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ABSTRACT

IP Routing Table Compression Using TCAM and Distance-One Merge.

(December 2009)

Kalyana Chakravarthy Bollapalli, B. Tech., Indian Institute of Technology, Bombay

Chair of Advisory Committee: Dr. Sunil P. Khatri

In an attempt to slow the exhaustion of the Internet Protocol (IP) address space,

Class-less Inter-Domain Routing (CIDR) was proposed and adopted. However, the

decision to utilize CIDR also increases the size of the routing table, since it allows

an arbitrary partitioning of the routing space. We propose a scheme to reduce the

size of routing table in the CIDR context. Our approach utilizes a well-known and

highly efficient heuristic to perform 2-level logic minimization in order to compress

the routing table. By considering the IP routing table as a set of completely specified

logic functions, we demonstrate that our technique can achieve about 25% reduction

in the size of IP routing tables, while ensuring that our approach can handle routing

table updates in real-time. The resulting routing table can be used with existing

routers without needing any change in architecture. However, by realizing the IP

routing table as proposed in this thesis, the implementation requires less complex

hardware than Ternary CAM (TCAM) which are traditionally used to implement IP

routing tables. The proposed architecture also reduces lookup latency by about 46%,

hardware area by 9% and power consumed by 15% in contrast to a TCAM based

implementation.
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CHAPTER I

INTRODUCTION

IP addresses were originally partitioned using a Class-based scheme. The class

of a network can be identified by specific ranges of IP addresses that belong to the

network. The range of addresses spanned by a network is specified by a prefix length.

Each IP address (IPv4) can be visualized as a 32-bit number and the prefix length

specifies the number of most significant bits that are common to all IP addresses

(prefix) in the network. In the Class-based scheme networks were divided into 3

classes, class A, class B and class C. Class A, B or C networks utilized 8, 16 and 24

bit prefix lengths respectively. As the number of computers increased, available IP

addresses decreased and the need for available IP addresses increased. This led to

a compelling need to utilize IP addresses more efficiently. This motivated the intro-

duction of Class-less Inter-Domain Routing (CIDR) [1, 2] in 1993. In this method,

networks were permitted to have an arbitrary number of IP addresses, allowing a

more flexible IP allocation. In the CIDR approach, the IP addresses allocated to a

network are represented as a list of IP address ranges. Each range of IP addresses

is represented as a prefix and a prefix length. Unlike the Class-based scheme, the

prefix lengths are now arbitrary integer values from 0 to 32. The downside of this

choice was that it results in an increase in the size of IP routing tables, due to the

fine granularity of IP address allocation.

This thesis follows the style of IEEE Transactions on Networking.
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The fine grained allocation of IP addresses and the rapid growth in the world-

wide networking infrastructure in the late 1990’s fueled a super-linear growth in global

routing tables. This super-linear growth continued until late 2001, threatening an

eventual widespread breakdown of connectivity. In an attempt to prevent this from

happening, there was a cooperative effort by internet service providers (ISPs) to keep

the global routing table as small as possible, by using CIDR with route aggregation.

With route aggregation blocks of contiguous IP address ranges of same are merged into

a single range. While this slowed the growth of the routing table to a linear process

for a few years, with the expanded demand for multihoming by end-user networks,

the growth was once again exponential by the middle of 2004. The global routing

table hit 200,000 entries in October 2006 [3] and 300,000 entries in August 2009 [4].

The growth in the global IP routing table size is plotted in Figure I.1. This growth in

routing table requires a commensurate growth in hardware resources, thus rendering

even the more expensive routers obsolete sooner. Thus there is a dire necessity to

reduce the size and the rate of growth of the routing table. In this thesiswe address

both these concerns.

When a packet is to be routed from its originating point to its destination, every

router encountered in the path of the packet performs 2 routing lookups. One to

verify that a path from source to router exists, and the other to identify the next

hop (next router or destination). Routing lookup involves performing a comparison

of the packet’s IP address against every routing table entry (also referred to as a

route). An increase in the size of routing table increases the time taken to identify

the next hop. To reduce the time taken to identify the next hop, many algorithms

have been proposed [5, 6, 7, 8, 9, 10, 11, 12]. Algorithmic approaches implemented in

software suffice for routers that handle low data rates. However, they are overwhelmed

by the large data rates that are in excess of 40 Gbps. This shortcoming can be
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attributed to the multiple memory accesses performed per packet by the algorithmic

approaches. Typical number of accesses to memory range between 4 to 8. Alternately,

a fast approach to perform such a lookup in hardware is by using ASICs. The ASIC

based approach reduces the time by implementing tries. Tries are trees managed

by hardware. All tree operations like adding a node, removing a node and moving

tree nodes are implemented in hardware. The tree itself is stored in memory. ASIC

based approaches have better performance than the software approaches but their

performance is also limited by the multiple memory accesses required [13]. The typical

number of memory accesses are between 4 and 8. With the advent of OC-768 (a

network line capable of 40 Gbps data rate) routers have to be able to handle 40

Gbps data rate per port. By far the fastest way to implement IP routing table

lookup in parallel and in hardware is by using a Ternary Content Addressable Memory

(TCAM) [14, 15]. A TCAM is similar to a cache (also referred to as a CAM [16])

with the additional ability to disregard a subset of bits while performing the lookup.

The prefix length of a route can be translated into a 32-bit mask, where the most

significant prefix length number of bits are set to 1 and rest filled with 0. This

mask is used to mask out those bits of an IP address that are not relevant to the

route. TCAMs employed in routers are designed to store an entire routing table, and

allow the simultaneous comparison for all routing table entries against the destination

address of the packet being routed.

However, TCAMs are not without their drawbacks. They are typically expensive

due to their lower production volumes. Further, they consume significantly more

power than traditional RAMs. As a result, there is a strong motivation to compress IP

routing tables in realistic IP routing applications. Reducing the size of routing tables

would result in smaller TCAMs, thus resulting in fewer comparisons, faster IP lookup

operations, lower power utilization and a lower overall system cost and maintenance
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cost. Lower power consumption translates to reduced cooling requirements as well.

In this thesis, we present an algorithm which converts the routing table into a

tree, and use this tree to compress the routing table. We also present an efficient

algorithm to incrementally update the routing table. We exploit the fact that a route

is either

• completely contained in another route,

• completely contains another route,

• is orthogonal to other routes.

Two routes never partially overlap, which means that no two routes share a portion

of their address ranges. Our algorithm achieves a IP routing table compression of

24.6% on average, and is able to handle real-time route updates. It also requires less

complex TCAM hardware, resulting in a 46% improvement in lookup latency and a

15% reduction in power compared to a traditional TCAM based approach.

The rest of this thesis is organized as follows. In Chapter II, we discuss prelimi-

naries of IP routing and logic function optimization. Chapter III discusses existing lit-

erature and the causes of erroneous result in their approaches. Chapter IV introduces

the new routing table compression algorithm. Chapter V details our experimental

results, while conclusions are drawn in Chapter VI.



6

CHAPTER II

PRELIMINARIES

A. Network

Computer/Subnet

Router

N1 N3

N2N4

R4

R1 R3

R2

Fig. II.1. IP Routing Network Model

Consider the simplified IP routing network shown in Figure II.1. In the figure,

circles indicate routers and squares indicate endpoints (either subnets or individual

nodes). Suppose N1 sends a data packet intended for N2. Rather than burden N1

with a priori knowledge of the path to reach N2, the network computes a route from

N1 to N2 in a localized fashion. N1 sends the data to router R1, allowing R1 to

decide how to route the data to N2. R1 may now forward the data to R2, while

R2 would forward the data to N2. Note that in this figure, each router has several

incident edges, which are referred to as interfaces. So the task of each router is to

forward an incoming packet on interface i to an interface j such that the packet

makes “progress” in reaching its destination. A router achieves this by means of

a routing table, which records the outgoing interface for each incoming packet. Of

course, since it would be prohibitively expensive to record the outgoing interface for

each destination address, routers store these entries in a compact manner. This is
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achieved by storing destination addresses as subnet prefixes (henceforth referred to as

prefixes) along with a corresponding subnet mask (henceforth referred to as a mask).

A mask records the bits of the address that need to be considered while comparing

the address with the corresponding prefix, while performing a lookup.

Table II.1 is a small IP routing table which illustrates this idea. In this table,

every entry contains a subnet prefix, a subnet mask, and the next hop (i.e. the

outgoing interface for packets whose address matches the corresponding routing table

entry).

Table II.1. Routing Table Example

Prefix Mask Next Hop

128.96.34.0 255.255.255.128 3

128.96.34.128 255.255.255.128 4

128.96.35.0 255.255.255.0 2

128.96.34.0 255.255.255.0 5

Each time the router receives a data packet, it extracts its destination IP address

and bitwise-ANDs the destination IP with the mask of each table entry (henceforth

each prefix/mask entry of the table is referred to as a route). This operation masks

out the bit positions that are not relevant to that route. The resulting data is com-

pared with the prefix of the corresponding route. This operation is performed in

parallel, in hardware. A given IP address could match multiple routes, and each of

the matching routes could potentially have a different next hop. To resolve this con-

flict between matching routes, the ”Longest Prefix Match (LPM)“ rule is employed.

The LPM rule sets the highest precedence to the matching route with the longest

prefix length. There can only be a single route r of a given prefix length matching an
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IP address, since any other route s with the same prefix length will be orthogonal to

r. If a match is detected, the LPM rule is invoked to find the route with the highest

precedence, and the data packet is forwarded to that route’s interface (next hop).

For example, assume that a data packet with destination IP address 128.96.35.22

is received by the router from the example in Table II.1. It is ANDed with each route’s

mask. The resulting data from the third route matches its prefix, and therefore the

data is forwarded to interface 2. If a second data packet with destination IP address

128.96.34.73 is received by the router in the example in Table II.1. The IP address

would match both route 1 and route 4. This results in the LPM rule invocation.

Since route 1 (prefix length = 25) has a longer prefix length as compared to route

4 (prefix length = 24), the packet is forwarded to interface 3. The LPM precedence

computation is performed in hardware, either using dedicated hardware [17], or by

arranging the routing table entries in a specific order [18]. The later approach could

at times incur the extra cost of rearranging the entries when updates are received.

Our approach to compress a routing table utilizes Boolean logic minimization

techniques. We now introduce some relevant terminology from Boolean algebra, which

will be used later in the thesis.

B. Boolean Terminology

Definition 1 An Incompletely Specified Boolean Function F (ISF) is a map-

ping

F : Bn → {0, 1, ∗}

where B = {0, 1}.

Definition 2 The Onset of an ISF F is

f = {x|f(x) = 1}
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Definition 3 The Offset of an ISF F is

r(x) = 1 for {x|f(x) = 0}

Definition 4 The Don’t Care Set of an ISF F is

d(x) = 1 for {x|f(x) = ∗}

Note that (f, d, r) form a partition of Bn, which means that f, d, r are pairwise

disjoint and together span the entire input space. In other words, for the same input x

in Bn no 2 functions evaluate to 1, but at the same time at least one of them evaluates

to 1 for every input x. Also, functions with d = φ are referred to as Completely

Specified Functions (CSFs).

Definition 5 A Literal is defined as a variable or its complement

Definition 6 A Cube is defined as a conjunction of literals.

Definition 7 A cube c is an Implicant of F iff

c ⊆ f + d

Definition 8 A cube c1 is contained in a cube c2 iff each literal of c2 is present in

c1

c1 ⊆ c2 ⇔ ∀i lc2i = lc1i

Definition 9 A Sum of Products (SOP) expression is defined as a disjunction of

cubes c1 + c2 + · · ·+ cn.

Definition 10 A cover F of F is a SOP expression such that

f ⊆ F ⊆ f + d

There are many forms of representing a Boolean function. One of the forms that

is relevant to this paper is called Sum of Products (SOP) form. In this form, the
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function is represented as a list of input ranges for which the function evaluates to 1.

The list is referred to as cover and each such range is referred to as a cube. A cube is

represented as a combination of literals.

An input range for which a Boolean function evaluates to 1 can be represented

as a single cube or multiple cubes, each spanning a fraction of the input. Hence, the

cover representation of a function is not canonical. It has been proved that finding

the exact minimal cover of a function is an NP-complete problem. Nevertheless,

there exist heuristic based logic minimization techniques to minimize a cover and are

known to produce near-optimal solution. The cost function for logic minimization is

the number of cubes. Since we desire to minimize the number of routing table entries

after compression, the cost of a routing table is the number of routing table entries.

Thus, transforming a routing table into a cover, where each route is transformed into

a cube, lets us apply logic minimization techniques to compress a routing table.
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CHAPTER III

PREVIOUS WORK

In [19], the author proposed two techniques, called Pruning and Mask Exten-

sion, to achieve routing table compression. During the Pruning phase, the algorithm

removes redundant routes. The author considers a route as redundant if there is a

route with a smaller prefix length (larger range of IP addresses) existing in the rout-

ing table, which would route a packet to the same destination. The Mask Extension

phase of the algorithm takes advantage of the fact that a TCAM can match an entry

with any arbitrary mask. It is not required that the mask is stored in the form of a

contiguous series of 1s followed by contiguous series of 0s, as is traditionally the case

with routing table entries.

In [19], all routing table entries which have a given mask m and next hop n are

grouped into a cover, in which each of the routes are translated into (Boolean) cubes.

In IPv4 networking, prefixes and masks can be visualized as a 32-bit numbers. If each

bit of the 32 bits is assigned a Boolean variable, then any combination of prefix and

mask can be translated into a cube. If a mask bit mi = 1 (ith bit of mask m), then

the literal li of variable xi (ith variable) is chosen to be a copy of the value pi (ith bit of

prefix p) and if mj = 0 then a literal lj of variable xj is not included in the resultant

cube. The conversion of a prefix and a mask into a cube is explained with examples

later in the text. This approach results in M ∗ N covers1 and the total number of

cubes over all these covers is the total number of routes in the routing table. Each

of the M ∗N covers are separately minimized using a heuristic based, two level logic

minimization technique called Espresso [20].

1Here M is the number of distinct masks, and N the number of distinct next hops in
the routing table.
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Let P (n, L) be the cover constructed from the routing table entries with next hop

n and mask length L, and C(n, L) be the cover generated by Espresso after minimizing

P (n, L). The result C(n, L) is then transformed into a compressed routing table. For

example, let us consider the routing table shown in Table III.1. Route 5 is converted

into a cube c5 = x1x2x3x4, while route 1 is converted into a cube c1 = x1x2. Route 5

belongs to P (2, 4) and route 1 belongs to P (2, 2).

Table III.1. Converting a Routing Table into a Cover

Entry Prefix Mask Next Hop

1 1000 1100 2

2 1100 1100 2

3 1010 1110 3

4 1000 1110 4

5 1111 1111 2

6 1100 1110 4

During the pruning phase of the algorithm route 5 is considered redundant since

route 2 also maps route 5’s address range to the same next hop. As a result route 5 is

removed from P (2, 4). During the Mask Extension phase of the algorithm route 1 and

route 2 are grouped into a cover (since they have the same mask length and the same

next hop). Similarly routes 4 and 6 are grouped into a cover. Route 3 individually

forms a cover. The resulting covers are P (2, 2) = x1x2 + x1x2, P (3, 3) = x1x2x3,

P (4, 3) = x1x2 x3 + x1x2x3. After these covers are formed, Espresso is run on them

to compress the covers. The resultant covers are C(2, 2) = x1, C(3, 3) = x1x2x3,

C(4, 3) = x1x3. These minimized covers are then transformed to yield the compressed
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routing table of Table III.2

Table III.2. Compressed Routing Table

Entry Prefix Mask Next Hop

1&2 1000 1000 2

3 1010 1110 3

4&6 1000 1010 4

With this approach, the author of [19] was able to demonstrate a routing table

compression of about 45%. However, both the techniques of the algorithm can result

in a corrupted routing table. The result of the resolving a packet’s destination ad-

dress could be different for the original routing table and the compressed (corrupted)

routing table. This is a due to the Longest Prefix Match rule employed in routers

when resolving routes containing the packet’s IP address, as explained next.

Each time the router receives a data packet, it extracts its destination IP address

and bitwise-ANDs the destination IP with the mask of each table entry. This masks

out the bit positions that are not relevant to the entry. The resulting data is compared

with the prefix of the corresponding table entry. This operation is performed in

parallel, in hardware. A given IP address could match multiple routing table entries

and each of the matching entries could potentially have different next hops. To

resolve this conflict between matching routes, the ”Longest Prefix Match (LPM)“

rule is employed. The LPM rule states that the matching route with the longest

prefix length wins. Since a route is either completely contained in another route,

completely contains another route or is orthogonal to other routes, there can only be

one route of a given prefix length matching an IP address. If a match is detected,



14

the LPM rule is invoked to find the winner and the data packet is forwarded to the

interface (next hop) stored along with the matching table entry.

The causes of the error resulting from the use of the compressed routing table

(obtained by pruning and mask extension techniques) are listed below:

• The pruning phase of the algorithm removes routes with a longer prefix, thereby

losing routes with higher LPM precedence in the routing table.

• The Mask Extension phase of the algorithm could potentially combine routes

to form new routes with a shorter prefix. This could result in both ambiguity

and/or loss of LPM precedence in the routing table.

• Also because of the form of the routes that result from compression, the LPM

rule may not be able to determine a unique winner. This results in ambiguity.

Consider the routing table of Table III.3. During the Pruning phase of the

algorithm route 5 is removed due to route 2. During the Mask Extension phase

routes 1&2, 4&6, 8&9, 10,11,12&13 are combined to form one route each. After the

reverse transformation the resultant compressed routing table is shown in Table III.4

Packets sent to addresses 1111 and 0111 should get routed on interface 2 and

interface 7 respectively because of routes 5 and 13 from the original routing table in

Table III.3. Using the compressed routing table in Table III.4, they would be routed

to interface 5 and interface 8 respectively because of routes 7 and 14 (since route 5

was eliminated due to Pruning, and route 13 lost its LPM precedence due to Mask

Extension). A packet sent to address 1011 should get routed on interface 6 due to

route 9 of the original routing table, but from the compressed routing table there is

an ambiguity between route 3 and route 8&9.

The authors of [21] also follow the approach of removing routes with longer

prefix by constructing a trie like data structure. Their approach is similar to the
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Table III.3. Example Routing Table

Entry Prefix Mask Next Hop

1 1000 1100 2

2 1100 1100 2

3 1010 1110 3

4 1000 1110 4

5 1111 1111 2

6 1100 1110 4

7 1110 1110 5

8 1010 1111 6

9 1011 1111 6

10 0000 1110 7

11 0010 1110 7

12 0100 1110 7

13 0110 1110 7

14 0100 1100 8
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Table III.4. Example Routing Table after Compression

Entry Prefix Mask Next Hop

1&2 1000 1000 2

3 1010 1110 3

4&6 1000 1010 4

7 1110 1110 5

8&9 1010 1110 6

10,11,12&13 0000 1000 7

14 0100 1100 8

pruning step of [19] but more efficient. As seen earlier, this approach could also lead

to a corrupted routing table due to removal of higher precedence routes. Another

approach to IP routing table compression was proposed in [22]. The authors follow

a similar pruning step as [19]. After pruning the resulting routes are converted into

a multi-valued logic function. This multi-valued logic function is compressed using

Espresso-MV [23]. This approach compresses the routing table in a single run of

Espresso-MV as opposed to multiple Espresso runs as required in [19].

Another approach to reduce the size of a routing table was proposed in [24]. This

approach improves on the technique presented in [19]. In [24], authors re-introduce the

routes that were pruned when routes from the minimized routing table are withdrawn.

In the previous example, assume that route 7 were initially not present. Route 5

would be re-introduced into the minimized routing table if route 2 were withdrawn.

This preserves the route precedence. However, route 5 is not re-introduced if route

2 were not withdrawn and route 7 were to be added. Thus ending with the same
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corrupted routing table as described previously. The other improvement suggested

is for reducing the time spent in running Espresso (logic minimization). Routes are

grouped by next-hop and by longest common sub-prefix (LCS) rather than next-hop

and mask length. The LCS for a route can be obtained by shortening the length of the

prefix (reducing the number of care bits in a mask) to the nearest multiple of eight. For

example, the LCS of 128.96.34.128/255.255.255.128 (entry 1 in Table II.1, with mask

length of 25) is 128.96.34.0/255.255.255.0 (mask length of 24). The authors claim

that the logic minimization tool has small runtime and achieves better compression

when covers are formed from routes grouped by next-hop and LCS. However, this

approach does not eliminate the causes of corruption in the minimized routing table

as described previously. Routes with higher precedence could still be compressed to

form routes with lower precedence. To summarize, the above compression approaches

can cause the loss of LPM precedence and introduce ambiguity in the final routing

table.

In the algorithm we present, the original routing table is always maintained in the

form of a tree, and the compressed routing table is computed from the tree. Updates

to the routing table are applied to the tree, and the new tree is used to compute a

compressed routing table. This ensures that the resulting compressed routing table

is free of ambiguity and does not lose its LPM precedence.
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CHAPTER IV

OUR APPROACH

Our approach to IP routing table compression is motivated by the Mask Ex-

tension algorithm of [19]. The specific aspects that are different in our approach

are

• Our algorithm operates on the original routing table which is transformed into

a tree before processing.

• The resultant routing table obtained after applying our algorithm does not need

a hardware unit to perform the LPM arbitration. All the routes that match

are guarantied to have the same next hop. Figure IV.1 illustrates the existing

architecture, where Figure IV.2 illustrates the new architecture.

• Without the need of hardware to perform LPM arbitration, lookup speeds in-

crease, hardware cost would reduce and also power consumption would reduce

as well. These gains are quantified later in this thesis.

• In our approach, finding a single match is sufficient to resolve the next hop,

as opposed to finding all matches in an uncompressed routing table. Hence, in

our scheme, TCAMs implemented using multiple banks could resolve multiple

packets simultaneously , thereby improve average throughput.

• Our algorithm compresses all the IP address ranges with the same next hop to-

gether, irrespective of their prefix length or LCS (as opposed to [19] and [24]).

This allows us to minimize a larger number of routing table entries simultane-

ously, thereby presenting an opportunity for better compression.
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• Our algorithm to compress a routing table has a linear time complexity (as

opposed to algorithm in [19] which utilizes a heuristic with a worst-case expo-

nential time complexity).

• Our experimental results show that our algorithm can sustain the deluge of

updates received during route flapping. The effect of route flapping has not

been studied for any of the previously proposed approaches.

Next HopIP Address

Updates

TCAM LPM

Fig. IV.1. Existing Router Architecture

IP Address

Updates

Next Hop

TCAM

Algorithm
Compression

Fig. IV.2. New Router Architecture
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A. Algorithm

Our algorithm exploits the fact that a route is either i) completely contained in, ii)

completely contains or iii) is orthogonal to other routes. Using this fact we define the

terms parent,ancestor, child and sibling. We define each of the terms in the context

of a route.

A route Rp is the parent of route R if Rp is the route with the longest prefix

length in the routing table that contains all IP addresses contained in R. If Rp is

the parent of R then R is the child of Rp. A route Ra is an ancestor of route R if it

contains all the IP addresses contained in R but is not the parent of R. Rs and Rt

are siblings if they have the same parent. All siblings are orthogonal to each other. A

route Ri is considered bigger (smaller) than route Rj if Ri contains (is contained in)

Rj. A route Ri is said to be before (after) a route Rj if Ri and Rj are orthogonal and

Ri’s starting IP address (when visualized as an integer) is smaller (larger) numerically

than Rj’s starting IP address. The starting address of a route R is the numerically

smallest address in the range of addresses contained in R. For example, if p1 = 1100,

m1 = 1110, p2 = 1000, m2 = 1100 then R1 = 111− and R2 = 10−−. In this case R2

is before R1 since the numerical value 1000 < 1110.

At the initialization step of the algorithm, we convert the original uncompressed

routing table into a tree. Each route in the original routing table is represented by a

node in the tree. Figure IV.3 illustrates an example tree structure for a routing table

with 8 entries. The tree has one node per routing table entry. There is a directed

edge from node Ci to node Cj if Ci is a parent of Cj.

However to improve efficiency , the tree data structure is implemented differently.

Figure IV.4 illustrates the implementation of the tree. Each child has a pointer to

the parent (not shown in the figure). The default route is at the root of the tree and
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C1

C0

C2 C3

C4 C5 C6

C7

Fig. IV.3. Tree Form of a Routing Table

C4 C5 C6

C2C1

C0

C7

C3

Double pointer

Child Pointer

Fig. IV.4. Tree Data Structure Realization
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has no parent or a parent pointer. All children of a route are part of a doubly linked

list (shown as the solid double arrow). The parent has a pointer to the double linked

list of its children (shown as the solid child pointer with a single arrow). This doubly

linked list is sorted in the decreasing order of route’s starting IP address.

The use of the tree structure ensures that the precedence of routes is preserved

(while computing the compressed routing table) in the form of its position in the tree.

A node with no children (leaf node) has the highest precedence on its address space,

followed by it’s parent then by it’s parent’s parent and so on. A node with no parents

is referred to as the root node and such a node is the default route of the routing

table.

Each node is also part of a second doubly linked list maintained per next hop

(shown as the broken line double arrow). Each node in the tree additionally has a

hash table of 32 buckets (not shown in the figure). The IP address range spanned

by a route is equally distributed into these buckets. All child nodes that fall into a

bucket’s subrange are inserted into that bucket. Using the hash table reduces the

average time complexity to search for a route in the tree. Note that a child’s range

could be larger than that of a bucket in which case the child is put in all the buckets

that it spans.

We define the following terms which will be used in the remainder of this section:

• D[i] → cover of the routes with the same next hop ’i’.

• nodeList[i] → doubly linked list of nodes in the tree with next-hop ’i’.

• Node cover E[n] of a node n is the cover of IP addresses that belong to node

n and not to it’s children. This is computed as E = cube of node n - cubes of

children, where ’-’ is the set difference operator.
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• The distance between two cubes is defined as the number of literals that the

cubes differ in.

• Size of a cube is computed from the number of literals in the cube. As the

number of literals increases the size of the cube decreases.

We now present the algorithm to search for a route in the tree. The algorithm

is recursive. It starts at the root node and recursively calls itself until the required

node is found. Algorithm nodeSearch (Fig. IV.5) illustrates the approach. The

algorithm takes two inputs, node n whose sub-tree is to be searched and route r whose

corresponding node nr is to be located in the tree. On line 1 we extract the set of

children childSet from the hash bucket that could potentially contain node nr. This

set is identified by the range of IP addressed spanned by route r. Line 2 loops over

all the children in the childSet. Each child c’s route cr is compared with route r. The

comparison has five possible outcomes:

• Route cr is bigger than r. In which case, node c is an ancestor of node nr. Thus,

on lines 3 and 4 we perform the check and search the sub-tree rooted at node c

for node nr.

• Route cr is smaller than r. This indicates that node nr does not exist in the

tree. If it were to exist, it would have been an ancestor/parent of node c. If

there were a smaller node than node n that contains nr, then it would be the

parent of node c. Thus we identify node n as the parent of node nr. Lines 5

and 6 perform the check and return node n.

• Route cr is same as route r. In which case, node c is returned in lines 7 and 8.

• Route cr is before route r. As mentioned earlier, the list of children are sorted

in the decreasing order of their starting IP address. If route cr is before r then
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Algorithm nodeSearch (n, r)
Input:

n - node whose sub-tree is searched
r - the route to be searched

1 childSet ← hashBucket[hash(r)]
2 foreach child of childSet do
3 if child bigger than r then
4 return nodeSearch(child, r)
5 else if child smaller than rthen
6 return n
7 else if child = rthen
8 return child
9 else if child before rthen

/* since child list is sorted in descending order */
10 return child

/* else child is after the route r */
/* continue with next child */

Fig. IV.5. Pseudo Code to Search the Tree

node nr does not exist in the tree. If it were to exist in the tree then, it would

have been encountered before reaching node c. Thus, node n is identified as

node nr’s parent and node nr is to be placed before node c in the linked list of

children in lines 9 and 10.

• Route cr is after route r. In which case, we continue searching through the child

list.

The worst case time complexity of the search algorithm is of the order of the

number of nodes in the tree. But owing to the nature of the problem, certain proper-

ties of the tree can be used to improve the average time complexity of the algorithm.

The prefix length of a child node has to be more than its parent’s prefix length. From

this fact we can conclude that the height of the tree is bounded (by 32 in case of
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IPv4). Hence, the tree is much wider than it is deeper. Due to this fact, the average

time complexity of the search algorithm is heavily dependent on the size of the hash

table in each node. A hash table with 32 buckets was picked empirically.

B. Longest Prefix Match

In a typical router, routing table updates are less frequent than the routing table

lookups. Since LPM arbitrations are performed in hardware, this incurs extra hard-

ware cost and more power consumption. If routing table entries were preprocessed to

ensure that any two routes with different next hops were orthogonal to each other, i.e.,

to ensure that all routes matching an IP address have the same next hop, the router

can be implemented without an LPM hardware unit. To convert the original routing

table into the above mentioned form, we subtract the IP address ranges spanned by

a route’s children from the route’s IP address range. The result is then converted to

cubes and the cover formed from the cubes is stored in the node. Additionally the

cube representation of the original route is also stored in the node.

In Boolean algebra the result of subtracting a cube c2 from another cube c1 is

computed as c1 \ c2 = c1 · c2. For example let c1 = 1 - - - and c2 = 1001. The value

of c2 is all possible values except c2, thus c2 = 0 - - - + - 1 - - + - - 1 - + - - - 0.

The result of subtracting c2 from c1 is 11 - - + 1 - 1 - + 1 - - 0, which represents all

possible values in c1 but not in c2. A second subtraction could potentially multiply

the size of the cover by the number of literals in the cube. Subtracting multiple cubes

from a single cube could potentially increase the run time complexity and the size of

the cover exponentially. To be able to subtract child routes from a route efficiently,

we propose a linear time algorithm. A route’s IP address range can be visualized as a

series of integers on a number line. Subtracting IP address ranges of its children can
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be performed in linear time, but the resultant ranges after subtraction can not always

be represented as cubes. For example, consider a route and its child in Figure IV.6.

1000↔1111

− 1001

1000 + 1010↔1111

Fig. IV.6. Example Route Subtraction

Subtraction results in a set of IP address ranges, some of which (1000) can be

expressed as a single cube and some (1010↔1111) that can not be expressed as single

cube. To keep the total run time bounded, we developed an algorithm to convert

these ranges to cubes in constant time (Algorithm coverRange).

The algorithm takes the lower bound (low)and upper bound (high) of the range

of IP addresses as inputs. The inputs are converted to 32-bit numbers (IPv4). The

operation on line 3 results in a value in which all the contiguous least significant zeros

of low are 1. The range of IP addresses from low to lhigh can be represented as a

single cube z. From the example in Figure IV.6, low = 1010 and (low-1) = 1001,

so low|(low-1) = lhigh = 1011 and the cube representation of z is 101-. Similarly,

if low = 1100 then (low-1) = 1011, so low|(low-1) = lhigh = 1111 and the cube

representation is 11–. The quantity lhigh+1 is guarantied to have more least signifi-

cant zeros than low, so across iterations the value of low increases and has more least

significant zeros. The boundary case when lhigh = 1111 needs special handling as

shown in lines 6 and 7. When lhigh is larger than high, smaller cubes are constructed

to cover the remaining range of addresses. This ensures that the iteration count is

bounded (by 64 in case of IPv4). Since each step in the loop takes constant time, the

total time complexity is constant. Also, since an IP address is covered only by one
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Algorithm coverRange (low,high)
Input:

low - start of the IP address range
high - end of the IP address range

1 F ← φ

2 while low ≤ high do
3 lhigh ← low|(low-1)
4 if lhigh ≤ high then
5 F ← F ∪ formCube(low,lhigh)
6 if lhigh == INT MAX /* avoid overflow */
7 return F;
8 low ← lhigh + 1
9 else

10 range ← (lhigh⊕low)≫1
11 while low+range > high do
12 range ← range ≫ 1
13 F ← F ∪ formCube(low,low+range)
14 low ← low + range + 1
15 return F

Fig. IV.7. Pseudo Code to Convert a Range of IP Addresses to Cubes
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cube in the result, all the cubes in the result are orthogonal to each other.

By using the Algorithm coverRange, each range of IP addresses can be repre-

sented by a bounded number of cubes and the number of IP address ranges is of the

order of the number of children. So the number of cubes in cover E is of the order

of the number of children. Also, the time taken to compute cover E constitutes the

time taken to subtract a node’s children from it and the time taken to convert the

resulting IP ranges into a cover. Both operations have a time complexity of the order

of the number of children. So the total time complexity is also linear in the number

of children.

C. Efficient Logic Minimization

We now discuss our linear time algorithm to reduce the size of a routing table. Finding

the exact solution for 2-level logic minimization has been proved to be NP-Complete.

Heuristic based logic minimization algorithms result in near optimal solutions but

have exponential runtime in the worst case. The existing algorithms are designed to

work with covers that contain overlapping cubes and can not therefore take advantage

of the nature of problem at hand. The cover of a next hop is orthogonal to the cover of

every other next hop. Also, every cube in the cover of a next hop is orthogonal to other

cubes in the cover. Hence, every cube is orthogonal to every other cube. For such

covers we observed that pairwise merging of cubes results in significant compression

with linear time complexity. The linear time complexity of our algorithm allows us

to handle real-time updates to the routing table, including route flapping scenarios.

Algorithm d1compress (Fig. IV.8) presents our approach. The d1merge routine

used in the algorithm is a simple cube merging routine that merges two cubes of the

same size, differing in exactly one literal. Such cubes have a Hamming distance of
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Algorithm d1compress (F)
Input:

F - A cover of pairwise orthogonal cubes

1 G ← φ

2 for i in 32 → 1 do /*for IPv4 */
3 G ← G ∪ cubesOfSize(F, i) /*O(n)*/
4 G ← sort(G) /*O(n) Radix Sort*/
5 c1 ← first cube in G
6 foreach cube c2 in G do /*O(n)*/
7 if can d1merge c1 and c2 then
8 *c1 ← d1merge(c1,c2) /*replace contents of c1 */
9 else

10 c1 ← c2

Fig. IV.8. Pseudo Code to Compress a Cover Using d1merge

1. If two cubes have a Hamming distance of 1, then the cube formed by removing

the conflicting literal is the result of merging the cubes. For example, the two cubes

10-1 and 00-1 differ in exactly one literal. The result of merging the two cubes is

-0-1. The d1compress algorithm starts with cubes with the highest literal count

(32 literals) and pairwise merges as many of them as possible (forming cubes with

31 literals), after which cubes with one literal less than the highest literal count (31

literals) are merged. Processing cubes in decreasing order of literal count helps newly

merged cubes to find more potential cubes of same size to merge with. Also, to make

sure that cubes that can be merged are ordered next to each other, they are sorted

based on their literal count and then lexicographically. The basis for comparing two

cubes in the sort procedure on line 4 is “-” < “0” < “1”.



30

Algorithm compress ()
1 foreach node n in tree do
2 compute cover E of node n

3 foreach nextHop do
4 F ← φ

5 foreach node in nodeList[nextHop] do
6 F ← F ∪ cover E of node
7 D[nextHop] ← d1compress(F)

Fig. IV.9. Pseudo Code to Compress the Routing Table

D. Compression

We now explain the algorithm to compress a routing table. Algorithm compress

illustrates our approach. We generate node covers for every node in the tree in lines

1 and 2. The cover for node n is obtained by subtracting the cubes of all children of

n, from the cube of node n. In every iteration of line 3 we accumulate node covers of

nodes that map to the same next hop (lines 4, 5 and 6). In line 7 we compress the

accumulated cover and store it in the TCAM.

The time complexity of line 2 is of the order of the number of children of node

n (as discussed in Section IV.B). The time complexity of lines 1 and 2 together is of

the order of the total number of children in the tree. Since a node is the child of only

one node in the tree, the total number of children in the tree is equal to the number

of nodes in the tree. Thus, the time complexity of lines 1 and 2 is of the order of the

number of nodes in the tree. The time complexity of each iteration of line 6 is of the

order of number of children in the node (since E is of the order of children). The total

time complexity of lines 5 and 6 in all iterations of the loop on line 3 is of the order

of all the children in the tree. The total number of children in the tree is same as the

total number of nodes. So the time complexity of lines 5 and 6 is also of the order of
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the number of nodes in the tree. By a similar argument, the total time complexity of

line 7 in all the iterations of line 3 is also of the order of the number of nodes in the

tree. Note that the time complexity of Algorithm d1compress is linear in the size

of input. From the above discussion we can conclude that the total time complexity

of Algorithm compress is of the order of the number of nodes in the tree.

E. Updates

Routers typically receive millions of updates per day. Routers going off-line withdraw

the routes handled by them, and routers coming on-line update other routers about

the routes available through them. Any router should be able to keep up with the

volume of updates it receives from other routers. Routers using the algorithm being

proposed have to be able to apply these updates in real time. An update has to

guarantee that all the covers in the routing table are still orthogonal to each other

and their routing precedence is maintained. To ensure orthogonality and to be able

to find the changes in precedence due to the update, the tree structure has to be

updated along with other data structures. To be able to apply the updates in real

time we propose two highly efficient algorithms to insert and withdraw routes.

1. Insertions

Algorithm insert illustrates our approach to insert new routes into a routing table.

Line 1 searches for the location of the new route in the routing table. Lines 2-7 insert

the new route in the tree, if the new route is not a duplicate of an existing route.

Inserting or withdrawing a route could change the precedence of existing routes. Once

the route is inserted, node covers have to be computed again. Inserting a new route

does not change the precedence of any route with a longer prefix than the new route.
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Hence, the node cover of any node with a longer prefix need not be updated. All

the routes that are not ancestors of the inserted route do not share the IP address

space with the inserted route. Hence the node covers of any of the routes that are not

ancestors of the inserted route need not be updated. All the ancestors of the inserted

route must have lost precedence over the inserted route’s space to the route’s parent.

Thus, the only node covers that need to be computed are those of the inserted route

and its parent. Lines 8 and 9 compute the covers of the inserted node and its parent

respectively. After updating the node covers, the TCAM has to be updated with the

changes in the routing table. If the inserted route and its parent have the same next

hop, then the TCAM need not be updated. However, if their next hops differ then

the only next hop covers in TCAM that need to be modified are those of the new

route’s next hop and its parent’s next hop. Lines 10-13 compute the next hop covers

and update the TCAM. The \ operator is the set difference (or subtraction) operator

over covers.

Line 8 presents a way to compute the cover of the inserted node. Alterna-

tively, E[m] can be computed from the new node’s children (lines 1 and 2 of Algo-

rithm compress). In our implementation of the insert algorithm, we heuristically

choose between these two methods to compute E[m]. The first method is chosen

whenever the number of children of the newly inserted node is greater than half the

number of cubes in parent’s cover, otherwise we select the second method. The worst

case time complexity of the insert algorithm is bounded by the order of the number

of nodes in the tree. Though the time complexity is linear in the order of the size of

the tree, such a complexity is unacceptable. The average run time of the algorithm

is much better than the worst case time complexity.
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Algorithm insert (root, r)
Input:

root - The root node in tree representation of the routing table.
r - The new route to be added.

1 n ← nodeSearch(root, r)
2 if n == r then
3 return /* duplicate update */
4 else if n bigger than r then

/* insert in child list of n */
5 m ← insertUnder(n, r) /* m is the inserted node */
6 else if n is before r then

/* insert before n, since child list is sorted in
descending order */

7 m ← insertBefore(n, r) /* m is the inserted node */

/* update covers in the nodes */
8 E[m] ← E[parent(m)] ∩ cube(m)
9 E[parent(m)] ← d1compress(E[parent(m)] \ cube(m))

/* update next hop covers */
10 i ← nextHop(m); j ← nextHop(parent(m))
11 if i ! = j then
12 D[j] ← d1compress(D[j] \ cube(m))
13 D[i] ← d1compress(D[i] ∪ E[m])

Fig. IV.10. Pseudo Code to Insert a Route into the Routing Table
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2. Withdrawal

Algorithm withdraw illustrates our approach to withdraw a route from the routing

table. Line 1 searches for the route in the routing table. Lines 2-7 remove route from

the tree, if such a route exists in the tree. After withdrawing a route n, n’s parent

will be the smallest route containing all the children of node n. On line 6 n’s parent

becomes the new parent of its children. Once the route is removed, node covers have

to be updated. Removing a route does not change the precedence of any route with

a longer prefix. Hence, the node cover of any route with a longer prefix need not be

updated. All the routes that are not ancestors of the withdrawn route do not share

the IP address space with the withdrawn route. Hence the node covers of any of the

nodes that are not ancestors of the withdrawn node need to be updated. Also, all

the ancestors of the removed node will have less precedence over the removed route’s

space compared to the route’s parent. So the only node cover to be re-computed after

the removal is the node cover of the parent. Line 8 computes the cover of the parent.

After updating the node cover, the TCAM has to be updated with the changes in the

routing table. If the removed node and its parent have the same next hop, then the

TCAM need not be updated. However, if their next hops differ then the only next

hop covers in TCAM that need to be modified are those of the removed node’s next

hop and its parent’s next hop. Lines 9-14 compute the next hop covers and update

the TCAM.

The worst case time complexity of the withdraw algorithm is bounded by the

order of the number of nodes in the tree. Though the time complexity is linear in the

order of the size of the tree, such a complexity is unacceptable. The average observed

run time of the algorithm is much better than the worst case time complexity.
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Algorithm withdraw (root, r)
Input:

root - The root node in tree representation of the routing table.
r - The route to be withdrawn.

1 n ← nodeSearch(root, r)
2 if n ! = r then
3 return /* no such route exists*/
4 else
5 foreach child of n do
6 parent(child) ← parent(n)
7 add child to parent(n)’s child list

/* update covers in the nodes */
8 E[parent(n)] ← d1compress(E[parent(n)] ∪ E[n])

/* update next hop covers */
9 i ← nextHop(n); j ← nextHop(parent(n))

10 if i ! = j then
11 D[j] ← d1compress(D[j] ∪ E[n])
12 F ← φ

13 foreach node in nodeList[i] do
14 F ← F ∪ E[node]
15 D[i] ← d1compress(F)

Fig. IV.11. Pseudo Code to Withdraw a Route from the Routing Table
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F. Optimizations

In algorithm d1compress on line 4, radix sort was used to achieve a time complexity

linear in the size of input. We observed that due to a majority of relatively small

cover sizes, replacing radix sort with quick sort resulted in better run times.

Each update involves a search in the tree followed my updating the compressed

port covers (D[ ]). Our experiments indicate that the time per update is dominated

by the computation of compressed port covers. In an attempt to reduce the overall

runtime of the algorithm and to be able to handle updates in real-time, we perform a

second optimization. When an update does not increase the size of the port cover by

more than 2% we do not invoke the compression algorithm. This approach results in

better real-time performance of the system but results in a gradual reduction in the

compression achieved, as time progresses.
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CHAPTER V

EXPERIMENTAL RESULTS

The algorithms discussed in the previous section were implemented in the C

programming language. The open source GNU C compiler was used to build the

binaries. Routing Information Base (RIB) files and the corresponding update files

were downloaded from [25]. All experiments were run on a single core of Intel(R)

Core(TM)2 Quad Core CPU operating at 2.66 GHz with a system memory of 4GB.

The results of our experiments are presented in Table V.1.

The first column contains the source and date of the routing table being com-

pressed. The routers located at

• University of Oregon, Eugene, Oregon, USA (U of Ore.)

• Equinix, Ashburn, VA (eqix)

• ISC (PAIX), Palo Alto CA, USA (paix)

were chosen as data sources. The second column lists the original number of routing

table entries at the beginning of the day in question. The third column reports the

number of entries in the routing table after compression during the initialization phase

of the algorithm (and the % compression achieved). The fourth column reports the

time taken in seconds to compress the routing table during the initialization phase.

Column 5 reports the total number of updates received by the router on that day

in a 24 hour period (and the average number of updates per second). Column 6

reports the average time taken to propagate the effect of the update into the TCAM

in seconds. Column 7 reports the size of an uncompressed routing table at the end

of the 24 hour period. Column eight reports the size of the compressed routing table

at the end of the day (and the % compression at the end of the day). Column nine
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Table V.1. Experimental Results

Router/ Original Compr. Time to # of Updates Time Final Final Compr. Total Run

Date Size Size (%) Compress (s) (/sec) /update (s) Size Size (%) Time (s)

U of Ore. 289561 215929 3.332494 10401712 0.000746 289626 232343 1611.53

11/21/2008 (25.43) (120.39) (19.78)

U of Ore. 288523 214442 3.311497 10399463 0.000322 289561 227284 2062.71

11/20/2008 (25.68) (120.36) (21.51)

U of Ore. 286069 211919 2.688591 12165311 0.000532 288523 251831 1535.75

11/19/2008 (25.92) (140.80) (12.72)

U of Ore. 285539 211790 2.688591 11335607 0.000338 286069 226145 1139.15

11/18/2008 (25.83) (131.20) (20.95)

U of Ore. 286977 212206 2.699589 9452658 0.001446 285539 223134 2051.30

11/17/2008 (26.06) (109.41) (21.86)

eqix 274545 204683 2.504619 10694627 0.000841 274507 264281 8048.42

11/21/2008 (25.45) (123.78) (3.73)

eqix 273969 203635 2.496621 13979295 0.000819 274545 266250 10073.93

11/20/2008 (25.67) (161.80) (3.02)

eqix 270995 202942 2.423632 15634233 0.000807 273969 264946 11039.58

11/19/2008 (25.11) (180.95) (3.30)

eqix 270684 202718 2.432631 10152552 0.000822 270995 264655 7251.50

11/18/2008 (25.11) (117.51) (2.34)

eqix 270302 202628 2.411633 13333514 0.000837 270684 264290 10149.40

11/17/2008 (25.04) (154.32) (2.36)

paix 276922 214215 2.609603 1866871 0.000457 279252 223429 205.24

11/21/2008 (22.64) (21.60) (19.99)

paix 276394 213647 2.603605 2328720 0.000332 276992 220158 217.79

11/20/2008 (22.71) (26.95) (20.50)

paix 276426 213799 2.592606 2836798 0.000264 276394 221389 221.82

11/19/2008 (22.66) (32.83) (19.90)

paix 275710 213771 2.592606 2396366 0.001985 276426 219936 552.10

11/18/2008 (22.47) (27.73) (20.44)

paix 275564 213636 2.589606 2004843 0.001301 275710 218598 426.67

11/17/2008 (22.48) (23.20) (20.72)

Average 278545.33 210130.66 2.665195 8598838.00 0.000790 279252.80 239244.60 3772.46

(24.55) (99.52) (14.21)
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reports the cumulative CPU time consumed by the approach in seconds, over the 24

hour period.

Figure V.1 and Figure V.2 plot the size of the uncompressed routing table and
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Fig. V.1. Table Sizes Example 1

the size of the compressed routing table during a 24 hour period on 11/18/2008, for

the PAIX router, and on 11/21/2008 for the University of Oregon routers respec-

tively. These plots are representative of the results obtained for similar experiments

on different routers and different days. We observe that on average, our algorithm

can compress the routing tables to about 24.55% of its original size. The maximum

time for the initial compression is less then 3 seconds. The maximum time to update

the compressed routing table is about 0.2 seconds, while the average time per update

was also observed to be less than 0.0008 seconds. Figures V.1 and V.2 show a gradual

increase in the size of the compressed routing table. This is because the compression

heuristic is not invoked when the change in the size of the cover is less than 2%. This

gradual increase in table size can be corrected by using the algorithm compress



40

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

E
n

tr
ie

s
 i
n

 T
C

A
M

Time of the day (sec)

U of Ore. on 2008.11.21

Origninal Table
Compressed Table

Fig. V.2. Table Sizes Example 2

during times of the day when the load on the router is at a minimum.

Figures V.3 and Figure V.4 are scatter plots that plot the time taken to process

an update verses the time until the next update arrives. The examples used in these

plots are the same as those used in Figures V.1 and V.2 The diagonal dotted line in

these plots indicates all the points whose processing time was equal to the time until

the next update. All the points below this line represent updates that were processed

before the arrival of the next update. All the points above the line represent updates

that needed more processing time than the time of the arrival of the next update.

We observe that the majority points are below the diagonal line. Consequently the

total run time in Column 9 of Table V.1 is far less than 24 hours.

A. Compared to Espresso

We compare the performance of our routing table compression heuristic with Espresso,

(which has exponential time complexity in the worst case). On an average, Espresso
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achieves 38% compression in the size of the routing table in stead of 24.55% com-

pression from our linear time heuristic. However, Espresso requires a 20× increase

in runtime during the initial phase of the algorithm (when the original tree is com-

pressed). Also the total cumulative time taken to handle updates is 16.8× higher for

Espresso than our approach. This increase in run-time is with all the optimization

described in the Section IV.F. Figure V.5 illustrates the size of the uncompressed and

the compressed routing tables when Espresso is used to compress covers, for the Uni-

versity of Oregon router on 11/19/2009. Note that a higher compression is achieved

with Espresso.
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Although Espresso provides better compression than our compression heuristic,

it has unacceptable real-time performance. Figure V.6 plots the delay in processing

an update. The x-axis of the graph is the time during the day. Let us consider an

update received a time t. The value δt at time t in the graph is the time after t when

the affect of the update was written into the TCAM. In other words, the update
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received at time t was applied at time t + δt. This delay is due to the occurrence

of updates in quick succession, hence requiring more run-time than the difference in

their arrival times. The accumulated delay in processing all the updates before the

ith packet causes the delay in processing the ith packet. As can be observed, some

of the updates are delayed by more than 50 minutes, which is unacceptable. The

maximum delay incurred in our heuristic for this example was observed to be less

than 6 seconds.
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Figure V.7 plots a distribution of the time to process an update (on y-axis)

verses the time until the next update arrives (on x-axis). This plot and Figure V.4

are generated from the same example. The diagonal dotted line in the plot indicates

all the points whose processing time was equal to the time until next update. Points

below the line are updates that were handled before the next update and points above

the line are updates that were not handled before the next update. We observe that in

the Espresso based approach a majority of the updates could be successfully processed
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after the next update arrives. The height of a point above the dotted line indicates

the additional time required. This additional time accumulates accumulates across

successive updates and results in the processing delays similar as shown in Figure V.6.
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Fig. V.7. Scatter Plot of Espresso Approach

The real-time performance of our heuristic can be better judged by its perfor-

mance under route flapping. We now describe and analyze the performance of our

heuristic during route flapping.

B. Route Flapping

All routing tables, are severely effected by route flapping and interface flapping which

occur due to updates from neighboring routers. When a router is not configured cor-

rectly on the network, or if there is a malfunction in the hardware of the router,

routes can be withdrawn and re-announced in quick succession. This causes the size

of the routing table of its neighbors to fluctuate rapidly. The number of updates

received during such a period could exceed 1250 updates per second, which can cause
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a significant delay in processing updates. A router should be able to handle such a

deluge of updates, and still be able to correctly route packets towards their destina-

tions. Routers implementing a compression algorithm are adversely affected by route

flapping, since every update received during route flapping has to be compressed, and

the result has to be updated into TCAMs. On 18th November 2008 the router eqix

experienced such a phenomenon. Our experiments show that a router implementing

our algorithm is capable of sustaining the load due to route flapping. Figure V.8

shows the fluctuations in the routing table size. Note that the uncompressed routing

table size (sold line) varies between 271000 routes and 22000 routes several times

during the day, and our compressed routing table (dotted line) keeps up with these

fluctuations.
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Figure V.9 shows the delay between the arrival of an update and the time when

its effect is updated in the TCAM We observe that our algorithm can keep up with the

heavy fluctuations in table size with a maximum delay of 250 seconds in processing



46

 0

 50

 100

 150

 200

 250

 300

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

D
e

la
y
 (

s
e

c
)

Time of the day (sec)

eqix on 2008.11.18

Fig. V.9. Flapping Example’s Processing Delay

an update.

C. Hardware Cost Reduction

As mentioned earlier in Section IV.B LPM computation is no longer required because

compressed routes for any two next hops are guarantied to be orthogonal. This can

be utilized in simplifying the TCAM used. Compared to [26], this simplified TCAM

yeilds a reduction in lookup time by 49%, power by 9% and area by 9%. These saving

are from simplification of the hardware alone. There would be further saving in the

form of reduced size of TCAM required in storing the compressed routing table.

TCAMs like other memory arrays are implemented in banks. A 15% reduction in

routing table size (average compression at the end of the day in Table V.1) translates

to fewer TCAM banks or smaller TCAM banks. In both the cases power and area

can be saved.
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D. Scaling

As shown earlier, our approach can handle the size of current routing tables, but it is

important to analyze the performance as the global IP routing table continues to grow

super-linearly. Figure V.10 plots the size of the uncompressed routing tables (solid

line) and the compressed routing tables (dotted line) from year 2001 to till date, for

the University of Oregon router. As the size of the global routing table increases the

percentage compression achieved increases, thus demonstrating that our approach

is able to contain the super-linear growth of routing tables. Using our approach,

hardware resources need not scale at the rate of growth of the uncompressed global

IP routing table.
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E. Possible Enhancements

Routers often receive duplicate updates. Identifying such updates can reduce the

processing time of the duplicate update, and the worst case delay in the processing

of subsequent updates. To reduce processing time for duplicate updates, a cache of

previous requests in the form of a hash table was implemented. This improved the

worst case processing time for an update. But since every request received has to

be looked up in the cache and then followed by a lookup in the tree, the average

processing time of an update increased. The data reported in Table V.1 is from an

implementation that does not utilize a cache of previous updates. Our implementation

is easily amenable to the use of such a cache. If a small hardware cache of about a

few KBytes were available, duplicate updates can be identified much faster, thereby

reducing the worst case delay.
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CHAPTER VI

CONCLUSIONS

To reduce the complexity, power consumption and lookup time of large IP

routers, it is desirable to reduce the size of a routing table. In this paper, we propose a

linear time algorithm to compress a routing table. We discussed the flaws in existing

IP routing table compression algorithms, and discussed our strategy, which avoids

these flaws by construction. Our algorithm is capable of compressing a routing table

by about 25%, and can also handle routing table updates in real time. The most

important advantage of our approach is that a longest prefix match determination

unit is not required, since the routes that are mapped to different next hops are guar-

anteed to be orthogonal. This results in faster IP lookup operations and lowers power

consumption. On an average our algorithm compressed a routing table to 24.6% of

its original size. Also experimental results show that our algorithm is capable of

handling route flapping and interface flapping in a real-time manner.
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