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ABSTRACT 

 

Connecting Land Use and Transportation toward Sustainable Development: 

A Case Study of the Houston-Galveston Metropolitan Area. (December 2009) 

Jae Su Lee, 

B.S., University of Seoul, Korea; 

M.S., Seoul National University, Korea 

Co-Chairs of Advisory Committee: Dr. Ming-Han Li 
         Dr. Josias Zietsman 

 

 How do land use characteristics affect individual and household travel behavior 

in a regional context? Can the investigation justify the land use policies to reduce 

automobile dependence and achieve the goals of sustainable development in the 

metropolitan areas? Previous research enhanced our understanding of the connections 

between land use and travel behavior. It also provided implications for managing 

automobile-dependent travel behavior. However, there are questions still left 

unanswered about the causal connections between them, and the effectiveness of the 

land use policies to manage travel demand. 

 To address the issues, attention is focused on the effects of land use measures on 

travel behavior outcomes from different modeling perspectives. The travel demand 

modeling explores the associations between land use and travel behavior. In addition, the 

causal modeling helps clarify the causal connections between them. It includes the 

structural equation models (SEMs) and the directed acyclic graphs (DAGs). The study 



 iv

focuses on six counties of the Houston-Galveston Area Council (HGAC) area. Travel 

behavior outcomes contain individual mode choice, household automobile trip 

generation and household total vehicle miles traveled (VMT). Three dimensions (i.e., 

density, diversity and design) of six land use measures are considered, which are 

computed using quarter-mile buffers for both trip origins and destinations. Different 

travel outcomes and modeling strategies are examined for different travel purposes. 

The significance of land use measures in affecting travel behavior is found to be 

evident, while varying to a certain degree according to trip purposes, travel outcomes 

and methodologies. For individual model choice, multinomial logit (MNL) models, the 

SEMs and the DAGs for different trip purposes support the hypothesis that land use 

measures directly affect individual mode choice behavior when other factors are kept 

constant. There is also evidence from causal models that land use factors indirectly 

influence it through travel time. For household automobile trip generation, there is no 

evidence to assert that land use measures at origin significantly affect household 

automobile trip rates when travel cost and socioeconomic variables are controlled. 

However, it is confirmed that land use measures have indirect causal connections with 

automobile trips through travel costs for all trip purposes. For household total VMT, it is 

found that land use patterns around residential locations are not only significantly 

associated, but also causally connected with household VMT. To summarize, compact 

development with high density and improved network design generally contribute to the 

reduction in automobile dependent travel patterns in the HGAC region. 
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CHAPTER I 

INTRODUCTION• 

 

1.1 Background 

 Automobile dependence has been intensifying over past decades in the United 

States. Between 1960 and 2006, total number of registered vehicles has grown by 120%. 

Vehicle miles traveled (VMT) and passenger miles traveled have increased by 187% and 

132%, respectively. Total number of residents and households during the same period, 

however, has only augmented by 66% and 116% each. Although automobile dependence 

has improved the economic efficiency and competitiveness greatly, it has had harmful 

impacts on the economic, societal and environmental system including traffic 

congestion, traffic accidents, air and water pollution, energy and land consumption, 

ecological disruption and public health problems. 

 The U.S. has experienced rapid urban growth and suburbanization as well during 

this period. As a consequence, land use and development patterns are characterized as 

detached low-density residential communities, segregated commercial and industrial 

sites, and automobile-oriented urban and transportation planning, which is termed urban 

sprawl. A self-reinforcing pattern of growing automobile dependence, automobile-

oriented planning and development and segregated and sprawling land use have brought 

detrimental effects on our economy, society, and environment (VTPI 2008a). 

                                                 
This dissertation follows the style of Journal of the American Planning Association. 
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 These concerns, combined with growing awareness of the consequences of 

automobile dependence, have led the public to pay attention to a comprehensive 

framework called sustainable development and transportation. Sustainable transportation 

is an applied concept of sustainable development to the transportation field. Sustainable 

transportation has been prevalent as the aforementioned issues in transportation and land 

use should be addressed in comprehensive and integrated manners. Consequently, 

policies and strategies for increasing transportation system efficiency as well as 

decreasing negative impacts are the most effective ways for achieving the goals and 

objectives of sustainable transportation. One of the main academic efforts is to 

investigate the relationship between land use and travel behavior patterns (Zietsman and 

Rilett, 2002; Litman and Burwell, 2006). 

 Land use and transportation are closely connected with each other. There have 

been a number of studies on the impact of land use measures on individual and 

household travel behavior. The studies are significant in that they suggest policy 

implications for reducing automobile dependence and achieving the goals of 

sustainability. Significant improvements have been made in land use measurement, 

model estimation methods and methodological framework. 

 However, the adequacy of land use policies still remains questionable for 

reducing automobile dependence and accomplishing the goals of sustainability. This is 

mainly due to lack of consistent results and an integrated approach toward sustainability 

of previous studies. This study can make some contributions as follows. First, 

sustainability measures related to land use attributes are developed. Land use attributes 
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are measured in detailed spatial level with the Geographic Information System (GIS) 

techniques. Second, causal relationships between land use and travel behavior are 

examined beyond conventional travel demand models. Lastly, Houston-Galveston 

metropolitan area is one of the biggest regions in the U.S. Little research, however, has 

been conducted to understand the connections between land use and travel behavior. 

 

1.2 Objectives of the Study 

 The objectives of the study are fourfold. 

 First, land use measures in terms of sustainable transportation will be examined 

and developed. Three dimensions of land use characteristics, density, diversity and 

design will be formulated in order to be applied to the metropolitan area. 

 Second, the associative connections between land use measures and travel 

behavior outcomes will be investigated using conventional analytical methods based on 

economic behavior theory for utility maximization. The impacts of land use measures 

are also estimated and compared with different travel purposes. 

 Third, the causal relationships between land use and travel behavior will be 

further investigated to understand the causal connections among land use measures, 

travel time and cost variables, socioeconomic characteristics, and travel behavior 

outcomes. They will be estimated for different travel purposes. 

 Last, policy implications for integrating land use and transportation and thus 

reducing the negative effects of automobile dependence will be suggested. Implications 

for improving current regional travel demand models will also be addressed. 
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1.3 Scope of the Study 

 Land use and transportation are closely intertwined. Transportation investments 

and policies influence land development patterns. Land use attributes also affect 

individual and household travel behaviors (Handy 2002). This study primarily focuses 

on the effects of land use characteristics on travel behavior in terms of both associative 

and causal relationship. Figure 1.1 describes the relationship between land use patterns 

and travel behavior patterns. 

 

 

Figure 1.1 Connections between Land Use and Transportation. 

 

 

1.4 Organization of the Study 

 The study is organized into six chapters. Chapter I addresses research 

background, objectives, and scope. Chapter II reviews literature focusing on the issues of 

automobile dependence and sustainable transportation, and the effects of land use and 

Land Use 
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Travel 
Patterns 

Other factors Other factors Other factors 

Transportation 
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travel behavior pattern. Chapter III presents the framework and research design for 

analyzing travel demand and causal relationship. Research hypotheses are also addressed 

according to both travel demand models and causal models. Chapter IV introduces the 

study area and data sources, and discusses how the variables of interest are measured and 

applied for the study. Chapter V examines overall household travel pattern and land use 

characteristics. Model estimation results are also presented and interpreted for individual 

mode choice, household auto trip generation, and household total VMT. The last chapter 

makes conclusions based on major findings of the investigation. Then, policy 

implications are explored to deal with automobile dependence as well as to achieve the 

objectives of sustainable development. Limitations and possible improvements of this 

research are also discussed.  
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CHAPTER II 

LITERATURE REVIEW 

 

 This chapter reviews the literature related to automobile dependence and 

sustainable transportation, and land use on transportation behavior pattern. The first 

section, automobile dependence and sustainable transportation, discusses the definitions, 

general trends and causes and consequences of automobile dependence. In addition, 

concepts and objectives, issues and challenges, performance measurement and the role 

of land use related to sustainable transportation are examined. The second section, land 

use impact on transportation behavior pattern, provides a synopsis of related research 

and examines relevant issues and efforts in detail. 

 

2.1 Automobile Dependence and Sustainable Transportation 

2.1.1 Automobile Dependence: A Problem 

2.1.1.1 Definitions 

 Automobile dependence is a social trend indicating that an automobile has been 

indispensable with sustaining a wide variety of human activities including commute, 

business, and social gathering. It can also be defined and measured as higher proportion 

of automobile use and ownership, fewer numbers of available alternative modes, and 

automobile-oriented land use or urban form (Newman and Kenworthy 1999; Litman and 

Burwell 2006). There are a number of studies on automobile dependence and its impacts 
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on our economy, environment and society. Nonetheless, its definition and measurement 

have been varied according to the purposes and approaches of related researches. 

 Newman and Kenworthy (1989a, 1989b) specified automobile dependence as the 

interrelation of land use and transportation. The intensity of automobile dependence was 

measured using the correlation between the density of an urban area and gasoline 

consumption per person. It was found that there was a negative relationship between 

them (Mindali et al. 2004). This is thought to be the most important finding for a series 

of following studies (Lee 2006). They made an important contribution to the 

understanding of the nature of automobile dependence and how it can be structured into 

the urban dimension. They argued in their later work that transportation priorities, 

explained as high propensity for automobiles and the supply of relevant infrastructure, 

together with economic and cultural priorities are primary factors creating automobile-

dependent cities. They are characterized as low-density and detached land use, and a 

high proportion of automobile use and ownership (Newman and Kenworthy 1999). 

Some studies have expressed sharp criticism of the research. They pointed out that it 

would not be appropriate to analyze the relationship between aggregate urban density 

and average per capita gasoline consumption, and apply a simple method of clustering 

and correlation between them to explain complex system of the urban structure (Gordon 

and Richardson 1989; Gomez-Ibanez 1991; Goodwin 1997; Mindali et al. 2004). 

 Automobile dependence has also been explained with a high percentage of auto 

driving and less available travel modes which are caused by the interaction between 

automobile transport and land use patterns (Litman 2002; Litman and Laube 2002). In 
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particular, Litman (2002) interpreted the social phenomenon from an economic 

perspective. Household internal and external economic costs due to increased 

automobile dependence were compared with those due to balanced transportation in our 

communities. 

 Goodwin (1997) introduced a different approach to automobile dependence, 

which is described as a dynamic and developmental process of personal and social 

behavior by times. When it comes to travel modal split in an urban area, automobile 

dependence can be explained by personal mode choice based on individual preference 

for an automobile mainly due to better convenience and mobility. It can also be resulted 

from the unavailability of alternative modes related to personal attitude, land use 

patterns, and other conditions. In a similar vein, Stradling (2001) defined it as a degree 

for satisfying individual travel needs. Both absolute and relative measures of automobile 

dependence were suggested. The former included vehicle trip frequency, travel time and 

distance, while the latter focusing on the personal attitudes toward an automobile 

including vehicle use rate in mixed mode choices and activities. 
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2.1.1.2 General Trends 

 People in the U.S. have been more and more depending on automobiles over past 

decades as shown in Table 2.1 as they have been keeping up their growing demands on 

various activities including commuting, recreation and shopping. Between 1960 and 

2006, total population, households and housing units have grown by about 66%, 116% 

and 116%, respectively. During the same time period, the numbers of vehicle 

registration and licenses have increased by 120% and 132% each, which indicates that 

automobile ownership and related demand have become greater than the net increases of 

socio-demographic figures. In addition, total vehicle miles traveled (VMT) and total 

passenger miles traveled (PMT) have become longer by 187% and 132%, respectively. 

They imply that automobile use has expanded more than socio-demographic growth over 

the decades. 

 Furthermore, net increases of yearly total VMT per household and total PMT per 

person are 33% and 40%, respectively. Total VMT per vehicle has grown by 31% per 

year. An economic indicator, total expense related to personal automobiles has also 

increased by more than eleven times during the decades. It suggests that automobile 

related expenditures including purchase and maintenance costs have rapidly increased in 

the U.S. although the growth rates of the population and vehicle registration are 

considered. The intensity of these indicators has decreased compared with the time 

period between 1970 and 2006; the trends of growing automobile dependence, however, 

are still significant in the U.S. 
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Table 2.1 Summary Statistics of the Trends of Automobile Dependence in the U.S. 

 1960 1970 1980 1990 2000 2006 1960-
2006 5) 

Total population 1) 179.3 203.2 226.5 248.7 281.4 298.4 66 

Total households 1) 53.0 63.4 80.4 91.9 105.5 114.4 116 

Total housing units 1) 58.3 68.7 88.4 102.3 115.9 126.2 116 

Registered vehicles 1) 3) 61.7 89.2 121.6 133.7 133.6 135.4 120 

Vehicle license 1) 87.3 111.5 145.3 167.0 190.6 202.8 132 

Total VMT 2) 3) 587.0 919.7 1121.8 1417.8 1600.3 1682.7 187 

Total PMT 2) 3) 1145.0 1754.2 2024.2 2140.9 2544.5 2658.6 132 

VMT / household 11,071 14,495 13,955 15,420 15,171 14,711 33 

PMT / person 6,385 8,632 8,935 8,608 9,041 8,911 40 

VMT / vehicle 3) 9,518 9,989 8,813 10,277 11,976 12,427 31 

Personal auto expense 4) 222 361 925 1,518 2,235 2,778 1,149 
Note: 1) millions; 2) billions; 3) only for passenger cars; 4) million dollars; 5) net increase (%) 

compared with base year. 
Sources: 1) U.S. Census Bureau (2009); 2) U.S. Census Bureau (2008); 3) U.S. Census 

Bureau (2002); 4) U.S. Census Bureau (2007); 5) BTS (2008).  
 

 These trends of growing automobile dependence in the U.S. have also been 

observed in other ways. Two economic indicators are measured on a yearly basis: 

average total automobile cost per mile and total transportation expenditures by 

governments. First indicator shows that every American has been spending more and 

more upon owning and operating automobiles for several decades (see Figure 2.1).1 

Another measure reveals how much money the federal, state and local governments 

spend in the transportation field. Figure 2.2 suggests that both total and highway 

expenditures have consistently augmented over 20 years. In particular, the increasing 

                                                 
1 BTS notes that it is not sound to make direct comparison before and after 1985 and 2004 due to major 
changes in calculation method in these years. 
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expense for highway mode supports the argument of growing automobile dependence in 

the U.S. 
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Figure 2.1 Average Total Automobile Cost per Mile. Source: BTS (2008). 

 

 
Figure 2.2 Total Transportation Expenditures by Governments. Source: BTS (2008). 
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 In addition, the survey result of principal commuting modes reinforces the 

evidence. As presented in Figure 2.3, the share of driving mode is dominant; on the other 

hand, the number of workers using non-automobile modes is very small. In short, 

automobile dependence in the U.S. has been growing for many decades when various 

indicators of automobile ownership and use, economic spending and modal splits are 

taken into consideration. It is a result of a self-reinforcing cycle of increased automobile 

ownership and use, decreased alternative modes and automobile-oriented transportation 

and land use policies (VTPI 2008a). 

 

Driving, 76.1

Walks only, 
2.8

Transit, 4.9

Others, 1.7Works at 
home, 4.1

Carpooling, 
10.4

 
Figure 2.3 Principal Modes of Commuting Trips. Source: BTS (2008). 

 

2.1.1.3 Causes and Consequences 

 There are a number of causes of growing automobile dependence. Lee (2006) 

identified some factors by which automobile dependence in the U.S. has been 

aggravated: progress in transportation technology, improvement of transportation 
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infrastructure, land use patterns, reduced availability of alternative modes, 

socioeconomic characteristics, and personal attitudes. 

 VTPI (2008a) also examined some factors in terms of transportation practices: 

conventional transportation planning, evaluation, and current investment. Conventional 

transportation planning practices forecasted vehicle traffic demand in the future, and 

execute projects for constructing and improving roadway and parking capacity (Litman 

and Burwell 2006). It made transportation system and land use more automobile-

dependent. Transportation evaluation practices mainly focused on automobile traffic, 

while little consideration is given to other modes. Also, dominant portion of current 

investment and funding to road and parking construction and improvement accelerated 

automobile dependence in the U.S. 

 Its positive influences on our economy and society have been also documented. It 

has increased automobile mobility and convenience, affordability of vehicle travel for 

both low-income households and disadvantaged people. Increased mobility has positive 

impact on economic productivity and efficiency. Economic development is relevant to 

fuel and vehicle production and services, and some places accessible to automobiles 

(VTPI 2008a). Dupuy (1999) argued that higher level of automobile dependence is a 

natural consequence of more positive effects than negative effects. He contended that 

policies focusing on demand and supply of vehicles, and changes in network system 

have a positive influence on decreasing automobile dependence. Land use factor, 

however, was not considered in his research (Lee 2006). 
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 On the other hand, it has had negative effects on our economic, societal and 

environmental systems. Its diseconomies include infrastructure construction and 

maintenance cost, traffic congestion, traffic accident damages, automobile ownership 

and maintenance cost, fewer travel mode choice options and less accessible land use 

patterns (Litman 2008a; Lee 2006). Negative social effects encompass public health, 

equity and segregation. Negative effects of automobile dependence on environmental 

system have also been extensively reported. They incorporate water and air pollution, 

energy depletion, loss of lands for agricultural and ecological production, vehicle 

disposal, and habitat disruptions (Raad 1998; WHO 2000; Black 2005; Lee 2006; BTS 

2008; Litman 2008a). Litman and Burwell (2006) classified the impacts into three 

dimensions of sustainability as summarized in Table 2.2. 

 

Table 2.2 Transportation Impact on Sustainable Development. 

Economic Social Environmental 
Traffic congestion 
Mobility barriers 
Accident damages 
Facility costs 
Consumer costs 
Depletion of Non-Renewable 
Resources 

Inequity of impacts 
Mobility disadvantaged 
Human health impacts 
Community interaction 
Community livability 
Aesthetics 

Air and water pollution 
Habitat degradation 
Hydrologic impacts 
Depletion of Non-Renewable 
Resources 

Source: Litman and Burwell (2006). 
 

 An annual cost of congestion, for instance, was estimated at $67.5 billion for 75 

U.S. metropolitan areas (Schrank and Lomax 2002). Figure 2.4 illustrates how the traffic 

congestion in urbanized areas has been growing as a consequence of increased 

automobile dependence. The annual road congestion index (RCI) measures vehicle 
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travel density on major roads in different types of urban areas.2 As shown in the figure, 

traffic congestion has been continuously increased in all types of urban areas over 20 

years in the U.S. 
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Figure 2.4 Annual Road Congestion Index. Source: Schrank and Lomax (2007). 

 

2.1.2 Sustainable Transportation: A Solution 

2.1.2.1 Concepts and Objectives 

 Consequences caused by growing automobile dependence are linked to the tripod 

of sustainability: economic, environmental and social dimensions. In addition, growing 

concern about the negative impacts of automobile dependence and policy changes in the 

U.S. have required comprehensive framework and actions in transportation (Newman 

and Kenworthy 1999; Litman and Burwell 2006; Litman 2008a). These challenges and 

issues have led to the introduction of sustainability into the transportation sector. 

                                                 
2 An RCI over 1.0 implies an urban area is undesirable on an average in terms of congestion level on major 
roadways during the peak period. Study areas are those with more than 500,000 population and some 
smaller areas (Schrank and Lomax 2007). 
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 There is no general agreement on the definition of sustainable development; 

rather it has been defined and applied according to the goals and objectives of each agent 

or organization (Beatley 1995; Litman and Burwell 2006). There is, however, a widely 

used concept of sustainable development defined by the World Commission on 

Environment and Development (WCED): sustainable development “meets the needs of 

the present without compromising the ability of future generations to meet their own 

needs” (WCED 1987). It is a changing and progressive concept considering people’s 

growing demands for various dimensions in our society (Zietsman and Rilett 2002). It 

has been embodied into the transportation field, called sustainable transportation or 

transportation sustainability. There is no standard definition for transportation 

sustainability as well. OECD (1999), for example, defined sustainable transport as 

“transportation that does not endanger public health or ecosystems and meets needs for 

access consistent with 1) use of renewable resources below their rates of regeneration, 

and 2) use of non-renewable resources below the rates of development of renewable 

substitutes.” 

 European Council of Ministers of Transport (ECMT 2004) proposed a definition 

of sustainable transportation. In addition to the idea of OECD (1999), ECMT (2004) 

specified sustainable transport system “allows the basic access and development needs 

of individuals, companies and society to be met safely and in a manner consistent with 

human and ecosystem health, and promotes equity within and between successive 

generations,” and “is affordable, operates fairly and efficiently, offers a choice of 
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transport mode and supports a competitive economy, as well as balanced regional 

development.” 

 Jeon et al. (2006) also pointed out sustainable transportation did not have a 

unanimous definition for its own. Sustainable transportation system, as they defined, 

“should be effective and efficient in providing its users with equitable and safe access to 

basic social and economic services, should promote economic development, and not be 

harmful to the environment.” Based on the concepts, it is confirmed that transportation 

sustainability is connected with the three dimensions of sustainability to accomplish its 

goals and objectives (Zietsman and Rilett 2002; Jeon and Amekudzi 2005). 

 

2.1.2.2 Issues and Challenges 

 As sustainability generally incorporates economic growth, environmental 

conservation and social welfare, transportation sustainability also reflects a lot of related 

issues. It should be understood that sustainability in transportation per se can be 

achieved only when the three elements are fully addressed altogether (Zietsman and 

Rilett 2002). The issues of sustainable transportation can be categorized into three 

dimensions. Economic growth includes issues on productivity, business activity, 

employment, tax burden and trade; environmental preservation comprises issues on 

pollution prevention, climate protection, biodiversity and habitat preservation; social 

welfare encompasses issues on equity, public health, community livability, cultural and 

historical values, and public involvement (Litman and Burwell 2006; Litman 2008a). 
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 Litman and Burwell (2006) proposed some policy approaches from a 

comprehensive point of view. They include: technological innovation such as alternative 

fuel and fuel-efficient vehicles, and Intelligent Transportation System; transportation 

demand management for improving traffic flow and increasing travel choices; economic 

reform including full-cost pricing and congesting pricing; alternative modes such as 

transit, ridesharing, and non-motorized modes; and land use and community design 

changes to decrease trip distance and increase mode choice. Wachs (2005) presented 

seven issues and questions with regard to sustainability in the future transportation: 

sustainable transportation indicators, changes in technology, the effect of government 

regulation, direct control of individual travel behavior, the effect of pricing policy, 

public education, and regional planning. 

 Schipper (2002) placed emphasis on governance sustainability in addition to 

other three elements in sustainable transportation. The key issues of the governance 

sustainability is to make an agreement and balance among stakeholders, and to develop 

effective policy measures for addressing transportation problems. In the same way, 

Zietsman and Rilett (2002) reviewed institutional and policy frameworks in the U.S. 

Detailed policies were examined to achieve the goals of sustainable transportation. 

Policy measures were presented including pricing, technology, regulation, traffic 

management, non-motorized transportation, behavior and education, and land use and 

transportation. 

 Table 2.3 summarizes the issues and challenges of transportation sustainability 

(STI 2008). 
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Table 2.3 Issues of Sustainable Transportation. 

Economic Social Environmental 
Accessibility quality 
Traffic congestion 
Infrastructure costs 
Consumer costs 
Mobility barriers 
Accident damages 
Depletion of Non-Renewable 
Resources 

Equity and fairness 
Mobility disadvantaged 
Affordability 
Human health impacts 
Community cohesion 
Community livability 
Aesthetics 

Air pollution 
Climate change 
Noise pollution 
Water pollution 
Hydrologic impacts 
Habitat/ecological degradation 
Depletion of Non-Renewable 
Resources 

Source: STI (2008). 
 

2.1.2.3 Performance Measurement 

 Sustainability in transportation can be assessed using a combination of indicators 

which is useful for setting up baselines, tracking changing patterns, evaluating 

alternatives, assessing and comparing particular regions or organizations, and 

establishing future performance objectives (CST 2000; Litman and Burwell 2006; 

Litman 2008a). Litman and Burwell (2006) argued that conventional and simple 

performance measures were not helpful for achieving sustainable transportation goals 

because they did not take into consideration the variety of related issues and concerns. 

Litman (2008a) defined sustainable transportation indicators with three broad categories, 

and proposed a group of indicators by each dimension. 

 Zietsman and Rilett (2002) claimed that little research on sustainable 

transportation has been done due to lack of understanding transportation sustainability 

and quantifying performance measures. They introduced advanced technologies for data 

collection and measurement at a disaggregate level, and the decision-making process. It 

was found that the final decision on project selection could be varied with the 

introduction of sustainable transportation concept and measures instead of economic 
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feasibility analysis. Zietsman et al. (2003) have applied similar methodology to the 

previous research into two corridors: one in South Africa, a developing country, and 

another in the U.S. a developed country. They maintained that the implementation of the 

goals of sustainable transportation is important; therefore, they should be appropriately 

defined, measured, and employed into the decision-making process. It was argued that 

the same method could be implemented to decide transportation project priorities, and to 

compare different corridors regardless of their classification, goals, mode, time and 

spatial boundary. 

 Jeon and Amekudzi (2005) examined the characteristics of definitions, 

measurements and indicators of sustainable transportation system. They determined 

three frameworks for measuring transportation sustainability using indicator systems. It 

is found that sustainable transportation has been primarily assessed by effectiveness and 

efficiency of transportation system and the environmental impacts. Jeon et al. (2006) 

criticized that sustainability concepts have not been fully incorporated into the regional 

planning process including long-range regional plans and transportation improvement 

projects. The multi-criteria decision making approach was employed to evaluate a 

current and future transportation and land use plans in Atlanta Metropolitan Region. 

Indicators were classified into four groups: system effectiveness, economic, 

environmental, and social welfare indicators. They concluded that the method was useful 

for integrating sustainable transportation measures into transportation planning and 

decision-making process, and assessing plans with regard to sustainability goals and 

objectives. 
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2.1.2.4 The Role of Land Use in Transportation Sustainability 

 Studies of sustainable transportation have focused on performance measures and 

decision-making process. But, little research on the role of land use in transportation 

sustainability has been conducted. Land use effects on travel behavior patterns have been 

mainly studied. Therefore, it is reasonable to assert that sustainable transportation issues 

have been connected with land use in most American regions (Litman and Burwell 

2006). 

 Litman and Burwell (2006) summarized transportation objectives and solutions 

that are consistent with the goals and objectives of sustainability. In particular, many 

solutions related to land use and development were proposed. They included efficient 

land use for freight mobility; neotraditional street planning and mixed land use for 

mobility of non-drivers; multi-modal community and land use; and pedestrian planning 

and livable community design. 

 STI (2008) listed potential indicators for achieving sustainable transportation 

goals within a number of categories and subcategories of sustainability concerns. Two 

main categories linked to the role of land use are overall accessibility and land use 

impacts. The former includes land use accessibility; the latter consists of three 

subcategories: sprawl, transport land consumption, and ecological and cultural 

degradation. Litman (2008a) also identified sustainable transportation indicators. Land 

use and development plays an important role in a set of economic, social and 

environmental indicators. They cover employment accessibility, land use mix, land use 

planning, non-motorized transport, and land use impact indicators. 
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 The role of land use in transportation sustainability cannot be overstated. It is 

also important to coordinate land use and transportation planning in order to make them 

compatible (Litman 2008b). The impacts of land use on travel behavior will be reviewed 

in more detail in the following section. 

 

2.2 Land Use Impact on Travel Behavior Pattern 

2.2.1 A Synopsis of Related Research 

 Land use or urban form3 and transportation are closely connected with each other 

in two major and more minor ways (Handy 2002). Transportation investments and 

policies influence land use and development patterns; land use and development also 

affect transportation and travel behavior patterns. A number of studies examining the 

effect of land use and development on travel behavior outcomes have been mainly 

conducted with regard to theoretical framework and methods, practical analyses and 

applications (Badoe and Miller 2000; Crane 2000; Cervero 2002). The research started 

from the late 1980s in response to the public interest in how and to what extent land use 

measures can reduce automobile dependence. Badoe and Miller (2000), Crane (2000), 

and Ewing and Cervero (2001) provide great reviews from various perspectives. 

 Academic investigations of this discipline germinated from a pivotal research 

conducted by Newman and Kenworthy in 1989 (Newman and Kenworthy 1989b). They 

analyzed the simple relationship between transportation and land use in 32 major 

                                                 
3 Urban form is often recognized as more comprehensive than land use pattern in a spatial boundary. In 
this point of view, land use pattern is an aspect of urban form involving a variety of spatial characteristics. 
However, this study considers land use to be the same concept as urban form as already did in many 
studies. Built environment introduced in some studies is taken into account in the same way. 
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international cities. It was claimed that urban density had negative impact on average 

annual gasoline use. An important contribution has been made to enhancing our 

understanding of how land use could systematize automobile dependence. The research 

has opened a ground for policy debates among the experts of planning and development 

fields. During the early 1990s, an interest has been increased in land use policies to 

manage transportation demand, which resulted in policy debates on the effectiveness of 

land use policies (Zhang 2004; Lee 2006). The arguments were originally developed 

from two different viewpoints: “get the price right” based on price-based mechanism in 

the transportation markets (Gomez-Ibanez 1991; Giuliano and Small 1993; Giuliano 

1995), and “get the land use right” mainly depending on physical planning and design 

(Cervero 1991; Jacobs 1992; Cervero and Landis 1995; Newman et al. 1995). 

 A group of professionals supporting the former point of view argued that the 

connection between land use and transportation has consistently diminished in the U.S. 

and other developed countries. It was, they maintained, due to decreasing travel costs, 

well-developed transportation systems, and structural shifts to an information-based 

economy (Giuliano 1995). In response, others claimed that the transportation and land 

use connection should be still considered an important matter (Cervero and Landis 

1995). There has been strong evidence that land use patterns significantly affected travel 

demand; land use and development, therefore, remained an important measure and 

policy to manage travel demand. Litman (2000) also stated that transportation market 

has been distorted with violated free market principles. Limited choices and increased 

automobile dependence due to the market distortions resulted in economic inefficiency, 
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social inequity and environmental disruption. To address them, feasible and cost-

effective market reforms should be established. 

 Great advances have been made in land use measurement and methodology until 

late 1990s. Land use measures such as density, diversity or land use mix, and 

accessibility were significantly increased. They enlarged the capacity to evaluate the 

built environment efficiently and effectively in both quantitative and qualitative ways. In 

addition, studies examined the relationship between transportation and land use using the 

regression analysis methods by employing various land use variables, while controlling 

for other economic and individual factors (Cervero and Gorham 1995; Cervero 1996; 

Handy 1996a; Cervero and Kockelman 1997; Kockelman 1997; Levinson and Kumar 

1997; Boarnet and Sarmiento 1998; Handy et al. 1998; Crane 2000). 

 Furthermore, academic efforts have been made to establish an analytical 

framework based on consumer behavior theory for utility maximization of 

microeconomics that originated from the work of Domencich and McFadden (1975). 

The travel demand models have been elaborated to incorporate the full set of explanatory 

variables such as travel time and cost variables, individual and household socioeconomic 

factors, and land use measures (Crane and Crepeau 1998; Boarnet and Greenwald 2000; 

Boarnet and Crane 2001a; Cervero 2002; Zhang 2004; Lee 2006). 

 Recently, some issues are still being discussed and investigated. They include 

theory and modeling framework, land use measurement, causal relationship and self-

selection, substitution effect, automobile captivity, and application of empirical results 

into the real travel model. These six issues will be discussed in greater details. 
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2.2.2. Relevant Issues and Efforts 

2.2.2.1 Theory and Modeling Framework 

 There are three broad groups of researches from the standpoint of analytical and 

modeling framework: simulation, description and multivariate statistical studies (Crane 

2000; Boarnet and Crane 2001a). Multivariate statistical methods applied for the 

majority of recent studies are specified and estimated with enough consideration of other 

factors, external validity and policy implications. However, they often suffer from lack 

of a conceptual framework and theory to explain the linkage of land use and travel 

behavior (Crane 2000; Cervero 2002). 

 Most of the estimated models in the previous studies have originated from the 

theory of economic behavior for utility maximization (McFadden 1974; Domencich and 

McFadden 1975; Ben-Akiva and Lerman 1985; Ben-Akiva and Bierlaire 1999). In this 

sense, the models should reflect individual behavior and motivations (McFadden 1974). 

But many studies have failed to consider transportation cost and system factors mainly 

due to the lack of behavioral framework, which led to biased estimates (Boarnet and 

Sarmiento 1998; Crane 2000; Boarnet and Crane 2001a; Cervero 2002). 

 Cervero and Kockelman(1997) presented conventional travel demand models 

with the utility based theory in their study of the San Francisco Bay Area. Three 

dimensions of built environment, density, diversity and design features were introduced 

with socio-demographics and transportation system in the model. The analytical efforts 

gave a significant impact on subsequent researches. They found that built environment 

significantly reduced the number of trips and the probability of auto choice. The effects 
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of built environment in combination were substantial. However, a weakness from the 

theoretical perspectives still existed. 

 Boarnet and Sarmiento (1998) examined land use influence on non-work trip 

rates with consumer demand framework based on neo-classical economic theory. The 

demand model of non-work automobile trips was specified as a function of travel time, 

income and socio-demographic variables. They concluded the results did not clarify the 

connections between them. However, it is questionable if the estimation methods were 

appropriate (Lee 2006). 

 Crane (2000) raised several questions about why the results and the arguments of 

related literature have been debatable, and how they could be enhanced in terms of 

modeling framework. After reviewing numerous studies, he argued that studies 

containing demand variables based on economic theory were more appealing than 

others. In addition, he maintained the linkage of design factors to price variables 

(Boarnet and Crane 2001b), application of appropriate scale of geography, and 

incorporation of residential decision into the model (Boarnet and Crane 2001a). Boarnet 

and Crane (2001a) asserted with a critical eye that many past studies have poorly applied 

the behavioral theory and estimation of travel demand. They employed the demand 

theory into different model frameworks and specifications. It is concluded that land use 

measures influenced non-work automobile trip rates through prices using speed and 

distance; if there would be no significant relationship between land use and trip prices, 

on the other hand, the connection should be no more significant. This assumption would 

serve misleading results in estimation of price elements using land use variables (Lee 
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2006). 

 Cervero (2002) criticized most previous researches into land use impact on mode 

choice for lack of sound theories and methodologies partly due to modeling conventions 

and data constraints. Attention has been paid to establish a normative framework based 

on discrete choice theory. He found that inclusion of land use factors into the models 

significantly improve the mode choice models. Elasticity estimates for built environment 

suggested that density and diversity variables had stronger effect than design factors. 

Another inquiry into the influence of land use on mode choice has been conducted for 

both work and non-work trips in Boston and Hong Kong (Zhang 2004). Models were 

specified on the basis of discrete choice theory with modal attributes, socioeconomic 

characteristics and land use measures. The study concluded that travel demand models 

gave considerable benefit for model estimation process; land use variables were 

important while other variables were controlled; land use effect on travel mode choice 

was as strong as driving cost when their elasticity estimates were combined. 

 After exploring extensive relevant literature, Badoe and Miller (2000) identified 

disagreement in our current knowledge of the connections between land use and 

transportation. It was mainly caused, they claimed, by data and methodological 

limitations including aggregation bias and exclusion of transportation system variables 

in the model estimation, which lead, in turn, to erroneous results of the model 

estimation. 

 More recently, Lee (2006) investigated both correlation and causal relationships 

between land use and travel behavior. For the purposes, conventional travel demand 
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models were specified for individual mode choice, household trip rates and household 

vehicle miles of travel. As travel demand models, three important categories of 

independent variables were included: travel price, socioeconomic characteristics and 

land use attributes. From the case study of Dallas-Fort Worth metropolitan area, he 

concluded that land use attributes were statistically significant. 

 

2.2.2.2 Measurement and Unit of Analysis 

 Empirical models estimated with disaggregate rather than aggregate travel data 

were well consistent with the theory of economic behavior. They have also improved 

explanatory and forecasting power, and avoided the aggregation problem in the models 

(Ben-Akiva and Lerman 1985; Boarnet and Crane 2001a). Modal attributes such as 

travel time and cost were calibrated for traffic analysis zone (TAZ) usually with the 

support of regional travel demand model (Cervero 2002; Zhang 2004; Lee 2006). Land 

use variables were also measured mainly for either TAZ (Cervero 2002; Zhang 2004; 

Lee 2006) or other geographically predetermined zones such as census tract and zip-

code area (Cervero and Kockelman 1997; Kockelman 1997; Boarnet and Sarmiento 

1998; Boarnet and Crane 2001a; Litman 2008b). 

 Kockelman(1997) and Cervero and Kockelman(1997) introduced an innovative 

way of land use measurement. The 3Ds, density, diversity and design were categorized 

with many specific land use measures. Density included population and employment 

density and accessibility; diversity consisted of dissimilarity index, entropy, vertical 

mixture and so on; design encompassed street measures, pedestrian and cycling 
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provisions, and site design measures. Boarnet and Crane (2001a) gauged land use 

characteristics with different measurement units for Orange County and Los Angeles 

travel data: neighborhood level such as one quarter-mile circular area, census block 

group and tract, and postal code area. It was inferred that the effect of land use variables 

would depend partly on different geographical scale of measurement. 

 More recently, a different study design was introduced with more detailed 

measurement of urban from and travel outcomes (Krizek 2003). For travel behavior 

outcomes, not only were conventional travel behavior measures, but tour-based variables 

were also computed including number of tours and number of trips per tour. Urban form 

measures were computed based on each 150-meter grid cell which formed the whole 

area of interest. They were then averaged over one quarter mile of walking distance to 

calculate neighborhood accessibility. 

  Land use measures computed in these spatial extents inevitably cause spatial 

aggregation bias or ecological fallacy (Boarnet and Crane 2001a; Krizek 2003). It would 

not be best if they were quantified on a very detailed level of geographical area such as a 

residential lot. Not only does this approach need a lot of time and cost, but it also brings 

about loss of important spatial information. This scale of measurement could not 

appropriately reflect surrounding context influencing travelers’ decision making. 

Therefore, certain level of geographical unit of analysis should be at least maintained 

such as census block or one quarter-mile boundary of both trip ends. Location factors in 

the regional context could also be considered as they had a significant effect on personal 

travel decision (Handy 1996b; Krizek 2003). However, it is difficult, often impossible, to 
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generate land use variables in a detailed spatial level due to lack of data and 

measurement tools. They can be accomplished thanks to the availability of parcel-based 

of land use information and advanced Geographic Information System (GIS) techniques. 

 

2.2.2.3 Causal Relationship and Self-selection 

 The majority of previous studies have been limited to describe the correlation 

between land use characteristics and travel outcomes. They were not able to explain 

causal connections between them (Crane 2000; Boarnet and Crane 2001a; Lee 2006). 

The issue of causality between land use and travel behavior has recently drawn public 

attention together with the improvement of modeling travel demand. Although some 

studies address the issue based on the analytical framework such as travel demand 

modeling, academic interests have increased in the causal relationship between them and 

causal notion for the explanatory variables (Lee 2006). 

 Badoe and Miller (2000) presented a simplified figure illustrating the interactions 

between land use and travel behavior. Although the seemingly causal relationship was 

developed not from the empirical analysis, but from an overview of related literature, it 

suggested that there were a number of connections within the whole structure. In 

addition, it was recommended that modeling interactions among them should adhere to a 

comprehensive and integrated perspective. 

 Bagley and Mokhtarian (2002) have taken advantage of the structural equation 

modeling (SEM) approach to examine the causal connections between neighborhood 

type and travel behavior, while including residential and lifestyle attitudes, and 
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socioeconomic characteristics. The results showed that residential attitudes and lifestyle 

factors had the greatest effect. Residential location did not play a significant role in 

explaining travel behavior when attitudes and socioeconomic factors were controlled. It 

was inferred that the relationship between land use and travel behavior was not an 

outcome of direct causality, but a simple reflection of complicated associations among 

them. This study is noteworthy in that it examined causal framework and implied 

multiple causal directions although they were predetermined and assumed (Lee 2006). 

 Krizek (2003) investigated how urban form changes causally influence travel 

behavior changes, while considering other variables. An innovative research was 

designed employing longitudinal data of Puget Sound Transportation Panel survey 

between 1989 and 1998. It was assumed that movers were in the state of total 

equilibrium in regard to neighborhood type over a short period; thus preferences could 

be controlled. It was found that urban form factors significantly influenced the decreases 

in vehicle miles traveled, person miles traveled, and trips per tour; only neighborhood 

accessibility significantly increased the number of tours. The study supported the 

causality between urban form and travel behavior despite its modest impact. 

 Handy et al. (2005) criticized that previous researches neither analyzed statistical 

association nor controlled for the effect of self-selection or travel attitudes; therefore, 

they failed to understand the effect of self-selection and causal relationship between 

neighborhood land use and travel behavior. The analysis of cross-sectional data showed 

that both objective and perceived neighborhood factors were not significant when travel 

attitudes were introduced. The quasi-longitudinal study presented that there was strong 
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evidence of a negative causal relationship between changes in accessibility and changes 

in driving distance. Therefore, land use policies for higher density, more mixed uses and 

better accessibility were expected to decrease automobile dependence. The causal 

connection between built environment and walking behavior was investigated with same 

quasi-longitudinal design and similar sets of explanatory variables (Handy et al. 2006). 

They concluded that there was clear evidence, though incomplete, of the causal 

relationship between them. 

 Schwanen and Mokhtarian (2005) raised a question about the exogeneity of 

residential location choice and thus the direct causal relationship between land use and 

travel behavior. They examined whether the mismatch between a commuter’s 

preferences and living neighborhood conditions encourages residents to travel more than 

the match between them does. They found that built environment together with travel 

attitudes has significant impact on the probability of commuting mode choice. However, 

this investigation considered neither travel price variables nor detailed land use measures 

in the model estimation. 

 Lee (2006) claimed that many studies based on assumed causal structure have 

frequently failed to clearly explain the connections within theoretical framework; 

therefore, causal relationship between land use and travel behavior need to be carried by 

observed data. A new method called the directed acyclic graphs (DAGs) was applied to 

investigate their causation for individual mode choice, number of household trips and 

household VMT by different trip purposes. Base on the case study of Dallas-Fort Worth 

Metropolitan Area, population and employment density, and regional accessibility were 
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found to be causally connected to reducing automobile choice for non-work trips. 

Regional accessibility caused the decrease in automobile trips and VMT. It was 

suggested that land use densification accompanied by mixed development would be 

effective to reduce automobile dependence in the region. 

 People who like to walk or take transit may choose to live in a neighborhood 

where well designed sidewalks and good transit services are available, while making 

their attitudes or preferences satisfied. It implies that residents having specific travel 

preferences are self-selective in the neighborhood in which they live. In terms of the 

travel behavior model, it is significant because the inclusion of travel attitudes or 

preferences into the model could change the observed relationship between residential 

location and travel behavior (Boarnet and Sarmiento 1998; Bagley and Mokhtarian 

2002; Handy et al. 2005). It is also important for land use planning and policy in that 

observed differences of travel outcomes could not be due to land use patterns only, but 

due to both land use and other factors (Krizek 2003). When it comes to modeling travel 

demand, residential self-selection process is contrary to the plausible assumption that 

land use variables causally influence personal travel behavior. Therefore, this potential 

bias should be properly addressed in the empirical model estimation. 

 There have been some remarkable endeavors to tackle the self-selection bias. 

Kitamura et al. (1997) were concerned about whether land use really affects travel 

behavior, while controlling for other factors. They concluded that total number of trips 

had stronger and more direct association with attitudes than land use variables. 

Nonetheless, it has potential problems in model choice and specification without travel 
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price variables. Another effort has been made by using instrumental variables (Boarnet 

and Sarmiento 1998). They raised a question on the possibility that individuals choose to 

live in a neighborhood partly because of their travel preferences. Instrumental variables 

were introduced for replacing land use variables with residential location as a function of 

individual socio-demographics and location attributes. They found that land use impact 

would depend partly on different geographical scale of measurement. 

 Khattak and Rodriguez (2005) studied the role of residential self-selection in 

increasing alternative mode choice in neo-traditional and conventional neighborhoods in 

Chapel Hill, NC. As a result, the neo-traditional neighborhoods showed lower external 

and higher internal trips, higher share of non-driving modes, and fewer VMT after 

household characteristics and self-selection factors were controlled. However, it did not 

consider travel price, household income and objective land use measures, which might 

lead to biased estimates in the empirical models. Handy et al. (2005) claimed that 

significance of objective and perceived neighborhood measures disappeared after travel 

attitudes were incorporated in modeling household VMT. However, it is concluded in 

their later work that built environment was still meaningful for estimating walk and bike 

trip rates together with travel attitudes and residential preferences (Handy et al. 2006). 

 Cao et al. (2006) addressed the issues related to the linkage between built 

environment and walking behavior. Analyzing strolling and shopping trips surveyed at 

six communities located in Austin, TX, they found that residential self-selection factor 

significantly affected both types of travels. Neighborhood characteristics were also 

significant for both types of travels even when residential preference was kept constant. 
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This study, however, did not consider important variables such as travel cost and 

objective land use measures. 

 

2.2.2.4 Substitution Effect 

 Substitution effect primarily concerns about whether automobile mode can be 

replaced by other modes including transit, walk and bike in the neo-traditional and 

transit-oriented neighborhoods (Cervero and Radisch 1996; Ewing and Cervero 2001; 

Krizek 2003). In more detail, studies investigate whether and how people living in much 

dense, mixed-use and pedestrian-friendly communities are inclined to substitute public 

and alternative mode trips for driving trips.  

 Cervero and Radisch (1996) found that the residents living in these areas showed 

higher number of non-work trips on foot and thus lower number of non-walk trips by 

automobile. It was argued from the finding that internal walking trips substituted for 

external automobile trips. A theoretical approach based on the behavioral framework was 

introduced to examine the effects of different design elements such as grid, traffic 

calming and mixed and intensive land use. Traffic calming clearly reduced automobile 

trips, driving choice and VMT; the effects of other elements, however, were not clear 

(Crane 1996). It was suggested that the elasticity of trip demand by travel mode and 

purpose, and cross-elasticity among modes would be useful to figure them out. 

 Handy (1996b) argued that urban form was an important factor in decision to 

walk. There was clear evidence of replacing driving with walking to the store in the 

neighborhoods. Even though residents tended to substitute walking trips for driving trips, 
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total amount of savings in travel length would not be large enough to assert automobile 

dependence to be reduced. In a similar vein, a study found that neighborhood 

accessibility increased household daily VMT with others being equal. However, there 

was not conclusive evidence indicating that non-automobile trips were substituted for 

automobile trips in highly accessible neighborhoods (Krizek 2003). 

 Recently, Khattak and Rodriguez (2005) examined the substitution of walking 

trips for driving trips in neo-traditional and conventional neighborhoods. They found that 

the external trips decreased and internal trips increased in the neo-traditional 

neighborhood after other factors were controlled. The proportion of non-driving modes 

became higher and total VMT decreased. As total trips were not significantly different, 

they concluded substitution effect existed between driving and non-driving modes. 

 There are several limitations in the researches for examining substitution effect 

of land use measures. First, most of them have only focused on a certain number of 

small neighborhoods with different land use patterns. It is also ambiguous to classify the 

communities into pedestrian- and auto-oriented areas, which makes their external 

validity questionable. For the regional level, the simulation method based on the 

estimated models, while considering travel mode and trip rates, can be helpful. 

 

2.2.2.5 Automobile Captivity 

 Automobile captivity is an outcome caused by excessive automobile dependence. 

In specific, a person choosing a mode among available choice options does not make use 

of others except automobile mode due to some reasons. They include transportation 
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system factors such as travel time and cost and transit availability, socioeconomic 

characteristics such as income and vehicle availability, and land use attributes such as 

availability of pedestrian and bike road and single-family residence segregated from 

employment or shopping centers. 

 It is important to establish reasonable analytical framework and method. In terms 

of choice set formation, conventional discrete choice models such as multinomial logit 

and probit models assume that choice options are equally distributed to every choice 

maker. It does not often make sense; rather, an individual is more likely to make a choice 

based on different choice set determined by restrictions such as income, attitude and 

surrounding land use pattern. Shocker et al. (1991) provided precise definitions of latent 

constructs including universal set, consideration set and choice set. They maintained that 

individual choice set generation should be specified in the modeling process. 

 Manski (1977) discussed the decision-making rule and lack of information about 

choice formation process. A significant contribution was made in the probabilistic choice 

theory. Two-stage choice process was suggested: choice set generation and choice 

making based on given set. Gaudry and Dagenais (1979) developed a classical captivity 

model, called the dogit model that incorporated both captive choice and free choice 

components. 

 Two different approaches are generally available to capture choice captivity 

factors related to land use characteristics (Lee 2006). First method divides individual 

travel data into captive trips and free choice trips according to some land use conditions 

(Beimborn et al. 2003). Alternative way is to parameterize captive factors in the choice 
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model. The logit captivity model was first proposed by McFadden (1976), and applied to 

different travel data collected in many areas (Swait and Ben-Akiva 1986a, 1986b, 1987a, 

1987b); then it has been developed to either the probabilistic choice set model (Swait 

and Ben-Akiva 1986b Ben-Akiva and Boccara 1995; Zhang 2005, 2006; Lee 2006) or 

the choice set generation model (Swait and Ben-Akiva 1987a, 1987b; Swait 2001; Basar 

and Bhat 2004). 

 Zhang (2005) found that land use density and accessibility were significant for 

increasing travel choices and substituting alternative modes for automobile mode. 

Another study (Zhang 2006) also confirmed that density, transit access and network 

connectivity helped reduce the probability of being captive to automobile. Lee (2006) 

also specified multinomial logit captivity models and found that dominance of 

residential use at trip origin for driving mode was significant for home-based work trips. 

Sometimes, evidence of choice captivity is unintentionally observed in the studies of 

land use impact on mode choice (for example, see the results and conclusion of 

Schwanen and Mokhtarian (2005)).  

 

2.2.2.6 Application of Empirical Models 

 Last issue of importance is about how the empirical results can be embodied into 

the real situation of transportation market. It is interested in the application of the 

estimated model results of land use impact on travel behavior into the practical 

transportation planning and forecasting. 

 It has been argued that the estimators of the conventional travel demand models 
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such as trip generation and mode choice models tended to be underestimated and biased. 

It was because full array of land use measures has been ignored although disaggregated 

travel survey data was used in the modeling process (Cervero 2002).  

 Previous research suggested that elasticity estimates of land use variables 

represented the degree of connections between land use and transportation in the travel 

demand models. As they are transferable and applicable from a region to others, land use 

effects can be addressed with elasticity estimates in metropolitan areas where 

conventional travel models were used. EPA’s Smart Growth Index (SGI) model, for 

instance, incorporated elasticity values of density, diversity, design and regional 

accessibility measures. It was also recognized that elasticity of each measure was not 

substantial; however, their total value was quite substantial (Ewing and Cervero 2001). 

 Cervero (2006) investigated alternative modeling methods for applying land use 

effects on travel demand. Two approaches, post-processing and direct modeling were 

examined. The former incorporated elasticity estimates into the existing travel demand 

model; the latter, on the other hand, has directly specified travel model for 

neighborhoods, most of which has been estimated for ridership of transit-oriented 

development projects. He argued that the efforts were effective and efficient because of 

inclusion of significant land use effects and reduction of time and cost for model 

estimation. Those alternative approaches do not substitute for the labored four-step 

demand models; it supplements the traditional forecasting models. 
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CHAPTER III 

ANALYTICAL FRAMEWORK AND HYPOTHESES 

 

 This chapter presents analytical framework, research design and hypotheses. The 

analytical framework covers travel demand analysis and causal relationship analysis in 

which the correlations and causalities between land use and travel behavior are of main 

concerns. It serves as a foundation of setting up research design and hypotheses. 

 

3.1 Analytical Framework 

 Urban transportation system shows some distinct characteristics as a 

consequence of its use by individual travelers including residents and visitors. Meyer 

and Miller (2001) presented six attributes of which four are noteworthy for the study: 

trip purpose, temporal distribution, spatial placement and modal split distribution. 

 Trip purposes of passenger transportation have been classified commonly into 

work, shopping, social or recreation, school and business. Considering a home as a trip 

end, trips are used to be categorized into five or sometimes fewer groups: home-based 

work, home-based shop, home-based school, home-based other and nonhome-based 

trips. Despite challenging alternative approaches, the trip-based model is still more 

applicable than others. Urban travels have shown temporal distribution over the day. It 

commonly shows “double peaking” indicating that most work trips occur in the early 

morning and evening. This trip-making feature affects roadway congestion and transit 

operation. In addition, every trip has both an origin and a destination that are spatially 
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located; therefore, land use pattern and transportation network layout are associated. 

Finally, travel modes include driving-alone, shared-ride, transit, bike and walk modes. 

Conventional transportation system has often ignored alternative modes due to their 

small share and auto-oriented system (Meyer and Miller 2001). 

 In general, individual trip-making process involve trip purpose, time of day, 

origin and destination, travel mode, route from origin to destination, and frequency 

(Meyer and Miller 2001). When a person starts to make trips, some essential decisions 

should be made on them. Ideally, each trip-maker takes some important factors into 

consideration to make effective, efficient and comfortable trips. They include trip-

maker’s needs, transportation system, socioeconomic characteristics, and land use 

attributes of trip ends. 

 Individual travel behavior based on the travel decisions needs to be modeled to 

explain and forecast those decisions and travel outcomes. In terms of land use impact on 

travel behavior, modeling travel behavior has additional purposes. They include testing 

hypotheses set up from the theory, and understanding the causal relationship between 

them (Lee 2006). To address the issues, two approaches are introduced. One is the 

framework of travel demand analysis; and another is the framework of causal 

relationship analysis. They are necessarily connected and complementary with each 

other. 
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3.1.1 Travel Demand Analysis 

 Estimating and forecasting travel demand is one essential step of urban 

transportation planning process. The urban transportation modeling system (UTMS) is 

composed of four main steps: trip generation, trip distribution, modal split and trip 

assignment. However, UTMS has been criticized because it is not based on the theory of 

travel behavior (Meyer and Miller 2001). 4 

 Transportation demand models are employed to examine current system and to 

forecast the future according to some changes. Three basic assumptions are addressed. 

First, the important characteristics are specified as observed variables. Second, a 

presumed functional relationship between the observed variables and the travel 

outcomes exists. In other words, there is assumed causal connections between them 

explained by the theory. Last, the functional relationship is essentially consistent for all 

individuals over time (Meyer and Miller 2001). 

 Conventional travel demand models are specified, estimated and evaluated based 

on the theory of consumer behavior. The basic concept is that an individual chooses a 

combination of goods and services over others for maximizing his or her utility, subject 

to a budget constraint as follows (Ben-Akiva and Lerman 1985; McCarthy 2001; Meyer 

and Miller 2001). 5 

                                                 
4 Many efforts to improve UTMS have been made since the 1970s. As a result, two major developments 
have been achieved: individual choice or random utility models and activity-based models (Meyer and 
Miller 2001). The former will be discussed later; however, the latter is beyond the scope of this study. 
5 Discrete choice theory is similar with the economic theory in that the consumer choice for utility 
maximization is still effective; however, they employ different functional specifications due to discrete 
dependent variables of the discrete choice models (Ben-Akiva and Lerman 1985; Meyer and Miller 2001). 
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where nqq ,,1 K  are the quantities of goods and services; and npp ,,1 K  are the prices of 

goods and services for a constraint income I . 

 Even though this illustration implies that the utility is a function of the quantity 

of goods, transportation services, for example, are a matter of their attributes rather than 

their quantities. In other words, the consumers of transportation services are more 

concerned about the properties of the services by which they create their own utilities 

(Lancaster 1966). The theory suggests that the demand for goods and services is 

conditional on a range of trip characteristics, attributes of comparably available modes, 

and the consumer’s socioeconomic characteristics. 

 In a similar vein, most of the estimated models of land use effects on travel 

behavior outcomes mainly stem from the theory of economic consumer behavior 

(Domencich and McFadden 1975; Ben-Akiva and Lerman 1985). The travel demand 

models should thus take into account travel prices, comparative characteristics and 

socioeconomic attributes. In addition, land use attributes should be taken into the 

demand models because spatial features of trip ends affect travel decision-making 

theoretically and empirically. 

 Consider, for example, the number of household trips under the theory of 

consumer behavior. Travel is a derived demand, which means that people travel to 

satisfy the demands for various activities at different destinations. It can be assumed that 

a household makes a choice of a combination of trips by different modes to maximize a 
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utility function, subject to total budget (Crane 1996). When focusing only on automobile 

trips, we can define total number of driving trips in a household as a function of trip cost, 

income, household socioeconomic characteristics and land use measures as follows 

(Boarnet and Crane 2001a). 6 

);,,,( 2 SLyypftripsAuto =  

where p is a vector of relative travel prices such as the generalized cost; y and y2 are total 

household income and income squared, respectively; L is a vector of land use 

characteristics; and S is a vector of socioeconomic attributes. 

 In recent years, the travel demand models have been improved greatly by 

incorporating full set of explanatory variables based on the travel demand theory. 

Individual travel is influenced by travel prices, personal and household socioeconomic 

characteristics and land use attributes. Traditional demand variables help estimate the 

short-term impact on travel outcomes; on the other hand, land use measures enable to 

gauge the long-term effect on travel behavior (Boarnet and Greenwald 2000; Boarnet 

and Crane 2001a; Cervero 2002; Zhang 2004; Lee 2006). 

 

3.1.2 Causal Relationship Analysis 

 The travel demand model assumes that there are direct causal relationships 

between explanatory variables and travel behavior outcomes. These connections depend 

on the theory and empirical research. This assumption stimulates modeling professionals 

                                                 
6 There are three different model specification strategies proposed in Boarnet and Crane (2001a) with 
regard to land use measures. One strategy with minor modifications is employed which is similar to the 
second proposed model. 
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to specify and estimate models representing their causal linkage. However, the majority 

of them only reflect the associative relationships between them (Meyer and Miller 2001). 

 Studies on the causal relationships between land use and travel behavior 

addressed the issue of cause-and-effect interactions in terms of design of data collection, 

variable selection such as attitudes, causal notion and test, and causal structure between 

explanatory variables (Lee 2006). Most of them have failed to discover the causal 

linkages beyond the correlations between them. Some shortcomings are inherent in 

explaining causal connections between them mainly due to assumed causal linkages 

established by the theory (Boarnet and Crane 2001a; Crane 2000; Lee 2006). 

 Nevertheless, many significant implications are provided for exploring causal 

relationships between land use and travel behavior. First, the structural equation 

modeling approach makes it easier to investigate complex interactions simultaneously 

between endogenous variables as well as between endogenous and exogenous variables 

(Bagley and Mokhtarian 2002). Second, the studies introducing longitudinal or quasi-

longitudinal data help examine causal connections between them (Krizek 2003; Handy et 

al. 2005, 2006). These research designs make it possible to address time order criterion 

for establishing causality (Handy et al. 2005). These investigations can control for travel 

attitudes and residential preferences as well as other factors. Last, an advanced analytical 

framework using cross-sectional data can be applied to deal with the issue of causality 

(Lee 2006). The approach supports the causal structure carried by observed data rather 

than by the theoretical foundations common in most studies. 
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 A study illustrates complex causal connections among land use measures and 

travel outcomes as presented in Figure 3.1. Although it is not structured based on 

empirical studies, the causal relationships seem to be clear among the variables and 

helpful for further research. 

 

 
Figure 3.1 The Impact of Land Use on Travel Behavior. 

Source: Badoe and Miller (2000). 
 

 There are several reasons why it is difficult for the studies to employ either 

longitudinal or quasi-longitudinal designs. Above all, they require at least two travel 

surveys in an area for relatively short terms (Krizek 2003), or the information on 

whether a resident has been moved recently or not (Handy et al. 2005). These efforts are 

hard to be achieved for the conventional household travel survey for metropolitan 

regions. Another reason is related with measuring attitudes and residential preferences. 
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The metropolitan household travel survey does not include related questions because 

they are not helpful for forecasting regional travel demand. Rather, an additional 

household travel survey for selected neighborhoods should be conducted to address the 

issue of self-selection (Handy et al. 2005, 2006). It is criticized that each trip-maker 

becomes a ‘black box’ because these unobserved preferences play a role in the middle of 

the built environment and travel behavior (Lee 2006). The study does not consider the 

self-selection issue. 

 To address the issue of causality, two different approaches are introduced: the 

structural equation modeling (SEM), and the directed acyclic graphs (DAGs). They have 

their own characteristics for the analysis of causal relationships among the variables 

which will be explained later. They have in common in many points; thus, they are 

complementary with each other, not opposites. 

 The SEM does not indicate single analytical approach; rather, it incorporates a 

number of modeling frameworks, which allows evaluating the entire models. It is useful 

for experimental and observational data, and cross-sectional and longitudinal data. The 

SEM is basically depending on assumed causal structure among variables. Many 

concerns and questions have been raised on whether it could be used for assessing causal 

connections among variables. Arguments were made that causal inferences based on the 

SEM results would be controversial (Thompson 2000; Lee 2006). Despite the concerns, 

it can be introduced to justify causal inferences as long as certain assumptions on 

causality are rendered in advance (Pearl 2000; Kaplan 2009). The counterfactual theory 

with the manipulative perspectives delivers theoretical foundations and methods for 
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examining causal inferences. Consequently, the SEM requires that the variables be 

scrutinized in terms of manipulation and control (Kaplan 2009). 

 Studies of land use impacts on travel behavior relying upon the assumptions of 

causal relationships are not successful in addressing neighborhood self-selection and 

interdependence of explanatory variables, which leads to biased parameters. They are 

frequently suffering from lack of valid interpretation and theory of land use and travel 

behavior interaction. Therefore, their causal relationships should be inferred by observed 

data unless the theories are useful for explaining those relations (Lee 2006). The DAG 

approach is not dependent on assumed causality. Rather, it is employed to make clear the 

causal connections primarily based on observed data. It is intended to handle the 

independent relations among variables that are established with statistical association. 

Correlation does not imply causation; however, the statistical associations of 

independence and dependence based on observed data frequently suggest causal 

relations among those variables (Cooper 1999). 

 

3.2 Research Design 

 This research introduces regression methods for modeling travel demand, and 

SEM and DAG methods for analyzing causality. The regression methods consist of the 

multinomial logit (MNL) model for individual mode choice, the negative binomial 

model for household automobile trips, and ordinary least squares (OLS) regression for 

household total VMT. 
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 Travel behavior can be defined and measured in many ways. Three common 

travel outcomes are selected: individual mode choice (i.e., driving-alone, shared-ride, 

transit, and walk and bike), the number of household automobile trips and household 

total VMT. They are explained and compared with different travel purposes including 

work trip and non-work trips. 

 Travel demand is affected by travel price variables such as travel time and cost; 

individual and household socioeconomic characteristics, including age, sex, auto 

ownership and availability, household size and income; and land use attributes covering 

density (i.e., population and employment density), land use diversity (i.e., entropy index 

and dissimilarity measure), and design factors (i.e., connectivity measure and roadway 

length). Land use variables are measured in a quarter-mile boundary for each trip end. It 

intends to reduce the bias caused by spatial aggregation as well as to maintain spatial 

information affecting trip-maker’s decisions. 

 The entire structure of the causal relationship models include same groups of 

variables: travel prices, socioeconomic characteristics and land use attributes. As 

maintained earlier, travel attitudes and residential preferences are not taken into 

consideration in the model estimation process. In addition, same measures of travel 

behavior are taken into the analysis: individual mode choice, household automobile trip 

frequency, and household VMT. In order to compare the results of the SEM with those 

of the DAG, two mode choice options (automobile vs. non-automobile) are only 

considered for mode choice analysis. The results are compared with different travel 

purposes including total trips, home-based work trips and home-based other trips. 
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 In specific, assumed causal inferences are investigated on 1) whether travel 

prices (exogenous variables) significantly cause each travel outcome (endogenous 

variable); 2) whether three dimensions of land use (exogenous variables) are causally 

connected with each travel behavior outcome (endogenous variable); 3) whether 

socioeconomic characteristics (exogenous variables) causally influence each travel 

outcome (endogenous variable); and 4) whether either a set of land use measures or 

socioeconomic variables have indirect causal relations with each travel outcome 

(endogenous variable) through travel prices (endogenous variables). Overall, model 

specification strategies vary with different travel outcomes due to different theoretical 

foundations; however, same specification strategy is applied to different trip purposes. 

 The DAG approach involves same categories of travel prices, socioeconomic 

attributes, land use measures and travel behavior outcomes. Some constraints need to be 

imposed for making the final outputs more reasonable even though the entire causal 

structure is obtained from observational data. One is that land use measures at trip origin 

cannot cause those at destination, and vice versa. Another condition is that 

socioeconomic characteristics cannot be caused by other groups of variables. 

 
3.3 Research Hypotheses 

 How do land use characteristics affect individual or household travel behavior in 

a regional context? It is the main research question raised in the study. Based on the 

research question, a number of hypotheses are identified with regard to land use 

measures. They are classified into two broad topics: conventional travel demand and 

causal models. They are also divided into different travel outcomes and travel purposes. 
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3.3.1 Hypotheses for Travel Demand Models 

 Hypotheses for travel demand models are set forth for three different travel 

outcomes. Main hypothesis is that various land use variables have significant effects on 

travel outcomes, but in different ways. For individual mode choice, it is assumed each 

trip-maker has four choice options: driving-alone, shared-ride, transit and walk and bike.  

 

3.3.1.1 Individual Mode Choice Models 

 1) Population density at both origin and destination is significantly associated 

with the probability of travel mode choice. High population density increases the 

probability of choosing driving-alone mode at origin, and decreases the likelihood of 

choosing automobile modes (driving-alone and shared-ride) at destination. High 

population density at origin indicates a single-family residential neighborhood, which 

promotes driving-alone mode choice. The increase in population density at destination 

implies mixed land uses, which discourages people to choose automobile modes. 

 2) Employment density at both trip ends is significantly correlated with the 

likelihood of travel mode choice especially for work trips. Employment density has a 

positive impact on the probability of non-automobile mode choice (transit and walk and 

bike) at origin; however, it has a negative effect on automobile choice probability at 

destination. This density measure is particularly important for home-based work trips. 

 3) Dissimilarity measure at trip ends has significant relationship with the 

probability of travel mode choice for nonwork trips. Dissimilarity index at origin is 

positively associated with the chance of choosing alternatives to automobile modes. 
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 4) Connectivity measure at trip ends is positively associated with an increase in 

the probability of both non-automobile choice at origin and automobile choice at 

destination. Connectivity measure augments the likelihood of choosing transit and walk 

and bike modes at origin especially for nonwork trips. It also raises the probability of 

taking driving-alone and shared-ride modes at destination for work trips. 

 5) Roadway length variables at both trip ends significantly associated with the 

likelihood of travel mode choice for nonwork trips. It is likely to increase not only the 

probability of choosing alternatives to automobile modes at origin, but it also heightens 

the chance of automobile mode choice at destination for home-based other trips. 

 6) The extended models significantly improve the base models without land use 

variables for both home-based work and home-based other trips. 

 

3.3.1.2 Household Automobile Trip Models 

 1) Density measures (population and employment density) at origin are 

significantly associated with household total automobile trips. It is generally assumed 

that these measures have negative impact on automobile trip rates as they increase in a 

residential area. 

 2) Entropy measure at origin is significantly associated with household 

automobile trip rates. It is argued that residents living in an area with balanced land uses 

are less likely to make automobile trips. 

 3) Design measures (connectivity and roadway length measures) at origin have 

significant association with household automobile trip rates. It is thought that 
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neighborhoods with well-organized networks encourage residents to reduce automobile 

trips. 

 4) The extended models show significant improvement compared with the base 

models without land use variables for different travel purposes. 

 

3.3.1.3 Household VMT Models 

 1) Density measures (population and employment density) at origin are 

significantly associated with household total VMT. Both population and employment 

density variables have negative effects on household total VMT for total trips. On the 

other hand, population density is not significant for work trips, and employment density 

is not significant for nonwork trips. 

 2) Entropy index at origin is significantly correlated with household total VMT. 

It is assumed that travel distance is shorter in a neighborhood with balanced land uses 

than in a neighborhood with single residential use. 

 3) Design measures (connectivity and roadway length measures) at origin 

significantly affect a decrease in household total VMT. Obviously, people living in a 

neighborhood with well-organized and designed road network reduce their automobile 

travel distance. 

 4) Land use measures in the extended models significantly contribute to model 

improvement for all travel purposes. 
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3.3.2 Hypotheses for Causal Models 

 Hypotheses for causal models are presented for three travel behavior outcomes. 

They hold the same hypotheses for the SEM and DAG approaches. Each trip-maker is 

assumed to have only two choice options: automobile or non-automobile. Main 

hypothesis is that various land use variables not only have direct causal influences, but 

also show indirect causal effects on travel outcomes through travel price. 

 

3.3.2.1 Individual Mode Choice Models 

 1) Employment density is a direct cause of automobile choice for home-based 

work trips. Employment density at both trip ends has a negative impact on the 

probability of choosing automobile mode. This is related to the result of individual mode 

choice models. 

 2) Dissimilarity measure causally influences the likelihood of choosing 

automobile mode for home-based other trips. Land use mix measures at both trip ends 

have negative effects on the probability of automobile choice. 

 3) Employment density and design measures (connectivity and road length) at 

destination directly cause increases in travel time differential (walking time – driving 

time). At trip destination, automobile access is improved and preferred as employment 

density and network connectivity and roadway miles increase. 

 4) Land use measures (population and employment density, dissimilarity index 

and connectivity and roadway length measures) at origin are direct causes of a 

reduction in travel time differential. It is maintained that land use measures indirectly 
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cause the likelihood of choosing automobile mode through travel prices. Land use 

measures generally decrease travel time differential at trip origin. 

 

3.3.2.2 Household Automobile Trip Models 

 1) Land use measures at origin are direct causes of household automobile trip 

frequency. It is expected that land use measures have direct and negative causal 

relationship with automobile trip rates. 

 2) Land use measures at origin are direct causes of reducing travel cost per trip. 

Land use measures are assumed to be direct and negative causes of travel cost. 

 

3.3.2.3 Household VMT Models 

 1) Land use measures at origin are direct causes of household total VMT. They 

are expected to have negative causal relationships with household total VMT for all 

travel purposes. But there are several variations: population density is not a cause of 

household VMT for work trips; and employment density is not a cause of household 

VMT for other trips. 

 2) Land use measures at origin are direct causes of travel cost per mile. They 

have negative causal impacts on travel cost for all travel purposes. 
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CHAPTER IV 

MEASUREMENT AND METHODOLOGY 

 

 This chapter introduces the study area and data sources, and discusses how the 

variables of interest are measured and applied for the study. The methods are explained 

for measuring travel behavior outcomes, travel price variables, socioeconomic 

characteristics and land use factors. In particular, attention is focused on the 

measurement of both travel outcomes and land use variables. In addition, research 

methodologies for analyzing the data are discussed. They consist of negative binomial 

and multinomial logit model for modeling travel demand, and structural equation 

modeling (SEM) and directed acyclic graphs (DAGs) for clarifying causal structure 

between land use and travel behavior. 

 

4.1 Study Area and Data Sources 

4.1.1 Study Area 

 Houston-Galveston Area Council (HGAC) region currently consist of 13 

counties containing about 5.87 million residents in 2008, and 145 cities and 

municipalities. The metropolitan area covers about 12,500 square miles in which urban 

area totals 1,745 square miles.7 Historically, 8 counties (Brazoria, Chamber, Fort Bend, 

Galveston, Harris, Liberty, Montgomery and Waller) have been of main interest in terms 

                                                 
7 Because the area calculations are based on GIS data that contains total area of each object such as town, 
city and county, they would be a little different from other sources of information. 
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of regional transportation planning as 5 counties were joined recently in the region 

(HGAC 2009a). 

 This study only focuses on 6 counties in traditional regional transportation 

planning region: Brazoria, Fort Bend, Galveston, Harris, Montgomery and Waller. Not 

only is detailed land use data available only for 6 counties, but they also have played 

significant role in regional planning compared with other two counties (Liberty and 

Chambers). Figure 4.1 represents the HGAC region and 6 counties of interest. The study 

area comprises 113 cities including 8 towns and 9 villages and 2,829 traffic analysis 

zones (TAZs) in total. It totals about 6,729 square miles where urban area amounts to 

1,558 square miles (23 percent). About 5.40 million people and 1.95 million households 

are estimated in the study area where 2.67 million people are working in 2008, while 

5.52 million residents, 1.99 million households and 2.70 million jobs are estimated in the 

8 counties (HGAC 2009b). Regional economic activities are mainly concentrated in both 

the City of Houston and the City of Galveston. 
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Figure 4.1 Map of the HGAC and the Study Area. 

 

4.1.2 Data Sources 

 Five different data sources are incorporated in the study as summarized in Table 

4.1. The 2007 HGAC Regional Household Activity and Travel Survey data was 

provided by the Texas Department of Transportation (TxDOT) and the Texas 

Transportation Institute (TTI). Other data were obtained from the HGAC, the regional 

association of local governments in the Gulf Coast Planning region of Texas. 
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Table 4.1 Data Sources and Applications. 

Data Source Applied Measures Characteristics 

2007 HGAC 
Regional 
Household 
Activity and 
Travel Survey 

- Travel outcomes: trip mode, trip 
frequency and VMT 

- Individual and household 
characteristics: sex, age, 
household size, income 
residential type, vehicle 
ownership, bike use 

- Vehicle information: travel cost 

- 84% initially planned total samples 
for the HGAC survey area 

- 54,672 trips in 61,731 trip records 
obtained from 4,775 sampled 
households 

- 47,834 trips from 4,367 households 
collected for 6 counties in total 

2007 Land Use 
GIS Dataset 

- Land use measures in 3Ds: 
population density, employment 
density, entropy, dissimilarity, 
connectivity and road length 
measure 

- Parcel-based GIS data prepared by 
County Appraisal District 

- 2,074,341 parcels in 6,732 square 
miles in 6 counties 

- 66 land use types in 7 major groups 
2007 HGAC 
Regional Travel 
Model Data 

- Travel time by modes 
- Travel cost by modes 

- Travel time, distance and transit 
fare 

- Available for travel modes and 
time of day between TAZs 

2008 Population 
and Employment 
Forecasts 

- Population and employment 
density 

- Forecasts by many spatial units 
such as city, zip code and census 
tract 

- Available from 2005 to 2040 on a 
yearly basis 

2007 STAR Map - Design measures: connectivity 
and road length per 1,000 ft2 

- Trademark for the Southeast Texas 
Addressing and Referencing Map 

- Including addresses, street name 
and types and spatial information 

 

 First of all, the HGAC Regional Household Activity and Travel Survey intended 

to obtain the information on both individual and household travel characteristics in the 

metropolitan region. The survey was conducted for conventional 8 counties of the 

HGAC region including Brazoria, Chamber, Fort Bend, Galveston, Harris, Liberty, 

Montgomery and Waller counties. The random stratified household sampling method 

was introduced for the survey. The survey implementation was composed of three 

stages. First, randomly selected households were asked to participate in the survey by 
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telephone. If they agree, a packet of household activity and travel diary was sent to the 

household via mail. When the survey was collected after it was recorded for all 

household members, the survey data were retrieved by telephone. 

 Overall, four types of information were collected from the survey: household and 

individual characteristics, the information on vehicles owned by each household, and the 

information on every trip and activity made by each individual over 5 years old. The 

number of sampled households required for the HGAC survey area was 5,700 in total, 

which were randomly stratified by household size, the number of workers and household 

income. Due to incomplete survey at the time of the study, the information on 4,775 

households (84%), 13,893 people and 54,672 trips was collected. Table 4.2 presents how 

the survey data has been processed while taking the study area and objectives, and trip 

purposes into consideration. Two datasets are finally prepared for different travel 

models. One is for individual mode choice models for 6,239 HBW trips and 10,413 

HBO trips. Another dataset is prepared for both household trip generation and VMT 

models. They are estimated for 6,156 HBW trips by 2,539 households, 14,305 HBO trips 

by 3,461 households, and 29,858 total trips by 3,976 households. 

 Note in Table 4.2 that the number of trips and households are different between 

the mode choice models and other household travel models. The mode choice models 

are estimated only for HBW and HBO trips. They include return trips to home whose 

modes are not optional but significantly depend on the mode choice of departure trips 

from home. In terms of the theory of economic behavior, the inclusion of return trips 

results in biased estimation therefore, they are all removed from the final datasets. Many 
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distinct trip purposes are included in the HBO trips including school, pick-up and drop-

off, personal, social and recreation, and shopping. The study pays main attention to 

personal, social and recreation and shopping trips because other trips are required for 

specific times at specific locations which are not appropriate for the study objectives. 

 

Table 4.2 Result of Processing the Travel Survey Data for the Study Area. 

Surveyed Data Arranged Data Studied Data 
Trip Purpose 

Trips Households Trips Households Trips Households

Total trips 47,834 4,367 42,275 4,170 29,729 
(29,858) 2) 

4,093 
(3,976) 

HBW trips 1) 7,115 2,817 6,558 2,614 6,239 
(6,156) 

2,614 
(2,539) 

HBO trips 1) 25,796 3,917 22,640 3,665 10,413 
(14,305) 

3,200 
(3,461) 

NHB trips 1) 3) 14,923 3,189 13,077 3,010 13,077 
(9,397) 

3,010 
(2,778) 

Note: 1) Home-based work (HBW); home-based other (HBO), and non-home based (NHB) 
trips. 

          2) Values are related to automobile modes (driving-alone and shared-ride). They are 
used in the household automobile trip generation model and household VMT model. 

          3) NHB trips are not analyzed in this study. So studied data are same as arranged data. 
 

 The 2007 land use GIS data which are made up of lots of parcels was obtained 

from the HGAC. The parcel-based land use GIS data has been prepared by each county 

appraisal distract for assessing property tax. They have been incorporated by the HGAC 

on a yearly basis, and used for forecasting socio-demographic data and providing 

regional GIS services. For 6 counties of the study area, over 2 million parcels in 6,729 

square miles of total area are available. They are classified into 66 specific land use 

types along with specific spatial information. The data is useful for measuring 

dimensions of land use characteristics within specific boundaries. 
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 Travel time and distance data extracted from the 2007 HGAC regional travel 

model were also obtained from the HGAC. The datasets were introduced to compute 

travel time and automobile operating cost between each pair of 2829 TAZs by different 

travel modes.The 2008 population and employment forecast data were downloaded from 

the HGAC website (HGAC 2009b). The number of population, employment and 

households were estimated in different spatial levels including counties, TAZs and 

census tracts. TAZ-level forecast data was used to measure the population and 

employment density in a quarter-mile boundary of every trip end. In addition, the 2007 

STAR Map in GIS format was employed to measure land use design variables. It 

contains over 1.7 million address points, roadways, street names and types and other 

information (HGAC 2009c). 

 

4.2 Variable Measurement 

4.2.1 Travel Behavior Outcomes 

 The study employs three general measures of travel behavior: individual mode 

choice, household automobile trip generation and household total VMT. Table 4.3 

presents travel outcome, data type and operational definition for this study.  

 Four choice options are taken into the multinomial logit (MNL) choice models: 

driving-alone, shred-ride, transit and walk and bike. According to the trip records in the 

HGAC household travel survey, driving-alone mode is defined as private vehicle and 

motorcycle drivers with no passenger. Shared-ride mode is determined as automobile 

and motorcycle drivers with two and more people, and auto and motorcycle passengers. 
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These modes exclude commercial vehicle drivers and passengers. Bus and school bus 

passengers are identified as transit users. Walk and bike modes indicate walk and bike 

choice in the choice set formation. Only two choice options, automobile vs. non-

automobile are considered in the causal modeling. 

 

Table 4.3 Defining Travel Behavior Outcomes. 

Travel Outcome Data Type Operational Definition 

Travel mode Discrete Four mode options considered for mode choice models 
- Driving-alone: auto/van/truck driver and no. people = 1 
                            motorcycle and no. people = 1 
- Shared-ride: auto/van/truck driver and no. people ≥ 2 
                        auto/van/truck passenger 
                        carpool driver/passenger 
                        vanpool driver/passenger 
                        motorcycle and no. people ≥ 2 
- Transit: bus and school bus passenger 
- Walk/bike: walk and bicycle mode users 

Automobile 
trip frequency 

Count Total number of automobile trips made by each household 
regardless of the number of people in the vehicle 

Automobile trips include driving-alone and shared-ride trips 
VMT Continuous Total vehicle miles traveled by each household 

Sum of vehicle miles traveled of every trips made by every 
member in a household regardless of the number of people 
in the vehicle 

 

 Individual trips are grouped into three different trip purposes: home-based work 

(HBW), home-based other (HBO) and non-home based (NHB) trips. Trip distribution by 

travel mode and purpose is shown in Table 4.4 based on the survey result. The table 

indicates that driving-alone is the dominant choice for HBW trips, and automobile mode 

covers about 97 % and 93 % for HBO and NHB trips, respectively. 
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Table 4.4 Trip Distribution by Travel Mode and Purpose in the Study Area. 

Travel mode HBW trips HBO trips NHB trips 

Driving-alone 5,538 (88.8) 1) 4,859 (46.7) 6,239 (48.4) 

Shared-ride 639 (10.2) 5,293 (50.8) 5,819 (44.5) 

Transit 21 (0.3) 34 (0.3) 578 (4.4) 

Walk/bike 41 (0.7) 227 (2.2) 351 (2.7) 

Total trips 6,239 (100) 10,413 (100) 13,077 (100) 

Note: 1) Values are the percentage of trips. 
 

 Household automobile trip frequency focuses on trips made by vehicles not by 

trip-makers. For example, the number of automobile trips is equal to one if two people 

share a ride in an automobile. It is necessary to remove duplicate trips to count 

household automobile trips. Household total VMT is calculated as the sum of every 

automobile trip distance between origin and destination of each trip in a household. 

Travel distance indicates the shortest network distance along major thoroughfares. It is 

available from the matrix skim data of the 2007 HGAC regional travel model. It is also 

essential to eliminate duplicate trips to measure household VMT. Both travel outcomes 

are summarized by travel purposes in Table 4.5. 

 

Table 4.5 Household Trip Frequency and Total VMT by Trip Purpose in the Study Area. 

Travel mode Total trips Total home-
based trips HBW trips HBO trips 

Number of households 3,976  3,973  2,539  3,461  

Number of auto trips 29,858 (7.5) 1) 20,461 (5.2) 6,156 (2.4) 14,305 (4.1) 

Total VMT 372,321 (93.6) 1) 273,790 (68.9) 137,843 (54.3) 135,947 (39.3)

Note: 1) Automobile trips per household and VMT per household. 
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4.2.2 Travel Time and Cost 

 Travel prices including travel time and cost are very important factors in 

explaining individual and household travel behavior. Travel times between TAZs for 

automobile mode are available directly from the HGAC regional travel model skim data 

in the matrix format. They are organized into two different times of day, i.e. peak 

periods and off-peak periods. The peak periods are designated as 6:00 to 9:00 A.M. and 

4:00 to 7:00 P.M. (Meyer and Miller 2001). While considering both free (no toll) and 

paid (toll eligible) travel times, travel times are arranged by many specific modes, i.e. 

driving-alone, two people shared-ride, three people shared-ride and four and more 

people shared ride. An example of mode specific travel time is driving-alone paid travel 

time between traffic zones for peak period. It should be noted that travel distances 

between traffic zones are also arranged in the same way. 

 Travel times between TAZs for transit mode can be obtained from the skim data 

of the HGAC regional travel model. Similar to the automobile travel times, they are 

arranged by two different times of day. However, they consider two specific modes 

(local and premium buses) and two access modes (drive and walk access to bus). For 

instance, travel time skim data for drive to local bus for peak period is available for 

transit mode. Because two specific buses and access modes cannot be clearly identified 

based on the travel survey, local bus and driving access mode are preferred to premium 

bus and walk access mode, respectively. It should be also mentioned that transit travel 

times are estimated using the association between existing times and distances if they are 

not available in the skim data due to the absence of transit routes. This process was done 
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for generating alternative specific transit time variable for the mode choice models. In 

addition, travel times for walk and bike mode are computed using Equation 4.1 proposed 

by Zhang (2004) as follows. 

 SpeedceDisAgeWBT iii /tan]30/301[1 ×−+=    (4.1) 

where WBTi indicates walk and bike travel time for a trip i and Agei and Distancei are 

age of an individual making trip i and travel distance of trip i, respectively. The speed is 

assumed to 3 miles and 9 miles per hour for walk and bike modes, respectively. 

 Contrary to travel times between traffic zones, automobile travel costs are not 

available. The study employs the equation as follows for calculation automobile travel 

costs.8 

 ii ceDisTiresMainntencepriceGasCost tan][ ×++=   (4.2) 

where Costi indicates cost spent for a trip i. Gas price ($ per mile) is calculated as price 

per gallon9 multiplied by the inverse of miles per gallon (MPG). Vehicle fuel efficiency 

or MPG considers a variety of vehicle years, models and makers and types since 1984 

(U.S. DOE and U.S. EPA 2009). Maintenance and Tires are maintenance and tire 

depreciation costs.10 

 It should be noted that some shortcomings lie in the measurement of the travel 

time and cost. First, vehicle travel times between TAZs are ideally based on the amount 

                                                 
8 Travel cost examined in this study represents short-term operating costs. Generalized cost is a broader 
concept of travel cost measurement. For instance, it is defined in the Dallas-Fort Worth Regional Travel 
Model as following: automobile operating cost + (value of time × travel time) (Lee 2006). 
9 2008 average gas price per gallon in Texas is $ 3.283 per gallon for regular gasoline and $ 3.942 per 
gallon for diesel (AAA 2008). 
10 2008 average maintenance and tires costs are 4.57 cents per mile and 0.72 cents per mile, respectively 
(AAA 2008). 
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of average time spent on the major roadways. Although the estimated times represents 

the reality, they do not capture actual travel times not only because they fail to consider 

minor and local network, but also because they do not include access time and frequent 

stops on the way. Even travel times within zones are not examined, while assuming zero. 

In addition, transit travel times are estimated in some cases due to unavailable operations 

of the public transportation. 

 Why are interzonal travel times used instead of reported travel times in the travel 

survey? It is because modal attributes are so different from each other that it is not 

reasonable to assume an identical coefficient for four different mode options. Similarly, 

the alternative specific model specification is prioritized in the travel demand model, 

which needs to compute the travel times of different mode choices for every trip. Similar 

weaknesses are also inherent in the travel cost and distance measurement. Travel costs 

stand for only short-term operating costs which do not take parking costs and tolls into 

account as the information is neither available nor reliable in the travel survey. The 

issues need to be addressed to collect more reliable information in the household travel 

survey. 

 

4.2.3 Socioeconomic Characteristics 

 Socioeconomic characteristics play a major role in individual and household 

travel models. Seven socioeconomic factors are explored in the study: sex, age, bike use, 

residential type, household size, vehicle ownership and household income. Details of the 

variable measurement are presented in Table 4.6. Note that both age and household 
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income that are thought to be continuous are grouped in interval scales. Bike use, 

household size and vehicle ownership are aggregated at the upper ends so that they have 

enough observations in the category. 

 

Table 4.6 Measurement of Socioeconomic Characteristics. 

Variable Measurement 
Sex Female = 1, male = 0 
Age Below 10 = 0, teens = 1, twenties = 2, thirties = 3, forties = 4, 

fifties = 5, sixties = 6, 70 and more = 7 
Bike use Number of days person rode bike in last seven days 

No bike use = 0, 1-2 uses = 1, over 2 uses = 2 
Residential type Detached single-family residence = 1, others = 0 
Household size Number of people living in each household 

1 person = 1, 2 people = 2, ···, 6 and more people = 6 
Vehicle ownership Number of vehicles available for each household 

0 vehicle = 0, 1 vehicle = 1, ···, 4 and more vehicles = 4 
Household income Combined annual income of all household members 

Fifteen income brackets 
 

4.2.4 Land Use Measures 

 Three dimensions of land use characteristics are examined: density, diversity and 

design. Two land use measures in each dimension are computed at every trip origin and 

destination. Density includes population and employment density; diversity encompasses 

entropy and dissimilarity index; design covers connectivity and road length measures. 

Thanks to the detailed parcel based land use data and advanced geographic information 

system (GIS), it is possible to measure land use variables in a quarter-mile radius of trip 

ends. 
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4.2.4.1 Density Measures 

 Population density is generally defined as the number of people living in a 

certain area divided by total area. The study employs the concepts of net population 

density as expressed in Equation 4.3. The process of computing the population density is 

as follows. First, each buffer area of either trip origin or destination is divided into seven 

different land use types: 1) residential, 2) commercial and industrial, 3) agricultural and 

farm ranch, 4) park and recreational, 5) school and public, 6) road and transportation, 

and 7) vacant and other uses. Then, total area of each land use types within a buffer area 

is computed. Third, the number of people in each buffer area is estimated using TAZ-

level population and buffer-level developed area. The basic idea is that the population is 

homogenously distributed throughout the residential area within each TAZ. Hence, a 

buffer area spreading over several TAZs takes the number of residents from each TAZ 

according to the ratio of the residential area dissected by the buffer. Last, the estimated 

population is normalized by total developed area (residential, commercial and industrial, 

school and public, and roads and transportation area) in the buffer. An example is 

illustrated in Figure 4.2. 
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where PDRi indicates population density (per acre) within a quarter-mile buffer i, and k 

is a set of TAZs dissected by the buffer i. Popk is total population of zone k, and RAk, 

RAik and DAk represent total residential area of zone k, and total residential area of zone k 

included within a buffer i, and total developed area of zone k, respectively. 
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Figure 4.2 Measurement of Population Density. 

 

 Employment density commonly indicates the number of people working in a 

certain spatial extent divided by total area. The process of computing the employment 

density is similar to that of the population density. Equation 4.4 and Figure 4.3 show 

how the employment density in a buffer area is computed in the study. 
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where EDRi is the employment density (per acre) within a quarter-mile buffer area i, and 

k is a set of TAZs dissected by the buffer i. Empk is the number of employment of zone 

k, and EAk, EAik and DAk are total commercial and industrial area of zone k, total 

commercial and industrial area of zone k contained in a buffer area i, and total developed 

area of zone k, respectively. 

 
 

 

 

 

 

k=1 

k=2 

i 

k=3 Pop1 
DA1 DAi1 DAi3 

DAi2 

Pop2 
DA2 

Pop3 
DA3 

)( 321

3

3
3

2

2
2

1

1
1

DADADA
DA
DA

Pop
DA
DA

Pop
DA
DA

Pop

PDR

iii

i

++

++
=



 

 

71

 
Figure 4.3 Measurement of Employment Density. 

 

4.2.4.2 Diversity Measures 

 The entropy measure was originally developed for quantifying the energy state in 

a system and used for gauging how different gases in a system are mixed (Kockelman 

1997). This index measures the degree of land use balance or land use heterogeneity 

(Cervero ana Kockelman 1997). Equation 4.5 presents how the entropy index is 

computed in which it is normalized with the natural logarithm of the number of land use 

types. Seven land use types are considered including both developed and undeveloped 

land uses: residential, commercial and industrial, agricultural and farm ranch, park and 

recreational, school and public, road and transportation, and vacant and other uses. The 

values vary between 0 and 1 in which 1 represents perfect balance among different land 

uses. An example in Figure 4.4 illustrates how to calculate the entropy index in a 

quarter-mile buffer.  
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where EIi indicates the entropy index within a quarter-mile buffer area i. Pj is the 

proportion of a type of land use j, and J is total number of land use types considered. 

 

 
Figure 4.4 Measurement of Entropy Index. 

 

 The dissimilarity index quantifies how well a place is mixed with its neighboring 

land uses within a certain area. It focuses on measuring the degree of land use mix in an 

area. Mean dissimilarity index is introduced in the study as illustrated in Equation 4.6 

and Figure 4.5. Seven types of land uses are considered for computing the index. The 

HGAC region is divided by grids that are 100 feet high and 100 feet wide, resulting in 

over 80 million cells throughout the region. 

 A GIS model is created to compute the dissimilarity index (see A1 in Appendix). 

The computational process is as follows. First, the raster dataset for the HGAC region is 

prepared as described before. The data is reclassified according to each type of land use, 

resulting in seven different raster datasets. Each cell in a dataset has 1 value if its land 

use is same as designated land use type of the dataset. For example, if one out of seven 
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different raster datasets is designated as residential use, then value 1 is assigned to a cell 

in the dataset if it is residential use; otherwise, value 0 is assigned. Then, the 

neighborhood function for computing focal statistics is working as illustrated in Figure 

4.5. A neighborhood window with five times five cells moves throughout the HGAC 

region to calculate central grid values. As a result, specific values are assigned to every 

grid in the raster dataset. After this operation is repeated for seven raster datasets created 

before, the neighborhood function works for summing up the values in the same cells 

over six datasets except for a dataset having same designated value in the second step. 

For instance, if the residential use is designated for a raster dataset, the neighborhood 

function works only for other six raster datasets to sum up the cell values in the same 

position. Finally, mean dissimilarity index is computed in a quarter-mile buffer area as 

done in Figure 4.5. 

 ∑∑
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where DIi represents mean dissimilarity index. K is the number of grids in a quarter-mile 

buffer area, and J is a constant, 24 in this analysis indicating the number of adjacent cells 

within the neighborhood window (5 by 5 cells). In addition, Djk is a dummy variable for 

the central grid j within a group of cells k. Its value is 1 if the land use type of the central 

cell j is different from that of an adjacent cell and 0 otherwise.  
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- Central grid within a square consisting of 3 

× 3 grids has 5/8 point because five cells 
out of eight adjacent to the center are 
different. 

- Mean dissimilarity index of the 3 × 3 
square is 0.583. 

- Mean dissimilarity index 
   = sum of individual index divided by the 

number of grids within a spatial 
boundary 

   = {(6 + 3 + 4 + 6 + 5 + 5 + 4 + 4 + 5) / 8} 
       / 9 = 0.583 

Figure 4.5 Measurement of Dissimilarity Index. 
 

4.2.4.3 Design Measures 

 In the literature of the connection between land use and travel behavior, land use 

design measures generally pay attention to neighborhood street patterns, site 

development patterns and provision of non-motorized transportation facilities. Two 

design measures related to street pattern in a quarter-mile buffer area are considered in 

this study: connectivity and road length measure. Because road network and other 

amenities for bikers and pedestrians are not available throughout the region, design 

measures for alternative travel modes are not considered. 

 Connectivity measure, also called internal connectivity is defined as the number 

of intersections divided by total number of intersections and dead ends within a certain 

spatial boundary (Knaap et al. 2007; Song and Knaap 2004). The intersection 

encompasses 3-way junction, 4-way junction and other types of crossroads. In addition, 

road length measure examines how long the road network is spread over a buffer area. It 
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is quantified by the sum of roadway miles divided by total area in which roadway length 

is normalized with buffer area.. 

 Descriptive statistics of explanatory variables for individual trips and for 

household trips are summarized in Table 4.7 and Table 4.8, respectively. 

 

Table 4.7 Descriptive Statistics for Individual Trips by Trip Purpose. 

 HBW Trips HBO Trips 
Explanatory variable Mean Std. Dev. Mean Std. Dev. 
Travel time (driving-alone) 13.641 11.809 6.996 8.440 
Travel time (shared-ride) 24.469 17.132 12.148 11.914 
Travel time (transit) 80.444 50.438 50.672 41.532 
Travel time (walk/bike) 95.522 75.998 36.637 42.833 
Travel cost (driving-alone) 4.956 3.785 2.122 2.371 
Travel cost (shared-ride) 2.467 1.893 0.986 1.142 
Travel time differential 81.881 65.611 29.642 35.542 
Sex (female = 1) 0.436 0.496 0.559 0.497 
Age (8 categories) 4.220 1.453 4.344 2.102 
Bike use (3 categories) 0.101 0.372 0.185 0.517 
Residential type (single-family = 1) 0.916 0.277 0.927 0.261 
Household size (6 categories) 3.365 1.335 3.314 1.371 
Vehicle ownership (5 categories) 2.558 0.919 2.356 0.900 
Total household income (15 groups) 9.329 3.243 8.753 3.547 
Population density (per acre) at O 8.516 4.978 8.272 4.897 
Population density (per acre) at D 4.817 5.151 5.195 4.828 
Employment density (per acre) at O 1.747 3.940 1.777 4.351 
Employment density (per acre) at D 27.054 82.382 9.324 27.457 
Entropy index at O 0.600 0.138 0.597 0.134 
Entropy index at D 0.653 0.140 0.672 0.127 
Dissimilarity index at O 0.579 0.129 0.577 0.125 
Dissimilarity index at D 0.657 0.129 0.676 0.110 
Connectivity at O 0.740 0.169 0.740 0.168 
Connectivity at D 0.788 0.174 0.789 0.161 
Road length per 1000 ft2 at O 3.413 1.223 3.321 1.203 
Road length per 1000 ft2 at D 3.880 1.722 3.705 1.587 
Sample size 6,239 10413 
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Table 4.8 Descriptive Statistics for Household Trips by Trip Purpose. 

 Total Trips HBW Trips HBO Trips 
Explanatory variable Mean SD Mean SD Mean SD 
Travel cost per trip 3.074 2.270 5.188 3.533 2.313 2.136 
Travel cost per mile 0.223 0.041 0.226 0.057 0.227 0.067 
Household automobile trips 7.510 4.831 2.425 1.336 4.133 2.713 
Residential type (single-family = 1) 0.903 0.296 0.906 0.292 0.912 0.284 
Household size (6 categories) 2.979 1.348 3.181 1.350 3.047 1.348 
Vehicle ownership (5 categories) 2.231 0.880 2.410 0.881 2.262 0.878 
Total household income (15 groups) 8.499 3.479 9.167 3.298 8.570 3.491 
Population density (per acre) at O 7.465 4.429 7.368 4.300 7.396 4.344 
Employment density (per acre) at O 1.978 4.352 1.854 3.965 1.987 4.361 
Entropy index at O 0.601 0.138 0.599 0.139 0.599 0.137 
Connectivity at O 0.742 0.170 0.738 0.172 0.741 0.170 
Road length per 1000 ft2 at O 3.390 1.240 3.398 1.238 3.371 1.230 
Sample size 3976 2539 3461 

 

4.3 Research Methodology 

4.3.1 Negative Binomial Model 

 The negative binomial regression model is introduced to examine the relationship 

between land use and household automobile trip frequency, while controlling for trip 

cost and household socioeconomic variables. In general, the number of automobile trips 

is skewed to the right; therefore, the Poisson and the negative binomial models are 

generally employed to estimate the count data.11 The Poisson model assumes the 

dependent variable shows Poisson distribution. A popular link function is the log link, 

which becomes the Poisson loglinear model (Agresti 2007). The probability function for 

the dependent variable is expressed as follows (Simonoff 2003; Cao et al. 2006). 
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11 Other models such as the zero-inflated Poisson model are also applicable to the count data according to 
the assumptions and the observational attributes. 
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where λ is the mean or expected number of frequency of the dependent variable. The 

mean is expressed in the Poisson loglinear model while satisfying an exponential 

relationship. 
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 The Poisson model assumes equal mean and variance of the dependent variable. 

However, there are often heterogeneous Poisson distributions in the population. It causes 

the variance to be larger than the mean, termed overdispersion. The negative binomial 

model is proposed to address the overdispersion problem. An unobserved effect is 

included as follows (Cao et al. 2006). 

 )exp( 110 εβββλ ++⋅⋅⋅++= nn XX     (4.9) 

where ε is assumed to have a one-parameter gamma distribution with mean and variance 

are 1 and α, respectively. The probability function can be described as follows. 
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where ν is defined as α-1 and Г indicates the gamma function. 

 An important attribute of the negative binomial model is that the mean of the 

dependent variable is λ and the variance is equal to λ(1+ αλ) where α is a dispersion 

parameter. This type of model with a quadratic influence of variance is called a type 2 

negative binomial model. The Poisson model is a special case of the negative binomial 

model in which the variance is close to λ as the dispersion parameter becomes zero 

(Simonoff 2003; Cao et al. 2006; Agresti 2007). 
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 4.3.2 Multinomial Logit Model 

 Regional travel demand is represented as the aggregation of individual travel 

decisions in a regional context. In terms of individual choice process, Ben-Akiva and 

Lerman (1985) proposed a series of decision-making steps. Fist, the choice problem is 

defined, and a set of available choice options are determined; the characteristics of the 

alternatives are compared and assessed; a choice of an alternative is finally made based 

on a decision rule. However, the course of actions may not be applied to all decision-

making procedure. 

 It is necessary to define four basic elements to address the individual choice 

process: the decision maker, the alternatives, the attributes of alternatives and the 

decision rule (Ben-Akiva and Lerman 1985). The decision makers encounter different 

choice situation and have different tastes if their characteristics are different. It suggests 

that the choice model be estimated at individual level and take their differences into 

account. A set of alternatives considered by the decision maker’s environment is called 

the consideration choice set. The attractiveness of a choice option is assessed by each 

trip maker with its attribute values where the uncertainty of the attributes can also be 

considered. They are either generic or alternative specific. It is important to identify 

policy-related variables because the choice models are basically intended to appraise the 

impact of policy changes. It is assumed the decision makers are rational, and their 

decision-making process is both consistent and transitive. Among decision rules, 

attention is focused on the utility maximization rule in the study. It implies that an 

individual has a utility function and make trade-offs among the characteristics of 
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alternatives, and make a choice satisfying the highest utility (Ben-Akiva and Lerman 

1985; Koppelman and Bhat 2006). 

 Due to lack of information on the internal decision process and the perception of 

alternative, individual choice behavior can be explained based on random utility or 

probabilistic choice theory. According to the theory, the utility function of an alternative 

for each decision maker is composed of two parts. One is observed component of the 

utility, called the deterministic or systematic portion; another is unknown component of 

the utility, called random portion. The utility function is represented as 

 ititit VU ε+=         (4.11) 

where Uit is the true utility of an alternative i for a decision make t, Vit and εij indicate the 

deterministic or systematic portion and  the random or error portion of utility, 

respectively. 

 It is agreed that the deterministic utility is determined by a function of the 

attributes of the alternative and the chooser’s characteristics. This study employs modal 

attributes such as travel time and cost, individual and household characteristics, and land 

use attributes surrounding trip origin and destination. The assumptions of the distribution 

of the error terms determine different mathematical formulation of the choice models. If 

the error terms are assumed to be normally distributed, for example, the multinomial 

probit (MNP) choice model is formulated. 

 Error terms in the utility function are unobserved and random. Two general 

assumptions of the error component lead to the multinomial logit (MNL) model. One is 

that the error terms show the extreme value type I or Gumbel distribution. It shapes the 
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mathematical form of the MNL model. Another assumption is that the error terms are 

identically and independently distributed (IID) across choice alternatives and 

observations. It implies that there should not be any correlation between the error 

components of choice options and individuals in the model (Ben-Akiva and Lerman 

1985; Meyer and Miller 2001; Koppelman and Bhat 2006; Lee 2006). The MNL model 

enables us to compute the probability of choosing each alternative using a function of 

the systematic component (Ben-Akiva and Lerman 1985; Koppelman and Bhat 2006). 

The probability of choosing an alternative is represented in the MNL model as 
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where P(i) is the probability of choosing an alternative i, and Vj indicates the systematic 

portion of the utility of alternative j. 

 The probability of choosing an alternative has the S shape as a function of its 

utility while other utilities are kept constant. It means when the utility of an option is 

similar to the combined utility of others, the probability of choosing the alternative 

increases largely with a small increase in its utility. The probabilities of alternative 

choices rely not on the actual utility values but on the differences in the deterministic 

utilities of the alternatives. On the other hand, the MNL model has the fundamental 

property of the independence from irrelevant alternatives (IIA). It indicates that the ratio 

of the probabilities of making two choices depend only on their attributes; it is 

independent of the existence of any other alternative. It leads to overestimating the 

probabilities of choosing similar alternatives and also underestimating the chances of 
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choosing the distinct options. Despite the advantages in model formulation and 

application, the MNL model is exposed to criticism as it may not appropriately explain 

the choice behavior (Ben-Akiva and Lerman 1985; Meyer and Miller 2001; Koppelman 

and Bhat 2006; Lee 2006).  

 

4.3.3 Structural Equation Modeling 

 Structural equation modeling (SEM) is a class of statistical methodologies 

incorporating regression analysis, path analysis, confirmatory factor analysis and full 

scale models including both measurement and structural components. It characterizes 

hypotheses about the relationships between variables in the structural equation models 

(SEMs). The SEMs are applicable for experimental data as well as observational data 

including longitudinal data (Kline 2005). 

 The SEMs typically consist of two components: the measurement part and the 

structural part. The measurement model relates latent variables to observed or manifest 

measures using a confirmatory factor analysis (CFA). The structural model, on the other 

hand, regresses endogenous or dependent variables with exogenous or independent 

variables (Thompson 2000; Lee 2007; Kaplan 2009). The CFA method requires a priori 

measurement structure specifying both the number of latent factors and the relationships 

between observed variables and latent factors. The path analysis (PA) model can be 

specified in case that only a measure is available for each measurement part, and the 

causal relationships among the variables are established based on the relevant theory 

(Kline 2005; Kaplan 2009). 
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 The SEM approach is effective for reducing the problems related with 

measurement error and thus achieving better parameter estimates. However, the benefit 

caused by incorporating both measurement and structural models is obtained at the cost 

of significant increases in degrees of freedom for testing model fit. It is thus probable 

that well established path model is rejected in terms of goodness-of-fit indices because 

of problems in the CFA model (Kaplan and Wenger 1993; Kaplan, 2009). 

 

4.3.3.1 Assumptions 

 Many assumptions pertinent to the data and the estimation method are required to 

achieve reasonable estimation result. They cover multivariate normal distribution, 

complete random missing data, enough sample size, and correct model specification. 

 First, multivariate normality assumption indicates that observations should be 

continuous and normally distributed. It becomes relatively loose for categorical data and 

especially for maximum likelihood (ML) estimation. Nonnormal distribution does not 

influence coefficients; rather, it makes standard errors to be underestimated (Muthén and 

Kaplan 1992; Kaplan 2009). DiStefano (2002) also maintained that ML parameter 

estimates and standard errors were very low by introducing categorical indicators into 

the model. 

 The missing data mechanism becomes serious and influences the estimation 

result significantly if the data are neither missing at random (MAR) nor observed at 

random (OAR). Two ways to handling missing data are typically applicable: the listwise 

present approach (LPA) and pairwise present approach (PPA). The LPA utilizes listwise 
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available data for all cases, and the PPA employs pairwise available data focusing on 

pairwise statistics (Kaplan 2009). Additional model-based approaches deal with missing 

data by modeling the mechanism that causes missing values (Kline 2005; Kaplan 2009). 

They are more flexible than conventional methods; moreover, standard errors can be 

computed while considering missing data, which is important in terms of model 

estimation and evaluation (Little and Rubin 2002). 

 Large number of samples should be obtained in order to lower sampling errors. 

Model complexity needs to be considered to decide sample size because more 

complicated models require larger number of samples than simpler models for obtaining 

stable parameter estimates. In addition, it is assumed that there are no model 

specification errors caused by the omission of relevant variables in any part of SEMs. 

The SEMs plagued with specification errors produce substantially biased parameter 

estimates. Some studies also showed that specification error in one part can be 

reproduced in other parts of the SEMs (Kaplan 1988; Kaplan 2009). 

 

4.3.3.2 Model Specification 

 As the SEMs include many distinct statistical methodologies, there is no standard 

way of specifying the SEMs in mathematically and graphically. An effective way is to 

present different model specifications including PA model, CFA model and full 

structural model as follows. 

 Let p and q be the number of endogenous and exogenous variables, respectively. 

The system of structural part or path model in SEMs can be briefly expressed as 
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 ζα +Γ+Β+= xyy        (4.13) 

where y is a p×1 vector of observed endogenous variables, x is a q×1 vector of observed 

exogenous variables, α is a p×1 vector of structural intercepts, B is a p×p coefficient 

matrix linking endogenous variables, Γ is a p×q coefficient matrix linking endogenous 

variables to exogenous variables, and ζ is a p×1 vector of disturbance terms. In the 

notation, the variance of disturbance terms (Ψ) is a p×p covariance matrix of the terms. 

Also, variance of exogenous variables (Φ) is a q×q covariance matrix for the variables 

(Kaplan 2009). 

 Another component of the SEMs, measurement model or CFA model in the form 

of the linear factor analysis can be specified as 

 δξ +Λ= xx         (4.14) 

where x is a q×1 vector of observed indicators, Λx is a q×k matrix of factor loadings, ξ is 

a k×1 vector of common factors, and δ is a q×1 vector of unique variance containing 

measurement error variance and specific variance (Kaplan 2009). 

 The general SEMs that incorporate both PA and CFA models for continuous 

latent variables can be represented as 

 ζξηη +Γ+Β=        (4.15) 

where η is an m×1 vector of endogenous latent variables, ξ is a k×1 vector of exogenous 

latent variables, B is an m×m regression coefficient matrix which links the latent 

endogenous variables. Γ is an m×k regression coefficient matrix that relates endogenous 

variables to exogenous variables, and ζ is an m×1 vector of disturbance terms. The latent 
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variables are connected with observed variables via measurement model for both 

endogenous and exogenous variables. This model can be written as  

 εη +Λ= yy ; δξ +Λ= xx       (4.16) 

where Λy and Λx indicate p×m and q×k vectors of factor loadings, respectively. ε and δ 

are p×1 and q×1 matrices of unique variance, respectively. The parameter vector Ω for 

the full model consists of nine matrices, Λy, Λx, Θε, Θδ, Φ, Β, Γ, Ψ and Θδε as in Figure 

4.6 (Kaplan 2009). 

 

 
Figure 4.6 Nine Matrices and Four Vectors of General SEMs. 

Note: Nine matrices are Φ (PH), Β (BE), Γ (GA), Ψ (PS), ΛX (LX), ΛY(LX), Θε (TE), Θδ (TD), 
and Θδε (TH); four vectors are κ (KA), τX (TX), τY (TY), and α (AL). 
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4.3.3.3 Modeling Approach 

 Conventional SEM approach is characterized as illustrated in Figure 4.7. First, 

the structural models are established and specified based on a theoretical framework in 

which presumed relations among observed and latent variables are examined. The 

process can be accomplished by employing the path diagram method so that the relevant 

theories are consistent with the diagram, and vice versa. Instead of graphical 

representations, a series of equations can be established for investigating the assumed 

connections among variables (Kaplan 2009). Certain requirements have to be met in 

order for the models to be identified (Kline 2005). 

 In the next step, a set of variables are measured to be included in the model 

estimation process. It is crucial in the measurement model to incorporate multiple 

indicators for making underlying constructs clear. When it comes to measurement 

model, attention should be paid to both reliability and validity issues (Kline 2005; 

Kaplan 2009). Reliability indicates to what degree the responses in a sample are 

consistent across the items without random measurement error. Validity examines the 

soundness of the inference based on the responses while concerning if underlying 

constructs are appropriately measured in a sample (Thompson 2003; Kline 2005) 

 The following is the process of model estimation indicating that parameter 

estimates of the specified model are obtained using an estimation method. The 

estimation methods aim to minimize a fit function or a discrepancy function consisting 

of the sample or observed covariance matrix and model-implied or fitted covariance 

matrix. They include maximum likelihood (ML), generalized lease squares (GLS) and 
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weighted least squares (WLS).12 Recently, the WLS based methods for the continuous 

and categorical observations under nonnormality were developed (Muthén and Muthén 

2006). 

 The estimated model is then evaluated and modified. Model evaluation intends to 

assess how well the estimated model is fit to the data. Many fit indices and model 

comparison indices are available especially for the SEMs with continuous variables. Fit 

indices encompass model chi-square (likelihood ratio chi-square) for exact test, and 

goodness of fit measures such as the root mean square error of approximation (RMSEA) 

(Steiger and Lind 1980), the comparative fit index (CFI) (Bentler 1990), and the 

standardized root mean square residual (SRMR). Model comparison indices are chi-

square difference statistic for nested models, Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) (Kline 2005; Kaplan 2009). 

 The main reasons of rejecting the model in terms of model fit indices are 

infringement on the assumptions, incorrect model specification, and insufficient number 

of samples. The model needs to be modified to better fit the data, which is called model 

modification. Both modification index (MI) and expected parameter change (EPC) are 

available commonly for continuous variables. The MI computes the expected decrease in 

the overall chi-square statistic resulting from freeing the restriction on a parameter 

estimate, while other constraints kept constant. The EPC gauges the change of a 

parameter estimate by relaxing the restriction on the parameter. As shown in Figure 4.7, 

                                                 
12 Refer to Kaplan (2009) and Kline (2005) for detailed explanations of model estimation methods. 
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the estimated model is assessed and modified until its statistics meet some standards of 

fit indices (Kaplan 2009). 

 

 
Figure 4.7 Conventional Structural Equation Modeling Approach. 

Source: Kaplan (2009) 
 

4.3.4 Direct Acyclic Graphs 

 In many cases, modeling practices for explanation and prediction have paid much 

more attention to associations than causalities among variables. Researchers often rely 

on the theories that support the causal directions among the variables. Even in the case, 

the theories commonly assume the ceteris paribus situation to clarify the causal 

relationships in an experimental system. The experiments may work if scientists suppose 

that one or more variables are functioning in the true system even though the whole 
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system is not yet known. Only if the data are obtained from the randomized experimental 

design for controlling the system, the causation among variables can be clarified. 

However, data are not always obtainable in a well controlled system; rather, they are 

commonly observational. 

 There are two questions with which we are confronted. How can the causal 

connections be clarified using observational or non-experimental data in reliable and 

consistent ways? How the causal structure that is established helps manipulate and 

predict the system? Studies intend to not only elucidate the causal connections among 

variables but also forecast the change of the effect by modifying the cause (Spirtes et al. 

2000). Causality appears to be linked with intervention and manipulation (Hausman, 

1998). 

 A variety of studies have been conducted during the last several decades to 

conceptualize causal notions and analyze the causal structure based on graphical 

representation. A directed graph illustrates the causal flow among a group of variables as 

a picture. In this way, a great advance of the graphical causal modeling methods has 

been made based on observational data and nonparametric analyses (Pearl 2000; Spirtes 

et al. 2000). 

 

4.3.4.1 Elements and Concepts 

 The directed acyclic graph (DAG) does not consider inference based on a cyclic 

system of causal flow, i.e. a system of a variable flowing through other variables and 

finally returning to itself. A graph consists of an ordered three components: V, M, and E 
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(Cooper 1999; Roh and Bessler 1999; Roh et al. 1999; Spirtes et al. 2000). V is a non-

empty set of vertices or variables; M is a non-empty set of marks or symbols at the ends 

of vertices. And E is a set of ordered pairs of vertices and marks of which a member is 

called an edge. Variables which have causal relations are connected by edges, and two 

variables linked with an edge are adjacent. If a direct edge comes from V1 to V2, then V1 

is a parent of V2 and V2 is a child of V1 (Spirtes et al. 2000). 

 The DAG is an illustration for constructing conditional independence based on a 

probability theory. In other words, it intends to handle the independence relations among 

variables in the system resulting from its application under the causal Markov condition. 

D-separation is a relation between three disjoint subsets of variables, X, Y and Z in a 

DAG. The concept is to check if a subset of variables in Y blocks any types of causal 

connections between a set of variables in X and Z. If V1, V2 and V3 belong to a set of 

variables, then the correlation between V1 and V2 conditional on V3 is zero if and only if 

V1 and V2 are d-separated given V3 in a DAG (Cooper 1999; Pearl 2000; Spirtes et al. 

2000) 

 In general, inferences on causal relationship in a DAG are structured by 

asymmetries among causal chains, causal forks, and causal inverted folks (Pearl 2000). 

The three different types of causal relations among threesomes, V1, V2 and V3 help 

clarify the inferences behind the concept of d-separation. 

 First of all, a causal chain can be represented as following if V1 causes V2, and 

V2 then causes V3. 

 V1 V2 V3 
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 In the causal chain, V1 is correlated with V2 unconditional on V3 ( 0
21, ≠vvρ ), i.e. 

d-connected as unconditional correlation. Also, V2 is associated with V3 unconditional 

on V1 ( 0
32 , ≠vvρ ), namely d-connected as unconditional association. V1 and V3 are d-

connected as unconditional correlation ( 0
31, ≠vvρ ). However, the correlation between V1 

and V3 conditional on V2 is zero ( 0
231 |, =vvvρ ), i.e. d-separated as conditional correlation. 

 The causal relation in land use and travel behavior interaction can be exemplified 

as follows. The number of workers in a household (V1) is d-connected with total income 

in the household (V2) as unconditional association, which then causally affect the 

number of automobiles in the household (V3). However, the number of workers (V1) and 

car ownership in the household (V3) are d-separated conditional on total household 

income (V2). Among households within same bracket of annual household income, the 

number of automobiles is not significantly different even though the number of workers 

increases. It is because the number of workers is no longer an important factor in 

determining auto ownership for the households earning same amount of annual income.  

 Another type of causal relation is called a causal fork in which all information is 

originated from a common cause (V2). It can be illustrated as follows. 

 

 Both the causal fork and the causal chain are defined to be observationally 

identical because the association structure between vertices of the causal fork is 

equivalent to that of the causal chain. Any pair of variables among V1, V2, and V3 are 

correlated or d-connected as unconditional correlation, which can be expressed as 

V1 V2 V3 
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,0
21, ≠vvρ  ,0

32 , ≠vvρ  and .0
31 , ≠vvρ  However, the association between V1 and V3 

conditional on a common cause (V2) becomes zero, i.e. d-separated as conditional 

association ( 0
231 |, =vvvρ ). In other words, the knowledge of a common cause (V2) is 

screening off the relationship between its joint effects (V1 and V3). 

 For instance, car ownership in a household as a common cause causally affect 

household total vehicle miles of travel (VMT) (V1) as well as the probability of 

automobile mode choice for a trip (V3). If conditional on household car ownership (V2), 

household total VMT (V1) and the likelihood to choose automobile mode (V3) become 

d-separated. If households have same number of automobiles available, both total VMT 

of each household and automobile choice probability appear to be constant across the 

households of interest. 

 Third type of causal relation is called a causal inverted fork in which a common 

effect (V2) takes all information flowing from different adjacent causes (V1 and V3), but 

is not open to any other variable. The variable V2 is defined as a collider because causal 

impacts of different causes converge or collide on it as follows.     

 

 The variables V1 and V3 in the causal inverted fork are associated with the 

collider V2, respectively unconditional on remaining variable, i.e. d-connected as 

unconditional correlation ( 0
21, ≠vvρ  and 0

32 , ≠vvρ ). But the unconditional association 

between V1 and V3 is zero, indicating that V1 and V3 are d-separated in the directed 

graph. On the other hand, the correlation between V1 and V3 conditional on the common 

V1 V2 V3 
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effect (V2) becomes significantly different from zero, i.e. d-connected as conditional 

association ( 0
231 |, ≠vvvρ ). It implies that the information of a common effect V2 does not 

block or screen off the association between its joint causes V1 and V3.   

 For example, increase in diversity of land use pattern (V1) and improved 

pedestrian connectivity (V3) causally influence decrease in the probability of choosing 

automobile modes for a trip (V2). The two causes, land use mix (V1) and pedestrian 

connectivity (V3) do not seem to be correlated unconditional on the common effect, 

automobile choice probability (V2). However, given the common effect, the relationship 

between land use diversity and pedestrian connectivity becomes significant. If a group of 

individual trip-makers are highly dependent on automobile choice for every trip, it is 

more likely that not only are land uses not well mixed among different uses such as 

residential, commercial and recreational uses, but pedestrian and bike road network 

around their origins or destinations is poorly prepared and connected. 

 

4.3.4.2 Assumptions 

 Causation is assumed to be transitive, irreflexive and antisymmetric. If V1 is a 

cause of V2, and V2 is a cause of V3, the V1 is a cause of V3 (transitive). Any event (V1, 

V2 or V3) cannot cause itself (irreflexive). If V1 causes V2, then V2 cannot cause V1 

(antisymmetric) (Sprites et al. 2000). 

 Three assumptions are generally considered on which probability distributions 

are connected with the DAGs: causal Markov condition, faithfulness condition and 

causal sufficiency. They are not independent, but connected with each other. 
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 First, the causal Markov condition indicates that all information on the 

probability distribution of a variable must be carried from its parents. It can be formally 

defined as follows (Spirtes et al. 2000). 

Let G be a causal graph with vertex set V and P be a probability 
distribution over the vertices in V generated by the causal structure 
represented by G. G and P satisfy the Causal Markov Condition if and only 
if for every W in V, W is independent of V\(Descendants(W) ∪  
Parents(W)) given Parents(W). 

 

 As implied in the definition, causality based on the Markov condition is local in 

time and space, so direct cause screen off remote or indirect causes (Cooper 1999). The 

condition allows us to have two intuitions. First, variables are independent of their 

indirect causes conditional on their parents or direct causes. Another principle is that a 

variable is independent of others conditional on its common causes (Scheines et al. 

1996). 

 Based on the condition, a class of probability distributions can be determined, 

and the probability is represented with a recursive product (Spirtes et al. 2000). 
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where P is the joint probability of vertices or variables V1, V2,…, Vn, and Parents(vi) 

represents direct causes of  a variable vi. Π indicates the functional product operation. 

The equation is represented as d-separation, a generalized graphical relation proposed by 

Pearl (1995, 2000). 
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 Another assumption is faithfulness condition which concerns conditional 

independence relations presented both by a probability distribution and by the causal 

Markov condition. It is specified as follows (Spirtes et al. 2000). 

Let G be a causal graph and P a probability distribution generated by G. 
<G, P> satisfied the Faithfulness Condition if and only if every conditional 
independence relation true in P is entailed by the Causal Markov Condition 
applied to G. 

 

 In some cases, independence relations that are not generated based on the 

Markov condition could be existed in a probability distribution on a DAG in which the 

Markov condition is met. The faithfulness condition is important for figuring out causal 

structure because it pays attention to the relationship between probability distributions 

and causal connections (Cooper 1999; Spirtes et al. 2000). The causal Markov condition 

connects causal structure on a causal graph with independence relationships shown in a 

probability distribution. The faithfulness condition, on the other hand, link causal 

structure with dependence relations represented in a probability distribution (Cooper 

1999). 

 Third, the causal sufficiency should be satisfied for constructing a directed graph. 

It indicates that a set of variables is said to be causally sufficient if the group of variables 

contains the variables which causes two or more other variables in the group. Therefore, 

causal sufficiency assumption ensures that no variable should be omitted in the 

investigation if the variable is a common cause of other variables (Scheines et al. 1996). 
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4.3.4.3 PC Algorithm 

 Some computing algorithms based on the idea of d-separation have been created 

and developed.13 A series of procedures for producing the DAGs has been integrated 

into each algorithm (Spirtes, et al. 2000). PC algorithm has also been designed for the 

purpose that is conducted by the serial versions of TETRAD programs (Scheines, et al. 

1996; Spirtes, et al. 2000). 

 The PC algorithm is composed of a series of ordered computing commands 

(Spirtes et al. 2000). First, a complete undirected graph is constructed on all pairs of 

variables. The undirected graph represents a group of undirected edges between every 

pair of variables in the analytical system. Then, tests for an ordered pair of variables are 

performed consecutively to check out if unconditional correlation between the pair of 

vertices is statistically equal to zero, i.e. 0
21 , =vvρ . The edge is taken away from the 

graph if it is not significantly different from zero. Furthermore, edges which are still 

connected in the undirected graph are tested if conditional correlation between each pair 

of vertices is equal to zero in an orderly manner. If the partial correlation is equal to 

zero, then the edge is removed. In terms of statistical decisions, Fisher’s z statistic is 

employed to conduct the tests of conditional correlation.14 It is described as follows. 
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13 Many applicable algorithms except PC algorithm are presented in Spirtes et al. (2000) including the 
Wermuth-Lauritzen algorithm, the SGS algorithm, Modified PC algorithm, Causal Inference algorithm, 
and Fast Causal Inference algorithm. 
14 The z test is only applicable for continuous variables. For the discrete case, PC algorithm conducts tests 
for independence using G2 that is defined as: ∑= )ln()(22 ExpectedObservedValueObservedG  
(Spirtes et al. 2000). 
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where kji |,ρ  is population conditional correlation between a series of variables i  and j  

conditional on k . | k | is the number of variables in k , and n is the number of 

observations. 

 Finally, remaining edges are connected based on separation set or sepset and the 

away-from-a collider test. The sepset is defined as the subset of conditioning variable(s) 

on removed edges between two vertices after partial correlation tests in series. In a DAG 

consisting of three variables, X, Y and Z, then Z is the sepset of the edge between X and 

Y if this edge is removed by conditioning on Z, i.e. 0|, =ZYXρ . But, Z becomes a collider 

if the edge cannot be removed conditional on Z, i.e. 0|, ≠ZYXρ . 

 An example of how the PC algorithm in a directed graph works is presented in 

Figure 4.8. Three assumptions, causal Markov condition, faithfulness condition and 

causal sufficiency suffice for the exemplary application. It is also assumed that the true 

structure of the directed graph that generated the data is illustrated in the last stage of 

Figure 4.8. It is called a pattern representing a set of directed causal graphs as they entail 

the same conditional independence relations and are consistent with the knowledge of 

causal structure (Verma and Pearl 1990). 

 To begin with, the algorithm automatically builds a complete undirected graph as 

presented in stage (i) in which every pair of four variables (V1, V2, V3 and V4) is 

connected without causal direction. Then, unconditional or zero-order partial correlation 

test is conducted for every pair of vertices. The undirected link between V1 and V2 that is 

not significantly different from zero in the test is removed as illustrated in the stage (ii). 

In the third step, first order partial correlation test on each pair of variables given one of 
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other variables. This procedure continues until the tests for kth order partial correlation 

conditional on all other remaining k variables are completed. Any undirected edge that is 

conditionally independent is eliminated in the graph. As shown in the stage (iii), first 

order partial correlation tests for V1 and V4 and for V2 and V4 conditional on V3 are 

conducted consecutively. As a consequence, their links are taken away from the graph 

because they are proved to be conditionally independent, i.e. 0
341 , =vvvρ  and 

0
342 , =vvvρ . The causal relation among V1, V2 and V3 is the type of a causal inverted 

fork because of their unconditional independence in the step (ii) and their conditional 

association ( 0
321 |, ≠vvvρ ). Thus, all information from V1 and V2 flows toward V3, a 

common effect as represented in the step (iv). Last step determines the causal direction 

between V3 and V4 based on the fact that the associations between V1 and V4 and V2 and 

V4 are screened off by V3 in the step (iii). The fact in the step (iii) indicates that both the 

causal connections among V1, V3 and V4, and among V2, V3 and V4 are either causal 

chains or causal forks. When the causal relationships between V1, V3 and V2, V3 in the 

step (iv) are considered, they should be causal chains. 
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Figure 4.8 An Example of How the PC Algorithm Works. 

Source: Cooper (1999); Druzdzel and Glymour (1999); Lee (2006) 

(v) 

V1 

V2 

 V3 V4

Step 5: 
Based on the facts found in the previous 
steps, V3 should be a cause of V4. A directed 
acyclic graph is finally accomplished. 

(iv) 

V1 

V2 

 V3 V4

Step 4: 
V3 is a common effect as V1 and V2 are 
unconditionally independent ( 0

21 , =vvρ ) and 
conditionally dependent ( 0

321 |, ≠vvvρ ). 

(iii) 

V1 

V2 

 V3 V4

Step 3: 
Undirected links between of V1 and V4 and 
V2 and V4 conditional on V3 are eliminated 
because they are conditionally independent, 
i.e. 0

341 , =vvvρ  and 0
342 , =vvvρ . 

(ii) 

V1 

V2 

 V3 V4

Step 2: 
An undirected edge between of V1 and V2 is 
removed as they are marginally independent, 
i.e. 0

21 , =vvρ . 

(i) 

V1 

V2 

 V3 V4

Step 1: 
Build a complete undirected graph between 
each pair of variables. 
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CHAPTER V 

RESULTS 

 

 This chapter exhibits overall household travel pattern and land use characteristics 

based on the 2007 HGAC Regional Household Activity and Travel Survey and 2007 

parcel-based land use datasets, respectively. Empirical results are presented and 

interpreted with tables and figures representing estimated models of individual mode 

choice, household auto trip generation, and household total VMT. They are specified for 

different travel purposes from travel demand and causal relationship approaches. The 

results are summarized for each travel behavior outcome of interest and some related 

issues are further discussed. 

 

5.1 Household Travel and Land Use Characteristics 

5.1.1 Household Travel Pattern15 

 Based on partial data of the 2007 HGAC household travel survey, 42,275 trips 

are made by 4,170 sampled households in total. The household travel survey collected 

household and individual socioeconomic characteristics, vehicle information and trip 

and activity information. Total 42,275 trips are classified into 6,558 HBW trips, 22,640 

HBO trips and 13,077 NHB trips. Table 5.1 presents the distribution of automobile 

travel time by trip purpose. Each household is estimated to drive an average 8.4 minutes 

per trip in the HGAC region every weekday. Commuters averaged about 13.3 minutes 

                                                 
15 As described in the previous chapter, only 84% of the 2007 HGAC Regional Household Activity and 
Travel Survey data are used in the study because the survey was not completed then. 
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per trip for HBW trips that is more than average trip times for other purposes (6.1 and 

9.9 minutes per trip for HBO and NHB trips, respectively). In terms of travel time 

distribution, more than 90% of total trips are made within 20 minutes. This pattern is 

similar for both HBO and NHB trips. But, trip times are spread more widely for HBW 

trips, while only about 77% of trips are made within 20 minutes. 

 

Table 5.1 Automobile Travel Time Distribution by Trip Purpose. 

Total Trips HBW Trips HBO Trips NHB Trips Travel Time 
(min) 1) Trips % Trips % Trips % Trips % 
0 – 10 32,392 76.6 3,307 50.4 18,767 82.9 10,318 78.9 

10 – 20 6,199 14.7 1,765 26.9 2,680 11.8 1,754 13.4 
20 – 30 2,211 5.2 880 13.4 684 3.0 647 4.9 
30 – 40 902 2.1 356 5.4 314 1.4 232 1.8 
40 – 50 344 0.8 154 2.3 117 0.5 73 0.6 
50 – 60 143 0.3 70 1.1 37 0.2 36 0.3 
Over 60 84 0.2 26 0.4 41 0.2 17 0.1 

Total 42,275 100.0 6,558 100.0 22,640 100.0 13,077 100.0 
Note: 1) Travel time is driving-alone (DA) travel time based on 2007 transportation 
skim data obtained from the HGAC Transportation Department. 

 

 The observed patterns of travel time by different mode options are similar as 

shown in Figure 5.1.16 A great number of trips are made within 20 minutes, and they 

generally decreases as travel time increases. However, the percentage of total trips 

within 20 minutes is relatively small except for walk and bike mode when compared 

with the previous distribution. Travel time distribution of transit mode is different from 

other modes. 

 

                                                 
16 Travel time is reported on the 2007 HGAC Regional Household Activity and Travel Survey. 
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Figure 5.1 Automobile Travel Time Distribution by Trip Mode Choice. 

 

 It is also examined how household income levels are associated with travel cost 

by travel purposes. Table 5.2 shows the number of trips and average short-term auto 

travel cost ($/trip) calculated by household income levels and trip purposes. An increase 

in household income is associated with more number of trips generated despite a few 

variations. It is also evident that a household spends more in automobile trips as it makes 

more money. This pattern is similar for every travel purpose. An average household 

spends 2.05 dollar per trip. For HBW trips, over two times more than the average cost is 

needed, and it is more expensive than the average travel costs for any other travel 

purposes at all income brackets. These characteristics seem to be closely related to more 

travel time and distance as well as more disposable income for higher income groups. 
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Table 5.2 Automobile Travel Cost by Household Income Level. 

Total Trips HBW Trips HBO Trips NHB Trips Household 
Income Trips Mean 1) Trips Mean Trips Mean Trips Mean 

Below 10K 1,164 1.33 106 2.90 724 1.18 334 1.17 
10K – 20K 3,189 1.76 411 3.93 1,846 1.41 932 1.49 
20K – 30K 5,966 1.89 841 4.40 3,292 1.45 1,833 1.53 
30K – 40K 8,886 2.03 1,486 4.49 4,695 1.41 2,705 1.76 
40K – 60K 5,519 2.18 888 4.96 2,859 1.53 1,772 1.83 

60K – 100K 10,243 2.17 1,691 5.00 5,392 1.42 3,160 1.92 
Over 100K 7,308 2.16 1,135 5.17 3,832 1.47 2,341 1.83 

Total 42,275 2.05 6,558 4.73 22,640 1.44 13,077 1.76 
Note: 1) Mean trip cost is short-term cost including operation and maintenance expenses for 

driving-alone (DA) mode. For details, see the measurement section of chapter IV. 
 

 In terms of mode shares, automobile modes including driving-alone and shared-

ride are dominant as illustrated in Figure 5.2. The share of driving-alone mode is slightly 

larger than that of shared-ride for total trips. However, the proportion of driving-alone 

mode is dominant for HBW trips. Trip modal splits by activities indicate that trip-makers 

drive alone more from home for working, shopping and social and recreational activities. 

 

 
Figure 5.2 Trip Mode Shares by Trip Purpose. 
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 Table 5.3 shows trip distribution by household size and travel purposes. It is 

found that total number of trips increases with household size. The number of HBW trips 

increases until three of household size, and decrease after then. The pattern of total trips 

is attributed to that of HBO trips. The number of bike uses for last seven days is 

presented in Figure 5.3. As expected, the greater the household size is, the more likely 

bike uses are. This tendency becomes intensified for HBO trips; however, it is not 

consistent for HBW trips. 

 
Table 5.3 Trip Distribution by Household Size. 

Total Trips HBW Trips HBO Trips NHB Trips Household 
Size Trips   % Trips   % Trips   % Trips   % 

1 2,367 5.6 463 7.1 981 4.3 923 7.1 
2 9,120 21.6 1,359 20.7 4,559 20.1 3,202 24.5 
3 9,502 22.5 1,920 29.3 4,694 20.7 2,888 22.1 
4 10,599 25.1 1,504 22.9 5,995 26.5 3,100 23.7 

5+ 10,687 25.3 1,312 20.0 6,411 28.3 2,964 22.7 
Total 42,275 100.0 6,558 100.0 22,640 100.0 13,077 100.0 

 

 
Figure 5.3 Bike Use by Household Size. 
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 Average VMT is arranged by different residential types in Table 5.4. On average, 

VMT for total trips is 12.12 and 9.53 miles for driving-alone and automobile mode, 

respectively. Several similarities are observed. First, the average VMT for driving-alone 

is greater than that for automobile for all purposes. Second, people living in single-

family homes make longer trip than those in multi-family homes and apartments. Last, 

the average VMT for HBW trips are longer than that for both HBO and NHB trips. 

These characteristics seem to be associated with the distribution of travel time and cost 

presented in Table 5.1 and Table 5.2. 

 

Table 5.4 Average VMT by Residential Type. 

Total Trips HBW Trips HBO Trips NHB Trips Residential 
Type DA Auto 1) DA Auto DA Auto DA Auto 

  Single-family 14.79 11.00 22.95 21.77 11.24 8.46 12.18 9.54 
  Multi-family 9.59 7.88 18.36 17.74 9.21 7.21 9.59 7.88 
  Apartment 11.64 8.93 18.73 17.45 10.15 7.70 11.64 8.93 
  Other 13.30 11.58 21.67 20.34 12.27 11.16 13.30 11.58 
  Total Mean 12.12 9.53 22.70 21.51 11.19 8.48 12.12 9.53 
Note: 1) Auto includes driving-alone (DA) and shared-ride (SR). 
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5.1.2 Land Use and Development Characteristics 

 It is pivotal in this study to understand and measure land use and development 

characteristics of the HGAC region. As explained in the measurement part of the 

previous chapter, this study conducts land use measurement in a quarter-mile boundary 

for every trip ends. However, this section examines overall land use patterns measured at 

the level of traffic analysis zones (TAZs). The zones are spread over the entire HGAC 

region without any overlap between them. Sometimes they reflect the spatial extents in 

which various activities take place. 

 Table 5.5 summarizes overall land use and development patterns of six counties 

in the HGAC region. An area of 1,500 out of 6,730 square miles was developed for 

sustaining human activities. Residential use area (55%) shows the largest share of total 

developed area. Among the residential shares, the area of single-family houses (50%) is 

far larger than that of multi-family (2%) and condo and apartment (0.3%). This land use 

pattern is consistent throughout the region from 86 percent for single-family residential 

area in Montgomery to 34 percent in Brazoria. Harris County has the largest single-

family residential area covering 353 square miles. Dominant area of single-family 

residential use may encourage people to choose automobile mode, make more auto trips 

and drive farther to meet their travel demands. 
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Table 5.5 Land Use Pattern of Developed Area in the HGAC Region. 

Land Use Total Brazoria Fort Bend Galveston Harris Montgo-
mery Waller 

823.78 103.99 96.23 64.24 397.67 154.05 7.61Residential (54.82) 1) (35.48) (66.39) (64.51) (51.62) (88.68) (36.26)
758.54 100.24 86.79 60.66 353.28 150.07 7.50   Single-family (50.48) (34.20) (59.88) (60.93) (45.86) (86.39) (35.73)

33.37 1.23 1.29 1.93 27.68 1.13 0.11   Multi-family (2.22) (0.42) (0.89) (1.94) (3.59) (0.65) (0.53)
4.83 0.00 0.19 0.36 4.05 0.23 0.00   Condo/Apt (0.32) (0.00) (0.13) (0.36) (0.53) (0.13) (0.00)

27.05 2.51 7.96 1.29 12.66 2.63 0.00   Others (1.80) (0.86) (5.49) (1.29) (1.64) (1.51) (0.00)
354.06 25.46 48.58 33.50 217.37 19.66 9.48Commercial 

/Industrial (23.56) (8.69) (33.52) (33.64) (28.21) (11.32) (45.20)
244.24 14.96 32.34 25.77 146.71 19.08 5.38   Commercial (16.25) (5.10) (22.31) (25.88) (19.04) (10.99) (25.63)

77.13 8.72 7.29 5.68 52.61 0.58 2.26   Industrial (5.13) (2.97) (5.03) (5.70) (6.83) (0.33) (10.77)
32.69 1.79 8.95 2.05 18.05 0.00 1.85   Others (2.18) (0.61) (6.18) (2.06) (2.34) (0.00) (8.80)

324.89 163.64 0.14 1.84 155.38 0.00 3.89School/Public (21.62) (55.83) (0.10) (1.85) (20.17) (0.00) (18.54)
Total 
developed 2) 

1502.73 
(22.33)2) 

293.09
(18.35)

144.95
(16.37)

99.57
(11.37)

770.42
(43.35)

173.71 
(16.15) 

20.98
(4.05)

Total area 6,729.44 1,597.31 885.64 875.75 1,777.32 1,075.81 517.62 
Note: 1) Values in parenthesis in land use types are the percentage of total developed. 
          2) Total developed is the sum of residential, commercial/industrial, and school/public. 

Values in parenthesis are the percentage of total area. 
 

 Table 5.6 and Figure A2-1 and A2-2 in the appendix show the distribution of 

population and employment density. Regional median population and employment 

density are 4.2 and 1.7 per acre, respectively. About one third of total TAZs have less 

than 2 residents per acre, and one fifth of total zones have over 10 people per acre. 

Harris County shows the highest population density, but Waller County exhibits the 

lowest. More than 86 percent of total TAZs have less than 2 people per acre in Waller 
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County. These patterns are similar to those of employment density, which shows the 

extremes of lower and higher density. 

 Figure A2-1 helps understand the spatial distribution of population density in 

depth. Inner areas of Harris County and the City of Houston show relatively higher 

density; however, the outskirts of the region reveal very low density. Figure A2-2 also 

supports the fact that the employment density is polarized into two extremes more than 

population density. It is very high in the central area of the City of Houston, but becomes 

very low out of the area. It is also found that residential and commercial and industrial 

uses are highly segregated throughout the region. 

 

Table 5.6 Distribution of Land Use Density Measures of TAZs in the HGAC Region. 

Population Density Employment Density Density 
(per acre) Total Harris Galveston Waller Total Harris Galveston Waller 

0 6.5 2) 9.4 0.9  5.12) 5.1 5.4 8.6 
0 - 1 17.7 10.1 15.2 65.5 34.9 21.4 49.6 74.1 
1 - 2 10.9 7.5 15.2 20.7 14.1 15.1 14.7 12.1 
2 - 3 7.8 6.0 14.3 10.3 8.0 8.7 7.1 1.7 
3 - 4 5.8 4.8 8.0 1.7 6.3 7.9 5.8  
4 - 5 6.5 6.4 12.5  4.4 5.8 2.2  
5 - 6 5.6 5.7 7.6  2.9 3.4 1.8 1.7 
6 - 7 5.3 6.0 4.9 1.7 2.7 2.9 1.3 1.7 
7 - 8 4.8 5.5 3.6  2.1 2.5 2.7  
8 - 9 5.0 6.1 3.6  1.5 1.8 1.3  

9 - 10 4.2 5.1 2.2  1.0 1.2 0.0  
10+ 20.0 27.2 12.1  17.1 24.3 8.0  

Total 1) 2,829 1,846 224 58 2,829 1,846 224 58 
Mean 5.94 7.20 4.71 1.06 24.50 36.51 3.36 0.54 

Median 4.22 5.99 3.53 0.62 1.68 2.94 0.79 0.12 
Note: 1) Total number of traffic analysis zones (TAZs). 
          2) Individual density values except for total, mean and median are percentage of total 

TAZs. 
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 Entropy index measures the degree of balance among different uses within an 

area. Dissimilarity index shows how well different land uses in a place are mixed with 

its neighbors. The distribution of both diversity measures is summarized along with three 

counties in Table 5.7. Both entropy and dissimilarity measures average 0.62 and 0.55 in 

total, respectively. It is clearer in Harris County that higher county average and portion 

over the regional average are observed. Waller County, however, is in the opposite 

direction where the majority of the zones are placed below the regional average. These 

patterns are comparable with those of land use mix. 

 The spatial distributions of both measures are also illustrated in Figure A2-3 and 

A2-4. The map of entropy index distribution indicates that the value becomes larger as 

the distance from the central district of the City of Houston surrounded by I-610 

increases. Both northern and southern areas including the border areas of Harris County 

shows higher level of land use balance. The spatial distribution of dissimilarity index is 

also similar except that it shows lower mean and median values, and the central district 

exhibits higher rates. 
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Table 5.7 Distribution of Land Use Diversity Measures of TAZs in the HGAC Region. 

Entropy Index Dissimilarity Index Value 
Total Harris Galveston Waller Total Harris Galveston Waller 

0.0 - 0.1 1.1 2) 0.7 0.9 3.4 1.6 2) 0.7 2.2 6.9 
0.1 -0.2 1.6 0.8 1.3 17.2 4.3 1.4 3.6 56.9 
0.2 - 0.3 2.9 1.8 2.2 25.9 5.2 2.0 6.7 19.0 
0.3 - 0.4 10.0 11.7 6.3 20.7 6.4 4.1 7.6 8.6 
0.4 - 0.5 8.3 6.4 12.1 19.0 9.3 7.5 10.7 5.2 
0.5 - 0.6 15.1 14.0 19.6 12.1 21.0 21.8 19.2 1.7 
0.6 - 0.7 21.3 19.2 28.6  38.2 44.5 35.3 1.7 
0.7 - 0.8 24.1 26.4 19.6 1.7 13.4 17.2 14.7  
0.8 - 0.9 14.2 16.8 8.5  0.5 0.8   
0.9 - 1.0 1.5 2.1 0.9        
Total 1) 2,829 1,846 224 58 2,829 1,846 224 58 
Mean 0.620 0.639 0.606 0.326 0.553 0.600 0.541 0.204 

Median 0.658 0.681 0.623 0.318 0.605 0.628 0.599 0.152 
Note: 1) Total number of traffic analysis zones (TAZs). 
          2) Individual diversity values except for total, mean and median are percentage of total 

TAZs. 
 

 Table 5.8 presents the distribution of connectivity measure along with six 

counties in the HGAC region. Connectivity indicates how well the road network is 

connected in an area. Regional average is 0.26, and around two thirds of total TAZs have 

less than 0.2 in the region. Both Harris and Galveston counties show less than 60 percent 

in the number of TAZs with under 0.2. In Harris County, 12 percent of TAZs have more 

than 0.9 of connectivity measure. On the other hand, over 80 percent of TAZs in Fort 

Bend and Montgomery show below 0.2. 

 A map is also prepared to examine the spatial distribution of connectivity 

throughout the region as shown in Figure A2-5. It is observed that the central district of 

the City of Houston is higher in value. However connectivity generally diminishes as it 

becomes distant from the center. 
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Table 5.8 Distribution of Connectivity Measure of TAZs in the HGAC Region. 
Value Total Brazoria Fort Bend Galveston Harris Montgomery Waller 

0.0 - 0.1 29.8 2) 48.1 48.4 34.8 20.9 50.0 63.8 
0.1 - 0.2 33.2 27.9 37.5 24.6 35.0 33.6 15.5 
0.2 - 0.3 11.7 9.5 9.4 13.4 12.7 8.0 5.2 
0.3 - 0.4 5.7 8.8 2.1 7.1 5.8 3.5 1.7 
0.4 - 0.5 3.4 0.7 0.5 4.0 4.2 1.8 3.4 
0.5 - 0.6 3.2 2.5 0.5 3.6 3.6 1.8 5.2 
0.6 - 0.7 2.4 1.1 1.0 3.1 2.8 0.4 5.2 
0.7 - 0.8 1.5 1.1 0.5 1.8 1.8 0.4 0.0 
0.8 - 0.9 0.9 0.4 0.0 4.5 0.8 0.0 0.0 
0.9 - 1.0 8.3 0.0 0.0 3.1 12.2 0.4 0.0 
Total 1) 2,829 283 192 224 1,846 226 58 
Mean 0.260 0.151 0.131 0.248 0.311 0.132 0.137 

Median 0.147 0.107 0.101 0.146 0.173 0.099 0.065 
Note: 1) Total number of traffic analysis zones (TAZs). 
          2) Individual values except for total, mean and median are percentage of total TAZs. 

 

 

5.2 Individual Mode Choice Models 

5.2.1 Results of Multinomial Logit Models 

 The multinomial logit (MNL) model is employed as a conventional travel 

demand model for analyzing individual mode choice behavior. Four choice options are 

taken into consideration: driving-alone (DA), shared-ride (SR), transit (TR), and walk 

and bike (WB). Driving-alone is chosen as the reference mode; each estimated constant 

term on the utility function, therefore, has to be explained in consideration of the 

reference. In addition, MNL specification introduces alternative specific variables 

instead of generic variables because trip-makers are affected by the attributes of different 

modes in different ways. Results of the MNL models for HBW and HBO trips are 

presented in Table 5.9 and Table 5.10. Base models for different travel purposes are also 

estimated to be compared with extended models or full models. 
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 The MNL extended model for HBW trips in Table 5.9 shows same patterns as 

the base model for travel time variables and many socioeconomic characteristics. Four 

alternative specific travel time variables are all negatively significant at 1% level as 

suggested by the theory. They imply that an increase in travel time for each travel mode 

reduces the probability of choosing the mode, which is consistent for all choice modes. 

Travel time and cost measures play an important role in making choice decisions for 

commute trips. 

 Socioeconomic attributes have positive and significant impacts on the likelihood 

of specific mode choices, which agrees with both the theory and the results of previous 

studies. In specific, personal attributes such as gender and age are of significance: 

females are more likely to drive to work, and the older are also likely to drive alone for 

commute trips. Commuters who have used a bike mode tend to take more transit and 

alternative modes (walk and bike). Household socioeconomics including household size, 

vehicle ownership and total income have meaningful effects on the likelihood of specific 

mode choice. Larger households are more inclined to use shared-ride, transit and walk 

and bike rather than to drive alone. Individuals having more income and vehicles depend 

more on driving-alone mode. 
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 Five out of eight land use measures have significant effects on mode choice 

probability for HBW trips. Density measures including population and employment 

density are worthy to be focused. At trip destination, two density measures are 

negatively associated with the probability of choosing automobile modes (driving-alone 

and shared-ride). On the contrary, increases in population and employment density at 

origin encourage individual travelers to make driving-alone and automobile choice, 

respectively. Also, improved connectivity at destination is significantly correlated with 

more chances of automobile mode choice. Dissimilarity variables at both trip ends, 

however, are not significant in the HGAC area. 

 The goodness-of-fit indices and the model improvement test confirm that the 

extended model works better than the base model for HBW trips. This evidence supports 

that land use measures play a significant role in influencing individual mode choice 

behaviors for HBW trips. 
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Table 5.9 MNL Model of Mode Choice for Home-based Work Trips. 

Base Model Extended Model   
Variables Estimate Std. err. p-value Estimate Std. err. p-value
Constant (SR) 1) -0.4028 0.231 0.082 -0.2521 0.252 0.317 
Constant (TR) -2.4163 0.572 0.000 -2.8180 1.160 0.015 
Constant (WB) -0.9942 0.525 0.058 -1.4531 1.140 0.202 
Travel time (DA) -0.0854 0.014 0.000 -0.0814 0.014 0.000 
Travel time (SR) -0.0766 0.010 0.000 -0.0745 0.010 0.000 
Travel time (TR) -0.0388 0.007 0.000 -0.0382 0.007 0.000 
Travel time (WB) -0.0578 0.008 0.000 -0.0554 0.008 0.000 
Sex (DA, SR) 0.5954 0.275 0.030 0.6746 0.286 0.018 
Age (DA) 0.1748 0.031 0.000 0.1738 0.031 0.000 
Bike use (TR,WB) 0.9157 0.197 0.000 0.9903 0.205 0.000 
Household size (SR,TR,WB) 0.4230 0.036 0.000 0.4241 0.036 0.000 
Vehicles in household (DA) 0.5396 0.054 0.000 0.5344 0.054 0.000 
Household income (DA) 0.0651 0.014 0.000 0.0679 0.014 0.000 
Population density at O (DA) 1) 2)       0.0196 0.010 0.058 
Population density at D (DA,SR)    -0.0502 0.025 0.046 
Employment density at O (TR,WB)    0.0624 0.013 0.000 
Employment density at D (DA,SR)    -0.0049 0.001 0.000 
Dissimilarity index at O (TR,WB)    1.7535 1.188 0.140 
Dissimilarity index at D (DA,SR)    1.4888 1.096 0.174 
Connectivity at O (TR,WB)    0.5777 0.672 0.390 
Connectivity at D (DA,SR)       1.3564 0.788 0.085 
Sample size 6239 6239 
Log Likelihood (L ) at converge -2181.98 -2157.18 
Goodness-of-fit index: 22 ,ρρ  0.7477,  0.7462 0.7506,  0.7482 
Model improvement test: 
-2[L(B) – L(E) ] 

=2χ  49.594, df = 8, 
Prob. <0.001 

Note: 1) DA = driving-alone, SR = shared-ride, TR = transit, WB = walk/bike. Parenthesis 
indicates the modes to which the variable is specified. 

          2) O = trip origin, D = trip destination 
 

 Table 5.10 exhibits the results of the MNL choice model for HBO trips where the 

base and extended model have same patterns for travel times and socioeconomic 

attributes. Contrary to the model for HBW trips, two travel costs specific to automobile 

modes and two travel times specific to transit and alternative modes are introduced. It is 
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because cost variables seem to be more important than travel times specific to 

automobile modes mainly for shopping and recreational trips. As a result, four mode 

attributes prove all negatively associated with each specific mode, which is consistent 

with the theory. The effects of socioeconomics are compatible with those for HBW trips 

except for gender. Females are no more likely to drive for HBO trips. 

 Many differences are observed in the association of land use measures at trip 

ends with individual mode choice behavior for HBO trips. Six land use measures have 

meaningful impacts. More land use diversity and design factors than density measures 

become significant. Among density variables, only population density at origin shows 

significance. Dissimilarity and road length at both trip ends and connectivity at origin 

are significantly associated with the probability of choosing specific modes. In specific, 

an increase in dissimilarity index enhances the likelihood to choose non-automobile 

modes at origin and automobile modes at destination at the same time. In addition, two 

design measures, connectivity and road length at origin promote travelers to use non-

automobile modes. However, more road length at destination is significantly associated 

with more chances of driving automobiles. In summary, land use measures obviously 

contribute to model improvement in terms of χ2 model improvement test. It implies that 

the MNL model for HBO trips can be significantly enhanced with full considerations of 

land use attributes. 
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Table 5.10 MNL Model of Mode Choice for Home-based Other Trips. 

Base Model Extended Model   
Variables Estimate Std. err. p-value Estimate Std. err. p-value
Constant (SR) 1) 1.4982 0.124 0.000 1.9281 0.138 0.000 
Constant (TR) -2.5469 0.328 0.000 -2.2468 0.704 0.001 
Constant (WB) -0.5214 0.269 0.052 -0.1985 0.689 0.699 
Travel cost (DA) -1.6344 0.093 0.000 -1.6056 0.094 0.000 
Travel cost (SR) -3.7538 0.186 0.000 -3.7295 0.188 0.000 
Travel time (TR) -0.1593 0.012 0.000 -0.1564 0.012 0.000 
Travel time (WB) -0.1836 0.010 0.000 -0.1822 0.010 0.000 
Sex (DA, SR) 0.0769 0.131 0.558 0.0855 0.132 0.531 
Age (DA) 0.1713 0.013 0.000 0.1728 0.013 0.000 
Bike use (TR,WB) 0.8122 0.082 0.000 0.8119 0.084 0.000 
Household size (SR,TR,WB) 0.3301 0.022 0.000 0.3164 0.022 0.000 
Vehicles in household (DA) 0.3130 0.030 0.000 0.3354 0.030 0.000 
Household income (DA) 0.0771 0.007 0.000 0.0764 0.007 0.000 
Population density at O (DA) 1) 2)    0.0412 0.006 0.000 
Population density at D (DA,SR)    -0.0146 0.017 0.395 
Employment density at O (TR,WB)    -0.0149 0.017 0.388 
Employment density at D (DA,SR)    -0.0013 0.003 0.675 
Dissimilarity index at O (TR,WB)    2.3898 0.584 0.000 
Dissimilarity index at D (DA,SR)    3.3233 0.535 0.000 
Connectivity at O (TR,WB)    1.4859 0.504 0.003 
Connectivity at D (DA,SR)    0.3848 0.432 0.373 
Road length at O (TR,WB)    0.1386 0.065 0.034 
Road length at D (DA,SR)    0.1345 0.052 0.009 
Sample size 10413 10413 
Log Likelihood (L) at converge -6981.78 -6921.83 
Goodness-of-fit index: 22 ,ρρ  0.5163,  0.5154 0.5205,  0.5189 
Model improvement test: 
-2[L(B) – L(E) ] 

=2χ  119.901, df = 10, 
Prob. <0.001 

Note: 1) DA = driving-alone, SR = shared-ride, TR = transit, WB = walk/bike. Parenthesis 
indicates the modes to which the variable is specified. 

          2) O = trip origin, D = trip destination 
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5.2.2 Results of Structural Equation Models 

 As expressed in research design section of Chapter III, only two mode choices 

are considered in the specification process of the causal relationship models. It is mainly 

because the directed acyclic graph (DAG) has a methodological limitation in handling 

multiple choice data; rather, binary data with alterative specific specification can be 

working properly with DAGs. Therefore, two mode options, automobile vs. non-

automobile are taken into account for specifying causal models. Automobile mode 

includes both driving-alone and shared-ride. 

 The estimation results of binomial logit models for HBW and HBO trips are 

presented in Table 5.11. They are to set up the basis for comparing the results with the 

outcomes of following causal relationship models. Mode attribute (travel time 

differential) is positively significant for both trip purposes, which indicates that the 

bigger the difference between driving time and walk time from home to destinations, the 

more likely trip-makers to use automobile mode. 

 Socioeconomic characteristics are significantly associated with the probability of 

automobile choice except household income for HBW trips. Their signs and effects are 

generally congruous with the theory and the arguments of previous studies. However, 

there are some variations in the impacts of land use measures on automobile choice 

probability. For HBW trips, only two employment density variables out of ten measures 

are significant. Employment densities at both trip ends are negatively correlated for 

HBW trips. On the contrary, diversity and design measures become significant for HBO 

trips, and population density at origin shows significant relationship. In addition, several 
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statistics suggest that the models for both trip purposes are significantly improved by the 

inclusion of various land use measures. 

 

Table 5.11 Binomial Logit Models for Home-based Trips. 

Home-based Work Trips Home-based Other Trips   
Variables Estimate Std. err. p-value Estimate Std. err. p-value
Constant 2.4195 1.528 0.113 1.5878 0.737 0.031 
Travel time differential 1) 0.0512 0.008 0.000 0.0411 0.006 0.000 
Household size -0.3765 0.107 0.000 -0.3479 0.050 0.000 
Vehicles in household 0.5351 0.185 0.004 0.6094 0.091 0.000 
Household income -0.0174 0.046 0.708 0.0685 0.022 0.002 
Bike use -1.1163 0.215 0.000 -0.7652 0.086 0.000 
Single-family housing 1.0968 0.362 0.002 0.5460 0.206 0.008 
Population density at O 2) -0.0233 0.039 0.547 -0.0462 0.019 0.015 
Population density at D -0.0416 0.030 0.168 0.0060 0.017 0.731 
Employment density at O -0.0489 0.015 0.001 0.0219 0.018 0.235 
Employment density at D -0.0036 0.001 0.002 0.0004 0.003 0.909 
Dissimilarity index at O -0.9035 1.214 0.457 -1.3833 0.587 0.018 
Dissimilarity index at D 1.5594 1.070 0.145 3.3668 0.521 0.000 
Connectivity at O -0.3965 1.026 0.699 -1.3363 0.498 0.007 
Connectivity at D -0.4930 0.902 0.585 0.2952 0.408 0.469 
Road length at O 0.1220 0.152 0.422 -0.0532 0.070 0.447 
Road length at D 0.1101 0.109 0.310 0.1017 0.049 0.039 
Sample size 6239 10413 
Goodness-of-fit index: 22 ,ρρ  0.9443,  0.9404 0.8576,  0.8553 
Model improvement test: 
-2[L(B) – L(E) ] 

=2χ  27.14, df = 10, 
Prob. = 0.0025 

=2χ  57.10, df = 10, 
Prob. <0.001 

Note: 1) Travel time differential = walk time – driving time 
          2) O = trip origin, D = trip destination 

 

 The structural equation models (SEMs) includes same groups of variables as 

used in the binomial logit models. Table 5.12 presents the estimated results for both 

HBW and HBO trips. Each structural model consists of two main parts in addition to the 

intercept part: automobile choice (Automobile ON) and travel time part (Travel time 
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differential ON). The automobile choice part shows the estimated results of binomial 

logit regression where non-automobile mode is the reference choice. Therefore, the 

estimated outcomes are very similar to those of the binomial logit models shown in 

Table 5.11. In summary, land use and development patterns are causally associated with 

the probability of automobile choice in terms of the causality based on the SEM 

approach. Employment density measures are significant for HBW trips; diversity and 

design measures as well as population density at origin have significant causal effects on 

the likelihood of automobile choice. 

  Attention is paid to interpreting the travel time part for both trip purposes. It is 

assumed that household income and various dimensions of land use measures are 

causally connected with travel time differential. They are also expected to have indirect 

relationship with automobile choice probability through the travel time. The results 

exhibit same patterns for HBW and HBO trips except that the magnitudes of the 

parameters for HBW trips are generally larger than their counterparts for HBO trips. 

Specifically, household income positively affects the travel time differential. Most land 

use measures at trip origin (population and employment density, connectivity and road 

length measure) reduce the travel time differential as they increase. Increases in 

employment density and roadway length at destination widen the differential. 

Dissimilarity indices at both trip ends have opposite impacts. 



 

 

120

Table 5.12 Structural Equation Models of Binary Mode Choice for Home-based Trips. 

Home-based Work Trips Home-based Other Trips   
Variables Estimates Std. err. p-value Estimates Std. err. p-value
Automobile ON       
Travel time differential 1) 0.051 0.008 0.000 0.041 0.006 0.000 
Household size -0.376 0.107 0.000 -0.348 0.050 0.000 
Vehicles in household 0.535 0.185 0.004 0.609 0.091 0.000 
Household income -0.017 0.046 0.708 0.068 0.022 0.002 
Bike use -1.116 0.215 0.000 -0.765 0.086 0.000 
Single-family housing 1.097 0.362 0.002 0.546 0.206 0.008 
Population density at O 2) -0.023 0.039 0.547 -0.046 0.019 0.015 
Population density at D -0.042 0.030 0.168 0.006 0.017 0.731 
Employment density at O -0.049 0.015 0.001 0.022 0.018 0.235 
Employment density at D -0.004 0.001 0.002 0.000 0.003 0.909 
Dissimilarity index at O -0.904 1.214 0.457 -1.383 0.587 0.018 
Dissimilarity index at D 1.560 1.070 0.145 3.367 0.521 0.000 
Connectivity at O -0.394 1.026 0.701 -1.336 0.498 0.007 
Connectivity at D -0.494 0.902 0.584 0.293 0.408 0.472 
Road length at O 0.122 0.152 0.423 -0.053 0.070 0.447 
Road length at D 0.110 0.109 0.310 0.102 0.049 0.039 
Travel time differential ON       
Household income 1.742 0.252 0.000 0.669 0.097 0.000 
Population density at O -1.165 0.237 0.000 -0.573 0.106 0.000 
Population density at D 0.119 0.188 0.525 0.063 0.087 0.472 
Employment density at O -1.376 0.236 0.000 -0.270 0.090 0.003 
Employment density at D 0.048 0.010 0.000 0.126 0.011 0.000 
Dissimilarity index at O 23.656 6.578 0.000 8.816 2.817 0.002 
Dissimilarity index at D -42.636 6.328 0.000 -15.673 3.125 0.000 
Connectivity at O -31.634 5.302 0.000 -4.842 2.250 0.031 
Connectivity at D 0.401 5.056 0.937 -1.781 2.236 0.426 
Road length at O -5.221 0.869 0.000 -2.400 0.376 0.000 
Road length at D 5.712 0.549 0.000 1.144 0.245 0.000 
Intercept       
Travel time differential 106.652 8.257 0.000 38.208 3.572 0.000 
Sample size 6239 10413 
Log Likelihood (H0 value) -57204.386 -90881.534 
Information Criteria   
No. of free parameters 42 42 
Akaike (AIC) 114492.772 181847.067 
Bayesian (BIC) 114775.793 182151.601 
Note: 1) Travel time differential = walk time – driving time 
          2) O = trip origin, D = trip destination 
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5.2.3 Results of Directed Acyclic Graphs 

 The directed acyclic graphs (DAGs) depend upon the multivariate distribution of 

variables from the observational data. As clarified in the previous chapter, some 

assumptions are required to apply this method including causal Markov condition, 

faithfulness and causal sufficiency. In order to make an analysis of DAGs for each trip 

purpose, a lower triangular correlation matrix should be computed. This input of the 

unconditional correlation matrix between pairs of variables is the starting point for 

estimating causal graphs in the TETRAD III algorithm. Then, it explores both 

conditional and unconditional independence relations among input variables. This study 

employs 17 variables as considered in the previous SEMs: one binary choice variable 

(auto choice), one mode attribute (travel time differential), five socioeconomic 

characteristics (household size, vehicle ownership, income, bike use and single-family 

residence), and ten land use measures at trip origin and destination (population density, 

employment density, dissimilarity index, connectivity and road length at both trip ends). 

 To obtain reasonable results, three constraints are imposed in the estimation 

process. One is that four socioeconomic variables except bike use precede travel time, 

bike use and land use measures. It implies that these socioeconomics cannot be effects of 

others. Another constraint is that land use variables at origin do not cause those at 

destination, and vice versa. Last one is that land use measures can only be causes of 

travel time differential, bike use and auto choice variables. It suggests that opposite 

causation from the latter variables to land use patterns is a long-term process; moreover, 
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it is beyond the scope of this study. A 1% significance level is applied to produce the 

directed graphs as suggested by Spirtes et al. (2000). 

 The result of estimated DAG for HBW trips is illustrated in Figure 5.4. The 

direct graph indicates that automobile choice for HBW trips is causally affected by five 

factors: travel time differential (TRAVEL TIME: +), bike use (BIKE USE: –), number 

of vehicles (NOVEHICLE: +), single-family residence (SF RESID: +), and employment 

density at origin (O_EMPDEN: –). Increased difference between driving time and walk 

time from an origin to a destination promotes individual trip-makers to drive. More 

vehicles available and single-family residence causally affect the increase in the chances 

of making automobile choices. On the contrary, an increase in bike use experiences 

discourages travelers to use an automobile. In particular, only one land use measure 

shows significant causal connection to automobile choice probability. Employment 

density at trip origin has a negative causal impact on the likelihood of automobile mode 

choice for HBW trips. These results are quite consistent with those of the SEMs for 

HBW trips except that household size and employment density at destination are not 

causally connected with automobile choice in the DAGs. 

 Additional attention needs to be paid to travel time differential. According to the 

estimated direct graphs, it is causally influenced by two socioeconomic attributes and 

many land use variables: household size (HHSIZE: +), household income (INCOME: +), 

population density at origin (O_POPDEN: –), employment density at both origin 

(O_EMPDEN: –) and destination (D_EMPDEN: +), road length at both origin 

(O_ROADMI: –) and destination (D_ROADMI: +), connectivity at origin 
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(O_CONNECT: –), and dissimilarity at destination (D_DISSINDEX: –). These causal 

connections are similar to the results of SEM estimation except that dissimilarity index 

at destination is no more direct cause in the directed graphs. The result suggests these 

variables indirectly affect automobile choice probability through travel time differential. 

For instance, increases in land use variables at origin reduce travel time differential; 

decreased time differential then lowers the chances of automobile mode choice. 

 There are two colliders, population density at destination and dissimilarity index 

at origin at which causal information flowing from other variables comes into collision. 

Bi-directed or double-headed edges are also observed between land use variables at both 

trip ends. They suggest that there should be an unmeasured common cause or a latent 

variable between two variables. For example, roadway development and improvement 

can be a common cause between connectivity and road length at trip origin. There are 

undirected edges between socioeconomic factors. Personal judgment and the arguments 

of relevant studies are introduced to provide causal orientation for each pair of variables. 

 Figure 5.5 displays the result of estimated directed graphs for HBO trips. It is 

found that five variables causally influence the likelihood to drive for HBO trips: travel 

time differential (TRAVEL TIME: +), bike use (BIKE USE: –), number of vehicles 

(NOVEHICLE: +), single-family residence (SF RESID: +), and dissimilarity index at 

destination (D_DISINDEX: +).  Travel time, vehicle ownership and single-family 

residential type have positive causal relationship with the chances of automobile choice 

for HBO trips. In addition, more experiences of using a bike reduce the likelihood that 

an individual drives for shopping and recreational trips. When compared with the result 
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for HBW trips, they are quite similar except that dissimilarity at destination instead of 

employment density at origin becomes direct cause. The estimated outcomes seem to be 

little consistent with those of the SEM estimation for HBO trips because the latter claims 

that five land use measures are causally connected with driving probability. Furthermore, 

the positive sign of dissimilarity index implies that higher level of land use mix at 

destination encourages people to drive more. Details in the issues will be discussed later. 

 From the perspective of the causes of travel time differential for HBO trips, it is 

causally explained by household income (INCOME: +), number of vehicles 

(NOVEHICLE: +), population density (O_POPDEN: –) and roadway length 

(O_ROADMI: –) at trip origin, and employment density (D_EMPDEN: +) and 

dissimilarity (D_DISSINDEX: –) at destination. Although it is argued that three 

dimensions of land use patterns all causally influence travel time differential, only four 

land use measures as direct causes are relatively fewer than eight land use variables in 

the SEM results. Overall, it is confirmed that land use variables have indirect impacts on 

automobile choice probability through travel time differential. 

 Four colliders are observed in the directed graphs: employment density, 

dissimilarity index and connectivity at trip origin, and population density at destination. 

A number of bi-directed edges between land use measures suggest the existence of 

unmeasured common causes between them. Improved facilities for alternative 

transportation, for instance, can be a common cause between travel time differential and 

bike use. Same approach as used for HBW trips is applied to construct causal 

connections between socioeconomic variables. 
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Figure 5.4 Directed Acyclic Graphs (DAGs) on Binary Mode Choice for Home-based Work Trips (1% significance level). 
Note: Double-headed or bi-directed edges, x1↔x2 in a pattern suggest that there is a latent common cause between two variables. 
         Names in parentheses indicate variable names that are used in the analytical process. 
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Figure 5.5 Directed Acyclic Graphs (DAGs) on Binary Mode Choice for Home-based Other Trips (1% significance level). 
Note: Double-headed or bi-directed edges, x1↔x2 in a pattern suggest that there is a latent common cause between two variables. 
         Names in parentheses indicate variable names that are used in the analytical process. 
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5.3 Household Automobile Trip Generation Models 

5.3.1 Results of Negative Binomial Models 

 The negative binomial model is introduced as a travel demand model for 

household automobile trip generation. Based on the travel demand theory, important sets 

of explanatory variables should be taken into the modeling process. They contain travel 

cost ($/trip), household socioeconomic characteristics (household size, vehicle 

ownership, total income, income squared and single-family residence), and land use 

measures at trip origin (population density, employment density, entropy index, 

connectivity and road length measure). In order to understand their effects on household 

automobile trip rates in depth, the travel demand models are estimated for different 

purposes: total trips, total home-based trips, HBW trips and HBO trips. A comparison is 

made between a base model and an extended model for each trip purpose to examine if 

land use measures are collectively significant in improving the travel demand model. 

 The estimation results of the negative binomial models for both total and total 

home-based trips are shown in Table 5.13. The patterns of travel cost and household 

socioeconomic characteristics in the extended models are same as those in the base 

models. The results of two extended models are quite similar to each other. Travel cost 

variables which include operation and maintenance costs are negatively associated with 

total household auto trips. 
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 Household socioeconomic attributes have positively significant effects on 

automobile trip frequency. But household income squared is exceptional, which is 

inconsistent with the demand theory of household trip rates established by Boarnet and 

Sarmiento (1998) and Boarnet and Crane (2001a). Specifically, a household tends to 

make more auto trips as household members and vehicles increase. Higher household 

income promotes trip-makers to depend more on automobiles, which results in an 

increase in household trip frequency. Single-family households are more likely to make 

auto trips than multi-family households. 

 One notable feature of the models is that no land use measure at trip origin is 

significant in estimating household automobile trip rates. As shown in the table, three 

dimensions of land use characteristics at origin do not have meaningful impacts on 

household automobile trip generation. As a result, likelihood ratio tests show a group of 

land use measures do not significantly contribute to model improvement for both total 

and total home-based trips. 
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Table 5.13 Household Auto Trip Generation Models for Total Trips. 

Total Trips Total Home-based Trips 
Base Model Extended Model Base Model Extended Model  

Variables Est. χ2 Est. χ2 Est. χ2 Est. χ2 
Constant 1.081 420.17 1.196 222.22 0.606 141.25 0.628 68.52
Travel cost ($ / trip) -0.088 448.98 -0.089 441.77 -0.055 250.05 -0.054 230.43
Household size 0.124 327.03 0.124 321.43 0.141 521.74 0.142 522.51
Vehicles in household 0.156 197.81 0.155 194.13 0.168 282.36 0.168 282.66
Household income 0.053 20.87 0.052 20.47 0.043 15.26 0.043 15.35
Income squared -0.001 2.21 -0.001 2.21 -0.001 1.85 -0.001 2.01
Single-family housing 0.060 3.85 0.054 2.90 0.065 4.85 0.064 4.30
Pop. density at O 1)     0.001 0.05     -0.001 0.06
Emp. density at O   0.000 0.01   0.001 0.09
Entropy index at O   -0.070 1.28   -0.082 2.07
Connectivity at O   -0.048 0.79   -0.008 0.02
Road length at O   -0.007 0.68   0.009 1.29
Dispersion 0.123 (p<0.001) 0.028 (p<0.001) 
Sample size 3976 3973 
Log Likelihood (L ) 32826.17 32828.13 14377.50 14379.54 
Model improvement: 
-2[L(B) – L(E) ] 

=2χ 3.928, df = 5, 
Prob. = 0.560 

=2χ 4.073, df = 5, 
Prob. = 0.539 

Note: 1) O = trip origin 
         2) Estimates in bold are significant at 5% level; estimates in italic bold are significant at 

10% level (two-tailed test). 
 

 Household automobile trip generation models for HBW and HBO trips are 

presented in Table 5.14. There are similarities between the outcomes of two extended 

models; on the other hand, differences clearly exist between total trip and home-based 

trip purposes. Travel costs have negative relationship with household auto trip frequency 

for both travel purposes. Based on the magnitude of the coefficients, HBO trips are more 

sensitive to travel cost than HBW trips. 

 Major dissimilarities lie in household socioeconomic variables when compared 

with total trip purposes. Household size and vehicle ownership still have significantly 



 

 

130

positive effects. But both household income and income squared appear not to play an 

important role in estimating household auto trip rates. Single-family households also do 

not make more auto trips for commuting purpose; however, they rely more on 

automobile trips for other trips. 

 A similarity exists in the role of land use measures in household automobile trip 

generation models. No land use measure is meaningful for explaining household 

automobile trip rates. Thus, there is no significance of model improvement tests. 

 

Table 5.14 Household Auto Trip Generation Models for Home-based Trips. 

Home-based Work Trips Home-based Other Trips 
Base Model Extended Model Base Model Extended Model  

Variables Est. χ2 Est. χ2 Est. χ2 Est. χ2 
Constant 0.221 6.59 0.204 2.85 0.723 130.59 0.679 49.33
Travel cost ($ / trip) -0.018 28.73 -0.017 23.45 -0.048 84.59 -0.047 76.64
Household size 0.015 2.47 0.016 2.80 0.149 348.5 0.151 347.90
Vehicles in household 0.208 203.00 0.210 204.78 0.064 23.88 0.064 24.21
Household income 0.024 1.76 0.024 1.75 0.005 0.14 0.005 0.13
Income squared -0.001 1.15 -0.001 1.20 0.001 0.89 0.001 0.92
Single-family housing 0.071 2.49 0.061 1.73 0.070 3.38 0.079 3.95
Pop. density at O 1)     0.004 1.12     0.001 0.08
Emp. density at O   -0.005 1.61   0.002 0.53
Entropy index at O   -0.072 0.71   -0.022 0.08
Connectivity at O   -0.026 0.12   0.038 0.36
Road length at O   0.016 1.79   0.001 0.01
Dispersion -0.083 (p<0.001) 0.078 (p<0.001) 
Sample size 2539 3461 
Log Likelihood (L ) -500.61 -496.69 6656.22 6657.09 
Model improvement: 
-2[L(B) – L(E) ] 

=2χ 7.845, df = 5, 
Prob. = 0.165 

=2χ 1.739, df = 5, 
Prob. = 0.884 

Note: 1) O = trip origin 
         2) Estimates in bold are significant at 5% level; estimates in italic bold are significant at 

10% level (two-tailed test). 
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5.3.2 Results of Structural Equation Models 

 Structural models of household automobile trip generation for different travel 

purposes have same modeling structure consisting of three major parts: household 

automobile trip frequency part (Auto trips ON), travel cost ($/trip) part (Travel Cost ON) 

and household income part (Household income ON). Table 5.15 and 5.16 reveal that the 

estimation results of the automobile trip frequency part are similar to the travel demand 

model outcomes for same travel purpose. Land use measures at origin do not 

significantly affect household automobile trip rates when other variables are kept 

constant. 

 Attention needs to be focused on travel cost model to investigate whether land 

use attributes around home places causally influence travel cost based on assumed 

causality. The results in Table 5.15 for both total and total home-based trips indicate that 

household income and land use measures except entropy are statistically significant. 

Higher household income affects higher travel cost. Land use factors at origin negatively 

affect travel cost, but entropy index is insignificant. In other words, increased density 

and improved neighborhood design lead to the reduction in travel cost for total trips. 

 The results of travel cost model for both total trip purposes also work for HBW 

trips; however, several distinctions are observed in the results for HBO trips as shown in 

Table 5.16. Household income is no longer significant in the effect on travel cost. Travel 

cost per trip is affected by household economic status for commute trips, but not for 

shopping and recreational trips. Entropy index becomes negatively significant; however, 

employment density has no significant relationship with HBO trip frequency. 
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 Furthermore, household income model displays significant impacts of 

socioeconomic characteristics on household income. As expected, household size, 

vehicle availability and single-family residence are all positively affect total household 

income. These connections are in effect for all travel purposes. 

 

5.3.3 Results of Directed Acyclic Graphs 

 Eleven variables are taken into TETRAD III algorithm in the form of lower 

triangular correlation matrix to make causal graphs for different purposes. They are 

composed of four groups: one travel behavior outcome (automobile trip frequency), one 

travel cost ($/trip), four household socioeconomic characteristics (household size, 

vehicle ownership, total income, and single-family residence), and five land use 

measures at trip origin (population and employment density, entropy index, connectivity 

and road length measures). Same three restrictions are established on the estimation 

process. Also, undirected edges between household socioeconomic factors are causally 

oriented based on personal reasoning and evidence of related research. 
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Table 5.15 Structural Equation Models of Household Auto Trip Generation for Total 
Trips. 

  Total Trips Total Home-based Trips 
Variables Estimates Std. err. p-value Estimates Std. err. p-value 
Auto trips ON       
Travel cost ($ / trip) -0.089 0.004 0.000 -0.054 0.003 0.000 
Household size 0.123 0.007 0.000 0.142 0.006 0.000 
Vehicles in household 0.155 0.011 0.000 0.168 0.010 0.000 
Household income 0.052 0.012 0.000 0.043 0.011 0.000 
Household income squared -0.001 0.001 0.153 -0.001 0.001 0.153 
Single-family housing 0.054 0.034 0.115 0.064 0.030 0.035 
Population density at O 1) 0.001 0.002 0.817 -0.001 0.002 0.802 
Employment density at O 0.000 0.002 0.904 0.001 0.002 0.743 
Entropy index at O -0.070 0.061 0.247 -0.082 0.056 0.139 
Connectivity at O -0.048 0.058 0.403 -0.008 0.052 0.884 
Road length at O -0.007 0.009 0.432 0.009 0.008 0.256 
Travel cost ON       
Household income 0.050 0.010 0.000 0.064 0.011 0.000 
Population density at O -0.029 0.010 0.002 -0.039 0.010 0.000 
Employment density at O -0.030 0.006 0.000 -0.027 0.007 0.000 
Entropy index at O -0.213 0.282 0.450 -0.281 0.303 0.353 
Connectivity at O -0.863 0.293 0.003 -1.089 0.300 0.000 
Road length at O -0.206 0.038 0.000 -0.242 0.041 0.000 
Household income ON       
Household size 0.265 0.043 0.000 0.265 0.043 0.000 
Vehicles in household 1.223 0.064 0.000 1.223 0.064 0.000 
Single-family housing 1.075 0.177 0.000 1.076 0.178 0.000 
Intercept       
Auto trips 1.319 0.083 0.000 0.770 0.077 0.000 
Travel cost 4.398 0.332 0.000 4.803 0.344 0.000 
Household income 4.275 0.187 0.000 4.277 0.187 0.000 
Dispersion 0.123 0.006 0.000 0.028 0.005 0.000 
Sample size 3976 3973 
Log Likelihood (H0 value) -42316.490 -40793.704 
Information Criteria   
Free parameters 36 36 
Akaike (AIC) 84704.979 81659.407 
Bayesian (BIC) 84931.349 81885.749 
Note: 1) O = trip origin 
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Table 5.16 Structural Equation Models of Household Auto Trip Generation for Home-
based Trips. 

Home-based Work Trips Home-based Other Trips   
Variables Estimates Std. err. p-value Estimates Std. err. p-value 
Auto trips ON       
Travel cost ($ / trip) -0.017 0.003 0.000 -0.047 0.005 0.000 
Household size 0.015 0.008 0.068 0.151 0.008 0.000 
Vehicles in household 0.211 0.013 0.000 0.064 0.013 0.000 
Household income 0.023 0.014 0.107 0.005 0.013 0.708 
Household income squared -0.001 0.001 0.214 0.001 0.001 0.331 
Single-family housing 0.059 0.032 0.063 0.079 0.040 0.046 
Population density at O 1) 0.003 0.003 0.215 0.001 0.003 0.771 
Employment density at O -0.005 0.003 0.098 0.002 0.003 0.473 
Entropy index at O -0.072 0.075 0.336 -0.022 0.073 0.767 
Connectivity at O -0.027 0.067 0.688 0.038 0.067 0.567 
Road length at O 0.015 0.010 0.143 0.001 0.011 0.938 
Travel cost ON       
Household income 0.092 0.021 0.000 0.011 0.010 0.298 
Population density at O -0.063 0.018 0.001 -0.041 0.010 0.000 
Employment density at O -0.061 0.017 0.000 -0.002 0.007 0.787 
Entropy index at O 0.285 0.540 0.597 -0.861 0.304 0.005 
Connectivity at O -2.236 0.525 0.000 -0.654 0.271 0.016 
Road length at O -0.322 0.071 0.000 -0.227 0.039 0.000 
Household income ON       
Household size 0.200 0.052 0.000 0.325 0.045 0.000 
Vehicles in household 0.958 0.079 0.000 1.213 0.068 0.000 
Single-family housing 1.293 0.226 0.000 1.262 0.199 0.000 
Intercept       
Auto trips 0.448 0.105 0.000 0.829 0.092 0.000 
Travel cost 7.499 0.632 0.000 4.293 0.336 0.000 
Household income 6.208 0.220 0.000 4.010 0.210 0.000 
Dispersion -0.083 0.004 0.000 0.078 0.007 0.000 
Sample size 2539 3461 
Log Likelihood (H0 value) - 25471.792 - 34864.910 
Information Criteria   
Free parameters 34 36 
Akaike (AIC) 51011.585 69801.820 
Bayesian (BIC) 51210.129 70023.195 
Note: 1) O = trip origin 
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 Figure 5.6 and 5.7 display the results of estimated directed graphs at l % 

significance level for total and total home-based trips. They show that the number of 

household automobile trips for total trips is causally connected with four factors: travel 

cost (TRAVEL COST: –), household size (HHSIZE: +), number of vehicles 

(NOVEHICLE: +), and household income (INCOME: +). Household members tend to 

reduce their auto trips as travel cost gets higher. Also, bigger household size, and more 

available vehicles and income in a household are causally connected with more 

automobile trips for both total and total home-based trips. It should be noted that no land 

use measure is a direct cause of total automobile trips. These causal connections are 

identical to the results of the structural models shown in Table 5.15. 

 According to the figures, travel cost is causally affected by many factors: vehicle 

ownership (NOVEHICLE: +), population density (O_POPDEN: –), employment density 

(O_EMPDEN: –), connectivity (O_CONNECT: –) and road length (O_ROADMI: –). 

Household income (INCOME: +) is added for total home-based trips (see Figure 5.7). 

Household automobile trips increase as vehicles and income in a household increases. It 

is noteworthy that land use measures except entropy index have negative causal impacts 

on travel cost. Therefore, it is argued that land use measures are not direct but indirect 

causes of household automobile trip frequency through travel cost. These causal effects 

are congruous with the outcomes of the SEMs for total trip purposes (see Table 5.15). 

 The DAGs have a collider, entropy index taking up causal information from the 

precedents, but blocks its flow into others. In addition, two bi-directed edges are 

recognized between employment density and entropy and road length. 
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 The directed graphs for HBW and HBO trips are presented in Figure 5.8 and 5.9, 

respectively. For HBW trips, only two variables serve as direct causes of household auto 

trip generation: travel cost (TRAVEL COST: –) and vehicle ownership (NOVEHICLE: 

+). It makes sense that household size and income are no longer direct causes for 

commute trips. However, household auto trip rates for HBO trips are causally influenced 

by same variables as shown for total trip purposes. They are travel cost, household size, 

vehicle ownership and household income as illustrated in Figure 5.9. 

 When it comes to the causal relationship with travel cost, some differences 

between different travel purposes are observable. For HBW trips, positive household 

income is the only socioeconomic variable that causally affects travel cost. Land use 

measures except entropy show same patterns as in the SEMs for HBW trips. For HBO 

trips, both household size and vehicle ownership are positive causes of travel cost. 

Population density, connectivity and road length also affect travel cost, but employment 

density becomes insignificant by the nature of HBO trips. 

 One collider (entropy index) for HBW trips and two colliders (employment 

density and entropy index) for HBO trips are identified. A bi-directed edge between 

employment density and entropy index is observed for both trip purposes. 
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Figure 5.6 DAGs on Household Auto Trip Generation for Total Trips. 
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Figure 5.7 DAGs on Household Auto Trip Generation for Total Home-based Trips. 
Note: Double-headed edges in a pattern suggest a latent common cause between two variables. 
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Figure 5.8 DAGs on Household Auto Trip Generation for Home-based Work Trips. 
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Figure 5.9 DAGs on Household Auto Trip Generation for Home-based Other Trips. 
Note: Double-headed edges in a pattern suggest a latent common cause between two variables.
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5.4 Household Total VMT Models 

5.4.1 Results of OLS Regression Models 

 To estimate household total vehicle miles traveled (VMT), the ordinary least 

squares (OLS) regression model is specified where the dependent variable, household 

total VMT is regressed on a set of explanatory variables. Logarithmic transformation of 

household total VMT is implemented to have better estimation results. Independent 

variables consist of travel attributes (travel cost per mile and automobile trip frequency), 

household socioeconomic characteristics (household size, vehicle ownership, total 

income and income squared), and land use measures at trip origin (population density, 

employment density, entropy index, connectivity and road length measure). Both a base 

and an extended model for each travel purpose are estimated for each travel purpose to 

examine the role of land use variables in model improvement. 

 Table 5.17 presents the estimation results of household VMT models for total 

and total home-based trips. The base models and extended models for both travel 

purposes show same patterns in terms of the effects of travel attributes and 

socioeconomic factors. Higher travel cost per mile and fewer auto trips are associated 

with the reduction of household VMT. Vehicle ownership is positively connected with 

household VMT. Both household income and income squared suggest that household 

VMT increases with household income; the intensity of the income effect, however, 

diminishes as income increases. 



 

 

140

 According to the extended models, land use measures except entropy index are 

all significant in explaining household VMT. Population and employment density, 

connectivity and road length measures have negative effects on household VMT. When 

explanatory variables are controlled, the extended models explain 41.7% and 37.0% of 

variations for both total and total home-based trips, respectively. It is also confirmed that 

land use measures significantly contribute to improving household VMT models for two 

total trip purposes. 

 

Table 5.17 Household Total VMT Models for Total Trips. 

Total Trips Total Home-based Trips 
Base Model Extended Model Base Model Extended Model  

Variables Est. t Est. t Est. t Est. t 
Constant 2.675 29.58 3.217 26.38 2.333 23.95 2.934 22.33
Travel cost ($ / mile) -0.921 -3.16 -1.093 -3.81 -0.704 -2.27 -0.919 -3.01
Auto trips 0.090 32.09 0.091 33.18 0.127 25.58 0.131 26.93
Household size 0.015 1.47 0.003 0.32 0.001 0.13 -0.014 -1.23
Vehicles in household 0.204 12.63 0.182 11.34 0.238 13.49 0.211 12.07
Household income 0.106 6.61 0.105 6.70 0.090 5.20 0.090 5.30
Income squared -0.004 -4.58 -0.004 -4.69 -0.003 -3.33 -0.003 -3.43
Pop. density at O 1)   -0.011 -3.42   -0.015 -4.23
Emp. density at O   -0.011 -3.89   -0.011 -3.34
Entropy index at O   0.102 1.18   0.144 1.54
Connectivity at O   -0.310 -4.07   -0.329 -4.01
Road length at O   -0.044 -3.55   -0.051 -3.81
Sample size 3976 3973 

22 , RR  0.395, 0.394 0.417, 0.416 0.343, 0.342 0.370, 0.368 
Model improvement: 
F-test 

F=29.917, df1=5, df2=3964 
Prob.< 0.001 

F=33.951, df1=5, df2=3961 
Prob.< 0.001 

Note: 1) O = trip origin 
         2) Estimates in bold are significant at 5% level; estimates in italic bold are significant at 

10% level (two-tailed test). 
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 Household VMT models for HBW and HBO trips are estimated and presented in 

Table 5.18. Similar to the results for total trips in Table 5.17, both travel cost and 

automobile trips are significant with negative and positive impacts, respectively. 

Socioeconomic variables except household size are significant for HBW trips. Contrary 

to other models, however, household size and vehicle ownership are only meaningful in 

explaining household VMT for HBO trips. Household income and income squared 

become insignificant. 

 Some differences are observed between household VMT models for HBW and 

HBO trips with regard to the role of land use. For HBW trips, population density has no 

significant impact; however, entropy index is positively significant. Employment density 

as well as entropy index becomes unimportant for explaining household VMT for HBO 

trips. When other factors kept constant, 29.2% and 33.7% of total variations in 

household VMT are explained for HBW and HBO trips, respectively. Model 

improvement tests support that household VMT models are significantly refined when 

land use measures are considered in the modeling process. 
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Table 5.18 Household Total VMT Models for Home-based Trips. 

Home-based Work Trips Home-based Other Trips 
Base Model Extended Model Base Model Extended Model  

Variables Est. t Est. t Est. t Est. t 
Constant 2.216 17.69 2.771 16.53 2.355 23.88 3.134 21.99
Travel cost ($ / mile) -0.731 -2.54 -0.841 -2.98 -1.202 -5.16 -1.289 -5.67
Auto trips 0.304 23.17 0.310 24.09 0.203 32.65 0.206 34.06
Household size 0.033 2.41 0.018 1.33 -0.080 -5.82 -0.094 -7.00
Vehicles in household 0.105 4.58 0.084 3.73 0.203 9.80 0.169 8.27
Household income 0.101 4.06 0.091 3.73 0.013 0.61 0.014 0.71
Income squared -0.005 -3.40 -0.004 -3.09 0.000 -0.32 -0.001 -0.45
Pop. density at O 1)   -0.006 -1.25   -0.021 -4.86
Emp. density at O   -0.019 -4.32   -0.005 -1.42
Entropy index at O   0.355 2.98   -0.027 -0.24
Connectivity at O   -0.574 -5.51   -0.214 -2.18
Road length at O   -0.033 -1.95   -0.093 -5.78
Sample size 2539 3461 

22 , RR  0.259, 0.258 0.292, 0.289 0.300, 0.299 0.337, 0.334 
Model improvement: 
F-test 

F=23.505, df1=5, df2=2527 
Prob.< 0.001 

F=37.631, df1=5, df2=3449 
Prob.< 0.001 

Note: 1) O = trip origin 
         2) Estimates in bold are significant at 5% level; estimates in italic bold are significant at 

10% level (two-tailed test). 

 

5.4.2 Results of Structural Equation Models 

 There are four major models in the results of SEM estimation of household total 

VMT for different travel purposes: household VMT (VMT ON), travel cost (Travel cost 

ON), household automobile trip frequency (Auto trips ON), and total household income 

(Household income ON). The structural models estimated for different trip purposes are 

presented in Table 5.19 and 5.20. The outcomes of household VMT part in the SEMs for 

different trip purposes are comparable to those of household VMT models in Table 5.17 

and 5.18, respectively. To summarize, land use measures at trip origin have negatively 

significant relationships with household total VMT while other variables are controlled. 
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 Travel cost models for different trip purposes deserve attention to examine if the 

assumed causal connections of travel cost with land use measures at origin are still valid. 

Based on the outcomes of both Table 5.19 and 5.20, it is confirmed that two land use 

variables, population density and entropy index are negatively affect travel cost. 

Increases in population density and entropy around residential locations are causally 

connected with the reduction of travel cost per mile. These causal relationships remain 

unchanged for different travel purposes. Household income is also positively significant 

in its linkage with travel cost except for HBW trips. It implies there is no significant 

difference in commuting trip cost among income brackets. 

 The model specification of the automobile trip frequency part is similar to the 

automobile trip generation models, but the former excludes land use measures. 

Socioeconomic factors in addition to travel cost per trip have significant effects on 

household automobile trip rates. But household income and income squared are not 

significant for both HBW and HBO trips, and income squared is not for total trip 

purposes. 
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Table 5.19 Structural Equation Models of Household Total VMT for Total Trips. 

  Total Trips Total Home-based Trips 
Variables Estimates Std. err. p-value Estimates Std. err. p-value 
VMT ON       
Travel cost ($ / mile) -1.088 0.409 0.008 -0.913 0.404 0.024 
Auto trips 0.091 0.003 0.000 0.131 0.005 0.000 
Household size 0.003 0.011 0.754 -0.014 0.012 0.236 
Vehicles in household 0.182 0.015 0.000 0.211 0.017 0.000 
Household income 0.105 0.018 0.000 0.090 0.018 0.000 
Household income squared -0.004 0.001 0.000 -0.003 0.001 0.001 
Population density at O 1) -0.011 0.003 0.001 -0.015 0.004 0.000 
Employment density at O -0.011 0.003 0.000 -0.011 0.003 0.001 
Entropy index at O 0.102 0.089 0.253 0.144 0.096 0.136 
Connectivity at O -0.309 0.076 0.000 -0.329 0.081 0.000 
Road length at O -0.044 0.013 0.000 -0.051 0.013 0.000 
Travel cost ON       
Household income 0.001 0.000 0.000 0.001 0.000 0.000 
Population density at O -0.001 0.000 0.000 -0.001 0.000 0.000 
Employment density at O 0.000 0.000 0.445 0.000 0.000 0.561 
Entropy index at O -0.016 0.005 0.001 -0.015 0.005 0.001 
Connectivity at O -0.001 0.004 0.889 -0.001 0.004 0.787 
Road length at O -0.001 0.001 0.255 -0.001 0.001 0.200 
Auto trips ON       
Travel cost ($ / trip) -0.088 0.004 0.000 -0.055 0.003 0.000 
Household size 0.124 0.007 0.000 0.141 0.006 0.000 
Vehicles in household 0.156 0.011 0.000 0.168 0.010 0.000 
Single-family housing 0.060 0.033 0.069 0.065 0.029 0.024 
Household income 0.053 0.012 0.000 0.043 0.011 0.000 
Household income squared -0.001 0.001 0.153 -0.001 0.001 0.171 
Household income ON       
Household size 0.265 0.043 0.000 0.265 0.043 0.000 
Vehicles in household 1.223 0.064 0.000 1.223 0.064 0.000 
Single-family housing 1.075 0.177 0.000 1.076 0.178 0.000 
Intercept       
VMT 3.219 0.145 0.000 2.918 0.152 0.000 
Travel cost 0.234 0.004 0.000 0.235 0.005 0.000 
Auto trips 1.205 0.057 0.000 0.747 0.050 0.000 
Household income 4.275 0.187 0.000 4.277 0.187 0.000 
Sample size 3976 3973 
Log Likelihood (H0 value) -30798.264 -29370.513 
Information Criteria   
Free parameters 44 44 
Akaike (AIC) 61684.528 58829.026 
Bayesian (BIC) 61961.201 59105.666 
Note: 1) O = trip origin 
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Table 5.20 Structural Equation Models of Household Total VMT for Home-based Trips. 

  Home-based Work Trips Home-based Other Trips 
Variables Estimates Std. err. p-value Estimates Std. err. p-value 
VMT ON       
Travel cost ($ / mile) -0.842 0.507 0.097 -1.285 0.219 0.000 
Auto trips 0.310 0.015 0.000 0.206 0.007 0.000 
Household size 0.018 0.014 0.185 -0.094 0.014 0.000 
Vehicles in household 0.084 0.023 0.000 0.169 0.019 0.000 
Household income 0.091 0.026 0.000 0.014 0.021 0.504 
Household income squared -0.004 0.001 0.003 -0.001 0.001 0.672 
Population density at O 1) -0.006 0.004 0.195 -0.021 0.005 0.000 
Employment density at O -0.019 0.004 0.000 -0.005 0.004 0.146 
Entropy index at O 0.354 0.123 0.004 -0.027 0.115 0.814 
Connectivity at O -0.574 0.108 0.000 -0.213 0.095 0.024 
Road length at O -0.033 0.016 0.041 -0.092 0.017 0.000 
Travel cost ON       
Household income 0.000 0.000 0.957 0.001 0.000 0.000 
Population density at O -0.001 0.000 0.001 -0.001 0.000 0.054 
Employment density at O 0.000 0.000 0.912 0.000 0.000 0.350 
Entropy index at O -0.010 0.006 0.070 -0.022 0.008 0.009 
Connectivity at O 0.005 0.009 0.556 0.000 0.007 0.987 
Road length at O -0.001 0.001 0.150 -0.001 0.001 0.497 
Auto trips ON       
Travel cost ($ / trip) -0.018 0.003 0.000 -0.048 0.004 0.000 
Household size 0.014 0.008 0.089 0.149 0.008 0.000 
Vehicles in household 0.208 0.013 0.000 0.064 0.013 0.000 
Single-family housing 0.069 0.030 0.021 0.070 0.038 0.068 
Household income 0.023 0.014 0.115 0.005 0.013 0.695 
Household income squared -0.001 0.001 0.238 0.001 0.001 0.341 
Household income ON       
Household size 0.200 0.052 0.000 0.325 0.045 0.000 
Vehicles in household 0.958 0.079 0.000 1.213 0.068 0.000 
Single-family housing 1.293 0.226 0.000 1.262 0.199 0.000 
Intercept       
VMT 2.874 0.202 0.000 3.038 0.146 0.000 
Travel cost 0.239 0.006 0.000 0.235 0.007 0.000 
Auto trips 0.456 0.061 0.000 0.872 0.059 0.000 
Household income 6.208 0.220 0.000 4.010 0.210 0.000 
Sample size 2539 3461 
Log Likelihood (H0 value) -17834.592 -27394.273 
Information Criteria   
Free parameters 42 44 
Akaike (AIC) 35753.184 54876.545 
Bayesian (BIC) 35998.444 55147.115 
Note: 1) O = trip origin 
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5.4.3 Results of Directed Acyclic Graphs 

 Eleven variables in four broad categories are introduced in the estimation of 

DAGs for different trip purposes: one travel behavior measure of interest (household 

VMT), two travel attributes (travel cost and auto trip frequency), three household 

socioeconomic factors (household size, vehicle ownership and total income), and land 

use measures at trip origin (population and employment density, entropy index, 

connectivity and road length measure). Three constraints imposed for both binary choice 

and household auto trip generation are still in effect. Undirected edges between 

socioeconomic factors are causally oriented based on personal judgment and academic 

evidence. 

 The directed graphs for both total VMT and total home-based VMT are 

illustrated in Figure 5.10 and 5.11. They produce exactly same results of causal 

connections. Household total VMT (TOTAL VMT), according to the DAGs, is causally 

influenced by six measures: automobile trips (AUTO TRIPS: +), vehicle ownership 

(NOVEHICLE: +), household income (INCOME: +), population density (O_POPDEN: 

–), employment density (O_EMPDEN: –), and connectivity (O_CONNECT: –). More 

automobile trips, more vehicles available and higher income lead to longer household 

automobile trip distance. On the other hand, higher population and employment density 

and improved connectivity discourage people from driving longer. Contrary to the SEM 

results, both travel cost (TRAVEL COST) and road length (O_ROADMI) variables are 

not direct causes of household total VMT. 
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 Interestingly travel cost is not significant in the causality with household VMT. 

According to the results in Figure 5.10 and 5.11, travel cost has causal relationships with 

two household socioeconomic factors and two land use measures: household size 

(HHSIZE: +), household income (INCOME: +), population density (O_POPDEN: –), 

and entropy index (O_ENTROPY: –). These connections are generally congruous with 

those clarified in the SEM results. However, it is identified as a collider in the directed 

graphs. As explained before, travel cost as a collider receives information from the 

parent variables, but prevents the information from flowing to others. In terms of 

automobile trip frequency, all socioeconomic variables are direct causes, but no land use 

measure is. It is quite consistent with the findings in other models for total trips (see 

Table 5.19 and Figure 5.6 and 5.7). 

 The estimated directed graphs for both HBW and HBO trips are displayed in 

Figure 5.12 and 5.13. For HBW trips, household VMT has various causal factors: 

automobile trips (AUTO TRIPS: +), vehicle ownership (NOVEHICLE: +), household 

income (INCOME: +), employment density (O_EMPDEN: –), and connectivity 

(O_CONNECT: –). For HBO trips, household VMT is also affected by many variables: 

travel cost per mile (TRAVEL COST: –), automobile trips (AUTO TRIPS: +), vehicle 

ownership (NOVEHICLE: +), population density (O_POPDEN: –), and road length 

(O_ROADMI: –). Several differences are found when they are compared with the results 

total trips. First, population density is not significant for HBW trips; neither employment 

density is for HBO trips. Moreover, road length measure instead of connectivity 
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becomes direct cause for HBO trips. Another difference lies in the role of travel cost: 

travel cost negatively cause household total VMT for HBO trips. 

 It should be also noted that no land use measure causally affects travel cost for 

both HBW and HBO trips; thus, travel cost is only determined by household 

socioeconomic characteristics. There are two colliders, travel cost and entropy index for 

HBW trips; on the other hand, there is only one collider, entropy index for HBO trips. 

They are similar in that entropy index is a collider which is causally independent of 

household VMT for both travel purposes. 
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Figure 5.10 DAGs on Household VMT for Total Trips (1% sig. level). 

Note: Double-headed edges in a pattern suggest a latent common cause between two variables. 
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Figure 5.11 DAGs on Household VMT for Total Home-based Trips (1% sig. level). 
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Figure 5.12 DAGs on Household VMT for Home-based Work Trips (1% sig. level). 

Note: Double-headed edges in a pattern suggest a latent common cause between two variables. 
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Figure 5.13 DAGs on Household VMT for Home-based Other Trips (1% sig. level). 

Note: Double-headed edges in a pattern suggest a latent common cause between two variables. 

 

5.5 Summary and Discussion 

 There are some findings observed from the patterns of household travel and land 

use and development in the HGAC region. According to the 2007 HGAC household 

travel survey, people in the metropolitan region are highly depending on automobiles in 

terms of mode choice, trip rates and travel distance. First of all, 92 percent of total trips 

in the region are made by automobile modes including driving-alone and shared-ride 

options. 99 percent of HBW trips are made by automobile modes, and driving-alone trips 

account for 89 percent of the total. Average VMT (miles per trip) by automobile and 

driving-alone modes are 9.53 and 12.12 for regional total, and 21.51 and 22.70 for HBW 

trips, respectively. It indicates that people drive longer for commuting purpose than for 
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other trip purposes. In addition, regional driving time and cost average 8.4 minutes and 

2.05 dollars per trip; for HBW trips, they are 13.3 minutes and 4.73 dollars per trip, 

respectively. High level of automobile dependence, longer driving miles and time, and 

higher driving cost for commuting trips suggest that residential, commercial and 

industrial areas are not only developed with low-density, but they are also much 

segregated rather than well mixed and balanced even in urban areas. 

 Land use and development patterns in the HGAC region indicate that single-

family residential use is prevailing among various types of residential uses covering 50 

percent of total developed area and 92 percent of total residential area. Land use density 

measures including population and employment density show that they are relatively 

high in urban areas, especially in the City of Houston, but very low in other areas. 

Employment density tends to be more concentrated on the central area. Land use 

diversity and design measures also reveal that land uses are well mixed and connected 

with each other in the central area, implying that these patterns of land use lead to high 

level of automobile dependence throughout the region. The analysis of average VMT by 

residential type suggests that single-family households make longer trips than others 

including multi-family households for all travel purposes. It is inferred that land use 

patterns can significantly influence travel behavior in many ways. 

 

5.5.1 Individual Mode Choice 

 Mode choice models center on whether and how various dimensions of land use 

and development affect individual mode choice behavior in the HGAC region. The 
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models also examine how land use measures are causally connected with travel time. A 

summary of the major findings based on MNL models, SEMs and DAGs is presented in 

Table 5.21. 

 

Table 5.21 Summary of Mode Choice Models. 

Variable of Interest Mode Choice  3) 4) Travel Time 

Trip purpose HBW HBO HBW HBO 

Variables MNL 2) SEM DAG MNL SEM DAG SEM DAG SEM DAG

Travel time – + + – + +     

Household income + (D)   + (D) +  + + + + 

Pop. density at O 1) + (D)*   + (D) –  – – – – 

Pop. density at D – (D,S)          

Emp. density at O + (T,W) – –    – – –  

Emp. density at D – (D,S) –     + + + + 

Dissim. index at O    + (T,W) –  +  +  

Dissim. index at D    + (D,S) + + – – – – 

Connectivity at O    + (T,W) –  – – –  

Connectivity at D + (D,S)*          

Road length at O    + (T,W)   – – – – 

Road length at D    + (D,S) +  + + +  
Note: 1) O = trip origin, D = trip destination 
          2) D = driving-alone, S = shared-ride, T = transit, W = walk/bike 
          3) For MNL models, 4 alternative specific travel times are used for HBW trips; 2 times 

and 2 costs are for HBO trips. For SEMs and DAGs, travel time differential is used. 
          4) SEMs and DAGs are estimated with binary choice in which non-automobile is 

reference. 
          5) DAGs are estimated at 1% significance level; others are at 5% level except for * at 

10% level. 
 

 MNL models show that many land use measures have significant impacts on 

individual mode choice behavior. Not only do they individually influence the probability 

of specific mode choice, but they collectively contribute to the improvement of 
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multinomial choice models. These facts are consistent for both HBW and HBO trips. As 

shown in Table 5.21, several differences are noticeable. First, density measures are very 

important in mode choice for HBW trips; however, both diversity and design measures 

become significant for HBO trips. They increase the probability of non-automobile 

choice at origin and of automobile choice at destination at the same time for HBO trips. 

It is reasonable to argue that both land use mix and design factors are positively 

associated with the likelihood of non-automobile mode choice at origin. However, it 

may not be plausible to maintain that increased land use mix at destination enlarges the 

automobile choice probability. Travel and land use characteristics of the HGAC region 

give a tenable explanation. As described earlier, automobile dependent travel patterns 

are pandemic in the region. Land uses are also highly segregated and low-density 

residential areas are widely spread. Although land uses are well mixed and various 

activities are accommodated in the destinations, people tend to drive to the places so 

long as they are not close to their homes. This automobile captive behavior can also 

explain the positive relationship between population density at origin and driving-alone 

choice for both travel purposes. 

 The results of the mode choice models in the SEMs are similar to those of 

binomial logit models estimated to be compared with causal models. They are also 

generally congruous with MNL model outcomes: density factors are important for HBW 

trips; both diversity and design measures become significant for HBO trips; and the 

models are significantly enhanced by taking various land use measures into account. In 

short, land use and development factors significantly affect automobile choice behavior 
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based on the assumed causality. Single-family housing as a socioeconomic factor closely 

related to land use measures positively influence the automobile choice probability. 

 The outcomes of travel time models in the SEMs for both trip purposes confirm 

that various measures of land use are causally associated with travel time differential; 

therefore, they have indirect connections with the automobile choice probability through 

travel time. Land use measures at origin and dissimilarity at destination negatively affect 

the travel time differential, which then reduces the likelihood to choose automobile 

mode. However, employment density and roadway length at destination and 

dissimilarity at origin are working in the opposite direction. Their positive effects on the 

travel time differential are inconsistent with the hypothesis and general reasoning. These 

impacts are partially attributed to both high automobile dependence and segregated and 

loose land use in the region. 

 According to the directed acyclic graph (DAG) for HBW trips, automobile 

choice is causally affected by many factors: travel time differential, bike use, vehicle 

ownership, single-family residence and employment density at origin. Single-family 

residence as related to land use attributes is a direct cause of automobile choice. Only 

employment density at origin among land use measures has a negative causal impact on 

the automobile choice probability. However, employment density at destination which is 

significant in the SEMs is not causally connected. The directed graph also shows that 

land use measures causally influence travel time differential. Dissimilarity at origin that 

is arguable in the SEM is no longer a direct cause. The result suggests that land use 

measures indirectly affect the automobile choice behavior through travel time. 
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 Direct causes of the automobile mode choice for HBO trips are travel time 

differential, bike use, vehicle ownership, single-family residence and dissimilarity index 

at destination. While single-family residence is still a direct cause of automobile choice 

for HBO trips, the result is little consistent with the SEMs in which both diversity and 

design measures are significant. Only dissimilarity index at destination positively affects 

the probability of driving choice, which seems to be contrary to the hypothesis. As 

described in the MNL model results, it seems to be due in part to the automobile captive 

behavior that is caused by high automobile dependence and sprawling land use patterns 

in the region. In addition, travel time differential is causally associated with four land 

use measures. Similar to the result for HBW trips, these land use measures have indirect 

relationships with the automobile choice probability through travel time. Employment 

density at destination is positively significant for all trip purposes, which is a 

representation of land use and travel characteristics in the region. 

 To summarize, conventional travel demand model and causal models support that 

land use characteristics are directly affect individual mode choice behavior. In addition, 

both causal models based on different causal notions confirm that land use measures 

have indirect causal connections with individual mode choice through travel time in the 

metropolitan region. Although several discrepancies are observed, land use measures at 

both trip ends, in general, encourage trip-makers to use non-automobile modes as well as 

discourage them to use automobile modes. 
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5.5.2 Household Automobile Trip Generation 

 Household automobile trip generation models investigate whether and how land 

use characteristics directly influence the number of household automobile trips. 

Attention is also concentrated upon how land use and development patterns indirectly 

affect household automobile trip rates through travel cost ($/trip). Major findings based 

on negative binomial models, SEMs and DAGs are summarized in Table 5.22. 

 

Table 5.22 Summary of Household Trip Generation Models. 

Variable of Interest Household Automobile Trip Generation 3) 

Trip purpose Total HBW HBO 

Variables NB 2) SEM DAG NB SEM DAG NB SEM DAG 

Travel cost ($/trip) – – – – – – – – – 

Pop. density at O 1)          

Emp. density at O          

Entropy index at O          

Connectivity at O          

Road length at O          

Variable of Interest Travel Cost ($/trip) 

Trip purpose Total HBW HBO 

Variables  SEM DAG  SEM DAG  SEM DAG 

Household income  +   + +    

Pop. density at O  – –  – –  – – 

Emp. density at O  – –  – –    

Entropy index at O        –  

Connectivity at O  – –  – –  – – 

Road length at O  – –  – –  – – 
Note: 1) O = trip origin; 2) Negative binomial model 
          3) DAGs are estimated at 1% significance level; others are at 5% level except for * at 

10% level. 
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 The results of negative binomial models for total, HBW and HBO trips are 

identical in this regard. Travel cost is negatively associated with household automobile 

trip rates. However, no land use measures at trip origin appear to be significant when 

travel cost and socioeconomic factors are kept constant. As a consequence, land use 

measures do not significantly contribute to the improvement of household automobile 

trip generation models. 

 The results of the travel demand models are similar to the estimation outcomes of 

causal models, the SEMs and the DAGs for different travel purposes. Higher travel cost 

per trip causally influences the reduction of total number of household automobile trips 

for all trip purposes. Another similarity exists between the travel demand models and 

causal models in that no land use measure is a direct cause of household automobile trip 

generation. In fact, the insignificant role of land use measures in the models has been a 

subject of academic controversy in the fields of urban and transportation planning. For 

instance, this result generally agrees with the arguments made by Boarnet and Sarmiento 

(1998) and Boarnet and Crane (2001a). On the other hand, it is quite contrary to the 

evidence found in Cervero and Kockelman (1997), Khattak and Rodriguez (2005), and 

Lee (2006). 

 The travel cost models in the SEMs are estimated on the assumption that land use 

measures and household income affect the travel cost per trip. The result indicates that 

most land use measures have negative impacts on the travel cost. It can be inferred that 

land use measures are causally connected with household automobile trip generation 

through the travel cost. There are several differences among travel purposes. For total 
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and HBW trips, both density and design measures are statistically significant, but the 

entropy measure is not; on the other hand, land use measures except employment density 

are all meaningful for HBO trips. 

 The DAG for total trips shows that household automobile trip frequency is 

causally influenced by travel cost, household size, vehicle ownership, and household 

income. The result is consistent with that of automobile trip model in the SEMs for total 

trips. No land use measure at origin is a direct cause of automobile trip rates. Rather, 

density and design measures are negative causes of travel cost through which they are 

indirect causes of automobile trip generation. For HBW trips, direct causes of household 

automobile trip frequency are travel cost and vehicle ownership. Unlike other DAGs, 

household size and income do not causally influence household automobile trips for 

commuting trips. Automobile trip generation for HBO trips is causally affected by travel 

cost, household size, vehicle ownership and household income. Any causal connection 

between land use measures and automobile trip rates is still insignificant. Density and 

design measures for both HBW and HBO trips have negative causal relationships with 

travel cost through which they indirectly affect household automobile trip rates.  

 It is noteworthy that single-family residence, also a dominant land use pattern in 

the region is positively significant in the automobile trip generation models for HBO 

trips and marginally for total trips. In the structural models, it is still meaningful for 

HBO trips and marginally for HBW trips, but not for total trips. However, it no more 

directly affects household automobile trip frequency in the DAGs. It has indirect 
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causality with automobile trips through other socioeconomic factors, household income 

and vehicle ownership. 

 As clarified in the structural models and directed graphs for different travel 

purposes, most land use measures have negative causal connections with travel cost as 

presented in Table 5.22. Due to the negative effect of travel cost on household 

automobile trip frequency, reduced travel cost by intensified land use and enhanced 

neighborhood network results indirectly in an increase in household automobile trips. In 

this regard, a question is raised whether land use policy is effective to manage the travel 

demand (Gomez-Ibanez 1991; Giuliano and Small 1993; Giuliano 1995). However, this 

argument may not be valid if other aspects of land use and travel behavior connections 

are considered. The effects of land use should be assessed from comprehensive 

standpoint with careful investigations into the land use impacts on mode choice and 

VMT. Some studies have found the evidence that land use directly affects household 

automobile trips, which may offset the indirect impact of land use through travel cost 

(Cervero and Kockelman 1997; Khattak and Rodriguez 2005; Lee 2006). 

 

5.5.3 Household Total VMT 

 Household VMT models explore whether and how land use measures affect 

household total driving distance in the HGAC region. It is also investigated whether and 

how land use measures have causal relationships with travel cost. Table 5.23 gives a 

summary of household VMT models from ordinary least squares (OLS) regression, 

SEMs and DAGs. 
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Table 5.23 Summary of Household VMT Models. 

Variable of Interest Household Total VMT 3) 

Trip purpose Total HBW HBO 

Variables OLS 2) SEM DAG OLS SEM DAG OLS SEM DAG 

Travel cost ($/mi) – –  – –  – – – 

Pop. density at O 1) – – –    – – – 

Emp. density at O – – – – – –    

Entropy index at O    + +     

Connectivity at O – – – – – – – –  

Road length at O – –  –* –  – – – 

Variable of Interest Travel Cost ($/mile) 

Trip purpose Total HBW HBO 

Variables  SEM DAG  SEM DAG  SEM DAG 

Household income  + +     + + 

Pop. density at O  – –  –   –*  

Emp. density at O          

Entropy index at O  – –  –*   –  

Connectivity at O          

Road length at O          
Note: 1) O = trip origin; 2) Ordinary least squares regression model 
          3) DAGs are estimated at 1% significance level; others are at 5% level except for * at 

10% level. 
 

 Table 5.23 summarizes the land use effects on both household VMT and travel 

cost for different travel purposes. Both density and design measures at trip origin are 

negatively associated with household VMT for total trips. For HBW trips, land use 

measures except population density at origin are significant. Entropy index has a positive 

relationship, which is not consistent with the theory. But it becomes insignificant in the 

DAG; it is therefore claimed that the positive impact of entropy index is spurious in 

terms of causality between land use and household VMT. For HBO trips, population 
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density and design measures have negative association with household VMT. In 

particular, employment density is not important for HBO trips, which is generally 

consistent with the findings from other travel demand models. To sum up, land use 

factors are individually significant in the models. They also collectively refine household 

VMT models for all trip purposes. 

 Household VMT models in the SEMs for total, HBW and HBO trips are almost 

identical to OLS regression models of household VMT. In short, land use measures in 

general significantly affect household total VMT based on the assumed causality. Travel 

cost models in the SEMs suggest that two land use measures, population density and 

entropy index at origin reduce travel cost per mile as they increase. Therefore, it can be 

stated that land use measures at origin directly affect household VMT as well as 

indirectly influence household VMT through travel cost. Similar to the results of the 

automobile trip generation models, the indirect impact of land use measure on household 

VMT could be debatable between two different viewpoints. However, what is different 

from the trip generation models is that land use measures have negative direct 

connections with household VMT. The indirect effects of land use measures disappear 

according to the results of the directed graphs for all trip purposes. 

 The DAG for total trips illustrates that household VMT is directly caused by 

automobile trips, vehicle ownership, household income and three land use measures, 

population density, entropy index and connectivity. Contrary to the regression model and 

the SEMs, both travel cost and road length variables are not causally connected with 

household VMT. Travel cost has causal relationships with population density and 
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entropy index as well as household income, which is similar to the SEM result for total 

trips. Travel cost is, however, identified as a collider. 

 According to the directed graph for HBW trips, direct causes of household VMT 

are auto trips, vehicle ownership, household income and two land use measures, 

employment density and connectivity. Household VMT for HBO trips is directly 

affected by travel cost, automobile trips, vehicle ownership, and two land use measures, 

population density and road length. It is natural that employment density instead of 

population density is significant for HBW trips; the opposite is also sensible for HBO 

trips. Travel cost is a direct cause for HBO trips, while it is not for other trip purposes. It 

is notable that no land use measure is causally connected with travel cost; rather, travel 

cost is affected by household socioeconomic factors. Travel cost is a collider for HBW 

trips, and entropy is a collider for both trip purposes.  

 In short, conventional regression models, structural models and directed graphs 

consistently maintain that various land use patterns around residential locations have 

direct relationships with household total VMT. Compact development with high density 

and improved neighborhood network design significantly contribute to the reduction in 

household VMT despite several variations. However, land use mix does not play a 

crucial role in contrast with the academic evidence and expectation. There are some 

differences between the model results. The structural models indicate that both 

population density and entropy indirectly affect household VMT through travel cost per 

mile; however, no land use measure is causally connected with travel cost in the directed 

graphs for both HBW and HBO trips. 
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CHAPTER VI 

CONCLUSIONS AND IMPLICATIONS 

 

 This chapter generalizes conclusions by summarizing major findings of the 

investigation. Then, policy implications are explored that are related to land use and 

development to deal with automobile dependence as well as to achieve the objectives of 

sustainable development in the HGAC region. In addition, the limitations and possible 

improvements of this research are discussed. 

 

6.1 Conclusions 

 The study investigates how land use patterns affect individual and household 

travel behavior in a regional context for reducing automobile dependence and achieving 

sustainability goals. Previous researches are significant in that they enhanced our 

understanding of land use effects on travel behavior, suggested land use and 

development policies for reducing automobile dependence, and provided suggestions for 

improving travel demand models. Nonetheless, questions are still remaining about land 

use measurement, theory and framework for travel demand models, and causal 

connections between land use and travel behavior. 

 The study focuses on six counties of the Houston-Galveston Area Council 

(HGAC) regions: Brazoria, Fort Bend, Galveston, Harris, Montgomery and Waller 

County. Major data sources are the 2007 HGAC regional household activity and travel 

survey, 2007 parcel-based land use GIS dataset and HGAC regional travel model and 
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forecast data. Three travel behavior measures are considered as principal dependant 

variables in the model estimation: individual mode choice, household automobile trip 

generation and household total VMT. Also, three major categories of explanatory 

variables, i.e., travel time and cost, socioeconomic characteristics and land use measures 

are taken into account. A variety of land use characteristics are measured using quarter-

mile buffers for both trip origins and destinations.  

 In terms of model estimation strategies, attention is focused on the effects of land 

use on travel behavior from different modeling perspectives. One is conventional travel 

demand modeling for exploring the association between land use and travel behavior. 

Another is causal modeling for clarifying the causal connections between them. The 

causal modeling approaches include both the structural equation modeling (SEM) and 

the directed acyclic graphs (DAGs). They are different in that the SEM depends on 

causal assumptions based on the theory; the DAGs, however, rely not on assumed 

causality but on causality based on observational data. Both the SEM and the DAGs pay 

attention to not only direct impacts of land use on travel behavior outcomes, but also 

indirect impacts of land use through travel cost. Models are estimated for different travel 

purposes including total, HBW and HBO trips. As a consequence, three travel outcomes 

and different trip purposes are taken into three modeling strategies with full array of 

explanatory variables. Conclusions are drawn as follows. 
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 For travel and land use patterns: 

• People in the HGAC region are highly dependent on automobiles in terms of 

mode choice, trip frequency and travel time and distance. The automobile 

dependence is noticeable for home-based work (HBW) trips. 

• Residential, commercial and industrial areas are not only developed with low-

density, but they are also much segregated rather than well mixed and connected 

with each other even in urban areas. 

• Land use patterns characterized by low density, less diversity and poor network 

design may lead to high level of automobile dependence throughout the region. It 

is inferred that land use patterns significantly influence travel behavior in the 

region while other factors kept constant. 

 

 For individual mode choice: 

• Land use measures have significant impacts on individual mode choice behavior 

based on MNL choice models. Not only do they individually influence specific 

mode choice probability, but they collectively contribute to improving the choice 

models for both HBW and HBO trips. 

• Land use measures at trip origin and destination are meaningful in explaining 

automobile mode choice in the SEMs. The results are consistent with those of 

MNL choice models. 

• Travel time models in the SEMs confirm that various land use factors are 

causally connected with travel time differential (walk time – driving time). 
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Through the travel time, land use measures are indirectly connected with the 

automobile choice probability. 

• Most land use measures at origin have negative relationship with the travel time 

differential through which they reduces the probability of automobile choice. 

Several land use factors at destination are working in opposite direction. 

• The DAGs for both HBW and HBO trips show that individual automobile choice 

are directly caused by travel time, vehicle ownership, bike use, single-family 

residence and one land use measure for each trip purpose. 

• For HBW trips, only employment density at origin has a negative causal impact 

on the automobile choice probability. For HBO trips, on the other hand, 

dissimilarity measure at destination positively affects the probability of driving 

choice. 

• In terms of direct land use effects, the results of the DAGs are not consistent with 

those of the SEMs. It suggests that there is a gap between assumed and data 

generated causal relationships of land use with automobile choice behavior. 

• Many land use measures have indirect causal connections with the automobile 

choice probability through travel time, which is congruous with the SEM results. 

• In short, conventional travel demand model and causal models support that land 

use measures directly affect individual mode choice behavior in varying degrees. 

There is also clear evidence from causal models that land use factors indirectly 

influence it through travel time. 
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• Land use measures at both trip ends generally encourage trip-makers to use non-

automobile modes as well as discourage them to use automobile modes even 

though several variations are observable. 

 

 For household automobile trip generation: 

• Based on the results of the negative binomial models, no land use measure in 

density, land use balance and network design at trip origin is significantly 

associated with household automobile trip frequency when travel cost and 

socioeconomic factors are controlled. It is consistent for all trip purposes, i.e. 

total, HBW and HBO trips 

• As a consequence, land use measures do not significantly contribute to the 

improvement of household automobile trip generation models for all travel 

purposes. 

• Similar to the results of travel demand models, both the SEMs and the DAGs 

show no evidence to support that land use measures at origin are direct causes of 

household automobile trip rates. 

• Instead, there is strong evidence based on the causal models that land use 

measures have indirect causal connections with household automobile trip 

frequency through travel cost per trip. It is valid for all trip purposes. 

• As a whole, density and design measures negatively affect travel cost per trip 

through which they have indirect causal relationships with the number of 
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household automobile trips. The argument is consistent for two different 

approaches to causal modeling and for all trip purposes with minor differences. 

• The results of two different causal modeling approaches are quite consistent. It 

implies that the theory for assumed causal relationships between land use and 

automobile trip rates are well established. 

• Due to the negative effect of travel cost on automobile trip frequency, reduced 

travel cost by high density and improved network design results in an increase in 

household automobile trip frequency. In this regard, it is questionable whether 

land use strategies are effective to manage household automobile trip generation 

in the HGAC region. 

• It should be noted that the argument may be plausible only if an aspect of land 

use and travel behavior connections is considered. The effects of land use should 

be evaluated with comprehensive investigations into the relationships between 

land use and various travel behavior measures including mode choice and VMT. 

 

  For household total VMT: 

• Regression models of household VMT indicate that land use factors are 

individually significant; they also collectively contribute to refining the 

household VMT models. Their significance in explaining household total VMT 

is justifiable for all travel purposes. 
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• Density and design measures at trip origin are significantly associated with the 

reduction in household VMT for total, HBW and HBO trips although minor 

variations exist. 

• Household VMT models in the SEMs are congruous with the regression models, 

supporting the significance of density and design factors based on the assumed 

causality. 

• Travel cost ($/mile) in the SEMs has negative relationship with population 

density and land use balance measures for all trip purposes. It is claimed that land 

use measures at origin directly affect household VMT as well as indirectly 

influence it through travel cost. 

• The DAGs exhibit that household VMT is not only positively caused by 

automobile trips and several socioeconomic factors, but also negatively affected 

by several land use measures, especially both density and design measures for all 

travel purposes.  

• Similar to the results of both the SEMs and the household automobile trip 

generation models, land use measures have no direct connections with household 

automobile trips. 

• Contrary to the results of the SEMs, travel cost ($/mile) is not a direct cause of 

household total VMT except for HBO trips. It is inferred that travel cost is an 

important factor for determining household VMT for shopping, social and 

recreational trips, but not for commuting trips. 
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• No land use measure causally influences travel cost per mile; rather, travel cost is 

affected by household socioeconomic factors. Hence, there is no evidence that 

land use measures have indirect causal relationships with household VMT via 

travel cost, which disagrees with the finding from the structural models. 

• In terms of the role of travel cost in household VMT models, there exists lack of 

consistency between assumed and data generated causal connections of travel 

cost with household VMT and land use measures. 

• To sum up, the results from different modeling strategies confirm that various 

land use patterns around residential locations are not only significantly 

associated, but also causally connected with household total VMT. Compact 

development with high density and improved network design significantly 

contribute to the reduction in household VMT despite several differences. 

 

6.2 Policy Implications 

 Consistently growing automobile dependence over past decades has resulted in a 

number of malign impacts on our economic, social and environmental system although 

some economic benefits are attributed to it. As a consequence, it has been adverse to our 

continuous efforts for sustainable development and transportation since late 1980s. 

Many studies suggested that land use and development pattern is one of main causes of 

automobile dependence (Newman and Kenworthy 1989b; Raad 1998; Lee 2006; VTPI 

2008a). Hence, policies and strategies related to land use and development have been 
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proposed to reduce automobile dependence as well as to accomplish the goals of 

sustainability. 

 Note in the study results that two variables in addition to various land use 

measures attract attention in relation to the public policy: bike use and single-family 

residence. Bike and walk are regarded as the most sustainable travel modes; therefore, 

they are strongly encouraged in most cities and metropolitan regions in terms of 

sustainability and public health. According to the study results, bike use is significantly 

associated with increased likelihood of choosing non-automobile modes and reduced 

probability of automobile mode choice. It is a direct cause of the reduction of automobile 

choice probability for both HBW and HBO trips. It is also presumed based on the theory 

to be closely connected with the reduction of household automobile trip rates and total 

VMT. The actual share of non-motorized modes is, however, very low compared with 

that of automobile modes in the HGAC region. 

 Currently, some efforts are being made to develop comprehensive pedestrian and 

bicyclist plans and programs and to prepare the bikeway network. They include livable 

centers project and transit and land use coordination (HGAC 2007). More collaborative 

and continuing researches and programs are needed for replacing automobile trips with 

non-motorized trips, connecting with transit mode, widening travel mode choice options, 

and enhancing pedestrian and bicyclist’s safety. It should be noted that higher land use 

density, better land use mix and balance and improved network design are a prerequisite 

for encouraging people to walk and bike to their destinations. 
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 Another factor that deserves attention is single-family residence indicating 

detached low-density housing for single-family households. Based on the results, it has 

significantly positive relationships with automobile choice probability and household 

automobile trips for almost all travel purposes. It also shows a direct causal relationship 

with automobile mode choice, and an indirect causality with household automobile trip 

rates and household VMT through household income. Single-family residential 

neighborhoods have three common characteristics especially located in suburban areas 

in the U.S (Knaap et al. 2007; Kopits et al. 2009). One is that most of them are detached 

and segregated from other land uses such as commercial areas and employment centers. 

Their development density is commonly very low in which the street network is 

curvilinear with lots of cul-de-sacs thus lack of connectivity. Moreover, the single-

family residential area frequently covers the largest proportion out of total developed 

area. The land use patterns represented by the neighborhoods serve as important 

indications of urban sprawl. Urban sprawl is considered unsustainable and undesirable 

attributes of urban land use and development patterns (Knaap et al. 2007). What is 

worse, there is evidence of self-reinforcing cycle of automobile dependence, auto-

oriented planning and sprawling land use (VTPI 2008a). 

 Based on common awareness of the issues of urban sprawl and growing 

automobile dependence, two remedies have historically been suggested: the planning- 

and market-oriented approaches. The former has paid attention to the role of land use 

planning and regulation to encourage denser, more diverse and pedestrian-friendly land 

use and development. The latter, however, has focused mainly on economic measures to 
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prevent sprawling land use and growing automobile uses, while arguing that land use 

and transportation linkage has been weakening. Conventional zoning and other local 

government land use regulations do not contributed to countering sprawling land use 

pattern and auto-dependent travels. Rather, it has been claimed that the government 

interventions led to lower density and separated land uses because they control building 

heights and uses, lot coverage, parking spaces and roadway width (Kopits et al. 2009; 

Levine 2006; Litman 2009). 

 In response, new strategies and policies have been proposed to integrate land use 

and transportation in planning field: smart growth and new urbanism. Smart growth 

generally focuses on the policy and planning, and new urbanism tends to focus on 

specific design practices (Handy et al. 2005; VTPI 2008b, 2008c, 2008d). But they have 

common objectives in transportation: increase the share of choosing non-automobile 

modes, decrease the number of automobile trips, and reduce vehicle miles of travel and 

increase vehicle occupancy (Cervero and Kockelman 1997). Specific land use policies 

include mixed-use zoning, form-based zoning code, cluster and infill development, 

brownfield development, transit-oriented development, and bicycle and pedestrian 

network (Handy et al. 2005; VTPI 2008b, 2008c, 2008d). They should be conducted in 

cooperation with local governments in the region that have authority for land use 

regulations and decisions. It should be also noted that some strategies may not be 

applicable to the cities and municipalities in the HGAC region where zoning codes are 

not established. 
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 Noteworthy is the market-enabling strategy proposed by Levine (2006). Similar 

to the land use policies proposed by new planning movements, it is skeptical about the 

role of zoning and other land use regulations in controlling urban sprawl and auto-

oriented trips. However, they are different in that the market-enabling strategy attributes 

the problems to planning failure, so land use policy reform is essential for overcoming 

obstacles to high-density, well-mixed and pedestrian-friendly areas. The land use 

regulatory reform finally results in an increase in individual and household choice in 

both travel and land use (Levine 2006; Levine and Inam 2004). Three types of policy 

reform are suggested: unchanging local government’s land use regulatory power but 

promoting compact development; economic incentives from higher-level of 

governments to encourage municipalities for compact development; and sharing land use 

authority with higher-level of governments. The approach provides important 

suggestions of land use policy reform ensuring alternative development for the HGAC 

region. 

 Connecting land use and transportation is not only a goal of the 2035 regional 

transportation plan (RTP), but it is also considered one of the most effective strategies to 

enhance mobility and accessibility and improve quality of life (HGAC 2007). How to 

measure and evaluate the current performance and the progress throughout the 

metropolitan area? Sustainable transportation indicators can help assess the progress and 

make decisions. Transportation sustainability guides to set up goals and select a set of 

measures, and indicators determine what should be measured to achieve the goals 

(Zietsman and Rilett 2002; STI 2008; Ramani et al. 2009). In terms of sustainability 
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goals of integrating land use and transportation, it is necessary for the HGAC to consider 

various land use measures such as density, land use mix and design measures.  

 One objective of the study is to convey implications for improving current 

transportation demand modeling of the HGAC region. This study introduces various 

land use measures that are computed within walking distance (one quarter-mile radius) 

of both trip origin and destination to reflect trip-maker’s surrounding context. These 

state-of-the-art methods of land use measurement lead to refining current travel demand 

forecasting models. They help ameliorate underestimated and biased estimators of the 

models due to lack of full array of land use factors into consideration. Another issue is 

that current regional travel demand models do not estimate the effect of neighborhood-

level land use and development on transportation demand. As Cervero (2006) suggested, 

either post-processing using elasticity estimates or direct modeling method is useful to 

capture the land use effects on travel demand in small-scale projects. 

 The HGAC region is made up of 13 counties containing 5.4 million residents and 

145 municipalities. It implies that proposed policies and programs can be successfully 

accomplished with close collaboration and elaborate coordination among the local 

governments and interest groups. The policy implications are still neither complete nor 

satisfactory for achieving the goals of sustainability in the region.  
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6.3 Limitations 

 The study sheds light on the significant land use effects on individual and 

household travel behavior. New methodology is introduced for analyzing causal 

relationships between land use and travel behavior. Land use characteristics are 

measured fully in three dimensions. They are also calibrated in quarter-mile buffers of 

both trip ends in order to represent trip-maker’s environment influencing travel 

decisions. Moreover, the entire set of explanatory variables is properly included in the 

model estimation of mode choice, automobile trip generation and VMT.  

 However, there are several limitations in this investigation. First, the household 

survey data and land use GIS data are not complete. Only 84% of planned survey total 

samples, and 6 counties out of 8 surveyed counties are included in the research due to 

data availability. Another weakness comes from causal modeling methodologies. Many 

latent variables shown with the bidirected edges mostly between land use variables 

cannot be clarified in the directed graphs. In addition, the issue of self-selection or 

unrevealed preferences is not properly addressed in the causal modeling. It is mainly 

because no questions related to travel attitudes and preferences are included in current 

regional travel survey. 
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A1. GIS Model for Computing Dissimilarity Index in the HGAC Region 
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A2. Spatial Distribution of Land Use Measures in the HGAC Region 

A2-1. Spatial Distribution of Population Density in the HGAC Region 
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A2-2. Spatial Distribution of Employment Density in the HGAC Region 
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A2-3. Spatial Distribution of Entropy Index in the HGAC Region 
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A2-4. Spatial Distribution of Dissimilarity Index in the HGAC Region 
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A2-5. Spatial Distribution of Connectivity Measure in the HGAC Region 



 

 

195

A2-6. Spatial Distribution of Road Length Measure in the HGAC Region 
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A3. Correlation Matrices for Individual Mode Choice Models 

A3-1. Correlation Matrix for HBW Trips (n = 6,239) 

 auto ttdAU bkus3 hhSi6 novh5 resS inc15 opd2 dpd2 oed2 ded2 ozdis dzdis ordln drdln oconn dconn
auto 1.000                 

ttdAU 0.094 1.000                
bkus3 -0.073 -0.004 1.000               
hhSi6 -0.004 0.187 0.030 1.000              
noVh5 0.070 0.130 0.014 0.476 1.000             
resS 0.092 0.049 0.017 0.144 0.244 1.000            
inc15 0.028 0.116 0.083 0.194 0.345 0.204 1.000           
opd2 -0.056 -0.152 -0.027 -0.115 -0.136 -0.159 -0.074 1.000          
dpd2 -0.024 -0.004 -0.002 -0.034 -0.056 -0.010 -0.044 0.224 1.000         
oed2 -0.149 -0.118 -0.025 -0.100 -0.118 -0.279 -0.043 0.314 0.071 1.000        
ded2 -0.031 0.092 -0.004 -0.015 -0.019 -0.019 0.091 0.067 -0.025 0.114 1.000       
ozdis -0.035 0.027 -0.042 0.037 -0.061 -0.192 -0.132 -0.071 -0.006 0.227 -0.004 1.000      
dzdis 0.005 -0.080 0.022 -0.004 -0.019 0.005 -0.030 0.005 0.224 0.011 -0.041 0.027 1.000     
ordln -0.040 -0.178 -0.016 -0.117 -0.123 -0.085 -0.058 0.571 0.164 0.316 0.076 -0.117 0.009 1.000    
drdln 0.004 0.119 -0.002 -0.041 -0.031 -0.001 0.025 0.201 0.374 0.107 0.259 -0.026 0.056 0.180 1.000   
oconn -0.034 -0.157 -0.025 -0.087 -0.090 -0.029 -0.123 0.286 0.073 0.178 0.016 -0.003 0.002 0.439 0.073 1.000  
dconn -0.014 0.037 -0.019 -0.028 -0.033 0.000 -0.033 0.116 0.166 0.065 0.253 -0.014 0.052 0.104 0.381 0.094 1.000

  Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
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A3-2. Correlation Matrix for HBO Trips (n = 10,413) 

 auto ttdAU bkus3 hhSi6 novh5 resS inc15 opd2 dpd2 oed2 ded2 ozdis dzdis ordln drdln oconn dconn
auto 1.000                 

ttdAU 0.074 1.000                
bkus3 -0.115 -0.052 1.000               
hhSi6 -0.044 0.048 0.196 1.000              
noVh5 0.078 0.107 0.027 0.454 1.000             
resS 0.047 -0.008 0.023 0.129 0.185 1.000            
inc15 0.052 0.079 0.123 0.317 0.404 0.194 1.000           
opd2 -0.043 -0.117 -0.049 -0.154 -0.178 -0.142 -0.072 1.000          
dpd2 -0.009 -0.042 -0.039 -0.094 -0.112 -0.091 -0.037 0.393 1.000         
oed2 -0.016 -0.058 -0.021 -0.136 -0.134 -0.268 -0.047 0.325 0.209 1.000        
ded2 0.010 0.108 -0.021 -0.046 -0.041 -0.034 -0.006 0.082 0.034 0.090 1.000       
ozdis -0.030 0.024 0.002 0.032 -0.060 -0.165 -0.115 -0.066 0.005 0.201 -0.011 1.000      
dzdis 0.042 -0.068 -0.010 -0.020 -0.038 0.004 -0.060 0.050 0.150 0.003 -0.072 0.073 1.000     
ordln -0.032 -0.126 -0.041 -0.137 -0.166 -0.032 -0.042 0.585 0.311 0.282 0.051 -0.102 0.037 1.000    
drdln 0.022 0.021 -0.087 -0.097 -0.065 -0.042 -0.012 0.266 0.369 0.164 0.162 -0.031 -0.043 0.288 1.000   
oconn -0.036 -0.084 -0.054 -0.103 -0.121 -0.011 -0.130 0.277 0.149 0.170 0.038 -0.002 0.068 0.420 0.114 1.000  
dconn 0.005 0.000 -0.033 -0.073 -0.052 -0.012 -0.080 0.098 0.164 0.075 0.137 0.032 0.004 0.088 0.305 0.161 1.000

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
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A4. Correlation Matrices for Household Automobile Trip Generation Models 

A4-1. Correlation Matrix for Total Trips (n = 3,976) 

 trips costpt hhSi6 novh5 resS inc15 opd2 oed2 oent ordln oconn 
trips 1.000           

costpt -0.199 1.000          
hhSi6 0.410 0.031 1.000         
novh5 0.371 0.134 0.474 1.000        
resS 0.128 0.024 0.147 0.211 1.000       

inc15 0.316 0.098 0.263 0.378 0.172 1.000      
opd2 -0.047 -0.164 -0.137 -0.164 -0.200 -0.074 1.000     
oed2 -0.043 -0.125 -0.120 -0.121 -0.287 -0.031 0.320 1.000    
oent -0.037 -0.032 0.029 -0.057 -0.130 -0.116 -0.008 0.198 1.000   
ordln -0.034 -0.195 -0.114 -0.149 -0.092 -0.055 0.578 0.298 -0.023 1.000  
oconn -0.040 -0.148 -0.087 -0.094 -0.029 -0.120 0.279 0.164 0.033 0.431 1.000 

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
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A4-2. Correlation Matrix for Total Home-based Trips (n = 3,973) 

 trips costpt hhSi6 novh5 resS inc15 opd2 oed2 oent ordln oconn 
trips 1.000           

costpt -0.140 1.000          
hhSi6 0.485 0.016 1.000         
novh5 0.434 0.146 0.474 1.000        
resS 0.138 0.034 0.146 0.211 1.000       

inc15 0.315 0.115 0.263 0.377 0.172 1.000      
opd2 -0.054 -0.183 -0.136 -0.163 -0.199 -0.073 1.000     
oed2 -0.050 -0.125 -0.120 -0.120 -0.286 -0.031 0.320 1.000    
oent -0.038 -0.035 0.030 -0.056 -0.129 -0.115 -0.009 0.197 1.000   
ordln -0.024 -0.214 -0.115 -0.149 -0.092 -0.054 0.578 0.299 -0.023 1.000  
oconn -0.031 -0.167 -0.087 -0.094 -0.028 -0.120 0.278 0.164 0.033 0.430 1.000 

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
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A4-3. Correlation Matrix for HBW Trips (n = 2,539) 

 trips costpt hhSi6 novh5 resS inc15 opd2 oed2 oent ordln oconn 
trips 1.000           

costpt -0.067 1.000          
hhSi6 0.193 0.107 1.000         
novh5 0.363 0.108 0.474 1.000        
resS 0.105 0.096 0.162 0.228 1.000       

inc15 0.136 0.111 0.222 0.321 0.186 1.000      
opd2 -0.010 -0.201 -0.132 -0.159 -0.192 -0.072 1.000     
oed2 -0.053 -0.147 -0.116 -0.119 -0.273 -0.030 0.321 1.000    
oent -0.043 -0.008 0.035 -0.034 -0.131 -0.111 -0.012 0.204 1.000   
ordln -0.001 -0.231 -0.137 -0.151 -0.103 -0.053 0.576 0.314 -0.049 1.000  
oconn -0.009 -0.202 -0.095 -0.095 -0.038 -0.124 0.285 0.172 0.022 0.436 1.000 

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
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A4-4. Correlation Matrix for HBO Trips (n = 3,461) 

 trips costpt hhSi6 novh5 resS inc15 opd2 oed2 oent ordln oconn 
trips 1.000           

costpt -0.138 1.000          
hhSi6 0.391 -0.058 1.000         
novh5 0.251 0.089 0.466 1.000        
resS 0.096 0.018 0.138 0.205 1.000       

inc15 0.209 0.043 0.282 0.385 0.182 1.000      
opd2 -0.032 -0.175 -0.140 -0.161 -0.184 -0.066 1.000     
oed2 -0.033 -0.088 -0.122 -0.122 -0.293 -0.032 0.323 1.000    
oent -0.006 -0.053 0.028 -0.057 -0.121 -0.108 -0.027 0.198 1.000   
ordln -0.013 -0.201 -0.107 -0.148 -0.078 -0.055 0.578 0.285 -0.032 1.000  
oconn -0.017 -0.135 -0.092 -0.096 -0.032 -0.128 0.279 0.160 0.022 0.429 1.000 

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
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A5. Correlation Matrices for Household Total VMT Models 

A5-1. Correlation Matrix for Total Trips (n = 3,976) 

 vmt costmi trips hhSi6 novh5 inc15 opd2 oed2 oent ordln oconn 
vmt 1.000           

costmi -0.019 1.000          
trips 0.573 -0.004 1.000         
hhSi6 0.330 0.082 0.410 1.000        
novh5 0.417 0.060 0.371 0.474 1.000       
inc15 0.345 0.077 0.316 0.263 0.378 1.000      
opd2 -0.172 -0.081 -0.047 -0.137 -0.164 -0.074 1.000     
oed2 -0.136 -0.025 -0.043 -0.120 -0.121 -0.031 0.320 1.000    
oent -0.033 -0.056 -0.037 0.029 -0.057 -0.116 -0.008 0.198 1.000   
ordln -0.173 -0.061 -0.034 -0.114 -0.149 -0.055 0.578 0.298 -0.023 1.000  
oconn -0.149 -0.038 -0.040 -0.087 -0.094 -0.120 0.279 0.164 0.033 0.431 1.000 

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 



 

 

203

A5-2. Correlation Matrix for Total Home-based Trips (n = 3,973) 

 vmt costmi trips hhSi6 novh5 inc15 opd2 oed2 oent ordln oconn 
vmt 1.000           

costmi -0.002 1.000          
trips 0.527 0.013 1.000         
hhSi6 0.326 0.078 0.485 1.000        
novh5 0.432 0.064 0.434 0.474 1.000       
inc15 0.324 0.075 0.315 0.263 0.377 1.000      
opd2 -0.189 -0.083 -0.054 -0.136 -0.163 -0.073 1.000     
oed2 -0.136 -0.030 -0.050 -0.120 -0.120 -0.031 0.320 1.000    
oent -0.026 -0.056 -0.038 0.030 -0.056 -0.115 -0.009 0.197 1.000   
ordln -0.182 -0.065 -0.024 -0.115 -0.149 -0.054 0.578 0.299 -0.023 1.000  
oconn -0.150 -0.041 -0.031 -0.087 -0.094 -0.120 0.278 0.164 0.033 0.430 1.000 

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
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A5-3. Correlation Matrix for HBW Trips (n = 2,539) 

 vmt costmi trips hhSi6 novh5 inc15 opd2 oed2 oent ordln oconn 
vmt 1.000           

costmi -0.028 1.000          
trips 0.480 0.021 1.000         
hhSi6 0.195 0.004 0.193 1.000        
novh5 0.297 0.069 0.363 0.474 1.000       
inc15 0.165 0.008 0.136 0.222 0.321 1.000      
opd2 -0.129 -0.076 -0.010 -0.132 -0.159 -0.072 1.000     
oed2 -0.146 -0.034 -0.053 -0.116 -0.119 -0.030 0.321 1.000    
oent 0.011 -0.023 -0.043 0.035 -0.034 -0.111 -0.012 0.204 1.000   
ordln -0.150 -0.060 -0.001 -0.137 -0.151 -0.053 0.576 0.314 -0.049 1.000  
oconn -0.164 -0.016 -0.009 -0.095 -0.095 -0.125 0.285 0.172 0.022 0.436 1.000 

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
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A5-4. Correlation Matrix for HBO Trips (n = 3,461) 

 vmt costmi trips hhSi6 novh5 inc15 opd2 oed2 oent ordln oconn 
vmt 1.000           

costmi -0.095 1.000          
trips 0.520 -0.034 1.000         
hhSi6 0.176 0.098 0.391 1.000        
novh5 0.253 0.033 0.251 0.466 1.000       
inc15 0.157 0.076 0.209 0.282 0.385 1.000      
opd2 -0.182 -0.044 -0.032 -0.140 -0.161 -0.066 1.000     
oed2 -0.105 -0.012 -0.033 -0.122 -0.122 -0.032 0.323 1.000    
oent -0.015 -0.048 -0.006 0.028 -0.057 -0.108 -0.027 0.198 1.000   
ordln -0.188 -0.034 -0.013 -0.107 -0.148 -0.055 0.578 0.285 -0.032 1.000  
oconn -0.118 -0.024 -0.017 -0.092 -0.096 -0.128 0.279 0.160 0.022 0.429 1.000 

Note: For identifying variable names, refer to DAGs for appropriate model and travel purpose. 
 



 

 

206

VITA 

Jae Su Lee 

Email: nowwater@gmail.com 
 

ADDRESS 
Raemian Bangbae ArtHill Apt. 109-603, Bangbae 3-dong, Seocho-gu, Seoul, Republic 
of Korea 137-936 
 

EDUCATION 
Ph.D. Urban and Regional Planning, Texas A&M University, 2009. 

M.S., Urban and Regional Planning, Seoul National University, Korea, 2001. 

B.S., Urban Engineering, University of Seoul, Korea, 1999. 
 

RESEARCH EXPERIENCE 

Graduate Research Assistant, Center for Air Quality Studies, Texas Transportation 
Institute, September 2006 – December 2009. 

Graduate Student Worker, Environmental Management, Texas Transportation Institute, 
July 2006 – August 2006. 

Graduate Research Assistant, Department of Landscape Architecture & Urban Planning, 
Texas A&M University, September 2005 – May 2006. 

Research Associate, Department of Urban Planning & Design, Seoul Development 
Institute, Seoul, Korea, January 2001 – July 2004. 

 

PUBLICATIONS 
Lee, J., and Li, M. (2009). The impact of detention basin design on residential property 

value: Case studies using GIS in the hedonic price modeling. Landscape and 
Urban Planning, 89(1-2), 7-16. 

Lee, S., and Lee, J. (2009). A study of the area management activities through the 
public/private partnership for sustainable urban generation: Case studies of 
core areas within large cities in Japan. Journal of Korea Planners Association, 
44(1), 45-59. 

Farzaneh, M., Lee, J., Ramani, T., Higgins, L., and Zietsman, J. (2009). Toward a green 
campus: A transportation strategy for Texas A&M University (Report 
SWUTC/09/167174-1). College Station, TX: Texas Transportation Institute. 


