

it increases the chance to improve the quality of multimedia streams. The Spruce

scheme also sends more data to the client in the Simpsons stream. However, it

decreases the quality and decoded data. The ProbeGap scheme transmits the small

87

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1

1.5

2

2.5
x 10

8 Amazing Caves

Cross Traffic

D
ro

p
p
e
d
 S

tr
e
a
m

 (
B

yt
e
s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6

8

10

12
x 10

7 Simpsons

Cross Traffic

D
ro

p
p
e
d
 S

tr
e
a
m

 (
B

yt
e
s)

Spruce Pathload ProbeGap None Idle Gap

Fig. 31. The Early Dropped Stream (Amazing Caves, Simpsons)

multimedia data into the client at 0.0 cross traffic because of the underestimation for

the available bandwidth. The results using other streams except Amazing Caves and

Simpsons show in Appendix B.

Fig. 32 shows how many multimedia data are lost, even though packet is arriving

successfully. When stream data has dependency between other data. For example,

stream data including B frames requires the previous and future I or P frames. In

other case, packets are not arriving before decoder decode them. This indirect loss

waste the available bandwidth and decrease the performance on wireless network. In

Fig. 32, x axis shows the cross traffic and y axis is for how many multimedia data are

lost indirectly. The ProbeGap scheme underestimate the available bandwidth and

88

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1

2

3

4

5

6
x 10

7 I Am Legend

Cross Traffic

Lo
st

 D
at

a
(B

yt
es

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1

1.5

2

2.5

3
x 10

7 To The Limit

Cross Traffic

Lo
st

 D
at

a
(B

yt
es

)

Spruce
Pathload
ProbeGap
None
Idle Gap

Fig. 32. The Indirect Loss (I Am Legend, To The Limit)

small data are transmitted into the client at Fig. 31. Therefore, the indirect loss

are smaller than other estimation scheme. The None estimation scheme lose most

of transmitted data because the data are not arrived on time. Our IdleGap scheme

shows the low indirect loss. The results using other streams except I Am Legend and

To The Limit show in Appendix B.

Fig. 33 shows the ratio between sent data from an ActiveSTB and decoded

data at client side. X-axis shows the cross traffic, while y-axis stands for the ratio

between the size of sent data and the decoded data. The ratio is critical to manage the

performance in wireless network. Even though only small data are decoded, inefficient

multimedia steam service can consume lots of available bandwidth. It can decrease

89

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.1

0.2

0.3

0.4

0.5

0.6

Bourne Ultimatum

Cross Traffic

R
a

te
 (

D
e

co
d

e
d

/S
e

n
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.1

0.2

0.3

0.4

0.5
Simpsons

Cross Traffic

R
a

te
 (

D
e

co
d

e
d

/S
e

n
t)

Spruce
Pathload
ProbeGap
None
Idle Gap

Fig. 33. The Ratio between Sent Size and Decoded Size (Bourne Ultimatum, Simp-

sons)

the available bandwidth in other connections.

Our IdleGap scheme shows higher ratio than other estimation scheme. The Idle-

Gap does not waste the allocated bandwidth. In the None scheme, most of multimedia

data are lost because the wireless network with 11 mpbs cannot support the whole

original multimedia data such as multimedia streams with large frame size. The

Spruce scheme shows the high ratio in the Amazing Caves and Bourne Ultimatum.

In two streams, the Spruce scheme transmits many multimedia stream data before

decoding them. However, overestimation of the Spruce scheme in Simpsons decreases

the ratio. When cross traffic is 2.0 or 2.5 Mbps, the IdleGap scheme shows the high

90

efficiency, because the IdleGap scheme reduces the suitable size of the transmitted

data. The results using other streams except Bourne Ultimatum and Simpsons show

in Appendix B.

In addition, our IdleGap scheme outperforms other schemes under overall startup

delay. The results of the simulation are presented at Appendix C. The Pathload

scheme still the low decoded sizes of stream in the client side because of the heavy

probe stream. Long startup delay increases the size of the decoded stream in the

client side.

91

CHAPTER V

CONCLUSIONS

Rapid growth in the number of web users and current HTTP frameworks incurs the

overhead in web-based system. Web cluster systems provides excellent and cost-

effective solution for this problem. We presented research agenda to investigate in-

triguing in web cluster systems: (i) providing proactive distribution, (ii) Analyzing

user access patterns at web server side, (iii) applying adaptive prefetch rate in web

cluster systems, (iv) estimating the available bandwidth in wireless networks for web

streaming, and (v) releasing the corrupted web streaming data at web proxy server.

A. Web Switch Scheme

As the use of cluster systems increases, improving performance has been a critical

issue. In this study, we propose a proactive request distribution scheme, called ProRD,

and compare this with three other policies: WRR, LARD and Ext-LARD-PHTTP

determine the policy that provides best results in terms of efficiency. WRR has a

good load balancing capability, but its locality is so poor that it increases miss rates.

In order to reduce the miss rates and improve secondary storage scalability, LARD

can be used.

However, for large websites with immensely huge dataset, where caching consid-

erable website content becomes impossible, performance of LARD degrades. Thus,

we propose ProRD that employs ProActive locality-based and prefetch-aware request

distribution which is complemented by prefetching at the backend servers. Such dy-

namic reconfiguration of the mining usage data in the web server’s cache becomes

a significant factor for the contribution of the performance the system. The simula-

tion results with original website logs indicate that our system provides considerable

92

improvement in the performance of the system.

B. Web Prefetch Scheme

Rapid growth in the number of web users and current HTTP frameworks makes it

difficult to improve the performance through a prefetch scheme. Also, the access

pattern of a web server system is not easily predictable because of the web cache

mechanism and web object configuration. For proper web prefetching in a cluster

environment, we introduce the DPS scheme to obtain the relationship information

of the objects and increase the hit rate of the prefetched data. Also, we propose

the ARC scheme to perform an efficient management of prefetch memory in cluster

environments. Finally, we suggest the MARD to distribute the web workload to

improve the efficiency in web prefetch.

For evaluation, we implement the prototype of web prefetch engine using PAPI

and Apache web server in Linux. Also, we perform the simulation for verifying the

benefit of our scheme in cluster environments. Experimental results show that our

prefetch scheme improves the performance of web cluster systems up to 40% in var-

ious web workloads. There are three reasons for the improved performance of our

scheme. i) Although our prefetch scheme loses the chance to increase the hit rate on

the prefetch memory, it avoids the memory saturation and performance degradation

caused by an excessive prefetching. ii) our prefetch scheme provides the adaptive

prefetch rate at run time to maximize the prefetch benefit. iii) our prefetch scheme

is adopted to the modern web framework and workloads.

93

C. Web Streaming Scheme

The internet and wireless home networks have undergone rapid growth which has led

to an increase in streaming services through web system. This increase has necessi-

tated attention to quality of service issues to web clients. The most challenging aspect

of dynamic multimedia streaming service is the adaptive bit rate of each multimedia

stream according to the network status; therefore, in this study, we focus on a method

to estimate the available bandwidth of a wireless link. The method must have the

following characteristics: (a) it should be applicable to real-time applications such as

multimedia streaming services; (b) be simple and effective in estimating the available

bandwidth, and (c) incur low overhead.

We present a new bandwidth estimation method, IdleGap, which can efficiently

calculate the available bandwidth using the information collected from one node in a

wireless network. Our IdleGap is simple and does not incur extra network overhead.

The simulation result shows that our IdleGap outperforms the other probing and

bandwidth estimation methods such as the ProbeGap and Spruce.

In addition, we show how our newly presented ActiveSTB improved the quality

of the streamed media to client using early dropping and bandwidth estimation. We

design an ActiveSTB to consider the challenges of effective usage of the shared wireless

channel, reduction of the latency, and improvement of the QoS. Results demonstrate

our ActiveSTB overcoming these issues by its use of extracting layer info from buffered

stream data using early dropping and bandwidth estimation. Based on results, we

believe the methods implemented in our ActiveSTB module will greatly enhance

the quality of data streamed to clients, thus contributing to increased wireless home

network usage and an increase in the growth of the STB market.

94

REFERENCES

[1] C. Huitema, “Network vs. server issues in end-to-end performance,” Keynote

address presented at the Performance and Architecture of Web Servers Work-

shop, Santa Clara, CA, 2000.

[2] E. V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving disk energy in

network servers,” in Proc. of the International Conference on Supercomputing,

San Francisico, CA, 2003, pp. 86–97.

[3] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel,

and E. Nahum, “Locality-aware request distribution in cluster-based network

servers,” in Proc. of the International Conference on Architectural Support

for Programming Languages and Operating Systems, San Jose, CA, 1998, pp.

205–216.

[4] R. Sarukkai, “Link prediction and path analysis using Markov chains,” Com-

puter Networks, vol. 33, pp. 377–386, June 2000.

[5] X.Dongshan and S. Junyi, “A new Markov model for web access prediction,”

Computing in Science and Engineering, vol. 4, pp. 34–39, November 2002.

[6] C. Bouras, A. Konidaris, and D. Kostoulas, “Predictive prefetching on the web

and its potential impact in the wide area,” World Wide Web: Internet and

Web Information System, vol. 7, pp. 143–179, June 2003.

[7] J. Domenech, J. Sahuquillo, J. A. Gil, and A. Pont, “The impact of the web

prefetching architecture on the limits of reducing user’s perceived latency,” in

Proc. of IEEE/WIC/ACM International Conference on Web Intelligence, Hong

Kong, China, 2006, pp. 740–744.

95

[8] R. L. Carter and M. E. Crovella, “Dynamic server selection using bandwidth

probing in wide-area networks,” Technical Report TR-96-007, Computer Sci-

ence Department, Boston University, Boston, MA, 1996.

[9] M. Jain and C. Dovrolis, “Ten fallacies and pitfalls in end-to-end available

bandwidth estimation,” in Proc. of ACM Internet Measurement Conference,

Taormina, Sicily, Italy, 2004, pp. 272–277.

[10] N. Hu and P. Steenkiste, “Evaluation and characterization of available band-

width probing techniques,” IEEE Journal on Selected Areas in Communica-

tions, vol. 21, pp. 879–974, August 2003.

[11] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of available

bandwidth estimation tools,” in Proc. of Internet Measurement Conference,

Miami Beach, FL, 2003, pp. 39–44.

[12] M.C. Rosu and D. Rosu, “Exploiting in-kernel data paths to improve I/O

throughput and CPU availability,” in Proc. of the Winter 1993 USENIX Con-

ference, San Diego, CA, 1993, pp. 327–334.

[13] A. Cohen, S. Rangarajan, and H. Slye, “On the performance of TCP splic-

ing for URL-aware redirection,” in Proc. of USENIX Symposium on Internet

Technologies and Systems, Boulder, CO, 1999, pp. 11–20.

[14] K. Rajamani and C. Lefurgy, “On evaluating request-distribution schemes for

saving energy in server clusters,” in Proc. of IEEE International Symposium on

Performance Analysis of Systems and Software, Austin, TX, 2003, pp. 111–122.

[15] C. Li and K. Shen, “Managing prefetch memory for data-intensive online

servers,” in Proc. of USENIX Conference on File and Storage Technologies,

96

San Francisco, CA, 2005, pp. 19–23.

[16] B. S. Gill and L. A. D. Bathen, “Optimal multistream sequential prefetching in

a shared cache,” ACM Transactions on Storage, vol. 3, Article No. 10, October

2007.

[17] C. G. Quinones, C. Madriles, J. Sanchez, P. Marcuello, A. Gonzalez, and D. M.

Tullsen, “Mitosis compiler: An infrastructure for speculative treading based on

pre-computation slices,” ACM SIGPLAN Notices, vol. 40, pp. 269–279, June

2005.

[18] Z. Zhang, X. Ma K. Lee, and Y. Zhou, “PFC: Transparent optimization of ex-

isting prefetching strategies for multi-level storage systems,” in Proc. of Inter-

national Conference on Distributed Computing Systems, Beijing, China, 2008,

pp. 740–751.

[19] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D.D.E. Long, “Managing

flash crowds on the internet,” in Proc. of International Symposium on Mod-

eling, Analysis, and Simulation of Computer and Telecommunication Systems,

Orlando, FL, December 2003, pp. 246–249.

[20] J. Domenech, A. Pont, J. Sahuquillo, and J. A. Gil, “A user-focused evaluation

of web prefetching algorithms,” Computer Communications, vol. 30, pp. 2213–

2224, July 2007.

[21] R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin, “NPS: A non-

interfering deployable web prefetching system,” in Proc. of USENIX Sympo-

sium on Internet Technologies and Systems, Seattle, WA, 2003, pp. 183–196.

[22] A. E. Papathanasiou and M. L. Scott, “Aggressive prefetching: An idea whose

97

time has come,” in Proc. of Hot Topics in Operating Systems, Santa Fe, NM,

2005, pp. 6–11.

[23] S. Liang, S. Jiang, and X. Zhang, “Step: Sequentiality and thrashing detection

based prefetching to improve performance of networked storage servers,” in

Proc. of International Conference on Distributed Computing Systems, Toronto,

Canada, 2007, pp. 64–73.

[24] T. Henderson, D. Kotz, and I. Abyzov, “The challenging usage of a mature

campus-wide wireless network,” in Proc. of ACM Mobile Computing and Net-

working, Philadelphia, PA, 2004, pp. 187–201.

[25] J. Shin, J. Kim, and C. C. J. Kuo, “Quality-of-Service mapping mechanism for

packet video in differentiated service network,” IEEE Transaction on Multime-

dia, vol. 3, no. 2, pp. 219–231, 2001.

[26] D. Quaglia and J. C. de Martin, “Delivery of MPEG video streams with con-

stant perceptual quality of service,” in Proc. of International Conference Mul-

timedia and Exhibition, Politecnico di Torino, Italy, 2002, pp. 85–88.

[27] M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-end avail-

able bandwidth,” in Proc. of Passive and Active Measurements, Fort Collins,

CO, 2002, pp. 14–25.

[28] K. Lakshiminarayanan, V. N. Padmanabhan, and J. Padhye, “Bandwidth es-

timation in broadband access networks,” in Proc. of Internet Measurement

Conference, Taormina, Sicily, Italy, 2004, pp. 314–321.

[29] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel, “Scalable content-aware

request distribution in cluster-based network servers,” in Proc. of USENIX 2000

98

Annual Technical Conference, San Diego, CA, 2000, pp. 11–25.

[30] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Dynamic cluster re-

configuration for power and performance,” in Compilers and Operating Systems

for Low Power, L. Benini. M. Kandemir and J.Ramanujam, Eds., chapter V,

pp. 75–93. Kluwer Academic Publishers, Norwell, MA, 2003.

[31] Microsoft Corporation, Installation and Performance Tuning of Microsoft

Scalable Web Cache 3.0 Manual, Microsoft Corporation, 2000, Available

http://www.microsoft.com/technet.

[32] M. Bar, “Kernel Korner: kHTTPd, a kernel-based web server,” Linux Journal,

vol. 2000, Article No. 21, August 2000.

[33] P. Joubert, R. King, R. Neves, M. Russinovich, and J. Tracey, “High-

performance memory-based web servers: Kernel and user-space performance,”

in Proc. of USENIX Technical Conference, Monterey, CA, June 2001, pp. 175–

187.

[34] J. Bucy and G. Ganger, “The DiskSim simulation environment Version 3.0

Manual,” Technical Report CMU-CS-03-102, Carnegie Mellon University,

Pittsburgh, PA, 2003.

[35] Apache Software Foundation, Apache Manual : Web Caching

Guide, Apache Software Foundation, 2009, Available

http://httpd.apache.org/docs/2.2/caching.html.

[36] H. D. Schwetman, “Introduction to process-oriented simulation and CSIM,” in

Proc. of Winter Simulation Conference, New Orleans, LA, 1990, pp. 154–157.

99

[37] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching to improve

world wide web latency,” ACM SIGCOM Computer Communication Review,

vol. 26, pp. 22–36, July 1996.

[38] J. Borges and M. Levene, “Data mining of user navigation patterns,” in Proc.

of the Workshop on Web Usage Analysis and User Profiling, San Diego, CA,

1999, pp. 31–36.

[39] M. Deshpande and G. Karypis, “Selective Markov models for predicting web

page accesses,” ACM Transactions on Internet Technology, vol. 4, pp. 163–184,

May 2004.

[40] B. D. Davison, “Learning web request patterns,” in Web Dynamics: Adapting

to Change in Content, Size, Topology and Use, M. Levine and A. Poulovassilis,

Eds., chapter IX, pp. 435–460. Springer-Verlag, Berlin, Germany, 2004.

[41] T. Palpanas and A. Mendelzon, “Web prefetching using partial match predic-

tion,” in Proc. of International Web Caching Workshop, San Diego, CA, March

1999, pp. 6–26.

[42] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A data mining algorithm

for generalized web prefetching,” IEEE Transaction on Knowledge and Data

Engineering, vol. 15, pp. 1155–1169, September 2003.

[43] X. Chen and X. Zhang, “A popularity-based prediction model fore web prefetch-

ing,” IEEE Computer, vol. 36, pp. 63–70, March 2003.

[44] Z. Ban, Z. Gu, and Y. Jin, “An online PPM prediction model for web prefetch-

ing,” in Proc. of Web Information and Data Management, Lisbon, Portugal,

2007, pp. 89–96.

100

[45] Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. H. Katz, “Efficient and adaptive

web replication using content clustering,” IEEE Journal on Selected Areas in

Communications, vol. 21, pp. 979–994, August 2003.

[46] G. Pallis and A. Vakali, “Insight and perspectives for content delivery net-

works,” Communications of the ACM, vol. 49, pp. 101–106, January 2006.

[47] N.J. Tuah, M. Kumar, and S. Venkatesh, “Resource-aware speculative prefetch-

ing in wireless networks,” Wireless Networks, vol. 9, pp. 61–72, January 2003.

[48] S. Drakatos, N. Pissinou, K. Makki, and C. Douligeris, “A context-aware

prefetching strategy for mobile computing environments,” in Proc. of Interna-

tional Conference on Wireless Communications and Mobile Computing, Van-

couver, BC, Canada, 2006, pp. 1109–1116.

[49] P. Ferragina and A. Gulli, “A personalized search engine based on web snippet

hierarchical clustering,” in Proc. of World Wide Web, Chiba, Japan, 2005, pp.

801–810.

[50] D. Cheng, R. Kannan, S. Vempala, and G. Wang, “A divide-and-merge method-

ology for clustering,” ACM Transactions on Database Systems, vol. 31, pp.

1499–1525, December 2006.

[51] A. Serbinski and A. Abhari, “Improving the delivery of multimedia embedded

in web pages,” in Proc. of International Conference on Multimedia, Augsburg,

Germany, 2007, pp. 779–782.

[52] E. Meneses and O. Rodriguez-Rojas, “Using symbolic objects to cluster web

documents,” in Proc. of World Wide Web, Edinburgh, Scotland, 2006, pp.

967–968.

101

[53] D. Kim, N. Adam, V. Alturi, M. Bieber, and Y. Yesha, “A clickstream-based

collaborative filtering personalization model: Towards a better performance,”

in Proc. of ACM International Workshop on Web Information and Data Man-

agement, Washington DC, 2004, pp. 88–95.

[54] L. Lu, M. Dunham, and Y. Meng, “Mining significant usage patterns from

clickstream data,” in Proc. of WebKDD, Chicago, IL, 2005, pp. 1–17.

[55] J. Zhu, J. Hong, and J. G. Hughes, “Using Markov models for web site link pre-

diction,” in Proc. of ACM Conference on Hypertext and Hypermedia, College

Park, MD, 2002, pp. 169–170.

[56] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White, “Model-based

clustering and visualization of navigation patterns on a web site,” Data Mining

and Knowledge Discovery, vol. 7, pp. 399–424, October 2003.

[57] F. Khalil, J. Li, and H. Wang, “Integrating Markov model with clustering for

predicting web page accesses,” in Proc. of Australasian World Wide Web, Coffs

Harbour, Australia, 2007, pp. 63–74.

[58] S. Rixner, “Memory controller optimization for web servers,” in Proc. of

IEEE/ACM International Symposium on Microarchitecture, Portland, OR,

2004, pp. 355–366.

[59] B. Gill and D. Modha, “SARC: Sequential prefetching in adaptive replacement

cache,” in Proc. of USENIX Annual Technical Conference, Anaheim, CA, 2005,

pp. 293–308.

[60] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and C. C. Weems,

“Guided region prefetching: A cooperative hardware/software approach,” in

102

Proc. of International Symposium. on Computer Architecture, San Diego, CA,

2003, pp. 338–349.

[61] R. M. Rabbah, H. Sandanagobalance, M. Ekpanyapong, and W. Wong, “Com-

piler orchestrated prefetching via speculation and predication,” in Proc. of

Architectural Support for Programming Languages and Operating Systems,

Boston, MA, 2004, pp. 189–198.

[62] J. Lu, A. Das, W. Hsu, K. Nguyen, and S. G. Abraham, “Dynamic helper

threaded prefetching on the SUN UltraSPARC CMP processor,” in Proc. of

IEEE/ACM International Symposium on Microarchitecture, Barcelona, Spain,

2005, pp. 93–194.

[63] W. Zhang, B. Calder, and D. M. Tullsen, “An event-driven multithreaded

dynamic optimization framework,” in Proc. of Parallel Architectures and Com-

pilation Techniques, St. Louis, MO, 2005, pp. 87–98.

[64] W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating and adapting precom-

putation threads for efficient prefetching,” in Proc. of International Symposium

on High Performance Computer Architecture, Phoenix, AZ, 2007, pp. 85–95.

[65] G. Yadgar, M. Factor, and A. Schuster, “Karma: Know-it-all replacement

for a multilevel cache,” in Proc. of USENIX Conference on File and Storage

Technologies, San Jose, CA, 2007, pp. 169–183.

[66] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H. You, and M. Zhou,

“Experiences and lessons learned with a portable interface to hardware perfor-

mance counters,” in Proc. of International Symposium on Parallel and Dis-

tributed Processing, Nice, France, 2003, pp. 289–295.

103

[67] Standard Performance Evaluation Corporation, SPECweb2005 Manual, Stan-

dard Performance Evaluation Corporation (SPEC), Warrenton, VA, 2005.

[68] V. Ribeiro, M. Coates, R. Riedi, S. S. B. Hendricks, and R. Baraniuk, “Multi-

fractal cross-traffic estimation,” in Proc. of ITC Special Seminar on IP Traffic

Measurement, Modeling, and Management, Monterey, CA, 2000, pp. (15–1)–

(15–10).

[69] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end probing

and analysis method for estimating bandwidth bottlenecks,” in Proc. of Global

Telecommunications Conference, San Francisco, CA, 2000, pp. 415–420.

[70] A. Amamra, K. M. Hou, and J.P. Chanet, “Available bandwidth estimation in

wireless ad hoc network: Accuracy and probing time,” in Proc. of International

Conference on Computational Science and Engineering, Sao Paulo, Brazil, 2008,

pp. 379–387.

[71] A. Johnsson, M. Björkman, and B. Melander, “A study of dispersion-based

measurement methods in IEEE 802.11 ad-hoc networks,” in Proc. of ACM

International Symposium on Modeling, Analysis and Simulation of Wireless

and Mobile Systems, Las Vegas, NV, 2004, pp. 227–230.

[72] A. Amamra, K. M. Hou, and J.P. Chanet, “Evaluation of the performance of

the SLoPS: Available bandwidth estimation technique in IEEE 802.11b wireless

networks,” in Proc. of New Technologies, Mobility and Security, Paris, France,

2007, pp. 123–132.

[73] M. Kim, N, N. Venkatasubramanian Dutt, and C. Talcott, “xtune: Online

verifiable cross-layer adaptation for distributed real-time embedded systems,”

ACM SIGBED Review, vol. 5, Article No. 24, January 2008.

104

[74] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian,

“Integrated power management for video streaming to mobile handheld de-

vices,” in Proc. of ACM International Conference on Multimedia, Berkeley,

CA, 2003, pp. 582–591.

[75] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Dutt, R. Gupta, A. Nico-

lau, S. Shukla, and N. Venkatasubramanian, “A cross-layer approach for power-

performance optimization in distributed mobile systems,” in Proc. of IEEE In-

ternational Parallel and Distributed Processing Symposium, Denver, CO, 2005,

pp. 218–226.

[76] W. Yuan and K. Nahrstedt, “Practical voltage scaling for mobile multimedia

devices,” in Proc. of ACM International Conference on Multimedia, New York,

NY, 2004, pp. 924–931.

[77] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU scheduling

for mobile multimedia systems,” in Proc. of ACM Symposium on Operating

Systems Principles, Bolton Landing, NY, 2003, pp. 149–163.

[78] M. C. Vuran and I. F. Akyildiz, “Cross-layer analysis of error control in wireless

sensor networks,” in Proc. of IEEE Communications Society on Sensor and

Ad Hoc Communications and Networks (SECON), Washington, DC, 2006, pp.

585–594.

[79] M. V. D. Schaar and D. S. Turaga, “Cross-layer packetization and retrans-

mission strategies for delay-sensitive wireless multimedia transmission,” IEEE

Transactions on Multimedia, vol. 9, pp. 185–197, January 2007.

[80] I. V. Bajic, “Efficient cross-layer error control for wireless video multicast,”

IEEE Transactions on Broadcasting, vol. 53, pp. 276–285, March 2007.

105

[81] K. Lee, A. Shrivastava, M. Kim, N. Dutt, and N. Venkatasubramanian, “Miti-

gating the impact of hardware defects on multimedia applications: A cross-layer

approach,” in Proc. of ACM International Conference on Multimedia, Wash-

ington, DC, 2008, pp. 319–328.

[82] B. Shen, S. Lee, and S. Basu, “Caching strategies in transcoding-enabled proxy

systems for streaming media distribution networks,” IEEE Transaction on Mul-

timedia, Special Issue on Streaming Media, vol. 6, pp. 375–386, 2004.

[83] P. Schojer, L. Boszormenyi, H. Hellwagner, B. Penx, and S. Podlipnig, “Ar-

chitecture of a quality based intelligent proxy (QBIX) for MPEG-4 videos,” in

Proc. of World Wide Web, Budapest, Hungary, 2003, pp. 394–402.

[84] S. Chan, C. W. Kok, and A. K. Wong, “Multimedia streaming gateway with

jitter detection,” in Proc. of International Conference on Communication, An-

chorage, AK, May 2003, pp. 1875–1879.

[85] T. Hsu C. Huang and C. Chang, “A proxy-based adaptive flow control scheme

for media streaming,” in Proc. of ACM Symposium on Applied Computing,

Madrid, Spain, May 2002, pp. 750–754.

[86] L. Gae, Z. Zhang, and D. F. Towsley, “Proxy-assisted techniques for delivering

continuous multimedia streams,” IEEE/ACM Transactions on Network, vol.

11, pp. 884–894, December 2003.

[87] S. Chan, C. W. Kok, and A. K. Wong, “Multimedia streaming gateway with

jitter detection,” IEEE Transactions on Multimedia, vol. 7, pp. 585–592, 2005.

[88] A. Laursen, J. Olkin, and M. Porter, “Oracle media server: Providing consumer

based interactive access to multimedia data,” ACM SIG on Management of

106

Data, vol. 23, pp. 470–477, June 1994.

[89] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding

extension of the H.264/AVC standard,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 17, pp. 1103–1120, September 2007.

[90] M. Davis, “A wireless traffic probe for radio resource management and QoS

provisioning in IEEE 802.11 WLANs,” in Proc. of ACM International Sympo-

sium on Modeling, Analysis and Simulation of Wireless and Mobile Systems,

Venice, Italy, 2004, pp. 234–243.

[91] LAN MAN Standards Committee, “Wireless lan medium access control (MAC)

and physical layer (PHY) specifications high-speed physical layer in the 5 ghz

band,” Technical Standard IEEE Std 802.11a, IEEE Standards Association,

Piscataway, NJ, October 1999.

[92] LAN MAN Standards Committee, “Wireless lan medium access control (MAC)

and physical layer (PHY) specifications high-speed physical layer in the 2.4 ghz

band,” Technical Standard IEEE Std 802.11b, IEEE Standards Association,

Piscataway, NJ, October 1999.

[93] L. Gae, Z. Zhang, and D. F. Towsley, “A rate-adaptive MAC protocol for multi-

hop wireless networks,” in Proc. of ACM Symposium on Applied Computing,

Rome, Italy, 2001, pp. 236–251.

[94] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic media

access for multirate ad hoc networks,” in Proc. of ACM MobiCom, Atlanta,

GA, 2002, pp. 25–35.

[95] A. Kamerman and L. Monteban, “WaveLAN II: A high-performance wireless

107

LAN for the unlicensed band,” Bell Labs Technical Journal, vol. 2, no. 3, pp.

118–133, August 1997.

[96] MacGillivray Freeman, “Amazing Caves,” Laguna Beach, CA, 2000,

MacGillivray Freeman Films.

[97] Paul Greengrass, “Bourne Ultimatum,” Los Angels, CA, 2007, Universal Pic-

tures.

[98] Francis Lawrence, “I Am Legend,” Burbank, CA, 2007, Warner Bros. Pictures.

[99] David Silverman, “Simpsons,” Los Angels, CA, 2007, 20th Century Fox Film

Corporation.

[100] Raymond Martino, “To The Limit,” Los Angels, CA, 1995, PM Entertainment

Group.

[101] Joint Video Team (ITU-T and ISO/IEC), Joint Scalable Video Model (JSVM)

Software Manual, Joint Video Team (ITU-T and ISO/IEC), 2007, Available

http://lontra.org/pub/video/jsvm/current/jsvm/SoftwareManual.doc.

108

APPENDIX A

WEB PREFETCH SCHEME

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

1

2

3
x 10

4 Clark Net

Prefetch Scheme

No
. o

f R
eq

ue
st

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

1000

2000

3000
SpecWeb2005−1

Prefetch Scheme

No
. o

f R
eq

ue
st

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

2000

4000

6000
SpecWeb2005−2

Prefetch Scheme

No
. o

f R
eq

ue
st

1st Order 2nd Order 3rd Order

Fig. 34. Standard Deviation of Distribution (ClarkNet, SpecWeb2005-1,

SpecWeb2005-2)

109

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

1000

2000

3000

4000
NASA

Prefetch Scheme

R
es

po
ns

e
Ti

m
e

(M
S)

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

1000

2000

3000
SpecWeb2005−1

Prefetch Scheme

R
es

po
ns

e
Ti

m
e

(M
S)

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

2000

4000

6000
SpecWeb2005−2

Prefetch Scheme

R
es

po
ns

e
Ti

m
e

(M
S)

1st Order 2nd Order 3rd Order

Fig. 35. Web Response Time in Prefetch Schemes (NASA, SpecWeb2005-1,

SpecWeb2005-2)

110

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0 NO_P ADA
0

2000

4000

6000
TAMU

Prefetch Scheme

No
. o

f D
isk

 A
cc

es
s

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0 NO_P ADA
0

2000

4000

6000

8000

10000
NASA

Prefetch Scheme

No
. o

f D
isk

 A
cc

es
s

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0 NO_P ADA
0

1

2

3

4
x 10

4 SpecWeb2005−2

Prefetch Scheme

No
. o

f D
isk

 A
cc

es
s

On Demand Prefetch

Fig. 36. Number of Disk Access (NASA, ClarkNet, SpecWeb2005-1)

111

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

1

2

3

4

5

6
x 10

4 TAMU

Prefetch Scheme

No
. o

f M
em

or
y

Hi
t

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

1

2

3

4
x 10

5 NASA

Prefetch Scheme

No
. o

f M
em

or
y

Hi
t

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

2

4

6
x 10

5 Clark Net

Prefetch Scheme

No
. o

f M
em

or
y

Hi
t

Prefetch Memory Buffer Cache

Fig. 37. Number of Hits on Memory (TAMU, NASA, ClarkNet)

112

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

2

4

6
x 10

7 TAMU

Prefetch Scheme

Ac
ce

ss
 T

im
e

(M
S)

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

2

4

6

8

10
x 10

7 NASA

Prefetch Scheme

Ac
ce

ss
 T

im
e

(M
S)

C_0_0 P_0_0 C_0_2 P_0_2 C_0_4 P_0_4 C_0_6 P_0_6 C_0_8 P_0_8 C_1_0 P_1_0 NO_P ADA
0

5

10

15
x 10

8 Clark Net

Prefetch Scheme

Ac
ce

ss
 T

im
e

(M
S)

1st Order 2nd Order 3rd Order

Fig. 38. Disk Access Time on the Demanding Requests (TAMU, NASA, ClarkNet)

113

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

2

4

6
x 10

5 TAMU

Prefetch Scheme

N
o.

 o
f P

re
fe

tc
he

d
Bl

oc
k

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

5

10

15
x 10

5 Clark Net

Prefetch Scheme

N
o.

 o
f P

re
fe

tc
he

d
Bl

oc
k

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

5

10

15
x 10

5 SpecWeb2005−2

Prefetch Scheme

N
o.

 o
f P

re
fe

tc
he

d
Bl

oc
k

1st Order 2nd Order 3rd Order

Fig. 39. Prefetched Blocks (TAMU, ClarkNet, SpecWeb2005-2)

114

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

10

20

30
Clark Net

Prefetch Scheme

U
sa

ge
 o

f P
re

fe
tc

h
(%

)

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

100

200

300
SpecWeb2005−1

Prefetch Scheme

U
sa

ge
 o

f P
re

fe
tc

h
(%

)

C_0_0P_0_0C_0_2P_0_2C_0_4P_0_4C_0_6P_0_6C_0_8P_0_8C_1_0P_1_0NO_P ADA
0

50

100

150

200
SpecWeb2005−2

Prefetch Scheme

U
sa

ge
 o

f P
re

fe
tc

h
(%

)

1st Order 2nd Order 3rd Order

Fig. 40. Usage of Prefetched Blocks (ClarkNet, SpecWeb2005-1, SpecWeb2005-2)

115

APPENDIX B

ADAPTIVE STREAMING SERVICE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1

1.5

2
x 10

7 Bourne Ultimatum

Cross Traffic (Mbps)

De
co

de
d S

tre
am

 (B
yte

s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1

1.5

2
x 10

7 I AM Legend

Cross Traffic (Mbps)

De
co

de
d S

tre
am

 (B
yte

s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

5

10
x 10

6 Simpsons

Cross Traffic (Mbps)

De
co

de
d S

tre
am

 (B
yte

s)

Spruce
Pathload
ProbeGap
None
Idle Gap

Fig. 41. The Size of Decoded Streams (Bourne Ultimatum, I Am Legend, Simpsons)

116

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1

1.5

2
x 10

8 Bourne Ultimatum

Cross Traffic

Dr
op

pe
d

St
re

am
 (B

yte
s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1

2

3
x 10

8 I Am Legend

Cross Traffic

Dr
op

pe
d

St
re

am
 (B

yte
s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1

2

3
x 10

7 To The Limit

Cross Traffic

Dr
op

pe
d

St
re

am
 (B

yte
s)

Spruce Pathload ProbeGap None Idle Gap

Fig. 42. The Early Dropped Stream (Bourne Ultimatum, I Am Legend, To The Limit)

117

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6
x 10

7 Amazing Caves

Cross Traffic

Lo
st

 D
at

a
(B

yt
es

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6
x 10

7 Bourne Ultimatum

Cross Traffic

Lo
st

 D
at

a
(B

yt
es

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6
x 10

7 Simpsons

Cross Traffic

Lo
st

 D
at

a
(B

yt
es

)

Spruce
Pathload
ProbeGap
None
Idle Gap

Fig. 43. The Indirect Loss (Amazing Caves, Bourne Ultimatum, Simpsons)

118

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.2

0.4

0.6

0.8
Amazing Caves

Cross Traffic

Ra
te

 (D
ec

od
ed

/S
en

t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.2

0.4

0.6

0.8
I Am Legend

Cross Traffic

Ra
te

 (D
ec

od
ed

/S
en

t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.2

0.4

0.6

0.8
To The Limit

Cross Traffic

Ra
te

 (D
ec

od
ed

/S
en

t)

Spruce
Pathload
ProbeGap
None
Idle Gap

Fig. 44. The Ratio between Sent Size and Decoded Size (Amazing Caves, I Am Legend,

To The Limit)

119

APPENDIX C

STARTUP DELAY

SP PL PG NO IG
0

0.5

1

1.5

2
x 10

7 Cross Traffic : 0.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

0.5

1

1.5

2
x 10

7 Cross Traffic : 0.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10

12

14
x 10

6 Cross Traffic : 1.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10

12

14
x 10

6 Cross Traffic : 1.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10
x 10

6 Cross Traffic : 2.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

1

2

3

4

5

6
x 10

6 Cross Traffic : 2.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

Delay 0.3
Delay 0.6
Delay 1.0
Delay 1.3
Delay 1.6

Fig. 45. The Size of the Decoded Stream of the Amazing Caves under Various Startup

Delay

120

SP PL PG NO IG
0

0.5

1

1.5

2
x 10

7Cross Traffic : 0.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

0.5

1

1.5

2
x 10

7Cross Traffic : 0.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10

12

14
x 10

6Cross Traffic : 1.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10

12

14
x 10

6Cross Traffic : 1.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10
x 10

6Cross Traffic : 2.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

1

2

3

4

5

6
x 10

6Cross Traffic : 2.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

Delay 0.3 Delay 0.6 Delay 1.0 Delay 1.3 Delay 1.6

Fig. 46. The Size of the Decoded Stream of the Bourne Ultimatum under Various

Startup Delay

121

SP PL PG NO IG
0

0.5

1

1.5

2
x 10

7Cross Traffic : 0.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

0.5

1

1.5

2
x 10

7Cross Traffic : 0.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10

12

14

16
x 10

6Cross Traffic : 1.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10

12

14
x 10

6Cross Traffic : 1.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10
x 10

6Cross Traffic : 2.0

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

1

2

3

4

5

6

7

8
x 10

6Cross Traffic : 2.5

Estimation Scheme

D
ec

od
ed

 S
tre

am
 (B

yt
es

)

Delay 0.3
Delay 0.6
Delay 1.0
Delay 1.3
Delay 1.6

Fig. 47. The Size of the Decoded Stream of the I Am Legend under Various Startup

Delay

122

SP PL PG NO IG
0

2

4

6

8

10
x 10

6Cross Traffic : 0.0

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10
x 10

6Cross Traffic : 0.5

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

1

2

3

4

5

6

7
x 10

6Cross Traffic : 1.0

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

1

2

3

4

5

6
x 10

6Cross Traffic : 1.5

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6Cross Traffic : 2.0

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

0.5

1

1.5

2

2.5

3
x 10

6Cross Traffic : 2.5

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

Delay 0.3
Delay 0.6
Delay 1.0
Delay 1.3
Delay 1.6

Fig. 48. The Size of the Decoded Stream of the Simpsons under Various Startup Delay

123

SP PL PG NO IG
0

2

4

6

8

10
x 10

6Cross Traffic : 0.0

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

2

4

6

8

10
x 10

6Cross Traffic : 0.5

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

1

2

3

4

5

6
x 10

6Cross Traffic : 1.0

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

1

2

3

4

5
x 10

6Cross Traffic : 1.5

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

0.5

1

1.5

2

2.5

3
x 10

6Cross Traffic : 2.0

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

SP PL PG NO IG
0

0.5

1

1.5

2
x 10

6Cross Traffic : 2.5

Estimation Scheme

S
iz

e
of

 D
ec

od
ed

 S
tre

am
 (B

yt
es

)

Delay 0.3 Delay 0.6 Delay 1.0 Delay 1.3 Delay 1.6

Fig. 49. The Size of the Decoded Stream of the To The Limit under Various Startup

Delay

124

VITA

Heung Ki Lee

301 Harvey R. Bright Building

College Station, TX 77843-3112

Email: hklee@cs.tamu.edu

EDUCATION

• Ph.D. Texas A&M University (09/2003-12/2009) College Station, TX (USA)

• M.S. Chungnam University (03/2000-08/2002) Daejeon, South Korea (ROK)

• B.S. Chungnam University (03/1993-02/2000) Daejeon, South Korea (ROK)

PUBLICATIONS

• H.K. Lee, B. S. An and E.J. Kim, ”Adaptive Prefetching Scheme Using Web Log

Mining in Cluster-based Web Systems,” in Proc. of International Conference

on Web Services(ICWS), Los Angels, CA, 2009, pp. 903-910.

• H.K. Lee, V. Hall, K. H. Yum, K. I. Kim and E. J. Kim, ”Bandwidth Estimation

In Wireless LANs For Multimedia Streaming Services,” in Proc. of International

Conference on Multimedia & Expo (ICME), Toronto, Canada, 2006, pp. 1181-

1184.

This typist for this dissertation was Heung Ki Lee.

