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ABSTRACT

Sequential Monte Carlo Methods with Applications to Communication Channels.

(December 2009)

Sirish Boddikurapati, B.E., Andhra University

Chair of Advisory Committee: Dr. Henry Pfister

Estimating the state of a system from noisy measurements is a problem which

arises in a variety of scientific and industrial areas, including signal processing, com-

munications, statistics and econometrics. Recursive filtering is one way to achieve this

by incorporating noisy observations as they become available with prior knowledge

of the system model.

Bayesian methods provide a general framework for dynamic state estimation

problems. The central idea behind this recursive Bayesian estimation is computing

the probability density function of the state vector of the system conditioned on the

measurements. However, the optimal solution to this problem is often intractable

because it requires high-dimensional integration. There are many new methods of

filtering for the general case. The main emphasis of this thesis is on one such recently

developed filter, the particle filter.

A detailed introduction to particle filters is provided, as well as applications

to various communication channels. This thesis provides a particle filtering method

for calculating the capacity of wireless channels and the calculation of information

rates over optical fibers. Important conclusions are drawn for using particle filtering

methods in fiber optic channels.
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CHAPTER I

INTRODUCTION

A. Overview

In many application areas including signal processing, statistics, communications,

and econometrics, the observations of dynamic system are used to analyse the system

[1,2]. The analysis may be based on the values of the observations or on an underlying

state which is related to the observations made. Applications for the former include

monitoring of rainfall or the share values of companies. In this case, the past values

of observations will be studied in order to learn and predict the future values. Appli-

cations for the latter include tracking of a target moving in a two dimensional space,

when the observations are the bearings of the target at different times, corrupted by

some random noise. Here the underlying state can be either position or velocity of

the target. There are many approaches to this problem but a sequential analysis is

favored. In this approach, the current estimate of the state of the system is updated

based on the previous state estimate and the current measurement.

There are two major advantages with this approach. First, the computational

cost is much less because the analysis depends only on the previous state instead

of all past states. Secondly, the storage capacity required is much less. Only the

current posterior state estimate needs to be stored. But, the disadvantage of such an

approach will become apparent in cases where the posterior state estimate can not

be exactly calculated. In such cases, the estimation error of the posterior state may

get accumulated as the system evolves in time.

This thesis mainly deals with the analysis of dynamic systems with the underlying

The journal model is IEEE Transactions on Automatic Control.
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states being continuous or discrete. In particular, the use of sequential Monte Carlo

methods, which is a recently developed technique for use in filter theory, is studied

[2,3,4]. A new class of filters, called the Particle filter, are thus developed. The rest of

this chapter will discuss the Bayesian approach to filtering theory and the extension

to Sequential/Recursive Bayesian Estimation method that is the basis for a Particle

filter. The final section will give a brief outline of the rest of the thesis.

B. Bayesian Inference for Non-Linear Filtering

Bayesian methods form a rigorous general frame work for dynamic state estimation. In

the Bayesian framework, all the unknown quantities are treated as random variables.

A priori knowledge of the system is often available for the formulation of Bayesian

models. The basic approach of this method is to construct a posterior probability

density of the state based on all available information. Using Bayes’ theorem, a

posterior density can be computed from the prior distributions and the likelihood

function [5]. Inference of unknown quantities and their related statistics are made

based on the resultant posterior density. In reality, however, observations usually

occur sequentially in time and estimation of the unknown values is often required on-

line. This motivates the idea of updating the posterior distribution as the observation

data becomes available. Storing all the observational data may not be necessary

if the posterior distribution is updated sequentially in time. In recursive Bayesian

estimation [3], optimal solution is calculated from the a posterior density based on

certain cost function.

In linear systems with Gaussian process and measurement noise, an optimal

closed-form solution is the well-known Kalman filter [2,6]. However, in the case

of nonlinear or non-Gaussian problems, a closed form solution to problem is often
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intractable since it requires high dimensional integration. Therefore, approximate

non-linear filters [1,3] have been proposed. The most common approach is Extended

Kalman filter (EKF) [2,6], which approximates the model by a linearized version and

then use the optimal Kalman filter with this approximate model. The linearization

is done by using the Taylor series expansion for the non-linear terms. This filter

works well for weakly non-linear systems as the higher order terms in the expansion

can be considered negligible and the linear system effectively models the actual non-

linear system. But for high degree of non-linearity, the higher order terms can not

be considered negligible and this results in additional computational complexity [2,6].

Moreover, the EKF assumes Gaussian properties for the noise which is not always

the case with the real systems. There are many practical applications with non-

linear and non-Gaussian problems namely, localization of robots, estimating noisy

digital communications signals, image processing, and aircraft tracking using radar

measurements [1,3]. Numerical integration [1,3] is another approach that could be

used in non-linear, non-Gaussian cases but it is usually too computationally expensive

to be used in practical applications. Thus, the idea of Monte Carlo simulation based

filters came into being.

Although the idea of Monte Carlo simulation [3] originated in the late 1940s, its

popularity in the field of filtering started in 1993 starting with the algorithm pro-

posed by Gordon et al. [4]. The Monte Carlo technique [4,7,8] is a kind of stochastic

sampling approach aiming to tackle the complex systems which are analytically in-

tractable. The power of Monte Carlo methods is that they can approximate the

solutions of difficult numerical integration problems [4]. These methods fall into two

categories, namely, Markov chain Monte Carlo (MCMC) methods for batch signal

processing and Sequential Monte Carlo (SMC) methods for adaptive signal process-

ing.
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The Sequential Monte Carlo [7,8,9,10] approaches have attracted more and more

attention in different areas with many applications in signal processing, statistics,

machine learning, econometrics, automatic control, tracking, communications, biology

and many others. One of the attractive merits of these approaches lies in the fact

that they allow on-line estimation by combining the powerful Monte Carlo sampling

methods with Bayesian inference at an expense of reasonable computational cost [7,8].

The sequential Monte Carlo approach has been used in parameter estimation and state

estimation. This SMC approach is known variously as Particle Filtering, Boot-strap

filtering, Condensation Algorithm, and in more subtle words as, the Survival of the

Fittest [2,3,7,8,11,12,13].

In comparison with standard approximation methods, such as the EKF, the ad-

vantage of Particle filtering is that it does not involve linearizations around current

estimates. Instead, the representation of the desired distributions is approximated by

discrete random measures [7,8]. The basic idea of particle filter is to use a number

of independent random variables, called particles, that are sampled directly from the

state space to represent the posterior probability, and to update the posterior based

on the new observations; the particle system is properly located, weighted, and prop-

agated recursively according to the Bayesian rule [1,2,3,10]. Particle filtering methods

are not limited by nonlinearity and non-Gaussianity constraints and therefore have

the potential to push filtering theory beyond these challenges for many real-time

systems.

C. Thesis Outline

The main emphasis of the research is based on studying the particle filtering approach

to estimate the information sent over different communication channels including
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fading channels (flat), adaptive channels, and optical channels. A brief outline of the

subsequent chapters in this thesis is given:

Chapter II introduces the recursive Bayesian approach for estimating the state

of a system. The state-space model that will be used in this research is presented. It

also gives a little introduction to the different Monte Carlo methods. It also reviews

the different filtering techniques starting from the one proposed by Kalman and Bucy

in 1961.

Chapter III introduces the Particle filter. A detailed derivation of sequential

importance sampling (SIS), which is the basis for the particle filtering technique is

presented. The degeneracy phenomenon, resampling and choice of sampling density

in particle filter are emphasized. An example of particle filtering approach to a simple

non-linear system, taken from [2], is dealt and results are studied.

Chapter IV introduces to the application of particle filter in detecting a signal in

noisy environment through a flat faded wireless channel. The first few sections of the

chapter deals with the channel model. Then the general procedure of particle filtering

is discussed. The final section shows some simulation results to help understand the

application better.

Chapter V discusses the calculation of Information Rates using a particle filtering

approach. It describes the method used by Dauwels and Loeliger in [14] and extends

the theory to be applied to the adaptive channel that is introduced in the previous

chapter.

Chapter VI introduces the usage of filters for problems involving Stochastic Dif-

ferential Equations (SDEs). These kind of non-linear continuous-discrete filtering

problems have using Taylor series expansion based approximation methods for fil-

tering purposes, however the errors in approximations lead to limitations in some

real time applications. The recent discrete-time filtering algorithms, the unscented
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Kalman filter and particle filters, are introduced here for use in continuous-discrete

filtering problems by using the an example of tracking angular velocity of a simple

pendulum, a problem dealt previously by Simo Sarkka [15] and others.

Chapter VII introduces the propagation phenomenon through an optical fiber.

One of the method to calculate the capacity of the optical channel as discussed by

Essiambre and others in [16] is introduced for both QAM and ring constellations with

a root raised cosine modulation scheme.

Chapter VIII presents some conclusions, and highlights some areas of possible

future research in this field of filter theory.
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CHAPTER II

BAYESIAN FILTERING

Bayesian filtering is a branch of probability theory that models the uncertainty in the

world (e.g., the outcomes of interest) by combining prior knowledge and observational

evidence. Bayesian analysis, interpreting the probability as a conditional measure, is

one of the popular methods in many cases. However, for many problems in commu-

nications and signal processing, an estimate is required every time a measurement is

received. In these cases, a recursive filter is a convenient solution. A recursive filtering

approach means that received data is processed sequentially rather than as a batch

so that it is not necessary to store the complete data set or to reprocess existing data

if a new measurement becomes available.

In this chapter, an overview of the recursive Bayesian approach is provided. The

general mathematical formulation of the state-space model that will be studied in this

thesis will be presented next. Further, the optimal filtering technique, Kalman filter,

for a linear system in the presence of Gaussian noise is summarized. The concept of

Monte Carlo sampling for solving the intractable integrals is discussed. A detailed

derivation of sequential importance sampling (SIS) which is the basis for the particle

filtering technique is presented further in next chapter.

In Bayesian reference, all the uncertainties (including states, parameters, which

are either time-varying or fixed) are treated as random variables. The inference is

performed with in the Bayesian framework given all the available information. The

objective of Bayesian inference is to use the priors and causal knowledge, quantita-

tively and qualitatively, to infer the conditional probability, given a finite number of

observations related to the state of the system. There are usually three levels of the

probabilistic reasoning in Bayesian analysis. Starting with selecting a model given the
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data and assumed priors; estimating the parameters to fit the data given the model

and priors; and finally updating the parameters of the prior.

There are three types of intractable problems inherently related to the evaluation

of a posteriori density p(x|y) as given in [1].

• Normalization: Given the prior p(x) and likelihood p(y|x), the posterior

p(x|y) is obtained by the product of prior and likelihood divided by a nor-

malizing factor. The expression for the posterior p(x|y) is given by

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x)

dx. (2.1)

• Marginalization: Given the posterior p(x, z|y), where z is a variable that is

not of interest, the marginal posterior p(x|y) is calculated by

p(x|y) =

∫
p(x, z|y)dz. (2.2)

• Expectation: Given the conditional pdf p(x|y), the expectation of the function

f(x) can be calculated as

Ep(x|y)[f(x)] =

∫
f(x)p(x|y)dx. (2.3)

The recursive filtering approach means that received data is processed sequen-

tially so that it is not necessary to store the complete data set. A state space model

[2,6] must be used in such situations which is essentially a notational convenience

used for estimation and control problems. The recursive bayesian approach can be

better understood after introducing the state space model for such a problem.
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A. State Space Form

The state of the system generally refers to the dynamic variables such as position,

velocities and accelerations, which describe the physical state of the system. The noise

in the measurements means that the measurements are uncertain. This means that

even if the true state is known, the measurements will not be of deterministic form in

terms of the state. The time evolution of the state is modeled as a dynamic system,

which has a certain process noise. This noise is used for accounting the uncertainties

that are present in the system dynamics.

The following generalised state space form through out this thesis. A state x of a

dynamic system is assumed to change with time. To estimate the state of the system,

measurements are made on the system at discrete intervals of time {t1,t2,...}. The

state at time tk is denoted by xk and the corresponding measurement being denoted

by zk. The system model for such a system is given by

Xk = f(Xk−1, Vk). (2.4)

where f : RnX×RnV → RnX is the system evolution function and {Vk} represents a set

of random variables with a known distribution. This set accounts for the process noise

that is assumed to be in the system dynamics. Here nX and nV are the dimensions

of the state of the system and process noise respectively. At time t0, i.e. prior to any

measurement being taken, the state is assumed to be having a prior density of p(x0).

The measurement zk at time tk, drawn from the random variable Zk, is given by

the measurement model

Zk = h(Xk, Nk). (2.5)

where h : RnX × RnN → RnZ is the system evolution function and {nk} represents

the realization of noise in the measurements taken on the system. Here nX and nN
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are the dimensions of the state of the system and measurement noise respectively.

Also the sequences {Vk} and {Nk} are assumed to be independent of each other. The

functions f and h are assumed to be known and so are the distributions for the noise

terms explained above.

B. Recursive Bayesian Solution

The Bayesian approach to infer the information about the state, {Xk} at time tk, is

to calculate the posterior density conditional on the measurements available for the

system. If Zk = {z1, z2, z3, ..., zk} is the set of the available measurements till time k,

then the Bayesian solution is to find the posterior density of p(xk|Zk). This density

accounts for all the information that can learnt about the state of the system given

all the measurements until that point of time. Also, if this density is known, then

the optimal estimates of the state can be obtained. In other words, the estimate of

xk conditioned on the measurements Yk is given by the conditional expectation of xk

with Yk

E(xk|Yk) =

∫
xkp(xk|Zk)dxk. (2.6)

This can be extended to estimating functions of the state instead of the state itself,

i.e., if g(.) is a function of the state that needs to be analyzed, then we can use the

posterior density to calculate the optimal estimate of g(xk) as

E(g(xk)|Yk) =

∫
g(xk)p(xk|Zk)dxk. (2.7)

The key to calculating the posterior density for the state is Bayes’ theorem [14],

which states that

p(x|z) ∝ p(x)p(z|x). (2.8)

This means that the value of the posterior density for x conditioned on the
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measurement z is proportional to the prior value of x multiplied by the likelihood

function for the measurement given the state values. But the direct calculation of such

a posterior density has its own difficulties as it includes high-dimensional integration

and this will in turn result in a drastic increase in the computational cost. This can

be overcome by using a sequential scheme, called the recursive Bayesian filter [1].

The formulation of such a filter includes two stages, namely, the prediction stage and

the update stage. Two assumptions are used to derive the recursive Bayesian filter as

shown in [1]:

• The states follow a first-order Markov process i.e.,

p(xk|x0:k−1) = p(xk|xk−1) (2.9)

• The observation is conditionally independent of the given states, i.e.,

p(zk|x0:k) = p(zk|xk). (2.10)

1. Prediction Stage

The prediction stage uses the system model to predict the density function of the

state forward from one measurement time to the next. Since the state is usually

subject to unknown disturbances (modeled as random noise), the prediction generally

translates, deforms, and spreads the state density function. Specifically, given the

value of p(xk−1|z1:k−1), which is already available at time tk−1, this stage involves the

calculation of the pdf p(xk|z1:k−1). A detailed derivation for the state pdf prediction



12

is given below:

p(xk|z1:k−1) =
p(xk, z1:k−1)

p(z1:k−1)

=

∫∞
−∞ p(xk, xk−1, z1:k−1)dxk−1

p(z1:k−1)

=

∫∞
−∞ p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1

p(z1:k−1)

=

∫ ∞
−∞

p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1

=

∫ ∞
−∞

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.11)

The equation (2.11) is known as the Chapman-Kolmogorov (CK) equation [3]. It

is to be noted that the above derivation makes use of the assumptions made on the

Markovian states Eq (2.9) and the measurements Eq (2.10).

2. Update/Filter Stage

The update stage, as the name suggests, involves the update of the prediction density

(2.11) based on the latest measurement available at that time. Specifically, given the

measurement zk at time k, the update stage uses the following few steps to compute

the density p(xk|z1:k) via Bayes’ rule [3].

p(xk|z1:k) =
p(xk, z1:k)

p(z1:k)

=
p(zk|xk, z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)p(z1:k−1)

=
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(2.12)

where, the normalizing constant is given by

p(zk|z1:k−1) =

∫ ∞
−∞

p(zk|xk)p(xk|z1:k−1)dxk. (2.13)
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Fig. 1. Predict-update stages in recursive Bayesian estimation

The normalizing constant depends on the likelihood function p(zk|xk), defined

by the measurement model and the known statistics of measurement noise nk. These

prediction and update equations formulate a recursive Bayesian solution for the fil-

tering problem as depicted in Fig. 1.

The recursive relations described above can be easily solved for linear/Gaussian

systems. However, if the system under interest is nonlinear/non-Gaussian in nature,

the solution requires high dimensional integration and hence making the solution

highly intractable. Even storing the values of p(x) for x ∈ Rd, where d is the num-

ber of dimensions, becomes very hard to manage. In such cases, the approximate

solution is provided by several non-linear filters. But before discussing about the
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non-linear filtering, an understanding of filtering in linear/Gaussian systems is highly

recommended. One of the most important filters to be used in the linear/Gaussian

case is the Kalman Filter, which is the optimal solution when the state space model

is linear with uncorrelated Gaussian noise and a Gaussian prior is assumed. This

was introduced to the filtering world by Kalman and Bucy in 1961. The rest of this

chapter deals with a discussion of the Kalman Filter and its approximated versions

for use in non-linear systems.

C. Kalman Filter

The Kalman filter [6] is a linear, discrete-time filter which can be applied to stationary

and non-stationary environments recursively. In addition to eliminating the need for

storing the entire set of past observed data, the Kalman filter is computationally

more efficient than computing the estimate directly. It consists of a set of equations

that provides an efficient solution of the least-squares method recursively. It can

also provide estimates of the future states, and it can do so when the state of the

system is unknown. In other words, it provides the minimum variance estimate of

the state of the system by utilizing the information about the dynamic model and

the observations that are corrupted by uncorrelated gaussian noise.

Kalman filter assumes that the posterior density at every time step is Gaussian

and, hence parameterized by mean and covariance. To be able to apply the Kalman

filter, the following assumptions must hold (refer to Equation (2.4) and Equation (2.5)

for notation):

• Vk and Nk must be Gaussian random variables with known parameters.

• f(Xk−1, Vk) is known and is a linear function of xk−1 and vk.

• h(Xk, Nk) is known and is a linear function of xk and nk.
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So the state-space model for a system, which holds the above assumptions, can

be formulated using the Equation (2.4) and Equation (2.5),

xk = Fxk−1 + vk (2.14)

zk = Hxk + nk (2.15)

where F and H are known matrices defining the linear functions for state and mea-

surement equations respectively. The noise random variables are assumed to be sta-

tionary, white Gaussian processes with the zero-mean and the covariances of vk and

nk are denoted to be Qk and Rk respectively. Also it is assumed that the sequences

{Vk} and {Nk} are statistically independent,

E[vkv
H
l ] = δklQk, E[nkn

H
l ] = δklRk, E[vkn

H
l ] = 0, ∀k, l (2.16)

The noise random variables that account for both state and measurement models

are assumed to be completely uncorrelated.

1. The Kalman Filtering Algorithm

The algorithm follows the two steps, which were already introduced in the recursive

Bayesian section, the prediction step and the update step. In other words, it consists

of an iterative prediction-correction process [1]. In the prediction step, the time

update is taken where the one-step ahead prediction of observation is calculated; in

the correction step, the measurement update is taken where the correction to the

estimate of current state is calculated. The steps of the algorithm are summarized

next.

The state and measurement models, described by (2.14), will be utilized in eval-

uating the density function of the state as time updates, p(xk|xk−1), and the measure-

ment likelihood function, p(yk|xk), that needs to be updated after a new measurement
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is obtained. Since the state and measurement models are linear and are corrupted by

Gaussian noise sequences, these required probability density functions will be Gaus-

sian in nature,

p(xk|xk−1) = N(xk;mk|k, Qk) (2.17)

p(yk|xk) = N(yk; ŷk, Rk) (2.18)

where, N(x;m,P ) represents a Gaussian density function with argument x, mean m,

and covariance P . Also, the notation used for representing the mean of the state is

mi|j = E[xi|xj]. Mathematically,

N(x;m,P ) =
1√
2πP

exp{−1

2
(x−m)P−1(x−m)T} (2.19)

Now, the recursive bayesian solution for this problem can be obtained by using

the method described in Eq (2.11) - Eq (2.12),

p(xk−1|z1:k−1) = N(xk−1;mk−1|k−1, Pk−1|k−1) (2.20)

p(xk|z1:k−1) = N(xk;mk|k−1, Pk|k−1) (2.21)

p(xk|z1:k) = N(xk;mk|k, Pk|k) (2.22)

The basic algorithm of the Kalman filter is given below in Table I. Also a pictorial

view of the predictor-corrector algorithm for a Kalman filter is given in Fig. 2.

D. Non-linear Filtering

The preceding section of this chapter discusses the filtering techniques when the sys-

tem model is linear. Now, if a non-linear system model is considered, the techniques

used previously may lead to a very poor estimate of the system. There are many meth-

ods which are previously used like the Extended Kalman Filtering (EKF), Grid-based
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Table I. Kalman filtering algorithm

Initial Variables:

m0|0 = E[x0]

P0|0 = E[(x0 −m0|0)(x0 −m0|0)T ]

Prior State Densities (at time k):

mk|k−1 = Fkmk−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Measurement Likelihood update:

Innovation term: Sk = HkPk|k−1H
T
k +Rk

Kalman Gain: Kk = Pk|k−1H
T
k S
−1
k

Posterior State Density update:

mk|k = mk|k−1 +Kk(zk −Hkmk|k−1)

Pk|k = Pk|k−1 −KkHkPk|k−1
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Fig. 2. Predictor-corrector stages in Kalman filtering algorithm

filtering and the Unscented Kalman Filter (UKF). A more recent filtering method,

known as the particle filter, is also developed.

The Extended Kalman Filtering is the most commonly used approximate filter.

In this method, the system model is linearised and then the standard Kalman Fil-

tering is used on the linearised model. In this kind of filter, the state model and the

measurement model, given by Eq (2.4) and Eq (2.5), the equations may be non-linear

but differentiable functions. Instead of the non-linear functions for state and mea-

surement equations, a matrix of partial derivatives (the Jacobian) is computed. At

each timestep the Jacobian is evaluated with current predicted states thus linearizing

the non-linear function around the current estimate. These matrices can be used in

the Kalman filter equations like the general linear system model formulated in the

preceding section. However, there are some disadvantages with using the extended

Kalman filter as it is not an optimal method in estimating the state. Also, if the
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initial estimate of the state is poor, then the estimate may not converge due to the

error propagation.

Another type of non-linear filter that is a slight improvement to the extended

Kalman filter is the Unscented Kalman filter (UKF). In the UKF, the probability

densities are approximated by the non-linear transformation of a random variable

instead of using the Jacobians. This type of approximation leads to more accurate

results than the first-order Taylor expansion of the nonlinear functions in the EKF.

The approximation utilizes a set of sample points, which guarantees accuracy with

the posterior mean and covariance to the second order for any nonlinearity. It uses a

deterministic sampling technique known as the unscented transform to pick a minimal

set of sample points (called sigma points) around the mean. These are then propa-

gated through the non-linear functions and the mean and covariance of the estimate

are calculated.

E. Summary

The Kalman filter is the most often used recursive filtering solution in the linear

Gaussian case, but for non-linear or non-Gaussian models require additional approx-

imations as explained above. Though a number of approximate filters have been

developed for the non-linear/non-Gaussian models, these filters are not optimal un-

der highly non-linear models and all of them suffer from serious drawbacks. These

limitations in these filters gave rise to a new class of filters which make use of Monte

Carlo methods to high dimensional non-linear models. A number of Monte Carlo

filters have been developed across different fields of study. One of such filters is the

Particle filter, which will be discussed in the following chapters.
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CHAPTER III

THE PARTICLE FILTER

For non-linear dynamic systems, several methods for on-line filtering are introduced

in the previous chapter. But the main drawback for these filtering methods is that

they are developed based on the local linearization of the nonlinear system equations.

For example, the EKF works by linearizing the non-linear system and approximating

the noise as Gaussian.

Most dynamical systems in real applications are somewhat non-linear and non-

Gaussian in nature. This results in a significant challenge for engineers and scientists

to provide an efficient method for real-time estimation and prediction of these systems

from sequential observations. Recently, many researchers have begun to consider a

new class of filtering methods based on the sequential Monte Carlo (SMC) approach

[1,2,3]. The SMC approach can be defined as a set of methods that use a Monte Carlo

simulation scheme for solving online estimation and prediction problems.

Sequential Monte Carlo methods have found limited use in the past, except for the

last decade, primarily due to their relatively high computational complexity and the

lack of adequate computing resources. The fast advances of computers in the recent

years and outstanding potential of particle filters have made them a very active area

of research recently. The particle filter [3,4,7,8,9,10,11,12] is a sequential Monte Carlo

methodology based on the recursive computation of probability distributions. The

basic idea of particle filter is to use a number of independent random variables called

particles, sampled directly from the state space, to represent the posterior probability,

and update the posterior by involving the new observations; the particle system is

properly located, weighted, and propagated recursively according to the Bayesian

rule.
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The particle filters can be applied to any state space model and it generalizes the

Kalman filter. The advantage of particle filtering over other methods is in that the

chosen approximation does not involve linearizations around current estimates but

rather approximations in the representation of the desired distributions by discrete

random measures. The particle filters are best suited for non-linear state-space models

with non-Gaussian noise. They have found application in many areas such as channel

equalization, estimation and coding, wireless channel tracking, artificial intelligence,

speech enhancement, speech recognition, and machine learning.

A. Sequential Importance Sampling

In order to make Bayesian importance sampling more practical, it will be convenient

to calculate the particle weights recursively. The sequential importance sampling

(SIS) [2,3,4,7,8,11] algorithm is a Monte Carlo (MC) method that forms the basis

for most sequential MC filters developed over the past decades. It is a technique

for implementing a recursive Bayesian filter by MC simulations. The key idea is to

represent the required posterior density function by a set of random samples with

associated weights and to compute estimates based on these samples and weights.

As the number of samples becomes very large, this MC characterization becomes an

equivalent representation to the usual functional description of the posterior pdf, and

the SIS filter approaches the optimal Bayesian estimate.

Let {xi0:k, w
i
k} define a random discrete measure that approximates the posterior

pdf p(x0:k|z1:k). Where, {xi0:k; i = 1, ..., Ns} is a set of sample points with associated

weights {wik; i = 1, ..., Ns} and x0:k is the set of all states up to time k. The weights are

normalized such that
∑

iw
i
k = 1. By SIS algorithm, the set {xi0:k, w

i
k} is recursively

computed from the set {xi0:k−1, w
i
k−1}, when a new measurement zk is available at time
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k. Specifically, suppose at time k−1 the posterior pdf p(x0:k−1|z1:k−1) is approximated

by a random measure {xi0:k−1, w
i
k−1}, then SIS algorithm builds a random measure

by appending newly generated particles xik to the xi0:k−1 and updating the weights wik

to form {xi0:k, w
i
k} that properly represent the posterior pdf p(x0:k|z1:k). Then, the

posterior density at time k is approximated as [2]

p(x0:k|z1:k) =
Ns∑
i=1

wikδ(x0:k − xi0:k). (3.1)

The above equation represents the discrete weighted approximation to the true

posterior, p(x0:k|z1:k). The weights can be chosen using the principle of importance

sampling. If the samples xi0:k were drawn from an importance density q(x0:k|z1:k), the

weights are given by

wik ∝
p(xi0:k|z1:k)

q(xi0:k|z1:k)
. (3.2)

At each iteration by using the approximated p(x0:k−1|z1:k−1), and with a new set

of samples; the pdf p(x0:k|z1:k) is calculated. The importance density q(x0:k|z1:k) is

factorized as

q(x0:k|z1:k) =
q(x0:k, z1:k)

q(z1:k)

=
q(xk|x0:k−1, z1:k)q(x0:k−1, z1:k)

q(z1:k)

=
q(xk|x0:k−1, z1:k)q(zk|x0:k−1, z1:k−1)q(x0:k−1, z1:k−1)

q(zk|z1:k−1)q(z1:k−1)

= q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (3.3)

By the equation (3.3), the samples xi0:k ∼ q(x0:k|z1:k) are obtained by aug-

menting each of the existing samples xi0:k−1 ∼ q(x0:k−1|z1:k−1) with the new state
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xik ∼ q(xk|x0:k−1, z1:k). Then the pdf p(x0:k|z1:k) is expressed as,

p(x0:k|z1:k) =
p(x0:k, z1:k)

p(z1:k)

=
p(zk|x0:k, z1:k−1)p(x0:k, z1:k−1)

p(zk|z1:k−1)p(z1:k−1)

=
p(zk|x0:k, z1:k−1)p(xk|x0:k−1, z1:k−1)p(x0:k−1, z1:k−1)

p(zk|z1:k−1)p(z1:k−1)

=
p(zk|x0:k, z1:k−1)p(xk|x0:k−1, z1:k−1)p(x0:k−1|z1:k−1)

p(zk|z1:k−1)

=
p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1)

p(zk|z1:k−1)

p(x0:k|z1:k) ∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1) (3.4)

where p(zk|z1:k−1) is a normalized constant. Now substituting the equations (3.3) and

(3.4) in equation (3.2), then we have

wik = wik−1

p(zk|xik)p(xik|xik−1)

q(xik|xi0:k−1, z1:k)
. (3.5)

Furthermore, if q(xik|xi0:k−1, z1:k) = q(xik|xik−1, zk), then the importance density

depends only on xk−1 and zk. This is particularly useful in the common case when

only a filtered estimate of p(xk|z1:k) is required for each time step. Then the modified

weight is given by

wik = wik−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
. (3.6)

Then the required posterior filtered density p(xk|z1:k) is given by

p(xk|z1:k) =
Ns∑
i=1

wikδ(xk − xik). (3.7)

Thus the SIS algorithm consists of recursive propagation of weights and samples

as each measurement is received sequentially. A pseudo-code description of the SIS

algorithm is given below [2, 3].
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Algorithm 1 SIS Particle Filtering Algorithm

1: procedure SIS(xik−1, wik−1)

2: for i := 1 to Ns do

3: Draw xik ∼ q(xk|xik−1, zk)

4: Assign each particle with the importance weights according to Eq (3.6)

5: end for

6: Normalize all the importance weights so that they add up to unity.

7: end procedure

B. Degeneracy Phenomenon and Resampling in Particle Filters

In particle filters, the posterior probability is represented by a set of randomly chosen

weighted samples drawn from an importance density. However a common problem

with the sequential importance sampling is that after a few iterations, most particles

will have negligible weight. It means that the weight is concentrated on certain

particles only. This problem is called degeneracy problem [2,3,11,12].

The variance of the importance weights increases over time, thus making it im-

possible to avoid the degeneracy problem [7]. Effectively a large computational effect

is devoted to updating particles whose contribution to approximate the posterior pdf

is almost zero. A suitable measure of degeneracy of the algorithm is the effective

sample size [7,13], which is given by

Neff =
Ns

1 + V ar(w∗ik )
. (3.8)

where, w∗ik = p(xik|z1:k)/q(x
i
k|xik−1, zk). Thus the effective sample size cannot be

evaluated exactly, an estimate is calculated instead which is given by

N̂eff =
1∑Ns

i=1(wik)
2
. (3.9)
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A small Neff implies a severe degeneracy. There are three basic measures to

mitigate the degeneracy problem in particle filters,

1. by increasing the number of samples Ns,

2. resampling,

3. by a good choice of importance density.

The simplest method to mitigate the degeneracy effect is to use a very large

Ns. However it will result in a drastic increase in the computational load on the

system. The next section in this chapter discusses the method of resampling and

various techniques based on this method.

1. Resampling

Effects of degeneracy in particle filter is reduced by using resampling [13,17,18,19,20],

where the particles having small weights are eliminated and the particles with large

weights are replicated. At every step, the effective particle size is calculated. The

calculated effective size is compared with the predefined threshold, based on that the

resampling step will be carried out. All the particles after resampling have the same

weight 1/N . By this, the particles having large weight are repeated and particles

having less weight are eliminated. Thus, the samples are concentrated in the region

of interest. The resampling stage is depicted in the Fig. 3. From Fig. 3, it may be

seen that the diameters of the circles are proportional to the weights of the particles

and after resampling all the particles are having the same weight.

The resampling method can be briefly explained as follows. At every step, by

comparing the covariance of a set of samples drawn from the posterior and the co-

variance obtained through the use of importance sampling a measurement of the
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Fig. 3. Particle resampling with weights represented by size

sampling efficiency is obtained which in turn will give an expression for the effective

sample size. The calculated effective size is compared with the predefined threshold

and the resampling step is carried out based on that. The resampling stage involves

drawing of N samples from the a posteriori pdf with replacement. All the particles

after resampling will be assigned equal weight, 1/N . With this type of assignment,

the particles that have a large weight will be repeated a higher number of times

and particles having less weight are eliminated. Thus the samples will become more

concentrated in the region of interest. Fig. 3 explains this method pictorially.

Resampling involves a mapping of random measure {xik, wik} to {x∗ik , 1/N}. The

set of random samples {x∗ik } is generated by resampling (with replacement) N times

from an approximate discrete representation of p(xk|z1:k) with a probability, p(x∗ik =

xjk) = wjk. The resulting sample is an i.i.d sample from the posterior density p(xk|z1:k).

In Fig. 4, the acronym CSW stands for the cumulative sum of weights of the random

measure {xik, wik}, and random variable ui is uniformly distributed in the interval

[0, 1]. From Fig. 4, the main idea in the process of resampling is to select the new
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Fig. 4. Resampling process for a particle filter

particles by comparing an ordered set of uniformly distributed random numbers ui

lies in the interval [0, 1] with the cumulative sum of the normalized weights. It may be

seen that from Fig. 4 that the uniform random variable ui maps into index j and the

corresponding particle xjk has a good chance of being selected and multiplied because

of its high value of wjk. Two of the most efficient resampling techniques, systematic

resampling and residual resampling, are discussed in the next section.

2. Systematic Resampling

In systematic resampling [18,19], the interval is divided in N strata and one sample

is taken from every stratum as in stratified sampling, but the samples are no longer

independent: all the samples have the same position within a stratum. This gives the

minimal discrepancy for N samples. The algorithm is summarized below:
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Algorithm 2 Systematic Resampling Algorithm

1: Draw xik ∼ q(xk|xik−1, zk)

2: Obtain the N ordered random numbers uk using, uk = (k−1)+ũ
N

3: Allocate the ni copies of the particle xi to the new distribution, ni = the number

of uk ∈ [
∑i−1

s=1ws,
∑i

s=1ws)

3. Residual Resampling

Residual resampling [18,19] uses a somewhat different approach to resample. The

idea is that a large part of the number of offspring ni can be determined without re-

sorting to random numbers. This can be achieved by taking the integer part of Nwi.

To retain the original population size some more copies need to be made. These

residual particles are randomly selected with replacement from the original particles

using modified weights. The algorithm is summarized below:

Algorithm 3 Residual Resampling Algorithm

1: Allocate n′i = bNwic copies of particle xi to the new distribution

2: Resample m = N −
∑
n′i particles from {xi} by making n′′i copies of xi where the

probability for xi is proportional to w′i = Nwi − n′i

4. Generic Particle Filter

An algorithm of a generic particle filter based on the SIS method and resampling

technique discussed before is given below [2,3].

In this algorithm, the choice of the proposal or importance distribution is the

most critical design issue. It starts by sampling samples from the prior distribution

and calculates the first set of weights from the first measurement that is available.
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Algorithm 4 Generic Particle Filtering Algorithm

1: procedure PF(xik−1, wik−1)

2: for i := 1 to Ns do

3: Draw xik ∼ q(xk|xik−1, zk)

4: Assign each particle with the importance weights according to Eq (3.6)

5: end for

6: Normalize all the importance weights so that they add up to unity.

7: Calculate effective sample size Neff by using the Eq (3.9)

8: if Neff < NT then

9: Resample using systematic or residual technique

10: end if

11: end procedure

This step accounts for the predictor stage of the algorithm. In each iteration the

samples are drawn according to a selected importance distribution. Then, the weights

are updated by using the selected proposal distribution and the drawn samples. This

steps represents the update stage. A pictorial representation of this algorithm can be

depicted as shown in Fig. 5.

From Fig. 5, it can be seen that the particles are modified by the importance

density function. The higher the probability, the denser the particles become con-

centrated. The effective size of all the particles is calculated. If the effective size is

less than the predefined threshold, then the resampling step is carried out. After re-

sampling, all the particles will be assigned the same weight. Then the Particle Filter

algorithm is applied using the new particles to progress through to the next stage of

particle system.

Although the resampling step reduces the effects of the degeneracy problem, it
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Fig. 5. Generic particle filter with resampling

introduces other problems. First, it limits the opportunity to parallelize the imple-

mentation since all the particles must be combined. Second, the particles that have

high weights are statistically selected many times, this lead to a loss of diversity among

the particles as the resultant sample will contain many repeated points. This problem

is known as sample impoverishment [1,3]. There are techniques namely Markov chain

Monte Carlo (MCMC) [3], regularization [3] method to reduce the effect of sample

impoverishment.

C. Choice of Importance Density

The choice of the sampling density of the algorithm affects the quality of the state

estimate significantly [2,3,12]. However there are number of choices for the sampling

density. The sampling density must fulfill a criterion to ensure convergence of the

estimates as number of samples Ns becomes large. Further, the shape of the sampling

density must be as close to the true filtering pdf as possible and it should guarantee
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a minimum variance. The sampling density should also be as simple with respect to

the weights evaluation as possible. The most often used sampling density is the Prior

Density, p(xk|xk−1).

1. Prior Importance Function

This sampling density is frequently used due to its simplicity and easy weight compu-

tation. Here the current estimate is ignored during drawing of samples and thus low

quality estimates will be obtained. The prior sampling density takes the form [2,3],

q(xik|xik−1, zk) = p(xik|xik−1) (3.10)

Substituting this equation in the Eq (3.6), we get,

wik ∝ wik−1p(zk|xik) (3.11)

If the transitional prior, p(xik|xik−1), is used as the importance density and if it has

a much broader distribution than the likelihood function, p(zk|xk), then only a few

particles will be assigned a high weight. Consequently, the particles will degenerate

rapidly and the filter does not work. The particles should be in the right place (in

the regions of high likelihood) by incorporating the current observation, then only

efficient estimate is obtained through the particle filter algorithm.

2. Optimal Sampling Density

Instead of sampling the state from the prior distribution, a more evenly distributed

set of weights can be sampled by using a different proposal density or importance

function. If such a sampling density is chosen to minimize the variance of weights

[7], so that effective sample size is maximized, then it is said to be optimal sampling
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density. This sampling density will then assume the form,

q(xik|xik−1, zk)opt = p(xik|xik−1, zk)

=
p(xik, x

i
k−1, zk)

p(xik−1, zk)

=
p(zk|xik, xik−1)p(xik, x

i
k−1)

p(zk|xik−1)p(xik−1)

q(xik|xik−1, zk)opt =
p(zk|xik, xik−1)p(xik|xik−1)

p(zk|xik−1)
(3.12)

Substituting this equation in the Eq (3.6), we get,

wik ∝ wik−1

∫
p(zk|x′k)p(x′k|x′k−1)dx′k (3.13)

The above chosen optimal density has two limitations. It requires sampling from

the pdf p(xik|xik−1, zk) and the evaluation of integral expression (3.13) which cannot

be done easily. When xk belongs to a finite set, then the integral expression become

a sum, and sampling from the optimal importance density becomes possible.

Consider the case where the state dynamics is nonlinear, the measurement equa-

tion is linear, and all the random elements in the model are additive Gaussian. It can

be shown that in this case, both the optimal importance density and the likelihood

equation are Gaussian. The proof for such a model is shown in Appendix A.

D. Sampling Importance Resampling (SIR) Particle Filter

The Sampling Importance Sampling (SIR) appproach proposed by Gordon [2,3,4] is

illustrated in this section. The SIR filter is a special case of the SIS algorithm. It is

a Monte Carlo method that can be applied to recursive Bayesian filtering problems.

The SIR algorithm is rather straightforward and can be derived easily from the SIS

algorithm by an appropriate choice of the importance density and the resampling
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step. Here we use the prior transition density, p(xik|xik−1), as the importance func-

tion owing to its convenient usage and easy computation. The resampling is done

at every step of the time index instead of comparing it to a threshold as is the case

with other particle filters. The algorithm for a simple SIR particle filter is given below.

Algorithm 5 SIR Particle Filtering Algorithm

1: procedure SIRPF(xik−1, wik−1)

2: for i := 1 to Ns do

3: Draw xik ∼ p(xk|xik−1)

4: Assign each particle with the importance weights according to Eq (3.6)

5: end for

6: Normalize all the importance weights so that they add up to unity.

7: Resample using systematic or residual technique

8: end procedure

E. Methods of Improving Particle Filters

Many particle filter algorithms have been proposed by various scientists and engineers

to compensate for the drawbacks of the particle degeneracy and sample impoverish-

ment which are the major bottlenecks for the particle filters. Some of the methods

that have been used to improve the performance of the particle filter include the

following.

1. Choice of Proposal Distribution

A first method for choosing an optimal importance density involves in maximizing

the effective sample size Neff . In this method, the optimal density function is chosen
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such that it minimizes the variance of the weights as the time index progresses.

However, the calculation of the optimal important density requires to evaluate an

multi-dimensional integral that is discussed in the previous section.

2. Local Linearization

An optimal importance density can be approximated by using the most current mea-

surement through a set of the standard nonlinear filters. The approximated density

propagates the particles towards the likelihood function and consequently the hybrid

particle filter performs better than the SIR filter.

3. Regularization

Though the resampling reduces the effects of the degeneracy phenomena, it causes

other practical problems, as discussed before, called sample impoverishment. A mod-

ified particle filtering algorithm in which the resampling process is performed upon

a kernel-based density estimation can be a potential solution to handle the sample

impoverish effect.

4. MCMC Move

Markov chain Monte Carlo (MCMC) methods provide a relatively easy way of gener-

ating samples from any probability distribution. It can also be a potential solution to

the sample impoverishment in resampling step as well as the regularization scheme.

5. Rao-Blackwellization

In some cases, the components of the model may have linear dynamics and can be

well estimated using a conventional Kalman filter. The Kalman filter is combined

with a particle filter to reduce the number of particles needed to obtain a given level
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of performance. This method can reduce the variance of the MC estimates as well as

the number of samples.

F. Simulation Results

The following nonlinear state space model is considered for the simulation of sampling

importance resampling (SIR) filter, which is given by [2]

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos(1.2k) + vk−1 (3.14)

zk =
x2
k

20
+ nk (3.15)

From the state space model (3.14), the prior density p(xk|xk−1) and the likelihood

function p(zk|xk) are respectively given by

p(xk|xk−1) = N(xk; fk(xk−1, k), Qk−1) (3.16)

p(zk|xk) = N(zk;
x2
k

20
, Rk) (3.17)

It is assumed that the noise random variables nk and vk−1 are zero mean Gaussian

random variables with variances Qk−1 and Rk respectively. For the simulation of SIR

filter in the MATLAB environment, the following parameters are used.

• Noise variances are and respectively.

• Number of states M =100

• Number of particles N=50,100

• Number of Monte Carlo runs=1000

The samples {xik}Ni=1 and the corresponding weights {wik}Ni=1 are generated using

the SIR particle filter algorithm discussed in the previous section. The estimate of the
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state at each time instant k is calculated by using the set of samples and corresponding

weights, which is given by the sum of products of samples and corresponding weights.

xkest =
N∑
i=1

xikw
i
k (3.18)

To obtain a performance measure on the process of state estimation, the Root

Mean Square Error (RMSE) measure of the true state with respect to the estimated

state is computed. It is given by the expression

RMSE =

√√√√ 1

M

M∑
i=1

(xk − xkest). (3.19)

Fig. 6 shows 100 true values of the state xk as a function of time k. Fig. 7 shows the

Fig. 6. True state xk as a function of time k

100 measurements zk as a function of time k.

Fig. 8 shows the estimated state and true state for comparison. In this case, SIR
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Fig. 7. Measurements zk as a function of time k

Fig. 8. True state xk and estimated state x′k using 50 particles
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filter uses 50 particles for estimating the state. The RMSE of SIR filter is obtained

by averaging over 1000 independent realizations and is found to be 9.6144.

Fig. 9. True state xk and estimated state x′k using 100 particles

Fig. 9 shows the estimated state of the SIR filter when 100 particles are used.

For comparison, we have also plotted the true states. It may be noted here that

there is a close similarity between the true states and estimated states by SIR filter.

The RMSE of SIR filter is found to be 5.9006, which represents for a considerable

improvement over the RMSE for 50 paricles only.

It is observed that there is a very high degree of improvement in the RMSE when

100 particles are used. So, the higher the number of particles used the lower will be

the RMSE.
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CHAPTER IV

DETECTION IN FLAT-FADING CHANNEL USING PARTICLE FILTER

In the transmission of digital information over a communication channel, which is

fading dispersive, the interference to the signal is mainly caused by delayed versions

of the original signal [21,22]. The optimal detection scheme for such a channel, with

known characteristics, is the maximum-likelihood sequence estimation (MLSE) de-

tector [21,23]. It finds the best symbol vector that minimizes the Euclidean distance

with respect to the received signal, but its complexity increases exponentially with

the dimension of the parameter to be estimated. There are other alternatives, which

require only linear complexity, like the zero-forcing (ZF) detector and the minimum

mean square error (MMSE) detector [21]. However, they provide only sub-optimal

performance with respect to the error probabilities. Most of sub-optimal algorithms

include a two stage receiver structure with a channel estimation stage followed by

a sequence detection stage. J.K. Cavers [24] suggested a pilot method for detection

of signals in fading channels. But the transmission of pilot requires bandwidth and

will decrease the communication throughput causing significant overhead problem. A

novel adaptive Bayesian receiver for signal detection and decoding in fading channels

with unknown channel statistics is presented in [25]. It is based on the sequential

Monte Carlo methodology that has recently emerged in the field of statistics. The

basic idea is to treat the transmitted signals as missing data and to sequentially im-

pute multiple samples of them based on the observed signals. The imputed signal

sequences, together with their importance weights, provide a way to approximate the

Bayesian estimate of the transmitted signals [25]. This SMC technique easily han-

dles the non-Gaussian ambient channel noise, without the use of any training/pilot

symbols or decision feedback. In this chapter, a derivation of the state space model
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of SISO system when fading coefficients are modeled by both auto regressive-moving

average (ARMA) and auto regressive (AR) processes is presented. The derivation of

an efficient particle filter algorithm for such a problem is presented later. Also the

application of the residual resampling algorithm and effect of the delayed estimation

approach are also discussed with the simulation results at the end.

A. Signal Model

Consider a communication system signalling through a flat fading channel with ad-

ditive ambient noise as given in Fig. 10 [17,25]. As Fig. 10 shows, the input binary

Fig. 10. Communication system model over a flat fading channel

information bits {bt} are passed to a symbol mapper yielding complex data symbols

{st}, which take a finite value from the alphabet set A = {a1, a2, ..., a|A|}. Each sym-

bol is transmitted through a flat-fading channel, where it is multiplied by a fading

channel coefficient with the addition of ambient channel noise. The received signal yt

is given by

yt = αtst + nt (4.1)
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as shown in [17,25], where, αt represents the fading channel coefficient at time t, st

represents the transmitted symbol at that time, and nt represents the additive noise

of the channel at that time. Here t = 0, 1, .... These processes {αt}, {st}, and{nt}

are assumed to be mutually independent. It is assumed that the additive noise nt

in Eq (4.1) is a sequence of independent and identically distributed (i.i.d) zero-mean

complex random variables.

In this work, two types of noise distributions are considered. In the first type,

{nt} assumes a complex Gaussian distribution of zero mean and variance σ2 given by

nt ∼ Nc(0, σ
2). (4.2)

In the second type of distribution, {nt} assumes Middeleton Class A noise model

[9,26] for modeling a non-Gaussian distribution. This particular noise model has been

extensively used for physical noise in radio and acoustic channels. Here, {nt} takes

the form of a two-term mixture Gaussian distribution [9]

nt ∼ (1− ε)Nc(0, ς
2) + εNc(0, kς

2), (4.3)

where, Nc(0, ς
2) represents the normal ambient noise, Nc(0, kς

2) represents an impul-

sive component, ε is the probability that impulsive pulses can occur, and k is positive

integer with k > 1.

It is further assumed that the channel-fading process is Rayleigh i.e., the fading

coefficients {αt} form a complex Gaussian process [25]. Also the fading process is

modelled here by the output of a Butterworth filter driven by white Gaussian noise.
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1. Fading Coefficients as ARMA Process

The generalized form of an ARMA process of order (r, r) is given by

φrαt−r + ....+ φ1αt−1 + αt = θ0ut + θ1ut−1 + ...+ θrut−r (4.4)

where {ut} is a white complex Gaussian noise sequence with independent real and

complex components. The ARMA coefficients, {φi}, {θi}, and the order r of the

Butterworth filter, are chosen so that the transfer function of the filter matches the

power spectral density of the fading process, which in turn, is determined by the

channel Doppler frequency [25]. By assuming that the statistical properties of the

fading process are known a priori, the order and the coefficients of the Butterworth

filter are known. Define the state variable xt such that

xt = −φrαt−r − ....− φ1αt−1 − αt + ut. (4.5)

By writing the Eq (4.5) in matrix form, we get,

xt

xt−1

:

:

xt−r


=



−φ1 −φ2 ... −φr 0

1 0 ... 0 0

0 1 ... 0 0

: : ::: : 0

0 0 ::: 1 0





xt−1

xt−2

:

:

xt−r−1


+



1

0

:

:

0


ut

Let xt
∆
= [xt xt−1 xt−2 ... xt−r]

T . From the matrix form the state equation can be

shown as

xt = Fxt−1 + gut (4.6)

where, ut ∼ Nc(0, 1). Now, from Eq (4.5) and Eq (4.4), we get

αt = θ0xt + θ1xt−1 + ...+ θrxt−r. (4.7)
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The Eq (4.7) can be written in matrix form as shown below

αt =

[
θ0 θ1 θ2 ... θr

]


xt

xt−1

:

:

xt−r


Define h = [θ0 θ1 θ2 ... θr]

H . Then the value of αt is given by

αt = hHxt. (4.8)

Using Eq (4.8) and Eq (4.1), the state-space model for the system with additive

Gaussian noise can be formulated as:

xt = Fxt−1 + gut (4.9)

yt = sth
Hxt + σvt (4.10)

where {vt} is a white complex Gaussian noise sequence with unit variance and in-

dependent real and imaginary components. If the additive noise in Eq (4.1) is non-

Gaussian and is modeled by Eq (4.3), then an indicator random variable It is used to

model the state-space model. The indicator variable is defined by

It =


1, if nt ∼ Nc(0, ς

2)

2, if nt ∼ Nc(0, kς
2)

(4.11)
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with p(It = 1) = (1 − ε) and p(It = 2) = ε. Let σ2
1 = ς2 and σ2

2 = kς2, then the

state-space model can be given by

xt = Fxt−1 + gut (4.12)

yt = sth
Hxt + σItvt (4.13)

2. Fading Coefficients as an AR Process

The generalized form of an Autoregression process of order r is given by

φrαt−r + ....+ φ1αt−1 + αt = ut (4.14)

where {ut} is a white complex Gaussian noise sequence with independent real and

complex components; {φi} are called the AR coefficients [25].

Let xt
∆
= [xt xt−1 xt−2 ... xt−r]

T . Using a similar procedure as in the ARMA

process, we have the following state-space form:

xt = Fxt−1 + gut (4.15)

where,

F =



−φ1 −φ2 ... −φr 0

1 0 ... 0 0

0 1 ... 0 0

: : ::: : 0

0 0 ::: 1 0


g =

[
1 0 ... 0 0

]T
and ut ∼ Nc(0, 1). Now, from Eq (4.5) and Eq (4.14), we get,

αt = xt (4.16)
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The Eq (4.16) can be written in matrix form as shown below,

αt =

[
1 0 0 ... 0

]


xt

xt−1

:

:

xt−r


Define h = [1 0 0 ... 0]H . Then the value of αt is given by

αt = hHxt (4.17)

Using Eq (4.17) and Eq (4.1), the state-space model for the system with additive

Gaussian noise can be formulated as:

xt = Fxt−1 + gut (4.18)

yt = sth
Hxt + σvt (4.19)

where {vt} is a white complex Gaussian noise sequence with unit variance and inde-

pendent real and imaginary components.

Similarly for the non-Gaussian case, we have,

xt = Fxt−1 + gut (4.20)

yt = sth
Hxt + σItvt (4.21)

B. Particle Filtering Method

Consider the flat-fading channel with additive Gaussian noise given by Eq (4.9). Let

Yt = (y1, y2, ..., yt) be the received data and St = (s1, s2, ..., st) be the transmitted

data up to time t respectively. Statement of the Problem: To estimate the a
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posteriori probabilities of the information symbols

p(st = ai|Yt), ai ∈ A

based on the received signals Yt and the a priori symbol probabilities p(st = ai),

without the knowledge of channel coefficients αt = hHxt. Consider M-ary phase-shift

keying (MPSK) signals are transmitted i.e.,

ai = exp(j
2πi

|A|
), i = 0, 1, ..., |A| − 1 (4.22)

Assume that the transmitted symbols are independent and equiprobable i.e.,

p(st = ai|St−1) = p(st = ai), ai ∈ A

p(st = ai) =
1

|A|
, i = 0, 1, ..., |A| − 1 (4.23)

In order to implement the particle filter (with m particles), a set of Monte Carlo sam-

ples of the transmitted symbols {S(j)
t }mj=1 with its corresponding importance weights

{w(j)
t }mj=1, properly weighted with respect to the distribution p(St|Yt), are to be com-

puted. Let the optimal sampling density, discussed in the previous chapter, as the

importance function. We have

q(st|S(j)
t−1,Yt) = p(st|S(j)

t−1,Yt). (4.24)

With this choice of sampling density, the importance weights are updated according

to the equation

w
(j)
t ∝ w

(j)
t−1

∑
ai∈A

ρ
(j)
t,i (4.25)

where, ρ
(j)
t,i = p(yt|st = ai,S

(j)
t−1,Yt−1)p(st = ai). This is obtained by a similar deriva-

tion discussed in the section on Importance sampling densities in the previous chapter.
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Now, consider the expression for sampling density,

p(st|S(j)
t−1,Yt) = p(st|S(j)

t−1, yt,Yt−1)

=
p(st,S

(j)
t−1, yt,Yt−1)

p(S
(j)
t−1, yt,Yt−1)

=
p(yt|st,S(j)

t−1,Yt−1)p(st,S
(j)
t−1,Yt−1)

p(yt|S(j)
t−1,Yt−1)p(S

(j)
t−1,Yt−1)

=
p(yt|st,S(j)

t−1,Yt−1)p(st|S(j)
t−1,Yt−1)

p(yt|S(j)
t−1,Yt−1)

∝ p(yt|st,S(j)
t−1,Yt−1)p(st|S(j)

t−1,Yt−1)

∝ p(yt|st = ai,S
(j)
t−1,Yt−1)p(st = ai) (See Eq (4.23))

p(st|S(j)
t−1,Yt) ∝ ρ

(j)
t,i . (4.26)

From the state-space model of the system, it can be seen that the density p(yt|st =

ai,S
(j)
t−1,Yt−1) is Gaussian and its mean and variance is calculated using the Kalman

filtering algorithm,

p(yt|st = ai,S
(j)
t−1,Yt−1) ∼ Nc(µt,Σt) (4.27)

The entire derivation for the application of the Kalman filtering algorithm to estimate

the sampling density, p(yt|st = ai,S
(j)
t−1,Yt−1), is provided in the Appendix. For each

ai ∈ A, the a posteriori symbol probability, p(st = ai|Yt), can be estimated as [6,9],

p(st = ai|Yt) = E{δ(st = ai)|Yt}

≈ 1

Wt

m∑
j=1

δ(st = ai)w
(j)
t , i = 1, ..., |A| (4.28)

where, Wt =
∑m

j=1 w
(j)
t . The decision on the symbol st is obtained as,

ŝt = arg max
ai∈A

p(st = ai|Yt)

≈ arg max
ai∈A

m∑
j=1

δ(st = ai)w
(j)
t (4.29)
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The particle filter algorithm for generating the sequential Monte Carlo samples of

transmitted symbols {S(j)
t }mj=1 with corresponding importance weights {w(j)

t }mj=1 and

the Kalman filter update are given in the following algorithm as shown by Xiodong

Wang, Rong Chen and Jun Liu [25]. Detailed derivations of all equations in the

algorithm are provided in Appendix A.

C. Delayed Estimation

Since the fading process is highly correlated, the future received signals contain the

information about current data and channel state. A delayed estimate is usually more

accurate than the concurrent estimate. In delayed estimation [25], instead of making

inference on (xt, st) instantaneously with posterior distribution p(xt, st|Yt), delay this

inference to a later time (t + ∆), ∆ > 0, with the distribution p(xt, st|Yt+∆). There

are two types of delayed estimation: the delayed-weight method [25] and the delayed-

sample method [25].

Delayed-weight method: If the set {S(j)
t , w

(j)
t }mj=1 is properly weighted with respect

to p(St|Yt), then by induction, the set {S(j)
t+δ, w

(j)
t+δ}mj=1 is properly weighted with

respect to p(St+δ|Yt+δ). Hence, by focussing on St at time (t + δ), the delayed

estimate of the symbol can be obtained as

p(st = ai|Yt+δ) ≈
1

Wt+δ

m∑
j=1

δ(s
(j)
t = ai)w

(j)
t+δ, i = 1, 2, ..., |A| (4.30)

given in [25], where Wt+δ =
∑m

j=1w
(j)
t+δ. Since the weights {w(j)

t+δ}mj=1 contain the infor-

mation about the signals (yt+1, ..., yt+δ), the estimate in Eq (4.30) is usually more accu-

rate. However, this method requires some extra memory for storing {s(j)
t+1, ..., s

(j)
t+δ}mj=1.

Delayed-sample method: An alternative method is to generate both the delayed

samples and the weights based on the signals Yt+∆, hence making the target distri-
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Algorithm 6 Kalman-Particle Filter Algorithm

1: Kalman filter and importance weights are initialized as, k
(j)
0 =(µ

(j)
0 ,Σ

(j)
0 ), with

µ
(j)
0 = 0 and Σ

(j)
0 = 2Σ, w

(j)
0 = 1, j = 1, 2...,m

2: One step predictive update of the Kalman filter,

K
(j)
t = FΣ

(j)
t−1F

H + ggH

γ
(j)
t = hHK

(j)
t h + σ2

η
(j)
t = hHFµ

(j)
t−1

3: Compute the Trial sampling density, i.e., for each ai ∈ A, we have,

p(yt|st = ai,S
(j)
t−1,Yt−1) ∼ Nc(aiη

(j)
t , γ

(j)
t )

4: Draw s
(j)
t from the set A with probability,

p(s
(j)
t = ai) ∝ ρ

(j)
t,i , ai ∈ A

Append s
(j)
t to S

(j)
t−1 and obtain S

(j)
t

5: Compute the importance weights:

w
(j)
t ∝ w

(j)
t−1.

∑
ai∈A

ρ
(j)
t,i

6: One step filtering update of Kalman filter,

µ
(j)
t = Fµ

(j)
t−1 +

1

γ
(j)
t

(yt − s(j)
t η

(j)
t )K

(j)
t h

Σ
(j)
t = K

(j)
t −

1

γ
(j)
t

K
(j)
t hhHK

(j)
t

7: For j = 1, 2, ...,m, retain kj = bw(j)
t c copies of the sample set (S

(j)
t , k

(j)
t ).

8: Denote Kr = m−
∑m

j=1 kj.

9: Obtain Kr i.i.d draws from the original sample set, with probabilities proportional

to (w
(j)
t − k

(j)
t )

10: Assign equal importance weights to all particles, w
(j)
t = 1.
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bution at time (t+∆). This procedure will provide better samples since it utilizes the

future information in generating the current sample. But the algorithm is also more

demanding both analytically and computationally because of the need of marginal-

izing out st+d for d = 1, 2, ...,∆. The dominant computation of the above delayed-

sample method at each time involves the (m|A|∆) one-step Kalman filter updates,

which, as before, can be carried out in parallel.

D. Simulation Results

For the simulation, the following models namely ARMA(3,3) [18] and AR(2) [5] pro-

cesses are used for the fading coefficients

αt − 2.37409αt−1 + 1.92936αt−2 − 0.53208αt−3

= 10−2(0.89409ut + 2.68227ut−1 + 2.68227ut−2 + 0.89409ut−3) (4.31)

as given in [25], where, ut ∼ Nc(0, 1)

αt − 0.10αt−1 − 0.80αt−2 = ut (4.32)

where, ut ∼ Nc(0, 0.27). The other parameters used for the simulation are:

• Modulation scheme = BPSK

• Number of particles N = 50,100

• Number of Monte Carlo runs = 100

• Number of transmitted symbols = 100000

• For delayed estimation, delay = 2 is considered.

• For the case of non-Gaussian noise ε = 0.1 and k = 10.
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Steps carried out for the simulation of the particle filtering algorithm for the system:

1. Obtain the randomly generated BPSK signals and differentially encode them

before transmission.

2. Generate the true states and the observations using Eq (4.9).

3. Generate sequential Monte Carlo samples of transmitted symbols {S(j)
t }mj=1 with

corresponding importance weights {w(j)
t }mj=1 at time t by using the Algorithm

6.

4. Calculate the effective sample size mt.

5. If mt ≤ m/10, then resample else go back to Step 3.

6. For each ai ∈ A, the a posteriori symbol probability p(st = ai|Yt) is calculated.

7. The symbol is decoded and the bit error rate (BER) is calculated between

transmitted symbols and decoded symbols.

Steps from 1 to 7 are repeated for each independent Monte Carlo run and BER is

averaged over all Monte Carlo runs. For comparison, known channel bound (MLSE)

and performance of differential detector is also plotted.

Fig. 11 shows BER performance of the system with fading coefficients modeled

as ARMA process in the presence of additive Gaussian noise. It is evident that the

delayed weighted method gives better performance, for instance at SNR of 30 dB it

gives BER 0.0014 while the particle filter with zero delay gives BER of 0.0027. For

comparison, the performance using differential detection method is also plotted and it

is seen to perform poorly especially from SNR of 20 dB-40dB and saturates at a BER

value of 0.0101. Besides that, known channel bound is also plotted for comparison. It
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is seen that the delayed weighted scheme performance is close to the known channel

bound.

Fig. 12 shows BER performance of the system with fading coefficients modeled

as ARMA process in an additive non-Gaussian noise. Differential detection forms

error floor from SNR of 30dB-40dB and saturates at 0.0115. It is seen that from SNR

of 10dB-20dB the delayed weight method and particle filter with zero delay are close

in performance to the known channel bound. At higher values of SNR, typically from

25dB- 40dB, delayed weighted method shows a large performance improvement when

compared to the differential detection method.

Fig. 13 shows BER performance of the system with fading coefficients modeled

as AR process in additive Gaussian noise. At lower values of SNR, typically from

10dB-15dB, differential detector, particle filter with zero delay and delayed weighted

method are close in the performance. Delayed weight method and particle filter with

zero delay shows much improvement than differential detector from SNR of 25dB-

40dB. Delayed weight method gives a BER of 0.0005 at SNR of 40dB.

Fig. 14 shows BER performance of the system with fading coefficients modeled as

AR process and additive non-Gaussian noise. Here also at lower SNR (i.e., from 10dB-

15dB) values differential detector, delayed weight method, particle filter with zero

delay performs closely. Delayed weight method shows a close performance to known

channel bound from SNR of 20-25 dB. For instance at 25dB, delayed weight method

gives BER of 0.0031 while known channel bound gives BER of 0.0024. By increasing

the delay, the delayed weight method performs close to the optimal detector.
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Fig. 11. BER with ARMA fading model in the presence of additive Gaussian noise

Fig. 12. BER with ARMA fading model in the presence of additive non-Gaussian noise
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Fig. 13. BER with AR fading model in the presence of additive Gaussian noise

Fig. 14. BER with AR fading model in the presence of additive non-Gaussian noise
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CHAPTER V

CALCULATION OF CAPACITY USING PARTICLE FILTER

The information carrying capacity of a communication channel was first considered

by Shannon in 1948 [27] who calculated the capacity of a memoryless channel with

additive white Gaussian noise (AWGN) for a given signal-to-noise ratio (SNR). The

capacity of a channel [27,28] can be defined to be the tightest upper bound on the

amount of information that can be transmitted over a communications channel with

arbitrarily small probability of error. To determine whether a redundant source can be

communicated through a noisy channel, we make the following assumptions. A source

symbol is generated every Ts seconds and an optimal source code, whose average code

length per source symbol equals the entropy rate, is used. For a discrete memoryless

source S, the entropy rate (in bits) is defined to be

H(S) = E[− log2(pS)]. (5.1)

If the entropy rate of the source is written as H(S), the channel encoder will

receive on average H(S)/Ts information bits per second from the source. Assume

that a code symbol is input to the channel every Tc seconds. The channel capacity C

is the maximum rate (in information bits per channel symbol) that can be transmitted

over the chanel reliably. In order to transmit all the information from the source, the

channel must be able to transmit

C > R =
H(S)Tc
Ts

(5.2)

information bits per channel symbol, where R is the information rate (in bits per

channel symbol) of the channel encoder [27]. By transmitting information with rate R,

the channel is used every Tc seconds. It is common to represent the channel capacity
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within a unit bandwith of the channel and is measured typically in bits/s/Hz.

A. Capacity - Definition

The channel capacity is given by the maximum of the mutual information between

the input and output of the channel, where the maximization is with respect to the

input distribution [28]. If the input and output of a memoryless wireless channel are

represented with the random variables X and Y respectively, the channel capacity is

defined as,

C = max
p(x)

I(X;Y ) (5.3)

where I(X;Y ) represents the mutual information between X and Y . Mutual infor-

mation [27,28] is a measure of the amount of information that one random variable

contains about another variable. Mathematically, it is given by

I(X;Y ) = H(Y )−H(Y |X) (5.4)

= H(X)−H(X|Y ) (5.5)

where H(Y |X) is the conditional entropy between the random variables X and Y .

The entropy of a random variable can be described as a measure of the uncertainty

of the random variable.

B. Capacity Calculation - Basic Method

The problem of computing the information rate between an input process X =

(X1, ..., Xn) and an output process Y = (Y1, ..., Yn) of a time-invariant discrete-time

channel with memory is discussed by Dauwels and Loeliger [14]. There were many

methods developed previously by various researchers when the input alphabet and the

state space are finite [29,30,31,32]. But Dauwels and Loeliger [14] extended this result



57

to a continuous state space. They used the particle filtering approach to achieve this.

But before going into the details of the particle filtering method, a brief introduction

of the basic method [29] for computing the capacity, as presented in [14], is given

below.

Let xnk
∆
= (xk, xk+1, ..., xn) and xn

∆
= (x1, x2, ..., xn). For a stationary ergodic

sequence of random variables, the following results hold,

• The sequence, − 1
n

log p(Xn)
a.s→ H(X)

• The sequence, − 1
n

log p(Y n)
a.s→ H(Y )

• The sequence, − 1
n

log p(Xn, Y n)
a.s→ H(X) +H(Y |X)

Using these results, the value of I(X;Y ) given by Eq (5.4) can be calculated as below:

Algorithm 7 Basic Method

1: Sample two very long sequences xn and yn jointly from the distribution p(xn, yn).

2: Compute log p(xn), log p(yn), and log p(xn, yn). If H(Y |X) is known analytically,

then the value of log p(yn) is sufficient.

3: Use the values computed in previous step to calculate the estimate, Î(X;Y )
∆
=

1
n

log p(xn, yn)− 1
n

log p(xn)− 1
n

log p(yn)

If the state space is finite, the values in the above method can be obtained

by using forward sum-product recursion of the BCJR algorithm [33]. Using this

algorithm, we have from [33],

p(yn) =

∫
xn

∫
sn
0

p(xn, yn, sn0 )dxndsn0 (5.6)
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Let µk(sk)
∆
= p(sk|yk). Then using the algorithm in [33] we have,

µk(sk) ∼
∫
xk

∫
sk−1
0

p(xk, yk, sk0)dxkdsk−1
0 (5.7)

for k = 1,2,3... with µ0(s0)
∆
= p(s0).

But the state metrics tend to zero quickly and to counter this the recursive

process is varied so that,

µk(sk) = λk

∫
xk

∫
sk−1

µk−1(sk−1)p(xk, yk, sk|sk−1)dxkdsk−1 (5.8)

where λ1, λ2, ... are positive scalar factors obtained by setting
∫
sk
µk(sk)dsk = 1. Then

the value of the estimate will be given by

1

n

n∑
k=1

log λk = − 1

n
log p(yn) = H(Y ) (5.9)

The other values of log p(xn) and log p(xn, yn) can also be calculated in the same

manner.

C. Particle Method

The computation of the integrals in the Eq (5.6) becomes tractable and practical only

if the input alphabet and the state space is finite. But if the state space or the input

alphabet is not finite, then the above method becomes impractical. This problem is

overcome by using the particle filtering approach as shown by Dauwels and Loeliger

[14]. This section provides some details of their work.

The particle filtering approach can be understood as a message passing algorithm

where the probability distributions are represented by particles. The set of N particles

is represented as {x̂(l), w(l)}Nl=1, where x̂(l) ∈ χ and χ is the input alphabet, the w(l)

are positive particle weights such that
∑N

l=1w
(l) = 1. Extending this theory to the
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present problem, the distribution p(sk−1, sk, xk|yk−1) is represented by a list of N

weighted particles, {(ŝ(l)
k−1, ŝ

(l)
k , x̂

(l)
k ), w

(l)
k−1}Nl=1. Then the value of λk can be obtained

by

λ−1
k =

N∑
l=1

w
(l)
k−1p(yk|ŝ

(l)
k−1, ŝ

(l)
k , x̂

(l)
k ) (5.10)

The method described above can be shown in as an algorithm [14],

Algorithm 8 Particle Method

1: Begin with a particle list {(ŝ(l)
k−1, ŝ

(l)
k , x̂

(l)
k ), w

(l)
k−1}Nl=1 that represents µk−1. This set

can be obtained by sampling from p(xk, sk|sk−1).

2: Compute the value of estimate of λk using Eq (5.10).

3: Calculate the weights using w
(l)
k = λkw

(l)
k−1p(yk|ŝ

(l)
k−1, ŝ

(l)
k , x̂

(l)
k )

4: Using the values computed in Steps 2 and 3, update the particle list to represent

µk.

5: Perform any one of the resampling techniques to update the particle list

{ŝ(l)
k , w

(l)
k−1}Nl=1.

D. Application to a Flat-Fading Channel

This section discusses the particle filtering approach for computing the capacity [14] of

the wireless flat-fading channel introduced in the previous chapter. Note the difference

in the notation of the model as {xt} here represents the state variables and {st}

represents the input symbols. This is to maintain the same notation as in the previous

chapter where this model is introduced.

The particle method described in the previous section can be utilized here as

the state sequence in this particular channel estimation problem is not finite. Now,
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consider the state space equation of the flat-fading channel introduced in the previous

chapter,

xt = Fxt−1 + gut (5.11)

yt = sth
Hxt + σvt (5.12)

where xt
∆
= [xt xt−1 xt−2 ... xt−r]

T is the state variable corresponding to the fading

coefficients αt, yt represents the received signal, and {vt} is a white complex Gaussian

noise sequence with unit variance and independent real and imaginary components.

Let BPSK modulation scheme be used for the transmission over this channel.

Now, the particle filtering algorithm for the calculation of capacity, which is

discussed in the previous section, will be applied for this case. The algorithm is slightly

modified for getting the maximum accuracy in the estimate of the capacity. Here, the

particles are assumed to be mean and variance of the estimate instead of assuming

a point mass estimate. Using the mean and variances as particles, a more accurate

estimate can be obtained using a smaller number of particles as compared to that of

a point mass estimation. This improvement may also be understood intuitively, by

using the representation of mean and variance of the estimate as particles the entire

probability space of the estimate can be fully covered using a smaller number of

samples than using a point mass particles to cover the space. This method of particle

filtering is already discussed in the previous chapter for the detection of the symbols

over the same adaptive channel. This particular algorithm is now extended and

modified so that the capacity of that channel can be calculated. For the simulation,

the ARMA(3,3) [18] processes are used for the fading coefficients [25],

αt − 2.37409αt−1 + 1.92936αt−2 − 0.53208αt−3

= 10−2(0.89409ut + 2.68227ut−1 + 2.68227ut−2 + 0.89409ut−3) (5.13)
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where, ut ∼ Nc(0, 1).

The other parameters used for the simulation are:

• Modulation scheme = BPSK

• Number of particles N = 50

• Number of transmitted symbols = 10000

Steps carried out for the simulation of the particle filtering algorithm for the

system:

1. Obtain the randomly generated BPSK signals and differentially encode them

before transmission.

2. Generate the true states and the observations using Eq (5.11).

3. Generate sequential Monte Carlo samples of transmitted symbols {S(j)
t }mj=1 with

corresponding importance weights {w(j)
t }mj=1 at time t by using the Algorithm

6 (Chapter IV).

4. Calculate the conditional probabilities, p(yk|yk−1) and p(yk|sk, yk−1) based on

the estimated symbol at each time k for all the particles

5. Calculate the effective sample size mt.

6. If mt ≤ m/10, then resample the particles along with both the entropies else

go back to Step 3.

7. Then the estimate of the conditional probabilities at each time is calculated

based on the weights and probabilities for all particles.

8. Now the entropy value, H(Y ) = −E{ln p(yk|yk−1)} is calculated by averaging

over the log probabilities at all the time instants.
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9. Now the entropy value, H(Y |S) = −E{ln p(yk|sk, yk−1)} is calculated by aver-

aging over the log probabilities at all the time instants.

10. Finally the capacity of the channel is calculated using the entropies, I(S;Y ) =

H(Y )−H(Y |S).

The following figures show the results of applying the particle filtering algorithm.

Fig. 15 shows the variation of estimated information rate of the adaptive wireless

channel with fading coefficients modeled as ARMA process in the presence of additive

Gaussian noise with SNR in dB. It also shows the plot for various values of the process

noise variance. It can be clearly seen that the information rate increases with SNR

as which is expected for any communication channel. Besides that, the value of the

information rate can be seen to improve with the decrease in the value of the process

noise variance.

Fig. 16 shows the estimated information rate as a function of the sequence length,

i.e., the number of symbols transmitted over the channel, for 10 simulation runs of

the particle filtering method. It is clear from the figure that the particle filtering

algorithm settles down to the exact value as the number of symbols is increased. It

means that for a very large input data, the estimate provides the exact capacity of

the channel.
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Fig. 15. Variation of estimated capacity of the channel with SNR (in dB)

Fig. 16. Estimated information rate as a function of the sequence length n, for 10

simulation runs of the particle method SNR = 10dB
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CHAPTER VI

PARTICLE FILTERING OF CONTINUOUS-DISCRETE SYSTEMS

This chapter discusses the application of particle filtering to continuous-discrete op-

timal filtering problems, where the system model is of the form of a stochastic dif-

ferential equation (SDE), and the noisy observations of the system are obtained at

discrete instances of time. The Girsanov theorem, which is used for evaluating the

likelihood ratios needed in importance sampling, is explained. Rao-Blackwellization

of conditionally Gaussian models and unknown static parameter models is also con-

sidered at the end of the chapter. An example of estimating the angular acceleration

of a simple pendulum, dealt by Simo Sarkka [15], is considered and simulation results

are provided.

A. Optimal Filtering

Optimal filtering is defined as a filtering method that can be used for estimating

the states of time varying systems using a set of noisy measurements. The state

of the system may refer to the dynamic variables such as position, velocities and

accelerations or orientation and rotational motion parameters, which describe the

physical state of the system [15]. The noise in the measurements refers to a noise in

the sense that the measurements are uncertain. The time evolution of the state is

modeled as a dynamic system, which is perturbed by a certain process noise. This

noise is used for modeling the uncertainties in the system dynamics.

These type of problems can be seen very often in many engineering applications.

These kind of models can be found, for example, in navigation, aerospace engineer-

ing, space engineering, remote surveillance, telecommunications, physics, audio signal

processing, control engineering, finance and several other fields. All these applications
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can be modeled as discrete-time, continuous-discrete or continuous-time optimal fil-

tering problems, depending on whether the state and measurements are discrete or

continuous functions of time [15,34].

1. Optimal Continuous-Discrete Filtering

Most of the physical systems are often modeled as continuous-discrete as in the Na-

ture time is continuous (Jazwinski [35]). In continuous-discrete filtering, the state

dynamics are modeled as continuous-time stochastic processes and the measurements

are obtained at discrete instances of time. The idea of this type of filtering can be

understood by considering a time series, which is not measured on each time step

but instead between the discrete time steps (measurement steps) there are additional

states as shown in the Fig 17. If an infinite number of additional states are assumed

between the measurement steps, the state sequence becomes a random function, which

is observed at discrete instances of time.

Fig. 17. Continuous-discrete filtering as a limiting case of discrete time filtering

The state dynamics are mathematically modeled as a stochastic differential equa-

tion (SDE) [36,37], which can be defined as ordinary differential equations driven by
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random white noise processes w(t) as [15],

dx

dt
= f(x, t) + L(t)w(t) (6.1)

Here x(t) is the state, f(x, t) is the drift function, L(t) is the dispersion matrix,

and w(t) is the white noise process. In continuous-discrete filtering the measurements

yk are obtained at discrete time instances {t1, t2, ...}. The measurement model is of

the same form as in the case of other problems that are considered in the previous

chapters. However, the advantage of this model formulation over the discrete model

formulation is that the time step size tk = tk+1 − tk does not need to be constant.

As discussed in the previous chapters, the optimal solution to this type of filtering

problem can be computed by the following prediction and update steps [35]:

• Prediction step solves the predicted probability density at time tk from the

Kolmogorov forward partial differential equation using the old posterior proba-

bility density at time tk−1 as the boundary condition.

• Update step uses the Bayes rule for computing the posterior probability den-

sity of state at time tk from the probability density obtained in the prediction

step, and the measurement yk.

A smoothing step may be used following the filtering step so that a more accu-

rate estimate. In the smoothing step, the past values of the estimate are updated

conditioned on the past and present values of the measurements. The distributions

for the prediction, update and smoothing stages are given below:

• Filtering distribution of the state x(tk) at the time tk given the measurement

yk is given by:

p(x(tk)|y1, ..., yk) (6.2)
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• Prediction distributions can be computed for all t > tk,

p(x(t)|y1, ..., yk), t > tk (6.3)

by solving the corresponding Kolmogorov forward equation. The marginal pos-

terior distributions of the states between the measurements conditional to all

the previous measurements are given by these prediction distributions.

• Smoothing distributions can be computed for all times t ∈ [0, tT ] if the

measurements up to yT :

p(x(t)|y1, ..., yT ), 0 < t < tT (6.4)

The dynamics of the processes are modeled as Ito stochastic differential equations

(SDE) driven by Brownian motions and the measurements are modeled as non-linear

functions of the state, which are corrupted by Gaussian measurement noises. In

the next section, the various measure transformation based methods for continuous-

discrete sequential importance resampling are presented.

2. Continuous-Discrete Sequential Importance Resampling

The methods used in this type of filtering are based on transformations of probability

measures by the Girsanov theorem [35-38], which is a theorem from mathematical

probability theory. This theorem can be used for calculating the likelihood ratios

of stochastic processes. It states that the likelihood ratio of a stochastic process

and Brownian motion, that is, the Radon-Nikodym derivative of the measure of the

stochastic process with respect to the measure of Brownian motion, can be represented

as an exponential martingale which is the solution to a certain stochastic differential

equation. This theorem will fit in the present problem under consideration as the
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state-space is modeled as a stochastic differential equation.

The state space model for these problems can be generalized using Eq (6.1),

dx = f(x, t)dt+ L(t)dβ(t)

yk ∼ p(yk|x(tk)) (6.5)

where β(t) is a Brownian motion with positive definite diffusion matrix Qc(t),

L(t) is an invertible matrix called dispersion matrix for all t ≥ 0 and the initial

conditions are x(0) ∼ p(x(0)). The purpose of the Bayesian optimal continuous-

discrete filter is to compute the posterior distribution of the current state x(tk) given

the measurements up to the current time. Further it is assumed that an importance

process s(t), which is defined by a SDE, exits and given by:

ds = g(s, t)dt+B(t)dβ(t) (6.6)

where the matrix B(t) is invertible for all t.

The process s(t) is an approximation to the optimal result and so using it as

the importance process will produce more accurate presentation of the filtering dis-

tribution. This is possible as a less degenerate particle set will be produced. Because

the matrices L(t) and B(t) are assumed to be invertible, the probability measures of

x and s are absolutely continuous and thus satisfies the condition for applying the

Girsanov theorem [34]. An algorithm showing the steps for sequential importance

sampling to continuous discrete (CD-SIR) dynamic models, as shown in [34], is given

below. The SIR algorithm recursion starts by drawing samples {x(i)
0 } from the ini-

tial distribution and setting w
(i)
0 = 1

N
, where N is the number of Monte Carlo samples.

The importance process in the above algorithm can be obtained by using any
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Algorithm 9 Continuous Discrete SIR Algorithm

1: procedure CD-SIR(s(t), x
(i)
k−1, w

(i)
k−1, yk)

2: Simulate N realizations of the importance processes from t = tk−1 : tk

ds(i) = g(s(i), t)dt+B(t)dβ(i)(t), s(i)(tk−1) = x
(i)
k−1

ds∗(i) = L(t)B−1(t)ds(i)(t), s(i)(tk−1) = x
(i)
k−1

where β(i)(t) are independent Brownian motions and i = 1, 2, ..., N

3: Now, calculate the log-likelihood ratios from t = tk−1 : tk

dΛ(i) = {f(s∗(i)(t), t)− L(t)B−1(t)g(s(i)(t), t)}T

×L−T (t)Q−1(t)dβ(i)(t)

−1

2
{f(s∗(i)(t), t)− L(t)B−1(t)g(s(i)(t), t)}T

×{L(t)Q(t)LT (t)}−1

×{f(s∗(i)(t), t)− L(t)B−1(t)g(s(i)(t), t)}dt (6.7)

where Λ(i)(tk−1) = 0 and set x
(i)
k = s∗(i)(tk), and Z

(i)
k = exp{Λ(i)(tk)}

4: For each i, calculate the importance weights and normalize to unity

w
(i)
k = w

(i)
k−1Z

(i)
k p(yk|x

(i)
k ) (6.8)

5: Based on the effective number of particles, the resampling is performed.

6: end procedure
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of the filtering techniques available for non-linear cases, for example, the extended

Kalman filter (EKF). Simo Sarkka has discussed some of the numerical methods in

detail in his doctoral thesis work [15]. His work may be referred for further details

into the simulation of this algorithm.

B. Rao-Blackwellization of Models with Static Parameters

Now a dynamic model with unknown static parameters is considered. This kind of

models can be handled such that only the inner process is sampled and the linear

part is integrated out using the continuous-discrete Kalman filter. Then it is possible

to form a Rao-Blackwellized estimate, where the probability density is approximated

by a mixture of Gaussian distributions.

In generic particle filtering, Rao-Blackwellization (RB) refers to a filtering method

of integrating out a part of the state analytically [39]. This method will result in a

drastic reduction in the variance of the particles. The main advantage of this method

is that, for the same performance level, fewer samples will be needed.

If the posterior distribution of the unknown static parameter θ depends only on

a set of sufficient statistics Tk = Tk(x(t1), ..., x(tk), y1:k), then it can be marginalized

out and only the state needs to be sampled. The state space equations for such a

dynamic model can be given by

dx = f(x, t, θ)dt+ L(t, θ)dβ(t)

yk ∼ p(yk|x(tk), θ) (6.9)

Now assume that the prior distribution of θ is given by

p(θ) = p(θ|T0) (6.10)
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Also, assume that the conditional posterior will follow,

p(θ|x(t1), ..., x(tk), y1:k) = p(θ|Tk) (6.11)

Tk = φ(Tk−1, x(tk), yk) (6.12)

Thus, the marginal likelihood equation can be written as follows:

p(yk|x(tk), Tk−1) =

∫
p(yk|x(tk), θ)p(θ|Tk−1)dθ (6.13)

An algorithm for this RBPF method can be given as [34]:

Algorithm 10 Continuous Discrete RB SIR Algorithm

1: procedure CDRB-SIR(x
(i)
k−1, T

(i)
k−1, w

(i)
k−1, yk)

2: Perform steps 1 and 2 of Algorithm 9 discussed in the previous section, and

calculate the importance process and likelihood ratio

3: Obtain the values of x
(i)
k and Z

(i)
k as given in Algorithm 9

4: For each i, calculate the following,

T
(i)
k = φ(T

(i)
k−1, x

(i)
k , yk)

5: Now, calculate the importance weights according to the following equation

and normalize them to unity

w
(i)
k = w

(i)
k−1Z

(i)
k p(yk|x

(i)
k , T

(i)
k−1)

6: Based on the effective number of particles, the resampling is performed.

7: end procedure
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C. Simulation example

In this section the continuous-discrete sequential importance sampling (CD-SIR) is

applied to estimate the angular position of a simple pendulum which is distorted by

a random noise term given some partial observations on the position. This example

is dealt by many researchers as it forms a perfect example to showcase the efficiency

of a CD-SIR. The main reference for this section is from the doctoral thesis of Simo

Sarkka [15].

The dynamic model for the angular position of simple pendulum is driven by

a stochastic differential equation (SDE), which is distorted by random white noise

accelerations w(t) with the spectral density q. This model is given by

d2x

dt2
+ a2 sin(x) = w(t) (6.14)

where a is the angular velocity of the pendulum.

Now, let x = [x1 x2]T = [x dx/dt]T . Then, the state space form can be changed

to the following model in terms of Brownian motion β(t) which has a diffusion coef-

ficient of q,

dx1

dt
= x2

dx2 = −a2 sin(x1) + dβ (6.15)

Let the state of the pendulum be measured once per unit time and assume that the

measurements are corrupted by Gaussian noise with an unknown variance σ2. Then

the measurement model can be given as,

yk ∼ N(x1(tk), σ
2)

σ2 ∼ Inv − χ2(v0, σ
2
0) (6.16)
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The variance σ2 is now an unknown static variable, where the procedure of Rao-

Blackwellization that is discussed in the previous section can be applied. Based on

the posterior distribution of σ2 given in Eq (6.16) and given the state of the system,

x(tk), the marginal distribution of the measurement at that step k is given by

p(yk|x(tk)) =

∫
N(yk|x1(tk), σ

2)Inv − χ2(σ2|vk−1, σ
2
k−1)dσ2

= tvk
(yk|x1(tk), σ

2
k) (6.17)

with parameters,

vk = vk−1 + 1

σ2
k =

vk−1σ
2
k−1 + (yk − x1(tk))

2

vk
(6.18)

Here, tvk
represents the Student’s T distribution. Now, the importance process

can be formed by using either EKF or UKF such that a Gaussian approximation to the

posterior distribution of the state x(tk) = [x1(tk) x2(tk)]
T is obtained. This approx-

imation needs that the variance σ2 is assumed to be known for which a distribution

is already known from Eq (6.18).

The set of particles at time step k−1 comprises of {w(i)
k−1, x

(i)
1,k−1, x

(i)
2,k−1, v

(i)
k−1, σ

2,(i)
k−1}.

The resulting particle filtering algorithm for this problem can be shown as below [31]:

D. Simulation Results

This section provides the plots for the simple pendulum problem discussed previously.

The EKF, UKF estimates are also computed for the problem so as to be able to

compare the results with that of particle filtering method. The following parameters

are used for the simulation:
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Algorithm 11 RBPF - Simple pendulum with Noise

1: For each particle, perform EKF/UKF prediction from tk−1 to tk and update given

the measurement yk. Assume that the marginal mean and covariance of x2(tk)

are m
(i)
2,k and P

(i)
22,k.

2: Initialize the scaled important process s
∗(i)
1 (tk−1) = x

(i)
1,k−1, s

∗(i)
2 (tk−1) = x

(i)
2,k−1 and

λ∗(i)(tk−1) = 0.

3: For each i, simulate the scaled importance process, and the logarithm of likelihood

ratio from time tk−1 to time tk [15]:

ds
∗(i)
1

dt
= s

∗(i)
2

ds
∗(i)
2 =

m(i)
2,k − x

(i)
2,k−1√

P
(i)
22,k∆t

 dt+ q1/2dβ

dλ∗(i) = − a2

q1/2
sin(s

∗(i)
1 (t))dβ −

m(i)
2,k − x

(i)
2,k−1√

P
(i)
22,k∆t

 dβ

− a2

q1/2
sin(s

∗(i)
1 (t))

m(i)
2,k − x

(i)
2,k−1√

P
(i)
22,k∆t

 dt

− a4

q
sin2(s

∗(i)
1 (t))dt− 1

2

m(i)
2,k − x

(i)
2,k−1√

P
(i)
22,k∆t

2

dt (6.19)

4: Now, calculate the new sufficient statistics for the variance, given by

v
(i)
k = v

(i)
k−1 + 1

σ
2,(i)
k =

v
(i)
k−1σ

2,(i)
k−1 + (yk − x(i)

1,k))
2

v
(i)
k

(6.20)

5: Now, calculate the importance weights according to the following equation and

normalize them to unity

w
(i)
k = w

(i)
k−1Z

(i)
k tv(i)k

(yk|x(i)
1,k, σ

2,(i)
k ) (6.21)

6: Based on the effective number of particles, the resampling is performed.
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• Number of particles m = 1000, 10000

• Process noise spectral density, q = 0.01

• Angular velocity, a = 1

• Sampling step size = 0.1

• True measurement variance, σ2 = 0.25

• Prior distribution for the unknown variance, σ2 ∼ Inv − χ2(2, 0.2)

The particle filtering algorithm described in the previous section is run with the

above parameters. The results are provided below. Fig. 18 to Fig. 21 show the results

with the use of extended Kalman filtering and unscented Kalman filtering. It also

shows the effect of using a smoothing distribution which is just a backward filter

that calculates the state based on the present and past measurements. The details

for realization and usage of a smoothing filter in the context of continuous discrete

filtering can be obtained from [15]. Fig. 22 to Fig. 25 show the results with the use

of particle filtering algorithm for varying number of particles. It clearly shows the

improvement with increase in the number of particles used. It also shows the effect

of a smoothing filter at the end of the estimate.

Table II shows the values of RMSE for all the filtering techniques used. Appar-

ently, the performance is better for the particle filtering algorithm with a smoothing

distribution. Also as the number of particles increases the estimate becomes more

accurate and hence the error comes down.
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Table II. RMSE comparison for the noisy simple pendulum problem

S.No. Filtering Technique used No.of Particles RMSE

1 Extended Kalman filter N/A 0.0368

2 Extended Kalman filter with smoother N/A 0.0249

3 Unscented Kalman filter N/A 0.0370

4 Unscented Kalman filter with smoother N/A 0.0252

5 Particle filter 1000 0.0714

6 Particle filter 10000 0.0387

7 Particle filter with smoother 1000 0.0690

8 Particle filter with smoother 10000 0.0335

Fig. 18. State of noisy pendulum with extended Kalman filtering



77

Fig. 19. State of noisy pendulum with extended Kalman filtering along with a smooth-

ing distribution

Fig. 20. State of noisy pendulum with unscented Kalman filtering
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Fig. 21. State of noisy pendulum with unscented Kalman filtering along with a smooth-

ing distribution

Fig. 22. State of noisy pendulum with particle filtering (no. of particles = 1000)
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Fig. 23. State of noisy pendulum with particle filtering (no. of particles = 10000)

Fig. 24. State of noisy pendulum using particle filtering along with smoothing distri-

bution (no. of particles = 1000)
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Fig. 25. State of noisy pendulum using particle filtering along with smoothing distri-

bution (no. of particles = 10000)
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CHAPTER VII

CALCULATION OF CAPACITY OF OPTICAL CHANNEL

The work of Shannon [27] on the information carrying capacity was extended to the

optical fiber channel by Gordon et al. [40] who showed that amplified spontaneous

emission (ASE) can be represented by AWGN fields. The classical theorem of Shannon

[27] states that the capacity of a power-constrained transmission in an AWGN channel

grows logarithmically with the increase of the signal to noise ratio (SNR). But, the

non-linear fiber channel has a continuous injection of Gaussian noise based on ASE

and the interaction between the signal and the noise results is very complicated non-

Gaussian noise [41]. Recent progress in fiber optics has attracted fresh interest to the

information theory of non-Gaussian non-linear communication channels.

The application of Shannons theory to the optical channel faces many challenges.

A non-linear channel, unlike a linear channel, can create new frequencies which fall

outside the spectral range of the input signal. The main non-linearity in the optical

fiber channel is due to the Kerr effect [16]. Since this non-linearity depends on the

signal power, one finds that increasing the signal power does not necessarily increase

the information rate as is the case with a linear channel. Other impairments in the

fiber channel include noise generation by ASE and chromatic dispersion caused by

wavelength dependent propagation speed.

In this chapter, the calculation of capacity limits of a fiber channel in optically

routed networks is discussed. First the calculation of a single optical channel is

considered for QAM and Ring constellations. Then it is extended to a multi-channel

optical WDM network. This work is done based on the work of Essiambre et al. [16].

All elementary Kerr nonlinear interactions in the presence of signal and noise are taken

into account. The transmission through the fiber is described by direct numerical
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solution of the stochastic generalized nonlinear Schrodinger equation (GNSE) using

Split Step Fourier Transform method.

A. Fiber Propagation

Fiber optic communications typically operates in a regime of weak non-linearity and

this allows one to use some standard techniques to address to the Shannon capacity

of fiber optic communication [16]. Such a regime limits spectral broadening, or the

process of creation of new frequencies. This regime of operation is often referred to

as pseudolinear transmission [42].

There are two important sources of noise resulting from transmission over op-

tical fibers: double Rayleigh back-scattering (DRB) [43] and amplified spontaneous

emission (ASE). The back-scattered light for DRB propagates over a significant fiber

length in the backward direction before being scattered back in the forward direction.

This requires the insertion of optical isolators along the line to suppress the back-

ward propagation of DRB. It can be shown from the expressions of single Rayleigh

back-scattering [43] that for distributed amplification with gain compensating fiber

loss, the ratio of DRB power to signal power is ∝ 1/N , where N is the number of

optical isolators in the line. Therefore, for a large number of isolators, the DRB can

be shown to be not a fundamental source of noise as compared to the ASE.

Now, consider the evolution of the optical signal E(z, t) through the fiber using

distributed Raman amplification with ASE generation. This process can be shown

mathematically using the GNSE,

∂E

∂z
+
i

2
β2
∂2E

∂t2
− iγ|E|2E = in(z, t) (7.1)

where, β2 represents the chromatic dispersion factor. The parameter γ is the instan-
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taneous Kerr nonlinearity coefficient [42]. Reverse propagation is used by setting the

right-hand side of Eq (7.1) to zero and changing z to −z. All signal-signal nonlinear

interactions occurring within one WDM channel are undone by this process. The

term n(z, t) in Eq (7.1) is the term describing ASE noise generation. In [40], Gordon

et al. showed ASE using the statistical properties of additive Gaussian noise.

σ2
n = nspKThνsα (7.2)

where nsp is the spontaneous emission factor, νs is the optical frequency of the sig-

nal, and α is the fiber loss coefficient. The parameter KT = 1 + η(T ) is the phonon

occupancy factor. This is close to 1 for Raman amplification of fiber-optic communi-

cation systems. Let Ps is the signal power of the WDM channel of interest. Now, for

signals using a single state of polarization, the SNR and OSNR are simply related by

SNR = (2Bref/S)OSNR.

B. Input Alphabet and Modulation Scheme

In this work, two types of constellations are used. First the M-QAM constellation

is used where M is the number of symbols being used. Later a multi-level symbol

constellation is used which will be in the form of a concentric N-ring structure with

equal amplitude spacing and random phase spacing (PSK). Each ring will have equal

population of symbols. The modulation considered in this study uses Nyquist signals

having box-like spectra with a square-root raised cosine shape and a roll-off of 20%

[16]. The optical multiplexer and demultiplexer transfer functions are identical and

match the square-root raised cosine signal spectrum. The magnitude of a modulated

input pulse is seen in Fig. 26. The raised cosine roll-off is chosen to reduce the large

memory in the time domain associated with perfectly square spectrum modulation
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using the sinc temporal function [16].

Fig. 26. Input field waveform with root raised cosine pulse-shaping

C. Capacity Calculation

The channel capacity, that we discussed in the Chapter V, for a specified channel

input alphabet, when X is a random input giving rise to the random channel output

Y , is given by

R = I(X;Y ) = H(Y )−H(Y |X) (7.3)

where the units are taken to be bits/sec/Hz. The functions H(Y ) and H(Y |X) are re-

ferred to as the entropy of Y and the entropy of Y conditioned on X, respectively. For

the numerical evaluation of fiber capacity, the channel is treated as a discrete memo-

ryless channel (DMC) and using such a model removes the memory associated with

signal-signal intra-channel nonlinearities. Nevertheless, ignoring the channel memory
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and using a DMC model results in a lower bound on the achievable information rate.

The discretized version of Eq (7.3) is applied for the case of both QAM input alphabet

and the concentric ring input alphabet by summing up the entropies on the RHS of

Eq (7.3).

However, for calculating the empirical entropies of Eq (7.3), the transmission of

optical symbols through the optical fiber should be simulated which is not straight-

forward because of the presence of a non-linear partial differential equation. For this

purpose, several numerical methods exists. These methods can be classified into two

broad categories known as, (i) the finite-difference methods; and (ii) the pseudospec-

tral methods. The one method that has been used extensively for this purpose is the

split-step Fourier method [44]. The efficiency of this method is attributed in part

to the use of the FFT algorithm. This method will be discussed in the subsequent

section. The later sections will show the simulation results of the work.

1. Split Step Fourier Transform Method

To understand this method better, let the Eq (7.3) be written as in [45],

∂E

∂z
= − i

2
β2
∂2E

∂t2
− α

2
+ iγ|E|2E = [D̂ + N̂ ]E (7.4)

where D̂ is a differential operator that accounts for dispersion in a linear medium

given by D̂ = −(i/2)β2∂
2/∂t2−α/2 and N̂ is a non-linear operator that accounts for

fiber non-linearities given by N̂ = iγ|E|2. Both the linear and the non-linear parts

may be solved independently, but the equation with both the parts may not be solved

as easily. So an approximate sub-optimal solution needs to be used to solve such an

equation.

The SSFM obtains the sub-optimal solution by treating the propagation of the

optical field over a small distance h, thus enabling to assume both linear and non-
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linear parts to act independently. Thus, the propagation from z to z + h can be

carried out independently in two steps with one step assuming D̂ = 0 and the next

step assuming N̂ = 0. Mathematically this can be represented as,

E(z + h, t) ≈ exp(hD̂) exp(hN̂)E(z, t) (7.5)

The differential exponent term can be evaluated analytically using the fourier trans-

form solution. This may be shown mathematically as,

exp(hD̂)E(z, t) = F−1
T exp(hD̂(iω))Ẽ(z, ω) (7.6)

where FT denotes the Fourier-transform operation and D̂(iω) is the fourier transform

pair obtained by changing the differential operator ∂
∂t

by iω and ω is the frequency in

the Fourier domain. Also, Ẽ(z, ω) is the fourier transform of E(z, t). This accounts

for the propagation of the optical pulse through a small step h. By repeating the

above N times, the pulse can be propagated over a length of Nh. The value of N

is chosen so that the pulse propagates through the entire fiber. Moreover, it can be

shown that the splitstep Fourier method is accurate to second order in the step size

h.

The accuracy of the split-step Fourier method can be improved by using a differ-

ent procedure of propagating the pulse from z to z + h. In this method the Eq (7.5)

is varied as following,

E(z + h, t) ≈ exp(
h

2
D̂) exp(

∫ z+h

z

N̂(z‘)dz‘) exp(
h

2
D̂)E(z, t) (7.7)

The main difference here is that the effect of nonlinearity is included in the

middle of the segment. Because of this symmetric form of the exponential operators,

this scheme is known as the symmetrized split-step Fourier method [44]. The most

important advantage of this new method is that the it is accurate to third order in
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the step size h. As a result, this will provide more accurate solution to the problem.

However, the calculation of the integral is not simple as can be seen from the following

equation, ∫ z+h

z

N̂(z‘)dz‘ =
h

2
[N̂(z) + N̂(z + h)] (7.8)

From Eq (7.8), it is clear that the value of N̂(z + h) is unknown at the midsegment

located at z + h/2 and so an iterative procedure is required. Although the iteration

is time-consuming, it can still reduce the overall computing time based on the value

of h.

Specifically, for the optical pulse propagation, the fiber length is divided into a

large number of segments. The optical field E(z, t) is first propagated for a distance

h/2 with dispersion only using the FFT algorithm. At the midplane z + h/2, the

nonlinear term that represents the effect of nonlinearity over the whole segment length

h is then multiplied. Finally, the field is propagated the remaining distance of h/2

with dispersion only to obtain E(z + h, t).

Though this method has its advantages, it requires that step sizes in z and T be

selected carefully to maintain the accuracy. The optimum choice of step sizes depends

on the complexity of the problem. In general, the split-step Fourier method is a very

efficient method provided it is used properly.

D. Simulations

Before the actual capacity calculations are done, the propagation of optical wave needs

to be simulated. That is, the transmission of information across the optical fiber needs

to be simulated. For this purpose, consider a Gaussian pulse to be transmitted across

the fiber. The Gaussian pulse forms a very simple example for understanding the
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transmission. The Gaussian pulses are of the form of

U(0, T ) = exp(− T 2

2T 2
0

), (7.9)

where T0 is the half-width (at 1/e-intensity point). In practice, the full width at half

maximum (FWHM) is generally used for T0. For a Gaussian pulse, the two are related

by

TFWHM = 2(ln2)1/2T0 = 1.665T0. (7.10)

Using these equations and substituting in the GNSE we can be able to simulate the

transmission of such a pulse. For the simulation of GNSE, the method of Split Step

Fourier Transform, discussed in previous sections, was used. Fig. 27 represents the

Fig. 27. Propagation of Gaussian pulse across fiber

transmission of such a Gaussian pulse through the fiber. For simplicity the fiber is

shown in five sections. It shows the variations in the travelling wave as it progresses
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across the sections of the fiber. The pulse broadening effect as seen in the Gaussian

pulse is mainly due to the group velocity dispersion (GVD). The effect of GVD is

that it changes the phase of each spectral component of the pulse. The amount of

the phase change depends on both the frequency and the propagated distance. Even

though such phase changes do not alter the pulse spectrum, they can distort the pulse

shape [44]. Fig. 28 represents the reverse transmission of the Gaussian pulse through

Fig. 28. Reverse propagation of Gaussian pulse across fiber

fiber. It is obtained directly by replacing dz by -dz in the split step fourier method.

Since there is no noise assumed in the transmission the reverse transmission of the

distorted wave will produce the actual input waveform that is transmitted [44]. This

result is used later to find the capacity of the optical channel in the presence of ASE

noise. The assumption that is taken for this purpose is that the value of ASE noise

is very minimal (of the order of 10−10) that the reverse propagation provides a good

estimate for the transmitted signal. Fig. 29 shows the input wave along with the
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Fig. 29. Comparison of input and reverse propagated waveforms

pulse obtained by reverse propagation. It is clear that the reverse propagated wave

provides a perfect estimate for the input wave when no noise is assumed. Also there

is a decrease in the amplitude for the reverse propagated wave as compared to the

input wave. As the fiber length increases the estimated wave diminishes to zero. For

this purpose, several amplifiers are used at regular intervals so that this effect will

be reduced. But these amplifiers also introduce the Amplifier stimulated emission

(ASE). Now, using the method described in the previous sections, the capacity of

the optical channel is calculated. Fig. 30 represents the estimated capacity for the

channel with the input modulation scheme of 16-QAM. The root raised cosine pulse

shaping filter is used along with a matched filter. It can be seen that as SNR increases

the capacity increases with it as expected. Fig. 31 represents the estimated capacity

for a WDM channel with five channels seperated in frequency. The input modulation

scheme used is 16-QAM. The root raised cosine pulse shaping filter is used along
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Fig. 30. Capacity of optical channel vs SNR with 16-QAM modulation scheme

Fig. 31. Capacity of optical WDM channel vs SNR with 16-QAM modulation scheme

and 5 channels
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with a matched filter. It can be seen that as SNR increases the capacity increases till

certain SNR is reached. From then, the effect of cross phase modulation (XPM) will

become high and thus decreasing the capacity as SNR increases further. This effect

of XPM depends on the number of WDM channels being used.

Thus, in this chapter, an algorithm for finding the capacity of optical channel is

implemented and the effect of multiple WDM channels on the capacity is seen.
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CHAPTER VIII

CONCLUSIONS

Typically, optimal estimation for non-linear non-Gaussian state-space models do not

have an analytic solution. Since the development of particle filtering in 1993, these

methods have become a very popular class of algorithms to solve the estimation prob-

lems numerically. The main advantage for these methods is that they can be carried

out in an online manner, i.e., recursively as observations become available. Now-a-

days, these methods are being routinely used in several fields such as communications,

signal processing, computer vision, econometrics, robotics and navigation.

Many statistical signal processing problems found in wireless communications

involves making inference about the transmitted data given the received signal in

the presence of various unknown channel distortions. The optimal solution to these

problems are often computationally complex to implement. This paved way to the

use of several sub-optimal algorithms to tackle this problem. The particle filtering

method is one such sub-optimal algorithm that can be used in this case. It uses

the concept of sequential importance sampling (SIS) for the recursive computation

of a posteriori distribution by drawing of samples from the importance density with

corresponding importance weights. This work is aimed to introduce the applications

of particle filtering to several communication channels.

First, the classical theories of discrete-time optimal filtering and the bayesian

techniques have been reviewed. Then the particle filtering method is introduced and

a generic algorithm is discussed as given in [2]. The example provided in [2] is also

explained which helps in understanding the basic concepts better. The subsequent

chapters discuss the applications of the particle filtering algorithm for communication

channels.
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We started off by discussing about the usage of particle filtering algorithm for

calculating the bit error rate (BER) for transmission over an adaptive flat fading

wireless channel as developed in [6]. We have used the state space model approach

for deriving the particle filtering algorithm for the blind detection with the use of

Kalman filtering algorithm. As simulation results show, the particle filtering method

performs well when compared to the differential detection method for both Gaussian

and non-Gaussian additive noise at high SNR. Typically, at BER of 10−2 there is a

performance advantage of nearly 12 dB for a zero delay particle filter. For the delayed

weighted scheme, an improvement in performance by about 5 dB at a BER of 10−3

is seen and it almost achieves the known channel bound.

Then we discussed the application of particle filtering algorithm in finding the

mutual information rate of a particular communication channel as developed by

Loeliger and Dauwels [14]. We extended this concept and applied it to the adap-

tive channel discussed above. We developed an algorithm and found the capacity of

that channel using a particle filtering approach. The simulation results are shown at

the end of the chapter.

Later, we discussed the particle filtering algorithms for non-linear and non-

Gaussian continuous-discrete systems, that is, for the recursive Bayesian estimation

of states of a stochastic differential equation observed through discrete-time measure-

ments. These methods were initially developed by Simo Sarkka in his dissertation

work [15]. The continuous-discrete unscented filter and smoother are introduced and

they provide good alternatives to the extended Kalman filter and smoother in mod-

els, where the Jacobian and Hessian matrices of the drift terms are not available.

The example of computing the angular acceleration of a noisy simple pendulum, as

explained in [15,34], is discussed. The results for simulations are provided.

In the last section of the thesis study, we discussed the optical communication
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channel so as to study the feasibility of a particle filtering algorithm to detect optical

signals through the channel and also an algorithm to calculate the capacity of the

optical channel. But since the noise present in an optical environment is of the

magnitude of 10−24, the need for such a particle filtering algorithm is dubious. There

are more general algorithms, as discussed in this thesis work, which do the job of the

optical detection. It is a good future work though to consider the particle filtering

problem in this optical scenario in more detail.

The advantages of the particle filters make them an attractive alternative to

the standard non-linear filters for efficient state and parameter estimation in all the

applications with a similar problem statement.



96

REFERENCES

[1] Z. Chen, “Bayesian Filtering: From Kalman Filters to Particle Filters, and Be-

yond,” Adaptive Syst. Lab., McMaster Univ., Hamilton, ON, Canada, 2003.

[2] S. Arulampalam, S. Maskell, N.J. Gordon, and T. Clapp, “A Tutorial on Particle

Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking” IEEE Transac-

tions on Signal Processing, vol. 50, no. 2, pp. 174–188, February 2002.

[3] B. Ristic, S. Arulampalam, and N.J. Gordon, Beyond the Kalman Filter: Particle

Filters for Tracking Applications, Boston, MA: Artech House, 2004.

[4] N.J. Gordon, D.J. Salmond, and A.F.M. Smith, “Novel Approach to

Nonlinear/Non-Gaussian Bayesian State Estimation,” in IEE Proceedings F,

Radar and Signal Processing, vol. 140, no. 2, pp. 107–113, April 1993.

[5] A. Papoulis, S.U. Pillai, Probability, Random Variables and Stochastic Processes,

New York: McGraw-Hill, 4th edition, 2002.

[6] S. Haykin, Adaptive Filter Theory, Upper Saddle River, NJ: Prentice Hall, 4th

edition, 2002.

[7] A. Doucet, S. Godstill, and C. Andrieu, “On Sequential Monte Carlo Sampling

Methods for Bayesian Filtering,” Statistics and Computing, vol. 10, pp. 197-208,

2000.

[8] A. Doucet and X. Wang, “Monte Carlo Methods for Signal Processing,” IEEE

Signal Processing Magazine, vol. 22, pp. 152-170, November 2005.



97

[9] S. Haykin, K. Huber, and Z. Chen, “Bayesian Sequential State Estimation for

MIMO Wireless Communications,” in Proceedings of the IEEE, vol. 92, no. 3,

pp. 439-454, March 2004.

[10] P.M. Djuric, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M.F. Bugallo,

and J. Miguez, “Particle Filtering,” IEEE Signal Processing Magazine, vol. 20,

pp. 19-38, September 2003.

[11] Y. Liu, B. Wang, W. He, J. Zhao, and Z. Ding, “Fundamental Principles and

Applications of Particle Filters,” in Proceedings of the 6th World Congress on

Intelligent Control and Automation, Dalian, China, 21-23 June, 2006, vol. 2,

pp. 5327-5331.

[12] M. Simandl, O. Straka, “Sampling Densities of Particle Filter: A Survey and

Comparison,” in Proceedings of the American Control Conference, New York,

11-13 July, 2007, pp. 4437-4442.

[13] J.S. Liu and R. Chen, “Sequential Monte Carlo Methods for Dynamical Sys-

tems,” J. Amer. Statist. Assoc., vol. 93, pp. 1032-1044, 1998.

[14] J. Dauwels and H.A. Loeliger, “Computation of Information Rates by Particle

Methods,” in Proc. 2004 IEEE International Symposium on Information Theory,

Chicago, June 27-July 2, 2004, pp. 178-190.

[15] S. Sarkka, “Recursive Bayesian Inference on Stochastic Differential Equations,”

Ph.D. dissertation, Helsinki University of Technology, Espoo, Finland, April

2006.

[16] R.J. Essiambre, G.J. Foschini, P.J. Winzer, G. Kramer and E.C. Burrows, “The

Capacity of Fiber-Optic Communication Systems,” in Proceedings of Optical



98

Fiber Communication Conference (OFC 2008), San Diego, CA, February 2008,

pp. 1-3.

[17] J. Miguez, and P.M. Djuric, “Blind Equalization by Sequential Importance Sam-

pling,” in Proceedings of IEEE, ISCAS, Phoenix, AZ, May 2002, pp. 845-848.

[18] D. Guo and X. Wang, “Blind Detection in MIMO Systems via Sequential Monte

Carlo,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 3,

pp. 453-464, April 2003.

[19] Z. Yang and X. Wang, “A Sequential Monte Carlo Blind Receiver for OFDM

Systems in Frequency-Selective Fading Channels,” IEEE Transactions on Signal

Processing, vol. 50, no. 2, pp. 271-280, February 2002.

[20] G.L. Stuber, J.R. Barry, S.W. Mclaughlin, Y. Li, M.A. Ingram and T.G. Pratt,

“Broadband MIMO-OFDM Wireless Communications,” Proceedings of IEEE,

vol. 92, no. 2, pp. 271-294, February 2004.

[21] J.G. Proakis, Digital Communications, New York: McGraw-Hill, 4th edition,

2003.

[22] T.S.Rappaport, Wireless Communications: Principles and Practice, Upper Sad-

dle River, NJ: Prentice Hall, Second edition, 2006.

[23] R. Chen and J.S. Liu, “Mixture Kalman Filters,” Journal of the Royal Statistical

Society - Series B, vol. 62, pp. 493-508, 2000.

[24] J.K. Cavers, “An Analysis of Pilot Symbol Assisted Modulation for Rayleigh

Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 40, pp. 686-

693, November 1991.



99

[25] R. Chen, X. Wang and J.S. Liu, “Adaptive Joint Detection and Decoding in

Flat-Fading Channels via Mixture Kalman Filtering,” IEEE Transactions on

Information Theory, vol. 46, no. 6, pp. 2079–2094, September 2000.

[26] D. Middleton, “Non-Gaussian Noise Models in Signal Processing for Telecom-

munications: New Methods and Results for Class A and Class B Noise Models,”

IEEE Transactions on Information Theory, vol. 45, no. 4, pp. 1129-1149, May

1999.

[27] C.E. Shannon, “A Mathematical Theory of Communication: Part I,” The Bell

System Technical Journal, vol. 27, pp. 379-423, 1948.

[28] B. Holter, “On the Capacity of the MIMO Channel: A Tutorial Introduction,” in

Proc. of IEEE Norwegian Symposium on Signal Processing, Trondheim, Norway,

October 2001, pp. 167-172.

[29] D. Arnold and H.A. Loeliger, “On the Information Rate of Binary-Input Chan-

nels with Memory,” in Proc. 2001 IEEE Int. Conf. on Communications, Helsinki,

Finland, June 11-14, 2001, pp. 2692-2695.

[30] V. Sharma and S. K. Singh, “Entropy and Channel Capacity in the Regenerative

Setup with Applications to Markov Channels,” in Proc. 2001 IEEE Int. Symp.

Information Theory, Washington, DC, June 24-29, 2001, pp. 283-290.

[31] H.D. Pfister, J.B. Soriaga, and P.H. Siegel, “On the Achievable Information Rates

of Finite State ISI Channels,” in Proc. IEEE Global Communications Conf. 2001,

San Antonio, TX, Nov. 2001, pp. 2992-2996.

[32] D. Arnold, H.A. Loeliger, and P.O. Vontobel, “Computation of Information

Rates from Finite-State Source/Channel Models,” in Proc. 40th Annual Aller-



100

ton Conference on Communication, Control, and Computing, Allerton House,

Monticello, IL, October 24, 2002, pp. 457-466.

[33] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear

Codes for Minimizing Symbol Error Rate,” IEEE Trans. Information Theory,

vol. 20, pp. 284-287, March 1974.

[34] S. Sarkka, “On Sequential Monte Carlo Sampling of Discretely Observed Stochas-

tic Differential Equations,” in Proc. Nonlinear Statistical Signal Processing

Workshop, Cambridge, UK, Sept 2006, pp. 21-24.

[35] A.H. Jazwinski, Stochastic Processes and Filtering Theory, New York: Academic

Press, 1970.

[36] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, New

York: Springer, 1991.

[37] B. Oksendal, Stochastic Differential Equations: An Introduction with Applica-

tions, New York: Springer, 6th edition, 2003.

[38] K. Gopinath, Stochastic Filtering Theory, New York: Springer-Verlag, 1980.

[39] Z. Khan, T. Balch, and F. Dellaert, “MCMC-based Particle Filtering for Tracking

a Variable Number of Interacting Targets,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 27, no. 11, pp. 1805-1819, 2005.

[40] J.P. Gordon, W.H. Louisell, and L.R. Walker, “Quantum Fluctuations and Noise

in Parametric Processes II,” Phys. Rev Lett., vol. 129, pp. 481-485, 1963.

[41] J.P. Gordon, L.R. Walker, and W.H. Louisell, “Quantum Statistics of Masers

and Attenuators,” Phys. Rev. Lett., vol. 130, pp. 806-812, 1963.



101

[42] K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, and S. K. Turitsyn, “Informa-

tion Capacity of Optical Fiber Channels with Zero Average Dispersion,” Phys.

Rev. Lett., vol. 91, no. 20, pp. 1-4, 2003.

[43] R.J. Essiambre, G. Raybon, and B. Mikkelsen, Optical Fiber Telecommunica-

tions IV, New York: Academic Press, 2002.

[44] J. Bromage, P. J. Winzer, and R.J. Essiambre, Raman Amplifiers and Oscillators

in Telecommunications, New York:Springer Verlag, 2003.

[45] G. P. Agrawal, Nonlinear Fiber Optics, Boston: Academic Press, 4th edition,

2007.



102

APPENDIX A

KALMAN FILTERING ALGORITHM

This section shows the proof that the density p(yt|st = ai,S
(j)
t−1,Yt−1) is Gaussian

for the channel used in Chapter IV.

Consider the state-space model for the adaptive wireless flat fading channel,

xt = Fxt−1 + gut (A.1)

yt = sth
Hxt + σvt (A.2)

where {ut}, {vt} are white complex Gaussian noise sequences with unit variance and

independent real and imaginary components. Now to show that in this case,

p(yt|st = ai,S
(j)
t−1,Yt−1) ∼ Nc(µ

(j)
t , var

(j)
t ) (A.3)

where,

µ
(j)
t = aih

HFηt−1 (A.4)

var
(j)
t = hHK

(j)
t h+ σ2 (A.5)

η
(j)
t = hHFx

(j)
t−1 (A.6)

Proof: Consider the Kalman filtering algorithm given in Chapter II. Also the proof

here is shown for a single particle and hence the j index is removed. According to

the definition of the Kalman filter, the innovation term of the Kalman filter for this

model can be given by,

It = yt − sthHF (̂x)t−1 (A.7)
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Now, the correlation matrix of the innovation process is given by,

Rt = sth
HKths

∗
t + σ2

= |st|2hHKth + σ2

Rt = hHKth + σ2 (A.8)

and the Kalman gain is given by,

gt = Kths
∗
tR
−1
t (A.9)

Now to progress any further, we need to calculate the state error mean and co-

variance matrix for prediction, filtering and update stage for which the knowledge of

the estimated state is important. But we know from the definition of such an esti-

mated state from the Kalman algorithm. Using the Kalman algorithm, the estimated

state vector can be written as,

x̂t = Fx̂t−1 + gtIt (A.10)

Substituting Eq (2.14) and Eq (A.7) in this equation, we get,

x̂t = Fx̂t−1 +
1

Rt

(yt − sthHF (̂x)t−1)s∗tKth (A.11)

This equation of estimated state vector is seen in the particle filtering algorithm given

in the Chapter IV.

From the Eq (A.11) the predicted error correlation matrix can be given by,

Kt = FΣt−1F
H + ggH (A.12)
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and the filtered state mean and correlation matrix is given by,

ηt = Fηt−1 +
1

Rt

(yt − sthHFηt−1)Kth (A.13)

Σt = Kt − gtsthHKt

= Kt −Kths
∗
tR
−1
t sth

HKt

= Kt −
1

Rt

|st|2KthhHKt

Σt = Kt −
1

Rt

KthhHKt (A.14)

Thus the mean of the density p(yt|st = ai,S
(j)
t−1,Yt−1) can be obtained from the

innovation term and the measurement model of the system as,

µt = E
[
yt|st = ai,S

(j)
t−1,Yt−1

]
= sth

HFηt−1|st=ai

= aih
HFηt−1 (A.15)

which is the result to be proved. Similarly the covariance value is given by,

vart = var
[
yt|st = ai,S

(j)
t−1,Yt−1

]
= hHKth + σ2

= Rt (A.16)

Hence, the density p(yt|st = ai,S
(j)
t−1,Yt−1) takes the form of,

p(yt|st = ai,S
(j)
t−1,Yt−1) ∼ Nc(µ

(j)
t , var

(j)
t ) (A.17)

which is the same equation seen as in the particle filtering algorithm for the detection

of signal through the flat fading channel dealt in Chapter IV.
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