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ABSTRACT 

Stress-Strain Model of Unconfined and Confined Concrete and Stress-Block Parameters.  

(December 2009) 

Madhu Karthik Murugesan Reddiar, B-Tech., Pondicherry Engineering College, 

Puducherry, India 

Chair of Advisory Committee: Dr. John B. Mander 

 

Stress-strain relations for unconfined and confined concrete are proposed to 

overcome some shortcomings of existing commonly used models. Specifically, existing 

models are neither easy to invert nor integrate to obtain equivalent rectangular stress-

block parameters for hand analysis and design purposes. The stress–strain relations 

proposed are validated for a whole range of concrete strengths and confining stresses. 

Then, closed form expressions are derived for the equivalent rectangular stress-block 

parameters. The efficacy of the results is demonstrated for hand analysis applied for 

deriving the moment-curvature performance of a confined concrete column. Results are 

compared with those obtained from a computational fiber-element using the proposed 

stress-strain model and another widely used model; good agreement between the two is 

observed. The model is then utilized in the development of a new structural system that 

utilizes the positive attributes of timber and concrete to form a parallel. Timber has the 

advantage of being a light weight construction material, easy to handle, is 

environmentally friendly. However, large creep deflections and significant issues with 

sound transmission (the footfall problem) generally limit timber use to small spans and 
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low rise buildings. Concrete topping on timber sub-floors mitigate some of these issues, 

but even with well engineered wood systems, the spans are relatively short. In this study, 

a new structural system called structural boxed-concrete, which utilizes the positive 

attributes of both timber and reinforced concrete to form a parallel system (different 

from timber-concrete composite system) is explored. A stress-block approach is 

developed to calculate strength and deformation. An analytical stress-block based 

moment-curvature analysis is performed on the timber-boxed concrete structural 

elements. Results show that the structural timber-boxed concrete members may have 

better strength and ductility capacities when compared to an equivalent ordinary 

reinforced concrete member. 
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1. INTRODUCTION 

1.1 Research Motivation 

Several models for the stress-strain relation of concrete have been proposed in 

the past. Although the behavior of concrete up to the maximum concrete strength is well 

established, the post-peak branch and the behavior of high-strength concrete has been an 

area of extensive research more recently.  

Another area which has seen much research is in establishing a good stress-strain 

relation for confined concrete. Confinement in concrete is achieved by the suitable 

placement of transverse reinforcement. At low levels of stress, transverse reinforcement 

is hardly stressed; the concrete behaves much like unconfined concrete. At stresses close 

to the uniaxial strength of concrete internal fracturing causes the concrete to dilate and 

bear out against the transverse reinforcement which then causes a confining action in 

concrete. This phenomenon of confining concrete by suitable arrangement of transverse 

reinforcement causes a significant increase in the strength and ductility of concrete. The 

enhancement of strength and ductility by confining the concrete is an important aspect 

that needs to be considered in the design of structural concrete members especially in 

areas prone to seismic activity, blast effects or vehicle crashes. Again, several models 

are available for the stress-strain relation of confined concrete. 

 

__________ 
This thesis follows the style of Journal of Structural Engineering.  
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With the advent of high strength concrete in the early 1970’s, its use has 

increased significantly over the years. In the present day scenario high-strength concrete 

is extensively used in the construction of bridges, high rise buildings, precast and 

prestressed concrete members and many other structures. With every passing decade the 

maximum compressive strength of concrete that has been attained has been increasing. 

Apart from having a higher strength, high strength concrete exhibits a brittle behavior as 

compared to normal strength concrete. Brittle failure of concrete structural members is a 

characteristic that is least desired in any kind of structure as it leads to the sudden 

collapse of structures leading to damage and loss of property and life. These 

characteristics of high-strength concrete that make them different from those of normal-

strength concrete make it important to study their behavior in order to get a good 

estimate of the strength and ductility capacities of the structural members that are 

constructed using high strength concrete. 

Shortcomings exist when manipulating the most commonly used existing stress-

strain models. First, the equations cannot be easily inverted to explicitly calculate strain 

as a function of stress; this poses a problem when one wants to conduct rate-dependant 

modeling. Second, the equations cannot be easily integrated in order to determine the 

equivalent rectangular stress-block parameters for hand analysis and design purposes.  

Although the stress-strain models proposed by various researchers have varying 

levels of sophistication, for the best models it is difficult to check their accuracy. There 

is a need for a well developed stress-strain model that can not only be used 
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computationally, but can also be easily adapted for hand analysis to enable rapid design 

checks to be performed.  

This research aims at utilizing the best attributes of earlier models and proposes a 

new stress-strain model for concrete that represents the properties of both unconfined 

and confined concrete and at the same time is simple, such that it can be easily inverted 

and integrated to determine the equivalent rectangular stress-block parameters for 

unconfined and confined concrete.  

The present study also presents a conceptual idea of using timber and reinforced 

concrete in a parallel system (unlike the composite timber-concrete system) called the 

structural timber-concrete system. This system utilizes the positive aspects of both 

timber and concrete as individual materials and does not rely on their composite action 

and hence does not have any detailed connection requirements. Specifically, the concept 

is based in the formation of the two main elements of construction: beams (and of course 

the slabs they support) and columns. Another purpose of this study is to reinvigorate the 

use of common dimension lumber into economical moment frame construction and also 

to provide the illusion that the building, although quite tall, is really timber. Concrete is 

used to strengthen, lengthen and stiffen the mostly timber members. One of the main 

attributes of timber, its lightness, can essentially be maintained. 

1.2 Problem Statement 

In order to study the behavior of normal or high strength concrete, one of the 

most important steps is to establish appropriate analytic stress-strain models that capture 
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the real (observable) behavior. The better the stress-strain model, the more reliable is the 

estimate of strength and deformation behavior of concrete structural members. 

Another important characteristic of concrete is that it exhibits different behavior 

in its confined and unconfined states. Apart from higher strength, confined concrete 

tends to show a much greater ductility when compared to unconfined concrete. Thus, it 

becomes important and desirable to have a stress-strain model that differentiates the 

behavior of confined and unconfined concrete. 

In the absence of sufficient test data it becomes important to have some 

guidelines or empirical relations to determine the parameters that are required to 

establish a representative stress-strain relation. This study also aims in identifying the 

most important parameters and establishing empirical relations for these parameters that 

are required to define generalized stress-strain relations for concrete. 

Another important concept in the analysis and design of concrete structures is the 

use of equivalent rectangular stress-block parameters. Stress-block analysis has been 

used in hand computations for defining the nominal strength for the design of reinforced 

concrete sections. However, this concept can be extended for other strain profiles and 

limit states. Hence, it is important to be able to derive generalized expressions for the 

equivalent rectangular stress-block parameters for both confined and unconfined 

concrete from their respective stress-strain relations. Determining closed form relations 

for the stress-block parameters for unconfined and confined concrete makes it possible 
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to apply them in both hand and computer analysis to determine a moment-curvature 

relationship for a specific structural concrete members. 

1.3 Research Objective 

The major objectives of the research are outlined below: 

i. To establish a stress-strain model of concrete that can well represent the 

overall stress-strain behavior of normal strength and high strength concrete 

with a good control over the ascending and descending branches. 

ii. To develop stress-strain models that represents the behavior of confined and 

unconfined concrete. 

iii. To develop empirical relations based on the compressive strength of concrete 

for the parameters that drive the stress-strain relation of both unconfined and 

confined concrete.  

iv. To obtain closed form equations for the stress-block parameters - the 

effective average concrete stress ratio (α) and the effective stress-block depth 

factor (β) – so that they can be used to determine the strength and curvature 

capacity of structural concrete members. The equations for these parameters 

need to be established for both confined and unconfined concrete. 

v. To determine the moment-curvature relation for a reinforced concrete column 

using the proposed stress-strain relation by fiber analysis and also by hand 

computations using the equivalent rectangular stress-block parameters and 

compare the results. 
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vi. To conceptually develop a system of structural timber-boxed concrete and 

compare their moment capacities with normally reinforced concrete sections. 

vii. To extend the concept of the proposed stress-strain model for unconfined 

concrete to timber in order to be able to calculate the moment capacity of 

timber-boxed concrete sections. 

viii. To develop equivalent rectangular stress-block parameters for timber in order 

to extend the concept of stress-block analysis to timber for the analysis and 

design of timber structural members. 

1.4 Review of Previous Relevant Rule-Based Constitutive Models 

The investigation into the stress-strain relation of unconfined and confined 

concrete has been a topic of research for a several years. A brief review of the models 

that are considered to be important building blocks for the present study are reviewed in 

this section. 

UNCONFINED CONCRETE 

Kent and Park (1971) proposed a stress-strain equation for both unconfined and 

confined concrete. In their model they generalized Hognestad’s (1951) equation to more 

completely describe the post-peak stress-strain behavior. In this model the ascending 

branch is represented by modifying the Hognestad second degree parabola by replacing 

 by  and  by 0.002.  

  (1)  
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The post-peak branch was assumed to be a straight line whose slope was defined 

primarily as a function of concrete strength. 

  (2)  

in which  

  (3)  

where = the strains corresponding to the stress equal to 50% of the maximum 

concrete strength for unconfined concrete. 

 

 

 

(4)  

The Kent and Park model is represented in Figure 1a. 

Popovics (1973) proposed a single equation to describe unconfined concrete 

stress-strain behavior. A major appeal of this model is that it only requires three 

parameters to control the entire pre and post peak behavior, specifically . 

  (5)  

in which the power ‘n’ can be expressed as an approximate function of the compressive 

strength of normal-weight  concrete as  

  (6)  
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 Popovics equation works well for most normal strength concrete ( ), 

but it lacks the necessary control over the slope of the post-peak branch for high strength 

concrete. 

Thorenfeldt et al. (1987) made modifications to the Popovics (1973) relation to 

adjust the descending branch of the concrete stress-strain relation. The authors proposed 

the following equation for the unconfined concrete stress-strain relation. 

  (7)  

In the above equation ‘k’ takes a value of 1 for values of  and values greater 

than 1 for . Thus by adjusting the value of ‘k’ the post-peak branch of the 

stress-strain relation can be made steeper. This approach can be used for high-strength 

concrete where the post-peak branch becomes steeper with increase in the concrete 

compressive strength. 

Tsai (1988) proposed a generalized form of the Popovics (1973) equation which 

has greater control over the post-peak branch of the stress-strain relation. Tsai’s equation 

consists of two additional parameters, one to control the ascending and a second to 

control the post-peak behavior of the stress-strain curve. The proposed stress-strain 

relation for unconfined concrete by Tsai is 

  (8)  
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a. Proposed stress-strain model for confined and unconfined concrete – Kent 
and Park (1971) model. 

 

b. Stress-strain behavior of compressed concrete confined by rectangular steel 
hoops - Modified Kent and Park (Scott et al. 1982) model. 

 
Figure 1: Stress-strain relationship for concrete proposed by earlier researchers. 

St
re

ss
 (f

c)

Strain (εc)

f'
c

0.5f'
c

0.2f'
c

εo=0.002 ε50u ε50c ε20c

ε50h

Confined concrete

Unconfined concrete

St
re

ss
 (f

c)

Strain (εc)

f'
c

εo=0.002

Confined concrete
Unconfined concrete

0.002K

Kf'
c



10 
 

 
 

 
c. Stress-strain relation for monotonic loading of confined and unconfined 

concrete - Mander et al. (1988b). 

 
d. Stress-strain model for laterally confined high-strength concrete – Yong et 

al. (1989). 
 

Figure 1 (continued) 
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e. Theoretical stress-strain relation for confined concrete – Bjerkeli et al. 

(1990). 

 
f. Stress-strain relation for confined high-strength concrete – Li et al. (2001). 

 
Figure 1 (continued) 
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where  = ratio of the concrete stress to the ultimate strength,  = ratio of 

concrete strain to the strain at ,  = ratio of initial tangent modulus to secant 

modulus at ,  = a factor to control the steepness rate of the descending portion of 

the stress-strain relation. The following expressions were defined for the factors  and 

. 

 

 

 

(9)  

 

 

 

(10)  

Unfortunately, these additional parameters require considerable empirical 

calibration; moreover they lack any physical meaning and it is difficult to invert or 

integrate it in order to obtain the stress-block parameters. 

CONFINED CONCRETE 

Kent and Park (1971) made provisions in their stress-strain model to 

accommodate the behavior of confined concrete. Based on results from earlier tests on 

small square columns by Roy and Sozen (1964), it was shown that confining the 

concrete with rectangular or square hoops was not very effective and that there was 

either no substantial (or at best only a slight) increase in the concrete compressive 

strength due to confinement. For this reason it was assumed in this model that the 
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maximum stress reached by confined concrete remained the same as the unconfined 

cylinder strength, . Thus the ascending branch of the model is represented by the same 

second degree parabola.  

Confinement only affected the slope of the post-peak branch and empirical 

equations were used to adjust this. The expression for the falling branch of the stress-

strain relation is given by 

  (11)  

in which 

  (12)  

where  

 

 

 
(13)  

where  and  are the strains corresponding to the stress equal to 50% of the 

maximum concrete strength for confined and unconfined concrete respectively. 

 

 

 

(14)  
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 is the ratio between the width of the concrete core and the center to center spacing of 

hoops,  is the volumetric ratio of confining hoops to volume of concrete core 

measured to the outside of the perimeter hoops and is expressed as 

  (15)  

where  and  are the width and depth of the confined core respectively,  is the 

cross-sectional area of the hoop bar and  is the center to center spacing of the hoops. 

 It is assumed that concrete can sustain some stress at indefinitely large strains. 

However, the failure of the member would occur before the strains in concrete become 

impractically high. Hence, for this model it was assumed that the concrete can sustain a 

stress of  from a strain of  to infinite strain.  

Desayi et al. (1978) based on tests conducted on circular columns with spiral 

lateral reinforcement proposed a single equation stress-strain model to represent the pre 

and post peak behavior of confined concrete and the equation was found to well 

represent the behavior of confined concrete. 

  (16)  

where A, B, C and D were parameters that were obtained from boundary conditions and 

test results and are presented below. 

  (17)  
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  (18)  

  (19)  

  (20)  

in which  (21)  

  (22)  

where ‘k’ is a constant = 0.85,  is the confinement index given by  

  (23)  

where  is the ratio of the volume of spiral to the volume of confined concrete,  is the 

value of  when the pitch of spiral is equal to the least lateral dimension of the 

specimen. 

Scott et al. (1982) conducted experiments on a number of square concrete 

columns reinforced with either 8 or 12 longitudinal rebars and transversely reinforced 

with overlapping hoopsets. Their tests were conducted at rapid strain rates, typical of 

seismic loading. Unlike the Kent and Park (1971) model which was calibrated against 

small scale tests, they observed substantial strength enhancement due to the presence of 

good confining reinforcement details. Thus simple modifications were made to the Kent 

and Park (1971) model in order to incorporate the increase in the compressive strength 

of confined concrete at high strain rates (Figure 1b). The maximum concrete stress 

attained is assumed to be  and the strain at maximum concrete stress is , 
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where ‘K’ is a factor that is defined later. The branches of the stress-strain curve for the 

modified Kent and Park relation for low strain rate is given as: 

For   (24)  

For  

 

 

But not less than  

(25)  

in which  

  (26)  

where  is in MPa,  = ratio of volume of rectangular steel hoops to volume of 

concrete core measured to the outside of the peripheral hoop, = width of concrete core 

measured to the outside of the peripheral hoop and = center to center spacing of hoop 

sets. In the above expressions the value of  is obtained from the following expression: 

  (27)  

where  is the yield strength of the hoop reinforcement and rest of the parameters are 

as defined earlier. 

For high strain rates the modified Kent and Park model can be used by using a 

multiplying factor of 1.25 to the peak stress, the strain at the peak stress and the slope of 

the falling branch. Thus, for high strain rates the expressions as presented in (24) and 

(25) can be used, but the values of ‘K’ and  are given as 
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  (28)  

  (29)  

Mander et al. (1988a) first tested circular, rectangular and square full scale 

columns at seismic strain rates to investigate the influence of different transverse 

reinforcement arrangements on the confinement effectiveness and overall performance. 

Mander et al. (1988b) went on to model their experimental results. It was observed that 

if the peak strain and stress coordinates could be found , then the performance 

over the entire stress-strain range was similar, regardless of the arrangement of the 

confinement reinforcement used. Thus they adopted a failure criteria based on a 5-

parameter model of William and Warnke (1975) along with data from Schickert and 

Winkler (1979) to generate a generalized multi-axial confinement model. Then to 

describe the entire stress-strain curve they adopted the 3-parameter equation proposed by 

Popovics (1973). The equations are represented as (Figure 1c): 

  (30)  

in which 

  (31)  

  (32)  

  (33)  

 is the strain at the maximum compressive strength of confined concrete  
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  (34)  

and , the compressive strength of confined concrete is given as 

  (35)  

in which  is given by 

  (36)  

in which = ratio of volume of transverse confining steel to volume of confined 

concrete core, = yield strength of transverse reinforcement, = confinement 

coefficient. 

For circular hoops  (37)  

For circular spirals  (38)  

where = ratio of area of longitudinal reinforcement to area of core of the section, = 

clear spacing between spiral or hoop bars, = diameter of spiral. 

Due to its generality, the Mander et al. (1988b) model has enjoyed widespread 

use in design and research. Notwithstanding this it has several shortcomings. Since the 

original tests were developed in the 1980’s, there has been a marked upsurge in the use 

of high performance (strength) materials, in particular high strength concrete. The 



19 
 

 
 

Mander et al. (1988b) model does not handle the post-peak branch of high strength 

concrete particularly well and requires some modification. 

Yong et al. (1989) proposed stress-strain relation for rectilinear confined high-

strength concrete. Their model consists of two polynomial equations which define the 

ascending and the post-peak branch (Figure 1d).  

  (39)  

  (40)  

in which the parameters A through D are as defined below. 

  (41)  

  (42)  

where  

  (43)  

  (44)  

  (45)  

  (46)  

The other parameters are defined below. 
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  (47)  

  (48)  

  (49)  

  (50)  

  (51)  

  (52)  

 

Bjerkeli et al. (1990) conducted a series of experiments in order to study the 

ductility of confined axially loaded high strength concrete reinforced columns. From the 

test results and a review of earlier work the authors identified that concrete compressive 

strength, confining reinforcement ratio and section geometry as the major parameters 

that control the stress-strain relation of confined concrete.  

The authors identified that a convenient way of expressing the confining 

reinforcement ratio is by using the idealized “confining pressure”, , which is defined as 

  (53)  

where  = outer size of the confined section,  = total effective area of hoop ties and 

supplementary confining reinforcement in direction under consideration within spacing 
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,  = yield stress of confining reinforcement,  = center distance between hoop/ties 

confining reinforcement. 

The influence of the section geometry was represented by the “section geometry 

factor”, , which expresses the effective concrete core cross-section after compression 

arches have developed. The section geometry factor associated with the development of 

compression arches in the vertical direction between the confinement reinforcement 

layers is expressed as (Shah et al. (1983)): 

  (54)  

where = the shorter outer diameter of hoop ties and  is as defined earlier. 

Another factor, calculated for compression arches between laterally supported 

longitudinal reinforcement is expressed as (Sheikh at al. (1986)): 

  (55)  

where  = number of laterally supported longitudinal bars,  = distance between the 

laterally supported longitudinal bars, = gross area of concrete section measured to 

center line of peripheral hoop. The larger of the two values  and  is taken as the 

value of  in the proposed stress strain model. 

The equations for the confined concrete stress-strain model proposed by Bjerkeli 

et al. (1990) are presented below and shown in Figure 1e. 
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i. Ascending branch 

  (56)  

ii. Descending branch 

  (57)  

iii. Horizontal part 

  (58)  

where 

  (59)  

  (60)  

  (61)  

For normal density concrete 

 

 

 

 
(62)  

  (63)  

  (64)  

  (65)  

For light weight aggregate concrete 
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  (66)  

  (67)  

  (68)  

  (69)  

The term  for both normal density and light weight aggregate concrete is expressed as 

 
 

(70)  

where  and  are as defined earlier. 

Again as in the case of earlier models, the equations are complex and cannot be 

easily inverted or integrated in order to obtain the equivalent rectangular stress-block 

parameters. 

Li et al. (2000) conducted an experimental investigation on circular and square 

reinforced concrete columns to study the behavior of high-strength concrete columns 

confined by normal and high-yield strength transverse reinforcement and with different 

confinement ratio and configurations. From the tests they concluded that volumetric 

ratio and the yield strength of confining reinforcement significantly affect the shape of 

the stress-strain curve. Based on their experimental study, Li et al. (2001) proposed a 

three branch stress-strain model for high strength concrete confined by either normal or 

high-yield strength transverse reinforcement (Figure 1f). The equations are: 
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  (71)  

  (72)  

  (73)  

The term β controls the slope of the post-peak branch of the stress-strain model. The 

maximum confined concrete compressive strength is given by 

  (74)  

in which 

when   (75)  

when   (76)  

where  is the effective lateral confining pressure, calculated using the equations 

proposed by Mander et al. (1988b) as in (36) to (38). 

The expressions for axial strain at maximum strength ( ), factor to control the 

slope of the descending branch β and maximum concrete strain ; for circular and 

rectilinear confinement using normal-strength and high-strength steel can be found in the 

author’s paper. 
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1.5 Stress-Block Analysis 

Stress-blocks have been used in design based on the early work of Whitney 

(1942). But these are normally for a specific maximum strain. For example ACI 318 

customarily uses  to define the nominal strength. However, as pointed out in 

Park and Pauley (1975), stress-blocks may be used across a spectrum of maximum 

strains. Indeed a stress-block approach could be used to analytically generate an entire 

moment-curvature response. 

Hognestad (1951) expressed the compression force in the concrete as 

 and the distance to the centroid of the stress-block from the extreme compression 

fiber as , where ‘c’ is the depth to the neutral axis, ‘b’ is the breadth of the section 

and  and  factors that were determined (Table 1). 

Kent and Park (1971) based on their stress-strain relation of unconfined and 

confined concrete gave values of mean stress factor (α) and the centroid factor (γ) for 

extreme fiber concrete compression strains greater than 0.002 for different values of the 

post-peak branch slope ‘Z’ (Table 2). 

Table 1: Stress-block parameters proposed by Hognestad (1951). 
   

0 0.925 0.513 
1000 0.873 0.481 
2000 0.835 0.459 
3000 0.808 0.444 
4000 0.786 0.432 
5000 0.770 0.423 
6000 0.758 0.417 
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Table 2: Stress-block parameters α and γ as a function of εcm and Z – Kent and 
Park (1971). 

 
Z 

εcm 10 30 50 70 100 140 200 300 400 

Values of α 

0.002 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 

0.003 0.776 0.773 0.769 0.766 0.761 0.754 0.744 0.728 0.711 

0.004 0.828 0.818 0.808 0.798 0.783 0.763 0.733 0.683 0.633 

0.005 0.858 0.840 0.822 0.804 0.777 0.741 0.687 0.600 0.547 

0.006 0.876 0.849 0.822 0.796 0.756 0.702 0.622 0.533 0.489 

0.007 0.887 0.851 0.815 0.780 0.726 0.655 0.562 0.486 0.448 

0.008 0.894 0.849 0.804 0.759 0.692 0.602 0.517 0.450 0.417 

0.009 0.899 0.844 0.790 0.735 0.654 0.558 0.481 0.422 0.393 

0.010 0.901 0.837 0.773 0.709 0.613 0.522 0.453 0.400 0.373 

0.011 0.903 0.829 0.755 0.682 0.576 0.493 0.430 0.382 0.358 

0.012 0.903 0.819 0.736 0.653 0.544 0.468 0.411 0.367 0.344 

0.013 0.902 0.809 0.716 0.623 0.518 0.448 0.395 0.354 0.333 

0.014 0.901 0.798 0.695 0.593 0.495 0.430 0.381 0.343 0.324 

0.015 0.899 0.787 0.674 0.567 0.476 0.415 0.369 0.333 0.316 

Values of γ 

0.002 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 

0.003 0.405 0.407 0.408 0.409 0.411 0.414 0.418 0.425 0.432 

0.004 0.427 0.430 0.433 0.436 0.441 0.449 0.460 0.482 0.507 

0.005 0.441 0.446 0.452 0.457 0.466 0.479 0.501 0.543 0.568 

0.006 0.451 0.459 0.466 0.474 0.488 0.508 0.545 0.586 0.602 

0.007 0.459 0.469 0.479 0.490 0.508 0.538 0.582 0.611 0.622 

0.008 0.466 0.477 0.490 0.504 0.529 0.570 0.607 0.627 0.633 

0.009 0.471 0.484 0.500 0.518 0.550 0.595 0.623 0.636 0.638 

0.010 0.475 0.491 0.509 0.531 0.573 0.613 0.634 0.641 0.641 

0.011 0.479 0.497 0.519 0.546 0.594 0.626 0.641 0.644 0.642 

0.012 0.482 0.503 0.528 0.560 0.610 0.635 0.645 0.645 0.641 

0.013 0.485 0.508 0.538 0.576 0.622 0.642 0.648 0.645 0.640 

0.014 0.488 0.514 0.547 0.592 0.631 0.646 0.649 0.644 0.638 

0.015 0.490 0.519 0.557 0.606 0.638 0.650 0.649 0.642 0.635 
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Mander (1983) based on his stress-strain relation for confined concrete proposed 

the stress-block parameters (α and β) for different levels of confinement. The results of 

the stress-block parameters for different levels of confinement are presented in Figure 2. 

Azizinamini et al. (1994) conducted tests on high-strength concrete columns and 

observed that the maximum measured moment for test columns with concrete 

compressive strengths exceeding 97 MPa were less than the moment determined using 

the stress-block parameters recommended by ACI 318-89. The authors proposed an 

alternate procedure to conservatively predict the nominal moment capacities of columns 

with  > 97 MPa. It was considered appropriate to use triangular stress-blocks for 

calculating the flexural capacity of columns with compressive strength exceeding 69 

MPa. The maximum compressive strength was assumed to be  at an axial 

compressive strain of 0.003. The equivalent rectangular stress-blocks were found to have 

the compressive stress intensity as  in place of  as recommended by ACI 

318-89 and the depth of the rectangular stress-block was found to be 0.67 times the 

depth to the neutral axis. Based on these findings the authors proposed that for concrete 

compressive strengths greater than 69 MPa the stress intensity factor of the equivalent 

rectangular stress-block must be reduced from 0.85 using the following expression 

  (77)  

Ibrahim and MacGregor (1997) proposed equations for the stress-block 

parameters α and β. The equation proposed for β  was found to pass through the center   
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Figure 2: Equivalent rectangular stress-block parameters for rectangular sections 

with confined concrete – Mander (1983). 
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of the experimental data points and was conservative compared to the ACI 318-89 

equation for different concrete strengths. The expression for β is as represented below. 

  (78)  

The authors also observed that a constant value of  would provide a safe 

design for high strength and ultra high strength concrete sections and would give very 

conservative design for normal strength concrete sections. The authors proposed an 

equation for α that decreased with increase in the concrete compressive strength. 

  (79)  

For concrete strength greater than 100 MPa constant values of  and  

were adopted. 

Attard and Steward (1998) noted that the ACI 318-95 formula for the stress-

block parameter are limited to concrete with concrete compressive strength of up to 50 

MPa. In the ACI 318-95 stress-blocks parameter, the stress-block depth parameter is 

varied with the concrete strength and the width of the equivalent rectangular stress-block 

is defined as a constant value 0.85 times the compressive strength of concrete.  

However, the authors propose that to extend the stress-block parameters to high-

strength concrete, a two-parameter model is necessary. The equivalent rectangular 

stress-block parameters are defined by the parameter  (equivalent to α) and  

(equivalent to β).  defines the width of the equivalent stress-block,  defines the 

stress-block depth factor and the factor  takes into the account the factors that 
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contribute to the differences between the in-situ compressive strength and the strength 

determined from standard cylinder compression tests. The expressions for these factors 

are given below. 

Mean from dogbone 

(DB) tests 
 (80)  

Mean inc. sustained 

load (SL) effects 
 (81)  

in which the sustained load factor is given by 

  (82)  

where  is the mean cylinder compressive concrete strength given by 

  (83)  

 
 

 

(84)  

 
 

 

(85)  

 
 

 

(86)  

In the next section a stress-strain model for unconfined and confined concrete 

applicable to both normal and high-strength concrete is proposed and closed form 

equations for the stress-block parameters are derived. 
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2. PROPOSED STRESS-STRAIN MODEL FOR UNCONFINED AND 

CONFINED CONCRETE  

2.1 Introduction 

The proposed stress-strain model of both unconfined and confined concrete in 

compression is set by three coordinates as depicted in Figure 3. For unconfined concrete 

these are: the peak strength , at the termination of the post-peak branch 

, and the failure strain . Similarly, for confined concrete the principal 

control coordinates are: . Using these coordinates as 

commencement and termination points, the proposed stress-strain model has three 

branches – an initial power curve up to the peak stress, followed by a bilinear relation in 

the post-peak region. The expressions representing the proposed stress-strain relation are 

presented below.  

  (87)  

  (88)  

 
 (89)  

in which K = confinement ratio and for confined concrete ( ); ,  5 

and . The various parameters in the above equations are defined below. 

  (90)  
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(91)  

  (92)  

For unconfined 

concrete 
 (93)  

For confined concrete  (94)  

  (95)  

  (96)  

The expression for  was obtained from experimental results of Mander et al. 

(1988a) and Li et al. (2000). The scatter of the experimental values of  and the 

straight line fit (96) are presented in Figure 4. 

Compared to other stress-strain models, (e.g. Popovics, 1973), an advantage of 

the above three equations is that they can be easily inverted to find the strain explicitly 

as a function of stress as follows. 

 
 

(97)  

 
 

(98)  

 
 (99)  

For unconfined concrete ( ), 

 in all of the above equations. The stress-strain plot for unconfined and   
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Figure 3: Proposed stress-strain model for unconfined and confined concrete. 

 

 

 

Figure 4: Calibration of fcu from experimental data. 
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confined concrete of different compressive strengths is plotted in the figures shown in 

Appendix I and II. 

2.2 Stress-Strain Model for Unconfined Concrete in Tension 

For the stress-strain model of unconfined concrete in tension, the same model as 

described above for unconfined concrete in compression can be used. However, the 

parameters need to be defined for the tensile behavior of concrete. Measured values may 

be used, or as a good approximation the values of , ,  and  can be taken 

as one-tenth of their corresponding values in compression. 

2.3 Equivalent Rectangular Stress-Block Parameters 

Equivalent rectangular stress-block parameters are extensively used in the 

analysis and design of concrete structural members and offer a convenient way to 

determine flexural capacity. These parameters are derived from the stress-strain relation 

of concrete. In order to determine the stress-block parameters, the effective average 

concrete stress ratio (α) and the effective stress-block depth factor (β), the area and the 

first moment of area under the stress-strain curve of concrete and the effective 

rectangular stress-block are equated. One of the major advantages of the proposed stress-

strain model is that, they can be easily integrated and closed form equations can be 

established for the stress-block parameters. The procedure to obtain the stress-block 

parameters follows. 

The force in concrete ( ) for a known value of strain can be expressed in terms 

of equivalent stress-block parameters α and β such that: 
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  (100)  

where c = depth to the neutral axis from the top concrete fiber in compression; and b = 

breadth of the section. 

The area and the first moment of area of the stress-strain function are given by  

 
 

(101)  

 
 

(102)  

from which the stress-block parameters can be found from 

 
 

(103)  

and 
 

(104)  

Carrying out the integration in (103) and (104) using the stress-strain relations 

(87) to (89) gives the stress block relations as follows: 

i. For  

 
 

(105)  

 
 

(106)  

ii. For  

 (107)  
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 (108)  

iii. For  

 (109)  

 (110)  

iv. For  

 (111)  

 (112)  

In the above the following coefficients are used 

 (113)  

 (114)  

 (115)  

 (116)  

 (117)  

 (118)  
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In the above expressions . For unconfined concrete 

, . The stress-block parameters are 

shown in Figure 5. 

2.4 Worked Example Using Stress-Blocks 

COMPUTATIONAL SOLUTION IMPLEMENTATION 

The computational solution is implemented to perform an analytical moment-

curvature analysis in two ways. First, the derived stress-block parameters are used and in 

the second a fiber analysis using the proposed stress-strain relation is carried out. In the 

latter solution procedure, the concrete section is divided into a number of fibers and the 

strains (and hence the stresses) are calculated at their centers knowing the centroidal 

strain , curvature  and the distance to the center of the layer from the centroidal axis 

. A general procedure of determining the moment-curvature relation for columns under 

axial load is outlined in the following steps. 

Step 1

 

:  To the value of the last known curvature solution , the curvature increment 

 is added to give the new curvature, 

 (119)  

Step 2

 

: For an incremental curvature  and an associated augment in the reference 

axis strain , the change in axial force  and moment  over that step is found 

by 
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Figure 5: Stress-block parameters for unconfined and confined concrete. 
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 (120)  

in which the partial derivatives are defined numerically at the beginning of the kth step 

such that 

  (121)  

 
 (122)  

 
 (123)  

 
 (124)  

where  and  are small increments made in strain and curvature to separately 

find the corresponding changes in axial load and moment. 

From the out of balance force remaining from the last solution,  

along with the increment in curvature (if any), the incremental reference axis strain 

necessary to restore force equilibrium is given by 

 
 (125)  

and the new reference axis strain and corresponding strain profile is obtained as 

  (126)  
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  (127)  

Step 3

 

: From this the reinforcing bar stresses (130) and stress-block parameters (105) to 

(112) are found, and the axial load and moment computed as follows  

(128)  

 (129)  

Step 4

 In the analysis of moments and axial loads two different models of the stress-

strain performance of the reinforcing steel may be adopted. For nominal design 

capacities, an elasto-plastic model is customarily adopted to provide a dependable 

estimate for design. For “exact” analysis of existing reinforced concrete members, a 

realistic stress-strain model should be adopted using expected values of the control 

parameters. Such a model (

: Check the out-of-balance force  is within an acceptable 

tolerance. If  proceed to next curvature value, else set  and go 

to step 2. 

Figure 6), conveniently posed in the form of a single equation 

is given as: 

 
(130)  

where  (131)  
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HAND ANALYSIS SOLUTION IMPLEMENTATION 

In the hand analysis method using equivalent rectangular stress-block 

parameters, for a particular value of strain in the extreme concrete fiber of the cover or 

core concrete the strains at the different levels of steel and the extreme cover and/or core 

concrete fibers are determined assuming linear distribution of strain along the column 

cross- section. From the strains the stress-block parameters (α and β) for unconfined and 

confined concrete and the stresses in steel are calculated. Knowing the area of steel and 

cover and core concrete, the forces are obtained and an iterative procedure is followed in 

order to obtain force equilibrium. Ones equilibrium of forces is attained, knowing the 

depth to the neutral axis of the section from the extreme concrete compression fiber; the 

moment and curvature are calculated. 

NUMERICAL EXAMPLE 

Adopting the above procedure for the computational and hand analysis 

technique, the moment-curvature analysis for a column with an axial load of 2000 kN 

with the following properties is performed. Section properties: breadth = 600 mm, height 

= 600 mm, clear cover = 50 mm, length = 1500 mm. Concrete properties:  = 30 MPa, 

 = 0.0019,  = 0.009,  = 45 MPa;  = 0.00675 and  = 27387 MPa (the above 

parameters were calculated using the expressions presented earlier). Reinforcing steel 

properties:  = 430 MPa,  = 200000 MPa,  = 650 MPa,  = 0.12,  = 0.008,  

= 8000 MPa,  = 430 MPa, diameter of longitudinal bars  = 25 mm, diameter of 

stirrups  = 12 mm and stirrup spacing  = 100 mm.  
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In order to implement the iterative computational procedure to obtain the 

moment-curvature relation, a MATLAB program was used. The hand computation was 

performed for the following values of the strain; first yield of steel , strain at the 

extreme cover concrete fiber  = 0.003, 0.006 and  and strain at the extreme 

confined concrete fiber  and  (Figure 7). The result of the hand 

computations is presented in (Table 3 through Table 8). A comparison of results is 

presented in Figure 9. 

The differences noted between the proposed model and the classic Mander et al. 

(1988b) model are ascribed to differences (inaccuracy) in modeling the falling branch of 

the cover concrete of the latter. 
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Figure 6: Stress-strain curve for steel. 

 

Figure 7: Section strain and stress-block analysis of the cases (a) before and (b) 
after spalling.  
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Table 3: Hand computations at yield strain of steel. 

Steel c = -235.10 mm 

Steel layer 
Area of 

steel, mm2 
Strain 

Stress 
MPa 

Force 
kN 

Distance from 
centroid, mm 

Moment kN-
m 

Layer 1 1963.50 -0.0012 -237.89 -467.10 -225.50 105.33 

Layer 2 981.75 -0.0001 -15.24 -14.97 -75.17 1.12 

Layer 3 981.75 0.0010 207.48 203.69 75.17 15.31 

Layer 4 1963.50 0.0022 415.53 815.88 225.50 183.98 

Concrete 
 α               β    

For 
unconfined 

concrete 

Cover layer -0.0017 0.8280 0.7238 -2536.0 -214.92 545.04 

Core layer -0.0013 0.7009 0.7053 1296.2 -180.84 -234.41 

For confined concrete -0.0013 0.4696 0.7017 -1295.95 -181.16 234.78 

Curvature 7.4036E-06 ΦD 0.0044 Total -1998.23 
 

851.16 

 
 

 

 

Table 4 : Hand computations at strain =0.003 at cover. 

Steel c = -200.50 mm 

Steel layer 
Area of 

steel, mm2 
Strain 

Stress 
MPa 

Force 
kN 

Distance from 
centroid, mm 

Moment 
kN-m 

Layer 1 1963.50 -0.0019 -375.89 -738.06 -225.50 166.43 

Layer 2 981.75 0.0004 72.87 71.54 -75.17 -5.38 

Layer 3 981.75 0.0026 429.81 421.96 75.17 31.72 

Layer 4 1963.50 0.0049 431.10 846.46 225.50 190.88 

Concrete 
 α               β    

For 
unconfined 

concrete 

Cover layer -0.0030 0.8164 0.8555 -2520.7 -214.24 540.02 

Core layer -0.0022 0.8921 0.7537 1422.3 -189.55 -269.60 

For confined concrete -0.0022 0.6540 0.7245 -1503.60 -191.65 288.17 

Curvature 1.50E-05 ΦD 0.0090 Total -2000.04 
 

942.24 
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Table 5 : Hand computations at strain =0.006 at cover. 

Steel c = -193.00 mm 

Steel layer 
Area of 

steel, mm2 
Strain 

Stress 
MPa 

Force 
kN 

Distance from 
centroid, mm 

Moment 
kN-m 

Layer 1 1963.50 -0.0037 -430.49 -845.27 -225.50 190.61 

Layer 2 981.75 0.0010 198.01 194.39 -75.17 -14.61 

Layer 3 981.75 0.0057 431.87 423.99 75.17 31.87 

Layer 4 1963.50 0.0103 449.76 883.11 225.50 199.14 

Concrete 
 α               β    

For 
unconfined 

concrete 

Cover layer -0.0060 0.4590 1.1425 -1821.9 -189.75 345.70 

Core layer -0.0043 0.6139 1.0126 1246.8 -174.64 -217.73 

For confined concrete -0.0043 0.8857 0.7809 -2080.79 -190.51 396.41 

Curvature 3.11E-05 ΦD 0.0187 Total -1999.71 
 

931.38 

 
 

 

 

Table 6 : Hand computations at spalling strain at cover. 

Steel C = -196.40 mm 

Steel layer 
Area of 

steel, mm2 
Strain 

Stress 
MPa 

Force 
kN 

Distance from 
centroid, mm 

Moment 
kN-m 

Layer 1 1963.50 -0.0056 -431.78 -847.79 -225.50 191.18 

Layer 2 981.75 0.0013 260.69 255.93 -75.17 -19.24 

Layer 3 981.75 0.0082 438.26 430.26 75.17 32.34 

Layer 4 1963.50 0.0151 481.42 945.27 225.50 213.16 

Concrete 
 α               β    

Unconfined 
concrete 

Cover layer -0.0090 0.2898 1.3341 -1366.9 -168.99 231.00 

Core layer -0.0064 0.4302 1.1691 1033.8 -161.93 -167.41 

Confined concrete -0.0064 0.9570 0.8303 -2449.91 -185.71 454.98 

Curvature 4.58E-05 ΦD 0.0275 Total -1999.32 
 

936.00 
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Table 7 : Hand computations at spalling strain at core. 

Steel c = -200.75 mm 

Steel layer 
Area of 

steel, mm2 
Strain 

Stress 
MPa 

Force 
kN 

Distance from 
centroid, mm 

Moment 
kN-m 

Layer 1 1963.50 -0.0078 -436.93 -857.91 -225.50 193.46 

Layer 2 981.75 0.0015 299.58 294.11 -75.17 -22.11 

Layer 3 981.75 0.0108 453.03 444.76 75.17 33.43 

Layer 4 1963.50 0.0202 512.41 1006.12 225.50 226.88 

Concrete 
 α               β    

For 
unconfined 

concrete 

Cover layer -0.0090 0.2898 1.3341 -1007.4 -147.44 148.54 

Core layer -0.0090 0.2898 1.3341 819.4 -147.44 -120.81 

For confined concrete -0.0090 0.9718 0.8736 -2698.73 -180.77 487.86 

Curvature 6.22E-05 ΦD 0.0373 Total -1999.70 
 

947.25 

 
 

 

 

Table 8 : Hand computations at maximum core fiber strain of 2  . 

Steel c = -205.40 mm 

Steel layer 
Area of 

steel, mm2 
Strain 

Stress 
MPa 

Force 
kN 

Distance from 
centroid, mm 

Moment 
kN-m 

Layer 1 1963.50 -0.0118 -459.60 -902.42 -225.50 203.50 

Layer 2 981.75 0.0018 351.03 344.63 -75.17 -25.90 

Layer 3 981.75 0.0153 483.11 474.29 75.17 35.65 

Layer 4 1963.50 0.0289 555.24 1090.21 225.50 245.84 

Concrete 
 α               β    

For 
unconfined 

concrete 

Cover layer -0.0090 0.2898 1.3341 -693.2 -127.76 88.57 

Core layer -0.0090 0.2898 1.3341 563.8 -127.76 -72.03 

For confined concrete -0.0135 0.9475 0.9257 -2877.65 -174.85 503.16 

Curvature 9.04E-05 ΦD 0.0542 Total -2000.35 
 

978.78 
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Figure 8: Comparison of proposed and Mander et al. (1988b) stress-strain models. 

 

 

Figure 9: Comparison of moment-curvature results.  
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3. STRUCTURAL TIMBER-BOXED CONCRETE SYSTEM 

3.1 Introduction 

Timber is extensively used in the United States for the construction of light-

frame residential buildings and apartment complexes because of its eminent advantages 

of being a light weight material, easy to handle and work with; being aesthetically 

appealing, reduced environmental impact compared to other construction materials and 

high thermal efficiency and reduced energy costs for the end user. Timber as a material 

however, has the disadvantage of being subjected to significant creep, limited to small 

spans, limited fire-rating, noisy floors and poor sound insulation and may require many 

walls to stiffen a structure of substantial size. These disadvantages limit the utilization of 

timber structures in high rise buildings and hence timber structures are usually relegated 

for use in low rise buildings. 

Reinforced concrete, on the other hand, is thought to be stronger, can be used to 

build longer spans and taller structures; high rise structural concrete buildings in excess 

of 40 stories have been constructed with no apparent limits. However, these materials are 

difficult to handle and one requires specialized falsework and formwork equipment 

systems to work with them. Also, reinforced concrete structures are costlier and may 

require greater time for construction as compared to timber structures. 

In the past two decades extensive studies have been conducted to study the 

performance of timber-concrete composite structures. The major advantages of this 

composite construction (Ceccotti 2002) are: lighter structures compared to reinforced 
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concrete structures, improved load-carrying capacity and structural rigidity over 

traditional timber floor systems, efficient in terms of load carried per unit self-weight, 

higher in-plane (diaphragm) rigidity  an important feature for performance during 

earthquakes, relatively highly damped compared to timber systems, superior sound 

insulation and fire protection compared to timber-only structures, and lower cost and 

faster construction compared to ordinary reinforced concrete structures. In the case of 

the composite system used in bridge decks (Mettem 2003) the concrete topping slab 

protects the timber beneath from direct sun, rain and from wear and tear. The system 

provides good diaphragm action and better facilitates the distribution of wheel loads 

amongst the timber stringers. 

However, the performance of the timber-concrete composite system depends on 

the choice of connection system that is used to obtain the composite action. The 

connections need to be stiff and strong for optimal structural efficiency and at the same 

time should be economical to obtain overall cost efficiency. By preventing relative slip 

between the timber beams and concrete topping slabs, the positive aspects of the 

constituent materials of the composite system can be exploited, with the concrete mainly 

in compression and the timber in tension and bending. 

Composite action between timber and concrete can be obtained by using nails, 

screws, steel tubes, glued reinforced concrete steel bars, grooves with reinforcing screws 

and nails and others. Several studies have been conducted in the development of a good 
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connection system between timber and concrete to obtain a good composite action; but 

all these connections for composite action lead to significant labor costs for inspection. 

Buchanan and Fairweather (1993) studied the seismic performance of glue 

laminated (gluelam) timber frame buildings. Several types of timber-concrete 

connections were studied and recommendations made for seismic design. A design 

procedure was also suggested for low rise multi-story gluelam buildings. 

Ceccotti and Fragiacomo (2006) conducted studies on timber-concrete 

composite beam with glued re-bar connection in outdoor conditions and made 

recommendations for the evaluation of the connection properties. 

Fragiacomo et al. (2007) performed studies on the long-term behavior of 

composite wood-concrete floor system with shear key connection. The purpose of this 

study was to popularize the use of the composite timber-concrete system in countries 

like the United States and United Kingdom where the use of this system is limited. The 

authors conducted ultimate load tests on the connection detail, ultimate load and long 

term tests on strips of floor and on full-scale floor/deck systems, and cyclic tests 

simulating the repetition of the live load during the service life of the structure. 

Deam et al. (2007) conducted a pilot study in order to compare the behavior of 

different connections that can be used in the composite concrete-LVL (laminated veneer 

lumber) floor system. Based on the study it was concluded that concrete plugs reinforced 

with screws provided the best stiffness, strength and post-peak behavior of the shear 
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force-relative slip curve. This improved performance was attributed to the bearing at the 

interface between LVL and the concrete plug. 

Balogh et al. (2008) performed cyclic loading tests on the composite wood-

concrete beams with notched connections. A decrease in stiffness and increase in 

deflection was observed and this was attributed to the progressive damage caused in the 

connections. 

Deam et al. (2008) showed that a LVL-concrete composite system could be used 

for the construction of medium to long span timber floors. It was shown that there was 

significant increase in strength and stiffness of the composite beam when compared with 

bare LVL beams. They also looked into prestressing the composite beam and concluded 

that though prestressing did not significantly increase the strength or stiffness of the 

beam, it is beneficial to reduce the mid-span deflections and hence recommended for 

long-span floor. 

Recent studies by Buchanan et al. (2008) have investigated the viability of the 

construction of multi-story prestressed timber buildings which uses LVL. For the 

purpose of this study a concrete-timber composite floor system is developed wherein the 

timber part is prefabricated and the concrete slab is cast in situ. The composite action is 

obtained between these materials using concrete plugs reinforced with screw based on 

the results of the pilot study by Deam et al. 2007. 

A notable drawback in the composite system is that timber and concrete both 

exhibit creep under prolonged loading (Clouston et al. 2005) and is a function of applied 
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stress levels and load duration. For timber, moisture and temperature also influence its 

creep behavior. Furthermore, concrete shrinks and timber shrinks and swells with 

variation in temperature. The differential amounts of these characteristics leads to 

additional demands on the timber-concrete shear connections. 

Rather than a strict composite timber-concrete system, this paper presents a study 

where a conceptual idea of using timber and reinforced concrete as a combined or 

parallel system is investigated. This system utilizes the positive aspects of both timber 

and concrete as individual materials and does not need to rely on their composite action 

and hence does not have any detailed connection requirements. Specifically, the concept 

is based in the formation of the two main elements of construction: beams (and of course 

the slabs they support) and columns. Another purpose of this study is to reinvigorate the 

use of common dimension lumber into economical moment frame construction and also 

to provide the illusion that the building, although quite tall, is really timber. Concrete is 

used to strengthen, lengthen and stiffen the mostly timber members. One of the main 

attributes of timber, its lightness, can essentially be maintained.  

3.2 Structural Timber-Boxed Concrete 

THE CONCEPT 

Concrete structures are formed by casting fresh concrete into timber formwork 

molds or ‘boxing’. The formwork is held in position by falsework—a false structure that 

is used to assemble the real structure. Once the concrete cures and hardens, the 

falsework and formwork are removed and often reused or discarded. The wooden 
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formwork can be used multiple times but the combined cost of formwork and falsework 

including the labor cost of erecting and dismantling is a considerable proportion of the 

final construction cost. 

The favorable attributes of timber and concrete are utilized to come up with an 

innovative and cost effective structural member referred to herein as the structural 

timber-boxed concrete system. In this system, stay-in-place timber formwork is erected 

on site, some limited reinforcing or prestressing strand is placed and the concrete poured. 

The formwork is such that it has sufficient strength to support the self-weight of the 

concrete. Once the concrete has cured, the timber formwork is not removed. The 

hardened reinforced concrete shares the load with the pre-existing timber structure; 

combined, they both resist the total factored design loads including transient lateral loads 

arising from wind and/or seismic effects. The system takes advantage of the structural, 

architectural, and material advantages of both the materials while combining to form a 

mixed-material system that offers advantages over other framing systems for comparable 

use (e.g. cast-in-place concrete).  

Apart from the novel idea of using timber, concrete and steel together, the fact 

that the boxed timber itself acts as the formwork considerably improves and simplifies 

the construction procedure. The only temporary materials needed are a few lateral 

bracings and intermediate props (shoring) in order to reduce beam deflections while 

casting the topping concrete on each floor and these can be reused several times, thus 

ensuring cost effectiveness. This form of construction is quicker than the conventional 
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construction and the contractors have the flexibility of immediately occupying the space 

below the recently finished floor for installation of services as limited shoring exists. 

Enormous architectural flexibility is afforded by the structural boxed-concrete 

system, including various ceiling options (exposed timbers, post-and-beam look, 

laminated timbers, crown moldings, and easily suspended architectural or acoustical 

ceilings); the potential for non-structural building systems (electrical, plumbing, HVAC, 

fiber/cable, lighting, fire suppression system) to be easily installed, accessed, and 

modified in-service; and options to finish or not finish interior surfaces. 

Figure 10 presents the fundamental conceptual idea behind the proposed 

structural timber-boxed concrete concept. The floor plan of a typical timber-boxed 

concrete structure is shown with section view of the timber-boxed floor system, column 

and beam-column joints. Topping mesh is provided in the concrete flooring slab in order 

to prevent tensile cracking of concrete. The concrete topping is cast over the 2’’x4’’ nail 

laminated joists. The sequential steps for the construction of the timber-boxed concrete 

system building would be as follows:  

• The boxed-timber columns may be prefabricated (this could be done either at the 

site by roughing carpenters, or perhaps for a finer finish in a joinery factory). 

• The boxed-timber columns would be erected around the previously placed 

reinforcing cage and plumbed and concrete poured in each of the columns for one floor 

up to the soffit level of the beams. 

• Again, either roughing carpenters or a joinery shop would fabricate the timber-

boxed beams. The three-sided timber-boxed beams would be placed and fastened onto   
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Figure 10: Structural timber-boxed concrete: elements of the concept. 
(1 in = 25.4 mm)  
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timber collars (seats) at the top of the columns, and temporarily propped at the quarter-

points (propping would only be required on beams longer than about 6 m). 

• The nail-laminated 2”x4” subfloor would then be installed. Once placed this 

timber sub-floor becomes a strong working surface for all subsequent work. 

• Reinforcing cages are then placed within the boxed timber beams and the mesh 

placed across the timber sub-floor, concrete is poured in the box-beams and floor and 

left to cure for at least a day.  

• Once hardened, the newly finished concrete floor immediately becomes the new 

working surface for the next story. 

• The column reinforcing steel is placed for the next floor and the above procedure 

is repeated until the building is topped. 

Structural timber-boxed concrete, as a combination of two common building 

materials used in a new way, largely due to its overall lightness, can offer refreshing 

opportunities for mid-rise and taller construction. In particular, lateral load demands are 

reduced, leading to further economies. With this approach, there should be no physical 

limitation on the height of this new class of timber structure. 

MATERIAL COMPATIBILITY 

A building constructed using the proposed structural timber-boxed concrete 

system is not a hybrid building, but rather is a mixed (or parallel) material building that 

relies on favorable properties of the constituent material. When two or more materials 

are engaged in such a parallel arrangement to perform a structural function, issues of 

material compatibility arise. Since this is a layered system which really does not rely on 
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composite action, the issues are fewer. However, proper consideration needs to be given 

to differential creep, shrinkage (and swell), changes in strength and stiffness with time, 

and differences in response to moisture between the timber and concrete materials. 

Properly understood, it is expected that proper detailing can compensate effectively for 

these material differences. 

The high variability of timber strength in the connection regions can result in 

brittle failure of the composite timber-concrete system. However, the use of wood-based 

engineered materials like laminated veneer lumber and glued laminated timber has 

shown to give better performance for composite timber-concrete members when 

compared to dimension/stick lumber because of their improved strength, dimensional 

stability and uniformity. Though these products show improved strength, they do not 

show significant improvement in stiffness and these engineered timber materials 

considerably increase the cost – typically at least twice that of ordinary dimension 

lumber. As the proposed system does not rely on composite action, construction grade 

treated and untreated dimensioned lumber is used; this is readily available and 

considered less costly, thus improving the overall economy of the system. 

One way of overcoming a primary unfavorable attribute of creep deflections in 

combined timber and concrete systems is to incorporate a load-balancing prestressed 

system. If dead loads are balanced with judicious use of post-tensioned prestress applied 

through draped ducts embedded in the concrete, then only axial compression stresses 

will exist in the materials – as dead deflections are zero, there will be no associated creep 

deflections. With long-term creep deflections being negated this should help overcome 
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much of the differential creep problem, as only short-term (non-creep associated) 

deflections exist. 

Another potentially unfavorable attribute is the migration of moisture between 

the component materials: timber and concrete. For example, if the timber is kiln-dried, 

then there will likely be migration of moisture from the green concrete into the timber. 

This causes the concrete to shrink, while the timber would swell. Conversely, if a 

relatively low water/cement ratio concrete mix is poured into the timber boxing, both the 

timber and the concrete would dry out, but the timber would shrink more than the 

concrete. As the concrete would inhibit substantial shrinking of the timber, the timber 

would end up splitting longitudinally (parallel to the grain). To overcome these issues, 

several approaches could be adopted, from coating the inside of the boxes prior to 

casting the concrete, to providing a physical moisture barrier in the form of a polythene 

sheet. It is expected that the former may be appropriate for beams and columns, while 

the latter would be more suitable for the casting of the floor slabs. Finally, the mode in 

which dimensioned lumber is used in the proposed system will permit the use of some 

off-grade (lower grade) material 

3.3 Strength and Deformation Analysis for Design 

Prior to building timber-boxed concrete structural elements for the purpose of 

experimental testing, it is first necessary to develop suitable simple design theories. 

These shall be based upon extending existing strength-based equilibrium and 

compatibility models that use stress-blocks for reinforced concrete in compression. The 
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extension shall primarily consist of using strain amplitude dependent stress-blocks for 

timber in both tension and compression. 

For this purpose it is necessary to have constitutive stress-strain relations for 

unconfined concrete, timber and reinforcing steel. From the constitutive stress-strain 

relation for concrete and timber the stress-block parameters can be obtained. As is 

presently done for reinforced concrete, it is proposed to use a stress-block approach to 

perform strength and moment-curvature analysis to study the strength and ductility 

capacities of these structural members. 

In this study the stress-strain models for unconfined concrete and reinforcing 

steel proposed in section 2 are used (Figure 3 and Figure 6). The model for unconfined 

concrete will now be adapted for use in timber. 

STRESS-STRAIN MODEL FOR TIMBER 

For performing an analytical moment-curvature analysis on the timber-boxed 

concrete system it is necessary to have a stress-strain model for timber. Figure 11 

presents the proposed stress-strain relation for timber, an adaptation of the stress-strain 

model proposed for unconfined concrete in section 2, consisting of an initial power 

curve up to the peak stress, followed by a bilinear relation in the post-peak region. The 

stress-strain model for timber in tension and compression is set by three coordinates: the 

peak strength, reduced post-peak capacity and failure strain given by ( ), 

 and  for timber in tension and ( ),  and  

for timber in compression.  
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The expressions representing the proposed stress-strain relation for timber in 

compression are presented below. 

  (132)  

  (133)  

 
 (134)  

in which ,  and . The term n is given by 

  (135)  

where  and  is the strain and stress in timber and  is the modulus of elasticity of 

timber in compression. For timber in tension the terms ( ), ,  

and  in the above equations are replaced by ( ), ,  and  

(modulus of elasticity of timber in tension) respectively.  

In this study the following values of the controlling parameters for the stress-

strain model for timber are used as obtained from experimental data reported in Shama 

and Mander (2004).  = 50 MPa,  = 0.005,  = 30 MPa,  = 0.012,  = 

0.15,  = 10700 MPa,  = 40 MPa,  = 0.005,  = 20 MPa,  = 0.0075, 

 = 0.01 and  = 9000 MPa.  

The proposed stress-strain model for timber in tension and compression is 

validated against experimental results from tests conducted parallel to the grain on New 

Zealand Pinus Radiata by Rahardjo (2004) and on Douglas Fir by Shama and Mander 
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Figure 11: Stress-strain model and 
stress-block parameters for wood. 

(a) Tension parallel to grain of New Zealand  
Pinus Radiata 

(b) Compression parallel to grain of New 
 Zealand Pinus Radiata 

 (c)Compression parallel to grain of Douglas 
Fir 

Figure 12: Comparison of stress-
strain relationship of timber using 
proposed model and experimental 

results.
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(2004). Figure 12 shows a comparison of the experimental results and the proposed 

stress-strain model; good agreement between the two is evident. 

STRESS-BLOCK APPROACH 

Equivalent rectangular stress-block parameters are extensively used in the 

analysis and design of concrete structural members and offer a convenient way to 

determine their capacity. In this study it is proposed to use the stress-block approach to 

perform the analytical moment-curvature analysis of the timber-boxed concrete 

members. For this purpose it is necessary to obtain the equivalent rectangular stress-

block parameters for both concrete and timber. The stress-block parameters are derived 

from the stress-strain relation of the materials. The stress-block parameters for 

unconfined concrete can be found in section 2. 

EQUIVALENT RECTANGULAR STRESS-BLOCK PARAMETERS FOR 

TIMBER 

The idea of using equivalent rectangular stress-block parameters for analysis is 

extended to timber. In order to determine the stress-block parameters, the effective 

average timber stress ratio (α) and the effective stress-block depth factor (β), the area 

and the first moment of area under the stress-strain curve of timber and the effective 

rectangular stress-block are equated and is given by 
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(136)  

 
(137)  

from which the stress-block parameters can be found from 

 
(138)  

and 

 

(139)  

Carrying out the integration in (138) and (139) using the stress-strain relations 

(132) to (134) gives the stress-block relations as follows. 

i. For  

 
(140)  

 
(141)  

ii. For  

 
(142)  

 
(143)  

iii. For  
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(144)  

 
(145)  

iv. For  

 (146)  

 (147)  

In the above the following coefficients are used 

 (148)  

 
(149)  

 
(150)  

 (151)  

 
(152)  

 
(153)  

in which ,  and .  

The stress-block parameters, α and β, for timber are shown in the lower two 

graphs of Figure 11. From the plots for stress-block parameters for timber, it can be 

noted that timber exhibits a linear elastic behavior in both tension and compression up to 
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strains corresponding to maximum timber strength.  For nominal strength design of 

timber structural elements the value of  = 0.80 and  = 0.67 are suggested. 

3.4 Analytical Studies 

TIMBER-BOX CONCRETE COLUMN STRENGTH AND BEHAVIOR 

Figure 10E shows the cross-sectional details of a timber-boxed concrete column. 

An analytical moment-curvature analysis using stress-block parameters for concrete and 

timber is performed on the structural timber-boxed concrete column in order to evaluate 

its performance as compared to the conventional reinforced concrete members. The 

following properties were used for the analysis. Column section properties: breadth = 

depth = 500 mm, clear cover = 25 mm. Concrete properties (refer Figure 3):  = 30 

MPa,  = 0.002,  = 0.0036,  = 12 MPa,  = 0.007 and  = 27000 MPa. Timber 

properties (refer Figure 11):  = 50 MPa,  = 0.005,  = 30 MPa,  = 0.012, 

 = 0.15,  = 10700 MPa,  = 40 MPa,  = 0.005,  = 20 MPa,  = 

0.0075,  = 0.01 and  = 9000 MPa. Longitudinal reinforcing steel properties 

(refer Figure 6):  = 430 MPa,  = 200000 MPa,  = 650 MPa,  = 0.12,  = 0.012, 

 = 8000 MPa and diameter of longitudinal bars  = 25 mm; for transverse steel: 

yield strength  = 430 MPa, diameter  = 12 mm and stirrup spacing  = 100 mm. 

For the analysis of the timber-boxed concrete column shown in Figure 10E 

several conditions are considered, as follows: 
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(a) Tension and compression in timber are considered for column sections 

corresponding within the mid-height region of the member. Thus, because of 

symmetry, strain compatibility between the materials can be assumed. 

(b) At the fixed ends of the column member, refer to Figure 10F, the timber is 

discontinuous through the beam-column joint. Thus the timber can only 

contribute in compression. 

(c) For sake of completeness, results are shown for the 4-bar and 8-bar reinforced 

concrete columns (neglecting the beneficial effects of the timber). 

Figure 13 presents the results for (a) axial-load moment interaction and in (b) and 

(c) moment-curvature analysis for two different axial loads 1000 and 2500 kN. From the 

axial-load moment interaction diagram in Figure 13a it can be seen that the contribution 

of timber in tension and compression within the mid-height of the timber-boxed concrete 

column increases the moment-capacity by as much as three times when compared to the 

reinforced concrete only column. It is also observed that at the fixed ends of the column 

member, where the timber contributes in compression only, the moment capacity of the 

timber-boxed concrete is higher than the reinforced concrete only column and this trend 

increases with the increase in axial-loads. From Figure 13(b) and (c) it is seen that the 

timber-boxed concrete columns show greater ductility when compared to the reinforced 

concrete only section. 
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(a) Moment vs. axial load interaction 

 
(a) Moment vs. curvature for P=1000 kN 

 
(c) Moment vs. curvature for P=2500 kN 

 
Figure 13: Relative strength of timber-boxed concrete vs. reinforced concrete only 

columns.  
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TIMBER-BOX CONCRETE T-BEAM STRENGTH AND BEHAVIOR 

Figure 10B shows the cross-sectional details for the timber-boxed concrete T-

beam. An analytical stress-block based moment-curvature analysis is performed for the 

timber-boxed concrete and reinforced concrete only T-beam in order to compare their 

capacities. The section properties of the secondary T-beam in the  east-west direction 

are: topping slab breadth = 2.44 m, thickness of concrete topping = 75 mm, slab 

reinforcement = 10 mm reinforcing bars at 300 mm spacing, total section depth = 490 

mm, breadth of boxed beam section = 285 mm and beam reinforcement = 25 mm bars. 

Other properties remaining the same, the section properties for the primary T-beam in 

the north-south direction are: total section depth = 590 mm and breadth of boxed beam 

section = 275 mm   The concrete, reinforcing steel and timber properties are the same as 

that used for the column listed above. The analysis is performed for the following three 

cases for positive and negative moments. 

(a) Timber tension and compression are considered for the timber-boxed concrete T-

beam section within the mid-length region of the member. 

(b) Compression alone is considered at the beam-column joints where the timber is 

discontinuous. 

(c) A reinforced concrete only section without any timber. 

Figure 14a shows the moment-curvature analysis results for the east-west 

secondary T-beam where the participation of the timber flooring is not considered. In 

this case, for positive moments within the mid-length of the section, there is an increase 
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in moment capacity at small curvatures, but the behavior is similar to reinforced concrete 

only system at higher curvatures making the timber ineffective at large curvatures. It is 

also observed that timber is ineffectual at the end spans where, due to discontinuities, the 

timber contribution is only in compression. In the case of negative moments, the timber-

boxed concrete T-beam shows greater strength compared to the reinforced concrete only 

members.  

Figure 14b represents the moment-curvature analysis results for the primary T-

beam in the north-south direction considering the timber flooring to participate. The 

results are similar to the secondary beam in the east-west direction; however it is to be 

noted that the timber flooring contributes towards increasing the moment capacity of the 

primary T-beams by about 30 percent, compared to the secondary T-beams.  



70 
 

 
 

 

 

(a) East-west secondary T-beam (timber flooring does not participate) 

 

          (b) North-south primary T-beam (timber flooring participates) 

Figure 14: Relative strength of timber-boxed concrete vs. reinforced concrete only 
floor system. 
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4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

4.1 Summary 

This study was primarily concerned about modeling a simple stress-strain 

relation for both unconfined and confined concrete which can represent the behavior of 

normal-strength and high-strength concrete. The proposed stress-strain model overcomes 

a major shortcoming of the existing concrete stress-strain models which either do not 

represent the falling branch of the stress-strain relation properly or cannot be easily 

inverted or integrated to determine the equivalent rectangular stress-block parameters.  

A stress-strain relation was proposed for both unconfined and confined concrete. 

The model was defined by a simple power curve for the ascending branch and bilinear 

straight line equations for the post-peak behavior. The nature of the curves allowed the 

stress-strain relations to be easily inverted and readily integrated to determine the 

equivalent rectangular stress-block parameters.  

The proposed stress-strain model was found to well represent the experimental 

and analytical results for the columns tested and analyzed by Mander et al. (1988b). The 

computational moment-curvature result that was obtained by performing a fiber-analysis 

using the proposed stress-strain model of unconfined and confined concrete and the 

stress-block analysis were found to match well with the results obtained from the fiber 

analysis using Mander et al. (1988b) model. The difference at the peak was due to the 

difference in the falling branch of the cover concrete stress-strain model, which is 

steeper for the proposed model. 
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Closed form expressions were derived for the equivalent rectangular stress-block 

parameters and a hand analysis was performed using these. The hand computation 

results had a good match to the moment-curvature results from the computational fiber 

and stress-block analysis and can provide as an easy method for design checks. 

Empirical relations were also derived for the various controlling parameters of 

the stress-strain model. This enables one to obtain the stress-strain relation of both 

unconfined and confined concrete in the absence of accurate experimental data. 

A conceptual idea for the use of dimensioned lumber and reinforced concrete as a 

parallel system in order to build an efficient and economic system referred to as timber-

boxed concrete was developed. The system need not rely on composite action between 

timber and reinforced concrete, rather the system acts like a parallel or mixed system 

utilizing the positive aspects of all the constituent materials.  

In order to perform a stress-block based moment-curvature analysis on the 

timber-boxed concrete section, a stress-strain model for timber is proposed and the 

stress-blocks for timber are derived from these. 

The rectangular stress-block parameters that were developed for timber and 

unconfined concrete were incorporated in a computer program in order to obtain the 

moment-curvature plot of the timber-boxed concrete and ordinary reinforced concrete 

columns and T-beam. With this analysis the moment capacities of the sections were 

compared. 
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4.2 Conclusions 

The following are the major conclusions from this study: 

i. The proposed stress-strain relation of concrete well represents the behavior of 

both normal strength and high strength concrete in their unconfined and 

confined states. 

ii. The proposed stress-strain relation can be easily inverted and conveniently 

integrated. 

iii. By equating the area and the first moment of area under the stress-strain 

curve and an equivalent rectangular stress-block, closed form relation for the 

stress-block parameters are obtained. 

iv. The stress-strain relations are controlled by a few controlling parameters and 

empirical expressions for these parameters based on  are derived so that 

these relations can be used in the absence of accurate experimental results. 

v. A stress-block hand analysis approach using the derived equivalent 

rectangular stress-block parameters can be performed in order to obtain the 

moment-curvature relation for reinforced concrete members. 

vi. The concept of the proposed stress-strain model for unconfined concrete is 

extended to timber in order to obtain a stress-strain relation and is found to be 

well representative of the experimental results.  

vii. Expressions for rectangular stress-block parameters for timber are obtained 

and the stress-block approach extended to timber. Values of stress-block 
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parameters, α = 0.80 and β = 0.67 are recommended to be used for nominal 

strength design of timber 

viii. A concept of timber-boxed concrete is developed and the moment-curvature 

relations of these structural systems are determined using the stress-block 

parameters. 

ix. Height limitations of timber structures can be overcome and construction cost 

and time reduced due to reduced formwork. 

x. The results from the preliminary analysis show good promise for the 

application of the proposed timber-boxed concrete system. 

4.3 Recommendations for Further Work 

This section outlines a few important areas in which further studies is essential. 

i. Tests to calibrate the stress-strain model of timber with tests on dimensioned 

lumber and propose empirical relations for the mechanical properties of 

timber. 

ii. Experimental investigation to verify the analytical results of timber-boxed 

concrete structural members and propose new theories to support the 

experimental work, if required. 

iii. Study performance of the boxed concrete system under static and dynamic 

loading and also long-term behavior of this system. 

iv. The fire rating of the proposed dual system also needs to be investigated. 
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APPENDIX I 

STRESS-STRAIN RELATION FOR UNCONFINED CONCRETE OF 

DIFFERENT COMPRESSIVE STRENGTHS 

 

Figure 15: Stress-strain relation for unconfined concrete for various concrete 
compressive strengths. 
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APPENDIX II 

STRESS-STRAIN RELATION FOR CONFINED CONCRETE OF DIFFERENT 

COMPRESSIVE STRENGTHS 

a.  

 

b.  

 

Figure 16: Stress-strain relation for confined concrete for various concrete 
compressive strengths. 
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c.  

 

 

d.  

 

Figure 16 (continued)  
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APPENDIX III 

MATLAB PROGRAM FOR MOMENT-CURVATURE RELATION USING 

FIBER ANALYSIS  

(filename mainprogram.m) 

%MAIN FUNCTION  

clear all;clc; 

input_par;  % Function call for input parameters 

[splotPhi,splotM]=momentcurvature(); % Function call for moment-curvature 
analysis 

 % Plotting moment-curvature results 

 figure; 

 plot(splotPhi,splotM,'LineWidth',2) 

 title('MOMENT CURVATURE'); 

 xlabel ('CURVATURE (1/mm)'); 

 ylabel ('MOMENT (kN-m)); 

 grid on 

(filename input_par.m) 

function [] = input_par() 

%FUNCTION TO GET THE INPUT PARAMETERS FROM THE USER 

%Declaring the global variables 

global vAst vfy vesh vEsh vfsu vesu h b fc eco espall clearcover 

nosteellayer Es diastirrup Ptarget nstrip K cvdt nobarperlayer 

vAst vfy vesh vEsh vfsu vesu Pp vdt Ec n fcc ecc nc 

stirrupspacing ecu 

% Input parameters 
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% Section properties 

h = input('Enter the height of the section (mm): '); 

b = input('Enter the breadth of the section (mm): '); 

clearcover = input('Enter the clearcover of the section (mm): '); 

Ptarget = input('Enter the target axial load (kN): '); 

% Concrete properties 

fc = input('Enter unconfined concrete strength (MPa): '); 

fcc = input('Enter confined concrete strength (MPa): '); 

% Reinforcing steel properties 

Es = input('Enter modulus of elasticity of steel (MPa): '); 

fy = input('Enter yield strength of reinforcing steel (MPa): '); 

esh = input('Enter strain hardening strain: '); 

Esh = input('Enter strain hardening modulus (MPa): '); 

fsu = input('Enter ultimate strength of steel (MPa): '); 

esu = input('Enter ultimate steel strain: '); 

bardia = input('Enter longitudinal reinforcing bar diameter (mm): 
'); 

 
nosteellayer = input('Enter number of layers of longitudinal 

reinforcing steel: '); 
%Loop to get number of longitudinal bars in each layer of steel 

for i=1:nosteellayer  

fprintf('INPUT FOR LAYER %d OF STEEL \n \n', i) 

nobarperlayer (i,1) = input('Enter the number of bars in 
this layer of steel: '); 

 
vAst (i,1) = nobarperlayer (i,1)*(pi*bardia (i)^2)/4; 

vfy (i,1) = fy; 

vesh (i,1)= esh; 

vEsh (i,1)= Esh; 

vfsu (i,1)= fsu; 

vesu (i,1)= esu; 
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Pp (i,1) = vEsh(i,1) * (vesu(i,1) - vesh(i,1)) / (vfsu(i,1) 

- vfy(i,1)); 

end 

% Loop to calculate the distance to the steel layers from centroidal line 

for i=1:nosteellayer  

disttb = h-2*clearcover-2*diastirrup-0.5*bardia (1,1)-

0.5*bardia (nosteellayer,1);  

vdt (i,1) = (clearcover+diastirrup +bardia (1,1)/2 + (i-

1)*disttb/ (nosteellayer-1));  

cvdt (i,1) = vdt(i,1)-h/2; 

end 

diastirrup = input('Enter diameter of stirrups (mm): '); 

stirrupspacing = input('Enter stirrup spacing (mm): '); 

%Calculating concrete properties 

Ec = 5000*sqrt(fc);      

eco=0.0015+fc/70000;     

espall =.012-.0001*fc; 

K=fcc/fc; 

ecc =eco*(1+5*(K-1));ecu=5*ecc; 

n=Ec*eco/fc; 

nc=Ec*ecc/fcc; 

nstrip=50; % Total number of strips 

(filename:momentcurvature.m)  

function [tempsplotPhi,tempsplotM] = momentcurvature() 

%FUNCTION TO DO PERFORM THE MOMENT CURVATURE ANALYSIS 

%Declaring the global variables 

global Ptarget Ec b h  Es vAst vfy cvdt nstrip ecc estrip hstrip eo phi 

stopmphi diastirrup clearcover 

% Initial assumptions to start the moment curvature analysis 
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P(1,1)=0; delPhi = 0; tempsplotPhi(1,1)=0; tempsplotM(1,1)=0; 

stopmphi = 0; 

eo(1,1) = Ptarget/(10*(Ec*b*h)+ Es*sum(vAst));  

% Initial assumption of centroidal strain 

phi(1,1) = .000000001*h; % Initial assumption of curvature 

s=1; r=1;  

hstrip = (h-2*clearcover-diastirrup)/(nstrip-8);  

%Start moment curvature analysis 

while (stopmphi~=1) 

eo(s,1) = eo(r,1); 

if Ptarget == 0 

deltaP = 1000; 

else 

deltaP = Ptarget; % to get into the while loop the first time 

end 

while (abs(deltaP) > (0.0005*vfy'*vAst)/1000) 

%Function call to calculate steel stresses 

 [esteel,steelstress] = steelstresses(r,s);  

%  Function call to calculate unconfined and confined concrete stresses 

[uconcstress unAstrip conconcstress conAstrip ystrip] = 

concretestresses(r,s);  

P(s,1) = (steelstress'*vAst + uconcstress'* unAstrip + 

conconcstress'* conAstrip)/1000; % Total forces 

deltaP = -Ptarget - P(s,1); 

if (r==1) && (s==1) 

deltaeo = deltaP/((Ec*b*h)+ Es*sum(vAst)); 

else 

delP = (P(s,1)-P(s-1,1)); 
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deleo = (eo(s,1)-eo(s-1,1)); 

deltaeo = deltaP/(delP / deleo); 

if deleo == 0 

deltaeo = deltaP/((Ec*b*h)+ Es*sum(vAst)); 

end 

end 

eo(s+1,1) = eo(s,1) + deltaeo; 

s=s+1; 

end 

% Stop the moment-curvature analysis when core concrete fails 

if (abs(estrip(5,1)) > 5*ecc || abs(estrip(46,1))> 5*ecc)   

fprintf ('Core concrete failed'); 

stopmphi=1; 

break; 

end 

tempsplotPhi(r+1,1) = phi(r,1); 

tempsplotM(r+1,1) = (steelstress'*(vAst.*cvdt)+ 

uconcstress'*(unAstrip.*ystrip) + 

conconcstress'*(conAstrip.*ystrip))/1000000; 

if (r>=1 && r<=20) 

deltaPhi = .0001/h; 

elseif (r>20 && r<=50) 

deltaPhi = .0002/h; 

else 

deltaPhi = .0005/h;         

end 

r=r+1; 

phi(r,1) = phi(r-1,1)+deltaPhi; 

delPhi = phi(r,1) - phi(r-1,1); 

deltaeo = (deltaP - (delP/delPhi)*deltaPhi)/(delP/deleo); 
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eo(r,1) = eo(r,1) + deltaeo; 

end 

(filename:steelstress.m) 

function [esteel,steelstress] = steelstresses(tr,ts) 

%FUNCTION TO CALCULATE THE STEEL STRESSES 

%Declaring the global variables 

global nosteellayer eo phi cvdt Es vfy vfsu vesu Pp vesh 

esteel=[];steelstress=[]; 

for q = 1:nosteellayer 

esteel(q,1) = eo(ts,1) + phi(tr,1) * cvdt(q,1); 

if (esteel(q,1))>0 

steelstress(q,1) = 

((Es*abs(esteel(q,1))/(1+abs(Es*esteel(q,1) / 

vfy(q,1))^20)^0.05) + (vfsu(q,1)-vfy(q,1))*(1 - 

((abs(vesu(q,1)-abs(esteel(q,1)))) ^Pp(q,1)/ 

(((abs(vesu(q,1)-vesh(q,1)))^(20*Pp(q,1)))+ 

((abs(vesu(q,1)-abs(esteel(q,1)))) 

^(20*Pp(q,1))))^0.05))); 

elseif (esteel(q,1))<0  

steelstress(q,1) =  -

(((Es*abs(esteel(q,1))/(1+abs(Es*esteel(q,1) / 

vfy(q,1))^20)^0.05)+ (vfsu(q,1)-vfy(q,1))*(1 - 

((abs(vesu(q,1)-abs(esteel(q,1))))^Pp(q,1)/ 

(((abs(vesu(q,1) – 

vesh(q,1)))^(20*Pp(q,1)))+ ((abs(vesu(q,1)-

abs(esteel(q,1))))  

^(20*Pp(q,1))))^0.05)))); 

end 

end 
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(filename:concretestresses.m) 

function[tuconcstress tunAstrip tconconcstress tconAstrip 

tystrip]=concretestresses(tr,ts) 

%FUNCTION TO CALCULATE THE CONCRETE STRESS - BOTH CONFINED AND 

UNCONFINED 

global b h  fc n eco espall hstrip nstrip diastirrup clearcover fcc ecc 

nc estrip eo phi K estripext confestripext 

    % Parameters for proposed concrete stress-strain model 

ec1=0.0036;fc1=12; 

ecu=5*ecc; % Hoop fracture strain 

fcu=12+fc*(K-1); 

ef=ecu+0.004; 

Eppu = (fc1-fc)/(ec1-eco); 

Eppc = (fcu-fcc)/(ecu-ecc); 

z = h/(2*nstrip); %distance to the center of the first strip from the top 

tystrip=[];estrip=[];tuconcstress=[]; tunAstrip=[]; 

tconconcstress=[]; tconAstrip=[]; 

for w=1:nstrip 

%distance to the center of the strip from the  neutral axis 

tystrip(w,1) = -(h/2-z);  

if w<=5 

tystrip(1,1) = -(h/2-((clearcover+diastirrup/2)/4)/2); 

tystrip(2,1) = tystrip(1,1)+ (clearcover+diastirrup/2)/4; 

tystrip(3,1) = tystrip(2,1)+ (clearcover+diastirrup/2)/4; 

tystrip(4,1) = tystrip(3,1)+ (clearcover+diastirrup/2)/4; 

tystrip(5,1) = -((h/2-(clearcover+diastirrup/2))-hstrip/2); 

end  
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if w>5 && w<nstrip-3 

tystrip(w,1) = tystrip(5,1)+ (w-5)*hstrip; 

end 

if w>=(nstrip-3) 

tystrip(47,1)=-tystrip(4,1); 

tystrip(48,1)=-tystrip(3,1); 

tystrip(49,1)=-tystrip(2,1); 

tystrip(50,1)=-tystrip(1,1); 

end 

estripext = eo(ts,1) + phi(tr,1)*exfibdist; 

confestripext = eo(ts,1) + phi(tr,1)* confexfibdist; 

estrip(w,1) = eo(ts,1) + phi(tr,1)* tystrip(w,1); 

tuconcstress(w,1)=0; tunAstrip(w,1)=0; tconconcstress(w,1)=0; 

tconAstrip(w,1)=0; 

if w == 1 || w == 2 || w==3 || w==4 || w == nstrip-3 || w == 

nstrip-2 || w == nstrip-1 || w == nstrip 

tunAstrip(w,1) = ((clearcover+diastirrup/2)/4)*b; 

%Calculation of unconfined concrete stresses 

if estrip(w,1)<0 

if abs(estrip(w,1))<eco 

tuconcstress(w,1)=-(fc*(1-abs(1-

abs(estrip(w,1))/eco)^n)); 

elseif abs(estrip(w,1))>=eco && abs(estrip(w,1))<ec1 

tuconcstress(w,1)=-(fc+Eppu*(abs(estrip(w,1))-eco)); 

elseif abs(estrip(w,1))>=ec1 && abs(estrip(w,1))<espall 

tuconcstress(w,1)=-(fc1*(espall-abs(estrip(w,1)))/ 

(espall-ec1)); 

elseif abs(estrip(w,1))>=espall 

tuconcstress(w,1)=0; 

end 
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else  

tuconcstress(w,1)=0; 

end 

else 

%Calculation of confined concrete stresses 

buncon=2*(clearcover+diastirrup/2); %Breadth of the unconfined portion 
of concrete 

 
bcon=b-buncon; 

tconAstrip(w,1)=hstrip*bcon; tunAstrip(w,1) = hstrip*buncon;   

if(estrip(w,1)<0) 

if abs(estrip(w,1))<eco 

tuconcstress(w,1)=-(fc*(1-abs(1-

abs(estrip(w,1))/eco)^n)); 

elseif abs(estrip(w,1))>=eco && abs(estrip(w,1))<ec1 

tuconcstress(w,1)=-(fc+Eppu*(abs(estrip(w,1))-eco)); 

elseif abs(estrip(w,1))>=ec1 && abs(estrip(w,1))<espall 

tuconcstress(w,1)=-(fc1*(espall-abs(estrip(w,1)))/ 

(espall-ec1)); 

elseif abs(estrip(w,1))>=espall 

tuconcstress(w,1)=0; 

end 

if abs(estrip(w,1))<ecc 

tconconcstress(w,1) = -(fcc*(1-abs(1-abs(estrip(w,1)) 

/ecc)^nc)); 

elseif abs(estrip(w,1))>=ecc && abs(estrip(w,1))<ecu 

tconconcstress(w,1) = -(fcc + Eppc*(abs(estrip(w,1))-

ecc)); 

elseif abs(estrip(w,1))>=ecu && abs(estrip(w,1))<ef 

tconconcstress(w,1) = -(fcu*(ef-abs(estrip(w,1)))/ 

(ef-ecu)); 
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elseif abs(estrip(w,1))>ef  

tconconcstress(w,1) =0; 

end 

else 

tuconcstress(w,1)=0; 

tconconcstress(w,1)=0; 

end 

end 

z=z+hstrip; 

end 

 

MATLAB PROGRAM FOR THE COMPUTATIONAL STRESS-BLOCK BASED 

MOMENT-CURVATURE ANALYSIS 

clear all; clc; 

h = input('Enter the height of the section (mm): '); 

b = input('Enter the breadth of the section (mm): '); 

clearcover = input('Enter the clearcover of the section (mm): '); 

Ptarget = input('Enter the target axial load (kN): '); 

% Concrete properties 

fc = input('Enter unconfined concrete strength (MPa): '); 

fcc = input('Enter confined concrete strength (MPa): '); 

ec1=0.0036;fc1=12; 

ecu=5*ecc;ef=ecu+0.004; 

fcu=12+fc*(K-1); 

n=Ec*eco/fc; 

nc=Ec*ecc/fcc; 

% Reinforcing steel properties 

Es = input('Enter modulus of elasticity of steel (MPa): '); 
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fy = input('Enter yield strength of reinforcing steel (MPa): '); 

esh = input('Enter strain hardenig strain: '); 

Esh = input('Enter strain hardening modulus (MPa): '); 

fsu = input('Enter ultimate strength of steel (MPa): '); 

esu = input('Enter ultimate steel strain: '); 

bardia = input('Enter longitudinal reinforcing bar diameter (mm): '); 

diastirrup = input('Enter diameter of stirrups (mm): '); 

stirrupspacing = input('Enter stirrup spacing (mm): '); 

dAst1 = input('Enter centroidal distance to layer 1 of steel(mm): '); 

dAst2 = input('Enter centroidal distance to layer 2 of steel(mm): '); 

dAst3 = input('Enter centroidal distance to layer 3 of steel(mm): '); 

dAst4 = input('Enter centroidal distance to layer 4 of steel(mm): '); 

Ast1 = 4*pi()*dia^2/4; 

Ast4 = Ast1; 

Ast2 = 2*pi()*dia^2/4; 

Ast3=Ast2; 

Pp = Esh*(esu-esh)/(fsu-fy); 

%Calculating concrete properties 

Ec = 5000*sqrt(fc);      

eco=0.0015+fc/70000;     

espall =.012-.0001*fc;   

K=fcc/fc;                

ecc =eco*(1+5*(K-1));ecu=5*ecc;  

n=Ec*eco/fc; 

nc=Ec*ecc/fcc; 

% Values for first iteration 

P(1)=0; 

plotM(1)=0; 

PlotPhi(1)=0; 

delPhi = 0; 



94 
 

 
 

eo(1) = Ptarget/(10*(Ec*b*h)+ Es*Ast1+Ast2+Ast3+Ast4); 

phi(1) = .000000001*h + delPhi; 

for i=1:300 

deltaP = 10;   %for the while loop to take place the first time 

j=2; 

while (abs(deltaP) > 1) 

confexfibdist = -(h/2-(clearcover+diastirrup/2)); 

estripext = eo(j-1) + phi(i) * -(h/2); 

confestripext = eo(j-1) + phi(i) * confexfibdist; 

steelstrain1 = eo(j-1) + phi(i) * dAst1; 

steelstrain2 = eo(j-1) + phi(i) * dAst2; 

steelstrain3 = eo(j-1) + phi(i) * dAst3; 

steelstrain4 = eo(j-1) + phi(i) * dAst4; 

%Stresses in steel 

if steelstrain1 < 0 

steelstress1 = -((Es*abs(steelstrain1)/(1+abs(Es*steelstrain1/fy) 

^20)^0.05)+(fsu-fy)*(1-(abs(esu-abs(steelstrain1)) 

^Pp/(abs(esu-esh)^(20*Pp)+abs(esu-

abs(steelstrain1))^(20*Pp))^0.05))); 

else 

steelstress1 = ((Es*abs(steelstrain1)/(1+abs(Es*steelstrain1/fy) 

^20)^0.05)+(fsu-fy)*(1-(abs(esu-abs(steelstrain1)) 

^Pp/ (abs(esu-esh)^(20*Pp)+abs(esu-

abs(steelstrain1))^ (20*Pp))^0.05))); 

end 

if steelstrain2 < 0 

steelstress2 = -((Es*abs(steelstrain2)/(1+abs(Es*steelstrain2/fy) 

^20)^0.05)+(fsu-fy)*(1-(abs(esu-abs(steelstrain2)) 

^Pp/(abs(esu-esh)^(20*Pp) +abs(esu-

abs(steelstrain2))^ (20*Pp))^0.05))); 
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else 

steelstress2 = ((Es*abs(steelstrain2)/(1+abs(Es*steelstrain2/fy) 

^20)^0.05)+(fsu-fy)*(1-(abs(esu-abs(steelstrain2)) 

^Pp/ (abs(esu-esh)^(20*Pp) +abs(esu-

abs(steelstrain2))^ (20*Pp))^0.05))); 

end 

if steelstrain3 < 0 

steelstress3 = -((Es*abs(steelstrain3)/(1+abs(Es*steelstrain3/fy) 

^20)^0.05)+(fsu-fy)*(1-(abs(esu-abs(steelstrain3)) 

^Pp/ (abs(esu-esh)^(20*Pp) + abs(esu-

abs(steelstrain3))^ (20*Pp))^0.05))); 

else 

steelstress3 = ((Es*abs(steelstrain3)/(1+abs(Es*steelstrain3/fy) 

^20)^0.05)+(fsu-fy)*(1-(abs(esu-abs(steelstrain3)) 

^Pp/ (abs(esu-esh)^(20*Pp) +abs(esu-

abs(steelstrain3))^ (20*Pp))^0.05))); 

end 

if steelstrain4 < 0 

steelstress4 = -((Es*abs(steelstrain4)/(1+abs(Es*steelstrain4/fy) 

^20)^0.05)+(fsu-fy)*(1-(abs(esu-abs(steelstrain4)) 

^Pp/ (abs(esu-esh)^(20*Pp) +abs(esu-

abs(steelstrain4))^ (20*Pp))^0.05))); 

else 

steelstress4 = ((Es*abs(steelstrain4)/(1+abs(Es*steelstrain4/fy) 

^20)^0.05)+(fsu-fy)*(1-(abs(esu-abs(steelstrain4)) 

^Pp/(abs(esu-esh)^(20*Pp) +abs(esu-

abs(steelstrain4))^(20*Pp))^0.05))); 

end 

steelforce1 = steelstress1*Ast1; 

steelforce2 = steelstress2*Ast2; 

steelforce3 = steelstress3*Ast3;  
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steelforce4 = steelstress4*Ast4; 

neutral = estripext / phi(i); 

if confestripext<=espall 

estripcore=confestripext; 

else  

neutralx = (abs(neutral)-(clearcover+diastirrup/2))*espall/ 

confestripext; 

estripcore = eo(j-1) + phi * -abs(neutralx); 

end 

xc = abs(estripext)/eco; 

xu = ec1/eco; 

%Stress-block parameters for unconfined concrete 

if abs(estripext)<eco 

alphabeta = 1+((1-xc)^(n+1)-1)/(xc*(n+1)); 

beta = 2-2/(xc^2*alphabeta)*(xc^2/2+xc*(1-xc)^(n+1)/(n+1)+((1-

xc)^(n+2)-1)/((n+1)*(n+2))); 

alpha = alphabeta/beta; 

elseif abs(estripext)>=eco && abs(estripext)<ec1 

alphabeta = n/(xc*(n+1))+(1-1/xc)*(1+(12-fc)*(xc-1)/(2*fc*(xu-

1))); 

beta = 2-1/(xc^2*alphabeta)*(n*(n+3)/((n+1)*(n+2))+(xc^2-1)+(12-

fc)*(2*xc^3-3*xc^2+1)/(3*fc*(xu-1))); 

alpha = alphabeta/beta; 

elseif abs(estripext)>=ec1 && abs(estripext)<espall 

alphabeta = n/(xc*(n+1))+(ec1-eco)/abs(estripext)*((12+fc)/ 

(2*fc))+fc1*(1-ec1/abs(estripext))* 

(abs(estripext)+ec1-2*espall)/(2*fc*(ec1-espall)); 

beta = 2-1/(xc^2*alphabeta)*(n*(n+3)/((n+1)*(n+2))+(xu^2-1)+(12-

fc)*(2*xu^3-3*xu^2+1)/(3*fc*(xu-1))+fc1* (abs(estripext)-

ec1)*(2*(abs(estripext)^2+ abs(estripext)*ec1+ec1^2)-
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3*espall*(abs(estripext)+ec1)) /(3*fc*eco^2*(ec1-

espall))); 

alpha = alphabeta/beta; 

elseif abs(estripext)>=espall 

alphabeta = n/(xc*(n+1))+(ec1-eco)/abs(estripext)*((12+fc)/ 

(2*fc))+fc1*(espall-ec1)/(2*fc*abs(estripext)); 

beta = 2-1/(xc^2*alphabeta)*(n*(n+3)/((n+1)*(n+2))+(xu^2-1)+(12-

fc)*(2*xu^3-3*xu^2+1)/(3*fc*(xu-1))+fc1*(2*ec1^3+espall^3-

3*espall*ec1^2)/(3*fc*eco^2*(espall-ec1))); 

alpha = alphabeta/beta; 

end 

xc1 = abs(estripcore)/eco; 

xu1 = ec1/eco; 

if abs(estripcore)<eco 

alphabeta1 = 1+((1-xc1)^(n+1)-1)/(xc1*(n+1)); 

beta1 = 2-2/(xc1^2*alphabeta1)*(xc1^2/2+xc1*(1-xc1) 

^(n+1)/(n+1)+((1-xc1)^(n+2)-1)/((n+1)*(n+2))); 

alpha1 = alphabeta1/beta1; 

elseif abs(estripcore)>=eco && abs(estripcore)<ec1 

alphabeta1 = n/(xc1*(n+1))+(1-1/xc1)*(1+(12-fc)*(xc1-

1)/(2*fc*(xu1-1))); 

beta1 = 2-1/(xc1^2*alphabeta1)*(n*(n+3)/((n+1)*(n+2))+(xc1^2-

1)+(12-fc)*(2*xc1^3-3*xc1^2+1)/(3*fc*(xu1-1))); 

alpha1 = alphabeta1/beta1; 

elseif abs(estripcore)>=ec1 && abs(estripcore)<espall 

alphabeta1 = n/(xc1*(n+1))+(ec1-eco)/abs(estripcore)*((12+fc)/ 

(2*fc))+fc1*(1-ec1/abs(estripcore))* 

(abs(estripcore)+ec1-2*espall)/(2*fc*(ec1-espall)); 

beta1 = 2-1/(xc1^2*alphabeta1)*(n*(n+3)/((n+1)*(n+2))+(xu1^2-

1)+(12-fc)*(2*xu1^3-3*xu1^2+1)/(3*fc*(xu1-1))+fc1* 

(abs(estripcore)-ec1)*(2*(abs(estripcore)^2+ 
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abs(estripcore)*ec1+ec1^2)-3*espall*(abs(estripcore)+ec1)) 

/(3*fc*eco^2*(ec1-espall))); 

alpha1 = alphabeta1/beta1; 

elseif abs(estripcore)>=espall 

alphabeta1 = n/(xc1*(n+1))+(ec1-eco)/abs(estripcore)*((12+fc) 

/(2*fc))+ fc1*(espall-ec1)/(2*fc*abs(estripcore)); 

beta1 = 2-1/(xc1^2*alphabeta1)*(n*(n+3)/((n+1)*(n+2))+(xu1^2-

1)+(12-fc)*(2*xu1^3-3*xu1^2+1)/(3*fc*(xu1-1))+fc1* 

(2*ec1^3+espall^3-3*espall*ec1^2)/(3*fc*eco^2*(espall-

ec1))); 

alpha1 = alphabeta1/beta1; 

end 

xcc = abs(confestripext)/ecc; 

xuc =ecu/ecc; 

%Stress-block parameters for confined concrete 

if abs(confestripext)<ecc 

alphabetacc = 1+((1-xcc)^(nc+1)-1)/(xcc*(nc+1)); 

betacc = 2-2/(xcc^2*alphabetacc)*(xcc^2/2+xcc*(1-xcc)^(nc+1)/ 

(nc+1)+((1-xcc)^(nc+2)-1)/((nc+1)*(nc+2))); 

alphacc = alphabetacc/betacc; 

elseif abs(confestripext)>=ecc && abs(confestripext)<ecu 

alphabetacc = nc/(xcc*(nc+1))+(1-1/xcc)*(1+(12-fc)*(xcc-

1)/(2*fc*(xuc-1))); 

betacc = 2-1/(xcc^2*alphabetacc)*(nc*(nc+3)/((nc+1)*(nc+2))+ 

(xcc^2-1)+(12-fc)*(2*xcc^3-3*xcc^2+1)/(3*fc*(xuc-1))); 

alphacc = alphabetacc/betacc; 

elseif abs(confestripext)>=ecu && abs(confestripext)<ef 

alphabetacc = nc/(xcc*(nc+1))+(ecu-ecc)/abs(confestripext)* 

((12+fc)/(2*fc))+fcu*(1-ecu/abs(confestripext)) 

*(abs(confestripext) +ecu-2*ef)/(2*fc*(ecu-ef)); 
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betacc = 2-1/(xcc^2*alphabetacc)*(nc*(nc+3)/((nc+1)*(nc+2)) 

+(xuc^2-1)+(12-fc)*(2*xuc^3-3*xuc^2+1)/(3*fc*(xuc-

1))+fcu*(abs(confestripext)-ecu)*(2*(abs(confestripext)^2 

+abs(confestripext)*ecu+ecu^2)-3*ef*(abs(confestripext) 

+ecu))/(3*fc*ecc^2*(ecu-ef))); 

alphacc = alphabetacc/betacc; 

elseif abs(confestripext)>=ef 

alphabetacc = nc/(xcc*(nc+1))+(ecu-ecc)/abs(confestripext)* 

((12+fc)/(2*fc)) +fcu*(ef-ecu)/(2*fc* 

abs(confestripext)); 

betacc = 2-1/(xcc^2*alphabetacc)*(nc*(nc+3)/((nc+1)*(nc+2))+ 

(xuc^2-1)+(12-fc)*(2*xuc^3-3*xuc^2+1)/(3*fc*(xuc-1)) 

+fcu*(2*ecu^3+ef^3-3*ef*ecu^2)/(3*fc*ecc^2*(ef-ecu))); 

alphacc = alphabetacc/betacc; 

end 

totunconforce =-((alpha*fc*beta*abs(neutral)*b)); 

subunconforce = (alpha1*fc*beta1*(abs(neutral)-(clearcover 

+diastirrup/2))*(b-2*(clearcover+diastirrup/2))); 

unconforce = totunconforce + subunconforce ;  

confconforce = -((alphacc*fcc*betacc*(abs(neutral)-(clearcover 

+diastirrup/2))*(b-2*(clearcover+diastirrup/2)))); 

P(j)= (steelforce1 + steelforce2 + steelforce3 +steelforce4 + 

unconforce + confconforce)/1000; 

deltaP = -Ptarget-P(j); 

if (j==2)  

deltaeo = deltaP/((Ec*b*h)+ Es*(Ast1+Ast2+Ast3+Ast4)); 

else 

delP = (P(j)-P(j-1)); 

deleo = (eo(j-1)-eo(j-2)); 

deltaeo = deltaP/(delP / deleo); 

end 
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eo(j) = eo(j-1) + deltaeo; 

j=j+1; 

end 

plotM(i) = (steelforce1*dAst1 + steelforce2*dAst2 + steelforce3*dAst3 + 

steelforce4*dAst4 + totunconforce*(-(h/2-

beta*abs(neutral)/2))+ subunconforce *(-(h/2-

(clearcover+diastirrup/2)-beta1/2*(abs(neutral)-

(clearcover+diastirrup/2)))) + confconforce*(-(h/2-

(clearcover+diastirrup/2)-betacc*(abs(neutral)-

(clearcover+diastirrup/2))/2)))/1000000; 

plotPhi(i) = phi(i); 

if (i>=1 && i<=20) 

deltaPhi = .0001/h; 

elseif (i>20 && i<=50) 

deltaPhi = .0002/h; 

else 

deltaPhi = .0005/h;  

end 

phi(i+1) = phi(i)+deltaPhi; 

if i==1 

delPhi = phi(i); 

else 

delPhi = phi(i) - phi(i-1); 

end 

deltaeo = (deltaP - (delP/delPhi)*deltaPhi)/(delP/deleo); 

tempeo = eo(j-1) + deltaeo; 

eo=[];P=[]; 

eo(1)=tempeo; 

end  

% Moment Curvature Plot 
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plot(plotPhi, plotM) 

title('MOMENT CURVATURE); 

xlabel(‘CURVATURE (1/mm)') 

ylabel(‘MOMENT (kN-m)') 

grid on 
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