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ABSTRACT 

 

Automation of the Laguerre Expansion Technique for Analysis of Time-Resolved 

Fluorescence Spectroscopy Data.  

(December 2009) 

Aditi Sandeep Dabir, B.E, University of Pune 

Chair of Advisory Committee: Dr. Javier A. Jo 

  

Time-resolved fluorescence spectroscopy (TRFS) is a powerful analytical tool for 

quantifying the biochemical composition of organic and inorganic materials. The 

potentials of TRFS as nondestructive clinical tool for tissue diagnosis have been recently 

demonstrated. To facilitate the translation of TRFS technology to the clinical arena, 

algorithms for online TRFS data analysis are of great need.  

 

A fast model-free TRFS deconvolution algorithm based on the Laguerre expansion 

method has been previously introduced, demonstrating faster performance than standard 

multiexponential methods, and the ability to estimate complex fluorescence decay 

without any a-priori assumption of its functional form. One limitation of this method, 

however, was the need to select, a priori, the Laguerre parameter α and the expansion 

order, which are crucial for accurate estimation of the fluorescence decay.  

 

In this thesis, a new implementation of the Laguerre deconvolution method is introduced, 

in which a nonlinear least-square optimization of the Laguerre parameter  is performed, 
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and the selection of optimal expansion order is attained based on a Minimum Description 

Length (MDL) criterion. In addition, estimation of the zero-time delay between the 

recorded instrument response and fluorescence decay is also performed based on a 

normalized means square error criterion. 

 

The method was fully validated on fluorescence lifetime, endogenous tissue fluorophores, 

and human tissue. The automated Laguerre deconvolution method is expected to facilitate 

online applications of TRFS, such as clinical real-time tissue diagnosis. 
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CHAPTER I 

INTRODUCTION 

 

Fluorescence spectroscopy has been extensively explored as a technique for detecting 

biochemical changes in tissue resulting from pathological transformations [1-6]. Tissue 

autofluorescence is produced by the relative concentration and distribution of endogenous 

fluorophores.  Each fluorophore possesses specific excitation and emission 

characteristics. Thus, changes in tissue composition will be reflected in the tissue 

autofluorescence pattern. An extension of the fluorescence spectroscopy method is Time 

resolved fluorescence spectroscopy (TRFS), which measures the fluorescence intensity 

emitted by the excited sample as a function of both emission wavelength and time. Thus 

TRFS records the temporal decay of fluorescence for each wavelength in its emission 

spectrum. In steady state fluorescence spectroscopy, where only the emission spectrum of 

the fluorophore is recorded, it might become difficult to distinguish between fluorophores 

whose emission spectra overlap. Time Resolved Fluorescence provides additional 

information about the fluorescence dynamics of the sample and can distinguish 

fluorophores with similar spectra [7].  

 
 
 
 
 
 
 
 
 
____________ 
This thesis follows the style of IEEE Transactions on Biomedical Engineering. 
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1.1 Advantages of using TRFS for biochemical applications 

Although steady state fluorescence spectroscopy is simple to implement, it suffers from 

several disadvantages. There are several biological fluorophores that have emission 

maxima fairly close to each other indicating that they have overlapping emission 

spectra[7]. The fluorescence emission intensity measurements depend on several factors 

such as excitation and collection efficiency, transmission efficiency of optical paths, and 

optical inhomogeneities in tissues[8-9]. Since steady state measurements are intensity 

based, it becomes difficult to obtain absolute quantitative measurements that can be 

correlated to changes in tissue biochemistry. Steady state measurements are also affected 

by several molecular processes such as photobleaching,[9] quenching,[8] and other 

diffusive processes occurring in tissues[10].  

 

Time resolved measurements measure the lifetimes of the fluorophores. Time resolved 

measurements are independent of signal intensity and therefore independent of all 

artifacts that affect intensity based measurements as mentioned above. Biological 

components in tissues that emit fluorescence can be identified based on their unique 

lifetime value regardless of their emission spectra [11-12]. For example, although 

collagen and elastin are spectrally overlapping, they can be distinguished from each other 

by their individual lifetime values. Collagen has an approximate lifetime of 1 – 1.5 

nanoseconds, whereas elastin has an approximate lifetime of 2 – 2.5 nanoseconds [11-

12]. Photobleaching does not cause a change in lifetime, and hence time resolved 

fluorescence can be applied in spite of a loss in intensity [13]. Quenching can be 

monitored advantageously using time resolved measurements to understand molecular 
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mechanisms as changes in lifetime are proportional to the rate of quenching 

processes[14]. Thus time resolved fluorescence spectroscopy can be a powerful tool for 

clinical applications in tissues since it is more robust as compared to steady state 

fluorescence spectroscopy and can provide more information. 

 

TRFS can detect the presence and estimate the concentration of intrinsic fluorophores 

like elastin, collagen which determine the structural properties of human tissue, and 

enzyme cofactors (NADH, FAD) which reflect the biochemical composition of the tissue. 

This offers potential to probe the structural and biochemical properties of the tissue and 

hence detect any tissue abnormalities [15]. TRFS has already been evaluated as a tool for 

in-vivo analysis of tissue for clinical diagnosis [2-6, 15-16]. A significant challenge in 

clinical application of TRFS that still needs to be addressed is the development of robust 

and automated computational methods for analysis of TRFS data.  

 

1.2 Data analysis of TRFS 

Time resolved fluorescence spectroscopy works with the assumption that the excitation 

pulse is an impulse (δ) function. In such a case, the measured fluorescence decay will be 

the fluorescence Impulse Response Function (IRF).  However, in most practical cases the 

excitation laser pulse has a finite width. Hence the measured data is thus more accurately 

described as a convolution function of the IRF and the instrument response. 

 

(1) 
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where  is the measured fluorescence decay,  is the instrument response and 

 is the fluorescence IRF. The instrument response is generally estimated as the laser 

pulse recorded as scattered by the sample. The IRF contains all the information about the 

fluorescence dynamics and hence composition of the fluorophore; hence it is essential to 

isolate it from the instrument response using deconvolution.  

 

1.2.1 Standard methods 

A number of methods have been used for the problem of deconvolution, the most 

common among them being the Least Square Iterative Reconvolution (LSIR). It uses a 

multiexponential model which assumes the fluorescence IRF to be a summation of 

exponential terms with different decay constant and coefficients. The decay constants and 

coefficients are found using the method of LSIR. [17],[18] Multiexponential method does 

not always converge to the same solution. Several solutions may exist for the same data if 

this model is used. Moreover, this model is insufficient for clinical application because a 

limited number of decay times cannot account for the fluorescence dynamics of the entire 

biological environment of the tissue [7, 19]. For such a complex medium, the 

multiexponential functions cannot be interpreted in terms of fluorophore content or 

number of lifetime components. Thus, for tissue analysis, it is advantageous to avoid 

making any a priori assumption of functional form of the IRF. 

 

1.2.2 Laguerre Expansion Technique 

More recently, the Laguerre Expansion Technique (LET) has been used for 

deconvolution, which is faster and more accurate than the more widely used current 
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methods [13].  LET was adapted and popularized in the early 1990s by Marmarelis for 

linear and non-linear modeling[12] [20]. This method has been extensively applied since 

then to the modeling of different physiological systems, including renal autoregulation 

and cardiac autonomic control [21-22]. Taking advantage of the asymptotically declining 

nature of the Discrete Laguerre Functions (DLFs), the LET was more recently adapted 

for the deconvolution of TRFS decay data and estimation of fluorescence IRFs [23-24]. 

This technique models the fluorescence decay using an orthonormal Laguerre basis 

formed by the DLFs, thus making it possible to accurately express the fluorescence decay 

by a finite number of terms in the expansion (usually 3 to 7). In addition, the Laguerre 

expansion coefficients can be further analyzed to estimate the relative concentration of 

fluorophores in complex fluorescence systems. They can also be used as features while 

developing classification algorithms to perform TRFS based tissue diagnosis [2-3, 23, 

25].  

 

However, the Laguerre deconvolution method in its present form is inadequate for the 

application of TRFS in clinical diagnosis since it still requires the proper selection of the 

correct Laguerre parameter, α, which can vary depending on the temporal behavior of the 

fluorescence decay [12, 26] . The Laguerre parameter α takes values between 0 and 1 and 

it determines the rate of exponential decline of the Laguerre functions [20]. For a smaller 

alpha, the Laguerre functions decay faster, while for a larger alpha the DLFs have slower 

declining rate. Thus, while modeling the fluorescence IRF using DLFs, fluorophores with 

lower lifetime generally require smaller α while a larger α value may be required for 

expanding long-lived fluorescence decays.  Another challenge with Laguerre Expansion 
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Technique is the selection of the optimal expansion order for the Laguerre functions. The 

expansion order indicates the number of Laguerre functions needed for accurate 

modeling of the fluorescence decay. In general, more DLFs (i.e. higher order ones) are 

needed to expand complex decay dynamics. In such a case if too few DLFs are used, they 

might be insufficient to completely express the complex fluorescence decay.  On the 

other hand, too many DLFs in the expansion can cause model over fitting, in which case 

the model might end up tracking noise and any trends that might be present in the signal 

which do not contribute to any information about the fluorescence dynamics. Thus the 

selection of the optimal order has to be done so as to achieve maximum goodness of fit 

while avoiding over-fitting, and finding a suitable tradeoff between accuracy and 

computation time.  

 

Selection of both the Laguerre parameter and the expansion order has so far been done by 

trial and error methods[2-3, 23, 25], which are not suitable for fast on-line analysis of 

TRFS data. 

 

1.3 Zero time-delay 

There is another issue with TRFS measurements described as the ‘zero-time delay’. 

Ideally the instrument response should be measured at the same wavelength as the 

emission fluorescence in order to minimize any wavelength dependent distortion of the 

instrument response introduced at the detector or transmission medium. In practice, 

however, the instrument response is recorded as the scattered light at the excitation 

wavelength. Since the excitation has a shorter wavelength than the emission, it travels 
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through the fiber much slower than the fluorescence, which is in the visible range for 

most tissue fluorophores. This introduces a delay between the recorded instrument 

response and the fluorescence. This delay depends on the optical path length and the 

wavelength at which the fluorescence is measured. The estimation and adjustment of this 

delay is necessary before any further analysis about the fluorescence decay is done.  

In this thesis, a new implementation of the Laguerre deconvolution method for 

fluorescence IRF estimation is introduced. This new automated Laguerre deconvolution 

approach performs a nonlinear least-square optimization of the Laguerre parameter alpha, 

finds the optimal expansion order based on Minimum Description Length (MDL) 

criterion, and corrects for the zero-time delay between the recorded instrument response 

and fluorescence decay based on a normalized means square error criterion. Results of 

the method validation on synthetic data, fluorescence standard measurements and 

biological tissues are presented. Unlike its previous implementations, the automated 

Laguerre deconvolution method converges to an accurate fluorescence IRF and lifetime 

estimation without the need for choosing a priori the expansion parameters, making it 

more suitable for online analysis and real-time applications, such as tissue diagnosis 

based on TRFS and fluorescence lifetime imaging.  
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CHAPTER II 
 

 BACKGROUND 
 

Before we can proceed to analyze the time resolved fluorescence spectroscopy data, it is 

important to understand the physical process of fluorescence at the molecular level and 

the factors that affect the nature of the fluorescence decay. This section will cover 

fluorescence photophysics, background of fluorescence spectroscopy, introduction to 

frequency domain TRFS and in some more detail, time domain TRFS. 

 

2.1 Fluorescence photophysics 

When a molecule is excited to a higher energy level, it returns to the ground state 

resulting in emission of radiation. This phenomenon is called luminescence. The energy 

associated with the emitted radiation is equal to the difference between the excited and 

ground state energy levels. If the excited state is a singlet state, the excited electron has 

spin that is opposite to the electron in the ground state. In this condition it is easier for the 

electron to return to the ground state and hence the process of emission is very fast. In 

this case, the emission is called fluorescence and it has small decay times of the order of 

10 ns [7]. If the excited stat is a triple state, however, the electron in the excited state has 

the same spin as the electron in the ground state. Transitions from such a state to the 

ground state are forbidden and in such cases the decay times can be very large (of the 

order of 103 seconds).  This phenomenon is called phosphorescence.  This thesis will be 

focusing on fluorescence.  
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The Jablonski diagram (Figure 1) will now be used to explain the process of fluorescence 

in more detail. S0, S1 and S2 denote the singlet electronic states of the molecule. Each 

electronic energy state is associated with several vibrational energy states. Before being 

excited the electron is present in the lowest vibrational state of the S0 electronic energy 

level. It is excited to any of the higher electronic levels, say using a laser, (either S1 or 

S2, depending on the energy of excitation, i.e. the laser wavelength) and to any of the 

several vibrational states associated with that electronic level. The fact that it can be 

excited to any of these vibrational levels is what causes the characteristic excitation 

spectrum for the molecule. Before returning to the ground state, the electron must occupy 

the lowest vibrational state of the electronic level in which it has been present. The 

process by which the electron transitions to this state is accompanied with an energy loss 

but is non radiative and is called internal conversion. The photon emitted after internal 

conversion has lower energy and hence longer wavelength than the photon that was 

Figure 1. Jablonski Diagram [44] 
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absorbed. This difference in energy or a difference in wavelength between the absorbed 

and emitted photon is known as Stokes shift [7].  

After internal conversion, the electron returns to the ground state, but it can do so at any 

of the vibrational levels associated with the ground state. This gives rise to a 

characteristic emission spectrum which is a reflection of the distribution of vibrational 

levels in the ground state of the entire molecular species. The fluorescence intensity of a 

molecule is characterized by several properties such as the molar extinction coefficient 

(i.e. the absorbing power) at the excitation wavelength, quantum yield (ratio of number of 

photons emitted to the number absorbed) at the emission wavelength and the 

concentration of the molecule in solution [7].    

 

2.2 Fluorescence decay kinetics 

The fluorescence lifetime is defined as the average time that a molecule spends in the 

excited state before decaying to the ground state by emitting photons. Fluorescence 

emission is a random process and not all molecules stay in the excited state for the same 

amount of time.  

 

After a sample is excited with an infinitely short pulse of light, a certain population of the 

sample (say ) is excited to a higher energy level. This population begins to decay into 

the ground state with a rate  .  

                         (2) 

where  is the number of molecules in the excited state at the instant t. Since emission 

is a random event, each molecule in the sample has the same probability of emitting in a 
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given period of time. Hence after having excited a sample, the process by which all the 

molecules in the sample return to the ground state forms an exponential decay. Since the 

fluorescent intensity corresponds to the number of emitting molecules, 

     )           (3) 

where  is the intensity at time . The lifetime is the inverse of the total decay rate. 

That is, 

                (4) 

Thus, lifetime is defined as the rate of the exponential decay of fluorescence emission 

with time [7]. 

 

2.3 Fluorescence spectroscopy 

The interaction of light with matter can result in several processes such as scattering, 

reflection, absorption and luminescence. Hence measurement of these processes at a 

molecular level can help identify the sample’s molecular structure and chemistry. Optical 

spectroscopy has been used as a tool to study these processes over a range of wavelengths 

and define a spectrum over which the sample under investigation is active [7, 9, 27]. 

Steady state fluorescence spectroscopy primarily consists of exciting the sample with a 

wavelength in the sample’s excitation/absorption spectrum and measuring the intensity 

over the emission spectrum. Time resolved spectroscopy involves collecting information 

about temporal fluorescence dynamics for each wavelength in the emission spectrum. 

Time Resolved Fluorescence Spectroscopy can be performed in time domain or 

frequency domain. In frequency domain the excitation source used is a continuous wave 

source (see figure 3 on page 22). It is intensity modulated at a high frequency that is 
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comparable to the reciprocal of lifetime. The resulting emission intensity is also 

modulated at the same frequency. However the emission intensity signal is not exactly 

the same as the excitation signal but is characterized by time-delay and amplitude 

changes compared to the excitation signal. The time delay is measured as the phase shift 

between the excitation and emission signal [7, 28]. 

 

 

Figure 2. Time domain and frequency domain TRFS [45] 

 

 
2.4 Time resolved fluorescence spectroscopy (Time domain) 

In time domain time resolved fluorescence spectroscopy the sample is excited by a very 

narrow pulse of light (Figure 2). The width of the pulse is preferably much narrower than 

the expected fluorescence lifetime of the sample (ideally, an impulse function). The 

resulting emission intensity is collected as a time dependent signal at each wavelength in 

the spectrum.  The fluorescence signal in this case is asymptotically decaying and this 

signal is a characteristic of the particular fluorophore[7]. There are several approaches 
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that can be used to implement time domain time resolved fluorescence spectroscopy. 

Although a pulsed laser is invariably used as an excitation source, different detection and 

acquisition schemes can be used according to the application. Time Correlated Single 

Photon Counting (TCSPC)[29], high speed time gated CCD devices[30-31], streak 

cameras[31] and pulse sampling/transient recording through a high speed digitizer[32] 

are some of the time domain approaches that can be employed. Time correlated single 

photon counting (TCSPC) works on the principle that a single photon is detected for 

more than one excitation pulse. The delay time between that excitation pulse and the 

detection of the first photon is recorded. Each of these photons detected are stored in a 

histogram with the horizontal axis representing the delay between excitation pulse and 

detection of the first photon and the vertical axis representing the photon count at that 

specific delay interval. When a sufficient amount of photons (of the order of 106) have 

been recorded in the histogram, it will represent the recorded decay [29]. Pulse sampling 

or transient recording is another approach that has recently gained popularity for time 

resolved fluorescence spectroscopy in clinical applications. It allows recording of an 

entire decay with a single excitation pulse at a good signal to noise ratio. High speed 

digitizers or digital oscilloscopes can be used for the purpose of decay pulse sampling. 

High bandwidth detectors are used to record fluorescence intensity decay over time. With 

the advent of high speed digitizers and advanced MCP-PMTs, systems with high 

temporal and spectral resolution have been developed[32]. 
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CHAPTER III 

METHODS 

 

In this section, the automated Laguerre deconvolution method will be presented. Then, a 

description of the experiments performed for validating the proposed deconvolution 

method and comparing it with other more standard ones will be provided. 

 

3.1 Automated Laguerre deconvolution technique 

3.1.1 Basic Laguerre Expansion Technique for deconvolution of TRFS data 

In the context of TRFS, the measured fluorescence intensity decay data  is given by 

the convolution of the fluorescence IRF  with the instrument response , 

 

             (5) 

The parameter  in equation (5) determines the time length of the fluorescence IRF and 

T is the sampling interval.  The Laguerre deconvolution technique expands the 

fluorescence IRF on an orthonormal set of discrete time Laguerre functions 

(DLF) ,    

 

         (6) 

In equation (6),  are the unknown Laguerre expansion coefficients (LEC), which are to 

be estimated from the input-output data;  denotes the  order orthonormal DLF; 
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 is the number of DLFs used to model the IRF, thus defining the order of the expansion. 

The DLF of order  is defined as, 

 

 (7) 

The order  of each DLF is equal to its number of zero-crossing (roots). The Laguerre 

parameter  determines the rate of exponential (asymptotic) decline of the 

DLFs. The higher the order j and/or the larger the Laguerre parameter , the longer the 

spread over time of a DLF and the larger the time separation between zero-crossing. 

Thus, higher order and larger  value imply longer convergence time to zero.  By 

inserting equation (6) into equation (5), the convolution equation (5) becomes,   

 

                  (8) 

Where the functions , represent the digital convolution of the input x(n) with each 

of the Laguerre functions, are denoted as the "key variables". 

 

             (9) 

The computation of  can be accelerated significantly by use of the recursive 

relation 

         (10) 
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which is due to the particular form of the discrete-time Laguerre function [12]. 

Computation of this recursive relations must be initialized by the following recursive 

equation that yield  for a given input  ,   

          (11) 

The system of linear equation (8) can be expressed in a matrix notation as follows, 

 

                (12) 

Equation (12) can be written as 

              (13) 

The least-square analytical solution for (13) is given as, 

        (14) 

Hence the estimated decay can be expressed as,   

         (15) 

Where the inversion is performed using a QR decomposition. Once the expansion 

coefficients  have been calculated, the fluorescence IRF  can be computed from 

(6), the estimated fluorescence decay  can be found by convolving the input with 

 (the subscript α defines the specific Laguerre basis used for the expansion), and 

values for average lifetimes can be calculated as [7],  

 

                (16)  
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3.1.2 Non-linear least square optimization of the Laguerre parameter 

The choice of the Laguerre parameter α is critical in achieving accurate fluorescence IRF 

expansions. As a first approach, the parameter α can be selected based on the kernel 

memory length K and the number of DLFs used for the expansion, so that all the 

functions converge to zero by the end of the impulse response [20, 26]. However, this 

empirical approach does not warranty an optimal expansion, and in practice, a good 

choice for the value of α is usually found by trial-and-error procedures. Here, we propose 

a computationally efficient method, whereby the Laguerre parameter is treated as a free 

parameter within a nonlinear least-square optimization scheme. This automates the 

procedure for the determination of suitable Laguerre parameters, guided by the actual 

TRFS experimental data. 

 

In the context of nonlinear least square optimization, the model free parameter (α in this 

case) is chosen so that an objective function is minimized. The objective function  is 

defined as the sum of squared errors ( ) between the measured fluorescence decay 

and its estimation ,   

                           (17) 

The optimal alpha is selected as,  

                  (18) 

To minimize the objective function, the Laguerre parameter is iteratively updated, 

                                         (19) 

Where the superscript  denotes the iteration number and is a scaling factor chosen so 

that the Laguerre parameter is updated by a fixed amount after each iteration. Estimation 
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of    can be performed by numerical methods. Alternatively, closed from recursive 

formulation of  can also be derived as follows, 

We use Eq. (14) to express the estimation error ,  as, 

                                                                (20) 

Substituting for  from Eq. (20) into Eq. (17), we get, 

                                                  (21) 

This can be further simplified to, 

 =               (22) 

Where  is the identity matrix or order N. By identifying the second term on the RHS as 

, we get,  

           (23) 

Thus, the derivative of the cost function can simply be expressed as, 

         (24) 

Using the definition of  from Eq. (20), it derivative with respect to  beomes, 

      (25) 

The key variables  can be computed recursively as shown in Eq. (10) and Eq. (11) 

[26].  

Using this, we can derive a recursive formulation for the terms in where  is the 

matrix formed by the key variables. 

Recursive estimation of  can be derived by taking the derivative of Eq. (5) and (6) 

with respect to α, yielding the following set of equations, 
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(26) 

Similarly, by taking the derivative with respect to the least square solution of the 

expansion coefficients as defined in Eq. (6), we obtain, 

        (27) 

To calculate  let us first consider that,    

  

Since , the LHS becomes zero, thus, 

            (28) 

Substituting Eq. (14) in Eq. (28), we get, 

                (29) 

             

 (30) 

Finally the iterative relation for calculation the optimal Laguerre parameter becomes, 

      

(31) 

where the derivatives of the key variables are given by Eq. (26).  Iterative updating of the 

Laguerre parameter  is performed using until a nonlinear least square optimal solution is 

attained.  
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3.1.3 Expansion order selection 

The deconvolution approach based on the Laguerre expansion technique can be taken as 

an identification problem, in which the model complexity (i.e. number of Laguerre 

functions for the expansion) are to be determined. Increasing the model complexity will 

decrease the systematic errors. However, at a certain complexity, additional model 

parameters no longer reduce the systematic errors but are used to follow the actual noise 

realization on the data, a phenomenon known as overfitting. To avoid this unwanted 

behavior, a model selection criterion usually includes a model complexity term to 

penalize overfitting conditions. Among the various model selection criterion used, one of 

the most robust and commonly used ones is the minimum description length (MDL) 

index[33-34], which is defined as follows [33, 35] 

             (32) 

Here,  is the number of measured samples,  is the sum of squared errors as defined 

in (10), and  is the number of model parameters, which in this case corresponds to the 

number of Laguerre functions used for the expansion. To estimate the optimal expansion 

order,  takes values from 2 to 8, and  is computed. The value of L that yields 

the minimum  value is then chosen as the optimal expansion order.  

 

3.2 Zero-time delay estimation 

As discussed before, when the instrument response is recorded experimentally as the 

scattering of the excitation light pulse, a zero-time shift or delay of the instrument 

response with respect to the fluorescence decay is often observed. Here, we describe a 

heuristic method for accurate estimating such delay between the scattered based 

instrument response and fluorescence emission decay. Basically, a number of potential 
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delays between the instrument response and the fluorescence decay are assumed. For 

each delay value, the Laguerre deconvolution is applied using a fixed order of 4, and the 

normalized means-square error (NMSE) values is computed. Then, the delay yielding the 

lowest NMSE is taken as the optimal delay between the instrument response and the 

analyzed fluorescence decay at a given emission wavelength. 

 

3.3 Method validation experimental TRFS data 

The performances of the automated Laguerre deconvolution technique was assessed with 

experimental TRFS data from lifetime fluorescence standards and human ex-vivo 

arteries. A brief description of the fluorescence measurements is presented here.  

 

3.3.1 TRFS instrumentation 

The experiments for validation were conducted with a TRFS system, built on the lines of 

a first prototype [32]. The fluorescence standard samples were excited with a 

subnanosecond pulsed nitrogen laser with emission wavelength 337.1 nm (700 ps 

FWHM). The fluorescence response was measured using a customized TRFS system 

allowing for direct recording of the fluorescent pulse (fast digitizer and gated detection). 

Fluorescence pulse was collected by a fiber optic bundle (bifurcated probe) and directed 

to a monochromator connected to a multi-channel plate photo-multiplier tube (transit 

time spread of 90 ps). The entire fluorescence pulse from a single excitation pulse was 

recorded with a 2.5 GHz bandwidth digital oscilloscope (Sampling rate, 10Gsamples/s) 

coupled to a preamplifier (bandwidth 1.5 GHz). For each sample solution, the 

fluorescence decay corresponding to the peak emission wavelength of that fluorophore 

was recorded. After the fluorescence measurement, the scattered laser pulse temporal 
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profile was measured at a wavelength slightly below the excitation laser line.  The laser 

pulse energy at the tip of the excitation fiber probe was adjusted to 5.0 μJ/pulse.  

 

3.3.2 Experimental data, fluorescence lifetime standards and fluorescent tissue 

constituents 

Data was collected from standard dyes for fluorescence lifetime measurements. The 

fluorescence lifetime standards were selected to cover a broad range of emission 

wavelengths (360–650) nm and radiative lifetimes (0.4–12 ns). The fluorophores used 

were rose Bengal (33,000, Sigma-Aldrich), Rhodamin B (25,242, Sigma-Aldrich), and 9-

cyanoanthracene (15,276, Sigma-Aldrich). These fluorophores are commercially 

available in powder form. The fluorescence dyes used in the measurements were diluted 

into 10-6 M solutions.  

 

Figure 3. Block diagram of TRFS instrumentation. 

 

In addition to fluorescence lifetime standard, the deconvolution method was also 

evaluated on fluorescent tissue constituents tested, relevant for potential fluorescence 
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based tissue diagnosis [36-37]. These include commercially available samples of collagen 

type I (C3511, Sigma-Aldrich), NADH (N8129, Sigma-Aldrich), and flavin adenine 

dinucleotide (FAD) disodium salt dihydrate (F6625, Sigma-Aldrich). The collagen was 

tested in dry form while NADH and FAD were tested in 10-6 M PBS solutions. The time-

resolved fluorescence decays of these specimens were obtained in the same manner as the 

fluorescence standard dyes.  

 

3.3.3 Experimental data, TRFS ex-vivo measurement from human arteries 

Finally, the automated Laguerre deconvolution method was also tested on TRFS 

measurements obtained from human tissue. An important future possibility for method is 

for enabling application of TRFS as a clinical tool to detect biochemical composition on 

atherosclerotic arteries, we used human coronary arteries (postmortem specimens) for 

this validation study. In this case, the time-resolved fluorescence spectra were measured 

for a 200 nm spectral range from 400 nm to 650 nm at 5 nm increments. Spectra were 

acquired from several locations from the lumen side within the coronary arteries. The 

scattered laser pulse temporal profile was also measured right after each time-resolved 

fluorescence spectrum acquisition. The laser pulse energy at the tip of the excitation fiber 

probe was also adjusted to 5.0 μJ/pulse. 

 

3.4 Comparison with standard deconvolution method 

In order to compare the deconvolution performance of the proposed method with more 

standard approaches, we also analyzed the same TRFS data using the standard 

multiexponential least-square iterative reconvolution (LSIR) approach. LSIR applies 



 24 

nonlinear least-square optimization methods to estimate the parameters of a multi-

exponential IRF that would fit best its convolution with the instrument response with the 

fluorescence decay data. For the data considered in this study, up to three exponential 

components were assumed. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25 

CHAPTER IV 

RESULTS 

 

4.1 Validation on fluorescence lifetime standards and fluorescent tissue constituents 

The proposed automated deconvolution method was first validated on TRFS 

measurements from fluorescence lifetime standards. Results for this first validation are 

summarized in Figure 4 and Table 1. Figure 4 shows the standard fluorescence pulse 

measured at their peak emission wavelength, together with the instrument response, and 

the estimated fluorescence pulses by the automated Laguerre and the multiexponential 

deconvolution methods. The estimated fluorescence IRF, the normalized residuals, and 

the autocorrelation of the residuals are also shown. To assess the ability of the Laguerre 

technique to estimate long fluorescence lifetimes, the fluorescence decay of 

9-cyanoanthracene (9CA) in ethanol were deconvolved (Figure 4.a-b). Both the Laguerre 

and the exponential methods yielded similar fluorescence IRFs with lifetime values in 

agreement with previous reports[7, 32, 38-39] (Table 1).  The normalized residuals 

(<10%) and their autocorrelation functions show a significantly random      behavior, 

indicating excellent performance by the two methods.  
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Optimal values of α=0.96 and order L=4 were obtained, and two exponential components 

were needed for proper multiexponential deconvolution. Similarly, measurements of 

Rhodamin B in ethanol demonstrated the ability of the automated Laguerre method to 

accurately resolve nanosecond fluorescence lifetimes (Figure 4.c-d).  Again, both 

methods yielded similar fluorescence IRFs with lifetime values also in agreement with 

previously reported (Table 1), and the excellent estimation accuracy was also evident by 

the low normalized residual (<5%) and flat autocorrelation function. . For this case, 

optimal values of α=0.84 and order L=4 were obtained, and two exponential components 

were needed for proper multiexponential deconvolution. Short-lived fluorescence IRF, 

like that from Rose Bengal in ethanol, with lifetimes ranging in the hundreds of 

picoseconds could be also reliably retrieved by the proposed deconvolution technique 

(Figure 4.e-f).  Optimal values of α=0.57 and order L=3 were obtained, and two 

exponential components were used for this fluorophore. As in the previous cases, both 

methods yielded similar fluorescence IRFs with lifetime values in agreement with those 

reported in the literature[7, 32, 39] (Table 1). 
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Figure 4.  Deconvolution results for TRFS data from fluorescence lifetime standards 

(a) and (b), 9CA at 450nm, (c) and (d),  Rhodamin B at 580 nm and (e) and (f) Rose 

Bengal at 570 nm using the Automated Laguerre (left and multiexponential (right) 

methods. Main panels show the measured fluorescence pulse (solid black), 

instrument response (solid gray), and estimated fluorescence pulse (dotted black). 

Smaller panels show the Fluorescence IRF (top), normalized residuals (middle) and 

residual autocorrelation (bottom). The fluorescence IRFs were accurately estimated 

by both methods 
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Following the validation with fluorescence lifetime standards, TRFS data was measured 

and analyzed from three important tissue constituents relevant for potential fluorescence 

based tissue diagnosis, collagen, NADH and FAD. Results for this second validation are 

summarized on Figure 5 and Table 1. Both the automated Laguerre and multiexponential 

methods accurately estimated the collagen fluorescence IRF and lifetime values at its 

peak emission wavelength of 400 nm, as shown in Figure 5.a-b and Table 1. From the 

residuals plots however, it seemed that the Laguerre approach performed better (<5% 

error) than the multiexponential deconvolution (<10% error).  Optimal values of α=0.91 

and order L=3 were obtained, and two exponential components were needed for proper 

multiexponential deconvolution. The NADH fluorescence IRF and lifetime value at the 

peak emission of 450 nm were also properly estimated by both methods, as reflected in 

Figure 5.c-d and Table 1. For this fluorophore, optimal values of α=0.67 and order L=4 

were obtained, and two exponential components were used. Similarly, both methods 

accurately estimated the fluorescence IRF and lifetime of FAD (Figure 5.e-f) at its peak 

emission wavelength of 530 nm. Optimal values for α =0.93 and order L=3 were 

obtained, and two exponential terms were also used. 
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Figure 5. Deconvolution results of the TRFS data from the tissue constituents. 

(a) and (b), collagen at 400nm, (c) and (d), NADH at 450 nm and (e) and (f) FAD at 

530 nm using the Automated Laguerre (left and multiexponential (right) methods. 

The fluorescence IRFs were accurately estimated by both methods 
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Table 1. Estimated lifetime values from fluorescence standards and tissue 

constituents. Multiexponetial model (with LSIR) was implemented using two 

exponential terms in the expansion. 

 
Sample Solvent Wave-

length 

(nm) 

Opt. 

α        

Opt.  

order 

Lifetime (ns) 

Auto. 

Laguerre 

LSIR Literature 

9-CA Ethanol 450 0.96 4 12.61 ± 

0.58 

12.18 ± 

0.73 

11.7-12.28 

Rhodamin 

B 

Ethanol 580 0.84  4 2.52 ± 0.10 2.44 ± 

0.14 

2.60-3.01 

Rhodamin 

B 

H2O 580 0.74  4 1.55 ± 0.03 1.58 ± 

0.05 

1.48-1.67 

Rose 

Bengal 

Ethanol 570 0.62 3 0.65 ± 0.02 0.61 ± 

0.01 

0.84 

Rose 

Bengal 

Methanol 570 0.57 3 0.48 ± 0.01 0.48 ± 

0.01 

0.54 

Collagen N/A 400 0.91 3 1.56 ± 0.07 1.65 ± 

0.07 

1.05-1.42 

NADH PBS 450 0.67 4 0.45 ± 0.03 0.36 ± 

0.01 

0.30-0.40 

FAD PBS 530 0.93 3 2.24 ± 0.12 2.29 ± 

0.12 

2.30-2.85 
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Table 2. Comparison of computation time using automated Laguerre and 

traditional methods. Multiexponential model was implemented using two 

exponential terms in the expansion. 

 
Sample Solvent Computation Time (ms) 

 Laguerre Auto. Laguerre LSIR 

9CA Ethanol 7 266 153 

Rhodamin B Ethanol 5 258 67 

Rhodamin B H20 5 193 68 

Rose Bengal Ethanol 3 69 45 

Rose Bengal Methanol 3 32 73 

Collagen N/A 3 175 366 

NADH PBS 4 54 139 

FAD PBS 3 157 779 

 

Table 2 compares the computational speed of the proposed method with the original 

Laguerre method (without optimization) and the LSIR method which uses the multi-

exponential model. The automated Laguerre deconvolution method appears to be slower 

than the original Laguerre method. This result is expected because the automated 

Laguerre method performs a complete optimization of the alpha parameter using non-

linear least squares, searches for the appropriate expansion order and also adjusts for the 

zero-time delay. However, it can be seen from Table 2 that the automated Laguerre has 

computation times quite comparable to the multiexponential method while providing with 

a more robust data analysis technique for TRFS.  
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To illustrate the sensitivity of the figure of merits used for optimizing orders and delays, 

Figure 6 shows the MDL value as a function of order and the NMSE value as a function 

of delay, corresponding to the FAD fluorescence decay deconvolution. The left panel 

shows how the MDL value decreases significantly from an order 2 to an order 3 

estimation, but does not change significantly for orders higher than 3. Based on this, an 

optimal order L=3 was successfully found. In the right panel, it is shown how the NMSE 

reaches an absolute minimum at a delay of 0.8 ns, clearly showing that this is the time 

difference between the measured fluorescence pulse and instrument response. These 

results indicate that the MDL and NMSE values are adequate criteria for searching 

optimal expansion order and zero-time delay, respectively. 

 

Figure 6. Values of MDL versus order (a) and NMSE versus zero-time delay (b) 

corresponding to the FAD fluorescence decay deconvolution 

 

 
4.2 Validation on TRFS ex-vivo measurement from human arteries 

Finally, the proposed automated Laguerre deconvolution method was also validated on 

TRFS data obtained from human arteries ex-vivo. Deconvolution results from sample 

artery fluorescence decay are shown in Figure 7. For this particular case, optimal values 



 33 

for alpha=0.88 and order L=5 were obtained, and two exponential terms were used. 

Based on the low residuals level (<5%) and flat autocorrelation function, it can be 

observed that both the Laguerre and the multiexponential methods successfully 

deconvolved the artery TRFS data.  

 
Figure 7. Deconvolution results from a sample of human artery TRFS data using the 

automated Laguerre deconvolution (a) and multiexponential (b) methods. 

  
 

In addition, it was important to assess ranges of values the parameter α, the order L and 

the delay, that were optimal for deconvolving human arterial TRFS data. For this 

purpose, the average values of these parameters (mean ± SE) were estimated as a 

function of wavelengths from all data sets collected. Results of this analysis are shown in 

Figure 8. It was observed that the optimal α values for accurate deconvolution of arterial 

TRFS data were between 0.9-0.95, and there was no obvious variation in  values with 

emission wavelengths (Figure 8.a).  The optimal orders were usually either 4 or 5, and 

there was no apparent correlation between them and the emission wavelengths (Figure 

8.b). The zero-shift delay, on the other hand, was highly correlated with emission 
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wavelength, going from ~0.5 ns at 400 nm to ~0.95 ns at 550 nm, with an almost linear 

increase of delay with the emission wavelength (Figure 8.c). The average NMSE was 

estimated as a function of emission wavelength, which indicate excellent estimation 

performance for all wavelengths (NMSE < 2%) (Figure 8.d). 

 

 

Figure 8. Statistics on results from artery samples. 

Average (mean ± SE from 47 artery datasets) values for (a) the Laguerre parameter 

α, (b) expansion order, (c) zero time delay (d) NMSE as a function of emission 

wavelengths from all human artery TRFS datasets. 
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CHAPTER V 

DISCUSSION, CONCLUSION AND FUTURE WORK 

 

5.1 Discussion 

In this thesis, a new fully automated deconvolution method for TRFS data analysis has 

been presented, based on an optimized iterative Laguerre expansion algorithm. The 

advantage of the Laguerre deconvolution method over the classical multiexponential 

least-square iterative reconvolution (LSIR) approach has been reported [26], especially 

for analyzing complex fluorescence systems, such as biological tissues. One big 

limitation, however, from this first version of the Laguerre deconvolution method, was 

the need to select a priori optimal values for the parameter α and the expansion order 

(model parameters) that would guarantee accurate estimation of the fluorescence IRF. To 

overcome this limitation, an iterative version of the Laguerre deconvolution method has 

been developed, in which no a priori assumption on these parameters is needed. In 

addition, the proposed method also takes into consideration the well known emission 

wavelength dependence of the zero-time shift or delay of the instrument response with 

respect to the fluorescence decay. The proposed method was successfully validated on 

fluorescence lifetime standards, fluorescence tissue constituents, and human tissue. The 

following is a discussion of the validation results and of the advantages of the proposed 

automated Laguerre deconvolution method. 

 

The validation results on TRFS data from fluorescence lifetime standards and tissue 

components show that both the automated Laguerre deconvolution and the classical LSIR 
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methods were able to estimate the underlying fluorescence IRF and lifetime values, 

which were in well agreement with the literature (Table 1). One important advantage of 

the method was that the model parameters were automatically optimized, while for the 

case of the LSIR method, the number of exponentials needed for accurate deconvolution 

was found by trial and error. The other significant advantage of the proposed method was 

the ability to estimate the real zero-order delay between the instrument response and the 

measured fluorescence decay. As a matter of fact, the optima delay found using the 

automated Laguerre approach was also applied before performing the LSIR method, so 

the last one could converge correctly to an optimal estimation of the fluorescence IRF.  

Another important observation was the correlation between the optimal parameter α 

obtained by the proposed method and the underlying fluorescence lifetime of the 

estimated IRF. From Table 1 it can be observed that long lived fluorescence IRF (e.g. 

9CA) are better expanded using large α values, while short lived IRF (e.g. rose Bengal ) 

are usually well estimated with smaller α values. This is consistent with previous results 

obtained using the original Laguerre deconvolution implementation. In the original 

Laguerre deconvolution implementation, however, the value of α is user selected by trial 

and error until adequate expansion of the fluorescence IRF is attained. In contrast, in the 

current version, optimal values for α are automatically estimated from the data by using a 

nonlinear least square approach. This represents a significant advantage over the previous 

method, since it will allow using the Laguerre deconvolution method in numerous 

applications where online analysis of TRFS data is required. With regard to the 

introduction of TRFS to clinical applications, the automated Laguerre deconvolution 
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algorithm need to be incorporated into the existing TRFS instrumentation, in order to 

achieve real-time acquisition and analysis of TRFS data. 

 

Model complexity quantification is a very well studied problem in the field of 

mathematical modeling and system identification [34]. A number of model complexity 

figures have been proposed, aiming to determine the level of complexity needed by a 

given model to properly account for the dynamics being investigated. Among the 

numerous complexity figures being proposed, the MDL is one of the most robust and 

widespread used[33-34]. The Laguerre deconvolution method constitutes a modeling 

problem, in which the fluorescence IRF is modeled as a linear expansion of Laguerre 

functions. At such, the model complexity is directly linked to the expansion order L. The 

proposed results clearly demonstrated that the MDL can be successfully used for 

quantifying the expansion complexity, therefore, determining the optimal expansion 

order needed for accurate fluorescence IRF expansion. As shown in Figure 4.a as an 

example, the MDL value usually decreases as the order expansion increases, until an 

optimal order is reached, after which the MDL values does not further decreases 

significantly. Since the MDL criterion sacrifice model estimation for level of complexity, 

in some instances it is convenient to choose a higher order than the one determined by 

MDL in order to warranty good fluorescence IRF estimation. Such heuristic rules can be 

easily implemented on the proposed algorithm. 

 

During TRFS measurement, the instrument response cannot always be acquired at the 

same emission wavelength as the recorded fluorescence decay [40-41]. Since the 
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refractive index of the various optical materials present in a TRFS instrument depend on 

the photon wavelengths, the instrument response and fluorescence pulses may travel at 

different speed throughout the TRFS instrumentation. Because of this speed difference, 

the instrument response and the measured fluorescence pulse may arrive with a relative 

time delay between each other. Thus, during the deconvolution process, it may be 

necessary to account for this zero-time shift or delay. Making the assumption that the 

optimal fluorescence IRF estimation is achieved when both the instrument response and 

fluorescence pulse are aligned in time (zero delay), we decided to use a goodness of the 

fit index, such as the NMSE, to estimate the experimental zero-time delay. As shown in 

Figure 6.b as an example, the NMSE usually show a global minimum at the optimal 

delay, allowing a systematic determination of the zero-time shift.  

 

For the past several years, TRFS have been evaluated as a potential clinical tool for 

minimally invasive and nondestructive tissue diagnosis.  A few groups have shown the 

potential of TRFS for detecting difference in tissue biochemical composition related to 

pathological conditions [1-3, 5-6, 36, 42]. As a progression of this particular study, the 

next area of focus would be on validating time-resolved fluorescence measurements 

(spectroscopy and imaging) for characterizing the biochemical composition of 

atherosclerotic plaques, which is clinically relevant for detecting those patients with high 

risk of heart attacks and stroke. This made it essential to further validate method on TRFS 

data obtained from human arteries in-vivo. The results (Figure 5 and 6.d) clearly indicate 

a very good performance by the proposed automated Laguerre deconvolution method for 
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estimating human artery fluorescence IRF and lifetimes throughout the whole emission 

spectrum.    

 

In addition, it will also be valuable to investigate what values of the parameter α were 

optimal for accurate deconvolution of human artery TRFS data. The proposed results 

(Fig. 6.a) showed that optimal values for α were concentrated within a range of 0.8-0.9 

with no apparent correlation between α and the emission wavelength. These findings 

indicate that it may be possible to speed up the optimization of the parameter α, for 

instance, by assigning an initial condition within the interval 0.8-0.9 for the nonlinear 

least-square algorithm. In the extreme case, it may be even feasible to use a fixed valued 

for α (e.g. α = 0.85) that would be close to optimal for deconvolving any arterial TRFS. 

This hypothesis will be tested as part of the proposed future research. 

 

Similarly, it was also investigated how many Laguerre functions were necessary for 

accurate estimation of arteries fluorescence IRF. The results (Fig. 6.b) showed that 

optimal expansion orders were usually either 4 or 5, regardless of the emission 

wavelength. These findings suggest that we can limit the search for the optimal order in a 

much reduced interval (e.g. 3-5), which would significantly increase the computational 

speed of the method. As in the case of the parameter α, in the extreme case, it may be 

even suitable to fix the expansion order to an upper bound of the optimal value (e.g. L=5) 

to ensure the goodness of the fit by slightly sacrificing model complexity.  Again, this 

hypothesis will be tested as part of the future research. 
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As previously discussed, due to the wavelength-dependent refractive index of the optical 

materials travelled by light pulses in the TRFS instruments, it is not uncommon to 

observe a zero-time delay between the recorded instrument response and measured 

fluorescence pulses. In the particular TRFS instrument, both the scattering light of the 

excitation laser (instrument response) and the sample fluorescence emission are collected 

through a silica/silica step index optical fiber bundle. Since the refractive index of this 

fiber is higher for shorter than for longer wavelengths, fluorescence pulses at longer 

wavelengths than the excitation wavelength travel faster than the measured scattered 

instrument response. Thus, the instrument response is usually delayed with respect to the 

fluorescence pulse, and the delay is expected to increase at longer fluorescence emission 

wavelengths.  The results from arteries are in agreement with this phenomenon, as it can 

be observed how the delay of the instrument response with respect to the fluorescence 

pulse increases with the emission wavelength (Figure 6.c). These results underscore the 

need for taking into consideration the zero-time delay for proper estimation of the 

fluorescence IRF, especially for TRFS instruments with high temporal resolution.   

 

The validation results on the human artery TRFS data are of special relevance for the 

research on TRFS based diagnosis of atherosclerosis. The findings discussed above 

suggest the possibility of customizing the proposed automated Laguerre deconvolution 

method for online analysis of arterial TRFS data. For instance, a TRFS instrument could 

be characterized and calibrated, in order to determine suboptimal values for zero-time 

delay at specific wavelength, and let the algorithm search around these for the optimal 

delay values. In addition and as discussed before, a fixed expansion order could be 
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predefined as well. Finally, since optimal α values for deconvolving arterial TRFS are 

limited to a narrow range (0.8-0.9), a customized and faster version of the algorithm can 

be implemented to search only in that relevant interval. Similar approaches for 

customizing the automated Laguerre deconvolution method for a specific type of samples 

(e.g. a given tissue of interest) will be also useful for facilitating online application of 

TRFS in numerous other areas (e.g. chemistry, biochemistry, drug development).  

 

Perhaps, the only drawback of the current version of the automated Laguerre 

deconvolution method is its slower performance with respect to the original 

implementation[26]. This is understandable, since a full model parameter optimization is 

performed in the automated version, the parameter α is optimized by nonlinear least-

square minimization, and both the order and delay values are optimized by exhaustive 

searching of values minimizing a complexity (MDL) and performance (NMSE) figures of 

merit, respectively. On the other hand, no user intervention is required for tuning up the 

model parameters, allowing online analysis of TRFS data. Furthermore, and as discussed 

above, the method can be customized for a given sample type and TRFS instrumentation 

in order to speed up its performance. 

 

5.2 Future scope 

The future possibilities for this study include extending the automated Laguerre 

deconvolution method for fluorescence lifetime imaging microscopy (FLIM) data 

analysis. In the context of FLIM, the analysis of a single image requires deconvolution of 

the instrument response from the fluorescence decay of each pixel within the field of 
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view. A Laguerre expansion based approach for FLIM data deconvolution has been 

demonstrated that performs at least two orders of magnitude faster than standard FLIM 

deconvolution algorithms [43]. As for the case the case of  original Laguerre TRFS 

deconvolution, the current Laguerre FLIM deconvolution also requires to select the 

expansion parameters (i.e. α and order) by trial and error. Thus, an automated version of 

the Laguerre FLIM deconvolution method would facilitate the use of this novel technique 

in various applications, including ongoing research on FLIM based atherosclerosis and 

cancer diagnosis. 

 

5.3 Conclusion  

In summary, a new fully automated deconvolution method for TRFS data analysis based 

on an iterative Laguerre expansion approach has been presented. The method has been 

extensively validated on TRFS data from fluorescence lifetime standards, tissue 

constituents and human tissue ex-vivo. The main advantage of the method is that it does 

not require any user intervention for tuning up the deconvolution process. The method is 

expected to facilitate the use of TRFS in applications where online data analysis is 

required.  
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