

META-METADATA: AN INFORMATION SEMANTICS LANGUAGE AND

SOFTWARE ARCHITECTURE FOR COLLECTION VISUALIZATION

APPLICATIONS

A Thesis

by

ABHINAV MATHUR

Submitted to the Office of Graduate Studies of
 Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2009

Major Subject: Computer Science

META-METADATA: AN INFORMATION SEMANTICS LANGUAGE AND

SOFTWARE ARCHITECTURE FOR COLLECTION VISUALIZATION

APPLICATIONS

A Thesis

by

ABHINAV MATHUR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Andruid Kerne
Committee Members, Rodney Hill
 Thomas Ioerger
 Jaakko Järvi
 Head of Department, Valerie Taylor

December 2009

Major Subject: Computer Science

 iii

ABSTRACT

Meta-Metadata: An Information Semantics Language and Software Architecture for

Collection Visualization Applications. (December 2009)

Abhinav Mathur, B.Tech, Indian Institute of Technology, Guwahati

Chair of Advisory Committee: Dr. Andruid Kerne

Information collection and discovery tasks involve aggregation and manipulation

of information resources. An information resource is a location from which a human

gathers data to contribute to his/her understanding of something significant. Repositories

of information resources include the Google search engine, the ACM Digital Library,

Wikipedia, Flickr, and IMDB. Information discovery tasks involve having new ideas in

contexts of information collecting.

The information one needs to collect is large and diverse and hard to keep track

of. The heterogeneity and scale also make difficult writing software to support

information collection and discovery tasks. Metadata is a structured means for

describing information resources. It forms the basis of digital libraries and search

engines.

As metadata is often called, “data about data,” we define meta-metadata as a

formal means for describing metadata as an XML based language. We consider the

lifecycle of metadata in information collection and discovery tasks and develop a meta-

metadata architecture which deals with the data structures for representation of metadata

inside programs, extraction from information resources, rules for presentation to users,

 iv

and logic that defines how an application needs to operate on metadata. Semantic

actions for an information resource collection are steps taken to generate representative

objects, including formation of iconographic image and text surrogates, associated with

metadata.

The meta-metadata language serves as a layer of abstraction between information

resources, power users, and application developers. A power user can enhance an

existing collection visualization application by authoring meta-metadata for a new

information resource without modifying the application source code. The architecture

provides a set of interfaces for semantic actions which different information discovery

and visualization applications can implement according to their own custom

requirements. Application developers can modify the implementation of these semantic

actions to change the behavior of their application, regardless of the information

resource.

We have used our architecture in combinFormation, an information discovery

and collection visualization application and validated it through a user study.

 v

DEDICATION
DCATIOND

To my family and friends

 vi

ACKNOWLEDGMENTS

I am extremely thankful to Andruid Kerne for his continuous encouragement,

commitment, and direction. I have gained irreplaceable skills and experiences from his

guidance.

I would like to thank my committee members Thomas Ioerger, Jaakko Järvi and

Rodney Hill, for their suggestions and feedback during the course of my research.

I express my immense gratefulness to all the members of the Interface Ecology

Lab for their help, suggestions, and support. I would especially like to Sashikanth

Damaraju, Blake Dworaczyk and Andrew Webb for all the assistance and support

provided.

Finally and most importantly, to my parents, I could have never accomplished

this without you. Your unconditional love and support have given me strength in the

most difficult of times.

 vii

TABLE OF CONTENTS
 ...Page

ABSTRACT ... iii

DEDICATION ...v

ACKNOWLEDGMENTS...vi

LIST OF FIGURES..x

1. INTRODUCTION AND PROBLEM STATEMENT ..1

2. PRIOR WORK..6

 2.1 Metadata-based Visualization System ...6
 2.2 Metadata Building and Extraction Approaches..7

 2.2.1 Machine Learning and Automated Approach ...7
 2.2.2 Hybrid Approach: Machine Learning Combined with Manual
 Approach ...8
 2.2.3 Programming-based Approaches ..9
2.3 combinFormation ...10
2.4 Framework for Strongly Typed Metadata ..10

3. ARCHITECTURE ..11

3.1 Compile-time..15
 3.1.1 Authoring Meta-metadata ..16
 3.1.2 Compiler: Translate Meta-metadata Declarations to Metadata

Definitions ...17
3.2 Runtime ..20
 3.2.1 Efficient URL Pattern Matching..21
 3.2.2 Parser: Information Extraction Based on Extraction Rules24
 3.2.3 Semantic Action Handler...25

4. METADATA DEFINITION LANGUAGE..27

 4.1 Specifying Strongly Typed Structures for Information Sources28
 4.2 Specifying Heterogeneous Sources by Reusing Existing Definitions31

 4.2.1 Sources with the Exact Same Structure...31
 4.2.2 Sources That Add New Fields to Existing Defintion............................32

 viii

 ..Page

5. METADATA EXTRACTION AND VISUALIZATION RULES.........................35

 5.1 XPath-based Extraction Rules..36
 5.2 Direct Binding for XML-based Services ...37
 5.3 Visualization Rules ..38

6. SEMANTIC ACTION SCRIPTING...39

 6.1 Variable Definition Statements ..41
 6.2 Control Flow Statements ..42

 6.2.1 Loop Statements ..43
 6.2.2 Conditional Statements ...44

 6.3 Metadata-operation Statements ..45

7. USE CASES..46

 7.1 Google Search ..48
 7.2 ACM Portal ..50
 7.3 Yahoo Search ...54
 7.4 Lines of Code Comparison...55

8. USER STUDY ..57

 8.1 Wikipedia ...58
 8.1.1 Authoring Meta-metadata for Search Results Page of Wikipedia58
 8.1.2 Authoring Meta-metadata for Article Page of Wikipedia59
 8.1.3 Feedback from Study ..60

 8.2 Flickr ...61
 8.2.1 Feedback from Study ..62

 8.3 IMDB ...62
 8.3.1 Feedback from Study ..63

 8.4 Observation ..64

9. CONCLUSION AND FUTURE WORK..65

 9.1 Expressive Meta-metadata Language...65
 9.2 Minimal Programming Experience Needed...66
 9.3 Future Work ...66

 9.3.1 Entity Resolution Problem ..66
 9.3.2 Changing DOM Problem ..67
 9.3.3 Meta-metadata Authoring Issues...67
 9.3.4 Exploring Generality of Semantic Actions ...68

 ix

 Page

9.3.5 Constraint specification in Metadata Definition Language68

REFERENCES...70

APPENDIX A: META-METADATA LANGUAGE SYNTAX AND
 CONSTRUCTS..74

APPENDIX B: BNF FOR META-METADATA LANGUAGE86

APPENDIX C: ADDING NEW SEARCH ENGINES..92

VITA ..93

 x

LIST OF FIGURES

 Page

Figure 1 Overview of Meta-Metadata Language ..3

Figure 2 Control flow in basic MVC architecture...12

Figure 3 Control flow in proposed MVC-based architecture..12

Figure 4 Overview of data flow in Meta-Metadata architecture.....................................18

Figure 5 Source definition and generated classes ...20

Figure 6 Runtime data flow...21

Figure 7 Strongly typed, structured definition of search result set30

Figure 8 Google search source definition using type attribute..32

Figure 9 Adding more fields to an existing definition using extends attribute.34

Figure 10 XPath-based extraction from an HTML DOM...36

Figure 11 Direct binding for XML based web-services..37

Figure 12 Visualization rules for Meta-Metadata fields ...38

Figure 13 Variable declaration statement..41

Figure 14 For loop to iterate over a collection ..42

Figure 15 If statement for conditional execution ..44

Figure 16 Google search result page ...48

Figure 17 Smartphone,iPhone and Palm pre-browsing...49

Figure 18 Google search result set ..50

Figure 19 Search fields extracted from Google search ...51

 xi

 Page

Figure 20 ACM portal Meta-Metadata semantic actions ..52

Figure 21 Information visualization from ACM portal using combinFormation53

Figure 22 Yahoo search XML and corresponding Meta-Metadata...................................54

Figure 23 Comparison of lines of Java code vs lines of Meta-Metadata
declaration...56

Figure 24 Search engine declaration for Wikipedia..59

 1

1. INTRODUCTION AND PROBLEM STATEMENT

We introduce Meta-Metadata: integrated representations that describe how

metadata can be extracted from information resources found in digital repositories and

on the Internet, represented internally, acted on by software tools, and presented to users.

We define information resources as locations that provide data to users for

understanding something they experience as significant. An information source, in turn,

is the template-based generalization of an information resource, which is provided as

part of a particular repository or site. Examples of information sources include the

Google search engine, the ACM Digital Library, Wikipedia, Flickr, and IMDB. A

Google search result page, an article page for the ACM Digital library, an article page

for Wikipedia, an image page on Flickr, or a movie page on IMDB are examples of

information resources from these information sources.

Collecting, organizing, and thinking about diverse information resources is an

essential step in all kinds of research. For example for research articles a user might need

to extract the bibliographic information and represent them in a coherent way, including

listing articles according to authors and place of publication. Another example includes

browsing through an image collection like Flickr and collecting images of interest.

Collection management and utilization becomes hard, for end users, as the size of

collection increases. Further, heterogeneity of information resources makes it difficult to

write software to support information collection and discovery tasks. Koh and Kerne

show that people engage in tasks of information collection and visualization inspite of

This thesis follows the style of the International Journal of Human-Computer
Interaction.

 2

the breakdowns they experience with collection tools (Koh and Kerne, 2006). The study

investigated people developing collections for both entertainment purposes, like movie

collections, and collections used for academic purposes, like prior work surveys of

scholarly articles. In either case, as the collection sizes increases, collections become

difficult to manage and utilize. Koh and Kerne recommend assisting end users in

associating powerful semantic structures with the documents they collect, because

semantic structures will help end users organize, make sense of, and remember the

documents and document relationships.

Metadata, data about data, is a structured means for describing information

resources. We use metadata as semantic structure in information collection and

discovery tasks, and define Meta-Metadata to specify structures for representation of

metadata inside collection tools, extraction from information resources, rules for

presentation to end users, and logic that defines how a collection tools should operate on

metadata.

The long-term goal of this research is to build creativity support tools that

facilitate collecting and visualizing information in cognitively beneficial forms, and to

support a community of developers who want to build such tools. Thus, the objective of

this thesis is to design and develop a language and architecture that facilitates building a

semantic web from World Wide Web through specification of how to bind semantic data

from heterogeneous information sources with strongly typed data structures and how to

operate on these data structures. We call this XML-language Meta-Metadata. We define

the semantic actions for an information resource as operations performed to generate,

 3

visualize, navigate, and crawl information resource objects. Such actions include

creating iconographic image and text surrogates that represent the main ideas of each

information resource and provide access to it. This research will build software

infrastructure, in the form of XML representations of Meta-Metadata for various

information sources, and APIs that facilitate operation on that metadata, independent of

the information source. The framework will be extensible, so new information sources

can be added without affecting application code. We will integrate computational

representation, serialization, extraction rules, and attributes of interactive visualization.

<meta_metadata name="scholarly_article" extends="pdf" comment="">
< DEFINITION OF METADATA, THE SEMANTIC STRUCTURE ASSOCIATED WITH SCHOLARLY ARTICLE />
< DEFINITION OF SEMANTIC ACTIONS, OPERATIONS TO BE PERFORMED ON SCHOLARLY ARTICLE METADATA/>

</meta_metadata>

Figure 1: Overview of Meta-Metadata Language

Figure 1 shows, an overview of information source definition using the Meta-

Metadata language. meta_metadata tag is used to define an information source.

meta_metadata tag contains attribute name which specifies the information source.

Further there are nested tags which define the metadata for information source and

semantic actions to be taken on metadata objects.

The principal hypothesis is that an architecture that abstracts the ability to

specify the semantics of information collection from information visualization

application will facilitate enhancement of existing visualization applications by adding

 4

new information sources. Such architecture will enable one set of developers to

concentrate on requirements analysis design, visualization, and use-context involving

particular information sources. We call this set of developers as power users. A separate

set of developers can focus on more generalized programming for information

collection, crawling, processing, and visualization. We call this set of developers as

application developers. The architecture is aimed at both these groups of people.

Applications for personal collection visualization provide interfaces to navigate,

browse, search and interact within a set of information objects. Architectures of such

applications typically include closely tied visualization interaction and manipulation

layers, which make them specific to particular information sources. For example, combin

Formation (Kerne et al. 2008a) is, a creativity support tool that provides users with the

ability to search, browse, collect, mix, organize, and think about information. The

software previously had custom code for information sources such as Google, Yahoo,

and Flickr. Thus, it required developers to be acquainted with the software internals to

write more code for new information sources. We use the present Meta-Metadata based

architecture to re-architect combinFormation, thus separating the information collection

layer and information visualization layers and enabling power users who are not

application developers to add new information sources. At the same time, the Meta-

Metadata support library is completely separate from combinFormation, and so is ready

for deployment in other Java applications.

We will develop software architecture for Meta-Metadata and its information

semantics through these specific aims:

 5

Aim 1: Specify a Metadata Definition Language, to represent different

information sources using Meta-Metadata, including strongly-typed structure for

information fields. A Generative Programming approach will be used for generating

strongly typed procedural objects that correspond to metadata from the information

sources described using the language. This minimizes custom code writing for each

digital collection.

Aim 2: Defining a language for specifying rules for information extraction and

presentation, and developing software modules that can be used to extract information

from information sources based on extraction rule statements.

Aim 3: Develop an extensible language for semantic actions that specify how

collection visualization applications should operate on metadata extracted from a

particular source. This will include definition of interfaces for actions to be taken on

extracted information and providing programming language control flow structures to

reuse these actions.

Aim 4: Validating the architecture through case studies involving combin

Formation.

Thus we propose to build an abstract layer to provide ways to specify

information extraction semantics from various information sources irrespective of the

format used to store the information. Actions taken on extracted information, to build

semantic connections, will be expressible in a language, which is written in XML.

 6

2. PRIOR WORK

There is a vast range of research done on the ways to visualize the collection and

interact with them. The main area in which research has concentrated includes various

visualization systems (Bier and Perer, 2005) and ways to extract metadata for these

systems (Hetzner, 2008). Various approaches have been proposed to extract and build

metadata for information visualization system. These include using machine-based

learning techniques, manual entry of metadata, use of hybrid approaches (both machine

learning and manual), and programming-based approaches to extract metadata from

heterogeneous sources. However, none of these approaches provide an extensible

software framework that can be used by developers to build new information

visualization application. Our architecture provide software infrastructure that enable a

community of developers to build visualization application while providing further

scope to automate the definition extraction rules and semantic actions for new

information sources.

2.1 Metadata-based Visualization System

In this section, we discuss some of the information visualization systems and the

underlying base, metadata, for such systems. Information collection from digital libraries

requires effective content access functionalities. There is a need for a coherent way to

access, browse, and collect information from diverse information sources. Metadata

enables easy discovery of materials and collection browsing. Icon Abacus (Bier and

Perer, 2005) is a technique for metadata visualization in 2D space. It uses one axis to

display collection according to a selected metadata attribute value in a grid layout, while

 7

other axis can be used to select other possible metadata attributes. For example a

collection of documents can be sorted vertically according to date of publication. Each

of vertical section can then be sorted alphabetically according to author names. The

horizontal axis can be used to display reading status of document, like unread, read, read

soon and read latter. Thus it creates a visualization of three attributes: date, reading

status and author, in a 2D plane. VITE (Hsieh and Shipman, 2000) is an interface which

allows users to create their own visualizations and manipulate structured information.

TimePeriodDirectory (Petras et al., 2006) is a metadata infrastructure for the Library

Congress Subject Heading (LCSH) that links data with its canonical time period range as

well as geographic location. Metadata also tells us about the quality of data. In a

scholarly article digital library, the bibliographic information about an article can tell us

about its importance. Shiri suggests that metadata can be used to provide a richer

information collection experience for the user from a digital library (Shiri, 2008).

2.2 Metadata Building and Extraction Approaches

There has been a considerable amount of research on the ways to extract and

build metadata from a digital library. Broadly, these approaches can be classified as

automatic extraction and manual extraction of metadata.

2.2.1 Machine Learning and Automated Approach

Machine learning approaches focus on automating the task of metadata

extraction from information sources. Cui discusses machine-learning techniques for

semantic markup of biodiversity digital libraries like eflores.org and algaebase.org

(Hetzner, 2008). They use unsupervised learning technique and achieve an accuracy of

 8

99% to 99.5%. Lu et al. use supervised learning techniques to generate metadata for

bound volumes of scientific publications (Lu et al., 2008). They have used their

approach in the Biodiversity Heritage Library. FLUXCiM (Cortez et al., 2007) is a

knowledge-based system, which uses unsupervised learning to extract correct

components of citations given in any format. It gives above 94% of accuracy but needs

an existing set of sample metadata records from a given area to construct the knowledge

base. Hetzner gives an approach to extract citation metadata using Hidden Markov

Model (Hetzner et al., 2008). CLiMB (Klavans et al., 2008) uses text mining to get high-

quality metadata for images in digital library. TableSeer (Liu et al., 2007) is a search

engine for tables that detects tables from documents, extracts metadata, and indexes and

ranks the tables. MetaExtract (Yilmazel et al., 2004) is a Natural Language Processing

system to automatically assign metadata to the data. Hui et al. uses Support Vector

Machine to extract metadata (Hui et al., 2003). These methods can act complementarily

to our framework by helping to automatically define new information sources.

2.2.2 Hybrid Approach: Machine Learning Combined with Manual Approach

Hybrid approaches combine the advantages of automatic extraction with human

interference, to ensure the accuracy. HarvANA (Hunter et al., 2008) is a hybrid approach

for merging the manual metadata with the metadata generated using community tags.

This is currently implemented only for pictureaustralia. PaperBase (Shiri, 2008) is also

a hybrid approach in which the system automatically extracts metadata and populates a

web form. The user can then proofread and correct it. Hybrid approaches present a

tradeoff between expensive but accurate manual entry and inexpensive but less accurate

 9

automatic extraction. Our approach is unique from both manual and automatic

approaches as power users will author the Meta-Metadata and then metadata extraction

will be done based on these authored definitions. Further, these definitions can be shared

with other people for collaborative tasks.

2.2.3 Programming-based Approaches

Programming-based approaches provide a set of users ability to programmatically

specify information extraction mechanism. Instructional Architect (Recker and Palmer,

2006) is an end user tool to access and use NSDL. It is used to find and gather NSDL and

web resources to create and share personal collections of information. MarMite (Wong

and Hong et al., 2007) is an end user programming tool that enables the creation of

mashups. For end user programming, it uses strongly typed data and provides a graphical

dialogue box. It is very similar to our approach, but since it requires end user

programming, there is a learning curve. Dontcheva et al. present a system for collecting,

viewing and sharing information from the web (Dontcheva et al., 2006). It uses extraction

rules similar to our system for information extraction and collection. However, it does not

define the concept of metadata explicitly. Power users cannot define and specify semantic

actions on metadata, like sending the document links for the cited articles to the collecting

agent to be crawled latter. Also, the system has strongly tied semantic and visualization

layers. Thus, the user cannot use the visualization software of his choice for information

collection. Exchange Center (Bainbridge et al., 2006) is a software environment that helps

in managing, exploring, and building collections from various repositories. Yaron et al.

present an approach for building cross-disciplinary collections among digital libraries

 10

(Yaron et al., 2008) . However, digital library interoperability often requires a custom

programming solution. Using our approach power users does not have to write custom

code for information collection and visualization from heterogeneous information

sources and our system is unique in providing a framework that can be used by other

developers to build their own visualization applications.

2.3 combinFormation

combinFormation is a mixed-initiative system which is used for searching,

browsing and collecting information in the form of a visual collage consisting of image

and text surrogates from web pages and other documents (Kerne et al., 2008). It provides a

composition space to build this collage. The composition space functions as a medium of

communication between human and agent, to collaboratively engage in the tasks of

information discovery. We have applied our Meta-Metadata language and architecture to

re-architect combinFormation and author new information sources for it.

2.4 Framework for Strongly Typed Metadata

ecologylab.xml (Kerne et al., 2008) is an object-oriented XML binding

framework for connecting programming language objects with their serialized XML

representation. It involves writing annotated classes with a metalanguage, which can

then bind to XML documents to create strongly typed objects. We will use

ecologylab.xml both for reading Meta-Metadata declarations and generating strongly

typed metadata objects. Objects on both levels will be serialized and stored using

ecologylab.xml.

 11

3. ARCHITECTURE

We developed a software architecture that streamlines the integration of

heterogeneous typed metadata into interactive applications. Current approaches to

metadata semantics have drawbacks that make it cumbersome to develop general

collection visualization applications. Most approaches require custom code to collect

metadata from heterogeneous information sources. It is expensive for programmers to

manually enter metadata or to write custom code for each information source. This is not

feasible for large collections. As far as we are aware, there are no tools that enable the

integrated customization of visualization and operations on metadata. We present an

architecture that enables developers to change the way metadata is structured, visualized,

and operated on in applications without writing custom code for each source. We expect

that the flexibility gained through the use of this architecture will enable developers to

focus on more important research issues, such as supporting creativity for information

discovery (Kerne et al. 2008). Thus, for the purpose of building tools for facilitating the

collection and visualization of information in cognitively beneficial forms, architecture is

needed that addresses the tasks of information collection, information presentation, and

operation through a series of distinct modules.

 12

Figure 2: Control flow in basic MVC architecture

Figure 3: Control flow in proposed MVC-based architecture

 13

In this section, we introduce our architecture while drawing analogies to the

Model-View-Controller (MVC) paradigm. The architecture defines modules for

information representation, extraction, presentation, and operation. The MVC paradigm

defines three distinct components of software: the model is the data being operated on, the

view is responsible for the visualization, and the controller describes the control flow of

the data and application logic within the software. The MVC paradigm isolates the control

logic from the visualization rules, allowing one component to be modified without

affecting the other. These three distinct MVC components correspond to the three tasks of

information: extraction, visualization, and operation.

Figure 2 shows a traditional MVC model. Figure 3 illustrates how our architecture

is based on MVC. The model in our architecture consists of two kinds of components:

compile-time and runtime. The compile-time model initially defines the structured and

strongly typed definition of information sources. These compile-time specifications define

the structure of heterogeneous information sources for data for the application. These

structures are then used via generative programming to derive strongly typed classes for

the sources

The runtime model consists of instances of these class definitions, which we build

during runtime by extracting information from the sources. These instances are then acted

upon by the controller. The controller in our architecture defines the semantic actions that

operate on the runtime model. These actions are defined as interfaces that applications can

then implement according to their custom logic to build data structures for visualizations,

while using the runtime model. This abstracts out the controller logic from its

 14

implementation. View in our architecture consists of the information visualization

semantics that can be used by applications to drive user interface software. This is

analogous to the traditional View of MVC, which refers directly to the user interface layer.

Based on the view specified the visualization applications can then build their own custom

presentations of metadata. combinFormation does this by presenting appropriate in-

context metadata with surrogates in a visualization composition space (Kerne et al., 2008).

For this purpose, an abstract layer is defined to describe the structure of source

definitions (Model), information about their presentation (View), and logic for actions on

them (Controller). It provides a coherent way to extract heterogeneous and strongly typed

metadata in a structured format from various information sources. Metadata extraction is

independent of the information collection visualization and the information source, so

custom code does not have to be written. Application programming by the developer is

reduced because we use generative programming to author metadata classes based on

Meta-Metadata declarations. Operations on metadata objects are also expressible in this

layer.

Our architecture specifies an XML-based Meta-Metadata language for defining

rules for information collection, extraction, binding visualization, and operations that use

metadata. Figure 3 shows a block diagram of the major modules of our architecture. We

maintain a repository (Mathur and Kearne, 2009) containing Meta-Metadata definitions,

shown in Figure 3. This repository can be shared among applications for reuse in

performing their information collection tasks. To use a new information source that is not

in the repository, power users author the Meta-Metadata definitions for it with the Meta-

 15

Metadata language. Meta-Metadata definitions specify strongly typed and structured

metadata fields, extraction rules, visualization rules, and semantic actions for them. These

are used by the compiler module to generate metadata class declarations during compile-

time. During runtime Meta-Metadata definitions are translated into Meta-Metadata API

objects using the ecologylab.xml framework. These objects are then used by the parser

module to derive extraction rules to parse the templated information source and form

metadata instances. Visualization applications use Meta-Metadata objects to reference

visualization rules, to guide presentation to the user. The Semantic Action handler module

acts on metadata objects by obtaining the semantic actions from Meta-Metadata API

objects. The semantic action handler exposes a set of interfaces, which are used to define

these productions. Different information collection software can then implement these

productions for their application-specific logic. These are two phases of execution:

compile-time and runtime collectively provide a coherent way to extract information from

various digital libraries to build strongly typed and structured representations.

3.1 Compile-time

The compile-time phase consists of two parts. The first part involves manual

authoring of strongly typed structured data definitions for various heterogeneous

information sources. These definitions are authored by power users using the Meta-

Metadata language. They include defining various search engines with their search URLs,

definitions for digital libraries like Flickr, ACMPortal, Wikipedia, and IMDB

The second part involves generation of classes from these definitions that can be

used in a procedural programming language (currently Java). These definitions are

 16

generated automatically by using our compiler, which can be invoked as a standalone

module. Generation of these classes does not require programming knowledge.

3.1.1 Authoring Meta-Metadata

Information discovery tasks require accessing heterogeneous information sources,

representing information from these sources with typed metadata, extracting information

into appropriate data structures, and acting on extracted information by forming objects

such as surrogates, which are then presented to the user.

Information researchers often look for common kinds of data from an information

source. For instance, to obtain reviews of restaurants, a user might visit TopTable.com,

UrbanSpoon.com, OpenTable.com, or another restaurant review site. All these sites

provide information fields such as restaurant menu, rates, bookings and overall ranking.

Thus, the common fields of interest from all these sources are the same: menu, rate,

overall ranking. Other examples of multifaceted data from heterogeneous sources include

obtaining reviews for hotels and for movies. All different sources that provide such

information contain common fields of interest such as name, ranking of hotels, and movie

actors. To obtain and operate on information from each of these sources, information

discovery software requires a definition of these sources in the form of procedural

programming classes. But since all these sources have common fields of interest about the

information, writing individual classes for each source would be a repetitive programming

task. To represent these common metadata fields of interest in a consistent manner for

heterogeneous sources, we created a specification for easy-to-read and easy-to-write XML

 17

definitions. These definitions consist of strongly-typed hierarchical structures of metadata

fields. They act as the compile-time model for our architecture.

In Figure 4, as a precursor to compile time, the user-authored definitions of

information sources are stored in a Meta-Metadata repository. These definitions are

authored using metadata definition language that we will develop in Chapter 4. This

language provides the ability to specify heterogeneous information sources in strongly

typed structured forms. Since information sources are accessed by Universal Resource

Locators, each of these definitions includes the assignment of a distinct URL key, which is

then used during runtime to uniquely retrieve the matching Meta-Metadata

3.1.2 Compiler: Translate Meta-Metadata Declarations to Metadata Definitions

The compiler module as shown in Figure 4 operates on power user-authored Meta-

Metadata declarations. It can be invoked as a standalone utility to generate strongly typed

metadata classes in any object-oriented programming language, which is Java in the

current implementation. The compiler module then operates on these definitions and uses

generative programming to author classes for each of the sources. These classes are

annotated with ecologylab.xml meta-language. This makes it easy to marshal objects to

XML and to unmarshal XML to objects. The compilation of Meta-Metadata–authored

definitions to produce metadata classes is a necessary precursor for information extraction.

 18

Figure 4: Overview of data flow in Meta-Metadata architecture

 19

The compiler translates authored Meta-Metadata declarations in XML, from a

repository, to Meta-Metadata objects using the ecologylab.xml framework. In turn, it

translates these live objects to output metadata class definitions as Java source code. We

use the ecologylab.xml framework to define both the Meta-Metadata and metadata level

object levels, providing us with automatic access to XML data through typed

programming language objects that can be again marshaled to XML. The generated

metadata classes are also annotated using ecologylab.xml meta-language, and thus can

also be serialized and saved. The compiler also generates a translation scope for all of

the generated metadata classes, which is used to bind Java metadata subclasses to XML

elements while loading the saved collections. Our current implementation produces

metadata classes in Java. Future versions will also support other languages such as

Objective C. The compiler module generates Java-Doc comments for each of these

classes to help make them readable. These classes can be used in any structured

procedural programming language like Java to obtain instances of strongly typed

metadata objects.

Figure 5 shows Meta-Metadata declarations of the search class with scalar and

nonscalar fields, and the Java code generated for them. Scalar fields include primitive

types like boolean, string, integer, and Parsed URL. Nonscalar types include nested class

data types, and also these like ArrayList, which are used for collections. In this figure we

generate an ArrayList to represent a set of results, each of which is of type SearchResult.

We also generate the SearchResult class, which contain all the metadata fields declared

in the Meta-Metadata field of searchResults

 20

<meta_metadata name="search" extends="document"
comment="">
 <meta_metadata_field name="searchResults"
collection="ArrayList"collection_child_type="search_result" >
 <meta_metadata_field name="heading"
scalar_type="String" />
 <meta_metadata_field name="snippet"
scalar_type="String"/>

<meta_metadata_field name="link"
scalar_type="ParsedURL" />

</meta_metadata_field>
</meta_metadata>

public class Search
{
 @xml_collection(“search_result”)
 ArrayList<SearchResult>
 searchResults;
….
}

public class SearchResult
{

 @xml_nested MetadataString heading;
 @xml_nested MetadataString snippet;
 @xml_nested MetadataParsedURL link;
...
}

Figure 5: Source definition and generated classes

3.2 Runtime

At runtime, the visualization application uses Meta-Metadata and metadata to

define, extract, and present structured collections to the user. Figure 6 presents an

overview of the runtime control flow. When a URL to an information source is

encountered, it is first matched against the URL patterns of various source definitions in

the Meta-Metadata repository, to find the appropriate matching Meta-Metadata. The parser

module then parses the information source based on the extraction rules obtained from

selected Meta-Metadata, extracts information, and populates the metadata objects. These

metadata objects are then acted upon by semantic action handler module, according to

semantic actions specified in the selected metadata.

 21

Figure 6: Runtime data flow

3.2.1 Efficient URL Pattern Matching

In Meta-Metadata repository, the Meta-Metadata definitions are indexed by URL

pattern. To obtain Meta-Metadata for a particular URL, we match it against the URL key

in the Meta-Metadata repository. To account for the diverse structures of URLs used by

different template-based websites, multiple URL matching mechanisms are needed. As

this matching is performed for each URL encountered, efficient data structures and

algorithms are required.

 22

Meta-Metadata URL pattern matching enables the use of three different

mechanisms for authoring the URL key. Each of the three different kinds of keys has a

different lookup time complexity. One mechanism is based on what we call no query

URL, meaning a URL with its query part stripped. For no query URL, we maintain a hash

map of Meta-Metadata with the no query URL as the key for this mechanism. The lookup

takes O(1) time to find matching Meta-Metadata. For instance, for Google Search URL

(http://www.google.com/search?q=QUERY1), we use no query URL

(http://www.google.com/search) as the key for Google search Meta-Metadata. This is done

because all Google searches, irrespective of the search query, will give the same no query

URL, and thus it can be used as a key for looking up its Meta-Metadata. Similarly, for

Flickr search, the search URL is http://www.flickr.com/search/?q=QUERY and so no

query URL (http://www.flickr.com/search/) can be used as key for Flickr search Meta-

Metadata. Since query URL is the fastest mechanism for URL lookup whenever possible

no query URL should be used as the key in a Meta-Metadata declaration.

In some cases, no query URL is inadequate as a key for defining Meta-Metadata

lookup. For example for a Flickr image result page, the URL pattern is

http://www.flickr.com/photos/AUTHOR2/IMAGE_ID3/, and the no query URL is

http://www.flickr.com/photos. However, for Flickr, there exists another family of pages of

interest, those with all the photos by a particular author, which have a URL of the form

http://www.flickr.com/photos/AUTHOR/. The no query URL for this is also the same:

 The Query String
2 Author of the image
3 Unique identifier for the image

 23

http://www.flickr.com/photos. Thus, in such cases, no query URL cannot be used as a key

to uniquely identify the Meta-Metadata. In such cases, we use the URL prefix with wild

cards to define the URL key for Meta-Metadata. Thus, the URL key for Flickr image

result page is http://www.flickr.com/photos/*/*/, and for Flickr author page, it is

http://www.flickr.com/photos/*/. Here we use ‘*’ as a wild card that matches anything

between two ‘/’ characters. To store patterns like these, the runtime infrastructure uses an

efficient data structure “Prefix Collection,” which is a list of nested hash maps, using the

fact that the URL patterns can be separated into multiple sections, using the ‘/’ character.

The root of the URL pattern is the domain. This section is used as the key in first hash

map. If no more patterns exist with the same domain, the corresponding value for this key

will be the Meta-Metadata object itself. If there are multiple URL patterns with the same

domain, the corresponding value for this key will be another hash map. This inner hash

map will contain keys with the next section of the URL pattern, derived by using ‘/’ as a

separator. This strategy of nesting the hash maps will keep the sections of the URL pattern

that were separated. Normally, the value of this n will be of the range 2 or 3; thus, the

lookup time for URL prefix key will be O(2) or O(3), which is also very fast but slower

than the no query URL key.

Some URLs, like the source of a Flickr image, can have a number of different

patterns such as http://farm3.static.flickr.com/2020/2118178242_27fb91853a_m.jpg or

http://farm4.static.flickr.com/3477/3938205388_331febfb7a_m.jpg. For these kinds of

URL patterns, we cannot use no query URL or URL prefix as a key. For such URLs, we

use regular expressions to define the URL key for Meta-Metadata. For the given example,

 24

the URL key is http://farm[0-9].static.flickr.com. This regular expression matches all the

URLs for the source of a Flickr image. Since regular expressions are expensive to

evaluate, we maintain a list of compiled regular expression, and further keep these in a

hash map with domain as key, for each domain. When a URL is encountered, and the

lookup no query URL and URL prefix fail, we get the list of compiled regular expressions

for the URL domain and match the URL against each one of them. Time complexity in

this case is O(list_size + time for matching), so it is the slowest URL lookup mechanism.

It should be used only when a source key cannot be defined using no query URL and URL

prefix. As long as the number of these patterns per domain is not large, this strategy will

be sufficient.

During runtime, the parser module applies extraction rules on the information

source to extract the metadata fields as specified by the Meta-Metadata. The extracted

information is then bound to the generated classes, generated by Meta-Metadata compiler

to produce instances of strongly typed structured metadata objects. This makes metadata

extraction independent of the information collection software used.

3.2.2 Parser: Information Extraction Based on Extraction Rules

Information sources present their information using either human-readable Web-

based HTML documents or from XML-based Web services. For example, Google Search

presents its results Web page. Yahoo Search and Flickr provide semantic XML-based Web

services for their search engines. When accessible, semantic web services are the preferred

representation, because they are designed for computational data exchange. In either case,

we need infrastructure to extract information from sources, bind it to the compile-time

 25

model, and instantiate information objects, which function as the runtime model. For

example, for Google Search, we need to parse the HTML page and extract information for

each search result. This extracted information then needs to be bound to generated classes

using reflection creating the runtime model. For Yahoo or Flickr Search, we need

infrastructure to directly bind the semantic XML information to the annotated generated

classes, creating the runtime model.

So after the complier, the second module, the Parser, is used to extract the

information from information sources and bind it to instances of the generated classes. The

parser extracts information from sources and uses the compile time model to build the

runtime model. For Web-based interfaces like Google, it involves downloading the Web

page and building an HTML DOM from it. Extraction rules in the forms of XPath and

regular expressions are applied to the DOM to extract information. This is then bound to

appropriate Java classes generated in the previous step to obtain metadata information

objects using reflection. For XML-based Web services, we directly use the ecologylab.xml

framework. This framework allows us to bind XML to generated classes, which are

annotated with meta-language provided by it. The parser thus instantiates objects using the

compile time model and information sources during runtime, thus building the runtime

model in the form of metadata instances. This runtime model can then be utilized by

visualization software or can be serialized and saved.

3.2.3 Semantic Action Handler

Visualization applications need to act on information objects to create

presentations and visualizations and manipulate them. Semantic actions specify the

 26

generic actions that must be performed on information sources in order to use them in

visualization applications. For instance, for Google Search metadata objects, we need to

connect and download and process the result document for each item in the result set.

These result documents can then again be acted upon based on their document types. For

image documents, it will involve forming image surrogates and visualize them. This is the

case with image collections like Flickr. In other cases such as while processing a

document with many useful citation links, it involves creating nested document containers

as parts of the citation chain graph and enabling future parsing of these citations by an

information collecting agent.

For this purpose, we declared the Semantic Action Handler module. It is the

controller of our MVC-based architecture. It provides a set of method declarations as

interfaces, which can be invoked through declarations in XML, using the Meta-Metadata

language. This XML file is the call site for the operations that need to be performed on

metadata objects. Applications can then implement these methods according to their

needs. The runtime infrastructure operates on the runtime model using the actions invoked

in XML and delegates the implementation of these actions to application-specific handlers.

A power user can author the XML specifying the call sites and logic for actions on

metadata without changing or having knowledge of the application code. An application

developer can focus on implementation of these actions according to needs of task

contexts. This enables the separation of application logic from the semantic processing

logic.

 27

4. METADATA DEFINITION LANGUAGE

Metadata definition language (MDL) allows power users to author structured and

strongly typed declarations for heterogeneous information sources. These source

declarations are stored in a Meta-Metadata repository which is then used during compile

time to generate metadata classes and during runtime to get the extraction rules,

visualization rules and semantic actions for the source.

Many information sources have structural similarity. For instance, all search results

have a title, snippet, and result link field. Defining different sources having common fields

with same data type makes the source definition task cumbersome. Thus, MDL should

provide an ability to reuse the existing source definitions for defining new sources that

have the same structure. For instance, we can define the search definition with title and

snippet of type String and result document link of type URL. Other search sources like

Google and Flicker, which have exactly same structure, reuse this definition by declaring

that they are of search type. They do not need to redefine the data types for their fields.

In case of some source definitions, MDL needs the ability to reuse and enhance an

existing source definition by adding extra fields to it. For example, we have a source

definition for PDF documents. Now, to define a new source for scholarly articles, which

are PDF documents with additional fields like conference name, year of publication,

references, and citation, we should be able to reuse the definition of a PDF document.

Thus, MDL should provide the ability for specifying that a source extends another source

by adding new fields to it. This is the same inheritance provided by object-oriented

programming languages.

 28

For each information source there is a root meta_metadata element with any

number of nested meta_metadata_fields (see example, Figure 6). Each

meta_metadata field is either a scalar field, a nested field, a collection field or inherits

its type from a previously declared Meta-Metadata definition. The non-scalar fields

include nested fields specified using either is_nested attribute or collection fields

specified using the collection attribute. Collection fields have the

collection_child_type attribute which specifies the type of collection elements.

The non-scalar fields can be declared either directly inside the meta_metadata

element or previously as named and typed meta_metadata for reuse.

Four primary primitive subclasses of metadata are supplied: document, media,

image and entity. The document class is the base class for all document types,

including web pages, PDF documents and search documents. The media class is used for

all media elements including image and text elements. The image class is the base class

for image documents. Entity is used with a unique key in the form or a URL to refer to

other objects, enabling the representation of citation graphs.

In this chapter, we discuss the MDL that we have developed and how it can be

used for structured, strongly typed, and hierarchical representation of heterogeneous

information sources that can be reused or extended to define new sources. We illustrate it

by developing an example of search definition and scholarly article definition

4.1 Specifying Strongly Typed Structures for Information Sources

Strongly typed structured definition of information sources is used during compile-

time to generate strongly typed classes that can be used in any procedural programming

 29

language. This eliminates the need to write a custom code for each heterogeneous

information source. This also allows power users to declare new information sources for

an information discovery task without knowing the application source code.

These structures consists of scalar fields with primitive data types like string, int,

URL, or boolean as well as nested fields that are a collection of these fields with data types

like ArrayList.

The definition of the search class is shown next in Figure 7. It shows a collection

of search results from a search results document and corresponding XML to describe its

structure. This XML defines the search results document as collection of results. The

collection attribute is used to describe that the results form an ArrayList of items of class

search_result. The collection_child_type attribute is used to denote the class of

items in the searchResults ArrayList. The scalar_type attribute describes the type of

fields that constitute the structure of a search_result.

 30

Figure 7: Strongly typed, structured definition of search result set

 31

4.2 Specifying Heterogeneous Sources by Reusing Existing Definitions

Structural similarity among various information sources allows us to reuse existing

source definitions to author new definitions. There are two main ways in which we can use

structural similarity: sources having exactly same structure but different extraction rules

(simple type re-use) and sources that require adding new fields to an existing source

definition (inheritance).

4.2.1 Sources with the Exact Same Structure

Some sources, like searches have the same structure, shown in Figure 7 For

instance, Google Search, Yahoo Search, and Wikipedia Search have the same fields and

structure, but they have different rules to extract information from their HTML pages to

populate runtime instances. To define such sources, we use the type attribute in the

Meta-Metadata definition to declare the Meta-Metadata structure, which is exactly the

same as the structure of this source. We then author the extraction rules to extract various

fields. Because the structure is the same, we do not need to generate any class for this

source and so we set the generate_class attribute to false for this source. During

compile time, we generate classes for only one such definition. The objects of this class

are instantiated and populated during runtime based on the extraction rules of the specific

source, which is obtained from Meta-Metadata repository using a URL pattern matching

(See section 3.2.1).

Figure 8 shows the declaration of Google Search Meta-Metadata. Since its

structure is the same as that of the previous Meta-Metadata definition of search, we define

it to be of search type, by setting type attribute to search and indicate the compiler to

 32

skip class generation for it by setting the generate_class attribute to false. For other

fields, like heading, snippet, and link, we simply author the extraction rules without

specifying the data types. These are inferred from the initial search definition.

Figure 8: Google search source definition using type attribute

During runtime, when we get a URL that matches the url_base for Google

search metadata, the parser module builds instance of Search class and populates it using

extraction rules from Google Search metadata.

4.2.2 Sources That Add New Fields to Existing Definition

Some source definition adds additional fields to an existing source definition for

their description. For example, we have a definition for a PDF document in the repository

that defines fields that can be embedded in a PDF document, such as author, summary,

 33

and key words. Now we want to define another new source, Scholarly article, which is a

PDF document with additional fields like references, citations, and year of publication, in

addition to the fields that a PDF document has. To define such sources, which add

additional fields to an existing definition, we use the extends attribute. This attribute

works analogous to extends key word in object-oriented programming language like Java

in providing re-use of data structures from parent classes. Inheritance in MDL however

does not provide dynamic dispatching for methods and runtime type determination as in

object-oriented programming languages like Java or C++.

Figure 9 shows the source definition of a scholarly article using the extends

attribute. Note that these are not the full definitions of both the sources. For clarity, some

of the fields have been omitted from both definitions.

 34

Figure 9: Adding more fields to an existing definition using extends attribute.

 35

5. METADATA EXTRACTION AND VISUALIZATION RULES

While MDL allows us to specify heterogeneous information sources using Meta-

Metadata, we need infrastructure to extract information from them. This will allow us to

build metadata objects that can be visualized and acted on using the visualization

application and serialized for storage. For this purpose, the Meta-Metadata language has a

set of metadata extraction and presentation rules.

Data from an information source can be obtained through either a web page or

XML-based web service. If the data is obtained through a web page, the web page has to

be parsed to extract the information fields specified in the metadata. In the case of XML-

based web services, the XML can be directly bound to generate metadata classes to form

metadata objects. Thus, the Meta-Metadata language should be able to specify for given

information source the mechanism from which to form metadata objects.

This mechanism is achieved for web pages by parsing the HTML DOM, using

extraction rules in the form of XPaths and regular expressions. These XPaths are written

specific to a particular field of a particular information source. Templatization of

information sources makes XPaths an effective way to extract information. After

information extraction, we may want to format the information by applying regular

expressions onto it. For XML-based web services, we use the ecologylab.xml framework

to bind the information XML directly to the metadata class to form metadata objects.

The type of parsing mechanism to be used is defined using the binding attribute.

This attribute can have either xpath or direct as values, for XPath-based parsing of

HTML DOM or direct binding of XML-based web-services. If binding attribute is not

 36

present, we use the parsing methods developed by Koh, which parses the HTML DOM,

and creates image and text surrogates (Koh and Kearne, 2009).

Figure 10: XPath-based extraction from an HTML DOM

Meta-Metadata language also provides a means to specify visual appearance of

fields. This information can then be used with visualization tools to display various fields

accordingly. These visualization rules enable one to change the visual properties without

modifying or knowing the visualization layer.

5.1 XPath-based Extraction Rules

XPath-based extraction rules are used for information sources that provide a web-

based interface. In such cases, during runtime, the web page is downloaded and parsed and

the HTML DOM is formed. Now extraction rules in the form of XPaths are applied on this

DOM to extract metadata fields specified using MDL. This information is set to generate

 37

metadata classes to form metadata objects via reflection. As needed, this information can

be modified using regular expressions before setting it to metadata objects. Figure 10

shows how XPath-based extraction rules can be used to select information from an HTML

DOM. Here we apply an XPath expression ‘/html/body/tr[2]’ on the HTML DOM shown

and select the highlighted node.

Figure 11: Direct binding for XML based web-services

XPaths for extraction from a Google Search page DOM are given in Figure 7.

5.2 Direct Binding for XML-based Services

Some information sources provide an XML-based service to access them. In such

cases, we use ecologylab.xml framework to directly bind the XML to generate annotated

 38

classes and form metadata objects. This is shown in Figure 11 for Yahoo search class. In

this figure, we show the ResultSet class obtained through generative programming. The

XML obtained from yahoo search is also shown. Now ecologylab.xml framework is used

to obtain an object that contains each of the Result elements in an ArrayList.

5.3 Visualization Rules

Visualization rules tell the visualization software how a particular field should be

shown to users. This includes the style of fonts and whether the field should be shown or

not. These rules specified using some special attributes for the Meta-Metadata field like

style and hide. The style attribute is used to specify the style of fonts to render the text

of the field and hide attribute is used to specify the visibility of the field. By default,

each field is visible.

Figure 12 shows the style attribute for title field is h1 and tag_link field

should not be visible.

Figure 12: Visualization rules for Meta-Metadata fields

 39

6. SEMANTIC ACTION SCRIPTING

After metadata objects are created, visualization applications operate on them to

build semantic visualizations. We define semantic actions as the set of operations to be

performed on an individual metadata object or a set. These operations include forming

image and text surrogates that represent the main ideas of the information sources and

provide access to it or connecting and downloading the information from the source.

Depending on information source, these actions might need to be performed only under

some particular conditions.

Current architectures have semantic actions closely tied with the visualization

layer. Thus, it involves change and familiarity with the application code to add, remove, or

modify any action. To abstract out the logic of operations on metadata objects from the

application, the Meta-Metadata language includes a set of semantic actions that can be

defined in the XML for each information source. The syntax is similar to XSL. We

abstract out the logic for operations on metadata as interfaces. The collection visualization

application can implement these interfaces according to its needs. Thus, the control flow

structure of actions (conditionals and loops) coupled with the metadata specific actions are

separated from the application. A power user can modify the call sites and sequence of

these actions to change the application behavior. The application developer has to

implement these actions according to the needs of visualization application.

This gives power users the ability to add new functionality and sources to

information collection application without modifying source code. For instance, suppose

there is an application that crawls and visualizes the citation for the graph of a scholarly

 40

article. This application will have actions to download the scholarly article, get all the

citations, and connect to them. Now, suppose, the user need to gather information about

the authors too. If the logic for crawling and downloading the citations is in the

application, it would require developers to modify the source code and rebuild the

application. On the other hand, using our MVC-based architecture, the user can add an

extra semantic action in XML to crawl author pages, too. No modification in the

application source code is needed, and the user need not know about the application source

code. Thus, semantic actions enable us to segregate the controller from the view and

model and can change the logic of operation on the model by changing the semantic

actions in XML

Semantic actions scripting include three kinds of statements: variable definition

statements, control flow statements, and metadata-operation statements. Variable

definition statements are declared under def_vars tag and are used to declare variables

which are either a DOM node or a DOM nodelist. These can be used in the MDL to write

concise XPaths as well as in control flow and Meta-Metadata operations to operate on

document DOM directly.

Control flow statements and Metadata-operation statements are declared under

semantic_actions tag. Control flow statements include loops and conditional

statements which govern the flow of control of operation on metadata objects. Metadata-

operation statements operate on metadata objects to either build image and text surrogates

from them, download them immediately, or send them to crawler to be downloaded latter.

 41

 The architecture provides an ability to store the values returned by actions in

variables, which can then be used as arguments for other actions. Thus, they provide some

of the same functionality as other procedural programming languages.

Figure 13: Variable declaration statement

6.1 Variable Definition Statements

Variable definition statements declare variables of type node and node list. Figure

13 shows two sample variable definition.

Each variable is defined using a def_var tag. Each tag has following attributes.

a. name: Name of the variable

b. xpath: XPath expression to be applied to get the node or node list

c. type: The kind of variable. It can either be a node representing a DOM node

or a node_list, representing a DOM Node list.

d. context_node: The node on which the XPath should be applied. If this

attribute is missing XPath is applied on the root node of DOM

 42

6.2 Control Flow Statements

Semantic Action

Metadata Object Collection : moc

87654321

Semantic
Action Handler

<for_each collection=”moc” as=”c”>
…..
</for_each>

 c=1 c=8……….

Operate on each object sequentially

Figure 14: For loop to iterate over a collection

Control flow actions define the control flow structure for the procedural

programming language metadata objects. These structures include loops and conditional

statement. XSL is a language that provides the ability to specify control structures in

XML. But XSL can only be used for transformation of XML documents. It cannot be used

 43

to define interfaces which can act as call sites for operations on procedural programming

language objects. For this reason, we have defined control flow structures in Meta-

Metadata language that are similar to syntax in XSL but differ in that they can operate on

procedural programming language objects.

Each of the control flow statements can have other control flow or metadata-

operation statements within them. There are two kinds of control flow actions: For

loop to iterate over a collection and If statement to execute a set of metadata

operation statements conditionally.

6.2.1 Loop Statements

Loops are used to iteratively perform a set of actions on a collection of objects.

Meta-Metadata language includes a for_each semantic action that is syntactically very

similar to XSL for-each statement. It is shown in Figure 14.

In the for_each semantic action, we iterate over a collection that we refer to as

moc using the collection attribute. We access each item of this collection using the

as attribute and refer it as c. As shown in Figure 13, the semantic action handler then

operates on each object iteratively. The set of actions that needs to be performed on this

collection are written between the <for_each></for_each> tags.

The loop iterates over collections of metadata objects extracted from a webpage.

We make the practical assumption that a webpage will only offer a finite collection of

metadata, resulting in loops that will always terminate.

 44

6.2.2 Conditional Statements

Figure 15: If statement for conditional execution

Conditional statements are used to specify the conditions only in which a set of

semantic actions should performed. Sometimes we need to perform a semantic action only

if certain conditions are satisfied. For instance, in ACM Portal digital library, the metadata

of an article also contains the link to the actual document. The semantic actions for ACM

Portal will thus include getting the link of the actual document and then downloading the

linked document. But if for some reason this link is not present, the semantic action for

downloading the linked document should not be taken. Thus we need a mechanism to

represent this logic in XML. This logic is shown as a flow chart in Figure 15.

 45

XSL has a <if> tag to write conditional statements in XML. We have developed a

similar <if> tag in our language. It has a list of flag_check elements nested inside it.

Each flag_check element has a boolean variable as value attribute. The actions

inside an if statement will be executed only when all the boolean variables are true. In the

XML shown in Figure 15, we take set_metadata and process_document actions

only if the flag specified in flag_check is true.

6.3 Metadata-operation Statements

Metadata-operation statements specify the operation that visualization application

can perform on metadata objects. These actions act as the interfaces that different

applications can implement according to their needs. Meta-Metadata language currently

provides a set of metadata actions, each of which is described in detail in the Appendix A.

 46

7. USE CASES

We develop use cases to illustrate the use of the Meta-Metadata architecture in

practice. All these use cases have been developed by power users, having programming

background. Power users write Meta-Metadata definitions in XML using the Meta-

Metadata language.

7.1 Google Search

Querying Google gives a web page containing a list of results. This is shown in

Figure 16 for a search for iPhone. We use MDL to define the information fields of the

Google search result page as shown in Figure 8. After this source definition, during

compile-time we call the Compiler module to generate strongly typed annotated metadata

classes. Since Google source definition is of type search, we do not generate any separate

class for Google. The generated classes for Search are shown in Figure 5.

We use combinFormation as collection visualization application. The user task

involves gathering information about latest in the field of smart phone technology and

compares two existing smart phones: iPhone and Palm Pre, based on their features.

User issued Google Searches with following queries: ’iPhone’, ’Palm Pre’ and

‘smart phones’. Note that we have shown Google results page only for one query: iPhone.

 47

Using extraction rules defines for Google Search Meta-Metadata. The values are

then set in the generated class, to get the Google search metadata object. These metadata

objects are then operated on by the Semantic Action Handler module to take action on

them. For Google search results, these actions involve getting the link of result document,

creating a connection to it, and parsing the linked document page. After browsing through

the search collection returned, in the form of image and text surrogates, the user was able

to make innovative collage shown in Figure 17.

In the collage of Figure 17 user has shown the latest features and driving factors

for smart phones today. All these are shown in middle line which also serves as separator

for comparing iPhone and Palm Pre. On the left side user has collected information about

iPhone, which includes a picture of it and main features, while on left user has collected

similar information about Palm Pre.

 48

Figure 16: Google search result page

49

Figure 17: Smartphone,iPhone and Palm pre-browsing

 50

7.2 ACM Portal

In the ACM Portal use case, we first issue google search on site portal.acm.org.

Figure 18: Google search result set

 51

The results page obtained is shown in Figure 18. The metadata extarcted from one

of the search result is shown in Figure 19. Figure 20 shows the source definition for ACM

Portal. During a Google search for a query, if we download an ACM Portal page, which is

the case in the current scenario, the runtime infrastructure uses the source definition of

ACM Portal from the source repository to parse and build metadata objects from it and

take semantic actions. Semantic actions for ACM portal are not shown in this figure. In the

case of combinFormation, these semantic actions are implemented to download the linked

PDF document, parse it, form images and text surrogates from it and form citation chains

for references and citations. These surrogates provide in-context metadata, which can

again be acted on by the user to create more search queries. Visualization of in-context

metadata with nested citations using combinFormation is shown in Figure 21.

Figure 19: Search fields extracted from Google search

 52

Figure 20: ACM portal Meta-Metadata semantic actions

53

Figure 21: Information visualization from ACM portal using combinFormation

 54

7.3 Yahoo Search

Figure 22: Yahoo search XML and corresponding Meta-Metadata

 55

Yahoo provides both a web-based interface as well as an XML-based web service

for its search results. We have written Meta-Metadata for XML-based web service, as

these documents are meant for computation data exchange and are thus easier to process

programmatically as compared to HTML-based interfaces. Figure 22 shows a sample

XML obtained from Yahoo web service and corresponding Meta-Metadata declarations

for it.

As shown, the binding type for the Meta-Metadata is declared as direct. This tells

the parser during runtime to bind the XML directly to the generated class. No extraction

rules are defined for any of the Meta-Metadata field as ecologylab.xml framework

provides the ability to directly bind XML to annotated metadata class and form metadata

objects.

7.4 Lines of Code Comparison

In this section, we discuss the lines of code that was needed in Java to add a new

information source in combinFormation with the lines of XML declaration needed. We

have compared all the three preexisting source definitions in combinFormation written in

Java with the new declarations of these sources in XML. In each case, we have observed

that number of lines of XML needed were significantly less than lines of Java code

required. Figure 23 gives a bar graph comparing the lines of Java code and lines of XML

for each of the source.

 56

Figure 23: Comparison of lines of Java code vs lines of Meta-Metadata declaration

 57

8. USER STUDY

To validate the usability of our architecture we conducted a user study, in which

participants were power users, who used the Meta-Metadata to author templates for

information sources. We asked three users to use the Meta-Metadata, each for a different

source. The users were all computer science students having programming background.

These sources included digital collections of images like Flickr, databases like IMDB for

movies, and article collections like Wikipedia. Each of these sources uses a specific web

template to display their information. The abundance of digital collections in these sources

made them very important for the task of collection visualization.

During the study, the user tasks involved authoring of Meta-Metadata declarations

and extraction rules for structured metadata extraction, to create metadata objects from

these diverse templated sources and operations on metadata objects thus created. These

operations included iterating through the collection set, connecting to and parsing

documents, forming citation chains, and creating and visualizing image and text

surrogates.

We gathered qualitative data from this user study. Users were asked to fill out a

questionnaire that included questions about their background and experience with

authoring of information sources for collection visualization applications. They were also

asked about their expertise level with technologies like XSL, XPath, and regular

expressions. Finally, they were asked about their experience of writing source definitions

using Meta-Metadata language and number of lines of custom code (if any) that was need

for this. The results of the study are discussed in this section.

 58

8.1 Wikipedia

Wikipedia (http://en.wikipedia.org/wiki/Main_Page) is a free encyclopedia built

using Wiki software. It allows collaborative authoring of articles on various topics. It has a

collection of about 3,037,664 articles. Each article page consists of text and images

describing the topic, as well as links to other articles both within Wikipedia and external

documents.

Using the Meta-Metadata, the user performed the following tasks.

• Authored support for the Wikipedia search engine.

• Authored Meta-Metadata for the search results page of Wikipedia.

• Authored Meta-Metadata for each article page of Wikipedia.

Details of each of these tasks and feedback are discusses in following sections.

8.1.1 Authoring Meta-Metadata for Search Results Page of Wikipedia

Wikipedia can be searched for articles using a search engine. The first step in

authoring Meta-Metadata for Wikipedia is specifying the search URL that can be used to

retrieve the search results from Wikipedia. The user was able to use the search engine

definition data structure discussed in Appendix C, to define a new search engine for

Wikipedia. The structure for the Wikipedia search URL and its declaration are shown in

Figure 24.

After connecting to the search URL, the next task involves parsing the search

results page, forming metadata objects from it, and taking semantic actions on them. For

this, the user defined Meta-Metadata for the Wikipedia search page. This Meta-Metadata

consisted of a collection of extraction rules for search results collection and semantic

 59

actions on each object of this collection. These semantic actions included getting the

hyperlink for each result document, creating a container for it, and parsing the result

document container. Also, a unique URL key for this Meta-Metadata was defined to

uniquely retrieve the Meta-Metadata when a Wikipedia search URL is encountered.

The user was easily able to reuse the predefined search definitions for search and

Google Search to write the Meta-Metadata for Wikipedia search.

Figure 24: Search engine declaration for Wikipedia

8.1.2 Authoring Meta-Metadata for Article Page of Wikipedia

The results documents from Wikipedia search are links to articles on Wikipedia.

These articles contain images and links to other Wikipedia articles as a part of their

contents. The Meta-Metadata authored by the user extracts a collection of images for each

article page, and a collection of links to other articles on Wikipedia that are referred from

within the article body. The user had a beginner level in XPaths and regular expressions

and was able to write extraction rules for these fields.

The user had a beginner level of knowledge in XSL syntax and with help from the

documentation of semantic actions was able to choose and script the semantic actions

 60

create image surrogates for images on the page and semantic links for other documents

which are referred from the current page.

8.1.3 Feedback from Study

We observed that the user used the built-in XPath utility of the Google chrome

browser and the Firefox XPather plugin to author extraction rules. Having a programming

background in other languages and a beginner level knowledge of XML- based language

like XSL was sufficient to script the control flow logic in semantic actions. The

documentation provided for semantic actions was helpful during the scripting of actions

for performing the desired tasks. The user did not have write Java code. The entire

template definition for Wikipedia was performed using Meta-Metadata.

The user requested the following features to facilitate Meta-Metadata authoring

which have been developed as part of the present research.

• Ability to write relative XPaths.

• Explicit error messages, in case some extraction rule is invalid, or semantic

action could not be executed

8.1.3.1 Ability to Write Relative XPaths

Initial designs of extraction rules enabled writing XPath only on the document root

node. This resulted in very large XPaths expressions for each field. This is cumbersome

for authoring, inefficient computationally, and makes the metaMetadata repository hard to

read and maintain. The ability to write relative XPaths enables selecting some child nodes

of interest and then writing XPaths relative to these child nodes. To declare these child

nodes of interest, we implemented variable declaration statements. These statements

 61

(discussed in Section 8.1) allow a user to declare a set of commonly use nodes and write

XPaths for these nodes. These nodes can then be used inside the extraction rules for

various Meta-Metadata fields to write concise XPath expressions.

8.1.3.2 Explicit Error Messages

During runtime, if an error occurs, either during parsing or executing semantic

actions, the runtime architecture previously reported Java errors. These errors were not

intuitive and it was difficult for power users to debug their Meta-Metadata declarations

based on them. We have now added the functionality in the Meta-Metadata language

interpreter, to catch these Java exceptions and generate explicit meaningful error

messages, which the Meta-Metadata author can use to debug his declarations

8.2 Flickr

Flickr (www.flickr.com) is a well-known image collection site. It has a collection

of about 3.6 billion images. It provides the ability to search images by name and by author.

Images on Flickr also have tags that connect images based on users supplied keywords,

creating a folksonomy (Camreon et al., 2006). For this site, the user performed following

tasks.

• Authored search URL for, search by image name and search by author name

• Authored Meta-Metadata for search by image name, results page

• Authored Meta-Metadata for search by author name page

• Authored Meta-Metadata for image description page, which is the result link of

both search by image name or search by author name page. This Meta-

Metadata consisted of actual image source, title, caption and tags for the image.

 62

8.2.1 Feedback from Study

The initial design of the Meta-Metadata language had only no query URL as a way

to define the unique URL key for Meta-Metadata. In case of Flickr, image description

page has pattern http://www.flickr.com/photos/AUTHOR/IMAGE_ID/); the no query

URL is http://www.flickr.com/photos. For search by author name we URL pattern

http://www.flickr.com/photos/AUTHOR/. The no query URL for this is also same

http://www.flickr.com/photos. Thus, there was a need of a different mechanism to define

URL key apart from no query URL. For this purpose, we implemented URL prefix with

wild card support. Thus, the URL key for Flickr image result page is

http://www.flickr.com/photos/*/*/ and for Flickr author search page is

http://www.flickr.com/photos/*/. Here we use ‘*’ as a wild card that matches anything

between two ‘/’ characters.

Flickr image can have a number of different URL patterns like

http://farm3.static.flickr.com/2020/2118178242_27fb91853a_m.jpg or http://farm4.static.

flickr.com/3477/3938205388_331febfb7a_m.jpg. For these kinds of URL patterns, we

cannot use no query URL and URL prefix as a key. Thus, we introduced another

mechanism to specify URL key using regular expressions.

All the various ways to specify URL keys, along with their lookup complexity, are

discussed in Section 3.2.1.

8.3 IMDB

IMDB (Internet Movie Database) is an online database that provides information

about movies and artists. This has two families of pages of interest. The first one being the

 63

movie details page, which includes all the information about a particular movie. The other

page of interest is the profile page of artists, which includes information about a particular

artist. For this site, the user performed the following tasks:

• Authoring Meta-Metadata for each movie title. This included extraction rules

for movie title, poster, rating, directors, writers, genres, plot, tagline, and cast

and declaring semantic actions to operate on the metadata object thus created.

These semantic actions included creation of image surrogate from the poster, a

text surrogate from tag line and connecting to, and parsing the pages for the

cast of the movie.

• Authoring Meta-Metadata for each artist. This included extraction rules for

artist name, birth details, biography, awards, and list of movie titles and

semantic actions to operate on this metadata. These semantic actions included

creating of image surrogate for the artist image and nested chaining of all the

movie title he was involved with.

8.3.1 Feedback from Study

The user was able to write definitions for both the family of pages using the Meta-

Metadata language. The error messages proved useful during the authoring process and

helped the user to debug the authoring of definitions. In one such situation, the user added

an extra field and did not use the compiler to generate new class. Now when the user tried

to access that newly added field, he got an appropriate error message during runtime,

which helped the user to determine that compiler needed to be run again.

 64

8.4 Observation

We observed that the users, with some programming background, were able to add

new information sources to combinFormation using the Meta-Metadata language. Users

were not expert in XPath but were able to use tools like XPather to write extraction

XPaths. The control flow statements were very similar to other scripting language and did

not required extra effort to learn. The set of metadata operation statements allowed users to

do the desired tasks with metadata objects created.

Finally, we also provided two test files to users which helped them to test their

XPaths and Regular expression before authoring the Meta-Metadata. This proved very

useful as users used it to debug, test, and fix their extraction rules before scripting Meta-

Metadata.

 65

9. CONCLUSION AND FUTURE WORK

As a part of this research we have designed and developed software architecture

and scripting language that enables transformation of the regular World Wide Web into

the semantic web. This is exciting. It allows power users to define the information

extraction semantics and script information manipulation logic for collection visualization

applications. This can also be used for creating semantic web browsers. We discuss the

following features of our Meta-Metadata language

• Expressive ability of Meta-Metadata language, and

• Minimal programming experience needed.

9.1 Expressive Meta-Metadata Language

The Meta-Metadata language that we have developed as a part of this research is

expressive to describe information extraction, visualization, and manipulation semantics

from diverse heterogeneous sources. During the user study, the power users, having some

programming background, were able to describe structure of different information sources

using the Meta-Metadata definition module. The extraction rules, in the form of XPaths

and regular expression, were sufficient to extract various metadata fields from the

information source. The semantic action scripting module provided them ability to operate

and manipulate the metadata objects. The overall number of lines of XML needed to

author a new source was less as compared to lines of code needed to author a new source

in Java.

 66

9.2 Minimal Programming Experience Needed

Meta-Metadata language was designed for power users, which we assume have

some programming background. During the user study, users who were computer science

students, did not have to put any effort in learning the control structure of the semantic

action script and were able to author Meta-Metadata by learning from previously authored

Meta-Metadata declarations. A beginner level knowledge of XPaths, regular expression

and XSL, was sufficient to write the extraction rules and semantic actions.

9.3 Future Work

This research lays the foundation for considerable future research. Below is the list

of potential research areas to explore:

• Entity Resolution Problem

• Changing DOM problem

• Meta-Metadata authoring issues

• Exploring generality of semantic actions

• Constraint specification in Metadata Definition Language

We explain and discuss these problems in this section:

9.3.1 Entity Resolution Problem

Entities are data structures which contain a nested metadata object, its location and

its semantic text. Entity resolution problem arises when there is a citation chain while

parsing information source. In such cases, we need to keep a track of instances of metadata

objects so as to recycle a metadata object, only when there is no more reference to it, in

order to prevent memory leak. Also we need to maintain a data structure to dynamically

 67

update the nested metadata instances of entities, when the document present at its location

is downloaded and parsed. This data structure will be used to build citation chains

refereeing this entity.

9.3.2 Changing DOM Problem

Metadata for many information sources like Google, Flickr, ACM Portal, IMDB,

and Wikipedia are extracted using XPaths. These XPaths are written by power users for

the DOM created by a template of these sources to present their information and are very

specific to the particular template. During the course of this research, we found that these

information sources sometimes make minor modification in their templates. In such cases,

many of the extraction rules will either fail or will not work as expected. We call this

problem the changing DOM problem.

The changing DOM problem is not just the characteristic of XPath-based

extraction. Even if we have had custom Java classes written to parse these sources, the

extraction might fail, if the template is changed. One way to solve this problem could be to

use machine learning techniques. In such an approach, we could store a template for an

information source also in another repository, along with the Meta-Metadata for it. Now in

case a new template is used for this information source, we can use machine learning

techniques to find out the changes and modify XPaths accordingly.

9.3.3 Meta-Metadata Authoring Issues

Although the Meta-Metadata authoring is reasonable easy, there are some issues

that might involve more study. For example, for given information source, what fields

need to be extracted and what semantic actions need to be taken are sometimes very

 68

complicated. This opens up research in the areas of usability and human computer

interaction to obtain only appropriate metadata fields, create a sufficient number of

surrogates (both image and text), and perform only the required level of metadata nesting

for a given information source. Also, research needs to be done so as to automate the

Meta-Metadata authoring as some times the extraction rules, like regular expression, could

be complicated. Sometimes URL key authoring can also be complicated, involving the use

of regular expressions. These choices have to be made by power user while authoring

Meta-Metadata and may not be trivial.

9.3.4 Exploring Generality of Semantic Actions

The extraction module of Meta-Metadata language builds metadata objects which

can be serialized into XML and thus can be used by any information collection and

visualization application. The semantic actions are available as abstract methods and have

to be implemented according to application. We have implemented these actions for

combinFormation. We believe that other applications should be able to implement these

actions. Some actions like create_container or queue_document_download

involve use of data structures which might be specific to combinFormation. The future

research in this direction should explore the possibility of implementation of semantic

actions in other visualization applications like Visual Knowledge Builder (Shipman et al.,

2001).

9.3.5 Constraint Specification in Metadata Definition Language

There is scope for improvement in the Metadata Definition Language. The current

implementation of metadata language only provides two kinds of value specification for a

 69

field, a singular scalar field, or a collection. A field can be a scalar field like integer, string

and URL. In this case the field can have either 0 or 1 value associated with it. The other

declaration provided is a collection field like ArrayList. In this case a field can have either

0 or many values associated with it. For example, consider the case of authoring the

metadata definitions for a ‘Book’ object. We know that any book must have at least one

author associated with it, however there is no way for a user writing Meta-Metadata

definitions to specify such constraints. We believe that such constraints could improve the

languages ability to express not only the structure, but also higher level semantics of a

metadata object.

 70

REFERENCES

Bainbridge, D., Ke, K. and Witten, I. (2006) Document level interoperability for

collection creators. Proceedings of Joint Conference on Digital Libraries, 105-

106.

Bier, E. A. and Perer, A. (2005) Icon abacus: Positional display of document attributes.

Proceedings of the 5th ACM/IEEE Joint Conference on Digital Libraries, 289-

290.

Camreon, M., Mor, N., Boyd, D. and Davis, M. (2006) HT06, tagging paper, taxonomy,

Flickr, academic article, to read. Odense, Denmark: Proceedings of the

Seventeenth Conference on Hypertext and Hypermedia, 31-40.

Cortez, E., Silva, A., Gonçalves, M., Mesquita, F. and Moura, E. (2007) FLUX-CIM:

flexible unsupervised extraction of citation metadata. Proceedings of Joint

Conference on Digital Libraries, 215-224.

Cui, H. (2008) Unsupervised semantic markup of literature for biodiversity digital

libraries. Proceedings of Joint Conference on Digital Libraries, 25-28.

Dontcheva, M., Drucker, S., Wade, G., Salesin, D. and Cohen, M. (2006) Summarizing

personal web browsing sessions. Proceedings of User Interface Software and

Technology, 115-224.

Hetzner, E. (2008) A simple method for citation metadata extraction using hidden

markov models. Proceedings of Joint Conference on Digital Libraries, 280-284.

 71

Hsieh, H-W. and Shipman, F. (2000) VITE: A visual interface supporting the direct

manipulation of structured data using two-way mappings. Proceedings of the 5th

International Conference on Intelligent User Interfaces, 141-148.

Hui, H., Giles, C., Manavoglu, E., Zha, H., Zhang, Z. and Fox, E. (2003) Automatic

document metadata extraction using support vector machines. Proceedings of

Joint Conference on Digital Libraries, 37-48.

Hunter, J., Khan, I. and Gerber, A. (2008) Harvana: Harvesting community tags to

enrich collection metadata. Proceedings of Joint Conference on Digital

Libraries, 147-156.

Kerne, A., Koh, E., Smith, S., Webb, A. and Dworaczyk, B. (2008a) combinFormation:

Mixed-initiative composition of image and text surrogates promotes information

discovery. ACM Transactions on Information Systems, Vol. 4, 1-47.

Kerne, A., Toups, Z., Dworaczyk, B. and Khandelwal, M. (2008b) A concise XML

binding framework facilitates practical object-oriented document engineering.

Proceedings of Document Engineering, 62-65.

Klavans, J., Sheffield, C., Lin, J. and Sidhu, T. (2008) Computational linguistics for

metadata building. Proceedings of Joint Conference on Digital Libraries, 427-

427.

Koh, E. and Kerne, A. (2006) I keep collecting: College students build and utilize

collections in spite of breakdowns. European Conference on Digital Libraries,

303-314.

 72

Koh, E. and Kerne, A. (2009) Deriving image-text document surrogates to optimize

cognition. Proceedings of the 9th ACM Symposium on Document Engineering,

84-83.

Liu, Y., Bai, K., Mitra, P. and Giles, C. (2007) TableSeer: Automatic table metadata

extraction and searching in digital libraries. Proceedings of Joint Conference on

Digital Libraries, 91-100.

Lu, X., Kahle, B., Wang, J. and Giles, C. (2008) A metadata generation system for

scanned scientific volumes. Proceedings of Joint Conference on Digital

Libraries, 167-176.

Mathur, A. and Kerne, A. (2009) Meta-Metadata Repository. Retrieved from

http://ecologylab.net/code/java/cf/config/semantics/metametadata.zip.15 October

2009.

Petras, V., Larson, R. and Buckland, M. (2006) Time period directories: A metadata

infrastructure for placing events in temporal and geographic context.

Proceedings of Joint Conference on Digital Libraries, 151-160.

Recker, M. and Palmer, B. (2006) Using resources across educational digital libraries.

Proceedings of Joint Conference on Digital Libraries, 240-241.

Shipman, F., Hsieh, H., Airhart, R., Maloor, P. and Moore, J.M. (2001) The visual

knowledge builder: A second generation spatial hypertext. Proceedings of the

ACM Conference on Hypertext, 113-122.

Shiri, A. (2008) Metadata-enhanced visual interfaces to digital libraries. Journal of

Information Science, 763-775.

 73

Wong, J. and Hong, J. (2007) Making mashups with marmite: Towards end-user

programming for the web. Proceedings of Special Interest Group on Computer-

Human Interaction, 1435-1444.

Yaron, D., Davenport, J., Karabinos, M., Leinhardt, G., Bartolo, L., Portman, J., Lowe,

C., Sadoway, D., Carter, W. and Ashe, C. (2008) Cross-disciplinary molecular

science education in introductory science courses: An NSDL Matdl collection.

Proceedings of Joint Conference on Digital Libraries, 70-73.

Yilmazel, O., Finneran, C. and Liddy, E. (2004) MetaExtract: An NLP system to

automatically assign metadata. Proceedings of Joint Conference on Digital

Libraries, 241-242.

 74

APPENDIX A: META-METADATA LANGUAGE SYNTAX AND CONSTRUCTS

The Meta-Metadata language which we have developed allows power users to add

new information sources for collection visualization applications without knowing, the

details of the application code. In this document we discuss the syntax and constructs of

the language.

Adding a new information source involves following steps:

1. Authoring the data structures to represent and store the information.

2. Specifying the way to extract information from the source and build instances

of the data structures.

3. Writing the logic for operations on these instances to build visualizations.

Meta-Metadata language provides a Metadata Definition Language which can be

used to author data structures for information sources and specify the ways to build

instances representing them. For writing logic for operations on these instances it provides

a scripting language which can be used to do the semantic scripting. These two modules

are discussed below.

1. Metadata Definition Language

Metadata definition language allows us to define new information sources using

Meta-Metadata definitions.

When defining a new information source we are either extending an existing

information source definition by adding new fields to it or are specifying how the various

fields of an existing source can be filled by using extraction rules.

 75

 A Meta-Metadata definition is constructed by:

• Defining a unique name for the Meta-Metadata. This is done by using the name

attribute of meta_metadata XML element. Any valid, meaningful and

unique string can be used as its value.

• Define the binding attribute. This attribute is used to tell the kind of parsing

will be used for the information source. There are three different kinds of

bindings possible:

a) xpath: This is used in case we need to parse a HTML DOM and create

metadata objects from it. Examples include Google Search, ACM Portal.

b) direct: This is used when the information source provides an XML

containing the information fields. Examples include Yahoo Search.

c) If the binding attribute is not present we use the basic HTML parser.

Example include New York Times

• Define either the type or extends attribute.

• Define the generate_class attribute. The default value of this attribute is

true , which case we will generate classes for the source definition.

• Define either url_base or url_prefix attribute. These should be unique for

every source definition we author in the repository.

• Define the user_agent_name attribute. This is the string a web browser

provides to a web server.

 76

• Define the package attribute. This attribute tells which Java package the

generated classes should be placed into. It is used to organize the generated

classes.

• Define the comment attribute. This attribute adds meaningful descriptions to

the source.

• Define the Meta-Metadata fields which will comprise the metadata for the

information source. This is done using meta_metadata_field tag nested

inside the meta_metadata tag.

Defining Meta-Metadata fields

There are three types of Meta-Metadata fields which can be defined using Data

Definition Language:

• Scalar Fields: These are primitive data types and other single valued data types

like String, and ParsedURL.

• Nested Fields: These are the fields which contains a list of scalar fields inside

them. These can be used to define new metadata classes within an existing Meta-

Metadata definition.

• Collection Fields: These are the fields which consist of a set of list of scalar

fields. These can be used to define new metadata classes within an existing Meta-

Metadata definition.

We discuss below the attributes which are common to scalar fields and collection

fields as well as attributes which are specific to each of them.

 77

A) Common Attributes

1. name: This attribute gives the name of a Meta-Metadata field. Any meaningful

name string can be used as the value of this attribute.

2. xpath: This attribute is required for Meta-Metadata with binding as ‘XPath’.

Any valid XPath expression can be used as the value of this attribute.

3. context_node: Node on this the XPath has to be applied. Default value of this

node is DocumentRoot for scalar fields and is collection object node for

collection fields.

4. regular_expression: The regular expression to apply on extracted

information.

5. replacement_string: The string to be used to replace the match.

6. comment: Description about the field.

B) Scalar Fields

1. scalar_type: This field defines the data type of Meta-Metadata field.

C) Nested Fields

1. is_nested : It is true for nested fields

D) Collection Fields

2. collection: Defines the type of collection

attribute. Example ArrayList

3. collection_child_type: The class name for the

collection field.

 78

4. generate_class: Defines whether we need to generate

a new class for the collection field.

 Attribute Name Purpose Possible
Values

Required/Optional

name The name of the Meta-
Metadata field

Any valid
string

Required

scalar_type The data type of the
Meta-Metadata field

String,
ParsedURL,
Int, Boolean

Required for scalar
fields

XPath The XPath expression to
be applied for extraction

 Required for fields of
Meta-Metadata with
binding=’XPath’

context_node
[Default Values]
Document Root for
scalar fields.
Collection node for
collection fields.

Node on which the
XPath has to applied

Any valid
XPath
expression

Optional

collection The type of collection
fields

ArrayList Required for
collection fields

collection_child_type The class for the
collection type.

Any
collection
class name

Required for
collection fields

generate_class
[Default Value]
true

Tells whether to
generate class for a
collection field

true, false Optional

regular_expression The regular expression
which needs to be
applied on the value
extracted from current
field

Any valid
regular
expression

optional

replacement_string The string which should
be replaced with
matching string

Any valid
string

Optional

 79

Table above summarizes all the fields, their purpose, default values, possible

values and whether there are required or not. Following are the various attributes which

can be used while defining a Meta-Metadata field.

Semantic Action Scripting

There are three kinds of statements which scripting language provides:

1. Variable Definition Statements: These statements are used to declare new

variables, which are either a DOM node or a DOM node list. They can then be

used in conjunction with Meta-Metadata field declarations, when forming

extraction rules to write concise XPath expressions .They can also be used in

control flow and metadata-operation statements to operate on document DOM

directly.

2. Control Flow Statements: These statements include loops and conditional

statements which govern the flow of control of operation on metadata objects.

3. Metadata-Operation Statements: These statements operate on metadata objects

created to either build image and text surrogates from them, download them

immediately or send them to crawler to be downloaded latter.

We discuss the syntax and description of each of these statements below:

1. Variable Definition Statements

Variables are declared with the def_vars XML tag. There are following attributes

possible for this element.

• name: This attribute defines the name of the variable. Any meaningful

descriptive string can be used as its value.

 80

• xpath: This attribute defines the XPath expression to be used to evaluate the

value of this variable. Any valid XPath expression can be used as its value.

• type: This attribute defines the types of variable. It can be either a single

DOM node or a DOM Node list. Depending on this it can have either node

or node_set as its value.

• node: This attribute defines the name of the node on which the XPath

expression should be applied. If this is not present the XPath is applied on the

Document Root.

• comment: This attribute gives a meaningful description of the variable and

its purpose.

2. Control Flow Statements

Control flow statements are declared inside semantic_actions XML

element. There are two kinds of control flow statements:

• for_each: This statement is used to loop over a collection of metadata

objects of same kind. It can have a sequence of both control flow and

metadata-operation statements nested inside it. Each of these statements is

then executed repeatedly for each instance of metadata object in the

collection. It is declared using for_each XML tag. It must have two

attributes, collection and as, which gives the name of the collection

object and iterator over the collection object. It can also have following

optional attributes.

i. start: Specifies the starting index of the loop.

 81

ii. end: Specifies ending index of the loop.

iii. current_index: Specifies current index of the loop

iv. size: Specifies the size of the collection

• if: This statement is used for conditional execution of control flow and

metadata-operation statements. It is nested inside a specific control flow or

metadata-operation statement. It has a list of flag_check elements nested

inside it. Each flag_check has a mandatory value attribute which gives

the names of the flag which must be true for the parent metadata-operation or

control flow operation to execute.

3. Metadata-operation statements

 Metadata-operation statements allow us to operate on metadata objects to

download and parse documents and form image and text surrogates from them. Each of

them is called by their own specific name tags and arguments. There are following similar

attributes and nested fields in each of them.

a) Possible Attributes: We give below the possible attributes which are possible for

each of the metadata-operation statements. However depending on the name of

metadata –operation statements all of these attributes might not be needed.

• object: This attribute gives the name of the object on which the operation

has to be performed. Any valid object name which has been defined can be

used as its value. Default value of this attribute the metadata object created

from the current Meta-Metadata definition.

 82

• name: This attribute contains the name of the returned object from the action.

Any meaningful unique name can be used as its value. Depending upon

whether the action returns any value or not, this attribute can be present or

absent.

b) Possible Nested Fields: We give below the possible nested fields which are

possible for each metadata-operation statements. These fields include the

arguments to be passed, and checks to be performed on the returned value and

before performing the current action. Depending upon the metadata-operation

some of these nested fields might be absent. We discuss all of the possible

nested fields below:

• checks: This element includes inside it one of more check elements which

contain the validations to be performed on the returned value from an action.

check element has two mandatory attributes:

i. condition: This attribute gives the condition to be checked on

return value. It can have two possible values: NOT_NULL and

METHOD_CHECK. The first one checks if the returned value is not

equal to null and the second one is used for methods returning a

boolean value.

ii. name: It gives the name of the flag to be set as true is the return value

satisfies the condition specifies the condition mentioned using

condition attribute

 83

• if: This element gives the conditions only under which the current action

must be executed.

• args: This element includes inside it one or mode arg elements which

contains the name of the objects which needs to be passes as an argument for

the current operation. arg element has one mandatory attribute , value which

contains the name of the object which needs to be passed as an argument for

the current operation.

We now discuss the specific metadata-operations which are available to the user:

A) get_field: This action is used to get the value of a metadata field from

metadata object. It has two mandatory attributes:

• name: Name of the field to get

• object: Name of the object whose field we have to get.

B) create_container_for_search: This action creates a container object

that is a search result. The container created can then be processed (downloaded)

to immediately download and parse the associated search document or sent to the

agent for processing later. It takes one argument which is the link(data type

ParsedURL) of the search result and returns the resulting container object of type

Container. It implicitly sets the metadata of the resulting container object to the

search class object.

C) create_container: This action returns the container object, of type

Container, associated with a given link. If container already exists for the link, it

 84

is returned else a new container is created and returned. We have to set the

metadata for this container explicitly. It takes following arguments:

• Either a link to document or an entity or document.

• Anchor text string. This is optional.

• Boolean specifying the citation significance. This is optional.

• Anchor context string. This is optional.

• Float specifying citation significance value. This is optional.

D) set_metadata: This action sets the metadata of a container. It operates on a

container object and takes the metadata object to be set as argument. If a

container was created using create_container action we need to set its

metadata explicitly using this action.

E) process_document: This action takes a container object as argument and

downloads it immediately.

F) queue_document_download: This action takes a container object as

argument and sends it to the crawler agent to download later. The crawler then

puts it into its list of candidates to be downloaded.Based on application specific

weighting strategies this container may or may not be downloaded. For

combinFormation, we add the container to the candidate container list of

CfInfoCollector, and then based on the weights and term vector, CfInfoCollector,

may or may not download it. Notice the difference between this action and

process_document action where the container is downloaded immediately.

 85

G) create_semantic_anchor: This action creates semantic anchors for the

selected <a> elements in the container, and adds them to candidate containers for

the parent container. These containers can then be downloaded based on the

weighting strategy of the visualization application. It takes following arguments:

• Link of the candidate container. This can be obtained from the href attribute

of the select <a> elements.

• The text which describes the <a> element. This is optional.

• The text of the paragraph in which <a> element is present(context). This is

optional.

H) create_and_visualize_img_surrogate: This action creates a image

surrogate and sends it to the visualization layer for visualization. It takes the

following arguments:

• The URL of the image.

• Height of the image. This is optional.

• Width of the image. This is optional.

• href attribute of the element. This is optional.

 86

APPENDIX B: BNF FOR META-METADATA LANGUAGE

<meta_metadata>::= ”<meta_metadata name=”<SV>

 (”extends=”|”type=”)<SV>

 [“binding=”<SV>]

 (“url_prefix=”|”url_base=”)<SV>

 (“user_agent=”)<SV>

 [“comment=”<SV>]

 [“generate_class=”<SV>]

 [“package=”<SV>]

 “>”

 [<def_vars>]

 {meta_metadata_field}

 [semantic_actions]

 “</meta_metadata>”

<def_vars>::= “<def_vars>” {def_var} “</def_vars>”

<def_var>::= “<def_var name=” <SV>

 “xpath=”<SV>

 “type=”<SV>

 [“node=”<SV>]

 “/>”

<meta_metadata_field>::= ”<meta_metadata_field name=”<SV>

 87

 [(“scalar_type=”<SV>|

 ”collection=”<SV>”collection_child_type=”<SV>)]

 [“xpath=”<SV>]

 [“regular_expression=”<SV>]

 [“replacement_string=”<SV>]

 [“hide=”<SV>]

 [“style=”<SV>]

 [“navigates_to=”<SV>]

 [“shadows=”<SV>]

 [“is_nested=”<SV>]

 [“is_facet=”<SV>]

 [“generate_class=”<SV>]

 {<meta_metadata_field>}

 “</meta_metadata_field>”

<semantic_actions>::= “<semantic_actions>”

 {<semantic_action>}

 “</semantic_actions>”

<semantic_action>::= <get_field>|

 <create_container_for_search > |

 <process_search >|

 <create_container >|

 <set_metadata >|

 88

 <process_document>|

 <create_and_visualize_img_surrogate>|

 <queue_document_download>|

 <create_semantic_anchor>|

 <get_xpath_node>

<get_field>::= “<get_field name=” <SV>

 [<if>]

 [<checks>]

 ”/>”

<create_container_for_search>::= “<create_container_for_search

 name=”<SV>

 ”>”

 [<if>]

 [<checks>]

 <args>

 ”</create_container_for_search >”

<process_search>::= “<process_search>”

 [<if>]

 [<checks>]

 <args>

 “</process_search>”

<create_container> ::= ” <create_container name=”<SV>

 89

 “return_type=”<SV> ”>”

 [<checks>]

 [<if>]

 <args>

 “</create_container >”

<set_metadata>::= “<set_metadata object=”<SV> ”>”

 [<checks>]

 [<if>]

 <args>

 ”</set_metadata>”

<process_document>::= “<process_document object=”<SV>

 [<checks>]

 [<if>]

 “/>”

<create_and_visualize_img_surrogate> ::=

 ”<create_and_visualize_img_surrogate>”

 [<checks>]

 [<if>]

 <args>

 ”</create_and_visualize_img_surrogate>”

<create_semantic_anchor>::= ”<create_semantic_anchor>”

 [<checks>]

 90

 [<if>]

 <args>

 ”</create_semantic_anchor >”

<queue_document_download>::= ”<queue_document_download>”

 [<checks>]

 [<if>]

 <args>

 ”</queue_document_download>”

<get_xpath_node>::= ”<get_xpath_node name=”<SV>

 ”xpath=”<SV>

 [”node=”<SV>]

 ”return_object=”<SV>

 [<checks>]

 [<if>]

 “</get_xpath_node>”

<checks>::= “<checks>”

 {check}

 ”</checks>”

<check>::= “<check name=”<SV>

 “condition=”<SV> “/>”

<if>::= “<if>”

 {flag_check}

 91

 ”</if>”

<flag_check>::= “<flag_check value=”<SV> “/>”

<args>::= “<args>” {args} “</args>”

<arg>::= “<arg value=”<SV>”/>”

 92

APPENDIX C: ADDING NEW SEARCH ENGINES

Figure C-1: Search URL definition for Google search engine

The ability to add new search engines provides the ability to add new digital

libraries and collections like Wikipedia to collection visualization application without

having to write any custom code for it. For this reason we have a search engine definition

data structure that can be used to define search URLs for different search engines. Search

URL definition for Google Search engine is shown in Figure 8. In this figure, name

attribute tells the name of the search engine, which is google in this case. url_prefix

attribute gives the starting string for search URL. This is then appended by the query

string, which is followed by numResultString, denoting the number of search results to

obtain. It is then followed by startString, which gives the index of first result in the result

set. Note that we have escaped & by using & in the xml. This is shown in Figure C-1.

 93

VITA

Name : Abhinav Mathur

Address : Abhinav Mathur
 c/o Dr. Andruid Kerne
 Department of Computer Science
 Texas A&M University
 College Station TX 77843-3112

Email Address : abhinav@abhinavmathur.net

Education : B.Tech., Computer Science and Engineering, IIT Guwahati, 2006

 M.S., Computer Science, Texas A&M University, 2009

