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ABSTRACT 

 

Dynamically Predicting Corridor Travel Time under Incident Conditions Using a 

Neural Network Approach. (December 2009) 

Xiaosi Zeng, B.E., South China University of Technology 

Chair of Advisory Committee: Dr. Yunlong Zhang 

 

The artificial neural network (ANN) approach has been recognized as a capable 

technique to model the highly complex and nonlinear problem of travel time prediction. 

In addition to the nonlinearity, a traffic system is also temporally and spatially dynamic. 

Addressing the temporal-spatial relationships of a traffic system in the context of neural 

networks, however, has not received much attention. Furthermore, many of the past 

studies have not fully explored the inclusion of incident information into the ANN model 

development, despite that incident might be a major source of prediction degradations. 

Additionally, directly deriving corridor travel times in a one-step manner raises some 

intractable problems, such as pairing input-target data, which have not yet been 

adequately discussed.  

In this study, the corridor travel time prediction problem has been divided into 

two stages with the first stage on prediction of the segment travel time and the second 

stage on corridor travel time aggregation methodologies of the predicted segmental 

results. To address the dynamic nature of traffic system that are often under the influence 

of incidents, time delay neural network (TDNN), state-space neural network (SSNN), 
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and an extended state-space neural network (ExtSSNN)  that incorporates incident inputs 

are evaluated for travel time prediction along with a traditional back propagation neural 

network (BP) and compared with baseline methods based on historical data.  In the first 

stage, the empirical results show that the SSNN and ExtSSNN, which are both trained 

with Bayesian regulated Levenberg Marquardt algorithm, outperform other models. It is 

also concluded that the incident information is redundant to the travel time prediction 

problem with speed and volume data as inputs. In the second stage, the evaluations on 

the applications of the SSNN model to predict snapshot travel times and experienced 

travel times are made. The outcomes of these evaluations are satisfactory and the method 

is found to be practically significant in that it (1) explicitly reconstructs the temporal-

spatial traffic dynamics in the model, (2) is extendable to arbitrary O-D pairs without 

complete retraining of the model, and (3) can be used to predict both traveler 

experiences and system overall conditions.  
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This thesis follows the style of Transportation Research Record. 
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1. INTRODUCTION 

Travel time has long been regarded as one of the most important traffic variables. 

Travel times along different segments of a traffic network provide more meaningful 

information for travelers than snapshots of other traffic variables at different locations in 

the network. For this reason, travel time is critical for traveler information. Travel time 

also helps evaluate the performance of a traffic system and provide a criterion to 

determine the optimal route choice. It is also a very complex topic that draws a 

significant amount of research attention.  

1.1. Background 

Travel has increased steadily on the nation’s transportation system, and one can 

hardly ignore the impacts of traffic congestions due to the expanding population and 

vehicular ownerships. Among all significant impacts caused by traffic congestions, 

travel time becomes one of the top concerns in individuals’ daily lives. Travel time 

provides critical information that may affect travelers’ decisions to choose routes, travel 

modes, starting times, or even cancel their trips (1-3). To transportation managers, travel 

time information can help them make better decisions on management strategies and 

dissemination of the optimal guidance.  

Travel time of a trip becomes available only after the trip is realized (1); 

therefore prediction is necessary for better traveler information or traffic management. 

Nowadays, short-term travel time prediction is an essential component of an advanced 

traveler information system (ATIS). Traditionally, travel time prediction is generally 
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tackled with one of the two major approaches: a simulation-based modeling approach 

(2), or a mathematical formulation-based approach (3). In the past decade, researchers 

have become more aware of the difficulties of using conventional approaches to 

accurately predict travel time in a dynamic traffic system. This is especially true with the 

occurrences of unplanned events, such as incidents, and with the recognition of the 

dynamic nature of travel time in a real-world environment. To meet the needs of 

modeling these highly complex issues, data-driven approaches have emerged from the 

fast development of computer technologies. The Artificial Neural Network (ANN) is one 

of these approaches that has gained wide recognition.  

1.2. Problem Statement 

Under free-flow or low flow conditions, travel time prediction can be easily 

made based on the traffic flow speed. If the traffic state remains stable over time as well 

as across space even though the volume has increased, travel time is still very 

predictable given available measurements and relationships of relevant traffic 

characteristics, such as travel time, speed, volume and occupancy. However, a complex 

traffic system consists of a variety of time-dependent variables and becomes highly 

nonlinear when volume levels are close to the design roadway capacity. Under such 

circumstances, the relationship between dynamic travel time and non-stationary traffic 

state is by no means proportional. Furthermore, the presence of incidents introduces 

even more complexities to the traffic system, which lowers the accuracy of travel time 

predictions. It is argued that the quality (accuracy) of traveler information strongly 

relates to the credibility of the predicted information. Drivers tend to follow up on the 
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information to a lesser extent once they have had bad experiences with the provided 

information (4). There is a need to provide reliable travel time information even under 

the impact of incidents. However, due to many difficulties such as data source, data 

fusion and modeling problems, very few studies have included the considerations of the 

presence of traffic incidents on the topic of travel time prediction (5). With a handful of 

research specifically on this topic, many of them predict corridor travel time in a one-

step manner – yielding corridor predictions directly from traffic data such as speed and 

volume. Such methods restrict the practical application of corridor travel time prediction 

to a certain extent.  

This research adopts ANN as a data-driven method to approach the travel time 

prediction problem under both incident-free and incident-affected conditions. ANN has 

been proven to be an effective tool in non-linear modeling and predictive type of 

problems. In addition, the ANN approach can assess the dynamical consequences of an 

incident towards trip travel time without explicitly investigating its sole impact, which is 

normally impossible and/or impractical. This research also investigates the application of 

ANN models to a two-stage process of corridor travel time prediction. 

1.3. Research Significance 

The principal goal of an advanced traveler information system (ATIS) is the 

prompt and proper dissemination of traffic information to on-road travelers. Yet in 

practice, the current strategies of providing travel time information remain unreliable, 

especially under incident conditions. As mentioned earlier, this usually results in lower 
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credibility of the information disseminated and further reduces the management 

efficiency for a traffic system.  

The model development process can be used as a demonstration of how, in detail, 

to predict travel time under various freeway conditions by using the neural network 

approach. The modeling results may be integrated directly into major TMCs for the 

purpose of providing accurate, reliable, and real-time travel time information to assist 

the traffic management and control even under incident-affected conditions. By 

developing a practical methodology, this thesis can be used as a building block for future 

development of corridor travel time prediction, such as an implementation guideline, 

which might help traffic managers to predict corridor traffic conditions and/or traveler 

experiences using such a powerful, mathematically complicated, yet practical tool. 

1.4. Research Objectives  

The objective of this research is to develop a well-defined yet practical neural 

network methodology that can reliably predict corridor travel times under various traffic 

conditions. Goals to be achieved include the following: 

• structurally and mathematically formulizing a set of neural network models 

that may potentially address the spatiotemporal characteristics under any 

normal traffic conditions, 

• developing a neural network model that can incorporate incident information 

in an attempt to capture the impacts of unplanned incident events on travel 

time, 
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• investigating the prediction performances of these neural models when 

feeding with and without incident information under abnormal traffic 

conditions, and 

• developing a dynamic prediction method to predict the corridor travel time as 

is most likely to be experienced by travelers.  
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2. TRAVEL TIME PREDICTION USING 

NEURAL NETWORKS 

As the main focus of this thesis, this section is organized to provide firstly an 

overview of artificial neural networks in general. Then a literature review specifically on 

the topic of neural network application to travel time prediction follows.  

2.1. Artificial Neural Networks 

The Artificial Neural Network (ANN), also commonly referred to as “neural 

network,” is a massively parallel distributed processor that utilizes experiential 

knowledge to build up the abstract representation of a system or an object. The concept 

of ANN stems from the recognition of the structure of the human brain, which is literally 

a highly complex, nonlinear, and parallel information-processing system (6). ANN 

resembles the sophisticated human brain in two perspectives: (a) the network acquires 

knowledge from its environment through a learning process, and (b) the interneuron 

connections that vary in connection strength, known as “synaptic weights” in 

neurobiology, provide an analogous mechanism that is used to store the acquired 

knowledge. With the learned knowledge, an ANN can autonomously perform a number 

of tasks, such as pattern recognitions, pattern associations, function approximations and 

filtering, to just name a few.  

2.1.1. A Neuron Model 

Any ANN consists of a number of structural constituents, termed as neurons, 

which can provide elementary nonlinear computations. Figure 1 exemplifies a neuron 

model. The computation of a neuron includes two typical processes: (a) receives and 
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sums input signals; and (b) transforms the summation of the inputs through a transfer 

function to produce an output of the neuron.   

 

 

Figure 1: Model of a neuron. 

We may describe a neuron in mathematical terms using the following equation: 

 
1

( )
m

j j 0
j

y f w x b
=

= +∑  (1) 

where xj is the j-th input data from a total of m inputs; w1, w2, …, wm are the synaptic 

weights that connect the m input signals to the computation neuron; b0 is termed the bias 

and is an external parameter of the neuron that applies an affine transformation to the 

output of the summing junction in the model of Figure 1; f(·) is the transfer unit, or 

activation function, which takes the result of the linear combiner as the argument of a 

differentiable function to produce the final outcome of the neuron model.      

Multiple neurons, as building blocks, are correlatively connected in series via 

synaptic weights and structured in parallel to form a sophisticated interconnected neural 

network. Therefore, the computational power of such a system has been boosted 

exponentially and is capable of handling high-dimensional and non-linear problems. 

Output  Input 
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2.1.2. Neuron Learning  

The primary significance of a neural network is the ability to learn from its 

surroundings and to improve its performance through learning (6). Since the very 

inception of ANN development, a set of learning rules have been explored and defined. 

Error-correction mechanism is a classic feedback control mechanism in the field of 

signal processing. There are at least two learning modes – supervised and unsupervised. 

The supervised learning algorithm is learning with known outputs (target), while in the 

unsupervised mode no targets are used for the networks to be compared with and the 

networks learn from their current and past behaviors. In the context of neural network 

prediction on travel time, the input-output paradigms are crucial to achieve accurate 

prediction ability. Therefore, all the networks to be developed are trained in the 

supervised mode. 

2.1.3. Benefits of Neural Networks 

ANN has a number of advantages in terms of capabilities of task-performing. It 

is generally accepted that proper constructions of ANN architectures theoretically allow 

approximations of any nonlinear mappings to arbitrary accuracies (5, 7). By being 

randomly presented with unique input data and corresponding response data, a network 

learns, in supervised modes, to create input-output mappings in a statistical manner 

without prior assumptions (6). Such a process brings to mind the study of nonparametric 

statistical inference. In addition, the plasticity of a neural network allows its synaptic 

weights to be adjusted in real time in order to stay adaptive to a non-stationary 

environment.  Last but not least, the parallel distributed computation system possesses a 
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great engineering characteristic – fault tolerance. This trait minimizes the vulnerability 

of potential failures due to noisy or even false inputs to a certain extent. All the 

aforementioned features have popularized the neural networks in many different fields of 

studies, and the ANNs therefore are considered suitable in studying the dynamics of 

traffic processes.  

2.2. Travel Time Prediction 

As mentioned before, a trip travel time would not be available until after the trip 

is completed. This fact implies the travel time information would be useful for individual 

travelers only if it is predicted. In the literature, travel time prediction is deemed by most 

as a highly complex and dynamic problem, as travel times are the result of complex 

nonlinear interactions of heterogeneous groups of driver-vehicle combinations (1). 

Furthermore, exogenous factors, such as changes in weather and occurrences of 

abnormal events in or nearby the roadway, worsen the predictability of the nonstationary 

traffic system.  

2.2.1. An Overview of Available Methodologies 

To tackle the issue of the prediction of travel time, a large amount of studies have 

been conducted. Traditionally, developing a travel time prediction model often follows 

one of the two approaches (7):  analytical and empirical.  

The analytical approach applies the methods of summary and analysis to making 

predictions of outputs as functions of specified inputs (8). Models based on the 

fundamental theories of traffic flow are often developed to establish relationships 

between common traffic variables (e.g. speed and volume) and travel time. Well-
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developed methodologies often present a good representation of the traffic process and, 

therefore, yield simple equations and satisfactory results under certain conditions. One 

major deficiency of this approach often lies in its deterministic and simplistic natures 

which jointly deteriorate its ability to realize highly complex and dynamic problems. To 

enhance the ability of analytical approaches, not only one but a set of predefined models 

can be organized in a way that the outcomes of these models interact internally.  

The empirical approach is often based upon a set of field observations obtained 

on a case-by-case basis and is usually considered as a reverse process of the analytical 

method. The fundamental part of this approach is that all models and theories are results 

of observations rather than a prior reasoning or purely mathematical deduction (9).  

Such a method is therefore termed as empirical approach. In transportation application, 

the primary merit of the empirical approach is that the burden of reasonable assumptions 

on constantly changing traffic conditions has been eased in the process of model 

development. Regression models and neural network approaches fall into this category.  

Additionally, simulation methods have been adopted for travel time prediction in 

recent years. Macroscopic simulation models often lack the modeling complexity to 

address dynamic traffic behaviors especially when there are abnormal conditions such as 

incidents.  On the other hand, microscopic simulation models require significant amount 

of data input and calibration to account for dynamic traffic conditions is always a 

challenge. 

This thesis focuses on traffic prediction using neural networks that can model 

dynamic, non-linear traffic systems that are too complex to be described by analytical 
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methods or empirical rules. The following two sections are presented to provide an 

extensive literature review on travel time prediction using artificial neural networks.  

2.2.2. Travel Time Prediction with Neural Networks 

Travel time is the product of highly dynamic and nonlinear traffic processes over 

space and time (10). Simplistic abstraction of such a complicated relationship between 

travel time and other traffic variables is very much a mathematically challenging and 

assumption-demanding task, if not impossible. Therefore, many researchers turn their 

focuses onto how they can extract the relationships from observatory data. Driven by 

field data, the neural network approach is an advanced and intelligent method available 

for this problem. Table 1 lists recent studies of short-term travel time forecasting based 

specifically upon the data-driven technique. Various types of neural networks have been 

developed. It is demonstrated that many of these networks had achieved satisfactory 

prediction performance under certain conditions.  

Comparing the studies in the table, many (1, 4, 11-13) did not use the actual 

travel time captured by probe vehicle devices (e.g. AVI, GPS), but used estimated or 

simulated travel times. Training a neural network with estimated travel time rather than 

the real ones implies the network may be learning the wrong mechanism (1).  Secondly, 

many of the studies (4, 5, 13-16) have not applied static networks to the traffic systems 

which are inherently dynamic.  In this study, all models learn the “ground truth” travel 

time data collected from Automated Vehicle Identification (AVI) system, and the 

dynamic structure of the neural network is designed in the model development process.  
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Table 1: Overview of Major Researches on Travel Time Prediction Using 

Artificial Neural Network Approach 

  Experiment Setups Analysis 

Year Research 
Team 

Network 
Architecture 

Data 
Source Inputs Study 

Period 

Time 
step 
size 

Network 
Type 

Consideration 
of Incident 

Performance 
Index 

1998 Park and Rilett 
(16) Modular AVI Travel Time 

6:00-
10:00am of 

231 
weekdays 

5 to 25 
minutes Static Not 

considered MAPE<12% 

1999 Palacharla and 
Nelson (12) 

Fuzzified Feed 
Forward  

Vehicle 
Detectors 

Volume and 
occupancy - 15 

minutes Static Not 
considered RMSE<5(sec) 

2001 Rilett and Park 
(15) Spectral-Basis AVI Space Mean 

Speed, 
203 

weekdays 
5 to 25 
minutes Static Not 

Considered MAPE <20% 

2002 Krikke (13) 
Feed Forward 

Back 
Prorogation 

Vehicle 
Detectors 

Speed, Volume 
and Length of 

congestion 

24 hours a 
day during 

3 days 

1 
minute Static Not 

considered RMSE<1(sec) 

2002 
Van Lint and 
Hoogendoorn 

(4) 
Recurrent Simulation Speed and 

Volume 

14:00-
21:00 of 5 

days 
- Dynamic Not 

considered 

RMSE<17(sec) 
SSE 

<1.2*105(sec2) 

2006 Van Lint (1) State-Space 

Vehicle 
Detectors 

& 
Estimation 

Speed and 
Volume 

14:00-
19:45 of 

1071 days 

1 
minute Dynamic Accident MAPE <5.4% 

2006 Ran et al. (5) 
Multi-Layer 

Perceptron and 
its variations 

- 
Incident, 
Traffic, 

Weather 

15 minutes 
after 

incident of 
2578 

incidents 

15 
minutes Static Accident RMSE<2.2(min) 

MAE<1.42(min) 

2008 Wei and Lee 
(14) 

Feed Forward 
Back 

Propagation 

GPS, 
Vehicle 

Detectors, 
Incident 

Travel Time, 
Speed, and 
Occupancy 
Time and 

Incident info. 

24 hours a 
day during 

9 days 

5 
minutes Static Accident MAPE<20% 

2009 Zou et al. (11) 

Multi-Topology 
Network with a 

Clustering 
Function 

Estimated 
from a 
Video-

Matching 
Algorithm 

Real-Time and 
Historical 

Occupancy, 
Traffic Counts; 
Current Time of 

Day  

24hours a 
day during 
a 10 week 

period 

- Dynamic Not 
Considered MAPE<7% 

Note: “-“ indicates that descriptions are absent in the paper. 

 

Travel time results from the spatiotemporal evolution of prevalent traffic 

conditions, which is a dynamic process with respect to time and space. Park and Rilett 

(16) incorporated upstream and downstream traffic data during the current time interval 

as inputs in the prediction; Wei and Lee (14) further considered traffic data from a 

previous time step. Van Lint (4) absorbed the considerations of both studies and trained 
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the network in a dynamic sequence and this network training style better captured the 

sequential effects of consecutive time steps. Yet Zou et al. (11) applied artificial neural 

network to conduct field experiments on travel time prediction on I-70 in Maryland, and 

found out that such an approach was accurate but fell shorts on the days affected by 

incidents. Ran (5) and Wei (14) both argued that incident inputs are significant pieces of 

information that affects the performance of prediction under incident conditions. On the 

other hand, Lint considered that speed and volume serve as the best representations of 

traffic state where no other inputs are needed (4). In light of these efforts, the recurrent 

network architecture proposed by Van Lint will be modified for explicit investigation the 

potential impacts of the presence of incident information.  
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3. MODELING TRAVEL TIME WITH NEURAL NETWORKS  

This section initially discusses a two-stage prediction process for corridor travel 

time and how neural network application can be incorporated. The concepts and the 

methodologies of segment travel time prediction (i.e. step one of the two-stage 

prediction) using various neural network models then follow. Finally, based on the 

results of the first step, the corridor travel time prediction method (i.e. step two of the 

two –stage process) is developed and described in the last sub-section. 

3.1. Two-Stage Prediction Method 

Most ATIS implementations calculate route travel time by summing the travel 

times of all segments along the route (15). However, in the context of neural network 

application to corridor travel time predictions, much of the research work uses various 

input sources to predict corridor travel time directly (1, 13, 17). Direct forecasting using 

an ANN model is straightforward, yet some issues have to be addressed in order for 

results to be valid.  

First of all, due to the nature of the one-stage prediction process, the corridor 

travel times are used as the direct targets in ANN trainings. Nonetheless, getting the 

correct inputs to match with these target outputs is very complicated and sometimes 

impractical. To explain this difficulty, let us assume that a mean corridor travel time is 

obtained as tc at time T. Since all trips are subject to constantly changing traffic 

conditions, the corridor travel time prediction inevitably involves the issue of how to 

account for such variants while training the neural networks. Such corridor travel time is 

a collective result of all the corridor traffic conditions during the immediate past period 
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of (T-tc). As far as neural network training are concerned, input data should be relevant 

with respect to the same period in order for the networks to learn the true relationships. 

Of course, tc is a random variable structurally characterized by the prevailing traffic 

conditions that are constantly changing. This implies that the time intervals to which the 

input data should be referenced are indefinite. In other words, it is very difficult to set 

the correct time window to retrieve input data. Conceivably, as the average time to travel 

through the corridor lengthens (e.g. longer corridor stretch) and/or the variance increases 

(e.g. more fluctuated traffic conditions), the errors caused by the improper pairing of 

inputs and outputs aggravate.  

In addition to the difficulty in matching correct input and output data, two more 

problems are identified while applying the one-stage prediction method. First, as a 

longer corridor is investigated, the sample size of the corridor travel times extracted 

from AVI stations (by pairing AVI stations at the beginning and the end of the corridor) 

become smaller. At a certain point, the samples are too small to yield representative 

measurements of the corridor travel times. To evaluate an extended corridor, GPS-

devised vehicles or other methods need to be considered to enable valid extraction of 

corridor travel times. Secondly, complete retraining of the neural network models is 

required when the configurations of the corridor are changed (e.g. adding new segments 

to the corridor). This effort is usually not trivial so that the flexibility of the one-stage 

prediction method is seriously limited.  

Due to these difficulties when applying the one-stage prediction method, we 

propose a two-stage prediction method to model corridor travel time as shown in Figure 
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2. The first stage involves the neural network designing and model calibration for 

segment travel time prediction. Building on the results of the first stage, the second stage 

puts forward different pre-defined calculation procedures and predicts the corridor travel 

time accordingly.  

 

Figure 2: Generic routine of the two-stage prediction method. 

The two-stage prediction relaxes the requirement on obtaining corridor travel 

times, and it only requires the segment travel times to be obtained as target outputs. 

Since freeway segments are typically much shorter, the pairing of input and outputs 

become less erroneous and the sample size is usually no longer an issue. Furthermore, 

the first step of the two-stage method can be used as a building block so that the second 

step of modeling is flexible to be extended to various corridor configurations. As a plus, 
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different measures for corridor traffic conditions can be derived (see section 3.3.2 for 

discussion) based on such a method.  

3.2. Segment Travel Time Modeling 

A traffic system is a time-varying system that is resulted from time-dependant 

nonlinear interactions of heterogeneous groups of driver-vehicle combinations. 

However, at short time and distance scales, it is reasonable to assume the system 

condition remains constant. Therefore, dividing a freeway corridor into an infinite 

number of infinitesimal segments and taking snapshots of each segment would be the 

most accurate way to reconstruct traffic conditions. Such reconstructions of traffic 

conditions are crucial in boosting the performance of travel time predictions. 

Unfortunately, this method is eventually bounded by the practical constraints, such as 

data collection and processing costs. The method of partitioning a freeway corridor is 

not within the scope of this study and has been provided with some insights by Wei and 

Lee (14). In this study, the smallest length of segment from which we can build our model 

is constrained by the length of the AVI segments. As such, the link or segment travel 

time being analyzed in the thesis refers to the time needed to travel through a freeway 

section enclosed by the two AVI stations subsequently located in one direction of the 

freeway corridor. With segments being identified, in this first step of the two-stage travel 

time prediction method, we scrutinize various neural network models and associated 

network training algorithms to identify the model(s) that can appropriately recognize a 

variety of traffic states, including the conditions of an incident.  
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3.2.1. Concepts of Neural Network Models 

To build a travel time model for each link along a freeway corridor, the key is to 

reconstruct the spatial-temporal relationships between traffic conditions and segment 

travel time. Five neural network models are identified as the candidates that could suit 

this objective. This list includes the classic back propagation neural network, and other 

networks suitable for predictions in dynamic systems. 

3.2.1.1. Back Propagation Neural Network 

The Back Propagation Neural Network (BPNN) is the most classic neural 

network that consists of one input layer, one output layer, one or more hidden layers and 

connecting weights that correlate these layers. The BPNN is trained with errors that 

propagate from output layer back to input layer and is therefore named (6). The hidden 

layers give the network the power to model complex problems. Additionally, the model 

can be easily formulated mathematically and implemented. However, it provides no 

regards on the relations among temporal attributes (i.e. time series related inputs). Figure 

3 illustrates a typical structure of the BPNN which consists of two hidden layers, one 

input and one output layers.  
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Figure 3: Schematic overview of BPNN. 

3.2.1.2. Time Delayed Neural Network 

The Time Delayed Neural Network model (TDNN) is essentially a BPNN model 

with a time delay component that allows the network to obtain inputs from previous time 

intervals (6). It introduces a dynamic characteristic into the typical BPNN model while 

maintains a low level of model complexity. The white-colored unit in Figure 4 is the 

delay component that stores inputs from the environment at one or multiple time steps 

prior. It then feeds the stored information to the network along with the most current 

inputs. The delay unit acts as a memory function that captures temporal information 

contained in the input signal and such information is embedded in the synaptic weights 

1{ ( )}t p
k lw l −

=  of the delay unit. The output, y(t), of the TDNN in response to the current 

input xt, and a number of p past input values,  x(t-1), x(t-2), … x(t-p), is given by 
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where the output transfer function is normally assumed to be linear and thus omitted; the 

synaptic weights of the output neuron y(t) is defined by the set 1{ }m
k kw =  ,which  connects 

NK hidden neurons; bk and b0 are the biases of the hidden neurons and the output neuron. 

It should be noted that more than one hidden layer is allowed in this type of network 

although only one is shown Figure 4. 

 

Figure 4: Schematic overview of TDNN. 

3.2.1.3. Modular Neural Network 

Instead of connecting multiple layers in series, Figure 5 illustrates the Modular 

Neural Network (MNN) that processes inputs by using several layers connected in 

parallel. With this architecture, data processing is partitioned within the network, and 
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each module (division) learns some specific aspects of the problem presented. This 

theory arises from the concept of “divide-and-conquer” (5), where complex problems are 

difficult to analyze with only one model but may be easier with an ensemble of models. 

 

Figure 5: Schematic overview of MNN. 

3.2.1.4. State Space Neural Network 

Recurrent neural networks are designed to learn sequential or time-varying 

patterns(17), and have been an important focus of research and development in the last 

twenty years. The State Space Neural Network (SSNN) is a special type of recurrent 

neural networks and is claimed to be analogous to traffic simulation models in which 
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traffic states evolve based upon their previous internal states (1, 5, 7). According to 

Haykin, the internal state is defined as a set of quantities that summarizes all the 

information about the past behavior of the system that is needed to uniquely describe its 

future behavior, in addition to the purely external effects arising from the applied inputs 

(6). 

This type of model is a special type of recurrent network. The model feeds the 

output of a hidden layer at the current time step to the input layer as an additional input 

at the next time step. The output of the hidden layer is a rough representation of the 

internal state of the underlying problem. The feedback process has to firstly store the 

information of internal state at the last time step in the context layer, which consists of 

doted connections and white-colored units in Figure 6, then feed the information back to 

the network for learning at current time step. The dynamic behavior of the model in 

Figure 6 may be described by a pair of coupled equations in matrix form: 

 
1 1

( 1) ( ( ) ( ) ( ) ( ) )
JK NN

i c
k k k jk j k

k j

x t f w t x t w t s t b
= =

+ = + +∑ ∑  (3) 

 0
1

( ) ( ( ) ( ) )
KN

o
k k

k

y t f w t x t b
=

= +∑  (4) 

where sj(t) is the parameter value of context unit j that partially defines the internal states 

of the network at time t; NJ is the number of context units; i
kw , c

jkw  and o
kw denotes the 

weight connections of the k-th hidden neuron to the input, context and output layer 

respectively; bk is the bias value for hidden neuron k but that for context unit k is usually 

omitted; The subtle difference between TDNN and SSNN is appreciated by the fact that 
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such a mechanism of SSNN is capable of taking into consideration the dynamic 

evolvement of the network state over time. Another difference is that SSNN may have 

only one hidden layer while TDNN may be designed to contain more.  

 

Figure 6: Schematic overview of SSNN. 

3.2.1.5. Extended State Space Neural Network 

There were observations in the preliminary analyses of this study showing that 

segment travel time modeling is not adequate in extreme unstable traffic conditions (i.e. 

incident conditions) when using common types of neural network models. Therefore, the 

...
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Extended State Space Neural Network (ExtSSNN) is proposed in this study in an attempt 

to realize the impact of an incident. The ExtSSNN assumes that the additional travel 

time or delay caused by incidents is a function of various incident properties. Hence, the 

incident impact should be learned partially and separately, with sufficient information of 

the particular incident. In light of the concept of “divide-and-conquer,” the ExtSSNN is a 

SSNN with one additional neural network module that is specialized to capture the 

additional incident impacts on traffic states while SSNN itself is specialized to learn the 

evolution of stable traffic states. Based on equation (3) and (4), the network can be 

modified to incorporate the impacts of incidents by the following equations: 
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where notations are similar to those defined in equation (3) and (4) except superscripts 

being added to distinguish module 1 from module 2 as shown in Figure 7; in particular, 

inputs to module 2, given by the set 22
1{ } KN

k kx = , are the vector of incident inputs determined 

by the characteristics of the incidents in question; note that there are no recurrent 

connection in this case and context layer for module 2 is omitted in equation (6) as 

comparing to (5). This type of neural network assumes the incident input would provide 
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significant impacts on the outcome of the prediction. However, it is the intention of this 

study to investigate the significance of this module. 

 

Figure 7: Schematic overview of ExtSSNN. 

3.2.2. Classification of Neural Network Structure 

Depending on the criteria, neural networks can be categorized into many 

different classes. This study concerns whether a delay or self-feedback mechanism exists 

in the structure of a neural network. If a neural network model contains either delay or 

feedback units in its structure, it is classified as a dynamic neural network; if a neural 

network includes no such units, it is deemed as a static network. The prototypical use of 

a static neural network is in structural pattern recognition whereas a dynamic network 
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recognizes the processing of temporal patterns that evolve over time (6). In general, 

dynamic neural networks are more powerful than static ones in that they have memory 

about the history of either the input data or the network connection weights and biases 

(18). Such a memory capability enables the realization of time-variant patterns such as 

that of a typical traffic system. Nonetheless, the primary disadvantage of the dynamic 

network structure manifests in the model complexity and the training inefficiency. 

Therefore, simpler structures of static networks can be adopted when the underlying 

problems, such as free-flow conditions, to be modeled are relatively straightforward.  

In the five neural network models proposed in the previous section, FFBP and 

MNN models are static network while TDNN, SSNN and ExtSSNN are dynamic 

networks. 

3.2.3. Training of the Neural Network 

Neural network training can be classified as batch or incremental. In a batch 

training scenario, all the input and output sample pairs are presented to the network at 

the same time and the errors between targets and network outputs are derived. Gradients 

of these errors with respect to network weights can be subsequently computed to find the 

direction of the minimization of the error function. In an incremental mode, the network 

parameters are adjusted according to the maximum error gradients on the error surface 

when, each time, one sample of the input-output pairs is fed to the network. 

Conceivably, the incremental training mode learns a problem in a more refined yet 

computationally demanding manner. 
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In addition to what mode is to be used in training a neural network, the training 

algorithm is equally crucial in order for the network to learn effectively and efficiently. 

The following part of this section will focus on two training algorithms: the Levenberg 

Marquardt (LM) algorithm and the Bayesian-Regulated Levenberg Marquardt (BRLM) 

algorithm.  

3.2.3.1. Levenberg Marquardt Algorithm 

In neural network training, the back-propagation algorithm has gained its 

reputation by its ability to minimize the errors a network would make when learning 

from desired outputs. Numerical optimization techniques have been attempted to speed 

up the convergence of back-propagation algorithm, and the Levenberg Marquardt 

algorithm showcases its outstanding ability to achieve this objective.  

The LM algorithm is in fact an approximation to Gauss-Newton’s method (19). 

For a detailed formulation of Newton’s method in network training, see (6). For Gauss-

Newton’s method, the network parameter update rule reads  

 1( )T Tw −Δ = J J J e  (8) 

where J is the Jacobian matrix: 
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J  (9) 

and e is the error vector. Marquardt (20) modifies the update rule by introducing a 

hyper-parameter μ that functions as a momentum factor which could be re-parameterized 
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to adjust the learning rate of the network. The Marquardt-modified update rule is as 

follows 

 1( + )T Tw μ −Δ = J J I J e  (10) 

The symbol I denotes an identity matrix with the same dimension as JTJ. With 

this modification, μ dictates how much the Marquardt-adjustment of network updates is 

different from the Newton-adjustment. When the performance index (e.g. sums of 

squared errors) of the training is decreased due to the weight updates, the parameter μ is 

reduced by a factor η; otherwise, multiply μ by η. The Levenberg-Marquardt algorithm 

has been proven to be efficient and quick to converge even for large size networks. For 

relevant implementation issues, see (17, 21, 22).  

However, the algorithm is not recommended for ANNs with delay components in 

that LM algorithm only approximates the performance gradient and has large-step 

update rates (18). To compensate the deficiency, Bayesian-regulated LM algorithm is 

introduced as a more reliable and robust training technique.  

3.2.3.2. Bayesian-Regulated Levenberg Marquardt Algorithm 

As one of the most encountered issues during the process of neural network 

training, generalization plays a vital role in determining the robustness of the trained 

model. Superior generalization ability indicates a better chance that the network 

circumvents the noisiness in the data and learns the true underlying distribution of the 

system.  

An over-complex model tends to over-fit the data and generalizes poorly (23). As 

illustrated in Figure 8, the best-fit a model can achieve becomes better as the model 
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complexity (determined by the number of free parameters) increases. However, the 

generalization performance of the model has an optimal point which does not necessarily 

increase as the model becomes more complex. The tradeoff point between training 

precisions and testing precisions are often hard to identify. The phenomenon is therefore 

termed herein as Learning-Generalization Dilemma (LGD).  

 

Figure 8: Relationship of over-fitting and model complexity. 

To improve the generalization of a neural network model, regularization is one 

method that serves this purpose by controlling the model complexity. As such, we adopt 

the Bayesian framework proposed by Bishop (21). The framework is an automated 

process that determines optimal regularization parameters (i.e. weights and biases) that 

balances the network learning and generalization. The framework employs the Bayesian 

regulated Levenbergh-Marquardt (BRLM) algorithm, which is described in a number of 
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works (18, 23, 24). The BRLM algorithm aims at minimize the cost function regularized 

by the network internal parameters – model error (E) and model weights (W). The cost 

function reads 

 C E Wβ α= ⋅ + ⋅  (11) 

where E and W can take various forms to represent the model error and weight values, 

but Mackay (23) was able to show that the energy form of the two terms can lead to 

easier derivation of α and β without the loss of generality. Hence,  

 2 2

1 1

1 1( ) ( )
2 2

T TN N

t t t
t t

E e u y
= =

= = −∑ ∑  (12) 

and 

 21 ( )
2

iL QN

ij
i j

W w= ∑∑  (13) 

are written as sums of model errors and sums of squared weights respectively, where et 

is the error term between the predicted output yt and target output ut at time instant t; NT 

denotes the number of time instants within the sequence of a training data sample; NL is 

the number of layers (both hidden layers and context layers in SSNN) while Qi is the 

number of elements in the weight vectors of the i-th layer. In equation (11), α and β are 

the hyper-parameters that regulates the balance between minimizing E and W. In 

addition to the common error term, the introduction of the second term (i.e. sums of 

squared weights) roots on the notion that larger weights make the model more sensitive 

and increase the risk of over-fitting the training data (10).  
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MacKay (23) argues that minimizing function C is equivalent to maximizing the 

posterior probability distribution of weight vectors given the observed dataset D (e.g. a 

pair of input-output mapping ==xt ,ut) and some prior probability of a given model 

assumption H. we can apply Bayes’ rule for the posterior probability distribution of 

weights: 

 ( | , , ) ( | , )( | , , , )
( | , , )

P D w H P w HP w D H
P D H

β α
α β

α β
=  (14) 

where P(D|w,β,H) denotes likelihood function of such data to be observed given such 

network parameters and model assumption; P(w|α,H) is the prior probability and 

P(D|α,β,H) is a normalizing constant that represents the experiential evidence for the 

model in study.  

However, neither α nor β  is known a priori but can be adjusted while 

minimizing the cost function (11). Mackay (25) interprets 1/α and 1/β as the estimations 

of the variances of the Gaussian distributions from which weights and output errors are 

drawn. Therefore, the hyper-parameter α regulates how close a model should learn to fit 

the data, and it thus determines the simplest settings of weight w that could fit the data to 

the desirable degree. This process naturally embodies the Occam’s Razor problem, 

which states a preference for simple models (23). Mackay further shows that α and β can 

be estimated using maximum likelihood method as follows: 
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where   
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 1( )trace Aγ ψ α −= − ⋅  (16) 

and A can be expressed as the weighted sum of the Hessians of the output errors and the 

network weights, shown as follows: 
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β α
∂ ∂

= +
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 (17) 

In equation (16), γ denotes the number of good parameter measurements and has 

value between 0 and ψ (the size of weight vectors). Often, γ implies the simplest 

network setting that is still warranted by the data D.  

To incorporate the Bayesian hyper-parameters into LM algorithm, we can modify 

equation (10) as  

 1( +( + ) ) ( + )T Tw wβ μ α α−Δ = J J I J e  (18) 

As network weights being adjusted at each batch of Nk inputs and outputs, the 

Bayesian hyper-parameters and the Marquardt hyper-parameter are simultaneously 

updated according to rules described above.  

Ideally, BRLM has two major advantages over LM training algorithm: (1) no 

division of input data into “test set” and “validation set” is needed for early stopping (for 

early stopping criteria, see (18)), so the usage rate of input data for network learning is 

100%; (2) the number of Model parameter can be reduced based on the needs of the 

problem. However, both algorithms will be tested on various neural network models, and 

comparisons will be made.  
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3.2.4. Prediction Horizon 

As one of the common concerns in a typical prediction problem, prediction 

horizon indicates how far ahead the prediction is to be made. In the context of neural 

network training, the k-step-ahead prediction is done by feeding inputs at current time 

step and outputs at the next k time steps. For example, when making one period ahead 

prediction, the input-output pairs are formatted as ==xt, ut+1. 

Intuitively, the predictive performance would decrease as the number of time 

step ahead for prediction increases, especially under incident conditions. However, the 

practicality of these prediction models depends largely on how much in the future the 

models can “see” with reasonable confidence. With the longer time step ahead to be 

predicted at satisfactory level, the traffic mangers and/or individual travelers may better 

respond to certain situations in a timely manner. In this study, the prediction horizons of 

5-minute and 15-minute, corresponding to 1- and 3-step ahead, are investigated.  

3.3. Corridor Travel Time Modeling 

Segment travel time prediction provides a means to assess useful traveler 

information in a relatively detailed manner but only for rather short distances. Most of 

the AVI segments on the freeway network in Houston are within a three-mile range. To 

forecast travel time in longer distances, such as a freeway corridor or a complete origin-

destination path, a corridor travel time modeling approach needs to be developed. In 

addition, it is acceptable to assume relative stable traffic conditions during a short range 

of freeway segment, as is the assumption in segment travel time modeling, but that  is 
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not the case for a widely stretched freeway corridor. The methodology to be developed 

has to account for the traffic dynamics over time and space.  

3.3.1. Stationary versus Non-Stationary Traffic Conditions 

The temporal and spatial properties of a traffic system bring about the dynamics 

of traffic flows within the system.  Bottleneck situations in traffic flows trigger 

congestions which propagate several miles upstream of the roadway corridor over time. 

Nonetheless, to understand how such temporal-spatial dynamics influence the travel time 

prediction, we can start with a stationary traffic system which assumes that the states of 

traffic flows at specific locations are homogeneous over time. 

Figure 9-(a) illustrates a stable traffic system in a time-space diagram. Consider 

the scenario that two virtual trips (trips for vehicle A and B respectively) are made in 

roughly half an hour apart and both encounter a congested situation close to the end of 

freeway section 2. Since the traffic system remains stable and balanced in demand and 

service, the congestion stays and affects the two trips at the same time instant after they 

enters the section. Due to stationarity, the two vehicles are always half an hour apart 

during their entire trips. In such a scenario, we can take a snapshot of the traffic 

conditions along the whole corridor (e.g. section 1 and section 2 combined) at 7:25 in the 

morning and further assume that vehicle A and B are representatives of the traffic 

streams in respective sections. Then predictions can be made based on the traffic 

conditions (i.e. condition at point M’ for section 1 and condition at point N for section 2) 

at 7:25 and be summed up to generate a snapshot corridor prediction. The prediction is 

not biased and reflects the conditions that will be experienced by vehicle B along the 
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trip, because current condition for vehicle A at 7:25 (at point N) is simply the projection 

of the future condition for vehicle B at 7:50 (at point N’). Based on this argument, the 

corridor travel time prediction may be boiled down to taking a snapshot of the traffic 

states for each freeway segment at only one time instant. 

Dissimilarly, with non-stationary behavior, a traffic system is subject to heavily 

unstable inflows and outflows that changes across segments and over time. Figure 9-(b) 

exemplifies the variant traffic system in a time-space diagram. For vehicle A, the trip is 

relatively pleasant with minor delay caused by light congestion when on segment 2. On 

the other hand for vehicle B, the trip is seriously delayed due to a surge in demand 

during morning peak hours which aggravates the early congestion. As the traffic 

demands continue to rise, the congestion is expected to propagate upstream and affect 

later trips during an even earlier portion of the trip paths. In cases like such, which is 

normal, taking a big picture of the traffic conditions at a specific timeline becomes 

unacceptably inadequate to yield proper representation of the traveler’s experience. 

Consequently, to reproduce traffic conditions a virtual trip might encounter, a dynamic 

prediction methodology for corridor travel time, which can account for the spatial-

temporal characteristic of a traffic system, is warrant. This thesis incorporates a dynamic 

travel time prediction algorithm – vehicle trajectory method – that is able to reconstruct 

realistic travel times. 
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(a) Conceptualized time space diagram of stationary traffic system. 

 

(b) Conceptualized time space diagram of non-stationary traffic system. 

Figure 9: Concept of spatial-temporal relationship. 

3.3.2. Measures for Corridor Traffic Conditions 

In the literature, many performance measures have been developed to assess the 

traffic conditions of a freeway system – some focus on the evaluations of current 
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operation efficiency and/or management effectiveness, whereas others survey travelers’ 

satisfactions and their usage frequency of the system. All these measures come down to 

measuring two primary perspectives of a freeway network: the system perspective and 

the traveler’s perspective.  

It is reasonable for a freeway system manager to gather information about the 

overall conditions of the corridor system while important for an individual traveler to 

recognize the traffic conditions that they will come across. The former needs snapshots 

of the system that provides general estimates while the latter requires more detailed and 

refined estimates of their trips. Accordingly, the following travel time measures are 

developed to fulfill the respective purposes: 

• snapshot corridor travel time  

• experienced corridor traveler time 

The two travel times evaluate the corridor traffic conditions from different 

angles. The snapshot travel time gives an instant portrait of the current states of the 

freeway system, and the values of it reflect the overall conditions averaged across all the 

segments on the corridor. In contrast, the experienced travel time characterizes 

individual trips experience by taking into considerations of respective segment 

experiences at respective time instants. Figure 10 demonstrates the concept of predicting 

the two travel time measures. For a snapshot travel time to be predicted, one single 

prediction made at 7:00 for all consecutive segments is sufficient. Nevertheless, multiple 

predictions at different time horizons are needed to complete the prediction of the 

experienced corridor travel time.  
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Figure 10: Concepts of snapshot and experienced travel time 

prediction methods (adapted from (14)). 
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4. EXPERIMENT SETUP 

This section is dedicated to describing the necessary steps for the experiments in 

this study to be reproducible. In the first part, the test bed on which the data are collected 

is presented along with the description of the sources and the characteristics of these 

data; the description of procedures and necessary tools for the data extraction and 

processing then follows; the third part of this section elaborates how specifically the 

neural network models are designed based on the data collected and processed; and the 

final subsection focuses on some implementation issues involved in the process of the 

ANN training and testing.  

4.1. Test Bed and Data Sources 

The study corridor is located on US-290 southwest of Houston urban area and is 

one of the busiest commuting routes that connects the downtown commercial districts 

and the suburb residential areas. The corridor stretches about 20 miles from interstate 

highway 610 to Spring Cypress Road and extends even further beyond the city limits. To 

remain focusing on testing the methodology of travel time prediction, we have collected 

data on the outbound direction (i.e. westbound) of this corridor as shown in Figure 11, 

where the radar detectors and the AVI stations are densely spaced.   
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Figure 11: Study corridor. 

Three categories of data are required for identifying the relationship between 

traffic variables and travel time along a freeway corridor: 1). data in relation to traffic 

operational characteristics such as speed, volume, occupancy and, most importantly, 

travel time; 2). data in relation to incidents, such as incident type, severity and time after 

the onset of an incident; and 3). additional relevant information such as weather and 

holiday information.  
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The first two types of data sources are collected from Houston TranStar 

transportation management center. TranStar TMC operates 24/7 and has been archiving 

AVI travel time and speed data since October 1993, freeway incident data since May 

1996 (26).  

4.1.1. Speed and Volume 

Houston TranStar has installed Wavetronix microwave detection systems at a 

number of locations. At the time of data collection, the Wavetronix SmartSensor uses a 

10.525 GHz frequency modulated continuous wave (FMCW) radar to provide traffic 

detection. The radar sensors are installed aboveground and collect vehicle volume, 

occupancy, spot speed, and classification in up to eight lanes of traffic (26). Every 30 

seconds, the measurements are averaged and archived. Table 2 shows an example of 30-

second Wavetronix radar data. 

Table 2: Example of 30-Second Wavetronix Data 

On the test bed where the study is conducted, a large proportion of commuters 

make home-based trips on US 290 during commuting peak hours. Under incident-free 

ID  Time Stamp  Lane #  Volume  Speed  Occupancy  Small  Medium  Large
2636 11/12/2008 13:18 1 6 48 3 6 0 0
2636 11/12/2008 13:18 2 10 67 10 7 1 2
2636 11/12/2008 13:18 3 7 63 7 5 1 1
2636 11/12/2008 13:18 4 5 73 2 5 0 0
2636 11/12/2008 13:18 5 5 78 3 4 1 0
2636 11/12/2008 13:18 6 11 70 10 7 3 1
2636 11/12/2008 13:18 7 7 72 7 2 4 1
2636 11/12/2008 13:18 8 13 66 13 2 10 1
2636 11/12/2008 13:18 99 71 66 8 45 20 6
2636 11/12/2008 13:18 1 4 65 3 3 1 0
2636 11/12/2008 13:18 2 11 68 9 7 3 1
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conditions, the rush hours are roughly from 2 pm to 6 pm, resulting in heavy congestions 

during the afternoon period where travel speeds drop significantly. Figure 12-(a) and 

Figure 12-(b) show five incident-free weekdays of traffic volume profiles and spot speed 

profiles respectively.  

 
(a) Traffic Volume Profile 

 

 
(b) Spot Speed Profile 

Figure 12: Traffic data profiles under incident free conditions. 
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4.1.2. Travel Time 

In addition to speed and volume data, the TranStar AVI system also collects 

vehicle toll tag IDs and the corresponding time stamps when each time vehicles are 

passing the AVI checkpoints (or AVI stations). An example of raw AVI data is shown in 

Table 3. Note that actual tag IDs are not displayed here for privacy reasons. These data 

are used to determine a travel time for each vehicle traveling on the AVI segment. 

Table 3: Example of TranStar’s Raw AVI Data 

 

As the speed profiles in Figure 12-(b), we can also plot the travel times obtained 

from AVI stations for corresponding days, as in Figure 13. Under general traffic 

conditions, speed profiles appear to follow the travel time profiles to a certain extent 

although the measurements are derived from different data sources. Hence, it can be 

roughly inferred that speed data alone should serve as a better predictor than traffic 

volume data. However, we are incorporating both speed and volume data in the 

prediction of AVI travel time – so called “ground true” travel time.  

Tag ID Antenna ID Checkpoint ID Time Stamp
HCTR00000001 5103 159 11/23/2008 00:00:45
HCTR00000002 8021 216 11/23/2008 00:00:59
HCTR00000003 4111 106 11/23/2008 00:00:59
HCTR00000004 4076 229 11/23/2008 00:03:00
HCTR00000005 8043 219 11/23/2008 00:06:16
HCTR00000006 1200 351 11/23/2008 00:06:31
HCTR00000007 4203 63 11/23/2008 00:07:02

: : : :



 

 

44

 
Figure 13: Travel time profiles under incident-free conditions. 

4.1.3. Incident Data 

Incident detection relies mostly on police dispatch monitoring, MAP calls, 

commercial traffic services, and CCTV camera scanning. TranStar has an incident 

detection algorithm that compares and detects changes in segment speeds versus 

historical speed values. Additionally, operators at TranStar verify incidents using CCTV 

cameras; then they decide on appropriate responses, such as posting messages on the 

Dynamic Message Signs (DMS). Incident-related information is then entered into the 

database through the Regional Incident Management System (RIMS) interface. There 

are four main time points used to record an evolution of an incident: detected, verified, 

moved, and cleared. Of these four important timelines, “Detected” refers to the time an 

operator, including the MAP dispatcher, creates an incident record in the database. This 

time may or may not coincide with the actual detection time. “Cleared” refers to the time 
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the appropriate response units clear the incident. With the detection and clearance times, 

the corresponding incident durations are determined.  

Other recorded incident attributes include incident type, severity, weather 

condition, number of vehicle involved and number of mainlanes blocked, as shown in 

Table 4. Note that Table 4 is reconsolidated from the original format and shows only the 

attributes that are important to this study. 

Table 4: Example of TranStar’s Incident Data 

Table 5 summarizes a total number of 71,964 incidents across a five-year period 

(2004 – 2008). Of these incidents, the “accident” and the “stall” events make up 74% 

and 18.9% respectively. Because any neural network training requires a large amount of 

data input, other types of incidents have too few data to be trainable. Therefore, the 

study will investigate merely the two incident types. However, the two types are not 

assigned with any index to discriminate one from another, and they are treated as if they 

are of one type. Because we assume that the significance of one type over another is 

captured by the recorded severity level, number of lanes blocked and number of vehicles 

ID ROADWAY NAME CROSS STREET 
NAME DIRECTION SEVERITY TYPE WEATHER

# OF 
VEHICLES 
INVOLVED

# OF 
MAINLANES 

BLOCKED

DETECTION 
TIME

CLEARED 
TIME …

683XX IH-610 NORTH LOOP US-59 EASTEX Westbound Major Accident Rain 1 2 1/1/2008 0:47 1/1/2008 1:27 …
683XX IH-610 NORTH LOOP SHEPHERD DR Westbound Major Stall Ice 2 1 1/1/2008 2:40 1/1/2008 3:08 …

683XX SOUTH SAM HOUSTON 
TOLLWAY BLACKHAWK Eastbound Major High 

Water Hail 2 1 1/1/2008 3:11 1/1/2008 5:01 …

683XX IH-10 KATY BARKER CYPRESS 
RD Eastbound Major Lost Load Fog 2 0 1/1/2008 3:14 1/1/2008 4:33 …

683XX IH-610 EAST LOOP SH-225 Southbound Major Fire High Wind 1 2 1/1/2008 4:21 1/1/2008 4:26 …

683XX WEST SAM HOUSTON 
TOLLWAY IH-10 KATY Northbound Minor Hazmat Dust 1 0 1/1/2008 4:34 1/1/2008 4:38 …

683XX IH-45 FM-1764/JOHNNY 
PALMER HIGHWAY Southbound Major Accident Smoke 1 0 1/1/2008 4:48 1/1/2008 5:13 …

683XX SH-288 OREM Northbound Major Sall Other 2 1 1/1/2008 5:23 1/1/2008 6:03 …
: : : : : : : : : : :
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involved, subjective assignments of type index to distinguish the two types are not 

necessary.  

Table 5:  Total Number of Incidents by Year 

Incident Type 2004 2005 2006 2007 2008 Total % of Total 
Accident 9713 9426 10,335 12,123 11,628 53,225 74.0% 

Stall 2625 3444 2768 2270 2472 13,579 18.9% 
Heavy Truck 1293 1560 1590 1534 1393 7,370 10.2% 
Construction 762 2020 1203 452 302 4,739 6.6% 

Debris 428 580 580 471 402 2,461 3.4% 
Vehicle on Fire 286 241 299 275 266 1,367 1.9% 

Other 239 261 268 240 277 1,285 1.8% 
High Water 126 97 309 149 125 806 1.1% 

Bus 150 200 140 78 128 696 1.0% 
Hazmat 71 71 103 90 51 386 0.5% 

Lost Load 38 49 59 54 61 261 0.4% 
Ice 0 0 0 27 33 60 0.1% 

All Types 13,105 13,879 14,396 15,467 15,117 71,964 
  Note: 1. table updated from (26) 
            2. one incident event may be labeled as one or more incident types 

4.2. Data Preprocessing 

The raw radar and AVI data acquired from TranStar TMC are not readily 

available for neural network model development and application. The data reduction and 

fusion is a necessary step to select study period, aggregate data, filter out false data 

entries, interpolate missing data and so forth.  

4.2.1. Selection of Data Aggregation Interval Size 

One of the top concerns while preprocessing raw data is how the data should be 

aggregated to yield unbiased estimates. “Aggregation interval” refers to the time window 

at which the data are summarized (26). Indeed, smaller aggregation resolution tends to 

be more favorable. A number of studies attempt to identify the optimal aggregation level 
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for loop detectors using cross-validated mean square error approach (27), and a number 

of other statistical methods (28, 29). These studies have not pointed to a universal 

consent on what size of the aggregation interval is the optimal, largely because the 

natures of the data analyses are different. Park et al. (30) applied a modified MSE 

approach to a set of travel time prediction results forecasted by a spectral-basis neural 

network model (15). The study was able to show the differences of optimal aggregation 

intervals between travel time forecasting and estimation. The result indicated a best 

choice for travel time prediction would be around the range of 5-10 minute and the 

degradations were observed thereafter. Based on such a conclusion, we chose the smaller 

interval size (i.e. 5 minute) to conduct our experiment for prediction results to have a 

higher resolution.  

4.2.2. Speed and Volume Extraction 

As mentioned in a previous section, Houston’s radar sensor provides a stream of 

30-second observations of volume, speed, occupancy, and vehicle classification for each 

travel lane. This section describes the calculation procedures and routines to derive the 

station-based (i.e. multiple lanes at a location) measures from the raw radar data.  

The current implementation of the speed/volume extraction tool is capable of 

calculating the following measures: total volume, average speed, average occupancy, 

and coefficient of variation in speed (CVS). In the travel time prediction concerned in 

this study, the total volume and the average speed are the only two measures that need 

extractions.  

The total volume per output interval is calculated as: 



 

 

48

 
1 1

l n

t ij
j i

Q q
= =

= ∑ ∑  (19) 

where qij is the 30-second volume count of the j-th input interval at lane j, Qt is the 

aggregated volume count of the t-th output interval, n is the number of input intervals 

within the aggregation time window (i.e. 5 minute), and l is the number of lanes in a 

station.  

The weighted average speed per lane is calculated as:  
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=
∑ ∑

∑ ∑
 (20) 

where vij is the 30-second weighted average speed of the i-th input interval at lane j, and 

tV  denotes the weighted average speed of the t-th output interval. The weighted average 

speed has an advantage that better describes the true fluctuation of vehicles’ speed over 

time, particularly during the light traffic volume condition. 

Based on equations (19) and (20), speeds and volumes can be derived from a 

complete set of the traffic raw data. However, it is observed that invalid or missing data 

entries prevail in the radar dataset collected for the study. For a robust neural network 

model to be developed, proper handling of these data is critical. In case invalid or 

missing volume data are present in an interval, the tool re-estimates the total volume by 

linear extrapolation using the following equation:  

 1
t̂ tp

θ θ= ⋅  (21) 
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where tθ is the measure (e.g., volume) calculated for the t-th output interval, t̂θ is the re-

estimated measure extrapolated from tθ , and p denotes the proportion of valid data.  

Figure 14 shows a procedural routine implemented in this tool. The routine starts 

with configuring the lanes for a station. Next, the data are retrieved and processed for 

every output interval. The algorithm also checks for valid data and performs the 

adjustment if necessary for the interval. Firstly, the validation process checks to see if 

there are sufficient valid data for calculation. If the number of valid records for 

aggregation is more than 50%, the calculation process then continues; otherwise, the 

module will flag the data for that interval as invalid. This validation module currently 

examines volume and speed.  

4.2.3. Travel Time Extraction 

The AVI system consists of a series of tag readers (checkpoints or stations) 

collecting tag identifications and time stamps for each vehicle passing through the 

checkpoints on the Houston freeway system. In order to extract travel times from AVI 

data properly, the following three critical steps are carefully conducted:  

• Data matching – Based on the times that a vehicle passes through the origin 

and the destination of an AVI segment, the corresponding travel time can be 

valued by finding the difference between the two timelines for the vehicle. In 

the algorithm, the vehicle toll tag ID is used as the unique identifier that 

matches subsequent records in the AVI database.  
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Figure 14: Calculation routine for traffic data processing (31).  

• Data aggregation – With the valid individual travel times sampled and 

calculated, the final step of the algorithm is to aggregate (by averaging) the 

travel time according to predetermined time intervals. The determination of 

the aggregation interval, however, should abide to a combination of restraints 

in addition to the factors mentioned in section 4.2.1. The first concern is the 

sample size (i.e. the number of toll tags being used by Houston commuters). 
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As we observed, around 3-5 % of the traffic are equipped with toll tags, 

which is roughly equivalent to 50 to 100 vehicles per five minute period 

during peak hours. We explicitly assume that the number is significant to 

represent prevailing traffic conditions. For non-peak hours, the interval of 

five minute is used to maintain consistency without the loss of 

representativeness since the traffic conditions during these hours are 

generally stable. The second concern is the update frequency that is preferred 

by the training of a neural network. The five minute update rate is acceptable 

and used in a number of studies of travel time prediction using neural 

networks (14, 16). 

• Data validation – The algorithm also addresses the possibility of matching the 

vehicles that potentially give bias estimates of the prevailing traffic condition, 

such as vehicles taking exist and re-entering the freeway or temporarily 

dwelling between the O-D pairs of interest. The below section describes the 

primary method used to validate the travel time data by addressing these 

particular problems. 

In accordance with the critical steps described above, Figure 15 provides an 

overview of the travel time extraction algorithm developed in this study.  
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Figure 15:  Overview of travel time extraction algorithm (31). 

The data validation process involves a method of how to define outliers that shall 

be excluded from the calculation of average travel time. This step is crucial to extract the 

trip travel times that represent the prevalent traffic conditions.  

The algorithm uses the free-flow speed to calculate the free-flow travel time for a 

specified segment. The free-flow travel time establishes the lower threshold for segment 

travel time in the algorithm, which is defined as follows: 

 ( )Segment LengthLower Travel Time Threshold = 1
Free-Flow Speed

p−  (22) 

where p is the adjustment ratio to capture the vehicles traveling faster than the free-flow 

speeds. A p value of 0.2, for instance, implies an additional 20 percent reduction from 

the calculated free-flow travel time. As recommended in (31), 20 percent is generally 

sufficient to capture most vehicles traveling faster than the specified free-flow speeds. 

Similarly, the algorithm uses congested speeds to calculate the travel time under 

congested conditions for the segment. The congested travel time defines the upper 

threshold of the segment travel time, which is calculated by: 
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 ( )Segment LengthUpper Travel Time Threshold = 1
Congested Speed

p+  (23) 

Given the speeds, origin-destination (O-D) pair and degree of flexibility (i.e. 

parameter p), the upper and lower travel time thresholds are used to construct a time 

window by which outliers can be prescreened. However, such a process is too rough to 

identify the trips that were made with a short stop within the segment, a brief detour in a 

gas station or the like. For a more precise result, two more detailed and advanced options 

are developed accordingly – error tolerance method and z-score method (see (31) for 

elaboration). 

By well defining the methodology to extract and prescreen travel time data from 

raw AVI database, we expect to find travel times that truly represent predominant traffic 

states. Nevertheless, it is particularly difficult to obtain enough sample pairs of O-D data 

records in non-peak hours (e.g. midnight till dawn). Therefore, the treatment for little 

sample size (N) situation is developed as: (1) if N = 0, the algorithm will retrieve the 

average travel time from the previous interval for the current interval; (2) if N = 1, the 

algorithm will use that single value as a travel time for that interval; (3) if N > 1, the 

algorithm will calculate the average travel time and perform the validation process for 

that interval. Therefore, the data validation process depicted above can be summarized 

by the flow chart shown in Figure 16. 
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Figure 16: Travel time calculation and validation process (31).  

4.2.4. Incident Data Reformatting 

As Houston incident database record every incident events as one record, the 

original data format is not suitable in dynamic network training. Therefore, the incident 

data are reformatted to match with the input format of speed and volume data. Table 6 

shows a reformatted incident table for incident 68439 occurred on Jan 3rd, 2008. 

Within all the incident information archived, only two pieces of information are 

selected and directly used: the number of mainlanes blocked and number of vehicles 

involved. Other indices are calculated from other available incident information. 
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Table 6:  Example of Incident Inputs Reformatted 

4.3. Comparison Setups for Segment Travel Time Prediction Models 

The segment travel time prediction is the first step of the two-stage process, 

which involves model development and calibrations. Since the corridor travel time 

prediction is based on the prediction of segment travel time, neural network models for 

segment travel time are crucial to the performance of the two-stage prediction process. 

To determine the most suitable model for segment travel time prediction under 

different data inputs, the comparison experiment is setup to compare the performance of 

5 ANN models and 2 baseline models under both incident-affected and incident-free 

condition. Different training algorithms as well as different prediction horizons are 

compared to refine the model to be developed.  

4.3.1. Selected Segment for Model Comparison 

An AVI segment from the study corridor is selected for developing the most 

promising model on which the corridor travel time prediction can be based. The segment 

is enclosed by the AVI station 31 and station 32 extending a total of 2.9 directional 

freeway miles, shown in Figure 17. Five radar detectors locate inside the segment at 

Time Time to Onset 
of Incident

# of Mainlane 
blokage

# of Vehicles 
Involved Severity Distance to Onset 

of Corridor
Percent Distance to 
Onset of Corridor

1/3/2008 6:35 0.0 0 0 0 0.0 0.0%
1/3/2008 6:40 0.0 0 0 0 0.0 0.0%
1/3/2008 6:45 2.8 1 1 5 2.8 22.5%
1/3/2008 6:50 7.8 1 1 5 2.8 22.5%
1/3/2008 6:55 12.8 1 1 5 2.8 22.5%
1/3/2008 7:00 17.8 1 1 5 2.8 22.5%
1/3/2008 7:05 22.8 1 1 5 2.8 22.5%
1/3/2008 7:10 27.8 1 1 5 2.8 22.5%
1/3/2008 7:15 0.0 0 0 0 0.0 0.0%
1/3/2008 7:20 0.0 0 0 0 0.0 0.0%
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roughly equal spacing.  For the reason of spatial-temporal relationship in a time-variant 

traffic system (discussed in section 3.3.1), the traffic conditions of the immediate 

downstream must be accounted for by means of monitoring the downstream speeds and 

volumes altogether. As a result, data streams extracted from two additional radar 

detectors in the 32-33 AVI segment are simultaneously fed to neural network models 

along with the original data inputs. 

Within the study segment, there are 141 incidents of all types occurred in all year 

of 2008, of which 140 are accident and stall types combined.  

Figure 17: Study segment for segment travel time prediction model development. 
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4.3.2. Model Design for Segment Travel Time Prediction  

The five models proposed in the study (see section 3.2.1 for detail descriptions 

on the model concepts and structures) are all used in developing segment travel time 

prediction models for comparison. Since the internal structures and conceptualizations of 

weight connections across all the proposed models (excluding ExtSSNN) are similar to 

SSNN model. On this account, this subsection focuses on the descriptions of model 

development for SSNN and ExtSSNN. In addition, two baseline models are briefly 

discussed in the end, which are used to compare with the predictive power of the ANN 

approaches. 

4.3.2.1. SSNN Model Development 

Given the inputs from a total of five consecutive radar sensors on the current 

AVI segment in the study and two additional sensors on the downstream segment, the 

SSNN model structure can be derived accordingly. Based on the schematic diagram of 

SSNN (i.e. Figure 6), each input node is associated with the one radar detector where 

two input variables (i.e. speed and volume) are obtained. Then the inputs fully connected 

to all M hidden neurons in the hidden layer resulting in a [Mx7] weight matrix. Figure 18 

illustrates a model architecture for SSNN and the associations of its inputs with the 

physical detectors on a freeway corridor. The context layer consists of M delay units 

with the same number as the hidden neurons. The connections between input nodes and 

hidden neurons and those between feedback nodes and hidden neurons are trainable 

connections. 
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A few a prior remarks must be made on the selection of hidden neurons. The 

hidden layer can be assigned as many hidden neurons as possible, but the designer of the 

model shall inevitably confront with the dilemma of learning and generalization (such a 

dilemma is discussed in section 3.2.3.2). As empirically argued in (10), the number of 

hidden neurons should be equal to the number of detectors as input in that each neuron 

can be conceptually mapped to each detector. However, it is observed in the preliminary 

analysis that the conceptual mapping is neither certainly nor evidently appreciated in the 

training process and a larger number of hidden neurons does not necessarily compromise 

the efficiency of training nor degrade the precision of testing. In addition, there is a 

better chance for a SSNN model to learn a complex problem with higher number of 

hidden neurons (18). For those reasons, we choose to use the number of hidden neurons 

the same with the number of physical detectors for the SSNN and the ExtSSNN models 

and no restrictions for other types of ANN models. 
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Figure 18: A model design for fully connected SSNN. 

4.3.2.2. ExtSSNN Model Development 

A traffic system is non-stationary and is especially so during recurrent 

congestions. Such non-stationarity is naturally captured by the dynamic characteristics 

implied in the SSNN model. Yet, the additional impacts by unplanned incident events 

may not be easily accounted for without incident information. The ExtSSNN model 

proposed in this study is developed in a way that incident information can be pieced 
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together with speed and volume inputs to model travel time under the impact of 

incidents. 

Figure 19: A model design for ExtSSNN. 

Figure 19 shows the architecture design as well as detail input descriptions for 

ExtSSNN. On the basis of state-space model, the ExtSSNN has an “add-on” module that 
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is characterized by the various information sourced from the TranStar incident database 

(refer to section 4.2.4 for correct reformatting of incident data to be input in ExtSSNN). 

The second module (add-on module) is also a basic SSNN model with the delay unit 

store the evolution information of the incidents. 

4.3.2.3. Naïve Prediction Model Development 

To be compared against ANN models, a competitive candidate requires certain 

merits, such as simplicities in terms of computational and procedural demands or 

accuracies in terms of prediction results. The first baseline model is a naïve prediction 

model. The model assumes a stable traffic system whose conditions fluctuate little over 

time. As a result, the approach predicts traffic at next time instants by averaging the 

travel times of NV immediate past time instants, which is formulized as 

 1 1
1

1 VN

t t v
vV

TT TT
N+ − +

=

= ∑  (24) 

In this case, we set NV to 3 throughout all evaluated scenarios, meaning the travel 

time data from current and the two previous 5-minute intervals are used to calculate the 

future travel time value. In effect, this method shifts the actual travel time profile to the 

negative infinity by a step size between (0, Nv), and the averaging function smoothes out 

the fluctuation of the profile.  

4.3.2.4. Historical Median Travel Time Estimation Model Development 

The second baseline model takes into account historical data to estimate the 

empirical expectations of the normal traffic conditions reflected by travel times. Either 

the average or the median statistics of historical data at certain time instants can be used 
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to reveal the central tendencies of the travel time at the same instants. It is not surprising 

that the average values of travel time over an unfiltered dataset would be unreliable in 

that the occasional presences of abnormal incident events drive individual travel time 

values substantially deviant from expected normal conditions. Implementing the average 

statistic to estimate normal conditions may demand some time-consuming process to 

filter out the data affected by incidents. Instead, the median statistic addresses the ability 

to alleviate the problems caused by extreme outliers and still provides satisfactory 

estimates on the expectation of normal traffic conditions. The method is proven to be 

efficient and effective to automatically eliminate the effect of the incident affected 

intervals as long as the samples used to calculate the median statistic is large enough 

(26).The following equation formulizes the method: 

 1 2( , ,..., )n
t l t l t l t lTT median TT TT TT+ + + +=  (25) 

where subscript t indicates the current time step and l denotes the number of time steps 

ahead of the prediction (i.e. prediction horizon); superscript n is the number of sample 

days. 

The median-based estimation approach for the travel times on a general weekday 

requires several weekdays selected randomly or from the immediate past from the 

historical travel time database. Then a series of median values over the analysis period 

can be constructed and is a travel time profile under incident-free traffic conditions. In 

this study, a median profile is constructed from Dataset A, and is to be tested against 

Dataset B-I, B-II, and B-III.   
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4.3.3. Training and Testing  

For comparison purpose, the five ANN models are trained with two batch 

training algorithms (i.e. LM and BRLM) and are tested on the other datasets with the 

same characteristics to the training datasets. 

The training data (Dataset A) is a dataset that consists of radar and AVI data, 

measured on the study segment described above (in Figure 17), that totals a number of 

125 series (i.e. number of sample days) corresponding 125 weekdays in 2008 regardless 

of the presence of incidents. Each series is one complete series of 96 time intervals (5 

minutes per interval) spanning from 12:00pm to 20:00pm. For a data-driven approach to 

have a better chance to learn the behavior of the traffic system under both recurrent and 

non-recurrent congestions, the input data should contain significant amount of data. 

Restricted by the availability of the incident data, Dataset A contains 56 sample days 

affected by incidents and 69 sample days free of incidents.  

Note that the preservation of time sequences to be fed into the training network is 

critical to guarantee a stable statistical inference to be drawn from the data. Nevertheless, 

the sequence can be truncated into smaller portions with different sizes. The need for 

truncation often depends on the number of time-step-ahead prediction. For example, we 

truncate one complete time series of a day (288 time sequences) into 287, 286 or 285 

time sequences for the purpose of one, two or three time-step-ahead prediction. From the 

data of the truncated time series, the neural networks are trained in a batch mode to 

approximate the underlying function between traffic inputs and travel times by 
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establishing the mappings between the traffic inputs at current time sequence to the 

travel time at next time sequence (as in the case of one-step-ahead prediction). 

The testing of neural network models is to determine the predictive power of the 

models by means of testing the networks with new inputs that are unseen by the 

networks before. 84 new general weekdays including 23 new incident-free days and 61 

new incident-affected days are assigned to Dataset B-I, Dataset B-II and Dataset B-III 

for testing. Be advised that the order of the time sequence in testing samples has to 

coincide with that in training samples for the reason that neural network learns the 

mapping by partially recognizing the interactions among the sequence – the order 

dictates these interactions. Similarly, the naïve prediction model and historical median 

travel time model are tested on the same datasets.  

Finally, to determine how well each of the neural network models and the two 

baseline models capture the nonlinear relationship among traffic inputs, incident inputs 

and travel time outputs, three error functions are calculated as performance criteria 

during the testing phases: 

• Mean Absolute Error (MAE) 

• Mean Absolute Percentage Error (MAPE) 

• Root Mean Squared Error (RMSE) 

• Normalized Root Mean Squared Error (NRMSE) 

The MAE performance measure examines the cumulative deviations of the 

predicted outputs from the targets, while MAPE translates the deviations into percentage 

forms by comparing with the absolute target values. The MAPE is a measure of accuracy 
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in fitted time series due to the ability to compare the errors of fitted time series that differ 

in level (32) , and is hence a particularly useful indicator in benchmarking the model 

fittings of travel time series. On the other hand, RMSE serves as another important 

measure of predictive power of a neural model in computational neuroscience. Similarly, 

NRMSE also transforms RMSE into percentage (similar as MAPE to MAE) by 

normalizing RMSE with the average of target outputs, where lower values indicate less 

residual variance.  

Simply speaking, all the performance measures are calculated in the following 

way. We firstly calculate the error of prediction to actual value at one time interval, then 

all series of errors for all testing days can be calculated similarly. With the pool of errors 

and the pool of actual values, all the aforementioned measures can be calculated. In the 

following, the performance functions are listed with their formulas: 

 , ,
1 1

1MAE
D TN N

t d t d
d tT D

u y
N N = =
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where , ,max( ) min( )d t d t du uΔ = − ; ut,d and yt,d denote the actual travel time and predicted 

travel time at time instant t on day d; NT and ND are the total number of time instants in 

one sample day and the total number of days to test.  

4.3.4. Input Failures 

In all detectors, input failures (either missing or corrupted) occur. On average, 

dataset A and B-I contain corrupted data of 3.54%, and 4.16%, which implies in about 

three-four time steps (15-20 minutes) of one peak period (8 hours) there is a input failure 

occurred on either of the 6 detectors along the study segment. Such a statistic has 

excluded detector 3890 since its data corruption rate is nearly 70% even after initial data 

correction process.  

Input failures may be tolerated during the training phase as long as the failure 

rates remain low for a single training sample or training sample in general. Yet, ANN 

models are not advised to be either trained or tested when massive data corruption 

occurs, as is the case along the segment on Dec, 17, 2008. The data missing rate on this 

particular date is 33% and the performance of ANN models deteriorate dramatically as 

shown in Figure 20. In cases like such, the HM method should be used as remedial 

measure to alleviate the impact of missing data on travel time prediction.   
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Figure 20: Detector failures causing prediction inability of ANN models. 

To ensure days contain massive detector failures would not be presented to any 

ANN models, we have developed a procedure such that if more than 25% of the time 

that 1.5 of the 6 radar detectors within the study segment (both current and downstream)  

did not retrieve valid data, then the day will be deleted from either training or testing.  

4.4. Setups for Corridor Travel Time Modeling 

In addition to comparing the prediction abilities of various models (i.e. 5 ANN 

models and 2 baseline models) on segment travel time, we integrate the best ANN model 

along with the two aforementioned calculation methods to modeling corridor travel time. 

To implement and compare the concepts of snapshot travel time and experienced travel 
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time and how the snapshot and vehicle trajectory methods can be applied along with an 

artificial neural network, we setup the experiment, as described below in this section, to 

derive both measures of traffic conditions. 

4.4.1. Selected Corridor for Prediction Method Comparison 

The development of neural networks for corridor travel time is made on the east 

portion of the US290 freeway corridor, displayed in Figure 21. The selected portion of 

the corridor, or simply the corridor, stretches 12.5 miles from AVI station 29 to 34. The 

corridor is composed of 5 consecutive AVI segments with lengths varying from 1.1 

miles to 4 miles. A total of 20 radar detectors situate along the corridor. In order to 

address the spatial dynamics of congestions in the model development, we further 

consider the three detectors (i.e. detector ID 3980, 3876 and 3989) downstream.  

4.4.2. Two Stage Forecasting 

As described in Figure 2, the two-stage forecasting method requires the 

parameter calibration (training) for the selected model to be done in the first place. Then 

in the second step, we can calculate (in fact predict) corridor travel time based upon the 

results from the first step. In many current practices, one of two basic methods is used to 

compute freeway corridor travel times: the “snapshot” method and the vehicle trajectory 

method (33). Therefore, this thesis considers and compares both methods. Note that for 

both calculations to be feasible, we explicitly assume that the traffic conditions stay 

constant during any one time interval.  

 



 

 

69

Figure 21: Study corridor for corridor travel time prediction model development. 

4.4.2.1. Obtaining Predicted Segment Travel Time Table 

For the calculation procedures of corridor travel time to be initiated, tables that 

are filled with predicted values of segment travel times are to be constructed first. Since 

there are five AVI segments along the study corridor, five neural network models with 

similar structure are defined and trained individually. The training dataset for each of 
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these models consists of speed and volume data on the current and the downstream 

segments. We select 20 days of samples to form dataset D. These sample days are drawn 

for training from the pool of incident-free afternoon hours (i.e. 12:00pm – 8:00pm). The 

rest 32 days (dataset C) are used in the testing phase. After each of these five models 

being trained at a one-step ahead (i.e. 5 minutes), predictions for the next immediate 

time step are made using dataset C. Correspondingly, a table filled with predicted 

segment travel times can be constructed. The columns of the table correspond to each 

AVI segments and the rows of the table correspond to all the time steps.  

It is expected with the performance errors for each individual segments, the 

aggregated error of corridor travel time prediction might surge dramatically. It is the 

intention of this study to investigate if the cumulative performance of the collection of 

ANN models for this study corridor is still within a reasonable level. Therefore, we setup 

the experiment to evaluate the differences between predicted snapshot travel times and 

actual snapshot travel times as well as those between predicted experienced travel times 

and actual experienced travel times. 

A brief remark is made here on how many detector inputs ought to be used. Of 

course, more detector data as inputs can be fed to the network training to account for 

traffic dynamics either further downstream or upstream. Nonetheless, as observed in 

preliminary analysis, speed and volume from current and downstream segments are 

already enough for the neural network to be trained to a satisfactory level, and no further 

improvement on performance can be made by adding more detector inputs. In fact, the 
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inclusion of more detector units actually complicates the model structure and thus makes 

trainings even more resource demanding.  

4.4.2.2. Option One: Snapshot Calculation procedure 

The second step is to utilize the table of predicted segment travel times to 

compute the corridor travel time. The first option for the computation task specifically is 

the snapshot calculation method.  

The snapshot method calculates the snapshot corridor travel time. Since the 

snapshot corridor travel times are representations of the average traffic conditions on the 

freeway corridor at a specific time, the calculation of it can be straightforwardly carried 

out by summing the segment travel times predicted at the same moments. Table 7 

illustrates the calculation procedure of snapshot calculation method. As an example at 

time interval 7:00 to 7:05, the snapshot corridor travel time is equal to 2+3+5+6+2 = 18 

minutes. It can be seen that the resulting values rise and fall according closely to the 

conditions across all the five freeway segments.  
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Table 7:  Illustrative Example for Calculating Snapshot Travel Time 

4.4.2.3. Option Two: Vehicle Trajectory Calculation Procedure 

The second option to compute corridor travel time is the vehicle trajectory 

method. The experienced travel times serve as better estimation of the temporal-spatial 

relationships among the heterogeneous groups of traffic flows within a traffic system. 

Therefore, the aggregation of segment travel time should not be conducted at the same 

time instant but should adhere to the vehicle trajectories. Abiding this concept, the 

computation of experienced travel time is the summation of segment travel times 

predicted along the path of the trip at a series of time sequences.  

 

 

Snapshot
Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Corridor 

7:00 - 7:05 2 3 5 6 2 18
7:05 - 7:10 3 3 6 8 3 23
7:10 - 7:15 4 5 7 10 4 30
7:15 - 7:20 6 6 9 13 5 39
7:20 - 7:25 6 7 10 15 6 44
7:25 - 7:30 7 8 11 17 7 50
7:30 - 7:35 9 10 13 20 9 61
7:35 - 7:40 10 11 13 22 9 65
7:40 - 7:45 8 9 10 23 7 57
7:45 - 7:50 8 9 10 20 7 54
7:50 - 7:55 8 9 10 21 8 56
7:55 - 8:00 8 8 8 17 7 48
8:05 - 8:10 7 7 6 14 6 40
8:10 - 8:15 4 5 7 10 4 30
8:15 - 8:20 4 4 6 9 4 27

* values are fabricated for illustration purposes

Segment Travel Time (min)Time Interval
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Table 8:  Illustrative Example for Calculating Experienced Travel Time 

 

Table 8 shows an example calculation routine using the vehicle trajectory 

method. For the same time interval 7:00:00-7:05:00, the 2-minute segment travel time 

reflects the average time for all the vehicles to travel through the first segment. We 

assume a vehicle reach the start of the corridor at the midpoint of the interval (referenced 

as the onset time for calculation for all intervals). Then it takes the vehicle 2 minutes to 

reach the beginning of the second segment at 7:04:30. Since this time still falls within 

the interval 7:00-7:05, the vehicle should still experience the same traffic conditions 

within the interval on segment 2 according to the assumption of constant conditions 

defined earlier. Then 3 more minutes have been added for the vehicle to complete the 

first two segments, and the departure time into the third segment is summed to 7:07:30. 

Experienced
Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Corridor 

7:00 - 7:05 2 3 5 6 2
7:05 - 7:10 3 3 6 8 3
7:10 - 7:15 4 5 7 10 4
7:15 - 7:20 6 6 9 13 5
7:20 - 7:25 6 7 10 15 6
7:25 - 7:30 7 8 11 17 7 27
7:30 - 7:35 9 10 13 20 9
7:35 - 7:40 10 11 13 22 9
7:40 - 7:45 8 9 10 23 7
7:45 - 7:50 8 9 10 20 7 41
7:50 - 7:55 8 9 10 21 8
7:55 - 8:00 8 8 8 17 7
8:05 - 8:10 7 7 6 14 6 48
8:10 - 8:15 4 5 7 10 4
8:15 - 8:20 4 4 6 9 4 53

* values are fabricated for illustration purposes

Segment Travel Time (min)
Time Interval
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Following this trajectory, the virtual vehicle takes 6, 10 and 6 minutes to complete 

segment 3, 4 and 5 sequentially. Adding these segment travel time up with the initial 2.5 

minutes (varies depending on interval length), the vehicle completes the corridor at 

7:29:30 using a total of 27 minutes. The same procedure applies to all other trajectories.  

As already shown in Table 8, time gaps between calculated experienced travel 

time outputs are unavoidable, especially under rising traffic demands. This phenomenon 

in the vehicle trajectory calculation is partially brought about by the discontinuity nature 

of the initiating time of the procedure. The other unavoidable situation is overlapping of 

end time windows of multiple vehicle trajectories starting from the same time slot, as 

commonly observed during the downtrend of traffic congestions. To solve these two 

moderately encountered cases, a deterministic linear interpolation technique is applied. 

To simply put, the missing cells are filled by interpolating the most recent available 

values before and after. The linearization is a simple yet reasonable algorithm to impute 

missing outputs. Such a technique approximates the dynamics of the changing traffic 

conditions within a limited time span. For omitted values, the following rule is applied: 

 
( )

p q
i p

ETT ETT
ETT ETT

p q
−

= +
−

 (30) 

where ETTi labels experienced travel time value at time step i while p and q designate 

the previous and the next time step with valid output values respectively.  

In contrast to missing outputs, overlapping outputs are also possible. For multiple 

outputs ( 1
iETT , 2

iETT , … k
iETT ), the below equation is used:  

 1 k
i i

k

ETT ETT
k

= ∑  (31) 
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In general, for only about 5% of the time, either an omission or a dual entry is 

encountered in the case of this study. As one might expect, the longer the length of the 

corridor is, the more omissions could occur.  

4.4.3. Direct Forecasting 

The two-stage method above involves the prediction of segment travel times. 

This approach will be compared with a direct forecasting approach. The direct 

forecasting method predicts the corridor travel time without the additions of segment 

travel times. This alternative method follows the procedures below. 

To obtain valid corridor travel time using AVI data source, we apply the travel 

time extraction process on the pair of AVI stations that are the start and the end stations 

of the corridor. For the corridor travel times are directly extracted from one pair of AVI 

station, we herein term them extracted corridor travel times to distinguish from the 

calculated corridor travel times as in the two-stage forecasting method. In the test 

corridor in this experiment, AVI station 29 is the start of the corridor and station 34 

marks the end. So the corridor travel times extracted by pairing AVI station 29 and 34 

are the travel times of all the vehicles that actually completed the entire corridor. This 

process has led to much fewer samples. It is observed that only there are as few as 3-4 

samples even during a 5-minute peak period whereas this number can rise as high as 60-

70 for the samples captured in a segment.  

Once the corridor travel times are extracted, a neural network model is then 

defined and trained on dataset C to learn the mappings between traffic conditions 

(characterized by speed and volume) and corridor travel time. After training, the neural 
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network model is tested against dataset D. In each day, predictions on corridor travel 

times for 5 minute ahead are made by using the already trained ANN model and the 

most current traffic data. No further calculation procedures are needed for direct 

forecasting. 
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5. RESULT COMPARISONS AND DISCUSSIONS 

This section presents the results and observations of the ANN model predictions 

on travel time. Based on proper setups of the experiment for segment travel time 

prediction, we can compare, in the first part, the prediction models in three aspects: (1) 

training algorithms, (2) prediction horizons, and (3) incident impacts. In the second part, 

two corridor prediction methods and three measures of corridor conditions are compared 

and their implications as well as potential applications are discussed. 

5.1. Modeling Segment Travel Time 

Table 9 shows the average performance of the five ANN models proposed in the 

study along with a number of accepted MAPEs in other studies of short term travel time 

prediction. In these literatures, the performances achieved by different research vary. As 

a rule of thumb, a measure (MAPE) in the range of 5-10% is generally considered 

“good.” Therefore, all the five neural network models are trained to learn the function of 

the traffic system under study within a satisfactory range. Of course, corrupted data were 

left out from the analysis in most studies while this study incorporates an automated data 

interpolation technique, correcting a small portion of missing or corrupted data. When 

massive data corruption occurs, the performance of network models in this study may 

degrade significantly. It is expected the errors could be brought down to a lower level if 

invalid data are deleted either automatically or manually. However, it is the intention of 

this research to train the models with the ability of handling partial data corruption.  
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Table 9:  Comparison of ANN Model Performance in Respective Studies 

Research Model MAPE 
(%) Data Size 

This Study 

BPNN 7.3 

208 peak periods 
including incident 

situations 

TDNN 7.1 
MNN 7.4 
SSNN 6.7 

ExtSSNN 6.5 
Naive Prediction 10 
Historical Median 17.5 

Park and Rilett (16) 
Kalman filter 6.2 

231 days including 
non-peaks Spectral Basis FNN 7.2 

Modular FFNN 8.1 
Wei and Lee (14) FFNN <20 9 weekdays 

Wu (34) Support-Vector Regression 3.9-4.4 5 weeks 
Note: FFNN = Feed-Forward Neural Network 

 

5.1.1. Training Algorithm Comparison 

The first task is to train the proposed models using Levenberg Marquardt training 

algorithms with and without Bayesian regulated hyper-parameters and to evaluate their 

respective responses. All the ANN models are considered in the testing. In order to 

compare the two algorithms for the networks, we conduct a student t-test to determine if 

one algorithm yields significant different prediction performance over another. For this 

reason, in addition to model designs, we prepare the testing as follows.  

First, the chances for each training algorithm to learn a problem are equalized. In 

neural network training, early stopping is one of the countermeasure to avoid over-fitting 

and thus to achieve better generalization (6). As briefly mentioned earlier, in the case of 

using LM as training algorithm, a validation set is usually employed to signify for early 
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stopping; while using BRLM, no validation sets are required. To avoid biases caused by 

the early stop criteria, we take out the validation set from LM training, and set the 

maximum training epochs 50 as the universal early stopping rule in this comparison. As 

a result, both algorithms have equal numbers of chances to calibrate both models.  

Then, we have to randomize the initial model parameters (i.e. weights and biases) 

of all models five times before training with both algorithms. Hence, a total of 10 

replicas (5 for one algorithm) are trained for each model. It should be noted that the 

randomization of the initial network parameters is important in that the dependence of 

model performance on its initial state can be addressed.  

With the above conditions, we test the average performances of both ANN 

models that are achieved by both algorithms. Table 10 shows the two-sided t-test on LM 

and BRLM algorithms using test dataset B-I, B-II and B-III. The measure of model 

performance used is MAPE.  

In general, the networks trained by BRLM algorithm achieve better 

generalization abilities because the average values of MAPEs obtained by using BRLM 

across all scenarios are lower than those achieved by the LM method. However, P-values 

distinguish the differences made by the two algorithms. For the two static networks, 

there are 5 out of 6 scenarios that the t-test cannot be concluded with any significant 

difference between the models trained by the two algorithms. On the other hand, P-

values derived from t-test on dynamic ANN models have shown that networks are 

trained with significantly better performances by BRLM algorithm than those by LM 

algorithm. The conclusion is made at a 90% confidence level. In fact, the Levenberg-
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Marquardt algorithm is a large-step-sized algorithm, the refined approximation of 

performance gradient is hence very difficult (18).   

Table 10:  T-Test in Comparing Training Algorithms Based on MAPE 

 

Note that the stopping criterion unified here is meant to equalize the number of 

times for each algorithm to adjust model synaptic weights. Yet, the criterion may not be 

the most suitable ones for the algorithm to achieve optimal performance. Since the scope 

of this thesis is to identify a more promising training algorithm rather than to investigate 

the most suitable stopping criteria, we may already have enough evidence to conclude 

that BRLM significantly improves the prediction performances of dynamic neural 

networks, and is likely to improve the performance of static networks. Therefore, other 

comparisons below will base on the superior performance achieved by BRLM.  

As an additional benefit, the Bayesian regularized training provides an indicator 

(i.e. number of effective parameters) of whether an ANN model has been over-designed 

for a problem. However, the BRLM algorithm consumes generally longer computer 

times to learn the problem. Table 11 summarizes the training time and the number of 

effective parameters achieved by each algorithm. For all models except MNN, BRLM 

LM BRLM P-Value LM BRLM P-Value LM BRLM P-Value
BPNN 7.6% 7.0% 0.146 7.8% 7.1% 0.172 7.5% 6.9% 0.151
MNN 7.3% 7.1% 0.183 7.7% 7.2% 0.019 7.1% 7.0% 0.536
TDNN 7.4% 6.8% 0.042 7.9% 7.2% 0.044 7.2% 6.6% 0.067
SSNN 7.4% 6.8% 0.022 7.9% 7.1% 0.038 7.2% 6.7% 0.027

ExtSSNN 7.8% 6.6% 0.009 8.3% 7.2% 0.007 7.6% 6.4% 0.013
Note:  1. Percentage values are average MAPEs from 5 replicas.

           2. P-values are calculated from two-sided T-test, assuming unequal variance.

Network 
Class

Static

Dynamic

Test Dataset B-I Test Dataset B-II Test Dataset B-IIINet
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costs on average 126% more training time than LM algorithm. Since MNN has the 

lowest model complexity (i.e. 161 model parameters in design) and the model has been 

further divided into several sub-models, it is not surprising that LM algorithm has not 

gained any advantages in reducing the training time. After BRLM training, the indicator 

– number of effective parameters – has shown averagely 87% of the parameters have 

been utilized effectively to learn the underlying problem. The number indicates the 

models have been designed properly. Of course, too few parameters being used 

effectively means the model is too complex, and should be redesigned with fewer 

number of model parameters. On the contrary, all the parameters being used by the 

model learning may point to the possibility of over-simplicity of model design.  

Table 11:  Comparison of Training Algorithms 

The number of effective parameters will finally converge as the errors converge. 

This process echoes the Learning-Generalization Dilemma. Figure 22 illustrates the 

adjustment process of the effective weight parameters by using Bayesian regularized 

algorithm. However, it should also be noted that the number of effective parameters in a 

network has no direct associations with the performance superiority, but it is instead a 

Net # of Design 
Parameters

Training 
Time (min)

# of 
Effective 

Parameters

Training 
Time (min)

Minium # of 
Parameters 
Attempted

# of Effective 
Parameters

BPNN 251 0.7 251 1.7 87 210
MNN 161 1.1 161 0.9 42 126
TDNN 491 1.5 491 3.8 51 420
SSNN 313 86.8 313 171.3 132 303

ExtSSNN 383 139.9 383 294.2 63 345

LM BRLMSpecifications
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reference to how many effective parameters might be required in model design to ensure 

training convergence(18).  

 

Figure 22: Effective network parameters during the training period by 

Bayesian Regulated Levenberg-Marquadt algorithm. 

A brief note on training time should be brought to readers’ attention. Table 11 

shows that the computation time has increased dramatically in both algorithms while 

training the neural network with recurrent structures, such as SSNN and ExtSSNN. It is 

majorly due to the ongoing adjustment of Bayesian hyper-parameters in a recurrent 

manner. And the time is expected to be elongated as we increase the number of training 

samples. 
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5.1.2. Prediction Ability at Different Temporal Horizons 

The second task is to determine if the artificial neural network methodology can 

still be implemented in a satisfactory manner at a further horizon (i.e. 15 minute in the 

future) and to find out by what margin the horizon factor degrades the performance of 

the model prediction. As argued already, the predictability of a model for travel time is a 

crucial indicator of the model’s practicability. Therefore, it is important to investigate 

the prediction ability at longer horizons as well. 

In this task, despite the computational intensity of BRLM algorithm, we adopt 

the procedure to achieve better model performance for dynamic networks as well as 

static networks to compare the prediction ability at different time horizons. The 

following Table 12 summarizes the results of MAE, MAPE, RMSE, and NRMSE of the 

5 ANN models and the 2 baseline models for this purpose. Note that, all ANN models 

have been trained with 5 different initial values to minimize the dependence of neural 

network training on initial values. Values tabulated in the table are averages of the five 

outcomes of each model except the two base models, since there are no training 

mechanisms for the two baseline models to speak of.  

According to the overall observations attained by this experiment, the increase in 

prediction horizon results in 67-76% of additional errors averaged across all models 

excluding historical median model (i.e. HM). It is not surprising that the historical 

median method is not affected by the prediction horizon, certainly since the method 

estimates travel times based on the historical data rather than predicts travel times based 

on current data inputs. This also implies that HM may show better performance as the 
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prediction horizon becomes too long for other models to make acceptable prediction 

accuracy. 

Table 12:  Model Performance at Different Prediction Horizons 

 
 

Figure 23 and Figure 24 are the plots of the actual travel time profiles and the 

predicted travel time profiles by various ANN models at both 5 minute and 15 minute 

horizons. Both days are free of incidents and free of data corruptions along the study 

segment during the study period. However, differences are as follows. With the smaller 

horizon, the ANN models track the changes of traffic conditions reasonably well. 

However, the fittings become more ragged and sometimes fluctuate to opposite 

directions of the change of travel time values, indicating a less stable behavior of ANN 

Net
Mean 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 23.68 6.983 0.192 38.48 6.540 0.585
TDNN 22.26 6.789 0.191 36.54 6.204 0.296
MNN 23.37 7.065 0.263 34.52 5.838 0.091
SSNN 22.57 6.807 0.131 34.29 5.837 0.187

ExtSSNN 21.65 6.633 0.180 33.25 5.686 0.278
NP 33.89 10.010 - 51.47 8.710 -
HM 59.39 17.530 - 83.54 14.190 -

Net
Mean 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 42.1 12.607 0.154 63.5 10.890 0.380
TDNN 38.6 12.012 0.278 59.1 10.149 0.375
MNN 42.0 12.683 0.104 60.8 10.428 0.078
SSNN 38.7 11.697 0.146 55.2 9.471 0.239

ExtSSNN 38.3 11.674 0.262 55.8 9.625 0.217
NP 58.7 17.370 - 87.6 14.800 -
HM 59.4 17.530 - 83.5 14.190 -
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models at a longer prediction horizon. Fortunately, SSNN model demonstrates a 

relatively stable behavior in comparison to BPNN, TDNN and MNN models, since it 

does not fluctuate as much as these models between time step 70 to 80 in Figure 24. 

Such a stable behavior can be ascribed to the context layer, which endows the network 

with the ability to learn the evolution of the internal states of the object being learned.  

Figure 23: ANN model performance at 5-minute prediction horizon. 

The naïve prediction method provides predictions based on previous conditions. 

Therefore, it demonstrates abilities of accurate predictions under non-congested 

conditions where the actual travel time profile stays flat. In congested periods, the 

predictions always lag behind the real-time changes of traffic conditions, and the lags 
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expand as the prediction horizon increases. The profile derived historical median method 

remains the same for all the test days, because only one median value is calculated for 

one time interval. 

Figure 24: ANN model performance at 15-minute prediction horizon. 

Visual inspections of model performances for individual days may reveal certain 

details that are not otherwise perceived. However, the distinctions of systematic patterns 

of the predictions to target values on all the test data should also be investigated to 

uncover model differences at macroscopic scales.  Figure 25 and Figure 26 plot the 

forecasted travel time values against actual travel time values. The plots are similar to 

residual plots but are with the horizontal axes tilted by 45 degrees. Similar techniques to 

residual analysis shall apply. But these plots have the advantages of displaying the 
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values of travel times which are significant indication of whether they fall into peak or 

non-peak hours. The test dataset B-I is used to for all the plots.  

Let us first make comparisons among various prediction models. By comparing 

the concentration levels of the prediction-versus-actual distributions shown in the plots 

of Figure 25, artificial neural network models have shown more consistent performance 

than the other two models. The naïve prediction model appear to track the target travel 

times better at lower range of values, meaning the model may perform well during non-

peak hours. And the error of historical mean method is so widely distributed that its 

prediction performance is unacceptable.  

By comparing model performances across prediction horizons, we can see that 

the sample points disperse much wider at the 15-minute case than at 5-minute case. This 

indicates the performances of the models in general are more inconsistent when the 

predictions are made further ahead in the future. Although MAPEs of naïve prediction 

and historical mean methods are close in the Table 12, the plots in Figure 26 show naïve 

prediction is better in terms of performance consistency.  
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Figure 25: Plots for predicted and actual travel times at 5-minute 

horizon. 
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Figure 26: Plots for predicted and actual travel times at 15-minute 

horizon. 
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It needs to be noted that modeling segment travel time is the first step of the two 

stage process to develop a reliable corridor travel time prediction methodology. Instead 

of taking additional time to repeat the process, we therefore focus on only the predictions 

at 5 minutes into the future for both segment and corridor travel time modeling where 

the problem formulations and calculation procedures can be replicated. 

5.1.3. Incident Impact Modeling 

Another primary task of this study is to investigate the incident impacts on 

prediction performance as well as the possibility and the methodology to incorporate this 

piece of information into the neural network modeling process. The measures of 

performance for various models being tested are tabulated in Table 13. The test Dataset 

B-II and B-III are incident affected data and incident free data as described in detail in 

earlier sections.   

Table 13:  Performance of Prediction Models on Dataset B-II and B-III 

 
 

Mean 
MAE 
(sec)

Mean 
MAPE 

(%)

Mean 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Mean 
MAE 
(sec)

Mean 
MAPE 

(%)

Mean 
RMSE 
(sec)

Mean 
NRMSE 

(%)
BPNN 25.6 7.134 42.3 7.139 23.0 6.929 37.1 6.324
TDNN 25.0 7.249 43.7 7.361 21.3 6.624 34.0 5.786
MNN 25.2 7.150 39.6 6.645 22.7 7.035 32.7 5.548
SSNN 24.1 7.130 38.6 6.565 22.0 6.691 32.7 5.575

ExtSSNN 24.1 7.199 39.6 6.785 20.8 6.429 31.0 5.290
NP 37.3 10.810 57.1 9.490 32.6 9.700 49.3 8.410
HM 61.7 17.310 86.7 14.380 58.5 17.620 82.3 14.120

BPNN 50.1 14.215 78.6 13.278 39.2 12.027 58.0 10.029
TDNN 44.9 13.278 71.4 12.121 36.3 11.555 54.7 9.438
MNN 48.8 13.961 74.3 12.542 39.5 12.222 55.9 9.665
SSNN 44.3 13.026 66.9 11.298 36.6 11.217 51.0 8.813

ExtSSNN 45.5 13.513 71.5 12.227 35.7 11.010 50.1 8.687
NP 63.9 18.570 94.2 15.680 56.7 16.920 85.1 14.470
HM 61.7 17.310 86.7 14.380 58.5 17.620 82.3 14.120
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It is clearly shown that all ANN models as well as the NP and HM models are 

affected by the presence of incidents. At 5 minute prediction horizon, the MAPEs and 

the NRMSEs of all the model outputs have been raised by averagely 6% and 17% (6.5% 

and 21% for only ANN models) from test Data B-III to B-II. The increase has been 

enlarged to 13% and 24% (17% and 31% for ANN models) at 15 minute prediction 

horizon. By comparing all error measures across the two test datasets, we may find that 

the increase in errors due to the presence of incident is consistent. This result shows that 

the presence of incidents generally degrades the prediction performances of all these 

models except HM method. And the impacts become more severe when the prediction is 

made more time steps into the future. However the impacts are rather marginal, 

especially for MAPEs, a closer examination is therefore needed. A two-sided student t-

test with unequal variance assumption is conducted, and shown in Table 14, for this 

identifying the significance of incident impacts based on MAPE values.   

Table 14:  T-Test of Incident Impacts on Prediction Performance 

 

At 5 minute prediction cases, incidents have increased the prediction errors for 

all models. For all three dynamic networks, P-values suggest the presence of incident 

Data B-II Data B-III P-Value Data B-II Data B-III P-Value
BPNN 7.1% 6.9% 0.144 14.2% 12.0% 2.94E-04
MNN 7.2% 7.0% 0.532 14.0% 12.2% 2.13E-06
TDNN 7.2% 6.6% 0.026 13.3% 11.6% 1.64E-05
SSNN 7.1% 6.7% 0.026 13.0% 11.2% 8.02E-06

ExtSSNN 7.2% 6.4% 0.001 13.5% 11.0% 5.92E-06
Note: H0: Data B-I = Data B-II;  Ha: Data B-I ≠ Data B-II. Unequal variance is assumed.

Dynamic

Network 
Class

5 minute 15 minute
Net

Static
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significantly affects the model performances. Nevertheless, for static networks, the test 

cannot reject the null hypothesis that the models perform equally under both incident and 

non-incident conditions. This difference in conclusion may be attributed to the 

difference in the existence of delay mechanism. A dynamic neural network have 

incorporated the ability to “remember” either the inputs or the states of the network in 

the past time steps. Thus, they tend to produce a smoother travel time profile. Subjecting 

to incidents however, the actual travel times may be increased dramatically from one 

step to another. Static networks, which have no considerations of temporal dynamics, 

tend to fit the sudden spikes in actual travel time profile better.  

At 15 minute prediction cases, the t-test has confirmed for all the networks the 

significance of the negative impacts of incidents. Based on the results, we don’t 

recommend the predictions be made for incident days at 15 minute prediction horizon 

and onward. But ANN models may be fine tuned to achieve better prediction 

performance for incident-free days at the same horizon.  

As a highlight, the ExtSSNN model was originally developed with an additional 

module that attempts to account for the incident impacts on segment travel times. 

Nevertheless, the network architecture of this extended version of SSNN yields no 

improvements for the incident-affected dataset. According to the performance measures, 

the ExtSSNN, which has incident inputs, performs slightly worse than the SSNN, which 

has no incident inputs, at both 5 minute and 15 minute horizons. As according to visual 

inspections, the inclusion of incident information seems to have random impacts on the 
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predictions. The actual and the predicted travel time profiles by ExtSSNN and SSNN are 

plotted in Figure 27 to facilitate the visual examination. And discussions are as below.  

In most cases, we observe very minor differences of predictions made by the two 

models, similar to Figure 27-(c). Random effects of incident inputs appear in all other 

cases. Four causes might contribute to this result.  First, there are simply too few data 

points for the network to learn well. Of all the incidents during the full course of 2008, 

only 72 events occurred at the study segment within the hours (12-8pm) of a day under 

study. And only 60% of these incident events are used in training while the rest are used 

in testing. Secondly, the speed and the volume of a traffic stream at a specific time t 

intrinsically reflect the conditions of the system already. Hence, the incident impacts 

may be roughly perceived by the detector data used as general inputs. Thirdly, the nature 

of a dynamic training procedure presented in this study requires input data with time-

variant characteristics. However, the incident events are logged as individual records in 

Houston incident database so that incident states are not updated on a continuous basis. 

The incident inputs usually provide constant information with which the network 

learning is not enhanced. Lastly, the quality of incident information obtained from the 

TMC is not guaranteed since the practice of manual recording incident information 

involves high degrees of subjectivities and non-standardization. For example, the 

perceptions of different operators recording the information vary significantly in some 

cases. In sum, although the architecture of ExtSSNN is designed gracefully and the 

incident inputs are interpolated deliberately, the extra network module adding to a base 

SSNN module supplies no consistent enhancements on predicting travel times under an 
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incident condition. And, SSNN model alone yields satisfactory prediction accuracies 

under both incident and incident-free conditions.  

 
(a) Positive impact of incident information on performance. 

 
(b) Negative impact of incident information on performance. 

  
(c) Unobservable impact of incident information on performance. 

Figure 27: Various impacts of incident information on performance. 
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5.1.4. Model Comparisons 

With the above major aspects compared, we can identify a segment travel time 

prediction model that can be applied in corridor travel time prediction. Table 15 

summarizes the means and standard deviations of all the performance measures. For 

each ANN model, 5 replications are trained with different initial values. The trainings 

are performed by BRLM algorithm at 5 minute horizon and the trained replicas are 

tested with incident-free weekdays at 5 minute horizon. All the scenarios conducted in 

this experiment are listed in appendix Table A-1 and Table A-2. 

Table 15:  Performance of Prediction Models on Dataset B-III 

Across all the prediction models, the ExtSSNN and the SSNN are the two 

relatively better performed models in the experiment, jointly according to mean of all 

performance measure. MNN and TDNN appear to be the next promising models in 5 and 

15 minute horizon respectively. Of course, ranking the models by 1 or 2% of margins is 

not very meaningful, especially since other models are observed to outperform SSNN 

Mean 
MAE 
(sec)

Std 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Std 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 23.00 0.778 6.929% 0.24% 37.11 3.795 6.324% 0.65%
TDNN 21.45 0.330 6.692% 0.21% 34.43 0.808 5.864% 0.16%
MNN 22.71 0.535 7.035% 0.26% 32.70 0.456 5.548% 0.09%
SSNN 22.01 0.786 6.691% 0.13% 32.73 1.490 5.575% 0.25%

ExtSSNN 20.76 0.802 6.429% 0.18% 30.96 1.658 5.290% 0.30%
NP 32.62 - 9.700% - 49.34 - 8.410% -
HM 58.51 - 17.620% - 82.34 - 14.120% -

Note:  5 replica for each ANN model, and are trained by BRLM algorithm and tested at 5 minute prediction horizon
           Color scheme is scaled according to cell values in the respective columns

Model

Test - Data B-III
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and ExtSSNN models at some individual days. In fact, a student t-test also cannot 

consistently conclude the significant difference between any two of all the models (see 

Appendix Table A-3 and Table A-4). However, the point here to make is that using 

SSNN model and the models based on SSNN structure can explicitly incorporate the 

temporal and spatial dynamics of a traffic system into the network design. The gain of 

using SSNN type of models is actually more than just a few percent of increase in 

prediction performances. Therefore, we promote to adopt SSNN based neural networks 

to develop travel time prediction models when speeds and volumes are used as inputs. 

5.2. Predicting Corridor Travel Time 

Based on the argument above, the SSNN model is used to accomplish the task of 

computing (in fact predicting) corridor travel time. With exactly the same structures, five 

SSNN models for the five respective segments are trained in batch mode to learn the 

dynamic relationships of traffic input data (i.e. speed and volume) and travel time. A 

total of 20 detectors are considered along the study corridor (i.e. from AVI station 29 to 

34), of which 19 are valid. Again, the training dataset is dataset C. All models are trained 

on dataset C using BRLM training algorithm for a total of 5 times. After completing 

each training, the predictions are made on testing data D at one time step ahead, and the 

measures MAE and MAPE are calculated to estimate the ANN performances of 

predicting the corridor travel times. For comparison, the direct forecasting method is 

also trained on dataset C and tested using dataset D, and the prediction errors are then 

calculated. 
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 First of all, it should be noted that the errors are not calculated against one but 

three respective bases. The reason for comparing on separate grounds is that these 

methods are measuring different perspectives of a traffic system, as discussed in detail in 

previous sections. The aim here is to illustrate the ANN performances in predicting these 

different perspectives. Therefore, the predicted snapshot (calculated by snapshot 

method) and experienced travel time (calculated by vehicle trajectory method) are 

compared with actual snapshot and experienced corridor travel times respectively; 

whereas the predicted corridor travel time (calculated by direct forecasting method) is 

compared with extracted corridor travel time.  

Based either on the predicted values of segment travel times or the directly 

predicted corridor travel times, we then compare these with actual values, yielding 

MAPEs of 15.36%, 15.20% and 33.45%, as tabulated in Table 16.  

Table 16:  ANN Performances of Predicting Corridor Travel Time  

The performance levels of the first two methods merely fall in the acceptable 

range. The reason for this can be ascribed to the fact that fitting errors are generated at 

each of the segment, and the summation process of the two-stage methods inevitably 

accumulates these errors. Despite the accumulation of errors, the first two methods 

Prediction Methods Measures  Mean MAE 
(sec)

 Mean 
MAPE (%)

Std       
MAPE (%)

Two Stage -- Snapshot Snapshot Corridor 
Travel Time 189.2 15.36 2.15

Two Stage -- Vehicle Trajectory Experienced Corridor 
Travel Time 186.0 15.20 2.08

Direct Forecasting Extracted Corridor 
Travel Time 398.9 33.45 7.77
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clearly outperform the direct forecasting method by a large margin. As argued before, 

the neural network training requires correct input-output mappings. For a corridor 

stretching 12.25 miles, any free-flow traffic may take as few as 10 minutes or as long as 

40 minutes to complete the corridor. It implies that the speed and volume inputs need to 

be obtained from a varying time interval to reflect a varying corridor travel time. Since 

this is very difficult to implement, the experiment in this case adopts a fix interval (i.e. 5 

minute). Therefore, by using the direct forecasting technique, the neural networks 

inherently learn the wrong mechanism if the pairings of input-target are not done 

dynamically according to the varying corridor travel time.   

To visualize the SSNN performance in such applications, Figure 28 illustrates the 

fittings of two-stage predictions on actual calculated corridor travel times in a typical 

example day (i.e. Jan 21th, 2008). Overall speaking, the five SSNN models provides 

acceptable accuracy on predicting both measures of calculated corridor travel times, 

even though the additions of segment travel times along the corridor slightly increases 

the errors of predictions at the peak period around time step 70 and thereafter. Based on 

the performance measures and visual observations, we argue that the application of ANN 

approach on both methods of calculating corridor travel time is possible and satisfactory 

in this case.  
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Figure 28: SSNN performance on two-stage forecasting. 

Figure 29 display the plot of actual observed corridor travel time and predicted 

corridor travel time. As a typical example, the graph clearly shows that the direct 

forecasting provides adequate performance to reconstruct the profile of observed 

corridor travel time. In this particular case, the prediction underestimates the actual 

corridor travel time around time step 45 but overestimates between 60 and 75. In general 

observation, the behavior of the prediction using direct forecasting method is not stable. 

The predictions deviate from the actual values in most of the days whereas there are also 

some good fits observed in a few other days.  Additionally, we found out that the 

performance of direct forecasting method is relatively susceptible to detector failure. For 

the case in the figure, there are at least three detectors failed during time step 34 through 
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41. We suspect this might be one of the reasons why the prediction values become 

negative during this period.  

Figure 29: SSNN performance on direct forecasting. 

There are some other interesting observations that are also worthwhile 

mentioning. First is the consistent pattern of snapshot travel times in comparison to 

experienced travel time. Close to or during non-peak hours, both measures of travel time 
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start to emerge along with the growth of traffic demands when the freeway system 

becomes congested and volatile. The differences are the largest as the congestion peaks. 

As always the case, the snapshot travel time profiles start to rise and fall earlier than the 

experienced travel time profiles (visually, snapshot is always to the left of the 

10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time Step (5 min/step)

Tr
av

el
 T

im
e 

(s
ec

)

01/21/2008

 

 
Extracted Corridor
Predicted Corridor (Direct Forcasting)



 

 

101

experienced). This is not a surprising case since the experienced travel time can be 

obtained only after the trip has been completed, which implies these values are relatively 

obsolete to the current traffic conditions. As such, we conclude that experienced travel 

time values structurally underestimate the current traffic conditions during the time 

periods when congestions start to build up, while they over-estimate when congestions is 

dissipating.  

Second, the application of neural networks to predict corridor travel time is not a 

trivial excise if not performed properly. To adequately train a neural network in either 

batch or incremental manner requires extensive computational resources as well as 

correct input-output mappings. While undertake direct prediction method using sources 

data like AVI (segment based travel time), we need to extract new corridor travel times 

measured by trips completed the new origin-destination (OD) pair. For each new OD 

pair, complete retraining has to be conducted for the new pair of input and outputs. Both 

data extraction and new model trainings are painstaking efforts that consume a lot of 

computer resources.  

In addition, a practical note should also be made. For evaluation purposes, the 

experienced travel time may provide an alternative to quantify the traveler experiences 

in the past. However, with the predictive ability of the SSNN model, the experienced 

corridor travel time can be projected back to present time after being accurately 

predicted. The projection procedure is explained in arrow flows in Table 17. Using the 

projection made at each time step, the travelers can expect the future conditions instead 

of those in the immediate past, so they can plan the trip properly. For the purpose of this, 
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this piece of information ought to be disseminated at the starting point of the corridor 

and meet the individual travelers’ needs of “knowing” the future of the freeway system.  

Table 17:  Present Projection of Experienced Travel Time 

 

Time AVI 29 to 30 AVI 30 to 31 AVI 31 to 32 AVI 32 to 33 AVI 33 to 34 Snapshot Experience Projected 
Experience

: : : : : : : : :
16:30:00 103 380 401 426 910 2220 1889 2441
16:35:00 122 396 423 430 975 2346 2031 2487
16:40:00 107 381 441 434 1034 2397 2174 2428
16:45:00 111 386 471 433 1072 2473 2280 2409
16:50:00 93 427 508 421 1101 2550 2305 2410
16:55:00 95 493 545 354 1107 2593 2352 2426
17:00:00 124 609 590 279 1116 2719 2398 2672
17:05:00 127 681 650 241 1124 2823 2419 2845
17:10:00 121 723 732 162 1105 2843 2441 2931
17:15:00 127 739 794 114 1086 2860 2487 2914
17:20:00 132 744 824 102 1085 2887 2428 2804
17:25:00 143 780 797 101 1104 2925 2409 2567

: : : : : : : : :

Predicted Segment Travel Time (sec) Predicted Corridor Travel Time (sec)
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6. CONCLUSIONS 

6.1. Summary 

In this study, a two-stage prediction methodology is developed to predict corridor 

travel time from spot speed and traffic volume data. In the first stage, data from three 

sources – AVI, radar and incident management database – are considered and five 

artificial neural network models are developed accordingly. Also the ANN models are 

compared against two baseline models. A total of 208 days of peak-hour traffic data are 

experimented on a stretch along the US-290 northwest corridor, which is bounded by 

AVI station 29 and 34.  

In the first stage, the dynamic neural networks (i.e. TDNN, SSNN and ExtSSNN) 

are developed to incorporate the temporal-spatial traffic dynamics explicitly, and the 

static networks (i.e. BPNN and MNN) are designed to incorporate the spatial traffic 

dynamics only. Different aspects in the model development process are examined. 

Firstly, the impact of incidents on segment travel times and the usefulness of incident 

information in realizing these impacts are researched. Additionally, the differences 

between LM and BRLM training algorithms and the impacts of two prediction horizons 

(i.e. 5 minute and 15 minute) on the performances of all the ANN models proposed are 

studied. Certain implementation issues are discussed.   

In the second stage, we investigated two measures of corridor traffic conditions 

(i.e. snapshot travel time and experienced travel time) and corresponding corridor travel 

time calculation methods (i.e. snapshot method and vehicle trajectory method). Then we 

developed the prediction procedure based on the SSNN model to compute the two 
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measures. Comparisons and discussions on their respective implications as well as 

potential applications are made.  

6.2. Findings 

The empirical studies in this thesis research have shown satisfactory prediction 

performance of all five neural network models. These ANN models significantly 

outperform the naïve prediction method and the historical median prediction method. In 

general, both the SSNN and the ExtSSNN models demonstrate slightly better 

performance in term of all error measures at both 5-minute and 15-minute horizons. 

Other findings are listed below: 

• The Bayesian Regulated Levenberg Marquardt algorithm is found to improve 

the prediction abilities significantly for the dynamic networks as comparing 

to the Levenberg-Marquardt algorithm. However, BRLM also consumes 

much more computer times when it is applied to recurrent neural networks, 

such as SSNN and ExtSSNN in this thesis.  

• Although the performance of the State-Space neural network does not 

consistently show significant difference from other networks, its unique 

structure provides insights on how to use such a “black box” to describe the 

temporal-spatial characteristics of a traffic system explicitly. The model is 

promising and deserves more research attention on the topic of short-term 

travel time prediction.  

• By researching on the incident information as input data, we concluded that 

the incident information is redundant since speed and volume data have 
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already captured the inherent variations of traffic dynamics. And the incident 

information recorded in Houston TMC is not updated according to the change 

of incident conditions. Therefore, the information is not useful in dynamic 

training environment.  

• The State-Space neural network model with snapshot travel time calculation 

method can predict prevailing corridor traffic conditions at next time instant 

with satisfactory result; while combining with the vehicle trajectory travel 

time calculation procedure, the SSNN can predict traveler experiences as 

well. 

• By comparing the snapshot travel time and the experienced travel time, we 

found that the experienced travel time obtained at time interval T structurally 

underestimates the instant corridor conditions if the level of congestion is 

rising but overestimate when the congestion start to dissipate. On the other 

hand, the snapshot travel time can hardly represent traveler experiences under 

non-stationary traffic conditions. And both methods can be used jointly to 

enhance the prediction of different perspectives (i.e. the system perspective 

and the traveler’s perspective) of a traffic system. 

Finally, a brief note on practicality of this research should be made. Although the 

two-stage prediction method for corridor travel time performs merely satisfactory, the 

practical gain of this method is large. The method firstly provides a means for the 

corridor travel time modeling to be extended to even longer corridors without trapping in 

the pitfall of insufficient samples. Additionally, with the vehicle trajectory method 



 

 

106

employed, the predicted experience travel time can be disseminated to travelers when 

they enter the corridor as an estimate of the trip experience. This piece of information is 

more favorable because it implicitly predicts all the traffic conditions that would be 

encountered by individual travelers. 

6.3. Future Research 

Notwithstanding the satisfactory performances of the neural network models 

developed in this study, they were all trained offline with historical data. For a method to 

be used by traffic managers on a daily basis, the models should be trained online 

adapting constantly to changes in either the underlying traffic process or the monitoring 

system, which collects the models’ input and output data (10). Due to the ability to 

recognize the temporal pattern (6), the dynamic networks developed in this study can 

potentially achieve such complicated recognition by training at an incremental mode 

(online). Further attempts can be made to realize the incorporation of incremental 

training algorithms into the two-stage prediction method.  

Additionally, as observed in the model training phase, dynamic networks with 

recurrent structures (e.g. SSNN) require a significant amount of computational effort, 

which naturally lowers the practicality of the model. By developing a partially connected 

SSNN model may help ease the intensity of training (or model calibration) process. 

However, the prediction performance might be affected by removing some connections 

in the model, and future research should not ignore this possibility. 

After the analysis, the author becomes aware that a single prediction value may 

not be confident enough for traffic managers or individual drivers to use. Since the 
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artificial neural network are often performed with noise, a reliability measure of the 

prediction may yields better confidence thus better practicality of the two stage 

prediction method. By randomly partitioning the training dataset into several sub-

samples, it is possible to develop an ensemble of models that procedure a set of 

predictions, and thus a prediction interval for a single time step.  
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APPENDIX 

 

Table A-1:  Model Comparison at 5 Minute Horizon 

 

Mean 
MAE 
(sec)

Std 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Std 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 23.68 0.718 6.983% 0.19% 38.48 3.454 6.540% 0.58%
TDNN 22.33 0.484 6.827% 0.22% 36.33 1.059 6.179% 0.17%
MNN 23.37 0.549 7.065% 0.26% 34.52 0.521 5.838% 0.09%
SSNN 22.57 0.574 6.807% 0.13% 34.29 1.093 5.837% 0.19%

ExtSSNN 21.65 0.852 6.633% 0.18% 33.25 1.537 5.686% 0.28%
NP 33.89 - 10.010% - 51.47 - 8.710% -
HM 59.39 - 17.530% - 83.54 - 14.190% -

Mean 
MAE 
(sec)

Std 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Std 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 25.57 0.708 7.134% 0.14% 42.27 2.667 7.139% 0.44%
TDNN 24.77 1.061 7.203% 0.32% 41.60 2.967 7.052% 0.47%
MNN 25.22 0.738 7.150% 0.30% 39.55 1.214 6.645% 0.19%
SSNN 24.13 1.151 7.130% 0.30% 38.59 2.555 6.565% 0.39%

ExtSSNN 24.11 1.445 7.199% 0.28% 39.59 2.204 6.785% 0.42%
NP 37.26 - 10.810% - 57.12 - 9.490% -
HM 61.74 - 17.310% - 86.73 - 14.380% -

Mean 
MAE 
(sec)

Std 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Std 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 23.00 0.778 6.929% 0.24% 37.11 3.795 6.324% 0.65%
TDNN 21.45 0.330 6.692% 0.21% 34.43 0.808 5.864% 0.16%
MNN 22.71 0.535 7.035% 0.26% 32.70 0.456 5.548% 0.09%
SSNN 22.01 0.786 6.691% 0.13% 32.73 1.490 5.575% 0.25%

ExtSSNN 20.76 0.802 6.429% 0.18% 30.96 1.658 5.290% 0.30%
NP 32.62 - 9.700% - 49.34 - 8.410% -
HM 58.51 - 17.620% - 82.34 - 14.120% -

Note:  5 replica for each ANN model, and are trained by BRLM algorithm and tested at 5 minute prediction horizon
           Color scheme is scaled according to cell values in the respective columns

Model

Test - Data B-II

Test - Data B-I

Model

Model

Test - Data B-III
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Table A-2:  Model Comparison at 15 Minute Horizon  

 

 

 

Mean 
MAE 
(sec)

Std 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Std 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 42.08 0.479 12.607% 0.15% 63.49 2.076 10.890% 0.38%
TDNN 38.60 0.891 12.012% 0.28% 59.14 2.309 10.149% 0.37%
MNN 41.97 0.213 12.683% 0.10% 60.80 0.407 10.428% 0.08%
SSNN 38.67 0.923 11.697% 0.15% 55.24 1.490 9.471% 0.24%

ExtSSNN 38.29 0.996 11.674% 0.26% 55.80 1.342 9.625% 0.22%
NP 58.69 - 17.370% - 87.59 - 14.800% -
HM 59.39 - 17.530% - 83.54 - 14.190% -

Mean 
MAE 
(sec)

Std 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Std 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 50.12 1.595 14.215% 0.47% 78.59 4.762 13.278% 0.86%
TDNN 44.86 0.965 13.278% 0.27% 71.35 2.220 12.121% 0.32%
MNN 48.84 0.592 13.961% 0.21% 74.26 0.825 12.542% 0.14%
SSNN 44.33 1.201 13.026% 0.30% 66.93 1.231 11.298% 0.24%

ExtSSNN 45.53 1.610 13.513% 0.40% 71.54 3.385 12.227% 0.61%
NP 63.90 - 18.570% - 94.22 - 15.680% -
HM 61.74 - 17.310% - 86.73 - 14.380% -

Mean 
MAE 
(sec)

Std 
MAE 
(sec)

Mean 
MAPE 

(%)

Std 
MAPE 

(%)

Mean 
RMSE 
(sec)

Std 
RMSE 
(sec)

Mean 
NRMSE 

(%)

Std 
NRMSE 

(%)
BPNN 39.19 0.188 12.027% 0.11% 58.05 1.393 10.029% 0.26%
TDNN 36.34 0.875 11.555% 0.31% 54.74 2.369 9.438% 0.40%
MNN 39.50 0.277 12.222% 0.12% 55.95 0.778 9.665% 0.14%
SSNN 36.63 1.288 11.217% 0.25% 51.02 2.108 8.813% 0.34%

ExtSSNN 35.68 1.108 11.010% 0.31% 50.13 1.322 8.687% 0.21%
NP 56.73 - 16.920% - 85.09 - 14.470% -
HM 58.51 - 17.620% - 82.34 - 14.120% -

Note:  5 replica for each ANN model, and are trained by BRLM algorithm and tested at 15 minute prediction horizon
           Color scheme is scaled according to cell values in the respective columns

Model

Test - Data B-III

Model

Test - Data B-I

Model

Test - Data B-II
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Table A-3:  Model Comparison Using T-Test at 5 Minute Horizon  

 

 

BPNN TDNN MNN SSNN ExtSSNN NP HM
BPNN 0.148 0.589 0.133 0.018 3.9E-06 2.6E-08
TDNN 0.098 0.869 0.220 3.0E-06 2.4E-08
MNN 0.098 0.019 1.5E-05 9.6E-08
SSNN 0.122 6.8E-07 5.4E-09

ExtSSNN 1.9E-06 1.8E-08
NP -
HM

BPNN TDNN MNN SSNN ExtSSNN NP HM
BPNN 0.589 0.915 0.984 0.656 5.4E-07 9.2E-09
TDNN 0.682 0.624 0.832 4.8E-05 7.6E-07
MNN 0.919 0.796 1.1E-05 1.8E-07
SSNN 0.716 1.0E-05 1.8E-07

ExtSSNN 8.6E-06 1.4E-07
NP -
HM

BPNN TDNN MNN SSNN ExtSSNN NP HM
BPNN 0.061 0.516 0.093 0.006 1.2E-05 5.7E-08
TDNN 0.024 0.556 0.148 4.7E-06 2.9E-08
MNN 0.037 0.003 2.0E-05 8.2E-08
SSNN 0.030 7.6E-07 4.4E-09

ExtSSNN 2.0E-06 1.5E-08
NP -
HM

Note: H0: model 1 = model 2;  Ha: model 1≠ model 2.

          light color indicates t-test is significant, whereas dark color indicates insignificant test

5 minute prediction horizon
Test Data B-I

Test Data B-II

Test Data B-III
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Table A-4:  Model Comparison Using T-Test at 15 Minute Horizon  

 

 

 
 
  

BPNN TDNN MNN SSNN ExtSSNN NP HM
BPNN 0.005 0.390 0.000 0.000 2.6E-07 2.3E-07
TDNN 0.004 0.066 0.084 1.7E-06 1.5E-06
MNN 0.000 0.000 5.8E-08 5.1E-08
SSNN 0.870 1.0E-07 9.3E-08

ExtSSNN 1.1E-06 9.5E-07
NP -
HM

BPNN TDNN MNN SSNN ExtSSNN NP HM
BPNN 0.007 0.312 0.002 0.034 3.1E-05 1.2E-04
TDNN 0.002 0.201 0.307 1.6E-06 4.8E-06
MNN 0.001 0.067 1.1E-06 3.8E-06
SSNN 0.062 2.0E-06 5.7E-06

ExtSSNN 8.9E-06 2.8E-05
NP -
HM

BPNN TDNN MNN SSNN ExtSSNN NP HM
BPNN 0.024 0.031 0.001 0.001 6.4E-08 3.7E-08
TDNN 0.006 0.097 0.024 2.7E-06 1.7E-06
MNN 0.000 0.000 1.1E-07 6.6E-08
SSNN 0.276 8.7E-07 5.5E-07

ExtSSNN 1.7E-06 1.1E-06
NP -
HM

Note: H0: model 1 = model 2;  Ha: model 1≠ model 2.

          light color indicates t-test is significant, whereas dark color indicates insignificant test

15 minute prediction horizon
Test Data B-I

Test Data B-II

Test Data B-III
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