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ABSTRACT 

 

Synthesis, Characterization, and Applications of a Melamine Based Dendrimer with 

Twelve Cysteine Groups on the Periphery. (December 2009) 

Brandon Mark Vittur, B.S., University of Houston 

Chair of Advisory Committee: Dr. Eric E. Simanek 

 

A potential drug delivery vehicle based on a melamine dendrimer with twelve 

free thiols on the periphery for constructing bio-labile disulfides has been synthesized. 

Under ideal conditions for the native chemical ligation reaction, attempts for attaching 

the cell penetrating peptide TAT, via native chemical ligation proved difficult due to the 

low solubility of the dendrimer. A camptothecin derivative containing a reactive 

disulfide was prepared for disulfide exchange with the melamine dendrimer. Up to 7 

exchange reactions were achieved as determined by mass spectroscopy. NMR and mass 

spectroscopy was used to characterize all of the intermediates. Capping groups to replace 

the hydrophobic piperidine with more water-soluble groups to aid the ligation reaction 

and optimization of the disulfide exchange step to give 12 substitutions have been 

proposed for future studies. The end target is a peptide dendrimer containing a cell 

penetrating peptide to mediate endocytosis and a bio-labile linker connecting an anti-

tumor drug to the dendrimer, which would ultimately be released inside the cancerous 

cell. 
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CHAPTER I 

INTRODUCTION  

 

Dendrimers: A Brief Historical Perspective 

“Few revolutionary findings in science are ever accepted without a predictable period of 

rejection”1  

The above quote was an attempt by Professor Flory to console Dr. Tomalia 

during the infancy of dendrimers. In 1985 a new class of macromolecules emerged 

termed starburst polymers.2 The building blocks to these novel polymers were referred to 

as dendrimers. Donald Tomalia coined this term due to their dendritic topology. The first 

dendrimers were named PAMAM or polyamido amine, and were synthesized by 

Michael Addition of ammonia or ethylenediamine with methyl acrylate followed by 

amidation with ethylene diamine (Scheme 1.1). 

 

 

 

 

 

 

 

 

___________ 
This thesis follows the style of Journal of the American Chemical Society. 
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Scheme 1.1. Synthetic scheme for the synthesis of PAMAM dendrimers leading to 
higher generations.  
 
 
 

 
 
 
 

PAMAM dendrimers were plagued in the lab with incomplete and retro Michael 

reactions, intramolecular cyclizations, and solvolysis of the terminal functionality as 

well as in the scientific community with doubts of monodispersity and their ability to 

exhibit host-guest properties.1  

Dendrimer synthesis actually began in 1978 by Vogtle.3 In his paper, he 

describes the synthesis of cascade molecules now known as poly(propylene imine) (PPI) 

dendrimers (Scheme 1.2). The difference being the core, where Vogtle originally used 

pyridine-2,6-diyldimethanamine, 1,3-phenylenedimethanamine, and ethane-1,2-diamine, 

and now butane-1,4-diamine is commonly used. 
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Scheme 1.2. Synthetic scheme for PPI dendrimers leading to higher generations.3 

 

 

 

 In the same year Tomalias’ seminal paper was published, a paper by Newkome4 

describing molecules called aborols was published (Scheme 1.3) displaying a dendritic 

structure. Newkome predicted expanding the synthesis of these one-directional 

molecules to two-directional would give a symmetrical molecule with a cavity capable 

of host-guest interactions. 
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Scheme 1.3. Synthetic scheme for aborols.4 

 

 

 

There are essentially two ways to synthesize dendrimers: divergently or 

convergently. Less common are the accelerated and orthogonal approaches. The first 

dendrimers relied on the divergent approach,2,4 which consist of branching out from a 

central core by addition of a monomer (Scheme 1.4). 
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Scheme 1.4. Generation growth by the divergent route.  

 

 

 

 Each round of monomer addition yields a new generation (i.e. addition of the 

monomer to the core yields generation 1 (G1) of that dendrimer, addition of the 

monomer to G1 yields generation 2 (G2) of that dendrimer, etc.) As the generation is 

increased by one, the number of surface groups increases exponentially. In order to form 

a dendritic structure, each peripheral reactive site must react during successive 

generation synthesis. This attribute has some drawbacks, particularly at higher 

generations where reactions become increasingly more difficult, giving incomplete 

reactions (structural defects) due to steric hindrance between the peripheral groups. 

 The other most common route is the convergent approach5 where the peripheral 

groups are built first and the core is installed in the final step of dendrimer synthesis 

(Scheme 1.5). 
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Scheme 1.5. Generation growth by the convergent route. 

 

 

 

This approach has some advantages (as well as disadvantages) over the divergent 

approach including fewer structural defects and easier purification.  

Mass spectrometry has become an invaluable tool for dendrimer chemist when 

probing sample purity. Grayson and Frechet6 have noted that divergent approaches to 

dendrimer synthesis generally gives a mixture of similar products, usually due to 

incomplete reactions. Convergent approaches however show a high degree of 

monodispersity.  

Employing both routes, referred to as an accelerated approach, can often times 

accentuate the advantages of both routes and yield higher generation dendrimers 

(divergent) with fewer steps (convergent). For example, a G7 poly (aryl ether)7 was 

constructed (Scheme 1.6) by reacting a G3 dendrimer, referred to as a hypercore 

synthesized divergently, with a G4 dendron (a fraction of a dendrimer or the molecule 

attached to the core in the last step) synthesized convergently. 
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Scheme 1.6. Dendrimer synthesis by the accelerated approach.7 

 

 

 

 Using monomers with differential reactivity give rise to orthogonal approaches to 

dendrimer synthesis. A lack of reactivity control necessitates the need for activation and 

deprotection steps, however if one can take advantage of the differential reactivity of 

different sites orthogonal to each other, one can bypass these steps. Zeng and 

Zimmerman8 were the first to demonstrate this approach using (4-tert-

Butylphenoxy)ethanol, 5-iodoisophthalic acid and (3,5-diethynylphenyl)methanol 

(Scheme 1.7). These building blocks were chosen to synthesize dendrimers by the 

Mitsunobu and Sonogashira reactions. 
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Scheme 1.7. Dendrimer synthesis by the orthogonal approach.8 

 

 

 

 The ability to control these macromolecules with such elegance has led to a wide 

variety of applications particularly in the medical field as drug delivery vehicles.9-28 Of 

particular attractiveness is the ability to release these small molecules through changes in 

the environment (i.e. pH and red/ox). This exceptional control along with the enhanced 

permeability and retention (EPR) effect29 holds great potential for dendrimers in targeted 

drug delivery.  

 

Melamine Based Dendrimers 

The synthesis of dendrimers based on melamine relies on iterative reactions of 

cyanuric chloride and diamine linkers.30 Scheme 1.8 shows how nucleophilic aromatic 

substitution of cyanuric chloride offers a chemoselective synthetic strategy where the 

degree of substitution is controlled by temperature. 
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Scheme 1.8. Temperature controlled chemoselectivity of cyanuric chloride.30 

 

 

 

 Both convergent and divergent strategies were used to synthesize our first 

dendrimer (Figure 1.1), a G3 dendrimer based on melamine with p-aminobenzylamine as 

the substituent used to propagate to higher generations.31 The substituent was chosen so 

as to circumvent the use of protecting groups or functional group manipulations during 

the convergent approach. This is possible due to the differential reactivity of the diamine 

with the benzylic amine being far more reactive than the aniline amine. For this 

particular dendrimer the convergent approach gave higher yields and purity compared to 

the divergent approach.  
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Figure 1.1. G3 dendrimer based on melamine with p-aminobenzylamine as the 
substituent used to propagate to higher generations.31 
 
 In order to expand the utility of our dendrimers, an orthogonally protected 

dendrimer, which could be manipulated upon selective removal of protecting groups was 

constructed.32 This “fruit salad tree” bears 16 Boc-protected amines, 4 free hydroxyls, 4 

TBDPS protected alcohols, 4 pyridyl disulfides and 4 levulinic acid groups (Figure 1.2). 

Though this degree of diversity is excessive, it serves as a proof of concept for the 

complexity achieved with triazine dendrimers. 



 11 

 

 

Figure 1.2. Melamine dendrimer with 16 Boc-protected amines, 4 free hydroxyls, 4 
TBDPS protected alcohols, 4 pyridyl disulfides and 4 levulinic acid groups on the 
periphery.32 
 
 Using an iterative divergent approach G1-5 dendrimers based on melamine were 

synthesized.33 As expected, higher generations gave impure products. The divergent 

route consisted of addition of the core to a dichlorotriazine monomer, capping with 

piperazine, then Boc-deprotection to yield the first generation. Subsequent addition, 

capping, and deprotection yield higher generation dendrimers (Scheme 1.9). 



 12 

Scheme 1.9. Generation propagation scheme used to generate up to G5.33 
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 Efforts in drug conjugation began with a dendrimer having three orthogonally 

reactive groups on the surface and one on the interior totaling twenty six reactive sites 

for manipulation.34 These sites are optimal for attaching drugs, enhancing solubility and 

biocompatibility, attaching biodistribution tags, and targeting ligands. A Bolton-Hunter 

type reagent, used as a biodistribution tag, was attached to the internal 

monochlorotriazine (Figure 1.3). 

 

 

 

Figure 1.3. Melamine dendrimer with three orthogonally reactive groups on the surface 
and one on the interior totaling twenty six reactive sites for manipulation.34 
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 A small library of dendrimers was prepared from a G3 dendrimer with AB4 

groups on the periphery and a G1 super core (Figure 1.4).35 Seven different dendrimers 

were synthesized with 48 peripheral sites, containing a primary amine, guanidine, 

sulfonate, phosphonate, carboxylate, or poly(ethylene glycol) chains on each site. The 

various dendrimers were prepared in order to study the cytotoxicity, hemolysis, and 

acute in vivo toxicity of dendrimers based on melamine, to assess their practical use as 

drug delivery vehicles. The cationic dendrimers were more cytotoxic and hemolytic than 

their anionic and PEGylated counterparts. No significant toxicity in vivo for the 

PEGylated dendrimer was observed. 

 

 

 

Figure 1.4. A melamine dendrimer with 48 peripheral sites, containing either a primary 
amine, guanidine, sulfanate, phosphonate, carboxylate, or poly(ethylene glycol) chains 
on each site.35 
 
 A dendrimer with 24 Boc-protected amines and 12 Dde-protected amines was 

synthesized and modified by site selective deprotection followed by acylation to give 12 

pyridyl protected thiols and 24 PEG chains.36 The protected thiols allow for attachment 

of thiol containing molecules through disulfide exchange while the PEG chains enhance 

their water solubility, biocompatibility, and biodistribution. Steric hindrance prevented 
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the synthesis of the target dendrimer using the convergent approach whereas the target 

dendrimer was obtained in 66% overall yield using an accelerated approach. 

 The solubility enhancement of drugs including indomethacin, methotrexate,10-

hydroxycamptothecin, and bisindolemethane with melamine dendrimers was studied.37 

Melamine dendrimers did not increase the solubility of indomethacin or methotrexate. 

Increased solubility of 10-hydroxycamptothecin (3.7 molecules solubilized/dendrimer) 

and bisindolemethane (4.5 molecules solubilized/dendrimer) was observed however. Of 

particular interest was the dendrimer-bisindolemethane complex is as active as the drug 

solubilized by DMSO in cell culture. The dendrimers alone did not show any apparent 

toxicity in mice at 1mg/kg, 2.5mg/kg, or 10mg/kg. 

 A mixture of thirteen-sixteen Paclitaxel (Taxol) molecules - a clinically relevant 

anticancer drug insoluble in water - were attached to a melamine dendrimer through a 

labile ester (Figure 1.5).38 The dendrimer also contained two Bolton-Hunter type groups, 

used for biodistribution studies. The resulting dendrimer drug conjugate is water soluble 

with minimum PEG chains of 2kDa. 

 

 

 

Figure 1.5. A melamine dendrimer bearing 16-paclitaxel drugs, 16-PEG chains, and a 
Bolton-Hunter group for biodistribution studies.38 
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 Attachment of peptides to melamine dendrimers was performed on three G2 and 

G3 dendrons having either one or two pyridyl protected thiols (Figure 1.6).39 The DNA 

oligonucleotide used to simultaneously probe multiple target oligonucleotides contains a 

terminal cysteine residue and was attached via disulfide exchange to the dendrons. 

 

 

 

Figure 1.6. Melamine dendron with a DNA oligonucleotide attached either on the 
periphery, at the focal point or both.39 
 
 In another effort to attach peptides to our dendrimers via disulfide exchange the 

cysteine-terminated peptide CLKKDRA was used.40 Captopril, a small drug with a thiol 

functional group, was attached in the same manner. The dendron (tetravalent scaffold) 

gives almost quantitative yields with the peptide however the dendrimer (octavalent 

scaffold) only gives the hexavalent product even after 10 days in excess of the peptide, 

presumably due to sterics. Captopril however proceeds cleanly to the tetravalent and the 

octavalent products. 
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 To study the disulfide exchange mechanism with our dendrimers, studies with 

five different dendrimers differing in size, valency, and placement of the disulfide was 

performed.41 The rate of exchange decreases upon increasing dendrimer size. Disulfides 

closer to the core have slower exchange rates compared with those on the periphery. 

Particularly interesting was the fact that exchange is a bimolecular process between 

dithiothreitol and the dendrimer and no intramolecular exchange was observed. 

 Using the same divergent strategy for preparing up to G5 dendrimers, our group 

has prepared a G2 dendrimer on kilogram scale.42 This paper has put our dendrimers one 

step closer to becoming clinically relevant molecules. The next step, one in which this 

thesis describes, is the manipulation of this dendrimer to prepare a drug delivery vehicle. 
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CHAPTER II 

CYSTEINE FUNCTIONALIZED DENDRIMERS 

 

Introduction 

Cysteine is a ubiquitous molecule in biology and biochemical applications. 

Cysteine contains three functional groups offering a wide range of attachment to various 

biologically relevant molecules. Dendrimers possessing cysteine are generally 

derivatized through the reactive thiol by forming a thioether, sulfoxide, disulfide, or 

thiosulfoxide. 

A general method for preparing peptide dendrimers with various linkages 

including oxime, hydrazone, and thiazolidine was developed using a lysine dendron with 

a reactive aldehyde at the focal point.43 A peptide with an aminooxy, hydrazide, or 

cysteine on the terminus was reacted with the lysine dendron to form an oxime, 

hydrazone, or thiazolidine linkage respectively. The strategy described uses base 

mediated ligation of native peptides in aqueous media to form peptide dendrimers of 

high molecular weight. The rates of ligation can be varied by changes in pH and 

temperature, and also by the presence of organic co-solvents. This strategy is applicable 

to the synthesis of cyclic peptides, the semi-synthesis of proteins, and the attachment of 

biologically relevant molecules to proteins. 

 A biocompatible and biosensitive G4 PAMAM dendrimer was prepared by 

coupling a G4 PAMAM dendrimer to Boc-Cys(Acm).44 After Boc-deprotection, the 

amines were coupled to PEG chains. Upon removal of the Acm groups, the free thiols 
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were thought to form disulfides as determined by Ellman’s method due to the presence 

of I2 (used to remove Acm groups). To determine the utility of this dendrimer as a drug 

delivery vehicle, rose bengal was used as a small molecule representative. Using 

dithiothreitol (DTT) to invoke reductive conditions, a substantial increase in the amount 

of rose bengal molecules incorporated into the interior of the dendrimer was observed 

compared to the oxidized form of the dendrimer. The network of disulfides on the 

periphery of the dendrimer effectively controlled the access of small molecules due to its 

sensitivity to the red/ox conditions of the environment, indicating its use as an effective 

drug delivery vehicle. 

Glycopeptide dendrimers were prepared with various glycoside moieties (β-

glucose, α-galactose, α-N-acetyl-galactose, or lactose) on the periphery and a cysteine 

residue at the core.45 A derivative of colchicine, an inhibitor of mitosis, was attached to 

the dendrimers via a disulfide bond. The peripheral glycoside moieties were chosen to 

mimic the uptake of glycoproteins by glycoprotein receptors on the cellular surface. All 

dendrime-colchicine conjugates displayed cytotoxicity and the glycosylated dendrimers 

were found to be more active than their non-glycosylated counterparts. The dendrimers 

showed higher selectivity for tumor cells over normal cells compared to free colchicine. 

Of interest to our strategy is the link between the dendrimer and the drug by a thioether, 

sulfoxide, disulfide, or thiosulfoxide bond does not have a pronounced effect on the 

bioactivity of the conjugates.  

 In 2005, Baal et al. coupled cysteine to G1, 2, and 3 PPI dendrimers (Scheme 

2.1) in order to construct multivalent dendrimers through native chemical ligation of the 
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dendrimer with peptides and proteins.46 The G1 and 2 dendrimers were fully ligated with 

the peptide LYRAG giving single components, as determined by mass spec. G3 

however, gave mixtures of 12-16 ligations presumably due to steric hindrance. Ligation 

between G1 and the green fluorescent protein gave a mixture of products with 1-4 

proteins attached. Full conversion is presumed to be inhibited by limited solubility of the 

protein under the conditions required for native chemical ligation as well as sterics. The 

authors have also prepared a G1 protein-dendrimer construct with the protein occupying 

one of the four terminal cysteine groups while peptides (GRGDSGG-MPAL) where 

ligated to the remaining three. 

Scheme 2.1. Synthetic scheme for a G1 PPI dendrimer coupled to cysteine for native 
chemical ligation.46 
 
 
 

 

 

In 2006 Baal et al. also successfully coupled two poly(lysine) dendrons to 

develop multivalent target-specific MRI contrast agents for in vivo imaging (Scheme 

2.2).47 One dendron contained an oligopeptide (RGDS) sequence which binds to αvβ3 

integrins and the other a chelating agent (diethylenetriaminepentaacetic acid) used in 
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magnetic resonance imaging. The labeled dendron contained a thioester at the focal point 

and the RGDS dendron contained a cysteine residue at its focal point, allowing native 

chemical ligation between the dendrons. 

Scheme 2.2. Poly(lysine) dendrons coupled by native chemical ligation for multivalent 
target-specific MRI contrast agents for in vivo imaging.47 
 
 
 

 

 

Using a tris-alkene triazine core and 1-thiolglycerol, a G4 dendrimer was 

divergently synthesized using thiol-ene click chemistry.48 The synthesis was performed 

in a metal catalyst and solvent free environment with trace amounts of the photo initiator 

2,2-dimethoxy-2-phenylacetophenone. Four functional thiols including N-fmoc-cysteine, 
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were coupled to the dendrimer through thiol-ene click chemistry as proof of concept for 

functionalizing the periphery. These terminal reactions were less than optimal requiring 

some solvent and an increase of the photo initiator from 2-mol % to 10-mol %. 

A library of cobalamin peptide dendrimers was synthesized as potential delivery 

vehicles for vitamin B12.49 The peptide dendrimers contained either a cysteine or 

histidine residue near the core and glutamate residues on the periphery. The thiol from 

the cysteine residue coordinates to the cobalt in vitamin B12, however it rapidly forms 

disulfides with free cysteine or glutathione allowing release of the cargo.  

In an effort to develop a vaccine against Alzheimer’s dementia (AD), β-Amyloid 

epitopes extended by a cysteine molecule were attached to oligopeptides through a thiol 

ether bond.50 Epitopes with an N-terminus cysteine residue provided higher flexibility 

and antibody accessibility compared to their C-terminus counterparts. A lysine 

dendrimer was among the carriers studied and was found that the different carrier types 

did not show a pronounced influence on antibody recognition. 

Two G4 PAMAM dendrimers coupled to S-nitrosothiols were synthesized as 

delivery vehicles for nitric oxide.51 Nitrosothiols are the main carriers of NO in vivo and 

regulate several biological processes including vasodilation, platelet activation, 

neurotransmission, and tissue inflammation. The dendrimer was coupled to either N-

acetyl-D,L-penicillamine (NAP) or N-acetyl-L-cysteine (NACys), and subsequently 

converted to their nitrosothiol analogues by reacting the free thiol with NaNO2 under 

acidic conditions. The G4-NACysNO dendrimer was more resilient with regard to 

changes in light intensity than the NAPNO dendrimer. These findings lead to more 
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resilient strategies of NO storage and handling, such as the use of higher generation 

dendrimers or the attachment of other biologically relevant materials. 

 A G4 PAMAM dendrimer was coupled to pyridylmercaptopropionic acid for use 

in delivery of N-Acetyl-L-cysteine (NAC), an anti-inflammatory agent used for 

treatment of neuroinflammation, stroke, and cerebral palsy.52,53 NAC was attached 

through a bio-labile disulfide through disulfide exchange with the pyridyl group. The 

dendrimer effectively transported and released NAC inside the cell. This method has 

improved the efficacy of NAC by up to one order of magnitude.  

A G1 dendron developed by Newkome was manipulated to include a protected 

thiol at the focal point and guanidine groups on the periphery to act as a molecular 

transporter.54 The thiol was deprotected and attached to a polymeric scaffold through a 

maleimide group. This transporter was further engineered by attaching protected thiols 

in the form of pyridylmercaptopropionic acid through free amines on the scaffold. The 

authors reported the attachment of 24 copies of the peptidic cargo giving a 30% drug 

load. Labeling studies showed cleavage and subsequent release of the cargo peptides 

from the scaffold and the dendron was critical for intracellular delivery of the cargo. 

 

Results and Discussion 

Synthesis 

 Following a similar procedure developed by Baal et. al.46 a melamine based 

cysteine dendrimer was synthesized for use in thiol assisted acylation reactions including 

native peptide ligation. The initial strategy (Scheme 2.3) included two solid phase 
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deprotection steps in order to provide an unprotected cysteine dendrimer with a 

simplified purification protocol compared to solution phase. This approach however was 

quickly derailed by the fmoc deprotection step using polymer-supported amines (Figure 

2.1). Full fmoc deprotection proved difficult possibly due to sterics or other factors that 

were not explored. Solid supported bases attempted were piperizine, morpholine, BEMP, 

NH2, and TBD though to no avail. 

Scheme 2.3. Initial synthetic strategy for melamine dendrimers with cysteine groups on 
the periphery. 
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Figure 2.1. Polymer supported amines used for fmoc deprotection. 

Due to the unavailability of the penta fluoro phenolic ester used initially, the non-

activated cysteine precursor was employed. DCC proved to be the coupling reagent of 

choice giving full substitution on the dendrimer. Figure 2.2 shows a peak at 7941.96 

(calc. 7918) corresponding to full substitution.  
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Figure 2.2. Mass Spectrum of G2-Cys-NHFmoc(SStbutyl). 

Solution phase deprotection of the fmoc group with piperidine and DBU gave 

full conversion to the amine. Figure 2.3 shows a peak at 5267.09 (calc. 5252) 

corresponding to full deprotection.  
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Figure 2.3. Mass Spectrum of G2-Cys-NH2(Stbuthio). 

TCEP was added and gave full reduction of the disulfide. Figure 2.4 shows a 

peak at 4206.89 (calc. 4194) corresponding to full deprotection. Solid phase reduction 

with immobilized TCEP was not attempted.  
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Figure 2.4. Mass Spectrum of G2-Cys. 

We opted not to deprotect the disulfide after our initial success, as this would 

prove unnecessary due to the reductive conditions used in native chemical ligation. 

Difficulty during the native ligation step gave rise to our current strategy (Scheme 2.4), 

which relies instead, on a global solution phase deprotection of the Boc and Trt groups 

by TFA and scavenging of the Trt cation by Et3SiH.  
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Scheme 2.4. Current synthetic strategy for a cysteine dendrimer based on melamine. 

 

 

 

1g batches of the protected dendrimer have been prepared with mass spec and 

NMR showing full substitution after 24h in 14% yield. Deprotection has been performed 

on 100mg scale giving full deprotection based on mass spec and NMR after 48h to give 

the product (Figure 2.5) in 98% yield. 
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Figure 2.5. Full chemical embodiment of a G2 cysteine dendrimer based on melamine. 
 
 
 
Characterization 
 
 Characterization of the protected cysteine dendrimer is relatively straightforward. 

There are four major peaks from the cysteine derivative in 1H NMR (Figure B.1): 7.5-

7.15 corresponds to the protons on the trityl protecting group; 1.39 corresponds to the 
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methyl groups on the boc protecting group; 4.01 corresponds to the α-proton; and 2.55 

corresponds to the β-protons. These assignments were made by comparing the product to 

G2-NH2, assigned previously,33 and the cysteine precursor, N-Boc-Cys(Trt)-OH. The β-

protons are diastereotopic, however they overlap giving a single peak, which integrates 

accordingly. 13C assignment is also straightforward (Figure B.2): 170.36 corresponds to 

the carbonyl carbon of cysteine; 144.38 corresponds to the carbonyl carbon on the boc 

protecting group; 129.5, 127.97, and 126.75 correspond to the phenyl carbons on the 

trityl protecting group; 80.06 corresponds to the tertiary carbon on the boc protecting 

group; 66.88 corresponds to the α-carbon; 33.92 corresponds to the β-carbon; and 28.31 

corresponds to the methyl groups on the boc protecting group. Mass spectroscopy shows 

a peak at 8308.35 (Figure B.3) corresponding to twelve substitutions (calcd. 8290.86), a 

peak at 8066.99, corresponds to twelve substitutions with fragmentation by loss of a 

trityl group (M – 244), and a peak at 7862, corresponds to eleven substitutions (M – 

446). 

 Confirmation of the deprotection step was made by a lack of peaks in the 

aromatic region and at 1.39 ppm of the proton spectra indicating full deprotection of the 

trityl-protecting group and the boc protecting group respectively (Figure B.4). The peak 

at 4.05 corresponds to the α-proton. The peak at 2.95 corresponds to the β-protons. 13C 

(Figure B.5) shows a peak at 155.35, that may correspond to the carbonyl carbon of the 

Boc group, however a lack of peak at 80.06 corresponding to C(CH3)3 indicates full 

deprotection. Mass spectroscopy shows a peak at 4193 (Figure B.6) corresponding to 
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full deprotection (calcd. 4194), a peak at 4215 corresponds to M + Na, a peak at 4248 

(M + 55) and 4270 (M + 77) both are currently unassigned. 

 

Experimental Section 

General 

 All reagents were used without purification. The procedure for synthesis of G2-

NH2 has been reported previously.33 N-Boc-Cys(Trt)-OH was purchased from Nova-

Biochem. 

 

Synthesis 

G2-CysProt - 8.41g of cysteine was dissolved in 40ml of CHCl3 and cooled to 0 oC. 

3.74g of DCC was added to the cooled solution and stirred at 0 oC for 30min. The 

solution was then added to a solution of G2-NH2 (2.99g) in 40ml CHCl3. 6ml of Et3N 

and 3mg of HOBt was subsequently added. The reaction was removed from the ice bath 

and stirred at RT for 24hrs. The urea precipitate was removed by filtration. The resulting 

solution was concentrated and the product was precipitated with MeOH to give 1.17g 

(14%) of product. 1H NMR (300 MHz, CDCl3) δ 7.49-7.15 (br, 180H, Trityl), 7.0-4.9 

(br, 30H, NH), 4.01 (br, 12H, α-H Cysteine), 3.8 (br, 24H, CH2, piperazine), 3.68 (br, 

36H, C5H10N, α-H), 3.42 (br, 36H, CH2, NCH2) 3.33 (br, 12H, CH2, CH2NH-C3N3), 

3.07 (br, 24H, CH2NHCys), 2.55 (br, 24H, β-H Cysteine), 1.96 (br, 12H, G1-

NCH2CH2), 1.60 (br, 24H, G2-NCH2CH2), 1.59-1.50 (br, 54H, C5H10N, γ-C5H10N, β-H), 

1.39 (s, 108H, C(CH3)3). 13C{1H} NMR (75.5 MHz, CDCl3) δ 170.36 (s, Cysteine 
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Carbonyl), 166.14 (s, C3N3), 165.32 (s, C3N3), 164.90 (s, C3N3), 155.35 (s, C(O)), 

144.38 (s, 4o C Trityl) 129.50 (s, β-C Trityl), 127.97 (s, α-C Trityl), 126.75 (s, γ-C 

Trityl), 80.06 (s, C(CH3)3), 66.88 (s, α-C Cysteine, C(Ph)3), 44.3 (br), 42.2 (br), 37.01 (s, 

CH2NHCys), 28.31 (s, C(CH3)3, 27.9 (s, NCH2CH2), 25.76 (s, C5H10N, β-C), 24.92 (s, 

C5H10N, γ-C). MS (MALDI): calc. 8290.86 (M+); found 8308.35 (broad). 

G2-Cys - 0.98g of G2-CysProt was dissolved in 10ml of TFA with 1.5% EtSiH at 0oC. 

The reaction was left to stir for 48h to ensure complete deprotection. The solution was 

diluted with 20ml of H2O and the product was purified by washing with Et2O (3x20ml) 

and subsequently lyophilized to give 490mg (98%) of white solid. 1H NMR (300 MHz, 

D2O) δ 4.20 (br, 30H, NH), 4.05 (br, 12H, α-H Cysteine), 3.9-3.0 (br, 132H, CH2 

piperazine, C5H10N α-H, NCH2, CH2NH-C3N3, CH2NHCys), 2.95 (br, 24H, β-H 

Cysteine), 1.90-1.10 (br, 90H, G1-NCH2CH2, G2-NCH2CH2, C5H10N γ-C5H10N and β-

H). 13C{1H} NMR (75.5 MHz, D2O) δ 167.76 (s, Cysteine Carbonyl), 165.0 (br, C3N3), 

54.56 (s, α-C Cysteine), 52.59 (br), 45.8 (br), 37.69 (br, CH2NHCys), 27.0 (br, 

NCH2CH2), 25.0 (br, C5H10N β-C, C5H10N γ-C). MS (MALDI): calc. 4194 (M+); found 

4191.76 (broad) 
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CHAPTER III 

APPLICATIONS OF CYSTEINE DENDRIMERS BASED ON MELAMINE 

 

Peptide and Protein Dendrimers 

Introduction 

 Until the advent of various ligation techniques - including thioester, thioether, 

oxime, directed disulfide, thiazolidine, and peptide bond formation - peptide synthesis 

was a difficult task limited to approximately 50 amino acids in length.55 The classic 

synthesis of peptides involved protected functional groups that had several limitations, 

including difficult preparation and purification of the protected segments, solubility 

issues and difficult characterization. 

 In the early 1990’s Kent et al56 developed a chemoselective strategy involving 

unprotected peptide segments. The early use of the strategy allowed for the synthesis of 

both enantiomers of HIV-1 protease, the protein like TASP molecule, analogs of the 

HIV-1 protease, heterodimers of b/HLH/Z transcription factors, as well as receptor 

mimetics.55 In 1994 native chemical ligation (Scheme 3.1) was introduced by Dawson 

and Kent57 giving a natural peptide bond at the ligation site. 
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Scheme 3.1.  Native chemical ligation of a cysteine terminated peptide with a thiol ether 
terminated peptide.57 
 
 

 

 

This reaction is performed under physiological conditions with a high degree of 

chemoselectivity. An interesting feature is that the reaction occurs at the N-terminal 

cysteine residue regardless of other cysteine residues present in either segment. This 

strategy has been used for the synthesis of natural and non-natural peptides and proteins, 

and also for the coupling of peptides to constructs such as dendrimers.58-62  

The various ligation strategies63-65 (Appendix A) for peptides and proteins 

developed generally follow scheme 3.2. 
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Scheme 3.2. General mechanistic scheme for peptide ligation. 

 

 

 

Several post-modifications to the newly formed internal cysteine residue to give 

natural as well as non-natural residues are shown in scheme 3.3.63 

Scheme 3.3 Post chemical modification upon native chemical ligation. 
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Peptide dendrimers are dendrimeric structures that have covalently attached 

peptidic frameworks (on the terminus and/or within the structure), or non-covalently 

attached peptides (encapsulated via hydrogen bonds or ionic interactions). Numerous 

synthetic routes to construct peptide dendrimers have been reviewed by Sadler,62 Tam66 

and Crespo et al.58 The synthetic strategy of the peptide dendrimer described herein 

takes advantage of native chemical ligation. 

Peptide dendrimers have been studied extensively for their potential as delivery 

vehicles, diagnostic reagents, vaccines and inhibitors.47,58-62,66-71   Of particular interest to 

our research is the utility of chemical ligation of cell penetrating peptides (CPP) with 

cysteine-functionalized dendrimers as a means to gain entry into the cell. Once inside the 

cell, the peptide terminated dendrimer will act as a cargo delivery vehicle, which can 

ultimately be varied by attaching different cargo and/or peptides depending on the 

desired task. 

TAT (Figure 3.1) is a CPP of interest because no cell line appears to resist 

uptake, translocation is achieved within 30 seconds (5 minutes for other CPPs), and it is 

able to deliver various cargo intracellulary with molecular weights several times greater 

than its own (mw = 1746).72  
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Figure 3.1. Chemical structure of the TAT peptide 

Glutathione, located inside the cytosol, is responsible for keeping thiols in bio-

molecules in their reduced state. This is of great interest to our strategy since this may 

allow cargo to be delivered into the cell by attachment of the cysteine derivative through 

a disulfide bond. Once the desired target molecule (Figure 3.2) has been synthesized, its 

utility can be determined by its ability to penetrate the cell, enter the cytosol, and release 

the desired cargo through disulfide bond cleavage. 
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Figure 3.2. Detailed chemical structure of one embodiment of a G2, C-linked cysteine 
terminated dendrimer with 12 cargo groups. 
 

 

Results and Discussion 

The following content was obtained from Alfredo Angeles-Boza, our 

collaborator in the preparation of peptide and protein dendrimers. 

SYNTHESIS 

 From figure 3.3 it seems apparent that ligation with the fluorescent protein 

mCherry to the dendrimer was successful, however we have not been able to repeat these 

results. The supposed product was a precipitate that formed during the reaction. This 

precipitate was dissolved in 0.1% Triton X100 detergent, and 10 mM TCEP buffer 

solution and run in SDS-PAGE gel. The solution phase of the reaction did not contain 

any product as determined by SDS-PAGE gel. SDS-PAGE gel was used extensively in 

this study to determine product formation. 
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 To improve the reaction conditions, subsequent reactions were performed in 

different amounts of detergent and TCEP, to no avail. A precipitate was formed, 

however it did not contain any of the dendrimer-mCherry conjugate. 

 Reactions with DMSO and SDS to improve the solubility of the dendrimer, were 

also performed however no reaction seemed to have occurred. The conditions used for 

this reaction were standard protocol, however the dendrimer was initially dissolved in 

DMSO.  

 Although the dendrimer, at concentrations lower than 50 mM, is soluble under 

the conditions used in the reaction (25 mM Hepes buffer, 100 mM MesNa, and 50 mM 

TCEP), it precipitates slowly from the solution (If the concentration is greater, it 

precipitates almost immediately).  

  Our efforts were then directed toward synthesis of the TAT-Melamine dendrimer 

construct by using a 100-fold excess of the peptide. A product that seems to have a mass 

(10 kda) corresponding to the product between the dendrimer and the TAT peptide (3-4 

attachments) is shown in figure 3.4 (TAT = 1746, Dend = 4194). This product has been 

obtained in two different reactions, but further characterization of the product has been 

hampered by the presence of DMSO in the sample. Attempts to remove the DMSO using 

rotary-evaporation failed. Purification by HPLC is hampered because the product is 

eluted early preventing efficient separation. 
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CHARACTERIZATION 

 Our collaborators did not perform full characterization of the products obtained, 

however SDS-PAGE gels were run (Figure 3.3 and 3.4) and show possible product 

formation for both the protein and the peptide. 

 

Figure 3.3. Gels run on dendrimer after native chemical ligation with mCherry. (a) 
Fluorescent Gel (λcm = 610nm), (b) Gel stained with coomassie. 
 

 

1: Dual Marker 
2: mCherry 
3: Denatured mCherry 
4: mCherry + dendrimer 
5: denatured 4 

Possible products 



 42 

 

 

Figure 3.4. Gel run on dendrimer after native chemical ligation with TAT. 

 

Experimental Section 

GENERAL 

Expressed proteins were routinely analyzed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) using standard protocols. Recombinant 

mCherry was obtained by sub cloning the mCherry gene in pTXB1-EGFP that was 

previously cloned. The DNA encoding mCherry was isolated by PCR from the pRSET-

B mCherry plasmid (provided by R.Y. Tsien, HHMI investigator, Department of 

Pharmacology, UCSD, CA) using the 5’ primer (5’-GGC GAC CAT ATG GTG AGC 

AAG GGC GAG GAG-3’) and 3’ primer (5’-GCC GCC GAA TTC CTT GTA CAG 

CTC GTC CAT GCC-3’), encoding the NdeI and EcoRI restriction sites, respectively. 

Dendrimer-
TAT product 
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The digested PCR product was ligated into the NdeI, EcoRI digested pTXB1-EGFP 

vector. This cloning procedure results in the insertion of the amino acid sequence 

EFGKKKRKVG between the C-terminal lysine of mCherry and the N-terminal cysteine 

of Mxe GyrA. The protein was expressed and purified according to previously 

established protocols.73 

 
SYNTHESIS 

 Using an excess of the dendrimer the ligation reaction was performed at 4°C by 

adding the dendrimer to the mCherry thioester solution (260 µM, 10 µL) giving a final 

concentration of 63 µM in a buffer consisting of 25 mM Hepes, 10 mM TCEP, and 

0.05% Triton X100 at pH 7.5. Analysis was performed after 24 hours. 

 Using an excess of mCherry the ligation reaction was performed at 4°C by 

adding the mCherry thioester solution (260 µM, 90 µL) to the dendrimer giving a final 

concentration of 7 µM in a buffer consisting of 25 mM Hepes, 10 mM TCEP, and 0.05% 

Triton X100 at pH 7.5. Analysis was performed after 24 hours. 

 The ligation reaction between TAT and the dendrimer was performed at 4°C by 

adding the TAT thioester solution (9 mM, 90 µL) to the dendrimer dissolved in DMSO 

giving a final concentration of 0.07 mM in a buffer consisting of 25 mM Hepes, 10 mM 

TCEP at pH 7.5. Analysis was performed after 24 hours. 

 

 

 



 44 

Drug Delivery 

Introduction 

 Our strategies for drug delivery have been developed with cancer therapy in 

mind. Cancer is a term for numerous diseases in which abnormal cells divide without 

control and invade other tissue. Using the blood and lymph systems, cancer is able to 

spread throughout the body. Under normal conditions old or damaged cells die and are 

replaced by new cells in a controlled manner. Cancer cells occur when the DNA of the 

cell becomes damaged producing mutations. These cells not only survive longer than 

normal cells, but grow and divide ultimately forming a mass of tissue called a tumor. 

 Many potentially effective drugs, which are effective against cancer, are not 

useful due to their low solubility under physiological conditions and/or their high 

toxicity. One way to overcome this difficulty is to design drug delivery vehicles such as 

dendrimers, polymers and molecular containers. These delivery vehicles not only reduce 

the toxicity of the drug and increase their solubility, but can also be used to specifically 

target the cancerous cells. There are two ways in which these delivery systems can single 

out tumor cells. The first is by attaching antibodies to the vehicle, which target receptor 

molecules on the cellular surface. The second is through the enhanced permeability and 

retention effect (EPR) of cancer cells. First discovered by Maeda,29 larger molecules can 

easily penetrate the cellular membrane because cancer cells divide far more rapidly than 

do healthy cells, and their cellular membrane is what is referred to as “leaky,” this is 

known as the EPR effect. This effect has become the generalized method preferred for 

drug delivery vehicles. 
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 Cancer therapy can be approached in several ways, most of which inhibit cell 

proliferation. One method of interest is inhibiting the DNA enzyme topoisomerase I. 

During cell replication the DNA of the cell is unwound in order to begin the replication 

process. As the two strands unwind, the DNA ahead of the replication fork becomes over 

wound. In order to resolve this problem the cell uses enzymatic proteins called 

topoisomerases. Similar problems occur during transcription, recombination, repair, 

chromatin assembly, and chromosome segregation processes. Topoisomerase I repairs 

DNA by first binding to DNA then cleaving one strand of the DNA. A tyrosine residue 

(Y723) in the enzyme attacks a phosphate group thereby cleaving a DNA strand. The 

cleaved strand can now rotate around the other strand giving the desired degree of super 

helical tension. There are four majors domains associated with topoisomerases mode of 

action: (1) an amine terminal domain, residues 1-200, responsible for targeting; (2) the 

linker domain, residues 636-712, assist in cleavage and directs the coiling of DNA; (3) 

the carboxylic acid domain, residues 713-765, contains the catalytic tyrosine responsible 

for DNA cleavage; and (4) the core domain, residues 201-635, wraps around the DNA 

allowing Y723 to undergo transesterification with a phosphodiester bond of the DNA 

backbone, resulting in cleavage of the strand. After the formation of a DNA/enzyme 

complex the free strand rotates around the stationary strand to relieve topological stress. 

Once rotation is complete a second transesterification reaction occurs yielding a relaxed 

DNA coiled structure.74-76  

Camptothecin (CPT) is a natural product first isolated in 1958 from 

Camptothecin acuminate and has displayed cytotoxicity by inhibiting topoisomerase 
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I.77,78 CPT and its analogs can mimic a DNA base pair, inhibit topoisomerase by 

intercalating into the site of DNA cleavage after the first transesterification and stabilize 

the covalent intermediate. Once the base stacking interaction between CPT and the base 

pairs occur the second transesterification reaction is prevented and thus the release of 

relaxed DNA, which results in cell cycle arrest and eventual cell death. CPT is too toxic 

and water-insoluble to be used in clinical settings, but has been loaded into or attached to 

several systems.79-92  

A polymeric micelle (thiolated poly(ethylene glycol)-b-poly(glutamic acid) 

conjugated to CPT through a disulfide linkage was constructed.89 A 20% (w/w) drug 

load was achieved and CPT was released slowly under extra-cellular and endosomal 

conditions, however 90% of the drug was released after 24hrs under cytosol (reductive) 

conditions. An interesting aspect of this delivery vehicle is the use of photochemical 

internalization (PCI) to enhance cytotoxicity. PCI allows the micelle to enter the cytosol 

by damaging the endosome and bypass lysosomal hydrolases. Interestingly, the drug 

loaded micelle showed no cytotoxicity without PCI. 

 A CPT bioconjugate consisting of CPT coupled via glycine linker to folic acid 

conjugated to a 3.4 kDa PEG chain (Figure 3.5) was achieved.89 Folic acid was used to 

target the folate receptor and mediate endocytosis because folate receptors are over 

expressed on the surface of tumor cells. The size of the PEG chain was chosen so as to 

remove ambiguity of the EPR effect causing tumor cell selectivity. The bioconjugate 

showed higher efficacy when compared to free CPT, and the delivery system showed 

enhanced cytotoxicity on cell lines with folate receptors compared to those without said 
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receptors. Without the PEG chain no enhancement of efficacy was observed when 

compared to free CPT. The authors attributed this to the greater stability of the system 

due to steric hindrance so that release of CPT is slow enough that the bioconjugate can 

be endocytosed and CPT can be released inside the cell. 

 

 

 

Figure 3.5. Camptothecin/glycine/PEG conjugate.89  

 Research in Mark Davis group has put CPT conjugates in preclinical modes. 

Complete tumor regression in all animals bearing H1299 tumors and the majority of 

animals with disperse Ewing’s sarcoma tumors was observed with the construct shown 

in figure 3.6.79,85,86,91 The conjugate is also effective against tumor cells that have 

become resistant to irinotecan, an analogue of CPT. This drug conjugate displays 

antitumor activity against a wide range of tumors and shows higher antitumor activity 

compared to free camptothecin and irinotecan. The plasma half-life is significantly 

higher than that of free CPT, and accumulates mostly in tumor tissue rather than the 

liver, lung, spleen, and heart. 
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Figure 3.6. Cyclodextrin based polymer conjugated to camptothecin.79,85,86,91  

A bioconjugate taking advantage of over-expressed folate receptors on tumor 

cells was prepared by coupling folic acid to a 5 mer peptide with a cysteine residue on 

the periphery (Scheme 3.4).84 CPT was coupled to pyridinyldithio butanoic acid and 

subsequently attached to the folic acid derivative via disulfide exchange. This system 

inhibited cell proliferation in human KB cells and its activity is highly dependant on the 

folic acid folate receptor interaction. The dependency was concluded after excess folic 

acid decreased the activity of the system completely. 
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Scheme 3.4. Biological mediated delivery of camptothecin by reduction of a disulfide 
bond.84  
 
 

 

 

In order to probe the need for bioconjugates of CPT to exhibit the lactone, 

Greenwald et al. developed two PEG open lactone tripartate prodrugs (Figure 3.7).81 It 

was initially proposed that camptothecin and its derivatives must exhibit the lactone to 

be effective. The majority of research has been based on derivatizing the 20-OH of CPT 

due to the supposed need for the closed lactone. They found little in vitro cytotoxicity 

for their systems as expected, however in vivo test revealed equivalent cytotoxicity to the 

closed ring derivative. This indicates that lactonization occurs in the acidic environment 

of the tumor generating the active form of the drug. This approach is very advantageous 

in that it provides access to stable nontoxic forms of the drug that become active only 

after they enter a sufficiently acidic environment. 
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Figure 3.7. Camptothecin/aminopropanol/PEG/aminopropanol/camptothecin 
conjugate.81 
 

Several open-ring lactone conjugates of CPT were prepared with polyamine side 

chains.80 The amines were linked through the carboxylic functional group of the lactone 

to form an amide, and the resulting primary hydroxyl was acylated. The polyamine side 

chains were chosen to bind electrostatically to the DNA backbone and assist CPT entry 

into the binding site of topoisomerase I. Three interesting observations came out of this 

study: 1) the antiproliferative effects of these compounds increased greatly after 72 

hours, whereas at 1hr they were less potent than CPT and several of its analogues; 2) the 

inhibition of tumor growth during long term exposure is directly related to the number of 

charges on the polyamine substituent. Presumably the polyamine promotes lactone 

formation. The polyamine may also block binding of topoisomerase to DNA preventing 

initial cleavage; 3) these compounds may also show activity in the open-ring form.  
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 Several bioconjugates were prepared consisting of a poly-α-(L-glutamic acid) 

backbone with a library of linkers and varying CPT loading.88 The linkers comprised of 

glycine and 4-O-butyryl showed the highest activity. Further, different lengths of the 

glycine linker (1, 2, and 3 mers) were compared and the 3-mer-glycine linker showed 

greater activity, but with lower solubility. Solubility was decreased when the average 

molecular weight of the polymer or CPT loading was increased. The conjugate 

consisting of a single glycine linker with 30-35wt % CPT was the best due to its high 

aqueous solubility, stability, and efficacy as well as its synthetic ease. This conjugate 

showed a 6-fold improvement for exposure of tumor tissue to CPT over free CPT. 

Fragmentation of a G2 dendrimer prodrug is activated by a single cleavage at the 

core of the dendrimer by penicillin-G-amidase, subsequently releasing four molecules of 

CPT.93 To enhance solubility and prevent aggregation, PEG chains were attached via 

click chemistry to alkyne groups on the dendrimer. The toxicity of this conjugate is 100-

1000 fold less than free CPT, however the toxicity neared free CPT after incubation with 

the enzyme. Tumor size decrease by 75% has been observed using the dendrimer-drug 

conjugate and intratumoral injection of the enzyme. 

A CPT pro-drug has been developed based on poly[N-(2-hydroxypropyl) 

methacrylamide] with a -Gly-Phe-Leu-Gly- or -Gly-6-aminohexanoyl-Gly- linker.90 

Hydrolysis to release CPT occurred during the first 24 hrs with the -Gly-Phe-Leu-Gly- 

linker however hydrolysis of the -Gly-6-aminohexanoyl-Gly- linker was significantly 

slower, with tumor growth inhibition lasting 73-88 days. The linkers were chosen so as 

to release CPT upon proteolytic cleavage resulting in low levels of drug during 
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circulation and high levels after tumor accumulation. The conjugate comprising 10-wt % 

CPT with the -Gly-6-aminohexanoyl-Gly- linker showed the best results, by increasing 

the efficacy of CPT through long exposure compared to higher local concentrations. 

Our strategy for creating a drug delivery vehicle relies on a disulfide exchange 

reaction between the cysteine terminated dendrimer and Camptothecin-(Pyridyl-SS)-

Propanoate (Scheme 3.5). Subsequent attachment of a biologically relevant molecule 

such as PEG is needed to solubilize the dendrimer-drug conjugate and increase the 

molecular weight to invoke the EPR effect. 

 

Results and Discussion 

SYNTHESIS 

Synthesis begins by activating the thiol of mercapto propionic acid for disulfide 

exchange with 2,2’-dithiodipyridine to form 3-(2-pyridyldithio) propionic acid. This 

procedure is fairly straightforward, however hydrogen peroxide is used to convert the 

majority of pyridine-2-thione back to the dithiodipyridine starting material, which can be 

recycled upon purification by column chromatography. The next step is coupling to CPT 

to form the ester. This step is difficult due to the low reactivity of the tertiary alcohol. 

Attempts to use the commercially available 3-(2-pyridyldithio) propionic acid NHS ester 

proved fruitless due to the low reactivity of CPT, where no product formation was 

observed by TLC at RT. EDCI was attempted however this procedure only gave 

minimal conversion to the ester. DCC gave higher conversion to the ester and upon 

purification by column chromatography, 27.8 mg of yellow solid was obtained 



 53 

(theoretical = 27.4 mg). After running the product next to DCC on TLC, it became 

apparent upon staining with ninhydrin that the excess impurity was DCC and that both 

had the same Rf. Precipitation with methanol should afford the pure CPT derivative, 

however the compound was used without further purification. Due to the large difference 

in solubility between the CPT derivative and the cysteine dendrimer, the disulfide 

exchange reaction was performed in CH2Cl2 with the hopes that loading with CPT would 

eventually bring the dendrimer into solution. Though all of the solid did not dissolve, the 

mass spectra (Figure 3.8) showed up to seven substitutions using three equivalents of the 

CPT conjugate. There is a clear ladder of peaks with a mass difference of approximately 

440 mass units (calc. 435.5) corresponding to a mixture of 1-7 disulfide exchange 

reactions occurring on the dendrimer. 

 



 54 

 

 

Figure 3.8. Mass Spectrum of G2-(Cys(NH2)-SS-Camptothecin)n, calc. 9407.64 (M+); 
found 4194 – 7240 (mixture of products). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

440 
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Scheme 3.5. Synthetic strategy for camptothecin loading onto a cysteine terminated 
melamine dendrimer by attaching mercaptopropionic acid through the 20-OH position. 
 
     

 

 

 

CHARACTERIZATION 

 Characterization of the 3-(2-pyridyldithio) propionic acid intermediate is 

straightforward with peaks at 8.48, 7.71-7.61, and 7.17-7.15 corresponding to the 

aromatic protons on the pyridyl group. The peaks at 3.08-3.06 and 2.83-2.80 correspond 

to the β- and α-protons respectively. Integration is also consistent with expected results. 

13C NMR shows a peak at 175.16, which corresponds to the carbonyl carbon. Peaks at 

159.07, 149.40, 137.45, 121.31, and 120.72 correspond to the carbons on the pyridyl 
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ring. Peaks at 34.27 and 34.17 correspond to the β- and α-carbons respectively. Mass 

spectroscopy shows a peak at 216.01 corresponding to M+H. 

 The camptothecin derivative has a larger Rf than camptothecin and is also 

fluorescent. This new spot shows all peaks that correspond to camptothecin as well as 3-

(2-pyridyldithio) propionic acid in 1H and 13C NMR. Impurities prevent confidence in 

integration. Mass spectroscopy shows a peak at 546.11 corresponding to M+H. 

 Mass spec characterization of the camptothecin derivative loaded onto the 

dendrimer shows a mixture between 1 and 7 substitutions with a possibility of 8 

substitutions. NMR is needed to obtain an average number of drug molecules loaded 

onto the dendrimer. 

 

Experimental Section 

GENERAL 

 All reagents were used without further purification. Pyridyl-SS-propanoic acid 

was synthesized by a procedure developed by a fellow group member, Jong Doo Lim. 

 

SYNTHESIS 

Pyridyl-SS-Propanoicacid - 1.24g of pyridyl disulfide was dissolved in 7ml EtOH. 

238µl of mercaptopropionic acid was dissolved in 8ml EtOH and added dropwise 

through an additional funnel over 45min to the pyridyl disulfide solution. 200µl of acetic 

acid was subsequently added. The reaction was stirred for 2h upon which time the 

solvent was removed by roto-evaporation. The slurry was then dissolved in 8ml of 
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CHCl3 and 8ml of H2O. The aqueous layer was made pH 8 by addition of 10% Na2CO3. 

0.5 ml of H2O2 was then added dropwise over 10 min or until the yellow solution turned 

clear. The solution was left to stir for 30min. The aqueous layer was made pH 10 by 

addition of sat. Na2CO3. The product was purified by first extracting with CHCl3 (3 x 8 

ml) to remove excess pyridyl disulfide, then addition of 6M HCl until pH 3 followed by 

extraction with CHCl3. The solvent was removed by roto-evaporation and the product 

was purified by column chromatography (1:1, hexane:EtOAc) to give 0.326mg 

(55.35%). 1H NMR (300 MHz, CDCl3) δ 8.49 (t,d, 1H, NCHC4H3, pyridyl), 7.71-7.65 

(d,t, 1H, NC2H2CHC2H, pyridyl), 7.64 (d, 1H, NC3H3CHC, pyridyl), 7.19-7.15 (m, 1H, 

NCHCHC3H2, pyridyl), 3.10-3.06 (t, 2H, β-H), 2.83-2.78 (t, 2H, α-H). 13C{1H} NMR 

(75.5 MHz, CDCl3) δ 175.16 (s, C(O)), 159.07 (s, 4o C, pyridyl), 149.40 (s, NCHC4H3, 

pyridyl), 137.45 (s, NC2H2CHC2H, pyridyl), 121.31 (s, NC3H3CHC, pyridyl), 120.72 (s, 

NCHCHC3H2, pyridyl), 34.27 (s, α-C), 34.17 (s, β-C). MS (MALDI): calc. 215.01 (M+); 

found 216.01 (M+H). 

Camptothecin-(Pyridyl-SS)-Propanoate - 31.7 mg of Pyridyl-SS-Propanoicacid, 7 mg 

of DMAP, and 47 mg of DCC was dissolved in 0.5 ml of CH2Cl2 and cooled to 0 oC. 

After stirring for 30 min. 17.5 mg of camptothecin was added. The reaction was stirred 

for 1h at 0 oC then warmed to room temperature and stirred for 24h. The product was 

purified by column chromatography (1% MeOH in DCM) to give 27.8 mg (101.4%, 

DCC was observed by TLC). 1H NMR (300 MHz, CDCl3) δ 8.47-8.44 (m, 1H, 

NCHC4H3, pyridyl), 8.45 (d, 1H, A-ring camptothecin), 8.23 (1H, A-ring camptothecin), 

8.21 (s, 1H, B-ring camptothecin), 7.96 (m, 1H, A-ring camptothecin), 7.85 (m, 1H, A-
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ring camptothecin), 7.69 (m, 2H, NC2H2CHC2H pyridyl, D-ring camptothecin), 7.60 (m, 

1H, NC3H3CHC, pyridyl), 7.08 (m, 1H, NCHCHC3H2, pyridyl), 5.74-5.66 (m, 2H, E-

ring camptothecin), 5.45-5.39 (m, 2H, C-ring camptothecin), 3.05 (m, 2H, β-H), 2.28 

(m, 2H, α-H), 2.19 (m, CH2CH3, camptothecin), 0.98 (m, CH2CH3, camptothecin). 

13C{1H} NMR (75.5 MHz, CDCl3) δ 175.6 (s, C(O), ester), 159.07 (s, 4o C, pyridyl), 

157.78 (s, C(O), lactone), 157.32 (s, C(O), amide), 153.0 (s, B,C-ring camptothecin), 

149.67 (s, D,E-ring camptothecin), 149.56 (s, NCHC4H3, pyridyl), 148.84 (s, A,B-ring 

camptothecin), 142.45 (s, C,D-ring camptothecin), 137.18 (s, NC2H2CHC2H, pyridyl), 

131.16 (s, A-ring camptothecin), 130.82 (s, B-ring camptothecin), 130.6 (s, B,C-ring 

camptothecin), 129.52 (s, A-ring camptothecin), 128.49 (s, A,B-ring camptothecin), 

128.13 (s, A-ring camptothecin), 128.0 (s, A-ring camptothecin), 121.31 (s, NC3H3CHC, 

pyridyl), 120.8 (s, NCHCHC3H2, pyridyl), 119.52 (s, D,E-ring camptothecin), 96.40 (s, 

D-ring camptothecin), 73.31 (s, E-ring camptothecin), 67.10 (s, E-ring camptothecin), 

51.8 (s, C-ring camptothecin), 34.38 (s, α-C), 33.52 (s, β-C), 31.77 (s, CH2CH3), 7.7 (s, 

CH2CH3). MS (MALDI): calc. 545.11 (M+); found 546.11 (M+H). 

G2-(Cys(NH2)-SS-Camptothecin)n – 9 mg of Camptothecin-(Pyridyl-SS)-Propanoate 

was dissolved in the minimal amount of CHCl3. 20mg of G2-Cys was added. 20 µl of 

acetic acid was subsequently added and the reaction was stirred for 5 days. The reaction 

was stopped and the solvent was removed by roto-evaporation. 1H NMR (300 MHz, 

CDCl3) δ 13C{1H} NMR (75.5 MHz, CDCl3) δ MS (MALDI): calc. 9407.64 (M+); found 

4194 – 7240 (mixture of products). 
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CHAPTER IV 

CONCLUSIONS 

 

Synthesis of the cysteine dendrimer is fairly straightforward, however low yields 

have been obtained presumably due to the purification process. By modifying this 

process, higher yields for the coupling step could be obtained. Changing our strategy to 

more closely mimic Meijers (full deprotection is achieved within 2h), having Trityl 

protecting groups for both the thiol and amine would be more efficient.  

Using native chemical ligation to prepare peptide dendrimers has proved difficult 

with our dendrimer due to solubility issues. The dendrimer seems to precipitate around 

pH 5. Native chemical ligation is normally performed at pH 7 and is slowed at lower pH. 

Due to the solubility issues we faced, we proposed that changing the capping group from 

the hydrophobic piperidene to more hydrophilic groups such as those in figure 4.1 would 

prove beneficial. 
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Figure 4.1. Potential capping groups to enhance the water solubility of a cysteine 
dendrimer based on melamine. 
 

Piperazine was chosen because cyclic secondary amines are preferential for the 

third substitution of cyanuric chloride while the other amine can be used to conjugate to 

water-soluble molecules (Scheme 4.1). 
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Scheme 4.1. Synthetic strategy for water-solubility enhancing capping groups. 

 

 

 

The next step would be to attach a fluorophore through the thiol to obtain 

biodistribution data. If the dendrimer were found to localize within tumor cells, attaching 

an anticancer drug such as camptothecin via a disulfide bond (Figure 4.2) would follow. 
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Figure 4.2. Potential end target for cysteine dendrimers based on melamine with a TAT-
peptide to aid cell penetration and a bio-labile link to camptothecin for cancer therapy. 
 

Synthesis of the CPT derivative has proved rather difficult due to the low 

reactivity of the hydroxyl group. Making the acid chloride of pyridyl-SS-propanoic acid 

may allow for higher conversion to the ester. Another route of interest may be an open 

lactone CPT conjugate. These conjugates have been shown to be cytotoxic only in-vivo 

revealing the high stability of these conjugates compared to their ester counterparts. I 

propose using 3-(2-pyridyldithio) ethylamine to form an amide with the carboxyl group 

of the lactone and selectively acylate the free primary hydroxyl to increase stability 

(Scheme 4.2). This approach may prove to be highly advantageous over the other due to 

not only the expected stability of the final product but also the ease of synthesis and 

expected higher yields. 
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Scheme 4.2. Potential synthetic strategy for camptothecin loading onto a cysteine 
terminated melamine dendrimer by attaching 2-aminoethane thiol through the lactone 
carbonyl group. 
 
 
 

 

 

It may prove advantageous to first incubate the dendrimer in immobilized TCEP 

solution to remove any inter- and intra-molecular disulfides before performing the 

disulfide exchange reaction. A different solvent, co-solvent, or phase transfer catalyst is 

needed to create a homogeneous solution and maximize the number of substituents. 
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APPENDIX A 
 

PEPTIDE LIGATION STRATEGIES 
 
 

Scheme A.1. Imine ligation. 
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Scheme A.2. Imine ligation of N-terminal amino acids to form  
pseudoproline and oxazolidine rings. 
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Scheme A.3. Imine ligation to form heterocycles with N-terminal  
amino acids. 
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Scheme A.4. Thioester ligation. 

 

 

 

Scheme A.5. Cys-perthioester ligation. 
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Scheme A.6. Methionine ligation. 

 

 

 

Scheme A.7. Histidine ligation. 
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Scheme A.8. Sequential orthogonal ligation. 

 

 

 

Scheme A.9. Staudinger ligation. 
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Scheme A.10. Cysteine Mimetic Ligation. 

 

 

 

Scheme A.11. Prior thiol ligation. 
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Scheme A.12. Sec Ligation. 
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