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ABSTRACT 

 

In vitro Inhibition of Listeria monocytogenes  

by Novel Combinations of Food Antimicrobials. (December 2009) 

Alex Lamar Brandt, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. T. Matthew Taylor 

 

 Listeria monocytogenes is a foodborne pathogenic bacterium responsible for ~500 

deaths and a financial burden of ~$2.3 billion each year in the United States. Though a zero 

tolerance policy is enforced with regard to its detection in cooked ready-to-eat foods, additional 

preemptive control alternatives are required for certain products. Among these alternatives are 

strategies permitting the usage of food antimicrobial combinations to control the pathogen. 

Research on antimicrobial combinations can provide insight into more efficient control of the 

pathogen, but is currently lacking. 

 The purpose of this study was to evaluate the in vitro inhibition of L. monocytogenes 

exposed to the antimicrobials ε-Poly-L-Lysine (EPL), lauric arginate ester (LAE), and sodium 

lactate (SL) at pH 7.3, octanoic acid (OCT) at pH 5.0, and nisin (NIS) and acidic calcium sulfate 

(ACS) at both pH 5.0 and 7.3. A broth dilution assay was used to determine single antimicrobial 

minimum inhibitory and bactericidal concentrations for L. monocytogenes Scott A, 310, NADC 

2783, and NADC 2045. Optical density differences (∆ <0.05 at 630 nm) were used to denote 

inhibition. Concentrations producing population decreases of ≥3.0 log10 CFU/ml after incubation 

were considered bactericidal. 

Inhibition resulting from combinations of antimicrobials (NIS+ACS, EPL+ACS, 

SL+ACS, NIS+LAE, OCT+ACS, and OCT+NIS) was assessed using a checkerboard assay, and 
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fractional inhibitory concentrations (FIC) were determined. FIC values were plotted on 

isobolograms and were used to create FIC indices (FICI). Isobologram curvature was used to 

classify combinations as synergistic, additive, or antagonistic. From FIC indices, interactions 

were defined as antagonistic (FICI >1.0), additive (FICI =1.0), or synergistic (FICI <1.0). 

Strain-dependent factors had a bearing on MIC and MBC values for NIS and EPL. At 

pH 7.3, NIS+ACS displayed synergistic inhibition, NIS+LAE and EPL+ACS demonstrated 

additive-type interactions, and the SL+ACS pairing was unable to be defined. At pH 5.0, 

interpretation of the OCT+NIS interaction also presented challenges, while the OCT+ACS 

combination resulted in synergistic behavior.  

Additional studies are needed to validate in vitro findings on surfaces of ready-to-eat 

meats. Future in vivo studies should investigate the ability of synergistic combinations 

(NIS+ACS and OCT+ACS) to control the pathogen. Better characterizations of inhibitory 

mechanisms should also be performed. 
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CHAPTER I 

INTRODUCTION 

 

 Listeria monocytogenes is a foodborne pathogenic bacterium that poses a major 

challenge to the safety of the global food supply. One of the primary courses of action to control 

its presence in foods is to use approved antimicrobials that can either kill the pathogen or limit 

its growth. Though antimicrobials are validated to be effective when used alone, it has been 

suggested that using them in combination may provide enhanced inhibition of L. monocytogenes 

and may help prevent development of resistance. Thus, current research has taken up 

antimicrobial pairing as a major focus in terms of efforts to control the pathogen. 

 The overall goal of this research was to investigate the growth inhibition and bactericidal 

response of L. monocytogenes that resulted from the pathogen’s exposure to several novel 

antimicrobial combinations. Though this research focused primarily on the in vitro activity of the 

antimicrobials pairs, hopes are that the information collected in these studies may be applicable 

to future in vivo studies that examine the use of these novel combinations as a means to control 

L. monocytogenes within foods subjected to varied environmental and intrinsic conditions.  

 Chapter II of this thesis provides a review on L. monocytogenes and the effects of the 

foodborne illness that it causes, while Chapter III supplies a review of the six food antimicrobials 

used in this research. Chapters IV and V present the data from two studies that involved the 

exposure of L. monocytogenes to two different sets of food antimicrobial combinations at two 

different pH conditions. Lastly, Chapter VI summarizes the research by providing conclusions 

about the activity of the antimicrobial pairs and suggested inhibitory mechanisms. 

 
____________ 
This thesis follows the style of the Journal of Food Science. 
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CHAPTER II 

LISTERIA MONOCYTOGENES 

 

Introduction 

Since the publication of the first detailed description of L. monocytogenes in 1926, 

volumes of literature have been produced to provide a better understanding of the organism’s 

taxonomical classification, reservoirs, physiology, pathogenesis, and effects on animals and 

humans. In the early years of its investigation many regarded the bacterium as one of minor 

significance to the general public and “of little or no economic importance” (Gray and Killinger 

1966). However, in the early 1980’s the link between L. monocytogenes and foods was 

established, piquing the interest of society (Ryser and Marth 2007). At that point, the efforts 

dedicated to understand the organism, control its presence in foods, and advance the 

epidemiology of its consequential disease intensified, and have remained at the forefront of food 

microbiological research ever since (Ryser and Marth 2007). Presently, research is conducted 

worldwide to control L. monocytogenes; such research will likely continue into the future, as the 

organism continues to challenge the efforts of scientists, physicians, and food producers. 

History 

Murray and others (1926) were the first to describe the bacterium with a high degree of 

detail after culturing it from the omentum, blood, and ascitic fluid of diseased laboratory rabbits 

and guinea pigs).  The organism  was originally named Bacterium monocytogenes because of the  

large mononuclear leucocytosis that developed due to its presence (Murray and others 1926), but 

its genus was renamed Listeria by J. H. Harvey Pirie (1940) in 1940. Thereafter, many reports of 

the widespread nature of listeriosis, the disease caused by L. monocytogenes, were compiled, and 

bacteriologists began to realize the scope of the illness and the ubiquity of the causative 
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organism (Murray 1955). Descriptions of meningitis, septicemia, and granulomatosis 

infantiseptica (a syndrome characterized by the formation of abscesses in multiple internal 

organs of the newborn), as well as isolation from numerous countries around the world, brought 

about the realization that the organism was not harbored by a single reservoir in a particular 

continent or region, nor were humans exempt from infection and transmission (Burn 1936; 

Murray 1955). Gray and Killinger (1966) published a comprehensive review on L. 

monocytogenes, noting that much information about the bacterium evaded scientists, with little 

known about the sources of the disease and why it displayed variable pathogenic activity across 

different host species. Later studies that were aimed at identifying possible environmental 

sources of L. monocytogenes concluded that decaying plant materials and soils were the likely 

origins of the organism within the environment and that any transmission originated there 

(Welshimer and Donker-Voet 1971; Weis and Seeliger 1975).  

 In the 1980s however, multiple outbreaks were investigated and found to be associated 

with several different types of food (Schlech and others 1983; Fleming and others 1985; Linnan 

and others 1988). As a result of the outbreaks, the general public became much more aware that 

foods were also key transmission vehicles for the organism, and began to increase demand for 

better detection and control of L. monocytogenes in products they consumed daily (Gill 1988). 

Thus, the role of the Unites States government in mitigating foodborne L. monocytogenes 

contamination escalated during the 1980s (Kozak 1986; Lecos 1986), culminating in the 

declaration of the pathogen as an adulterant in certain food products. By the early 1990s, it was 

acknowledged that L. monocytogenes was a major issue to be dealt with in the food processing 

environment and that development of technologies designed to control it were needed (Farber 

and others 1989b; Farber and Peterkin 1991; Tompkin and others 1992).  
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 Several advances in the understanding of L. monocytogenes physiology, pathogenicity 

and process control have been reported in recent decades (Tompkin and others 1999), despite 

occurrence of multiple outbreaks of foodborne listeriosis (Dalton and others 1997; CDC 1999b; 

Olsen and others 2005; Gottlieb and others 2006). Among these advances was an extensive risk 

assessment that was completed in 2003 to evaluate the hazards associated with the pathogen and 

identify the foods most commonly implicated for contamination (FDA/FSIS 2003). In addition, 

it was reported that incidence of L. monocytogenes declined from seven to nearly three cases per 

million of population in the United States from 1986 to 2006; a testament to the coordinated 

efforts undertaken by multiple groups in all facets of food production and technology (Klontz 

and others 2008). Observed reductions in incidence, combined with a better understanding of the 

organism’s pathogenic disposition, may already be a glimpse of future improvements that may 

significantly enhance control of the pathogen’s presence in foods. 

Microbiology 

 The shape and Gram reaction of L. monocytogenes was first described in the publication 

of Murray and others (1926), where the researchers noted that the bacterium was a Gram-

positive bacillus. A facultative anaerobe, it is classified as a regular non-sporulating Gram-

positive rod (Holt and others 1994). It ranges from 1-2 µm in length, 0.5 µm in width, and has 

rounded ends which make it diphtheroid-like in appearance (Murray and others 1926). It is also 

non-acid fast (Murray and others 1926), cytochrome oxidase negative, catalase positive, and 

carries out hemolysin-mediated β-hemolysis on blood agar (Farber and Peterkin 1991). Cells can 

be arranged in either a side-by-side parallel fashion or in a thread-like manner depending upon 

the culture (Murray and others 1926). Colonies grown on agar plates tend to be bluish-gray in 

appearance when viewed by reflected light (Gray and Killinger 1966), and can produce a 

characteristic blue-green sheen when viewed by obliquely transmitted light (Henry 1933). 
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In addition to L. monocytogenes, the Listeria genus also contains L. innocua, L. 

welshimeri, L. seeligeri, L. murrayi, L. grayi, and the animal pathogen L. ivanovii (Holt and 

others 1994). Species can be differentiated by examining carbohydrate fermentation profiles and 

ability to lyse blood agar (Bille and others 1992; Rocourt and others 1983). The genetic 

composition of the Listeria genus causes it to be classified within the Clostridium-Lactobacillus-

Bacillus branch (Jay and others 2005). Members of this branch typically have a less than 50 mol 

% of guanine (G) + cytosine (C) pairs in their DNA (Jay and others 2005), with L. 

monocytogenes falling into the 36-42% range (Rocourt and Buchrieser 2007). Listeria species 

also exhibit similarities in genetic material composition and carbohydrate utilization to members 

of the Brochothrix and Lactobacillus genera, respectively (Jay and others 2005). 

 Growth of L. monocytogenes can occur at low temperatures (Junttila and others 1988), 

which prompts some to classify the organism as a psychrotroph. It is capable of survival from     

- 0.4-50 °C, but optimum temperatures for the organism are considered to be from 30-37 °C 

(Low and Donachie 1997). Production of flagella occurs optimally at ambient temperatures (20-

25 °C); peritrichous flagella are synthesized and yield a distinctive tumbling motility (Peel and 

others 1988). At temperatures above this range, and within its optimum growth temperature 

span, flagella synthesis is decreased, and limited motility is displayed (Gray and Killinger 1966).  

When incubated  aerobically at 30 °C in tryptic soy broth with 0.6% yeast extract, most 

strains of the pathogen are capable of growth within the pH range 4.5-7.0, with little growth 

occurring below pH 4.0 (Parish and Higgins 1989). However, temperature can affect pH 

requirements, as growth of the pathogen in brain heart infusion broth in the presence of 

acidulants at 30 °C only requires a pH of 4.3 to commence, while at 4 °C the pH must be higher 

(pH 5.0-5.7) for growth to occur (Farber and others 1989a). L. monocytogenes is also fairly 

osmotolerant and has been shown to survive for up to 259 days at 4 °C in commercial cheese 
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brines with NaCl concentrations up to 23.8% (Larson and others 1999). However, this tolerance 

decreases proportionately with both increases in NaCl concentrations (Hudson 1992) and with 

increases in the growth temperature (Sorrells and Enigl 1990). 

 Evaluation of the carbohydrate utilization by L. monocytogenes along with other Listeria 

species was performed by Pine and others (1989). Based on observations, it was noted that L. 

monocytogenes utilizes the monosaccharides glucose and rhamnose under both aerobic and 

anaerobic conditions, and that neither xylose nor galactose are able to support growth of the 

pathogen under any type of atmosphere. Disaccharide utilization is limited to lactose, which 

supports growth of the bacterium only under aerobic conditions (Pine and others 1989).  Sucrose 

is unable to support growth of any Listeria species regardless of atmospheric composition (Pine 

and others 1989). Utilization of glucose by L. monocytogenes yields trace to large amounts of 

acetic, isobutyric, isovaleric, phenylacetic and isocaproic acids, a variety of alcohols, and lactic, 

2-hydroxybutyric, 2-hydroxyvaleric and 2-hydroxyisocaproic acids (Daneshvar and others 

1989). Another interesting characteristic of L. monocytogenes and all Listeria species is the 

ability to hydrolyze esculin and produce 6,7-dihydroxycoumarin, a compound that can react with 

available iron (Fe3+) to produce a black precipitate (Fraser and Sperber 1988). This particular 

trait has proven useful in the development of several different types of differential media, 

namely Fraser Broth, PALCAM medium, and Oxford’s medium, which utilize this mechanism 

to identify the presence of Listeria species (Fraser and Sperber 1988; Van Netten and others 

1989; Curtis and others 1989). 

Listeriosis 

Murray (1955) characterized listeriosis in humans and animals, describing traits of the 

disease that were observed in a wide variety of species. He noted that the majority of 

documented human infections entailed conditions that included encephalitis and meningitis, 
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granulomatosis infantiseptica, septicemia, mononucleosis, and conjunctvitis (Murray 1955). 

Present day listeriosis complications are much the same, as meningitis, spontaneous abortion, 

and septicemia remain the primary conditions associated with human L. monocytogenes 

infections (Vázquez-Boland  and others 2001). However, recent reports of febrile gastroenteritis 

have also shown that the pathogen is capable of producing the typical gastrointestinal 

complications associated with foodborne illnesses (Salamina and others 1996; Dalton and others 

1997; Aureli and others 2000). Because of the nature of its pathogenesis, pregnant women, 

neonates, immunocompromised individuals, and the elderly are at highest risk for infection 

(Cherubin and others 1991).    

Human perinatal listeriosis usually involves mild influenza-like symptoms as well as 

diarrhea, abdominal cramps, and lower back pain in the pregnant mother (McLauchlin 1990; 

Svare and others 1991). However, the more deleterious effects can include stillbirth and 

premature delivery of the fetus (Lorber 1997) with nearly 20% of infections resulting in one of 

the two outcomes (Mylonakis and others 2002). Neonatal infections can occur in utero resulting 

in early-onset neonatal listeriosis; postnatal infection results in late-onset listeriosis (Painter and 

Slutsker 2007). Early-onset neonatal listeriosis can result in the production of lesions in internal 

organs such as the liver, lungs, kidney, spleen, and brain (Banerji and Noya 1999), fever, 

respiratory distress, and neurologic deformities in the infant (Painter and Slutsker 2007). Late-

onset neonatal listeriosis is mainly characterized by meningitis and is believed to be the result of 

L. monocytogenes transmission from the birth canal and other maternal sites or from the 

postnatal environment (McLauchlin 1990). Both types of neonatal infections are considered 

highly fatal with estimated mortality rates near 20-30% (Boucher and Yonekura 1984; 

McLauchlin 1990; Lorber 1997). 
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Among non-pregnant adults, encephalitic and meningitic manifestations of L. 

monocytogenes are the most commonly reported, accounting for nearly 55-70% of cases 

(Vázquez-Boland  and others 2001). In fact, L. monocytogenes is considered to be one of the 

predominant agents of bacterial meningitis (Durand and others 1993). A recent study noted that 

within a group of 80 culture-positive cases of bacterial meningitis, L. monocytogenes was 

responsible for at least 12.5% of all cases, making it the second most common causative 

organism behind Streptococcus pneumoniae (Hussein and Shafran 2000).  Such complications 

are of great concern for elderly and immunocompromised individuals, as they are the most 

susceptible populations to listeric meningitis due to inherent deficiencies in their immune 

systems (Bell and Kyriakides 2005). In addition, because L. monocytogenes has an affinity for 

brain and meninge tissue, encephalitic and meningitic infestations usually have very well-

defined consequences on the nervous system (Nieman and Lorber 1980).  As a result, deleterious 

effects such as gross lack of muscular coordination, seizures, and altered mental status can occur, 

as well as more minor effects such as fever and depression-like behavior (Painter and Slutsker 

2007). Septicemic and bacteremic conditions without meningitis are also common forms of 

listeriosis presentation among non-pregnant adults (Rocourt 1990). Such infestations of L. 

monocytogenes usually entail fever, and can be accompanied by fatigue, malaise, and abdominal 

pain (Painter and Slutsker 2007). 

Listeriosis cases that result in symptoms more commonly associated with foodborne 

infections, such as diarrhea and vomiting, are less common, but have been documented (Bell and 

Kyriakides 2005). In a 1994 chocolate milk outbreak discussed by Dalton and others (1997), the 

presence of high levels of L. monocytogenes (8.9-9.1 log10 CFU/ml), caused rapid onset of 

diarrhea and vomiting among the individuals who had consumed the contaminated milk. Other 

cases of L. monocytogenes gastroenteritis due to consumption of rice salad (Salamina and others 
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1996) and corn salad (Aureli and others 2000) involved presentations of similar symptoms in 

patients. However, such cases almost exclusively result from consumption of highly 

contaminated foods, occur within less than 24 hours after consumption, and are only 

occasionally followed by bacteremia (Bell and Kyriakides 2005).  

Pathogenic Mechanism and Virulence 

 As evidenced by the broad range of disease complications associated with listeriosis, the 

pathogenicity of L. monocytogenes in the human body is quite extensive. The ability of the 

pathogen to invade cells such as fribroblasts, epithelial and endothelial cells, and dendritic cells 

translates into a diverse range of pathogenic activity with a capacious spectrum of consequences 

(Kuhn and Goebel 2007).  The mechanism by which L. monocytogenes accomplishes invasion is 

phagocytic in nature and involves the use of several attachment proteins, cellular vacuoles, a 

propulsion mechanism, and a lytic protein (Kuhn and Goebel 2007; Gaillard and others 1987).  

  The first stage of internalization of the L. monocytogenes cell into a non-phagocytic cell 

(such as an epithelial cell) occurs when the bacterium attaches to the exterior of the host cell. 

Attachment is accomplished through the use of the Internalin A (inlA) protein (Gaillard and 

others 1991), which contains a specialized LPXTG motif and a cell wall-spanning region 

(Dramsi and others 1993) to allow L. monocytogenes cells to firmly to attach to the host cell via 

a reaction involving the enzyme sortase (Garandeau and others 2002). Another internalin protein, 

Internalin B (inlB), is also coded by the same operon (the inlAB operon) (Lingnau and others 

1995), but lacks the motif and cell-wall spanning region of inlA (Braun and others 1997). Based 

on high amounts of inlB in supernatants of cultures (Jonquières and others 1999), it is believed 

that its bonds with the lipoteichoic acids of the pathogen’s cell wall are weak, and cause it to be 

less effective than inlA at promoting attachment (Kuhn and Goebel 2007).  
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 After attachment, the pathogen undergoes entry into the host cell by inducing formation 

of a phagocytic vacuole that allows it to internalize (Gaillard and others 1987). Once inside the 

cell, L. monocytogenes lyses the vacuole through the use of a hemolytic protein known as 

listeriolysin O (Geoffroy and others 1987). Unless it is able to accomplish this lysis, the 

bacterium is trapped within the vacuole and will become digested by the host cell (Gaillard and 

others 1987). However, if the pathogen is able to produce lysis, it can then enter the cytoplasm of 

the host cell and begin to grow and multiply (Portnoy and others 1988). 

 After cytoplasmic proliferation begins, L. monocytogenes utilizes host cell actin to form 

a capsule of filaments on its exterior (Tilney and Portnoy 1989). It then polymerizes these 

filaments into a long “comet’s tail,” which permits propulsion throughout the cytoplasm (Tilney 

and Portnoy 1989). Once it reaches the cell membrane of the host, the bacterium creates a 

protrusion with the actin filament tail embedded in the cytoplasm behind it (Mounier and others 

1990). At this stage, it can be absorbed into the interior of a neighboring host cell and become 

enveloped in a double-membrane vacuole (Mounier and others 1990). Once this double-

membrane vacuole is lysed by listeriolysin O, the bacterium enters the cytoplasm of the new cell 

and proliferates once again; thereby it continues to infect other cells while evading the immune 

system of the host (Tilney and Portnoy 1989). 

 Though this pathogenic mechanism is well understood, the differences in the potency of 

virulence that are observed between different strains of L. monocytogenes remain to be 

completely explained (Kathariou 2002). Some have suggested, and exhibited, that temperature 

affects the production of the internalin proteins (Lingnau and others 1995) and listeriolysin O 

(Buncic and others 1996), and thus can decrease pathogenicity of L. monocytogenes cells. Others 

have exhibited that multiple lineages of L. monocytogenes actually exist and possess genetic 

differences that dispose them to variations in pathogenic potential (Wiedmann and others 1997). 
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One of these major genetic differences is a greater tendency of some strains to possess premature 

stop codons for the internalin proteins, which produce truncated inlA and inlB with no activity 

(Nightingale and others 2005; Nightingale and others 2007; Van Stelten and Nightingale 2008). 

This sort of observation is of particular interest to the food industry as some isolates from foods 

have been shown to have an attenuated virulence due to the presence of these particular 

mechanisms (Nightingale and others 2005). 

Incidence in the Environment and Biofilms 

 As noted by the work of Welshimer and Donker-Voet (1971) and Weis and Seeliger 

(1975), L. monocytogenes is widely distributed in the environment, in the soil, and in plants and 

animals. Welshimer and Donker-Voet (1971) suggested that because it was present in the 

decaying vegetation of soil in non-agricultural areas at certain seasons of the year, animal feces 

deposition was not the sole source of the pathogen. Weis and Seeliger (1975) later confirmed 

that the organism is saprophytic in nature and can thus be contracted via a variety of routes of 

contamination. Nonetheless, though such studies have shown that decaying vegetation and the 

soil are the primary habitats for L. monocytogenes in the environment, a variety of animals serve 

as reservoirs of the pathogen (Murray 1955) and deposit it in their feces (Skovgaard and Morgen 

1988). Indeed, more than 40 species of animals have been implicated as carriers of the 

microorganism over the span of six continents (Low and Donachie 1997). Finally, L. 

monocytogenes often resides in sewage and effluent sources and thus can be distributed onto 

agricultural land through the spraying of fecal sludge (McCarthy 1990). 

 Although much research has been completed to detail the diversity of strains of L. 

monocytogenes in food processing environments, little is known about the transmission from 

natural to food processing environments (Sauders and Wiedmann 2007). Some have implicated 

raw food ingredients and their high levels of L. monocytogenes contamination as the primary 
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mode of transmission of the organism into facilities (Samelis and Metaxopoulos 1999). Yet 

while others have shown that transfer from raw to processed products is minimal, and that 

humans are likely the responsible vehicle (Nesbakken and others 1996). Regardless of the 

vehicle of transmission, once established in the food processing environment, L. monocytogenes 

can attach to and colonize virtually any surface including stainless steel, glass, polypropylene, 

and rubber (Mafu and others 1990). As many factors required for growth of L. monocytogenes  

in the environment (cool, damp areas and decaying nutrients) may be found in food processing 

facilities, the organism is capable of surviving months or even years within a food processing 

plant after its introduction from the surroundings (Tompkin and others 1999). Thus, machines, 

peelers, doors (Tompkin 2002), framework, floor sealants, drains (Lado and Yousef 2007), and 

conveyor belts (Wenger and others 1990) can all become potential environmental niches of L. 

monocytogenes in the food plant. The same is true for the retail foodservice environment where 

equipment and materials such as slicers, refrigerator handles, food preparation surfaces, and 

other utensils can harbor the pathogen and cause cross-contamination (Lianou and Sofos 2007). 

 The main characteristic that enables L. monocytogenes survival on inanimate surfaces is 

its ability to develop a biofilm (Lado and Yousef 2007). Biofilms are defined as matrix-enclosed 

bacterial populations which are adherent to each other and to surfaces and interfaces (Costerton 

and others 1995). Most biofilm formation entails the production of a complex exopolysaccharide 

matrix, which allows the bacteria to aggregate and condition their own microenvironments 

(Costerton and others 1995). L. monocytogenes biofilm formation begins with planktonic cells 

being deposited on the exterior of a particular material by means of hydrophilic interactions or 

by clinging to the surface using flagella. Once this occurs, synthesis of fibrils and exopolymers 

allow the organism to fully adhere to the surface. Colonization and multiplication follows 

resulting in the formation of multiple layers of cells. As the biofilm continues to grow and 
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mature, horizontal cell distribution becomes more homogeneous, cell proliferation continues, 

and capillary water channels form to impart a three dimensional structure to the biofilm (Lado 

and Yousef 2007). Once fully mature, the biofilm can generate large amounts of planktonic cells, 

which can easily contaminate foods and food handling equipment when released. Once 

established, L. monocytogenes biofilms are considerably harder to remove than planktonic cells 

and make food plant cleaning and sanitation less effective (Lado and Yousef 2007). 

Incidence and Significant Foodborne Disease Outbreaks 

Along with Salmonella species and Escherichia coli O157:H7, foodborne L. 

monocytogenes infections have had a major impact on the economy and public health of the 

United States. Mead and others (1999) estimated the total number of hospitalizations related to 

L. monocytogenes infections to be ~2500/year; approximately 20% of cases were fatal, with 

almost 99% of reported cases resulting from foodborne transmission. Such numbers have 

undoubtedly caused great concerns for the food industry and consumers, and have been 

estimated to cost the United States economy approximately $2.3 billion each year in terms of 

food product recalls, hospitalizations, and other complications from foodborne listeriosis cases 

(ERS 2000). In addition, because several food categories (dairy foods, seafood, raw vegetables, 

and processed meats) have been assessed as being of high risk for transmission of L. 

monocytogenes, its control demands considerable effort from multiple portions of the food 

industry (FDA/FSIS 2003). 

In 1981 an outbreak of foodborne listeriosis involving coleslaw occurred in the coastal 

provinces of Canada (Schlech and others 1983). Forty-one cases of infection were found to be 

due to consumption of coleslaw that contained cabbage grown on a farm where raw and 

uncomposted manure from listeriosis-laden sheep had been used as a fertilizer (Schlech and 

others 1983). In addition to seven adult listeriosis cases, of which 2 were fatal, 15 of 34 perinatal 



 14

cases resulted in mortality of the fetus or newborn infant (Schlech and others 1983). Yet, even as 

the coleslaw was narrowed down as the exclusive source of the outbreak strain, little alarm was 

raised as to the need for precautionary measures in consumption of similar food products 

(Schlech and others 1983). Soon thereafter, 49 cases of listeriosis due to consumption of 

pasteurized milk were reported in Boston (Fleming and others 1985). Seven cases occurred in 

infants and fetuses; 42 involved immunocompromised adults (Fleming and others 1985). 

Fourteen fatalities occurred during the course of the outbreak, which took place within only 

about one month’s time (Fleming and others 1985). In 1985 in Los Angeles, Mexican-style soft 

cheese was implicated as the means of transmission in an outbreak of foodborne listeriosis; 142 

cases and 48 deaths were ultimately attributed to this outbreak (Linnan and others 1988; CDC 

1985). The attention generated by the outbreak prompted the U.S. government to take quick 

action and subsequently led to the consideration of the pathogen as an adulterant in FDA-

regulated ready-to-eat food products (Shank and others 1996). In addition, the outbreak spawned 

development of new regulatory practices in the production of certain foods, enforcement of plant 

visitations and inspections, establishment of state and national surveillance systems, and grounds 

for listeriosis being a reportable disease in certain states (Linnan and others 1988). Several other 

notable outbreaks occurred during the late 1980s and early 1990s involving a variety of foods as 

vehicles (Schwartz and others 1989; Riedo and others 1994; Dalton and others 1997). Recent 

outbreaks in North Carolina and Texas involving queso fresco cheese (CDC 2000a; CDC 2001; 

CDC 2003; CDC 2005), an Oregon outbreak involving cheese made from pasteurized milk 

(CDC 2006), and a skim milk transmitted outbreak in Massachusetts (CDC 2007) have played a 

pivotal role in the continual recognition of dairy foods as sources of the pathogen and continue to 

keep strict regulations in place for their production. 
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Prior to the late 1980s processed meats were not recognized as vehicles for transmission 

of foodborne listeriosis. In 1989 a single case of listeriosis attributed to consumption of 

contaminated turkey frankfurters was identified (CDC 1989). Since the initial case, multiple 

outbreaks of foodborne listeriosis have occurred which have involved processed meat(s) as the 

vehicle of transmission. In 1998 a multi-state L. monocytogenes disease outbreak involving 

frankfurters and a variety of processed meats produced by a particular Michigan firm occurred, 

resulting in 101 cases (15 fatalities) across 22 states (CDC 1998b; CDC 1999b; Olsen and others 

2005). Since then, a Colorado hot dog outbreak (CDC 1998a), a multistate outbreak in paté 

(CDC 1999a) and three multistate outbreaks in 2000, 2002, and 2005 all involving turkey deli 

meat (CDC 2000b; Olsen and others 2005; CDC 2002a; CDC 2002b; Gottlieb and others 2006; 

CDC 2005) have demonstrated the risk that L. monocytogenes poses to processed meats. In 

addition, occurrence of at least 175 Class I and voluntary recalls involving processed meats 

between 1994 and 2006 reiterates the challenge the pathogen presents to the processed meats 

sector of the food industry (Farber and others 2007). 

Because of these and other outbreaks, processed ready-to-eat (RTE) meats have a high 

level of risk in terms of transmission of the pathogen (Farber and others 1989b; FDA/FSIS 

2003). Factors such as availability of nutrients, product processing procedures, and storage 

conditions predispose processed meats to cross-contamination with and survival of L. 

monocytogenes. It has been found that L. monocytogenes can grow quite well on RTE meats 

such as cooked roast beef and frankfurters, and even better in products such as ham, bologna, 

bratwurst, sliced chicken, and sliced turkey (Glass and Doyle 1989). The moderate acidity of 

such products (pH 5.6-6.5) corresponds with the optimal pH conditions for growth of the 

pathogen; this, along with increased moisture percentages and significant content of protein and 

carbohydrate, contributes to survival and proliferation of the organism (Glass and Doyle 1989).  
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Although most RTE meat processes include a cooking step that is designed to kill any L. 

monocytogenes present in the raw product, contamination often results from exposure of the 

product to the plant environment between this step and the final packaging of the product (FSIS 

2003a). Since it is common practice to perform further mechanical processing and handling of 

foods such as deli meats and frankfurters in this interim, contamination from the food plant 

environment, equipment, and additional handling may occur (Aberle and others 2001). Several 

studies have verified that post-process contact with the environment is the primary source of L. 

monocytogenes contamination. Bunčić (1991) showed that L. monocytogenes was absent in hot 

smoked sausages sampled immediately after the cooking process, but that nearly 21% of surface 

samples from the same sausages were positive for L. monocytogenes following handling and 

packaging. In tests for presence of L. monocytogenes in the internal portion of frankfurters and in 

purged fluid, Wang and Muriana (1994) showed that the pathogen was solely present in the 

exudate. Thus, it can be said that control of the pathogen’s presence in post-lethality handling 

areas through good sanitation standard operating procedures (SSOPs) are of key importance to 

prevent contamination of product exteriors during handling (Tompkin 2002). 

In addition to the concern associated with post-lethality contamination, the practice of 

storing processed RTE meats for extended periods of time (e.g. longer shelf life) at refrigeration 

temperatures, coupled with the bacterium’s ability to grow, albeit slowly, at such temperatures 

(Junttila and others 1988; Glass and Doyle 1989), increases the risk for this class of products. If 

present, L. monocytogenes can proliferate on the product during this storage time, and will grow 

well under the low oxygen conditions of vacuum packaging (Beumer and others 1996). The key 

issue with this increase in numbers is that many RTE products are typically consumed without 

any heating by the consumer (Lianou and Sofos 2007). Consequently, food processor-directed 

prevention of RTE meat contamination has been a focus of federal regulatory agencies such as 
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the United States Food and Drug Administration (FDA) and the United States Department of 

Agriculture Food Safety and Inspection Service (FSIS), and has led to the passage of many 

regulations on the matter. Most recently, retail preparation and processing of RTE foods, 

particularly deli items such as salads and slicing of deli meats has gained additional focus. 

Control and Regulations 

 The current position of the United States government with regard to L. monocytogenes 

and foods consists of a strict “Zero Tolerance” policy toward the presence of the pathogen in all 

cooked RTE products (Klontz and others 2008). Section 402(a) (1) of the 1938 Federal Food, 

Drug, and Cosmetic Act (FFDCA) prohibits the presence of any poisonous or deleterious 

substance in foods that may render the food injurious to health. Similarly, section 402(a) (4) of 

the FFDCA prohibits the preparation, packaging, or holding of a product under unsanitary 

conditions that can allow it to become contaminated with filth or render it injurious to health. 

The FDA was the first agency to enact the “Zero Tolerance” policy toward L. monocytogenes, in 

part as a response to the 1985 Mexican-style soft cheese outbreak in Los Angeles (Klima and 

Montville 1995). After the occurrence of the outbreak, the FDA began an enhancement of its 

dairy plant inspection program, intensified surveillance of dairy products, and stepped up 

training for dairy inspectors and other officials (Kozak 1986). Later in 1985, FDA made a 

decision to consider the microbe an adulterant in cooked RTE foods falling under its jurisdiction 

and to request recalls of RTE products that were not in compliance (Klontz and others 2008). 

 Although no outbreaks had previously been linked to meat and poultry products, 

beginning in December 1985 the FSIS began to follow the example of the FDA and started to 

investigate the incidence of L. monocytogenes in products under their jurisdiction (Jinneman and 

others 2007). After acknowledging the possibility for such foods to be contaminated by the 

pathogen (Shank and others 1996), FSIS again followed the example of the FDA, and began to 
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intensify the scope of its testing and monitoring programs for the bacterium by implementing a 

testing plan specific for L. monocytogenes in 1987 (FSIS 1989). However, the agency did not 

implement a “Zero Tolerance” policy per se until the 1989 case of the turkey frankfurters 

contaminated with L. monocytogenes (CDC 1989). Immediately after the occurrence of the 

listeriosis case, the agency amended its policies to include “Zero Tolerance” of the pathogen in 

all cooked RTE foods that it controlled, and to encourage voluntary recalls of entire lots whose 

tests indicated presence of the pathogen (FSIS 1989). 

 Though both agencies publicize their policies under the term of “zero tolerance,” a more 

correct term for the policy is one of “zero detection” (Klontz and others 2008). Indeed, the FDA 

method involves a 4 h pre-enrichment and subsequent 48 h enrichment of a 25 g sample of food 

in 225 ml Buffered Listeria Enrichment Broth, with streaking done at 24 and 48 h on one of the 

agars approved for selective and differential isolation of the organism (Modified Oxford’s 

Medium (MOX), PALCAM, or Lithium Chloride Phenylethanol Moxalactam (LPM) agar) 

(Hitchins 2003). This allows for a detection level of only 1 colony forming unit (CFU) per 25 g 

or 0.04 CFU/g. Thus, the attainment of results that ensure a level of 0 CFU of the pathogen per 

gram of food is not possible through the use of the agency-prescribed methods. The same is true 

for the USDA method of detection, which involves the 22 h primary enrichment of a 25 g food 

sample in University of Vermont (UVM) Broth. This is followed by a 26 h secondary 

enrichment of 0.1 ml of UVM culture in Fraser Broth and streaking on MOX Agar with further 

incubation of the Fraser Broth up to 48 h (FSIS 2008). Because the method also utilizes a 25 

gram sample, the detection limit is also 0.04 CFU/g and cannot theoretically reach the 0 CFU/g 

level of assurance implied by the “zero tolerance” policy term. Although the FDA and FSIS 

continue to staunchly support their approach to handling the pathogen, the need for a strict “Zero 

Tolerance” policy for L. monocytogenes has been continually brought into question. Petitions 
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have been brought forward by several food industry interest groups in recent years that are aimed 

at relaxation of the restrictions (FDA 2004b). Most petitions have implored the FDA take a risk-

based approach to the matter and revise its policy to consider allowing up to 100 CFU/g of L. 

monocytogenes in foods that do not support its growth (FDA 2004b). A risk-based approach is 

already widely used for the pathogen in other countries, such as the European Union and 

Canada, where up to 100 CFU/g is allowed in some foods that are not considered to be of high 

risk (CEC 2005). Though both the FDA and FSIS still maintain their “zero tolerance” policy for 

the pathogen based on rationale from their 2003 risk assessment (FDA/FSIS 2003), the 

possibility of amending this policy is currently under review (FDA 2008a). 

 In addition to testing programs mandated for RTE foods that fall under its jurisdiction, 

the FSIS maintains an additional policy for prevention of post-process contamination in products 

that are exposed to the environment after receiving their process step for microbial lethality 

(FSIS 2003a). Examples of such post-lethality exposed products (PLEP) include frankfurter 

products and sliced deli meats (FSIS 2003a). In its final rule on the control of L. monocytogenes 

in certain RTE meat and poultry products, FSIS mandated that all producers of PLEP products 

must incorporate one of three post-lethality strategies to control contamination and outgrowth of 

the pathogen on the product (FSIS 2003a). Alternative 1 involves the use of a post-lethality 

treatment (which can involve the application of an antimicrobial compound) that reduces or 

eliminates the pathogen on the product coupled with an antimicrobial agent or process that is 

designed to limit or suppress the growth of the pathogen throughout the product’s shelf life 

(FSIS 2003a). Alternative 2 involves the use of a post-lethality treatment (which again can 

involve the application of an antimicrobial compound) that reduces or eliminates the pathogen or 

an antimicrobial agent or process that limits or suppresses pathogen growth (FSIS 2003a). 

Alternative 3 is the least stringent of all three programs, and involves the control of the pathogen 
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through the development and use of sanitation measures only (FSIS 2003a). It must be noted, 

however, that although stringency of control decreases with the ascending number of the 

alternative, the stringency of verification activities by FSIS increases in the same fashion (FSIS 

2003b). Because of the more frequent use of Alternatives 1 and 2 in large volume food plants, 

the application of antimicrobial compounds as a measure of control for L. monocytogenes is 

commonplace in the food industry. In its Amendment 19 of Directive 7120.1, FSIS lists a 

number of approved compounds that can be used in processed meat applications (FSIS 2009). 

Details on the use of several of these antimicrobials and their effects on L. monocytogenes will 

be discussed in the next chapter and are thus precluded from discussion within this section. 
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CHAPTER III 

FOOD ANTIMICROBIALS 

 

Introduction 

 By definition, any chemical substance is classified as a food antimicrobial if it is added 

to or inherently present in foods, packaging, contact surfaces, or the processing environment, and 

is able to either inhibit or eliminate pathogenic or spoilage microorganisms (Davidson and others 

2005; FSIS 2003a). Though much of the traditional use of antimicrobials has revolved around 

inhibiting the growth of spoilage microorganisms and preventing the deterioration of foods, the 

topics of current research on antimicrobials and their application have also included a focus on 

preventing the presence and growth of foodborne pathogens (Davidson and others 2005). This 

new outlook has driven much scientific development, yielding novel antimicrobials with diverse 

modes of action. However, this same shift in perspective has caused many to look at centuries-

old antimicrobials like organic acids and salts in a different way and to re-approach commonly 

used materials with new purposes in mind. The promises afforded by constant innovation, 

coupled with new approaches to current interventions, have led many to believe that research in 

antimicrobial application will produce solutions necessary to meet the challenges that pathogens 

commonly pose to foods in the present day (Davidson and Branen 2005).  

Nisin 

Though Rogers and Whittier (1928) were the first to suggest the presence of a lactic acid 

bacterium-synthesized substance capable of inhibiting bacterial growth, H. R. Whitehead (1933) 

is credited with being the first to isolate and further investigate the properties of the inhibitory 

material. This complex compound, believed to be a protein, was inadvertently discovered during 

investigation of problems with a starter culture used for the manufacture of cheddar cheese 
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(Whitehead 1933). Whitehead concluded that strains of Streptococcus lactis (now Lactococcus 

lactis subsp. lactis) isolated from the starter culture produced this particular compound, inhibited 

growth of other strains, and subsequently led to a decrease in acid production (1933). Mattick 

and Hirsch (1944; 1946; 1947) recorded inhibition in lactic acid bacteria cultures due to the 

presence of the same substance previously described by Whitehead. Further characterizations led 

them to conclude that the compound was produced exclusively by members of the Group N 

Streptococci (Mattick and Hirsch 1947). As a result, they named the compound nisin (derived as 

an acronym from Group N Streptococcus Inhibitory Substance), and assayed its antimicrobial 

activity against other groups of organisms (Mattick and Hirsch 1947). These assays proved that 

nisin had a great amount of in vitro activity against certain pathogens and that it was also quite 

effective against other microbes in vivo (Mattick and Hirsch 1947). These growth inhibition 

properties of nisin sparked much interest in its production and usage as a food preservative, and 

consequently led to its first commercial preparation in 1953 (Adams 2003). 

Nisin is still extensively produced in its commercially available form and is added to a 

plethora of foods as an antimicrobial. Furthermore, as it possesses no toxic effects upon 

consumption (Frazer and others 1962) and is produced by microorganisms that are considered 

safe for human consumption, nisin is generally considered to be a natural food preservative 

(Adams 2003). It is currently approved for use in at least 80 countries worldwide and a 

commercial fermentate containing 2.5% nisin (w/w) was approved as generally recognized as 

safe (GRAS) in 1988 (FDA 1988; Adams 2003). Initially approved for use in foods as a control 

measure for prevention of Clostridium botulinum spore formation and toxin production in certain 

pasteurized cheese spreads (FDA 1988), nisin is currently used to control the growth of a variety 

of spore-forming organisms in a diverse group of food products ranging from processed cheese, 

dairy products, canned food, dressings and sauces, beer and other alcoholic products, and fruit 
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juices (Delves-Broughton and others 1996). It also meets the criteria for use as an antimicrobial 

to combat L. monocytogenes in processed meat and poultry products, and is approved for use at 

different levels in a variety of applications as per the FSIS Directive 7120.1 Amendment 19 

(FSIS 2009). 

Nisin and other bacterially-synthesized antimicrobial polypeptides with similar 

properties are generally classified as bacteriocins; nisin is categorized as a Class I bacteriocin or 

lantibiotic due to its membrane-active nature and the presence of several unusual and post-

translationally modified amino acid residues that allow the formation of five lanthionine rings in 

the mature polypeptide (Klaenhammer 1993). Other Class I bacteriocins produced by lactic acid 

bacteria include the lantibiotics lacticin and carnocin (Klaenhammer 1993). The formation of a 

mature nisin molecule (Figure 1) involves several steps. Nisin contains the residues of 34 amino 

acids and has a molecular weight slightly over 3.5 kDa (Gross and Morell 1971). After formation 

of the 34 residue polypeptide in the ribosome, threonine and serine residues are enzymatically 

converted to didehydroalanine and didehydroaminobutyric acid (Kupke and Götz 1996). Within 

this intermediate structure, the interaction between double bonds and sulfur atoms from cysteine 

sulfhydryl groups causes the formation of five ring structures within the molecule (Gross and 

Morell 1971; Adams 2003). After the rings form, a portion of the C-terminal end is cleaved off 

and mature nisin is released (Adams 2003).  

Because of its three positively-charged lysine residues and histidine residue, nisin is 

polycationic (Thomas and Delves-Broughton 2005). Nisin can exist in two forms based on the 

substitution of an amino acid at the 27 position; nisin A has a histidine residue while asparagine 

is present in nisin Z (Mulders and others 1991). Nisin is highly soluble at low pH (pH ~2.0), 

with decreasing solubility as pH is increased to pH  8.0-12.0  (Liu and Hansen 1990). Thus, nisin 
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Figure 1-Mature Nisin A molecule. 
Adapted from Gross and Morell (1971). 
 
 
 
preparation procedures often involve the dissolution of the compound in a slightly acidic 

solution before it is applied or tested (Cleveland and others 2002). 

Through the exposure of nisin to Staphylococcus cohnii, Bacillus subtilis, Micrococcus 

luteus, and Streptococcus zymogenes, researchers were able to find that nisin strongly decreased 

the membrane potential of cells and caused the efflux of certain amino acids (Ruhr and Sahl 

1985). They concluded that nisin was able to disrupt the function of the bacterial membrane and 

that this particular region of the cell was its target for attack (Ruhr and Sahl 1985). Henning and 

others (1986b) later verified the hypothesis that nisin interacts with phospholipids in the 

cytoplasmic membrane and demonstrated that the presence of murein, previously believed to be 

a target for nisin, was of minimal importance for nisin activity. Further observation by Henning 

and others (1986a), who noted that emulsifiers in foods affected nisin activity, led to additional 

agreement that phospholipids are the target for the bacteriocin.  

Through macroscopic conductivity measurements Sahl and others (1987) determined 

that nisin’s activity was voltage-dependent and that it formed transient multi-state pores in the 

range of 0.2 to 1 nm in diameter. These pores subsequently induce release of cellular materials 

such as ions, amino acids, and adenosine triphosphate (ATP) from the cytoplasm (Moll and 
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others 1997), and lead to a disruption in the proton motive force of the organism (Bruno and 

others 1992; Okereke and Montville 1992). Further investigation of the mechanism by which 

pores are formed has shown that nisin actually interacts with lipid II, a membrane-bound cell 

wall precursor molecule (Wiedemann and others 2001), and in doing so forms a ring of four lipid 

II molecules and eight nisin molecules that embeds into and forms a hole in the phospholipid 

bilayer of the cell membrane (Breukink and others 1999; Breukink and de Kruijff 2006). 

Because nisin interacts with the oligosaccharide cores of lipopolysaccharides in the outer 

membrane of Gram-negative bacteria (Stevens and others 1992) it cannot reach the cell 

membrane of such organisms, and is ineffective against them unless alterations of the 

lipopolysaccharide layer are accomplished through the use of other compounds (Stevens and 

others 1991; Branen and Davidson 2004). Thus, nisin is most effective against Gram-positive 

foodborne pathogens such as L. monocytogenes, C. botulinum, and Bacillus cereus, as well as 

the spores of the two latter organisms (Thomas and Delves-Broughton 2005). 

Benkerroum and others (1988) were among the first to test the sensitivity of L. 

monocytogenes to nisin in vitro, and found that although minimum inhibitory concentration 

(MIC) values varied among strains, nisin was quite inhibitory to the pathogen and effectively 

halted growth at levels between 740 and 100,000 IU/ml. Likewise, Harris and others (1991) 

showed that in vitro applications of nisin at a concentration of 10 µg/ml were able to decrease L. 

monocytogenes numbers by 6.0 to 7.0 log10 CFU/ml. Ukuku and Shelef (1997) displayed similar 

results with nisin being effective in decreasing survivors after a contact time of 30 minutes at 

levels of 240 IU/ml and 600 IU/ml. A recent study showed that instantaneous addition of 200 

IU/ml of nisin into buffered brain heart infusion broth at 10 °C decreased initial L. 

monocytogenes Scott A numbers by 4.0 log10 CFU/ml, and that outgrowth was even more 
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effectively inhibited when the initial addition of 200 IU/ml was combined with slow additions of 

200 IU/ml and 500 IU/ml of nisin over time (Chi-Zhang and others 2004). 

It has been shown that nisin resistant mutants of L. monocytogenes may be isolated with 

a relatively high frequency (Harris and others 1991; Davies and Adams 1994). The resistance 

mechanism utilized by these mutants is believed to involve changes in membrane fluidity by 

alteration of the fatty acid profile of constituent phospholipids (Ming and Daeschel 1993; 

Mazzotta and Montville 1997; Crandall and Montville 1998). In fatty acid profile examinations, 

mutants examined in these studies showed a higher tendency to contain straight chain fatty acids 

in their cytoplasmic membrane and thus decrease the potential for nisin to embed within the 

bilayer (Ming and Daeschel 1993; Mazzotta and Montville 1997). Other factors, such as the 

presence of divalent cations (Crandall and Montville 1998), and decreases in proton motive force 

and membrane potential due to acid tolerance responses (Bonnet and others 2006), have also 

been implicated as reasons for decreased nisin sensitivity in the pathogen. Likewise, nisin-

inactivating enzymes (nisinases) produced by certain Bacillus spp. have also been shown to 

degrade the bacteriocin and render it ineffective (Jarvis 1967; Jarvis and Farr 1971).  

To combat such resistances, applications involving combinations of nisin with 

environmental factors and other antimicrobials are most common, and will be discussed in later 

sections. However, the individual in vivo effect of nisin on L. monocytogenes in processed meats 

has been investigated, and mainly involves its use as a component of casings or dipping 

solutions. When included into edible zein coatings on RTE chicken at 1000 IU/g, nisin was able 

to decrease initial L. monocytogenes populations by 1.2 log10 CFU/g and 1.6 log10 CFU/g with 

ethanol- and propylene glycol-solubilized zein, respectively (Janes and others 2002). Growth of 

only 1.2 log10 CFU/g and 0.98 log10 CFU/g in RTE chicken with ethanol- and propylene glycol- 

solubilized zein containing nisin, respectively, was observed after storage at 4 °C after 24 days 
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(Janes and others 2002). When incorporated into zein casings for turkey frankfurters, nisin has 

been shown to decrease numbers of L. monocytogenes by 1.5 log10 CFU/g over 28 days at 4 °C 

(Lungu and Johnson 2005). Likewise, incorporation of nisin into the cellulose casings of pork-

turkey-beef frankfurters has been shown to decrease L. monocytogenes populations by ~0.9 log10  

CFU/package over the course of 15 days at 4 °C with growth following thereafter (Luchansky 

and Call 2004). Controls without nisin showed increases of L. monocytogenes after only 5 days 

at 4 °C (Luchansky and Call 2004). A 6400 IU/ml dipping solution of nisin applied to turkey 

frankfurters was able to decrease L. monocytogenes counts by 2.1 log10 CFU/g and 1.8 log10 

CFU/g after 7 days at 4 °C and 10 °C, respectively (Sivarooban and others 2007). The same 

6400 IU/ml dipping solution also limited growth of L. monocytogenes to 1.1 log10 CFU/g and 1.4 

log10 CFU/g after 28 days of storage at 4°C and 10°C, respectively (Sivarooban and others 

2007). Similarly, a dipping solution of 5000 IU/ml nisin from Nisaplin® was able to impart 

immediate reductions of L. monocytogenes by ~2.4 and ~2.6 log10 CFU/cm2 in ham and bologna 

samples, respectively, and was even more effective when used in combination with organic acids 

(Geornaras and others 2005). Thus, nisin is an effective antimicrobial for processed meats and is 

easily able to meet FSIS standards that require reductions within certain periods of time. 

Sodium Lactate 

 Unlike nisin, which is only produced by a specific group of microorganisms, the various 

forms in which lactic acid can exist are some of the most widely distributed compounds in nature 

(Shelef 1994). As such, sodium lactate, the sodium salt form of the compound, is easily 

produced by neutralizing the acid with an appropriate base. The presence of sodium lactate 

within foods is considered natural and intrinsic (Samelis and Sofos 2003), especially in dairy and 

muscle foods where lactic acid bacteria produce large amounts of the acid during fermentation. 

Though its use as a food preservative in processed meat products has escalated in recent years, it 
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was primarily incorporated into meat products as a flavoring agent before its antimicrobial 

properties were discovered. Inclusion of the compound in formulations promotes desirable 

sensory characteristics in the product such as enhanced meat flavor, enhanced color retention, 

increased juiciness, improved water-holding capacity, and elevated product yields (Doores 

2005), as well as deterrence of microbial spoilage (Papadopoulos and others 1991b). In addition, 

preservation of fresh meat flavor and decreases in warmed-over flavor notes due to suppressed 

lipid oxidation in beef top rounds have also been attributed to sodium lactate (Papadopoulos and 

others 1991a). By regulation, sodium lactate can be added to meat and poultry products at levels 

up to 4.8% of the final weight (FSIS 2000). 

Sodium L-Lactate can be derived from the neutralization of lactic acid, commercially 

produced by the controlled fermentation of refined sucrose or other carbohydrates, followed by 

crystallization as calcium lactate and acidification by an appropriate inorganic acid (Morgan and 

Goodman 1939). It is commercially available in a 60% w/w aqueous solution at a neutral pH and 

is usually applied to food products as such (Shelef 1994). Because of its nature as the salt of a 

weak organic acid, lactate can form a buffer in the range of pH values near to its pKa of 3.86 

(Samelis and Sofos 2003). As a result, the molecule primarily exists in its disassociated form at 

pH values above its pKa and in its undisassociated form at pH conditions below its pKa. 

However, it is widely believed that the molecule’s acid form is the more microbiologically active 

of the two. 

The mechanisms by which lactate and other organic acid salts inhibit bacterial growth 

have been studied in detail, but uncertainty still remains as to the exact mode or modes of action. 

Several have noted that the ability of sodium lactate to depress water activity may have an effect 

on microbial growth (Chen and Shelef 1992; Shelef 1994). Nonetheless, many regard the 

uncoupling hypothesis proposed by Freese and others (1973) to be the primary mode of action. 
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Freese and collaborators suggested that organic and lipophilic acids acted on cells by being 

absorbed through the membrane in their associated forms and acidifying the interior of the cell 

upon disassociation within the cytoplasm (1973). The theory that the undissociated acid 

penetrates the membrane most easily has been substantiated in a number of cases (Cramer and 

Prestegard 1977; Eklund 1983; Chu and others 1987), and it has been suggested that the 

acidification which occurs can have deleterious consequences (Baird-Parker 1980). However, the 

resulting pH imbalance that disrupts the proton motive force of the cell, inhibits its growth, and 

hinders its ability to transport materials across the membrane is regarded as the primary 

consequence of uncoupling (Salmond and others 1984). The validity of this hypothesis was 

tested by Hunter and Segel (1973), who investigated the uptake of several organic acids in 

Penicillium chrysogenum. Their results showed that the ionized form of the acid was unable to 

penetrate the membrane and that absorption of the associated form was the primary means of 

uptake. They also were able to show that once within the cell, the disassociation of the acid 

decreased cellular pH and caused depletion of adenosine triphosphate within the cell. 

Observations from similar organic acid treatments of Shigella flexneri (Baskett and Hentges 

1973) and E. coli (Salmond and others 1984) displayed that the phenomenon observed in fungi 

also yielded the same effect in bacteria. Buchanan and others (1993) confirmed this mechanism 

showing that the in vitro effectiveness of lactic acid/sodium lactate buffers on L. monocytogenes 

was correlated with environmental pH and disassociation of the acid.  

Though uncoupling is widely accepted as a predominant means of inhibition by organic 

acids, questions have been raised as to whether passage through the membrane, disassociation in 

the cytoplasm, and inhibition of material transport is the sole mechanism. Eklund (1980) noted 

that although the pH gradient is disrupted, the cell membrane electric potential should still be 

sufficient to drive uptake of certain substances. He also noted that although the uncoupling 
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concept held true for paraben molecules, it was unable to fully explain the action of weak 

organic acids (Eklund 1980). Thus, he claimed that regarding transport inhibition as the sole 

mechanism of organic acid inhibition was flawed (Eklund 1980). Cherrington and others (1990) 

exposed E. coli to 5 mM propionic acid and 10 mM formic acid and noted that upon exposure 

the rates of RNA, DNA, protein, lipid, and cell wall synthesis immediately decreased. Thus, they 

concluded that a deviation from coordinated macromolecular synthesis and inhibited DNA 

replication resulting in reduced cell division were also potential mechanisms of inhibition for 

organic acids (Cherrington and others 1990). Alakomi and others (2000) observed that lactic acid 

exerted a permeabilizing effect on the outer membrane of E. coli O157:H7, Pseudomonas 

aeruginosa, and Salmonella enterica Serovar Typhimurium. Through a fluorescent-probe uptake 

assay, 5 mM lactic acid was determined to be a much better membrane permeabilizer than either 

ethylenediaminetetraacetic acid (EDTA) or hydrochloric acid (HCl), and was found to increase 

the lytic action of sodium dodecyl sulfate in both E. coli O157:H7 and S. Typhimurium 

(Alakomi and others 2000). Considerably higher amounts of lipopolysaccharide were also 

liberated when S. Typhimurium was treated with lactic acid opposed to EDTA and HCl 

(Alakomi and others 2000). From these observations, they postulated that such actions of the 

acid may serve as a potentiator of other antimicrobial substances. Koczoń (2009) further 

characterized potential organic acid mechanisms with three benzoic acid derivatives used against 

the yeast Pichia anomala. Through his observation of fluctuating levels of the organic acid salts 

in the medium, he was able to conclude that a molecular pumping system was activated in the 

yeast cells, and possibly led to increased energy expenditures that caused cell inhibition (Koczoń 

2009). Thus, inhibition by mechanisms other than the cytoplasmic acidification and pH gradient 

disruption of uncoupling may also contribute to the inhibitory action of sodium lactate and 

similar compounds, and may provide other means for synergism with other compounds. 
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 Although organic acids and their salts are effective in controlling the growth of 

pathogens, continued exposure of microorganisms to low levels of acid derivatives can lead to 

development of an acid tolerance response or acid resistance (Samelis and Sofos 2003). Acid 

tolerance responses of bacteria result when they are briefly exposed to sublethal pH either during 

the exponential growth phase (O'Driscoll and others 1996; Jordan and others 1999) or the 

stationary phase (Lee and others 1994; Buchanan and Edelson 1996) and develop induced 

adaptations to the conditions. Acid resistance, however, is acquired over a much greater length 

of time through frequent exposure to acids (Samelis and Sofos 2003). It is a portion of the 

generalized stress resistance that cells continually express when entering the stationary phase 

(Cheville and others 1996; Lin and others 1995; Davis and others 1996) and represents the 

intrinsic ability of an organism to survive at lethal pH, especially in the stationary phase (Jordan 

and others 1999). The development of these adaptations is usually accompanied by production of 

specific stress-protective proteins, which can also decrease sensitivity to other stresses such as 

heat (Farber and Pagotto 1992; Leyer and Johnson 1993). As such, the virulence of certain 

organisms can become enhanced (O'Driscoll and others 1996; Buncic and Avery 1998), and 

many stresses that the human body normally poses on the organism, such as the acid of the 

stomach and the attack of macrophages, may be evaded (Gahan and Hill 1999; Ricke 2003). 

Thus, development of acid tolerance or resistance in pathogenic organisms is a major issue to the 

food industry (Sheridan and McDowell 1998). To combat this, cooperative effects between 

sodium lactate and the use of physical processes and/or other antimicrobials to control L. 

monocytogenes have been investigated. Some of these instances will be discussed in later 

sections.  

Though sodium lactate is highly effective at delaying growth of spoilage 

microorganisms and prolonging shelf life (Brewer and others 1991; Brewer and others 1995; 
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Papadopoulos and others 1991b), it has also been shown to be highly effective against foodborne 

pathogens including L. monocytogenes. Shelef and Yang (1991) showed that concentrations of 

sodium lactate at 10% were able to inhibit L. monocytogenes growth by at least ~3.0 log10 

CFU/ml in tryptic soy broth after 24 h at 35 °C as compared to unexposed controls. In addition, 

4% lactate was generally able to suppress growth of the pathogen in sterile comminuted beef for 

at least 18 days at 5 °C. Unda and others (1991) showed that including 2% sodium lactate in 

brines used for microwave-ready beef roasts was more effective at inhibiting L. monocytogenes 

than traditional phosphate ingredients. Zeitoun and Debevere (1991) demonstrated that a 10% 

application of lactate along with MAP storage at 6 °C was able to inhibit outgrowth of the 

pathogen on fresh chicken legs for 2 days and that application of 2, 5, and 10% lactate plus 

modified atmosphere packaging (MAP) could result in shelf life extensions of 2, 3, 4, and 11 

days, respectively. Several other noteworthy investigations of sodium lactate’s effect on L. 

monocytogenes are summarized in Table 1. 

 

 
Table 1-Studies highlighting the in vivo and in vitro effectiveness of sodium lactate against L. 

monocytogenes. 
 

Product/Medium Conditions Effect  Reference 

Cooked strained  
beef  

Meat moisture 
contents of 25 to 

85% and 
incubation at  

20 °C 

4% Sodium lactate 
suppressed growth of  

L. monocytogenes in moisture 
contents above 55% and 

inhibited growth in moisture 
ranges of 25 to 55% 

(Chen and Shelef 
1992) 

Raw and cooked 
ground beef 

Aerobic storage 
at 4 °C 

1.8% Sodium lactate was 
better at inhibiting growth of 
L. monocytogenes than was 
sodium erythorbate; APC 
increases were also less 
pronounced in samples 

treated with lactate 

(Harmayani and 
others 1993) 
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Table 1-Continued 
 

Product/Medium Conditions Effect  Reference 

Concentrated  
GYS broth 

Incubation at  
20 °C and pH 6.5 

for 7 days 

Minimum inhibitory 
concentrations of  

sodium lactate for five 
L. monocytogenes strains 

ranged from 804 to 982 mM 

(Houtsma and others 
1993) 

Sliced bologna 
type sausage 

Vacuum-
packaged storage 

at 5 °C and 10 
°C for 35 days 

2% Sodium lactate suppressed 
L. monocytogenes growth for 
28 days at 5 °C; 2% sodium 

lactate combined with 
glucono-δ-lactone suppressed 

growth for 35 days at both  
5 °C and 10 °C 

(Qvist and others 
1994) 

Pork liver sausage 

Incubation at  
20 °C for 10 

days and storage 
at 5°C for 50 

days 

L. monocytogenes was able to 
add only 1.4 log10 CFU/g at  

20 °C when in the presence of 
4% sodium lactate as 

compared to 5 log10 CFU/g in 
controls; At 5 °C controls 

allowed for 4.5 log10 CFU/g of 
growth, while samples with 

3% sodium lactate added only 
0.9 log10 CFU/g 

(Weaver and Shelef 
1993) 

Cooked, quartered 
beef top rounds 

Storage at 10 °C 
for up to 28 days 

Sodium lactate at 3 and 4% 
was able to limit  

L. monocytogenes growth by 
0.9 and 5.1 log10 MPN/cm2 

respectively, after 28 days of 
storage; 2% lactate samples 

were not significantly 
different than controls 

(Miller and Acuff 
1994) 

Cold-processed 
(smoked) salmon 

Vacuum-
packaged storage 

at 5 °C and  
10 °C for up to 

50 days 

2% Sodium lactate in 
combination with 3% sodium 
chloride completely inhibited 
growth of L. monocytogenes 

after 50 days at 5 °C; 3% 
sodium lactate in combination 

with 3% sodium chloride 
inhibited growth of the 

pathogen for 35  
days at 10 °C 

(Pelroy and others 
1994) 
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Table 1-Continued 
 

Product/Medium Conditions Effect  Reference 

Sliced cooked 
turkey bologna 

Vacuum-
packaged storage 
at 4 °C for 100 

days 

2% Sodium lactate was able 
to suppress growth of  

L. monocytogenes by at least 
3 log10 CFU/g as compared to 

controls after storage  
for 100 days 

(Wederquist and 
others 1994) 

Salt-free, sterile 
comminuted beef 

emulsion 

Aerobic storage 
for 30 days at  

5 °C 

Sodium lactate concentrations 
of 1.8% and 2.5% were able 

to limit growth of L. 

monocytogenes to ~1.0 log10 
CFU/g over the  

course of 30 days  

(Mbandi and Shelef 
2001) 

Pork frankfurters 

Vacuum-
packaged storage 
at 4 °C for 120 

days 

Sodium lactate at 6% was 
bacteriostatic toward L. 

monocytogenes for the entire 
120 days; 3% sodium lactate 
prevented pathogen growth 

for at least 70 days 

(Bedie and others 
2001) 

Beef bologna 
Aerobic storage 
for 45 days at  

5 °C 

2.5% sodium lactate was able 
to keep growth of an L. 

monocytogenes mixture to 
~1.0 log10 CFU/g for 45 days; 

L. monocytogenes Scott A 
only grew 1.3 log10 CFU/g 

over the same period of time  

(Mbandi and Shelef 
2002) 

Pork-turkey-beef 
frankfurters 

Vacuum-
packaged storage 
at 4.5 °C for 60 

days 

Frankfurters formulated with 
either 3.0% or 3.5% sodium 
lactate inhibited growth of L. 

monocytogenes for the entire 
60 days of storage  

(Glass and others 
2002) 

Pork frankfurters 

Vacuum-
packaged storage 
at 4 °C for up to 

8 weeks 

Samples with 3.3% sodium 
lactate had antilisterial effects 
that were the same as seen in 

0.05 to 1.0% of potassium 
sorbate with much lower 

TBARS values in the  
meat product 

(Choi and Chin 2003) 

 



 35

Table 1-Continued 

Product/Medium Conditions Effect  Reference 

Pork frankfurters 

Vacuum-
packaged storage 
at 10 °C for 40 

days 

Frankfurters formulated with 
1.8% sodium lactate in the 
formulation were able to 

produce significantly  
(P < 0.05) growth of L. 

monocytogenes compared       
to controls 

(Barmpalia and others 
2004) 

 
 
 

As a result of its effective antimicrobial properties, and its desirable sensory effects, 

sodium lactate is one of the most widely used and efficacious choices for control of pathogens in 

processed meats. Thus, developing effective control measures that utilize sodium lactate as a 

component of a control process are desirable. 

ε-Poly-L-Lysine 

 Among all the classes of biodegradable polymers, polyamino acids are one of the most 

important due to their specialized applications in biological systems, such as drug delivery (Shih 

and others 2006). In the late 1970s, researchers from Japan isolated a polyamino acid during 

their regular screening of Dragendorff positive substances from a Streptomyces albulus strain 

(Shima and Sakai 1977). Unlike other polypeptides, hydrolysis of the molecule yielded a sole 

amino acid, L-lysine, as the product (Shima and Sakai 1977). This observation suggested that the 

substrate molecule was a poly-L-lysine, a compound previously synthesized but never been 

found to accumulate within microbial populations (Shima and Sakai 1977). Molecular structure 

investigations concluded that it consisted of about 25 to 30 monomers of lysine that were 

primarily joined by an ε-amino and α-carboxyl linkage of the amino acids (Shima and Sakai 

1981a; Shima and Sakai 1981b). Thus the name ε-Poly-L-Lysine (EPL) was adopted for the 

molecule and is still used today.  
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 Natural production of EPL is a unique ability of bacterial organisms in the taxonomic 

family Streptomyces, and an ergot fungus, Eipchloe sp. strain MN-9 (Nishikawa and Ogawa 

2002). Commercially, the compound is produced using S. albulus subsp. lysinopolymerus, grown 

under aerobic conditions to allow separation and purification of polymer from cell mass (Hiraki 

and Suzuki 1999). Furthermore, by keeping the growth medium near pH 4.0 cells are induced to 

increase EPL production, and the slightly acidic pH helps in retention of the polymerized 

molecule (Kahar and others 2001). Once produced, the compound is then separated from the 

growth medium via centrifugation or filtration, and is further purified by passage through an ion 

exchange chromatography column, neutralization, decolorization, evaporation, and precipitation 

in an ethanol/diethyl-ether mixture (Shih and others 2006). 

The pure form of EPL that is produced can be employed for a variety of uses due to its 

water soluble, thermally stable, and biodegradable nature (Yoshida and Nagasawa 2003). A 

synthetically produced cousin, α-Poly-L-Lysine, is similar in structure, but possesses toxic 

activity. Thus, EPL is preferred for use in biological systems and is heavily employed by the 

biomedical industry as a drug delivery carrier, endotoxin remover, and biosensor (Shih and 

others 2006). The electronics industry also uses EPL for biochips and bioelectronics (Shih and 

others 2006). However, due to its antimicrobial activity, its utility as a food preservative and 

additive has continued to draw the most attention (Yoshida and Nagasawa 2003). 

 As a food additive, EPL has been shown to be safe for human consumption (Hiraki and 

others 2003), and is considered to be a natural food ingredient due to its production by S. albulus 

(Shih and others 2006). The FDA approved its use in the United States in 2004 as an 

antimicrobial agent used exclusively for cooked and sushi rice at levels up to 50 mg/kg (FDA 

2004a). Conversely, the compound has had approved status for a number of years in Japan and is 

currently used there as an antimicrobial agent within a variety of food products. For 
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decontamination of fish sushi and sliced fish, it is usually applied as a dipping solution with 

concentrations in the 1000-5000 ppm range (Hiraki and others 2003). In nimono, a common 

Japanese dish, it is currently used at levels up to 500 ppm, and is used at levels of 10 to 500 ppm 

in dishes such as boiled rice, noodle soup stocks, noodles, other soups, cooked vegetables, 

Japanese beef steak, potato salad, steamed cakes, and custard cream (Hiraki and others 2003).  

 The biochemical mechanism by which the compound is able to inhibit bacterial growth 

has not been extensively studied, but is believed to stem from its polycationic structure. The 

repeating strand of positively-charged α-amine side groups is believed to cause release of 

lipopolysaccharide from the outer membrane in Gram-negative bacteria and allow binding to the 

cytoplasmic membrane of both Gram-negative and Gram-positive microorganisms (Yoshida and 

Nagasawa 2003). Shima and others (1984) were the first to propose this mode of action for EPL, 

when they suggested that the compound stripped off the outer membrane of E. coli and then 

electrostatically adsorbed to the plasma membrane. This adsorption, they believed, led to the 

abnormal distribution of the cytoplasm that they had observed through electron microscopy, 

which had in turn led to physiological damage in the cell. In addition, sensitization of the cell 

membrane to 10 to 100 fold increases of absorption of hydrophobic antibiotics (such as 

novobiocin and erythromycin) and loss of 20 to 30% of lipopolysaccharide from the outer 

membrane, has also been observed when bacteria are exposed to slightly shorter poly-L-lysine 

molecules (of about 20 residues) and is thought to be due to the same mechanism (Vaara and 

Vaara 1983a; Vaara and Vaara 1983b; Vaara 1992). Bactericidal effects have also been shown to 

be correlated with the chain length of the poly-L-lysine molecule, with those that are longer than 

20 units in length and up to 50 units in length being significantly bactericidal (Vaara and Vaara 

1983b). Others have also shown that trans-membrane passage of polycationic poly-L-arginine 

molecules, which are very similar in structure to EPL, is possible, and once inside the cell, may 
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cause depolarization of the cytoplasmic membrane or even cell lysis (Conte and others 2007). 

Chitosan, a derivative of the N-deactylation of chitin, shares the generic polycationic structure 

with EPL, and has been shown to have very similar effects on cells (Rabea and others 2003; 

Raafat and others 2008). As with EPL analogs, chitosan depolarizes the cell membrane (Raafat 

and others 2008) and permeabilizes it to small cellular components (Fang and others 1994). The 

mode of action of chitosan has been postulated to be due to its electrostatic interactions with 

teichoic acids, which may lead to extraction of membrane lipids such as lipoteichoic acid and the 

disabling and disruption of the cell membrane functions such as membrane-bound energy 

generation pathways (Raafat and others 2008). Because EPL and chitosan share these 

similarities, investigations of such cellular targets might provide insight into the mode of action 

of EPL. Finally, development of resistance to EPL is believed infrequent due to its simple ionic 

interactions-based mechanism. However, factors such as ionic strength of the surroundings can 

affect the electrostatic charge reactions needed for initial contact of polycations with the 

membrane (Zasloff 2002). In addition, rare cases of production of EPL-degrading enzymes have 

also been reported and may play an overlooked role in deactivating the compound (Kito and 

others 2002a; Kito and others 2002b). 

 As with the biochemical mechanism, the general body of published information about 

the inhibitory effect of EPL on groups of microorganisms is considerably limited. Shima and 

others (1982) first investigated the antimicrobial properties of the substance by exposing T4 and 

T5 bacteriophages to varied concentrations of the compound, and found that the polymer was 

effective at inactivating both types of phages and was even more effective when coupled with 

certain cations. Likewise, studies on the inhibitory activity of the compound against a diverse 

array of bacteria, yeasts, and molds demonstrated that the compound has a broad spectrum of 

action and is highly effective at low levels (~1-8 µg/ml) for both Gram-positive and Gram-
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negative bacteria (Shima and others 1984). Although yeasts showed some susceptibility, it was 

generally considered that both yeasts and molds were much less affected by exposure to the 

compound than were bacteria. Delihas and others (1995) also probed the effects of the 

compound on a group of bacteria and found that, in disagreement with Shima and others, 

Mycobacterium tuberculosis was actually more sensitive to the activity of EPL than E. coli, 

requiring only 0.36 µg/ml EPL to exhibit a 50% reduction in cell viability after 2 h, whereas E. 

coli required levels of up to 5.8 µg/ml. Their additional observation of differences in 

susceptibility between Staphylococcus epidermidis and Streptococcus salivarius (two Gram-

positive organisms) suggested that the compound is able to act on the cell with little regard for 

the envelope type possessed by the organism, which is in agreement with its accepted 

biochemical mode of antimicrobial action (Delihas and others 1995). In vivo applications that 

focus on incorporating the compound into food matrices are undoubtedly needed, as well as 

studies on interactions of the compound with other food antimicrobials. The use of EPL in 

combination with other antimicrobials to produce an enhanced effect has been investigated, but 

these aspects of its usage will be discussed later. 

Lauric Arginate Ester 

 The surface active properties of Nα-acyl amino acids have led to their usage in a variety 

of applications within the cosmetic and biomedical industries (Infante and others 1984). L-

arginine, Nα-lauroyl ethylester, also known as lauric arginate ester (LAE), belongs to this 

particular class of compounds, and was first synthesized in Spain in the early 1980s (Infante and 

others 1984). Though originally intended to be an ingredient in the formulations of cosmetics, 

the observed antimicrobial capabilities of the compound (Infante and others 1984; Infante and 

others 1985) as well as its synthesis from natural precursor molecules, sparked its usage within 
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food systems as a multi-factorial food additive that could be used for both its emulsification and 

antimicrobial properties (McKellar and others 1992). 

 With regard to structure, LAE follows the generic Nα-acyl amino acid configuration 

(Figure 2). It consists of the 12 carbon saturated fatty acid laurate esterified to the α-amine of the 

cationic amino acid arginine, and has an ethyl ester moiety from the esterification of ethanol to 

the carboxyl functional group of the arginine. The commercial production of the molecule and its 

applications in food have been patented through European and International patents (Contijoch 

and others 2006; Urgell and Seguer 2003), and is primarily conducted by a company in Spain 

(Bakal and Diaz 2005). The production process is broken into two steps and begins with the 

reaction of ethanol with the arginine molecule in a catalyst-containing ethanol solution to form 

the ester (Contijoch and others 2006). After this, ethanol is removed and an oily intermediate 

product is isolated (Contijoch and others 2006). This is followed by the second step, which 

involves reaction of this intermediate product with lauric acid chloride for 5 to 10 h in an 

aqueous environment of neutral pH to favor the amidization (Contijoch and others 2006).  

 

 
Figure 2-Structure of L-arginine Nα-lauroyl ethylester (lauric arginate ester).  
Adapted from Urgell and Seguer (2003). 
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 Metabolism of LAE in the body occurs very rapidly upon ingestion and separates the 

compound into its constituents of arginine and lauric acid (Ruckman and others 2004). Toxicity 

tests of LAE in rats and rabbits showed that the compound is non-toxic even when fed at 

concentrations of 50,000 ppm (Ruckman and others 2004).  Based on this information, LAE is 

considered to be safe for human consumption by the FDA and is approved for use at levels of up 

to 200 ppm in meat and poultry foods (FDA 2005). The use of the compound in such foods is 

primarily as an antimicrobial, where it is included into the product’s formulation or is used as a 

rinse aid (FSIS 2009). As a result, it is also regulated by FSIS, who holds the same standard of 

application as is allowed by the FDA’s GRAS approval (FSIS 2009). 

 The mechanism by which LAE inhibits microorganisms has not been widely studied, but 

published data indicates a mode of action in line with other cationic surfactants. The positive 

charge of LAE is believed to favor association with the polar surface of the bacterial membrane 

and its surfactant properties are believed to cause disruption of the membrane (Infante and others 

1985). In addition, it has been shown to maintain activity over a broad spectrum of acidity (pH 

3-7), which is further evidence of this mechanism (Bakal and Diaz 2005). Rodríguez and others 

(2004) confirmed postulations about the similarity of its action to that of analogous molecules. 

Using transmission electron microscopy (TEM) and flow cytometry, it was noted that LAE-

treated S. Typhimurium cells showed extensive disruption in both their outer and cytoplasmic 

membranes. Similar cytoplasmic membrane damage was observed in TEM images of LAE-

treated S. aureus cells (Rodríguez and others 2004). In contrast to S. Typhimurium, S. aureus 

cells showed more extensive interior damage with formation of mesosome-like structures, white 

spots, multi-septated cells, and clear zones in their cytoplasms. Examination of fluorescence 

microscopy images after SYTO®13/PI flow cytometry exposure in the S. Typhimurium cells 

revealed that nearly 97% of the cells had damaged membranes after 24 h of exposure to LAE, 



 42

evidenced by uptake the differential fluorescent stain propidium iodide (PI) (Rodríguez and 

others 2004). S. aureus fluorescent microscopy images also demonstrated extensive damage of 

the cell membrane with over 56% of cells being stained by uptake of PI after 24 h of exposure to 

LAE. In addition, it was noted that within 30 min of exposure to LAE, 43% of the S. aureus 

population already displayed cell membrane damage, while an additional 21% displayed partial 

injury. Finally, the most noteworthy observation was that the membrane disruption observed 

occurred without cell lysis. Thus, the antimicrobial mechanism of LAE may not require cell 

lysis, and may only involve disturbance of membrane potential and structure, much like the 

mechanism of ε-Poly-L-Lysine.  

 Studies investigating susceptibility of microorganisms to different LAE applications are 

limited, and until recently, much of the knowledge about the spectrum of LAE’s antimicrobial 

activity has come from early studies and confirmatory tests done for patenting. Several recent 

patents and articles have stated that LAE has considerably diverse activity with bacteria, yeasts, 

and molds all being susceptible to its inhibitory function (Contijoch and others 2006; Seguer and 

others 2006; Bakal and Diaz 2005). Infante and others (1984) were the first to analyze the 

antimicrobic potential of LAE in tryptic soy broth (TSB) at 37 °C against species of 

Staphylococcus, Bacillus, Micrococcus, Citrobacter, Escherichia, and Pseudomonas. In all, the 

MIC of LAE for Gram-positive cocci was at or below 13 µg/ml; MICs for Gram-negative bacilli 

ranged 26 to 107 µg/ml. In another study, antimicrobial testing in Müeller-Hinton agar yielded 

similar trends with Gram-positives having slightly lower MICs (2-16 µg/ml), while Gram-

negative bacteria required higher concentrations for inhibition (MICs: 8-128 µg/ml) (Infante and 

others 1985). Rodríguez and others (2004) found that LAE at 32 µg/ml was inhibitory to S. 

Typhimurium and 8 µg/ml was inhibitory to S. aureus. 
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  With regard to application of LAE in food matrices, much of the research in this area 

has surfaced within the past several years. A study investigating the use of LAE as a Sprayed 

Lethality In Container™ intervention to combat L. monocytogenes in table brown hams was one 

of the first studies to test the antimicrobial against the pathogen in vivo (Luchansky and others 

2005). Researchers artificially inoculated hams with L. monocytogenes and placed them in 

vacuum packages containing either 5% or 10% solutions of LAE as in-package purge/fluid. 

Hams were sealed and stored at 4 °C, and surviving Listeria were enumerated after 24 h. 

Addition of 2 ml of a 5% LAE solution resulted in L. monocytogenes population decreases of 3.3 

log10 CFU/ham, and decreases as much as 6.5 log10 CFU/ham when 8 ml of 5% LAE or any 

volume of 10% LAE was added. Extended storage (60 days, 4 °C) yielded similar effects with 

5% LAE producing decreases of up to 5.5 log10 CFU of L. monocytogenes per ham (Luchansky 

and others 2005).  

A more recent study investigated the susceptibility of L. monocytogenes to LAE when 

applied to vacuum-packaged frankfurters stored at 4 °C using a method similar to the previously 

described Sprayed Lethality In Package™ treatment (Taormina and Dorsa 2009). Differences in 

L. monocytogenes reductions as a function of the combination of LAE with liquid smoke extract, 

volume of LAE solution added, inoculum levels, and inoculation method (dip or spot inoculation 

onto the frankfurter) were evaluated. Liquid smoke in combination with a 5000 ppm LAE 

solution did not produce greater reduction than LAE alone. Counts of dip inoculated L. 

monocytogenes from the 7.0 log10 CFU starting point were significantly reduced by 1.4 log10 

CFU/package (LAE only) and 1.8 log10 CFU/package (LAE + Smoke) (P <0.05) after the usage 

of 3 ml of the antimicrobial. Similar reductions were observed in samples dip inoculated with 3.0 

log10 CFU/package as with those dip inoculated with 7.0 log10 CFU/package. Volume of the 

antimicrobial solution used was found to have little effect on the activity of LAE, with all 
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volumes in the range of 3-4.5 ml yielding reductions of 1.8-2.2 log10 CFU/package in 

frankfurters that had been inoculated at 7.0 log10 CFU through dip inoculation (Taormina and 

Dorsa 2009). Spot inoculation on frankfurters yielded a slightly higher initial load of L. 

monocytogenes (difference of 0.47 log10 CFU/package) than dip inoculation, but had little effect 

on the reductions due to LAE, with dip inoculated L. monocytogenes being reduced by 1.7 and 

1.8 log10 CFU/package and spot inoculated L. monocytogenes being reduced by 1.4 to 2.0 log10 

CFU/package by sprays of 2.5 ml of a 5000 and an 8000 ppm LAE solution, respectively. 

Another recent study examined the antimicrobial effects of LAE on L. monocytogenes in 

frankfurters alongside potassium lactate and sodium diacetate (Martin and others 2009). The 

study, which was aimed at validating post-lethality standards for LAE, concluded that 2.0, 2.5, 

and 3.0 ml of a 2.5% solution of LAE stock were able to reduce the L. monocytogenes counts by 

nearly 1.3, 1.3, and 1.4 log10 CFU/ml, respectively, after 12 h at 6 °C when used in a 

prepackaging application (Martin and others 2009). These results validated the 1 log cycle 

reduction in L. monocytogenes necessary to achieve compliance with the immediate lethality 

stipulation posed by FSIS. Researchers observed that using the same LAE working solution on 

frankfurters that were formulated with either 1.8%/0.13% or 2.1%/0.15% combinations of 

potassium lactate/sodium diacetate yielded a > 2 log cycle reduction in the pathogen at 12 h of 

storage in both formulations. Also, both formulations in combination with the LAE solution 

yielded ≤ 2 log cycles’ increase in L. monocytogenes over the entire course of the 156 day shelf-

life of the frankfurters, meeting the growth suppression stipulation enforced by FSIS (Martin and 

others 2009). As a result, it was determined that the combination of LAE with potassium lactate 

and sodium diacetate could yield better inhibition than using either alone and could be an 

effective antimicrobial hurdle treatment. 
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Although the usage of such combinations of LAE with other antimicrobials certainly 

helps to overcome any decreased sensitivity exhibited by a pathogen, no incidences of innate 

resistance to LAE have been documented amongst foodborne bacterial pathogens. This is 

believed to be due to its cationic structure and surfactant-based mechanism, which is difficult for 

the target bacterium to overcome. However, this same mechanism that lends LAE its activity has 

also been shown to render it inactive in several cases. For instance, it has been shown that LAE 

can electrostatically bind to pectin, a normal component of foods, and form an inactive complex 

with the biopolymer (Asker and others 2009). In addition, its tendency to precipitate out of 

solution at high ionic strength and pH levels above 4.5 has also proven to be an obstacle to its 

usage within food products, and represents a challenge yet to be overcome in implementing it 

into food systems (Asker and others 2009).  

Acidic Calcium Sulfate 

As one of the more recent additions to the assortment of food antimicrobials, acidic 

calcium sulfate (ACS), formed by mixing calcium, an organic acid, and the sulfate anion with 

acid and base, has been gaining popularity in use as a pathogen intervention. It has shown 

exceptional potential in combating foodborne pathogens in high throughput operations, not only 

because of its ease of use and effectiveness, but also because of its environmental friendliness 

(Lamb 2002). In addition, the compound is highly acidic to bacteria but will not harm human or 

animal tissue; this has made many eager to experiment with its application in their food products. 

Thus, with its growing popularity and diverse scope of action, the incorporation of ACS 

interventions into food processes may become much more common and may be a good solution 

for processors to use in achieving pathogen control goals. 

From its precursor solution known as Safe2O, ACS is produced in its commercially 

available RTE:01® form by mixing an organic acid with other ions to form a complex acidic 
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solution. Solutions that are produced in this way have been termed highly acidic metalated 

organic acids (HAMOs), and the production of such solutions and their components has been 

patented several times (Kemp and others 2003; Kemp and others 2005a; Kemp and others 

2005b). As with other HAMOs, the fundamental components of ACS are an organic acid or its 

salt form, a metal base (which can be excluded in some occasions), and a strong acid which is 

able to regenerate the acid form of the organic acid after reactions take place (a strong binary 

acid, oxyacid, or acidic complex of Group II metal ions can all be used for this purpose) (Kemp 

and others 2003). For the RTE:01 form of ACS, lactic acid serves as the organic acid, with 

calcium hydroxide as the metal base, and sulfuric acid as the regenerating acid (Kemp and others 

2005a), all of which are considered to be GRAS (FDA 2008d; FDA 2008b; FDA 2008e). 

Production is initiated by adding water to a lactic acid solution, followed by addition of calcium 

hydroxide with agitation (Kemp and others 2003). In the second stage, water is added again, 

sulfuric acid is added, the mixture is agitated, and the solution is filtered (Kemp and others 

2003). The resulting product, which is ready for food use, has a pH of 2 or less, a density of 1.06 

to 1.10 g/ml, and a clear to slightly cloudy appearance.  

In terms of food applications, ACS is primarily used as a pH control agent in the water 

of spray or dip applications that are used to decontaminate the exterior of a food product (FSIS 

2009). Thus, investigations of its use have primarily focused on meat, poultry, and seafood. 

Indeed, many internal and published studies have looked at its ability to decontaminate cooked 

chicken breast (Ananth 2003), frankfurters (Anonymous 2004b; Nuñez de Gonzalez and others 

2004), roast beef (Anonymous 2004a), ground beef (Zhao and others 2004), cooked turkey 

products (Centrella 2005), and commercially prepared hams (Luchansky and others 2005). In 

addition, because FSIS does not limit producers in the amount of ACS that can be present in the 

final product, its maximum application rate is at the discretion of the food manufacturer, which 
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allows processors to apply the amount necessary to achieve validated lethality of the target 

pathogens in their food product. To date, all studies on ACS have produced results that favor the 

inclusion of the solution into raw product treatments and post-lethality processes, and several 

have even focused specifically on combating L. monocytogenes in RTE meats.  

In a study conducted to validate the reductions in L. monocytogenes due to ACS 

treatments in cooked chicken breasts, the HAMO was found to be considerably effective 

(Ananth 2003). Most Probable Number (MPN) estimation of L. monocytogenes (as determined 

through the USDA enrichment and detection method), along with lactic acid bacteria and aerobic 

plate count numbers, were assayed over a 40 day period of storage of the chicken breasts at 4.4 

°C. The effectiveness of ACS was tested by applying a 20 second spray of a 1:2 ACS:distilled 

water solution to chicken breast samples that had been inoculated with 100 CFU/serving of L. 

monocytogenes. Considerably lower MPN values of L. monocytogenes in ACS-treated samples, 

as opposed to water-treated and non-treated samples, were observed beginning on Day 0 and 

continued throughout the shelf life until day 40, where estimated levels of L. monocytogenes 

were 1.1 x 106 average MPN/g for non-treated samples, 3.8 x 104 average MPN/g for water-

treated samples, and < 8.0 x 101 average MPN/g for samples treated with the 1:2 ACS solution. 

Likewise, investigations of ACS’s effectiveness on reducing L. monocytogenes in sliced 

cured and uncured cooked turkey meat showed that, according to FSIS standards, the compound 

is effective as both a post-lethality treatment and an antimicrobial agent in such products 

(Centrella 2005). Approximately 4.0 log10 CFU/ml of L. monocytogenes was applied to the 

product at the outset of the study, and a 1:3 ACS:sterile water solution was applied via dip 

application. L. monocytogenes was immediately (after 1 hr of storage at 3.3 to 4.4 °C) reduced 

on cured samples by 1.4 log10 CFU/g and was suppressed to an only 1.0 log10 CFU/g increase 

over the course of the 75 day shelf life of the product. In uncured samples, the ACS was able to 
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induce an immediate post-process lethality of 1.5 log10 CFU/g and actually produced a 0.7 log10 

CFU/g reduction in the pathogen over the course of 60 days of shelf life. Though it did not meet 

the ideal situation of a 2 log cycle immediate reduction, the immediate decrease in L. 

monocytogenes that was afforded by the ACS allowed it to be classified as a post-lethality 

treatment in such products. In addition, due to its ability to suppress outgrowth during the 

product shelf life, ACS also met FSIS Alternative 1 standards for being an antimicrobial agent 

that could be used for such products. 

Multiple studies have also shown that the compound is efficacious at abating L. 

monocytogenes growth in frankfurters. In one study, ACS was used to treat artificially inoculated 

(~5.3 log10 CFU/package of L. monocytogenes) frankfurters that were either in their in-casing or 

final-product forms, and either did or did not contain a potassium lactate/sodium diacetate 

mixture (Anonymous 2004b). The study tested a variety of ACS treatments with application 

method (dip tray or spray application), time of exposure, and temperature of solution as variable 

factors. Within every category of frankfurter (in-casing, final-product, with or without potassium 

lactate/sodium diacetate) several different ACS treatment conditions were able to produce L. 

monocytogenes lethalities of greater than 2.0 log cycles at the outset and suppressions of growth 

that resulted in less than a 1 log cycle increase over the course of 12 weeks of storage at 4.4 °C, 

thus validating its usage as a post-lethality treatment and antimicrobial for these products as 

well. The second study also reflected effectiveness of ACS (containing both lactic and propionic 

acid) when applied as a post-process dipping solution to reduce L. monocytogenes populations in 

frankfurters that either did or did not contain potassium lactate (Keeton and others 2002; Nuñez 

de Gonzalez and others 2004). Dipping frankfurters in a 1:2 ACS:water solution for 30 seconds 

kept L. monocytogenes counts below the minimum detection level for the full 12 weeks of 

storage at 4.5 °C, was slightly more effective than dipping in solutions of potassium lactate or 
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lactic acid, and also kept aerobic plate counts (APCs) at the limit of detection for the duration of 

product storage (12 weeks) (Keeton and others 2002; Nuñez de Gonzalez and others 2004). 

 For ACS-treated sliced roast beef artificially-inoculated with a beginning population of 

2.5 log10 CFU/piece (3 cm x 3 cm x 0.8 cm) of L. monocytogenes, an internal study demonstrated 

that sufficient on-contact lethality levels of the pathogen were achieved and outgrowth of the 

pathogen was limited to within FSIS standards during the course of storage (8 weeks) 

(Anonymous 2004a). Roast beef slices were inoculated with a five strain cocktail of L. 

monocytogenes, treated by a 30 second dip in 1000 ml of a 1:2 ACS:water solution, and vacuum 

packaged for up to 8 weeks of storage at 4 °C. At the outset of the experiment, samples treated 

with a 30 second dip of ACS exhibited a 2.2 log cycle reduction in L. monocytogenes as 

compared to controls; populations of the pathogen remained at or below the 0.2 log10 CFU/piece 

level that was achieved upon contact with the solution. In so doing, ACS treatments also proved 

to be valid for use in achieving Alternative 1 standards. In a separate study, commercially 

prepared hams were spot-inoculated with a 2 ml aliquot of L. monocytogenes to achieve a 7.0 

log10 CFU/ham starting population of L. monocytogenes on ham surfaces (Luchansky and others 

2005). At a 1:2 ACS:water concentration, as little as 2.5 ml of the solution placed into the 

package was able to produce short-term (24 h) post-lethality reductions of 1.2 log10 CFU/ham 

when hams were placed into vacuum packaging, submerged in 88 °C water, and stored at 4 °C. 

Larger volumes (4.5 ml and 6.5 ml) were able to generate even greater reductions of 1.4 and 2.5 

log10 CFU/ham, respectively. Over the course of the 60 day shelf life, samples from hams treated 

with 4 ml of the same concentration of ACS yielded only 0.5 log10 CFU/ham increases from the 

Day 0 starting point, and higher volumes (6 ml and 8 ml) were able to actually reduce the initial 

populations by 0.5 and 1.3 log10 CFU/ham by the end of the shelf life period that was tested 

(Luchansky and others 2005). 
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Little work has been published detailing the antimicrobial mechanism(s) of ACS. Acidic 

calcium sulfate contains lactic acid as its primary ingredient, thus it is generally accepted that its 

mode of action is essentially that of cellular acidification or uncoupling, previously described. 

Like other organic acids and derivatives, ACS likely behaves according to the model proposed 

previously. Thus it is believed to inhibit microbial growth by allowing lactic acid to pass through 

the cytoplasmic membrane in its associated form and cause deregulation of cellular metabolism 

through energy expenditure to expel the dissociated proton and maintain pH homeostasis (Freese 

and others 1973; Lamb 2002). As lactic acid is supposedly regenerated by the presence of the 

sulfuric acid, the lethal effects of ACS may be enhanced by continual regeneration of the 

protonated acid (Kemp and others 2003). 

However, such increases in acid exposure may also lead to much higher chances of 

development of acid tolerance in those cells that survive ACS treatment; this concern has been a 

subject of research conducted with HAMOs. Beuchat and Scouten (2004) investigated the 

effectiveness of lactic acid, acetic acid, and ACS at reducing viability of E. coli O157:H7 in 

ground beef, as well as the ability of exposed microorganisms to develop acid tolerance. 

Although no significant differences in acid tolerance were observed from one acidulant to 

another, ACS seemed to induce some acid tolerance. This conclusion was derived from the 

observation that control cells grown on agar in the absence of ACS showed significantly 

different (α =0.05) susceptibility when inoculated into ground beef compared to E. coli cells 

which had been previously grown on agar acidified to pH 4.5 using ACS; controls grew to 6.7 

log10 CFU/g, whereas ACS-exposed cells grew to 6.8 log10 CFU/g (Beuchat and Scouten 2004). 

Thus, even though ACS may be initially effective at reducing pathogens, the development of 

acid tolerance in survivors may prove to be an undesirable side effect of its use. Yet, acidic 

calcium sulfate does have potential to be used as an individual pathogen intervention for meat 



 51

and poultry products or as a component of a combination of interventions. Its efficacy in 

reducing pathogen populations, the flexible regulations regarding usage levels, and its minimal 

environmental impacts are all favorable factors. However, research on the chemistry of the 

solution and the effects of its use should be continued. 

Octanoic Acid 

 Though early twentieth century reports are some of the first to scientifically document 

the potential for fatty acids and their soaps to act as antibacterial agents (Lamar 1911), it is 

generally considered that the antimicrobial value of such compounds was recognized well before 

any modern documentation of their effects (Kabara and Marshall 2005). A great deal of research 

conducted prior to the 1950s documented that fatty acids can have a wide array of antimicrobial 

activity (Nieman 1954). At present, it is known that such compounds are effective against both 

Gram-positive and Gram-negative bacteria alike (Kabara and others 1972), and are active against 

other types of microorganisms, including enveloped viruses (Thormar and others 1987) and 

yeasts (Viegas and others 1989). Thus, fatty acids are normal components in antibacterial, 

antifungal, and insecticidal products, and are widely used within sanitizers and disinfectants 

(Kabara and Marshall 2005). In addition, since they are naturally occurring and have little to no 

toxicity associated with their consumption, fatty acids and their derivatives have been 

consistently considered to be natural antimicrobial food additives (Kabara and Marshall 2005). 

As such, they are a popular choice among individuals in the food industry when pathogen control 

measures need to be met with such stipulations in mind. Finally, their ease of production and 

disposal are favorable aspects, and lead many to regard them as ideal for certain products or 

processes. 

 The eight-carbon fully saturated (8:0) fatty acid, International Union of Pure and 

Applied Chemistry (IUPAC) name octanoic acid and common name caprylic acid, has shown 
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promise for use as an antimicrobial intervention for foodborne pathogens. Octanoic acid is 

classified as a medium chain fatty acid (6-12 carbons), and retains moderate water solubility 

(0.068g/100g water at 20 °C). Because it is found naturally in bovine milk at levels ranging from 

1-3% of the total fatty acid composition (Jensen 2002), in the oil of coconuts (Ghosh and 

Bhattacharyya 1997; Wang and others 1993), and as a byproduct of ethanolic fermentation by 

yeasts such as Saccharomyces cerevisiae (Viegas and others 1989), there is no need to 

synthetically produce the compound, and it is primarily derived from the saponification and 

distillation of the coconut oil (Richter and others 1993). Thus, as a direct derivative of foods, it 

has enjoyed approved status from the FDA for a number of years (FDA 2008c). It is commonly 

applied to foods in a commercially available solution known as Octa-Gone™, which also 

contains propylene glycol, citric acid, sodium citrate, polysorbate 20, and polysorbate 80. This 

product is approved for use in meat and poultry products as an antimicrobial agent, and can be 

used at levels up to 400 ppm of octanoic acid by weight of the final product (FSIS 2009). 

Solutions of Octa-Gone™ are commonly applied as surface treatments to RTE meats after 

processing, and can even meet Alternative 1 standards for post-lethality treatments of such 

products (Burnett and others 2007). 

 As noted, the antibacterial activity of octanoic acid and other fatty acids has been well 

documented over time, and has been shown to be equally effective for both Gram-positive and 

Gram-negative organisms in both in vitro and in vivo applications. For instance, with regard to 

Gram-negative microorganisms, the fatty acid has been found to be effective at low levels for 

reducing populations of both E. coli and Shigella sonnei when added to a growth medium 

(Nakamura and Zangar 1968). In this particular case, not only was the acid effective at killing 

both organisms after 24 h of exposure to levels as low as 0.3%, but it was also found to be more 

efficacious than acetic or propionic acid (Nakamura and Zangar 1968). Likewise, in another in 
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vitro study, the inhibitory potential of octanoic acid against E. coli grown in brain heart infusion 

broth was demonstrated, with 2-4% (w/v) of the compound being able to reduce initial 

populations of 7 log10 CFU/ml to below detection limits after 24 h of incubation at 37 °C 

(Hismiogullari and others 2008). Moreover, octanoic acid and caproic acid have been shown to 

inhibit glucose utilization by E. coli, and accordingly have a much more pronounced effect 

against the organism as compared to short chain and long chain fatty acids (Marounek and others 

2003). Similar results have also been demonstrated for several Salmonella serovars, with glucose 

utilization being dramatically reduced by exposure of cells to octanoic acid, and median 

inhibitory concentrations (IC50) of low (0.75 to 1.17 mg/ml) levels of octanoic acid observed in 

all serovars tested in the experiment (Skřivonová and others 2004). 

Comparable results to those obtained in vitro have also been observed when the 

compound is used in vivo. E. coli O157:H7 cells grown in either acidic or buffered bovine rumen 

fluid were inhibited through the addition of octanoic acid, as shown in studies aimed at 

minimizing carriage of the pathogen in the gastrointestinal tract of cattle through its application 

as a pre-slaughter dietary supplement (Annamalai and others 2004). Exposure to 35 or 50 mM 

octanoic acid in rumen fluid maintained at a pH of 5.6 reduced E. coli by at least 6.5 log10 

CFU/ml. In buffered rumen fluid at pH 6.8, the reduction was the same for samples treated with 

50 mM octanoic acid, but was nearer to only a 1 log cycle decrease for 35 mM octanoic acid 

after the same length of time for exposure (Annamalai and others 2004). Similar in vivo 

decreases in E. coli O157:H7 have been reported by using 50 mM octanoic acid in whole milk, 

where the pathogen was decreased by at least 2.7, 5.0, and 8.6 log10 CFU/ml over the course of 

24 h of incubation at 4 °C, 8 °C, and 37 °C, respectively (Nair and others 2004). Continuing the 

incubation to 48 h decreased pathogen populations even further, with reductions of 6.1 and 6.0 

log10 CFU/ml observed for the incubation temperatures of 4 °C and 8 °C, respectively. 
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Octanoic acid is equally effective against Gram-positive microorganisms and has been 

shown to have great efficacy on mastitis-causing Streptococci and L. monocytogenes. A study 

focused on the antimicrobial efficacy of the compound against three species of mastitis-causing 

Streptococcus found that when the organisms were incubated in sterile whole milk in the 

presence of either 50 mM or 100 mM octanoic acid, reductions of nearly 6.0 log10 CFU/ml were 

observed after just 6 h of incubation at 39 °C (Nair and others 2005). In addition, even more 

rapid (within 1 minute) reductions of the organisms by 5.0 log10 CFU/ml were observed when 

the higher concentrations of 100 mM octanoic acid were used, as opposed to the lower 50 mM 

concentration. With regard to L. monocytogenes, the compound has also been shown to have low 

MICs, ranging from 0.69 to 3.49 mM depending on the L. monocytogenes strain being exposed 

to the substance under in vitro conditions (Kinderlerer and Lund 1992). The findings of this 

particular study also showed that the degree of disassociation of the acid plays a major role in its 

efficacy against the pathogen, with less disassociated solutions (at pH 5.0) being much more 

effective and having lower MIC values than slightly more alkaline solutions (pH 5.5). Similar in 

vitro MIC values have also been recorded in a more recent study, where three strains of L. 

monocytogenes grown for 18 h in tryptic soy broth at 37 °C yielded octanoic acid MIC values of 

5 or slightly above 5 mM (Nobmann and others 2009). 

In vivo exposure of L. monocytogenes to octanoic acid has also yielded evidence of 

reductions, though not quite as profound as those observed in vitro. A previously mentioned 

study observed the activity of the compound against L. monocytogenes incubated in whole milk. 

Samples treated with 50 mM octanoic acid and incubated at 37 °C for 6 h showed reductions in 

the pathogen’s viability at levels of at least 6.3 log10 CFU/ml (Nair and others 2004). 

Additionally, by comparison to controls, the 50 mM concentration was able to suppress pathogen 

growth by 1.2 and 2.9 log10 CFU/ml after incubation at 8 °C for 24 and 48 h, respectively. 
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However, at even lower incubation temperatures (4 °C) and lower octanoic acid concentrations 

(25 mM), this inhibitory effect was not as pronounced, and thereby showed that the limitations 

of its effectiveness on the pathogen are dependent on the conditions of the environment and the 

concentration at which the compound is used.  

Another in vivo application of the fatty acid against L. monocytogenes investigated its 

efficacy in whole muscle and comminuted RTE meat and poultry products, and subsequently led 

to the validation of its effectiveness for use as a post-lethality treatment for the pathogen 

(Burnett and others 2007). Oven-roasted and oil-browned whole muscle turkey breast, whole 

muscle cured ham, whole muscle roast beef, and comminuted and formed roast beef were 

inoculated with a five strain cocktail of the pathogen and exposed to octanoic acid by means of 

contact with solutions that were placed into the final packaging material. Solutions of 1% 

octanoic acid were acidified to pH 2.0 with phosphoric acid or to pH 4.0 with citric acid and 

were applied to final packaging in order to achieve a target application rate of 1.9 ± 0.5 ml per 

100 cm2 of the product. Packages were then heat shrunk using a conventional (2 sec, 93 °C) or a 

modified (7 sec, 93 °C for all products except oil-browned turkey which was 13 sec) hot water 

shrinkage process to compare effects on the survival of the pathogen. Products were then stored 

at 5 °C for 24 h before enumerations were completed. On the oil-browned turkey breast, 

significant (P ≤0.05) reductions in the pathogen were observed, with the citric acid-acidified 

solution producing decreases of 1.1 and 1.9 log10 CFU/sample for the conventional and modified 

shrinkage process, respectively, as opposed to 0.9 and 1.5 log10 CFU/sample for the phosphate-

acidified solution. This same trend was also exhibited for all other products where the citric-acid 

acidified solution coupled with conventional and modified shrink processes produced respective 

reductions of 2.8 and 3.0 log10 CFU/sample in oven roasted turkey breast, 2.9 and 3.3 log10 

CFU/sample  in cured ham, 1.7 and 2.5 log10 CFU/sample in whole muscle roast beef, and 1.6 
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and 2.0 log10 CFU/sample in comminuted roast beef, which were greater than the reductions 

observed with the usage of the phosphoric acid-acidified solutions. Thus, as a result of these >1 

log cycle reductions of L. monocytogenes by use of the fatty acid solutions, the compound was 

able to meet the standards of FSIS Alternative 1 and be approved for use as a post-lethality 

treatment for such products.  

As can be deduced by observing the broad range of organisms affected by exposure to 

octanoic acid, the mechanisms by which it and other fatty acids are able to inhibit growth are 

likely nonspecific in nature (Kabara and Marshall 2005). Of primary importance is the principle 

of uncoupling, whereby the fatty acid behaves as an organic acid, passing through the membrane 

as an associated and slightly hydrophobic molecule, disassociates in and acidifies the cytoplasm, 

and causes depletion of energy (Freese and others 1973). Demonstrations of the pH dependency 

of the acid’s effectiveness in several studies (Kinderlerer and Lund 1992; Annamalai and others 

2004) strongly suggest that penetration and acidification is a very important factor in its 

inhibitory scheme. Observations that medium chain fatty acids like octanoic acid are more 

effective at inhibiting bacterial growth than are shorter chain fatty acids (Nakamura and Zangar 

1968) and longer chain fatty acids (Wang and Johnson 1992), may also be indicative of such a 

mechanism of action. However, additional inhibitory mechanisms of octanoic acid have also 

been suggested. For example, the membrane destabilization characteristic of surfactants 

observed by medium and longer chain fatty acids may also produce an inhibitory effect 

(Greenway and Dyke 1979). In addition, manipulation of the activities of membrane-based 

enzymes in yeasts as a result of exposure to octanoic acid, suggests that the fatty acid may even 

be able to cause disruptions of cellular metabolism by causing deviations in the normal function 

of such cell components (Viegas and Sá-Correia 1991). At present, documentation of resistance 

development by foodborne bacterial pathogens has yet to occur (Kabara and Marshall 2005). 
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However, as with all food derived molecules, interactions between the fatty acids and other 

components of a food matrix can reduce effectiveness in vivo, and can cause drastic changes in 

the expected functionality of such compounds. The importance of in vivo validations is crucial to 

avoid such situations, and to ensure the maximum activity of the fatty acid when it is 

incorporated in foods as an antimicrobial treatment.  

Despite these minor challenges that accompany using octanoic acid in foods, the 

compound maintains good potential overall. Indeed, the overall effectiveness of octanoic acid in 

reducing target microorganisms, its identity as a natural antimicrobial, and its bio-friendly nature 

balance with the challenges of its incorporation into foods and food processes, and continue to 

make the antimicrobial a favorable prospect for continued and possibly increased future use.  

Overcoming Antimicrobial Resistance 

Though published incidences of bacterial resistance to food antimicrobials can be found 

intermittently throughout the literature, the relatively infrequent nature of such occurrences is 

supportive of the belief that the phenomenon is not a major concern to public health in the 

present day (Doyle 2006). However, trends of increased resistance to therapeutic antibiotics, 

increased reliance on antimicrobials and sanitizers for control measures, and evidence that 

microbial stress responses can produce tolerances to antimicrobials have all generated concerns 

about the eventual diminution of food antimicrobial potencies (Davidson and Harrison 2002). 

These trends, coupled with limited knowledge of the specific cellular targets of food 

antimicrobials have led many to regard resistance development as one of the foremost challenges 

to the future of food safety (Doyle 2006). 

As noted in several of the preceding sections, microorganisms possess a wide array of 

measures to endure the action of antimicrobials. Modifying cell surface permeability (Ishikawa 

and others 2002), efflux of biocides (McMurry and others 1980; Levy 1992), resistance-
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producing genetic mutations and acquisitions (McBain and Gilbert 2001), plasmid-conferred 

resistance (Russell 1985; Russell 1997), and tolerances developed from stress responses (Abee 

and Wouters 1999) are all means employed by bacterial species to decrease their sensitivity to 

antimicrobic agents. As variations exist in the extent to which these physiological mechanisms 

are employed by cells (Turner and others 2000; Russell 2003), inconsistencies in responses to 

antimicrobials can result, and can lead to further problems when determining their effects for 

challenge studies and Hazard Analysis and Critical Control Points (HACCP) validations (Leyer 

and Johnson 1993). As a result, the mitigation of resistance development is a desirable goal that 

food technologists should devote great efforts toward achieving. 

Though microorganisms have survival mechanisms at their disposal, several simple 

strategies can be employed to augment the effect of antimicrobials and minimize tolerance or 

resistance development (Davidson and Harrison 2002). For instance, avoiding repeated exposure 

of microorganisms to sub-lethal levels of antimicrobials can decrease the potential for adaptation 

(Ricke 2003; Koutsoumanis and Sofos 2004). Also, using combinations of antimicrobials with 

process and environmental controls (such as in the concept of hurdle technology) can present 

multiple stress points for the microorganism to combat (Leistner 1994; Leistner and Gorris 1995; 

Leistner 2000). Combinations of two or more antimicrobials with different mechanisms, such as 

a membrane permeabilizer and an organic acid, can create an ideal situation where the 

microorganism must struggle to handle simultaneous attacks on multiple cellular targets (Sofos 

and others 1998; Ricke and others 2005; Kabara and Marshall 2005). All of these strategies are 

effective, and are widely accepted as potential solutions to resistance. Consequently, innovative 

applications of existing antimicrobials, rather than discoveries of novel compounds, is believed 

to be the most reliable means by which tolerance and resistance challenges will be overcome in 

the future (Kabara and Marshall 2005). Research in the field has shifted away from a focus on 
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the development of novel antimicrobials toward a greater emphasis on employing hurdle 

technologies and antimicrobial pairings to combat resistance. These two concepts will be the 

focus of discussion for the remainder of this section. The distinction must be made that hurdle 

technologies primarily focus on employing combinations of environmental factors, known as 

“hurdles” (e.g. temperature, water activity, pH, oxidation/reduction potential, preservatives, and 

competitive flora), with each other and with antimicrobials, while antimicrobial combinations 

only entail the paring of two or more antimicrobials for use in minimal processing measures or 

eventual incorporation into hurdle technology.  

Though the practice of combining preservative factors has been carried out for centuries, 

the reinvention of this principle in the 1970s as the hurdle effect (Leistner 1978) reinvigorated 

interest in the implementation of such practices in the food industry of today (Leistner and Gould 

2005). Upon its reinvention, the hurdle effect was mainly intended to be used as an empirical 

concept for developing processing condition strategies (Leistner and Gould 2005). However, 

with the continued incorporation of more scientific principles into the concept, hurdle 

technologies, which involved the methodical use and control of multiple processing factors, were 

soon derived (Leistner 2000). The design and application of such technologies has continued to 

be an area of major interest in research (Leistner and Gorris 1995), and the use of the technical 

knowledge gained from the hurdle concept has become widespread in many countries around the 

globe (Leistner and Gould 2005). 

The fundamental idea behind the hurdle concept involves the recognition of hurdles used 

in food processes as the basic procedures to inactivate foodborne pathogens (Leistner and Gorris 

1995). Contrary to the idea that intense individual applications of these factors leads to better 

pathogen mitigation, the hurdle concept promulgates the notion that using multiple hurdles of 

less intensity is the most efficient manner to achieve food safety and stability (Leistner 1992). 
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The reasoning behind such strategies stems from the concept that when these hurdles are 

combined, continued challenges are presented to microorganisms throughout the duration of a 

food process, resulting in the inability of microorganisms to overcome each hurdle and survive 

(Leistner 1992). To date, over 60 potential hurdles, which do not include any of the hundreds of 

antimicrobials, have been identified for food processes (Bøgh-Sørensen 1994). With the great 

number of hurdles available, custom designs of hurdle combinations can be made to meet the 

needs of specific food processes. 

Most original hurdle technologies employed simpler hurdles such as temperature, water 

activity, and pH adjustments (Leistner 1994). However, in recent years, combinations of non-

thermal processes such as pulsed-electric fields, high hydrostatic pressure, high-intensity 

ultrasound, ultraviolet light, oscillating magnetic fields, and ionizing radiation have been gaining 

attention (Ross and others 2003). Also, combinations of hurdles with antimicrobials have 

increased in popularity. For instance, it has been shown that simple factors such as water 

activity, temperature, and pH can affect the activity of nisin in L. monocytogenes and have the 

potential for usage in hurdle effect mechanisms in controlling the organism (Boziaris and 

Nychas 2006). In addition, incorporating 3% lactate/diacetate into frankfurters along with post-

process irradiation treatments of 1.8 kGy and 2.6 kGy has been shown to decrease initial L. 

monocytogenes numbers by ~3.0 log10 and ~5.0 log10 CFU/frankfurter, respectively, with 

continued suppression of the pathogen during the entire 8 weeks of vacuum-packaged storage 

(Knight and others 2007a). Furthermore, the combination has been shown to have minimal 

effects on sensory qualities (Knight and others 2007b). Likewise, combining ultraviolet light (1.0 

J/cm2), flash pasteurization (0.75 sec steam at 121 °C), lactate (1.13%), and diacetate (0.07%) in 

frankfurters has been demonstrated to decrease Listeria innocua, a surrogate for L. 

monocytogenes, by 3.2 log10 CFU/g (Sommers and others 2009). Increased levels of ultraviolet 
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light (4.0 J/cm2) and flash pasteurization (3 sec steam at 121 °C) produced even greater 

decreases in numbers of the surrogate at 3.9 log10 CFU/g (Sommers and others 2009). It has also 

been shown that high pressure processing (400 MPa for 5 min) in concert with nisin (100 IU/ml) 

and tert-butylhydroquinone (TBHQ) (100 ppm) can reduce L. monocytogenes numbers by 

approximately 7.3 log10 CFU/ml (Chung and others 2005).  

The concept that combining antimicrobials with complementary activities can produce 

synergistic effects is not a new idea (Klein and Kimmelman 1947; Eagle and Fleischman 1948). 

However, it has only been recently that the approach has generated interest in the food sector 

(Sofos and others 1998; Ricke and others 2005). The consensus is that by using combined food 

antimicrobial agents a greater spectrum of activity becomes available to combat pathogenic or 

spoilage microorganisms (Vigil and others 2005). The inhibitory mechanisms of paired 

antimicrobials, and the synergism that results, rely on the principle of simultaneous attacks at 

multiple cellular targets and is distinctive from hurdle technology in this way. To combat the 

effects of resistance, many combinations of the antimicrobials discussed in the preceding 

sections have been carried out to enhance their activities. For instance, recent studies that have 

focused on combining nisin with other antimicrobials have found that better effects are achieved 

by combining the bacteriocin with other antimicrobials as opposed to using it alone against target 

pathogens. Combinations of nisin with lactate and polyphosphate (Buncic and others 1995), 

sucrose fatty acid esters (Thomas and others 1998), garlic extract (Singh and others 2001), 

ethylenediaminetetraacetic acid (Branen and Davidson 2004), and lactoferrin (Murdock and 

others 2007) have all demonstrated increased ability of nisin to inhibit the growth of L. 

monocytogenes when the pathogen is exposed to multiple antimicrobials. Thus, such interactions 

may be the key to overcoming the nisin resistance mechanisms of L. monocytogenes and 

maintaining the sensitivity of the organism to the bacteriocin. 
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Likewise, pairing lactate derivatives with other antimicrobials has been shown to result 

in enhanced activities of the combination.  For example, lactic acid in combination with both 

monolaurin and nisin has also been shown to have synergistic effects against L. monocytogenes 

(Tokarskyy and Marshall 2008). Based on the results of the study the researchers postulated that 

by using lactic acid, monolaurin was able to achieve better incorporation into the membrane and 

allow for enhanced activity of nisin (Tokarskyy and Marshall 2008). A similar pairing of lactate 

and diacetate with LAE also showed improvements over using each compound individually 

(Martin and others 2009), which could have also been due to increased incorporation of the LAE 

into the membrane due to the lactate. Thus, combining lactate with such antimicrobials could be 

the solution for decreasing acid tolerance development and other factors that are involved with 

decreased resistance to derivatives of organic acids. 

Furthermore, combinations involving EPL have shown signs of synergism. Geornaras 

and Sofos (2005) investigated the effect of the compound on E. coli O157:H7, Salmonella 

Typhimurium, and L. monocytogenes alone and in combination with either lactate, diacetate, 

lactic acid, or acetic acid in broth at either 4 °C or 24 °C. At 24 °C, EPL at 0.02%, 0.05%, and 

0.02% alone was able to decrease numbers of E. coli O157:H7, S. Typhimurium, and L. 

monocytogenes from 2.0, 2.2, and 2.0 log10 CFU/ml, respectively, to below detection limits (1.3 

log10 CFU/ml). Combinations of EPL (0.02% and 0.03%) with diacetate (0.25%) and EPL 

(0.01% and 0.02%) with acetic acid (0.1 %) produced more effective inhibition (p < 0.05) than 

using the compound alone for E. coli and S. Typhimurium. Najjar and others (2007) investigated 

the in vitro activity of the polymer on L. monocytogenes and B. cereus, and noted that the 

compound interacted with nisin A to produce synergistic inhibition (FIC value of 0.56) for B. 

cereus and additive inhibition (FIC value for 0.86) for L. monocytogenes. Their observations 
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suggested that using two membrane-active agents destabilize the membrane even further than 

individual usages and lead to better inhibition and a mitigation of resistance. 

It seems worthwhile for researchers to investigate antimicrobial combinations further 

and to better understand their mechanisms so that they can be made more efficient. By 

accomplishing this, food processors will not only have more effective means of controlling 

pathogens, but will also be able to minimize the concerns of consumers about maintaining the 

integrity of antimicrobials that are currently available. As a result, research in the area should 

continue into the near future, and should aim at achieving these particular goals. 

Antimicrobial Susceptibility Tests 

 The ultimate goal of assaying the activity of food antimicrobials is to have them work 

under in vivo conditions within a food system. However, the starting point for understanding the 

expected effects of a food antimicrobial usually entails some sort of preliminary in vitro 

susceptibility test to determine its limitations and optimal conditions for use. From Koch’s tests 

of the mercuric chloride susceptibility of Bacillus anthracis (Koch 1881), to the complex 

automated tests of today, antimicrobial susceptibility tests have constantly evolved over the past 

century to accommodate new sets of experimental designs and novel analytes. Fleming’s 

discovery of penicillin in the mid 1920s (Fleming 1929) and the desire to understand its 

functionality were instigating forces behind development of susceptibility testing procedures in 

the decades to follow (Reddish 1929; Abraham and others 1941; Vincent and Vincent 1944; 

Mohs 1945; Morley 1945; Kolmer 1947; Bondi and others 1947; Bauer and others 1966). 

Likewise, early experiments in testing the efficacy of food-based antimicrobials yielded different 

techniques that could be specialized with regard to the properties of components from food 

systems (Walton and others 1936). Even with the diverse array of technologically assisted 

procedures that are used today, many of these procedures that were developed during the early 
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years of experimentation are still fundamental components of the methods that are currently used 

(Davidson and Parish 1989). 

 The most fundamental classifications of in vitro antimicrobial susceptibility assays are 

the diffusion methods and the dilution methods (Vigil and others 2005). Of the two, diffusion 

methods have likely been the most frequently used throughout the past century to qualitatively 

test the efficacy of a number of different antimicrobials (Vigil and others 2005). Dilution 

methods, while not as widely used, are more often employed by researchers and clinical 

personnel because of their quantitative nature (Murray and Jorgensen 1981). However, each set 

of methods has advantages and disadvantages to its use, and much of the consideration for 

selecting a particular method should take into account the nature of the analyte and the most 

applicable way for it to be evaluated. Other gradient-based testing procedures are available, such 

as the wedge system (Szybalski and Bryson 1952), spiral plating (Hill 1991), and various 

automated methods (Piddock 1990), but these tend to be used for more specialized purposes. 

Within the two main classes of methods are sub-categories of test procedures that are based on 

the way results are collected from the assay. Endpoint analyses involve the exposure of a 

microorganism to a particular compound for a specified period of time (Davidson and Parish 

1989). After time has elapsed, results are collected and are indicative of the inhibitory potential 

of the substance for that particular length of time. In contrast, descriptive analyses often involve 

periodic sampling, and involve creation of multiple data points over time (Vigil and others 

2005). Such analyses can be useful for purposes of constructing growth or inhibition curves to 

visualize a substance’s effect over time. Thus, as with the method type, each data collection 

method has advantages and disadvantages that predispose it for use under certain conditions. 

 As mentioned, the most frequently used form of susceptibility testing is the diffusion 

method, and within this method, agar diffusion has been the type of test that has predominated. 
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The basic principle of the traditional agar diffusion test is the creation of a gradient of 

antimicrobial concentrations over the radius extending out from a central application site (Bauer 

and others 1966). When performed on an agar plate seeded with the test organism, the 

application of the antimicrobial will create a zone of inhibition extending out from the center, 

which can be measured (Bauer and others 1966). At the outset of its use, wells punched into agar 

were used as the application sites for the analyte to be examined (Reddish 1929). However, 

incorporation of compounds into paper disks, which were then laid on the surface of the agar to 

allow for diffusion, soon became the customary method (Vincent and Vincent 1944; Morley 

1945; Kolmer 1947). The standard 6.5 mm filter paper disk that is still used for conducting disk 

assays today was introduced in a study by Bondi and others (1947), and many set of standards 

for the test were established by Bauer and others (1966). Presently, most of the stipulations 

regarding the test are governed by the Clinical and Laboratory Standards Institute, which 

periodically publishes a guide on its methodology (CLSI 2009b). Such stipulations state that a 

non-selective medium must be used, preferably one like Müeller-Hinton Agar, and that the test 

microorganism should be seeded onto the plate at a rate of 6.0 log10 CFU/ml. Disks impregnated 

with different concentrations of the test antimicrobial are then placed onto the surface of the 

agar, and plates are incubated for 16 to 24 h. Zones of inhibition form around the disks if the 

antimicrobial is active, and zone diameters are measured to provide an indication of the activity. 

 Though the agar diffusion test is very easy to conduct and is very easy to obtain results 

from, its main limitation is that its results are only subjective, and can only give one a generic 

classification of the antimicrobial’s effectiveness (susceptible, intermediate, resistant) (Piddock 

1990). Diffusion tests can give semi-quantitative MIC values, but dilution methods are 

considered to be more quantitative (Vigil and others 2005). Another limitation is that because 

results must be obtained after growth for a specified period of time, diffusion methods are solely 
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limited to endpoint analyses. In addition, because diffusion methods use water as their medium 

to diffuse the antimicrobial, diffusion throughout the agar matrix can be hindered for 

antimicrobials that have hydrophobic tendencies (Chao and others 2008). Furthermore, the 

requirement for growth of organisms on the surface of the agar in the presence of oxygen also 

limits the assay to aerobic microorganisms, as oxygen toxicity can lead to misperceptions about 

the activity of the analyte against anaerobic species (Johnson and others 1995).  

 Dilution-based susceptibility tests include both agar dilution methods and broth dilution 

methods, and have been in use since the time of Fleming’s discovery (Piddock 1990). Though 

most standards for dilution procedures were developed at the same time as those for the disk 

diffusion assay (Fleming 1942; Rammelkamp and Maxon 1942; Schmidt and Sesler 1943; Buggs 

and others 1946), dilution methods focus on exposure of a test microorganism to one individual 

concentration of an antimicrobial, rather than a gradient of several concentrations (CLSI 2009a). 

Thus, in contrast to diffusion methods, antimicrobial dilution methods are more appropriate for 

determining quantitative data. In serially diluting an antimicrobial into inoculated agar or broth, 

one can determine a distinct MIC value; the lowest concentration at which the agent can kill a 

microorganism or inhibit its growth (Barry 1976). Such specific values cannot be obtained from 

diffusion tests because of the gradient effect, and thus dilution methods are at an advantage in 

this respect. In addition, dilution tests tend to be much more accommodating for the maintenance 

of special growth conditions, as they allow growth of microaerophiles, anaerobes, and slow 

growing microbes (Murray and Jorgensen 1981). Furthermore, use of paper disks as vehicles for 

antimicrobials in diffusion tests requires additional care to assure that components of disks do 

not hinder the activity of antimicrobials nor create antimicrobial effects themselves (WHO 

1982). Thus, dilution tests do possess distinctive advantages over diffusion tests, and additional 

specific benefits exist between choosing either a broth dilution or an agar dilution method. 
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 Conducting agar dilution tests involves dissolving a specific amount of antimicrobial in 

molten agar to achieve a uniform concentration of the analyte over the entire volume of the 

growth medium (Barry 1976). In setting up the assay, each agar plate contains an individual 

concentration, and serial twofold dilutions are made over the series of plates (CLSI 2009a). 

Cultures are diluted to 7.0 log10 CFU/ml and are spot-inoculated onto the plate surfaces in 1 to 2 

µl aliquots to produce starting inocula of approximately 4.0 log10 CFU/ml (CLSI 2009a). Spot 

inoculation allows for multiple organisms to be simultaneously tested on the same plate, and is 

an advantage of the method (Barry 1976). MIC values are determined by observing the plate 

with the lowest concentration of the antimicrobial that demonstrates absence of growth (single 

colonies or faint hazes do not constitute growth) (Barry 1976). Though determining growth in 

this fashion is fairly subjective and thus puts the method at a disadvantage, contamination is 

easily detected and opaque materials can be supplemented in the agar (Barry 1976). 

 Broth dilution techniques involve the same concept of the agar dilution method with 

regard to serial dilution, but use liquid media rather than agar (Barry 1976). Large volumes of 1 

to 10 ml of medium can be used, but most current methodologies are adapted for microtitration 

with volumes of 50 to 200 µl being common (Vigil and others 2005). Inocula are slightly higher 

than agar dilution tests with levels of approximately 5.0 log10 CFU/ml being common (Thrupp 

1986). Samples can also be incubated under specific conditions which allow accommodations to 

be made for slow growing microorganisms and for anaerobes. MIC determinations are 

commonly done by observing turbidity of the medium due to cell proliferation (Barry 1976). 

Turbidity can be observed subjectively or monitored by use of a spectrophotometer to determine 

absorbance at a given wavelength; however the latter affords greater objectivity to observations. 

By calculating the change in medium turbidity from a beginning to a terminal spectrophotometer 

reading in an endpoint-style analysis, one can set a quantifiable difference in absorption that 
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defines growth (Branen and Davidson 2004; Skandamis and others 2007). For tubes or wells that 

display absorption changes less than this specified value, corresponding concentrations of the 

antimicrobial are considered inhibitory, and the lowest such concentration is considered the 

MIC. Likewise, one can also record the absorbance of a solution periodically over the course of 

incubation, correlate it with growth of the organism using a function, and produce growth curves 

for descriptive-type analyses (Najjar and others 2007; Tokarskyy and Marshall 2008). In 

addition, broth dilutions also allow for determination of minimum bactericidal concentrations 

(MBC), which involves the spread-plating of 10 to 100 µl aliquots of test solutions displaying 

inhibition at the endpoint (Vigil and others 2005). Plates which show a ≥ 99.9% decrease from 

the starting population for a particular organism are deemed bactericidal (Barry 1976).   

 Though most of these methods described are intended for evaluation of a single 

antimicrobial, recent trends toward using combined agents in food systems have generated a 

demand to assay the simultaneous effect of two food antimicrobials on an organism (Vigil and 

others 2005). When two antimicrobials are paired, outcomes of synergism, additivism (also 

referred to as indifference), or antagonism can result from their combination (Davidson and 

Parish 1989). Barry (1976) gives an excellent definition of synergism as an “effect observed 

[when] a combination is greater than the sum of the effects observed with the two drugs 

independently.” Likewise, he defines additivism as “a combined effect [that] is equal to the sum 

of the effects observed when the two drugs are tested separately or equal to that of the most 

active drug in the combination.” He also states that antagonistic behaviors between 

antimicrobials are characterized by a combination that “is less effective than the most active drug 

in the combination.” The classification of an antimicrobial combination into one of these three 

categories is key to communicating to others how the compounds can be expected to interact, 

and is crucial for preventing problematic applications. 
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 All forms of antimicrobial susceptibility tests can be used to test antimicrobials in 

combination, but certain modifications must be made. For instance, agar diffusion methods can 

be used to test two antimicrobials at once by using two strips of filter paper impregnated with 

antimicrobial to form an L-shape on the surface of the agar (Garrod and Waterworth 1962). 

Based on the shape of the zone of inhibition, one can interpret the general type of interaction 

observed (Barry 1976). However, as in single antimicrobial testing, this type of test lacks 

quantitative results. Thus, it is actually more common to modify more quantitative broth dilution 

techniques to evaluate the interactions. 

 Broth dilution tests of antimicrobial combinations most often involve a method known 

as the checkerboard assay to obtain results (Vigil and others 2005). Using this concept, a series 

of tubes, or wells on a microtiter plate, are used to create criss-cross combinations of stepwise 

diluted antimicrobials working down from the highest concentration of compound A in rows and 

working left to right from the highest concentration of compound B in columns (Figure 3). 

Clinical tests which use this principle customarily employ twofold dilutions when moving down 

rows and across columns, but because of differences in function of food antimicrobials, 

modifications to this standard have been done in the past and are a source of non-uniformity 

between studies (Davidson and Parish 1989). Once a checkerboard assay has been arranged with 

antimicrobials, and combinational minimum inhibitory combinations have been deciphered using 

the prescribed means, interpretation of the type of interaction observed can be accomplished 

mathematically. To do this, combination concentrations must be converted from MIC values to 

fractional inhibitory concentration (FIC) values for each agent in the combination (Parish and 

Carroll 1988).  This is achieved by dividing the combinational MIC value for a compound by the  
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Figure 3-Checkerboard assay schematic. 
Combinations of serial dilutions are created by pairing corresponding proportions of the MIC for 
each antimicrobial. Adapted from Vigil and others (2005). 
 

 

MIC of the compound when it is used by itself (Figure 4) (Parish and Carroll 1988). The 

resulting ratio is the desired FIC value.  

Once FICs are obtained for each antimicrobial, addition of the two FIC values provides 

one with a fractional inhibitory concentration index (FICI) for the combination, which can then 

be used to interpret the type of interaction (Figure 4) (Barry 1976). Though this is a quantitative 

number, interpretation of FIC indices has been fairly ambiguous with different researchers 

suggesting different ranges of values for classifying the respective interactions (Squires and 

Cleeland 1985; Branen and Davidson 2004; Kumar and others 2004). However, conservative use 

of FIC indices continues to claim that an FIC index <1 is indicative of synergism, an FIC index 

≈1 is characteristic of additivism (indifference), and that an FIC index >1 is indicative of 

antagonism (Branen and Davidson 2004).  

FIC values can be even further analyzed by plotting FIC values for one antimicrobial 

versus  the  corresponding  FIC for  the  other  antimicrobial  in  a combination  to  form  an  FIC  
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Figure 4-Equations used to calculate fractional inhibitory concentrations and fractional inhibitory 
concentration indices.  
Based on descriptions by Barry (1976). 

 

isobologram (Parish and Carroll 1988). Curvature of lines between the points on an FIC 

isobologram is then used to interpret interactions (Parish and Carroll 1988). Isobolograms whose 

points form a straight line with a -1 slope, are classified as additive. Those whose points form a 

curved line which trends toward the origin are classified as synergistic. Consequently, 

isobolograms with points that form a curve which trends away from the origin are classified as 

antagonistic. Figure 5 shows several isobolograms and their subsequent classifications. 

Though such methods and interpretations have become standard for determining the 

interactions between antimicrobic agents, several have expressed concerns about their validity 

(Lambert and Lambert 2003; Odds 2003). Indeed, some have claimed that current methods have 

no tolerance for varied dose responses of antimicrobials in a combination and that identical dose 

response assumptions may falsely identify a synergistic interaction, when one, in fact, does not 

exist (Lambert and Lambert 2003). Others have also communicated concerns with the 

reproducibility of the test method, stating that current numbers of replicates are inadequate, and 

that agreement between replications should be considerably high before an interpretation is 

accepted  (Rand  and  others 1993).  However,  the  truth  is  that  without  advanced  software  to 
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Figure 5-Interpretation of antimicrobial interaction from isobologram analysis. 
Adapted from Parish and Carroll (1988). 

 
 
 

produce models using the data that are collected, these types of tests are currently limited to 

these procedures, as these are the most current and uniform approved methods available. 

Though in vitro methods to assess antimicrobial interactions have been in place for 

several decades, research that has used them to classify interactions between food antimicrobials 

is lacking. Results from such research can provide insight into more efficient use of 

antimicrobials that have compatible activities which produce enhanced inhibition of foodborne 

pathogens such as L. monocytogenes. Although some combinations of the antimicrobials 

mentioned in this review have been tested in vitro against L. monocytogenes, the aim of this 

research was to apply these in vitro methods to classify interactions of new and different 

combinations between them to better understand their inhibition of the pathogen. 
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CHAPTER IV 

IN VITRO INHIBITION OF LISTERIA MONOCYTOGENES BY 

FOOD ANTIMICROBIAL COMBINATIONS TESTED AT PH 7.3 

 

Introduction 

 At present, the use of food antimicrobials in processed meat and poultry products is a 

key component to control of L. monocytogenes (FSIS 2003a; Lado and Yousef 2007). 

Bacteriocins such as nisin, surfactants such as lauric arginate ester (LAE) and monolaurin, 

polycationic molecules such as ε-Poly-L-Lysine (EPL) and chitosan, and organic acids such as 

lactic acid, acetic acid, and octanoic acid are widely used as interventions in food manufacturing 

processes. Yet, even though a good understanding of the levels of antimicrobials and conditions 

needed to produce inhibition or death of the pathogen exists (Lado and Yousef 2007), several 

challenges are associated with their use. For instance, adaptations can develop which allow cells 

to counteract the activity of antimicrobials through resistance mechanisms (Davidson and 

Harrison 2002; Doyle 2006). Likewise, the development of undesirable sensory effects, as well 

as impediments associated with cost of incorporating new processes, are additional factors to be 

considered (Davidson and Branen 2005). Also, because knowledge on specific antimicrobial 

mechanisms and interactions is lacking (Davidson and Harrison 2002), food processors are 

generally confined to the use of a small scope of validated treatments with limited efficiency. 

However, the use of antimicrobial pairings that involve the interaction of compounds that have 

complimentary or enhancing activities on one another can produce a multi-pronged attack on 

microbial pathogens and make use of antimicrobials more effective and efficient. Thus, the 

investigation of antimicrobial combinations which can offset such challenges and produce more 

efficient control of L. monocytogenes in food systems, are readily welcomed. 
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 The primary objective of this study was to investigate the inhibition of four L. 

monocytogenes strains that resulted from exposure to nisin (NIS), Sodium L-Lactate (SL), ε-

Poly-L-Lysine (EPL), lauric arginate ester (LAE), and acidic calcium sulfate (ACS) in vitro at 

pH 7.3. A growth medium pH of 7.3 was used in order to minimize acid stress on the organism 

so that inhibition was primarily a function of antimicrobial stress. Antimicrobial susceptibility 

was tested using a broth dilution microassay to determine the minimum inhibitory concentration 

of each individual antimicrobial. Bactericidal responses of each antimicrobial were also assessed 

after completion of the incubation period to determine minimum bactericidal concentrations. 

 A second objective was to assess the efficacy of antimicrobial combinations for the in 

vitro inhibition of L. monocytogenes growth at pH 7.3. L. monocytogenes strains were exposed to 

nisin combined with ACS, nisin combined with LAE, EPL combined with ACS, and sodium 

lactate combined with ACS through use of a checkerboard broth dilution microassay. Inhibitory 

activity was assessed and optimal inhibitory combinations of each antimicrobial pairing were 

determined. As with single antimicrobial testing, bactericidal responses were also determined for 

combinations of antimicrobials that produced growth inhibition.  

 A final objective of the study was to determine the types of interaction types that 

resulted from each antimicrobial pairing. Using optimal inhibitory combinations derived from 

the combinations assay and MICs, fractional inhibitory concentrations were calculated. From 

these values, fractional inhibitory concentration index values (FICI) and isobolograms were 

constructed and interactions were classified as synergistic, additive, or antagonistic in nature. It 

was determined whether interactions resulted in enhanced activity, no change in activity, or 

reduced activity by using the antimicrobials in a pair as opposed to using them separately. Using 

this information and suggested modes of antimicrobial action, postulations pertaining to possible 

reasons for increased or decreased activity were also made for each pairing. 
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Materials and Methods 

Bacterial Culture Preparation and Maintenance 

 Listeria monocytogenes Scott A (clinical isolate), 310 (goat cheese-associated outbreak 

isolate), National Animal Disease Center (NADC) 2783 and NADC 2045 were obtained from 

the Center for Food Safety culture collection (Department of Animal Science, Texas A&M 

University, College Station, TX). All strains were biochemically confirmed as Listeria 

monocytogenes using the API Listeria identification system (bioMérieux, Inc., Hazelwood, 

MO) according to manufacturer instructions. Thereafter, cultures were maintained on Tryptic 

Soy Agar (TSA; Becton Dickinson and Co., Sparks, MD) slants at 5 °C. In order to prevent 

potential development of antimicrobial resistance via repeated sub-culturing, working cultures 

were obtained by transferring a loopfull of culture from TSA slants to 10 ml of Fraser Broth 

(Becton Dickinson and Co.) and incubating aerobically for 24 h without agitation at 35 °C. After 

confirming a Listeria species correct phenotype (esculin hydrolysis) via medium blackening 

(Fraser and Sperber 1988), a loopfull of culture was transferred to 10 ml Tryptose Phosphate 

Broth (TPB; Becton Dickinson and Co.),  incubated aerobically for an additional 24 h at 35 °C 

without agitation. Cultures from Fraser Broth were streaked for isolation on Tryptose Phosphate 

Agar (TPA; Becton Dickinson and Co.) plates at the time of TPB inoculation and incubated at 35 

°C for 48 h to confirm culture purity. 

Inoculum Preparation 

Overnight (24 h) cultures of each L. monocytogenes strain in TPB were serially diluted 

in 9.9 ml volumes of double-strength TPB (2x TPB) to achieve a final inoculum concentration of 

approximately 5.0 log10 CFU/ml. Inocula were enumerated by diluting to approximately 3.0 log10 

CFU/ml in sterile 0.1% Peptone (Becton Dickinson and Co.), and then spread-plating 100 µl on 

both TPA and PALCAM Agar (Becton Dickinson and Co.). Plates were aerobically incubated at 
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35 °C for 48 h prior to enumeration. Use of PALCAM Agar served to ensure that cells from the 

inoculum displayed a correct phenotype for Listeria species (medium blackening via esculin 

hydrolysis) (Van Netten and others 1989), while simultaneous enumeration on TPA plates 

confirmed inoculum purity. 

Test Antimicrobial Preparation 

 A 250.0 µg/g stock solution of active nisin was prepared by dissolving a mass of 0.1000 

g powdered nisin fermentate (NIS; Sigma-Aldrich, St. Louis, MO, 2.5% w/w nisin) in 10.0 ml 

sterile 0.02 M hydrochloric acid (HCl; Thermo-Fisher Scientific, Waltham, MA) according to 

previously reported methods (Rogers and Montville 1991). The solution was boiled in water for 

4 minutes to aid in dissolution of nisin (Wolf and Gibbons 1996; Taylor and others 2008). Stock 

solutions of 2500.0 µg/g and 5000.0 µg/g active ε-Poly-L-Lysine were prepared for single 

antimicrobial testing and combinations antimicrobial testing by dissolving 0.0500 g and 0.1000 g 

Save-ory® PL-25 (EPL; Chisso America, Inc., Rye, NY; 50% w/w EPL) in 10.0 ml sterile 

distilled water (DI H2O), respectively. Safe2O RTE:01 (ACS; Mionix Corp., Rocklin, CA; 

saturated Acidic Calcium Sulfate solution), CytoGuard LA (LAE; A&B Ingredients, Fairfield, 

NJ; 10% w/w Lauric Arginate Ester), and Purasal® S (SL; Purac America, Inc., Lincolnshire, IL; 

60% w/w Sodium L-Lactate) were all dissolved in sterile DI H2O to obtain working solutions. 

After preparation, 100 µl of stock solutions were spread-plated on TPA and incubated at 35 °C 

for 48 h to ensure that solutions were free of microbial contamination. Antimicrobials, active 

agent, concentration of initial stock solution, and manufacturers are presented in Table 2. 

Single Antimicrobial Inhibition Assay 

A broth dilution microassay (Barry 1976) was used to determine the strain-specific 

minimum inhibitory concentration for each antimicrobial. Strains were exposed to NIS at 6.25, 

3.13, 1.56, 0.78, and 0.39 µg/g active nisin. Working nisin solutions were prepared by dissolving 
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Table 2-Experimental antimicrobials, active agents, and manufacturer for tests at pH 7.3. 
 

Antimicrobial Active Agent 
Stock 

Concentration 
Manufacturer Headquarters 

Nisin Nisin 2.50% w/w 
Sigma-Aldrich, 

Inc. 
St. Louis, MO 

Save-ory ε-Poly-L-Lysine 50% w/w 
Chisso America, 

Inc. 
Rye, NY 

Safe2O 
RTE:01 

Acidic Calcium 
Sulfate 

100% v/v Mionix Corp. Rocklin, CA 

CytoGuard LA 
Lauric Arginate 

Ester 
10% w/w 

A&B Ingredients,  
Inc. 

Fairfield, NJ 

Purasal S 
Sodium L-

Lactate 
60% w/w Purac America Lincolnshire, IL 

 

 

500 µl of the 250 µg/g stock solution in 10.0 ml of DI H2O to generate the stock solution needed 

to deliver the initial 6.25 µg/g concentration, with dilutions thereafter consisting of 2500 µl of 

the previous solution dissolved into 5.0 ml of DI H2O. Acidic calcium sulfate was tested at 

50.00, 25.00, 12.50, 6.25, and 3.13 ml/L. Working solutions of ACS were generated by 

dissolving 1000 µl Safe2O RTE:01 in 10.0 ml DI H2O to obtain the solution required to deliver 

50.00 ml/L, with dilutions of 2500 µl of the previous solution dissolved into 5.0 ml DI H2O 

afterwards. ε-Poly-L-Lysine was delivered at 50.00, 25.00, 12.50, 6.25, and 3.13 µg/g active. 

The respective solutions were produced by dissolving 400 µl of the 2500 µg/g solution into 10.0 

ml DI H2O, with serial dilutions of 2500 µl of the previous solution into 5.0 ml DI H2O 

following. Sodium L-Lactate activity was assessed at 50.00, 25.00, 12.50, 6.25, and 3.13 mg/g 

active ingredient. Corresponding solutions were prepared by dissolving 1289 µl of Purasal S 

into 10.0 ml DI H2O, with 2474, 2488, 2493, and 2497 µl of the corresponding previous solution 
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dissolved into 5.0 ml DI H2O thereafter. LAE activity was assessed at 50.00, 25.00, 12.50, 6.25, 

and 3.13 µg/g. Working solutions of LAE were prepared by dissolving 965 µl of CytoGuard LA 

in 10.0 ml DI H2O to obtain a primary working stock, 1000 µl of primary stock dissolved in 10.0 

ml DI H2O to generate a secondary working stock, and 1000 µl of the secondary working stock 

dissolved in 10.0 ml DI H2O to obtain the solution needed to deliver 50.00 µg/g. Thereafter, 

solutions were obtained by dissolving 2499, 2500, 2500, and 2499 µl of the previous solution in 

5.0 ml of DI H2O to deliver the correct amounts for testing. As noted, concentrations of working 

solutions were devised so as to deliver the correct concentration of test antimicrobial to the test 

wells once all additions were made. Sterile barrier tips and serological pipettes were always used 

in making dilutions so as to minimize potential for cross-contamination.  

Microtiter plates (96 wells; 300 µl capacity) (Microtest™, Becton Dickinson and Co.) 

were used for all broth dilution assays. Equivalent volumes of test antimicrobial solution (125 

µl) and serially diluted L. monocytogenes inoculum in 2x TPB (125 µl) were aseptically loaded 

into test wells. Cells were diluted and inoculated in 2x TPB to allow the correct content of 

nutrients in the final sample well upon delivery. Sterile barrier tips were used to load solutions 

into the wells so as to minimize potential for cross-contamination. Figure 6 shows the individual 

antimicrobial testing setup for the microtiter plate. Appropriate negative controls containing only 

antimicrobial solutions and sterile 2x TPB were built in for baseline adjustment of experimental 

wells. Positive controls containing sterile water and inoculum in 2x TPB were also completed. 

Immediately following plate preparation, optical density of the test wells at 630 nm (OD630) 

was measured at 0 h using an EL800 absorbance microplate reader (BioTek® Instruments, Inc., 

Winooski, VT). Optical density at 630 nm was used in order to minimize absorption of light by 

the growth medium and optimize light scattering by cells (Burton and Kaguni 1997). Microplates 

were incubated aerobically for 24 h at 35 °C before obtaining a 24 h OD630 reading.  
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Figure 6-Broth dilution microplate setup and interpretation for tests at pH 7.3.   

 

Antimicrobial inhibition testing of each antimicrobial at all concentrations was 

replicated at least twice for each strain. Concentrations of antimicrobial that produced a <0.05 

change (∆) in OD630 from 0 h to 24 h following appropriate baseline adjustment over duplicate 

replication were classified as inhibitory (Branen and Davidson 2004). The MIC for each 

antimicrobial was defined as the lowest concentration of antimicrobial that produced <0.05 

∆OD630 after 24 h incubation following subtraction of the baseline OD630 values of the 

negative controls from the treatment well OD630 values (Figure 6). 

Antimicrobial Combinations Susceptibility Testing 

The response of L. monocytogenes to four combinations of antimicrobials: NIS 

combined with ACS (NIS+ACS), EPL combined with ACS (EPL+ACS), NIS combined with 

LAE (NIS+LAE) and SL combined with ACS (SL+ACS) was evaluated using a checkerboard 

broth dilution microassay. Minimum inhibitory concentrations previously determined from 

single antimicrobial susceptibility tests were used as starting concentrations for the combination 
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assays. Serial (1:2) dilutions of antimicrobials were made from these starting concentrations so 

as to produce a 5X5 checkerboard of combinations between the two antimicrobial compounds. 

Concentrations of working solutions were again devised so as to provide the correct 

concentration of test antimicrobial when finally delivered to the test wells. Sterile barrier tips and 

sterile pipettes were used in making dilutions and in plate loading so as to minimize potential for 

cross-contamination.  

For the NIS+ACS combination, L. monocytogenes strains were exposed to 6.25, 3.13, 

1.56, 0.78, and 0.39 µg/g active NIS in combination with 12.50, 6.25, 3.13, 1.56, and 0.78 ml/L 

ACS. The first working solution for nisin was created by dissolving 833 µl of the 250 µg/g nisin 

stock solution in 10.0 ml DI H2O, with dilutions of 2500 µl of the previous solution into 5.0 ml 

DI H2O for the remainder of the solutions. The first solution of ACS was created by dissolving 

625 µl of Safe2O RTE:01 in 10.0 ml DI H2O, with dilutions of 2500 µl of the previous solution 

into 5.0 ml of DI H2O for all solutions thereafter. For the EPL+ACS combination, all strains 

were exposed to 12.50, 6.25, 3.13, 1.56, and 0.78 µg/g active EPL in combination with 12.50, 

6.25, 3.13, 1.56, and 0.78 ml/L ACS. A primary working stock solution of EPL at 500 µg/g was 

prepared by dissolving 1000 µl of the 5000 µg/g EPL stock solution in 10.0 ml DI H2O; 833 µl 

of this solution was transferred to 10.0 ml to produce the first solution of EPL, with volumes of 

2500 µl of previous solutions being diluted in 5.0 ml of DI H2O thereafter. Solutions of ACS 

were produced in the same way as for the NIS+ACS combination. For the SL+ACS 

combination, strains were exposed to 50.00, 25.00, 12.50, 6.25, and 3.13 mg/g of active SL in 

combination with 12.50, 6.25, 3.13, 1.56, and 0.78 ml/L ACS. Working solutions of SL were 

produced by dissolving 2150 µl of Purasal S in 10.0 ml DI H2O, followed by dilutions of 2474, 

2488, 2493, and 2497 µl of previous solutions into 5.0 ml DI H2O. ACS solutions were prepared 

as for previous combinations. For the NIS+LAE combination, all strains were exposed to 6.25, 
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3.13, 1.56, 0.78, and 0.39 µg/g active NIS in combination with 12.50, 6.25, 3.13, 1.56, and 0.78 

µg/g active LAE. A primary working stock of LAE was produced by dissolving 1000 µ l 

CytoGuard LA in 10.0 ml DI H2O; 974 µl of this primary working stock was then dissolved in 

10.0 ml DI H2O to create a secondary working stock. The first usable solution of LAE was 

produced by diluting 619 µl of this secondary working stock in 10.0 ml of DI H2O, with serial 

dilutions of 2499, 2500, 2500, and 2500 µl of previous solutions in 5.0 ml of DI H2O. NIS stocks 

were prepared the same as for NIS+ACS. 

Ninety-six well microtiter plates were also used for carrying out the checkerboard assay 

(Figure 7). Seventy-five µl of antimicrobial A solution (EPL in EPL+ACS, NIS in NIS+ACS 

and NIS+LAE, and SL in SL+ACS) was added to the test wells in columns along with 50 µl of 

antimicrobial B solution (ACS in EPL+ACS, NIS+ACS, and SL+ACS, and LAE in NIS+LAE) 

added in rows. L. monocytogenes inoculum in 2x TPB (125 µl) was then added to the 125 µl of 

combined antimicrobial solutions. Sterile barrier tips were used to load solutions into the wells 

so as to minimize potential for cross-contamination. Wells containing only antimicrobial-

containing solutions and sterile 2x TPB were built in as negative controls for baseline correction 

adjustment of optical density values. Wells containing only sterile water and inocula in double-

strength TPB were again built in as positive controls. Two 96 well plates were used to contain all 

samples in order that positive and negative controls for all wells would be located on the same 

plate as test wells. Figure 7 is a schematic of the design and layout of the first plate of each 

combination used for the checkerboard assay. 

After loading plates, OD630 was measured at 0 h and 24 h using the same protocol from 

the single antimicrobial susceptibility tests (described above). All susceptibility tests for each 

combination  of  test  antimicrobials  were  repeated  at  least  twice  for  each  strain.  Wells  that  
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Figure 7-Checkerboard assay microplate setup and interpretation for tests at pH 7.3. 

 

produced a <0.05 ∆OD630 after 24 h incubation over both replications were again classified as 

being inhibitory. Inhibitory combinations that utilized the least amounts of one compound in 

combination with the other were then classified as optimal inhibitory combinations (OIC) 

(Figure 8). An example of differentiation between a normal inhibitory combination and an 

optimal inhibitory combination would be the case of 3.13 µg/g NIS + 0.78 ml/L ACS and 3.13 

µg/g NIS + 1.56 ml/L ACS. Though both are inhibitory, the former would be the OIC because it 

uses a lower concentration of ACS. The same would hold true for nisin concentrations where 

0.39 µg/g NIS + 6.25 ml/L ACS would be an OIC, and 0.78 µg/g NIS + 6.25 ml/L ACS would 

not be an OIC.  Because  several  combinations  may  work  in  this way, multiple OIC points for  
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Figure 8-Schematic for determination of combined antimicrobials OICs for antimicrobial 
interaction characterization and isobologram construction for tests at pH 7.3.  
NIS at 3.13 µg/g + 0.78 ml/L ACS is an OIC while 3.13 µg/g NIS + 1.56 ml/L ACS is not since 
the former uses a lower concentration of ACS. 0.39 µg/g NIS + 6.25 ml/L ACS is also an OIC. 
 
 
 
each combination are possible and often do occur. The respective concentrations of the two 

compounds that were added together in these OICs were the values reported. 

Assessment of Antimicrobial Interactions 

Fractional inhibitory concentrations were calculated by dividing the concentration of 

antimicrobial A needed to produce an OIC by the MIC of antimicrobial A from single 

antimicrobial testing (Figure 4). FIC values for each antimicrobial were plotted to form 

isobolograms and to calculate factional inhibitory combination indices. Isobologram plots that 
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displayed a slope =-1 denoted additive interactions, while plots that curved toward or away from 

the origin defined synergistic or antagonistic interactions, respectively (Parish and Carroll 1988).  

A schematic for interpretation of isobologram shapes is given in Figure 5. FIC indices were 

calculated by adding the FIC of antimicrobial A for an OIC point to the FIC of antimicrobial B at 

the same OIC point (Figure 4). Antimicrobial interactions were defined as antagonistic (FICI 

>1), additive (FICI =1.0), or synergistic (FICI <1.0) (Branen and Davidson 2004). 

Antimicrobial Bactericidal Activity 

For both single antimicrobial and combined antimicrobials susceptibility testing, single 

antimicrobials and antimicrobial combinations were evaluated for bactericidal activity. 

Bactericidal activity was assessed by spreading 100 µl aliquots from wells that were classified as 

inhibitory onto TPA. Inoculated plates were aerobically incubated at 35 °C for 24 h and 

survivors were enumerated. Concentrations of single antimicrobials and antimicrobial 

combinations that produced at least a 3.0 log10 CFU/ml (99.9%) decrease in viable cells from the 

starting concentration of the inoculum were classified as bactericidal (Branen and Davidson 

2004). The lowest concentration of antimicrobial applied alone or in combination producing 

bactericidal effects was declared the MBC. Bactericidal combinations that utilized the least 

amount of one compound in combination with the other were then classified as optimal 

bactericidal combinations (OBC) using the same principle for determination of optimal points as 

for the OIC classifications. The respective concentrations of the two compounds that were added 

together in these OBCs were reported. 

Results 

Pathogen Inhibition via Single Antimicrobials 

The MICs and MBCs of antimicrobials applied to strains of L. monocytogenes grown in 

pH 7.3 TPB at 35 °C are provided in Table 3. The MIC of NIS for the Scott A strain was 3.13 
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µg/g and was 6.25 µg/g for 310, NADC 2783, and NADC 2045; 6.25 µg/g produced bactericidal 

activity against all strains except NADC 2045. L. monocytogenes Scott A and 310 were inhibited 

by EPL at a concentration of 6.25 µg/g; for NADC 2783 and NADC 2045, the EPL MIC was 

12.50 µg/g. The MBC for EPL against L. monocytogenes 310 and NADC 2045 was 12.50 µg/g, 

but for Scott A and NADC 2783, the MBC was 25.00 µg/g. The MIC of LAE for all L. 

monocytogenes strains was 12.50 µg/g; LAE was also bactericidal to all strains at 12.50 µg/g. 

Acidic calcium sulfate was consistently inhibitory and bactericidal at 12.50 ml/L against L. 

monocytogenes. Sodium-L-Lactate was not inhibitory at any experimental concentration and no 

MBC was detected; thus it is excluded from Table 3. 

Pathogen Inhibition by Combined Antimicrobials 

The sole combination that could be deemed for the SL+ACS combination against all L. 

monocytogenes strains at pH 7.3 was a combination of 3.13 mg/g SL + 6.25 ml/L ACS (Table 4). 

Though  5.00 mg/g SL  combined with 3.13 ml/L ACS  also produced inhibitory effects for Scott  

 

 

Table 3-Experimentally determined MICs and MBCs of antimicrobials against strains of L. 

monocytogenes at pH 7.3.a 

 

Antimicrobialb 
(Units) 

  L. monocytogenes 

  Scott A   310   NADC 2783   NADC 2045 

    MIC MBC   MIC MBC   MIC MBC   MIC MBC 

NIS (µg/g)   3.13 6.25   6.25 6.25   6.25 6.25   6.25 Nonec 

EPL (µg/g) 
 

6.25 25.00 
 

6.25 12.50 
 

12.50 25.00 
 

12.50 12.50 

ACS (ml/L) 
 

12.50 12.50 
 

12.50 12.50 
 

12.50 12.50 
 

12.50 12.50 

LAE (µg/g)   12.50 12.50   12.50 12.50   12.50 12.50   12.50 12.50 

             a. MIC values are determined as the lowest concentration of antimicrobial for which ΔOD630 is 
<0.05 after 24 h incubation at 35 °C over two replications. MBC values are determined as the 
lowest concentration of antimicrobial for which a 3 log cycle reduction is observed. 
b. NIS- nisin, EPL- ε-Poly-L-Lysine, ACS- acidic calcium sulfate, LAE- lauric arginate ester. 
c. None = No MBC obtained. 
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A, 310, and NADC 2783, because the point involved a starting concentration (5.00 mg/g SL) it 

could not be considered an OIC based on definitions. As no MIC had ever been reached by using 

the maximum concentration allowed by FSIS during single antimicrobials testing, it was not 

possible to accurately calculate FIC values for the combination, or to construct isobolograms. No 

combinations of SL and ACS produced bactericidal responses at concentrations below the MBC 

for ACS, and thus no combination OBCs were determined. For the NIS+ACS combination 

optimal inhibitory concentrations were 1.56 µg/g NIS + 3.13 ml/L ACS for Scott A; 3.13 µg/g 

NIS + 0.78 ml/L ACS for 310, NADC 2783, and NADC 2045; and 0.39 µg/g NIS + 6.25 ml/L 

ACS for all strains (Table 4). Bactericidal effects were observed when 3.13 µg/g NIS was 

combined with 0.78 ml/L ACS for Scott A and 310; 6.25 µg/g NIS + 0.78 ml/L ACS for NADC 

2045; 3.13 µg/g NIS + 1.56 ml/L ACS for NADC 2783 and NADC 2045; 1.56 µg/g NIS + 6.25 

ml/L ACS for NADC 2783; 0.78 µg/g NIS + 6.25 ml/L ACS for 310 and NADC 2045; and 0.39 

µg/g NIS + 6.25 ml/L ACS for Scott A (Table 5). Combining EPL with ACS resulted in OICs of 

0.78 µg/g EPL + 6.25 ml/L ACS for all strains but L. monocytogenes NADC 2045. Additional 

EPL+ACS OICs were 3.13 µg/g EPL + 3.13 ml/L ACS for Scott A; 6.25 µg/g  EPL + 1.56 ml/L 

ACS for 310; and 1.56 µg/g  EPL + 6.25 ml/L ACS for NADC 2045 (Table 4). No true OBCs 

were determined for the EPL+ACS combination since no concentrations of EPL were able to 

produce consistent bactericidal effects at subsequent concentrations below the MBC of ACS. 

Thus no combination OBCs are given (Table 5). However, for Scott A, the combination of 12.50 

µg/g  EPL + 0.78 ml/L ACS and 6.25 µg/g EPL + 1.56 ml/L ACS produced bactericidal activity, 

while at higher concentrations of ACS, these EPL concentrations were unable to produce 

bactericidal activity. The same phenomenon occurred for NADC 2783 where 12.50 µg/g EPL + 

0.78 ml/L ACS was able to produce bactericidal effects but combinations of 12.50 µg/g EPL 

with higher concentrations of ACS were unable.  Optimal inhibition via LAE+NIS was observed 
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Table 4-Optimal inhibitory combinations of antimicrobials tested at pH 7.3.a 
 

  
 

at 1.56 µg/g NIS + 6.25 µg/g LAE for 310 and NADC 2045; 0.78 µg/g NIS + 6.25 µg/g LAE for 

Scott A; 3.13 µg/g NIS + 6.25 µg/g LAE for NADC 2783; 3.13 µg/g NIS + 3.13 µg/g LAE for 

NADC 2045; and 3.13 µg/g NIS + 1.56 µg/g LAE for 310 (Table 4). LAE+NIS combination 

OBCs were observed at 3.13 µg/g NIS + 6.25 µg/g LAE for 310 and NADC 2045; 3.13 µg/g 

NIS + 3.13 µg/g LAE for Scott A; 6.25 µg/g NIS + 0.78 µg/g LAE for NADC 2045; and 1.56 

µg/g NIS + 6.25 µg/g LAE for Scott A. No combinations of NIS+LAE produced OBCs for 

NADC 2783 (Table 5). 

Characterization of Antimicrobial Interactions 

Combination concentration data in Table 4 were transformed into FIC values for each 

combination using the operations previously described (Figure 4). FIC values for each 

antimicrobial  combination  and   strain  were  plotted  onto  the  isobolograms  shown  on  pages 

L. monocytogenes  
Strain 

Combination Optimal Inhibitory Combinations 
Antimicrobialb (Units) 

 

SL (mg/g) + 
ACS (ml/L) 

EPL (µg/g) + 
ACS (ml/L) 

NIS (µg/g) + 
ACS (ml/L) 

NIS (µg/g) + 
LAE (µg/g) 

Scott A 3.13+6.25 3.13+3.13 1.56+3.13 0.78+6.25 
    0.78+6.25 0.39+6.25   
310 3.13+6.25 6.25+1.56 3.13+0.78 3.13+1.56 
    0.78+6.25 0.39+6.25 1.56+6.25 
NADC 2783 3.13+6.25 0.78+6.25 3.13+0.78 3.13+6.25 
      0.39+6.25   
NADC 2045 3.13+6.25 1.56+6.25 3.13+0.78 3.13+3.13 
      0.39+6.25 1.56+6.25 
 

    a. OICs were the inhibitory (ΔOD630 = <0.05 after 24 h incubation at 35 °C) combinations with 
the lowest concentrations of antimicrobial A combined with antimicrobial B. For example, 
though 3.13 µg/g NIS + 0.78 ml/L ACS and 3.13 µg/g NIS + 1.56 ml/L ACS are both inhibitory 
for NADC 2783, only 3.13 µg/g NIS + 0.78 ml/L ACS would be an OIC since it utilizes a lower 
concentration of ACS.  
 

b. NIS- nisin, EPL- ε-Poly-L-Lysine, ACS- acidic calcium sulfate, LAE- lauric arginate ester. 
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Table 5-Optimal bactericidal combinations of antimicrobials tested at pH 7.3.a 

 

 

 
90-92 with antimicrobial A FIC values plotted against antimicrobial B FIC values. Interactions 

were classified based on the shape of the isobologram (Figure 5). FICI values for each 

combination were obtained by adding the values of the two individual compound FIC values 

together (Table 6). Determinations of synergism, additivism, and antagonism were deduced 

using these values and the scale that was previously described (<1, 1, >1). In combination with 

ACS, NIS functioned synergistically against all strains of L. monocytogenes based on the shape 

of the isobologram (Figure 9). NIS+ACS combination FICI values were 0.75 and 0.63 for Scott 

A, 0.56 and 0.56 for 310, 0.56 and 0.56 for NADC 2783, and 0.56 and 0.56 for NADC 2045 

(Table 6). With the exception of L. monocytogenes 310, which showed slight antagonism, the 

interaction of EPL with ACS was mostly  additive  (indifferent)  in nature  based on isobologram 

L. monocytogenes  
Strain 

Combination Optimal Bactericidal Combinations 
Antimicrobialb (Units) 

 

SL (mg/g) + 
ACS (ml/L) 

EPL (µg/g) + 
ACS (ml/L) 

NIS (µg/g) + 
ACS (ml/L) 

NIS (µg/g) + 
LAE (µg/g) 

Scott A Nonec Nonec 3.13+0.78 3.13+3.13 
      0.39+6.25 1.56+6.25 
310 Nonec Nonec 3.13+0.78 3.13+6.25 
      0.78+6.25   
NADC 2783 Nonec Nonec 3.13+1.56 Nonec 

      1.56+6.25   
NADC 2045 Nonec Nonec 6.25+0.78 6.25+0.78 

 
  

3.13+1.56 3.13+6.25 
      0.78+6.25   
 

    a. OBCs were bactericidal (3 log cycle reduction) combinations with the lowest concentrations 
of antimicrobial A combined with antimicrobial B. For example, though 3.13 µg/g NIS + 1.56 
ml/L ACS and 3.13 µg/g NIS + 3.13 ml/L ACS are both bactericidal for NADC 2783, only 3.13 
µg/g NIS + 1.56 ml/L ACS would be an OBC since it uses a lower amount of ACS.  
 

b. NIS- nisin, EPL- ε-Poly-L-Lysine, ACS- acidic calcium sulfate, LAE- lauric arginate ester. 
 

c. No combinations produced bactericidal activity at lower levels in combination than the 
bactericidal activity of the antimicrobials used singly. 
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Table 6-Fractional inhibitory concentration indices for antimicrobials tested at pH 7.3.a
 

 

L. monocytogenes  
Strain 

Fractional Inhibitory Concentration Indices 
Antimicrobialb (Units) 

 

SL (mg/g) + 
ACS (ml/L) 

EPL (µg/g) + 
ACS (ml/L) 

NIS (µg/g) + 
ACS (ml/L) 

NIS (µg/g) + 
LAE (µg/g) 

Scott A Nonec 0.75 0.75 0.75 
    0.63 0.63   
310 Nonec 1.13 0.56 0.63 
    0.63 0.56 0.75 
NADC 2783 Nonec 0.56 0.56 1.00 
      0.56   
NADC 2045 Nonec 0.63 0.56 0.75 
      0.56 0.75 

     a. Fractional inhibitory concentration index values were determined by dividing concentrations 
comprising OIC combinations by their respective MICs from single antimicrobial testing and 
adding FIC values from antimicrobial A and antimicrobial B. 
b. NIS- nisin, EPL- ε-Poly-L-Lysine, ACS- acidic calcium sulfate, LAE- lauric arginate ester. 
c. None = No FIC values were able to be calculated because no MIC values were obtained from 
single antimicrobial testing. 
 

 
interpretation (Figure 10). FICI values for Scott A were 0.75 and 0.63, for 310 they were 1.13 

and 0.63, for NADC 2783 the sole FICI was 0.56, and for NADC 2045 it was 0.63 (Table 6). 

Combination of Nisin with LAE resulted in additive-type inhibition (indifference) between 

antimicrobials as evidenced by the isobologram shape (Figure 11). FIC index values were 

determined to be 0.75 for Scott A, 0.63 and 0.75 for 310, 1.00 for NADC 2783, and 0.75 and 

0.75 for NADC 2045 (Table 6). As noted before, because no MIC was determined for SL at pH 

7.3 either alone or in combination, or in combination, FIC values, FICI values, nor isobolograms 

were able to be used to determine the antimicrobial interaction type. Thus, no conclusions were 

able to be made to denote how the two compounds were able to interact with one another when 

paired together. Possible expectations for the interaction of the compounds are provided below in 

the discussion section. 
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Figure 9-Isobologram of Antimicrobial FIC values for Nisin (NIS) in combination with Acidic 
Calcium Sulfate (ACS).  
An FIC was defined as the OIC concentration of antimicrobial A divided by the MIC of 
antimicrobial A from single antimicrobial susceptibility testing. FIC values are ratios and are 
therefore unitless. 
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Figure 10-Isobologram of antimicrobial FIC values for ε-Poly-L-lysine (EPL) in combination 
with Acidic Calcium Sulfate (ACS).  
An FIC was defined as the OIC concentration of antimicrobial A divided by the MIC of 
antimicrobial A from single antimicrobial susceptibility testing. FIC values are ratios and are 
therefore unitless. 
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Figure 11-Isobologram of antimicrobial FIC values for Nisin (NIS) in combination with Lauric 
Arginate Ester (LAE).  
An FIC was defined as the OIC concentration of antimicrobial A divided by the MIC of 
antimicrobial A from single antimicrobial susceptibility testing. FIC values are ratios and are 
therefore unitless. 
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Discussion 

The experimental results indicate that the in vitro inhibition and inactivation of the L. 

monocytogenes strains by individual antimicrobial treatments occurred with intermittent strain 

dependencies. Indeed, the L. monocytogenes Scott A seemed to have a greater sensitivity to nisin 

as compared to other strains, and NADC 2045 seemed to exhibit a decreased response to the 

bacteriocin,  as  evidenced  by  its  ability  to  survive  at  concentrations  that were cidal to other 

strains. Though strains were wild-type and had not been exposed to the compound prior to 

testing, the inherent ability of some strains to readily form nisin-resistant mutants (Harris and 

others 1991; Davies and Adams 1994) which are then able to counteract the ability of nisin by 

altering membrane fluidity (Ming and Daeschel 1993; Mazzotta and Montville 1997; Crandall 

and Montville 1998) may have led to the differences observed in this study. Such variations in 

sensitivity to nisin between strains are consistent with other studies where almost 8-fold 

differences in MIC values have been seen before (Mohamed and others 1984). Likewise, 

differences in EPL sensitivity were noted with 310 being the most sensitive strain with MIC and 

MBC values of 6.25 and 12.50 µg/g, respectively, and NADC 2783 being the most resistant 

strain with an MIC and MBC of 12.50 and 25.00 µg/g, respectively. Though instances of EPL 

resistance have not been previously reported, it is evident from these results that strain variations 

in MIC and MBC values can occur, and that unknown strain-specific factors may predispose 

certain strains to increased tolerance or increased sensitivity. The inability of SL to produce an 

inhibitory response under the test concentrations and growth conditions has been observed 

previously, where levels of SL at 5.2% have permitted growth of the pathogen at levels of 4.5-

5.2 log10 CFU/ml in tryptic soy broth at 35 °C after 24 h (Shelef and Yang 1991); thus inhibition 

through use of the individual compound was not expected at these experimental conditions and is 

consistent with previous findings. Though ACS has been shown to induce some acid tolerance in 
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E. coli O157:H7 (Beuchat and Scouten 2004), and inherent acid resistance could possibly drive 

variations in sensitivity among strains of L. monocytogenes (Dykes and Moorhead 2000; Lianou 

and others 2006; Barmpalia-Davis and others 2008), MIC and MBC values of ACS were 

identical for all four L. monocytogenes strains. Such uniform acid sensitivity responses may be 

due to the novel acid regeneration means that the solution possesses, which may counteract 

normal acid tolerance responses (Kemp and others 2003). Uniformity among strains with respect 

to LAE was also noted, as the same concentration was both the MIC and MBC for all strains. 

Because decreased sensitivity to LAE has not been previously reported, the lack of variation in 

sensitivity observed in the results may further the notion that tolerance to the compound is 

difficult for L. monocytogenes to develop. 

Though strain variation in response to combinations of antimicrobials also existed, 

conclusive interaction types were able to be determined for each pair of compounds, with the 

exception of SL+ACS. The combination of ε-Poly-L-Lysine with acidic calcium sulfate and the 

combination of nisin with lauric arginate ester both produced additive-type (indifferent) 

interactions when paired against L. monocytogenes in vitro. The FICI values determined for each 

interaction were all slightly below 1.000, which would indicate moderate synergistic activity, but 

because at least one FICI value of 1.00 or greater (1.13) was obtained for each interaction, the 

pairings were classified as additive. The conclusion of additivity can be also be drawn from the 

shape of the isobolograms of all strains for both antimicrobial pairs. As noted previously, a curve 

toward the origin would be indicative of synergism, while a curve away from the origin would 

be characteristic of antagonism (Figure 5). Because both sets of isobolograms display neither 

trend but lie along the line with a slope of -1.0 (Figures 10-11), the isobolograms were further 

evidence that the interactions of both sets are additive in nature with respect to inhibition of the 

pathogen. Thus, inhibition that results from the use of the combinations would be expected to 
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display the indifferent type effect described by Barry (1976) whereas the combined effect is 

equal to the sum of the effects observed with the two antimicrobials used separately or equal to 

that of the most active antimicrobial. A numerical analogy to additivism can be made using the 

assumptions that if Compound A = 1 and Compound B = 1, then ½ Compound A + ½ 

Compound B = 1; no enhancing effect results from using the antimicrobials together and each 

just essentially replaces the other in terms of the total inhibitory activity of the combination. 

 Research conducted on the interaction of EPL with organic acids and their salts with 

respect to L. monocytogenes growth inhibition reinforces the observations of the additive nature 

of the EPL+ACS interaction observed in this study. Geornaras and Sofos (2005) found similar 

results when they demonstrated that EPL (0.02%) was able to interact with lactic acid (0.1%), a 

major component of the acidic calcium sulfate solution, to produce greater than 6.6 log10 

CFU/ml differences in growth suppression when compared to controls after 24 h incubation at 24 

°C. However, because the effect of using the combination was not significantly different (p > 

0.05) than the effects of EPL alone, the additive, rather than synergistic, effect seen in this 

experiment agrees with the observations (Geornaras and Sofos 2005). Yet, because Poly-L-

Lysine molecules have been shown to increase membrane permeability to hydrophobic materials 

(Vaara and Vaara 1983b; Vaara and Vaara 1983a; Vaara 1992), and lactic acid functions 

primarily due to its ability to cross the cytoplasmic membrane as a hydrophobic molecule, it 

would seem that the combination might yield enhanced activity as opposed to the additive 

behavior observed. As a result, other complexities of the interaction must exist, and the 

biochemistry of the pairing should be further characterized. 

 At present, no published research is available on the inhibitory effects of the NIS+LAE 

pairing to substantiate the observed additive behavior of the compounds in vitro. However, 

results obtained from pairing monolaurin (a compound similar to LAE in structure) with nisin 
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that have shown the combination to be synergistic with respect to inhibition of E. coli, S. aureus, 

and Bacillus subtilis (Zhang and others 2009) are evidence that such classes of compounds can 

be used simultaneously without antagonistic effects. Synergism of NIS and LAE may be 

prevented by the fact that they have the same cellular target: the cytoplasmic membrane. Thus, 

destabilization of the membrane provided by LAE, may not act to potentiate nisin activity, and 

inhibition may just result from the Nα-acyl amino acid working alongside the bacteriocin using 

its normal mode of action to produce the additive/indifferent response. 

 The additive nature of L. monocytogenes inhibition that results from EPL+ACS and 

NIS+LAE is also well characterized by the presence of bactericidal combinations of the two 

compounds at levels below their individual MBCs. Indeed, for three of the four strains the 

NIS+LAE combination produced at least one OBC point. As mentioned, the EPL+ACS 

combination did produce bactericidal activity toward L. monocytogenes when the highest 

concentration of ACS (12.50 ml/L ACS) was paired with all concentrations of EPL. This effect 

was not seen for any strain at the highest concentration of EPL (12.50 µg/g) in combination with 

the second-most concentrated ACS level (6.25 ml/L ACS). However, the bactericidal effect 

resumed as the concentration of ACS decreased (0.78 ml/L) and the concentration of EPL 

remained constant (12.50 µg/g). The same phenomenon occurred for lower concentrations of 

EPL (6.25 µg/g), where bactericidal activity was present at 12.50 ml/L ACS, was absent at 6.25 

ml/L ACS, and was resumed again at lower concentrations (0.78 ml/L ACS). Though 

inactivation of a polyamino acid like EPL would be expected to be due to precipitation at an 

isoelectric point, the isoelectric point of EPL is near pH 9.0 (Yoshida and Nagasawa 2003), 

which was well above the pH of the test solution. However, deactivation of EPL through the use 

of sodium lactate (3.0%) in place of lactic acid, was observed by Geornaras and Sofos (2005). 

Indeed, EPL alone (0.02%) was able to keep L. monocytogenes numbers below 1.3 log10 CFU/ml 



 97

after 24 h at 35 °C, but at the same concentration combined with 3.0% SL, numbers of the 

pathogen were near to 5.6 log10 CFU/ml. Thus, conversion of lactic acid from the ACS solution 

into sodium lactate at a pH provided by the specific concentration of ACS (6.25 ml/L) may cause 

deactivation of the bactericidal activity of EPL when that threshold is reached. The occurrence of 

this additional phenomenon is further motive to continue investigations to obtain a better 

understanding of the EPL+ACS combination. 

 In contrast to EPL+ACS and NIS+LAE, the pairing of nisin and acidic calcium sulfate 

yielded synergistic activity in terms of inhibition of the pathogen. With all FICI values below 

1.00, the interaction between the two compounds was characteristic of synergism. The 

isobolograms for each strain reiterated this conclusion as the low FIC values for each 

antimicrobial produced a distinct curvature toward the origin when plotted against each other. As 

a result, the compounds would be expected to behave in a manner that yields a greater effect than 

the sum of the effects observed when the two antimicrobials are used separately to inhibit growth 

of the pathogen (Barry 1976); thus, an enhancement of the individual inhibitory activities would 

be observed. In contrast to the replacement-type effect of additivism, the numerical analogy of 

synergism would, with assumptions that Compound A = 1 and Compound B = 1, appear as ½ 

Compound A + ½ Compound B = 2 (or a greater number). The synergistic effect of the 

combination was also evident in the bactericidal responses produced by combinations of the two 

compounds at sub-MBC levels for each strain. Indeed, at least two OBC combinations were 

generated for each strain, and three were generated for NADC 2045, which had previously been 

the strain most resistant to nisin in the single compound testing. 

Though a number of mechanistic explanations can be generated to justify the synergistic 

interaction between nisin and ACS, the activity that results is most likely due to the enhanced 

solubility of the bacteriocin that accompanies acidification and because of simultaneous attack 
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on cellular proton motive force. Indeed, it has been shown that nisin solubility is enhanced by 

acidification (Tramer and Fowler 1964), and thus it would be expected that ACS, which contains 

organic acids, could potentiate solubility and activity of the bacteriocin when the two are used 

together. Also, nisin is able to form pores (Sahl and others 1987) that can cause leakage of 

cellular materials (Moll and others 1997) and a disruption of proton motive force (Bruno and 

others 1992; Okereke and Montville 1992). Organic acid components of ACS are also able to 

penetrate the membrane, acidify the cytoplasm, and create disruptions in proton motive force 

(Salmond and others 1984). Thus, simultaneous attack of both compounds may yield a 

deleterious effect on proton motive force which is too extensive for the cell to handle. Therefore, 

coupled with increased solubility of the bacteriocin, these disruptions of homeostasis could be 

the means that are necessary for the combination to produce the synergistic inhibition observed. 

 As noted, a conclusive interaction type was not able to be determined for the SL+ACS 

combination, as no MIC was determined for SL at pH 7.3. Though the concentration of SL used 

as the starting point for the checkerboard assay arrangement was not inhibitory across all 

concentrations of ACS, as would be typical for results from such an assay, it was still apparent 

that ACS did function to potentiate the inhibition potential of SL to some degree. Indeed, 

combinations of lower SL concentrations with sub-MIC concentrations of ACS did produce 

inhibition, which was indicative of some sort of interaction between the pair, likely via 

protonation of the lactate. Though one may classify the combination as antagonistic based on the 

appearance of the inhibition profile with respect to the checkerboard assay, this is likely not the 

case for the interaction. Likewise, synergistic interaction of the two compounds would not be 

expected due to similarities in chemical makeup and targets for cellular attack.  Thus, even 

though limitations of procedures disallow correct characterizations of the interaction, it would be 

assumed that the interaction of the two antimicrobials would most likely be additive in nature. 
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Further investigations of the activity of the combination through the use of modified methods 

and at different test conditions are encouraged and might yield different interpretations of the 

activity of the two compounds in combination. 
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CHAPTER V 

IN VITRO INHIBITION OF LISTERIA MONOCYTOGENES BY 

FOOD ANTIMICROBIAL COMBINATIONS TESTED AT PH 5.0 

 

Introduction 

 L. monocytogenes persists as a challenge to the safety of processed ready-to-eat (RTE) 

meat products. Several outbreaks of listeriosis associated with consumption of contaminated 

RTE meat products have occurred in recent years (CDC 2002b; CDC 2005; Gottlieb and others 

2006; Warriner and Namvar 2009). As a result, the United States Food and Drug Administration 

and the Food Safety and Inspection Service continue to maintain a policy that considers the 

pathogen an adulterant in such products (Klontz and others 2008). FSIS also mandates the 

incorporation of certain control alternatives in food processes to further reduce the pathogen’s 

potential to contaminate and grow in RTE foods (FSIS 2003a). Several of these alternatives 

involve the use of antimicrobials to achieve reductions of the pathogen during processing and 

throughout storage. Combining antimicrobials with processing procedures or with one another is 

also an integral part of fulfilling the standards set by the regulatory agency (FSIS 2003a). A 

number of antimicrobials are approved for use to control the pathogen in meat and poultry 

products (FSIS 2009), but extensive research on using combinations of these antimicrobials with 

one another is fairly limited. Thus, investigations of novel combinations of antimicrobials that 

are able to achieve efficient inhibition of L. monocytogenes are readily welcomed by the food 

industry. In addition, the use of such pairings may also afford greater control without the need 

for sacrifices in the sensory appeal of products, and can provide greater reductions while still 

meeting the stipulations of maximum use levels. 
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 The primary objective of this study was to expose four L. monocytogenes strains to nisin, 

octanoic acid, and acidic calcium sulfate in vitro at pH 5.0 and to characterize the inhibition that 

resulted from their use. A broth dilution microassay was used to assess antimicrobial 

susceptibility and the minimum inhibitory concentration for each antimicrobial was determined. 

After completion of the incubation period used for inhibitory determinations, the bactericidal 

activity of each antimicrobial was also assessed. 

 A second objective was to investigate the efficacy of combinations of food 

antimicrobials for the in vitro inhibition of L. monocytogenes growth at pH 5.0. L. 

monocytogenes strains were exposed to octanoic acid combined with acidic calcium sulfate and 

octanoic acid combined with nisin through use of a checkerboard broth dilution microassay. The 

inhibition that resulted from each combination was determined and optimal inhibitory 

combinations of each antimicrobial pairing were established. As with single antimicrobial 

testing, bactericidal responses were also ascertained for those combinations of concentrations 

that were inhibitory to growth of the pathogen.  

Lastly, the purpose of the study was to characterize the interaction associated with 

antimicrobial pairing. Fractional inhibitory concentrations were calculated using the optimal 

inhibitory combinations derived from the combinations assay and the minimum inhibitory 

combinations from single antimicrobial testing. Using these values, fractional inhibitory 

concentration index values were determined and isobolograms were plotted for each 

combination and strain to classify interactions as synergistic, additive, or antagonistic in nature. 

Through the use of these classifications and suggested modes of action for the antimicrobials, 

postulations pertaining to possible reasons for increased or decreased activity were made for 

each pairing. 
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Materials and Methods 

Bacterial Culture Preparation and Maintenance 

 Listeria monocytogenes Scott A (clinical isolate), 310 (goat cheese-associated outbreak 

isolate), National Animal Disease Center (NADC) 2783 and NADC 2045 were obtained from 

the Center for Food Safety culture collection (Department of Animal Science, Texas A&M 

University, College Station, TX). All strains were biochemically confirmed as Listeria 

monocytogenes using the API Listeria identification system (bioMérieux, Inc., Hazelwood, 

MO) according to manufacturer instructions. Thereafter, cultures were maintained on Tryptic 

Soy Agar (TSA; Becton Dickinson and Co., Sparks MD) slants at 5 °C. In order to prevent 

potential development of antimicrobial resistance via repeated sub-culturing, working cultures 

were obtained by transferring a loopfull of culture from TSA slants to 10 ml of Fraser Broth 

(Becton Dickinson and Co.) and incubating aerobically for 24 h without agitation at 35 °C. After 

confirming a Listeria species correct phenotype (esculin hydrolysis) via medium blackening 

(Fraser and Sperber 1988), a loopfull of culture was transferred to 10 ml Tryptose Phosphate 

Broth (TPB; Becton Dickinson and Co.), which was incubated aerobically for an additional 24 h 

at 35 °C without agitation. Cultures from Fraser Broth were streaked for isolation on Tryptose 

Phosphate Agar (TPA; Becton Dickinson and Co.) plates at the time of TPB inoculation and 

incubated at 35 °C for 48 h to confirm culture purity. 

Inoculum Preparation 

Overnight (24 h) cultures of each L. monocytogenes strain in TPB were serially diluted 

in 9.9 ml volumes of double-strength TPB (2x TPB) to achieve a final inoculum concentration of 

approximately 5.0 log10 CFU/ml. Double-strength TPB was adjusted to pH 5.0 using 6 M HCl 

prior to use according to antimicrobial manufacturer recommendations. Enumeration of inocula 

was completed by diluting to approximately 3.0 log10 CFU/ml in sterile 0.1% Peptone (Becton 
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Dickinson and Co.), and then spread-plating 100 µl on both TPA and PALCAM Agar (Becton 

Dickinson and Co.). Plates were aerobically incubated at 35 °C for 48 h prior to enumeration. 

Use of PALCAM Agar served to ensure that cells from the inoculum displayed a correct 

phenotype for Listeria species (medium blackening via esculin hydrolysis) (Van Netten and 

others 1989), while simultaneous plating on TSA plates confirmed inoculum purity. 

Test Antimicrobial Preparation 

A 250.0 µg/g stock solution of active nisin was prepared by dissolving a mass of 0.10 g 

powdered nisin fermentate (NIS; Sigma-Aldrich, St. Louis, MO, 2.5% w/w nisin) in 10.0 ml 

sterile 0.02 M hydrochloric acid (HCl; Thermo-Fisher Scientific, Waltham, MA) according to 

previously reported methods (Rogers and Montville 1991). The solution was boiled in water for 

4 minutes to aid in dissolution of nisin (Wolf and Gibbons 1996; Taylor and others 2008). Octa-

Gone (OCT; Ecolab, Inc., St. Paul, MN; 3.6% w/w Octanoic Acid/Sodium Octanoate) was 

diluted in sterile DI H2O to obtain a working stock of approximately 9000 µg/g active Octanoic 

Acid/Sodium Octanoate. Safe2O RTE:01 (ACS; Mionix Corp., Round Rock, TX; saturated 

Acidic Calcium Sulfate solution) was dissolved in sterile DI H2O to obtain working solutions. 

After preparation, 100 µl of stock solutions were spread-plated on TPA and incubated 

aerobically at 35 °C for 48 h to ensure that solutions were free of microbial contamination. 

Antimicrobials, active agent, stock solution concentrations, and manufacturers are in Table 7. 

Single Antimicrobial Inhibition Assay 

A broth dilution microassay (Barry 1976) was used to determine the strain-specific 

minimum inhibitory concentration for each antimicrobial. Strains were exposed to NIS at 1.56, 

0.78, 0.39, 0.20, 0.10, and 0.05 µg/g. Solutions of NIS used for transfer to test wells were 

generated by  dissolving 500 µl of the 250  µg/g  stock  solution  in 10.0  ml DI H2O  to  create  a 
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Table 7-Experimental antimicrobials, active agents, and manufacturer for tests at pH 5.0. 
 

 

 
primary working stock solution, transferring 1250 µl of the primary working stock to 10.0 ml DI 

H2O to create the solution for delivering 1.56 µg/g, and transfers of 2500 µ l of the previous 

solution into 5.0 ml DI H2O for all solutions thereafter. Acidic calcium sulfate was tested at 6.25, 

3.13, 1.56, 0.78, and 0.39 ml/L. A preliminary working stock of ACS was obtained by dissolving 

1250 µl of Safe2O RTE:01 in 10.0 ml of DI H2O; 1000 µl of this stock was then transferred to 

10.0 ml DI H2O to create the solution needed to deliver 6.25 ml/L ACS to test wells. All 

following solutions were created by serially diluting 2500 µl of the previous solutions into 5.0 

ml DI H2O. OCT was tested at 100.00, 50.00, 25.00, 12.50, and 6.25 µg/g. A preliminary 

working stock of OCT was produced by dissolving 2340 µl of Octa-Gone in 10.0 ml DI H2O; a 

secondary working stock was produced by dissolving 1095 µl of the primary stock in 10.0 ml DI 

H2O. A volume of 1997 µl of the secondary stock solution was dissolved in 10.0 ml DI H2O to 

obtain the solution needed to deliver 100.00 µg/g OCT to test wells; all subsequent solutions 

were created by dissolving 2500 µl of the previous solution into 5.0 ml DI H2O. Concentrations 

of working solutions were devised so as to deliver the correct concentration of test antimicrobial 

to the test wells once all additions were made. Sterile barrier tips and serological pipettes were 

always used in making dilutions so as to minimize potential for cross-contamination. 

Antimicrobial Active Agent 
Stock 

Concentration 
Manufacturer Headquarters 

Nisin Nisin 2.50% w/w 
Sigma-Aldrich, 

Inc. 
St. Louis, MO 

Octa-Gone Octanoic Acid 3.60% w/w Ecolab, Inc. St. Paul, MN 

Safe2O 
RTE:01 

Acidic calcium 
sulfate 

100% v/v Mionix Corp. Rocklin, CA 
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Microtiter plates (96-wells; 300 µl capacity) (Microtest™, Becton Dickinson and Co.) 

were used for all broth dilution assays. Equivalent volumes of test antimicrobial solution (125 

µl) and serially diluted L. monocytogenes inoculum in 2x TPB (125 µl) were aseptically loaded 

into test wells. Cells were diluted and inoculated in 2x TPB to allow the correct content of 

nutrients in the final sample well upon delivery. Sterile barrier tips were used to load solutions 

into the wells so as to minimize potential for cross-contamination. Figure X shows the individual 

antimicrobial testing setup for the microtiter plate. Appropriate negative controls containing only 

antimicrobial-containing solutions and sterile 2x TPB were built in for baseline adjustment of 

experimental wells. Positive controls containing sterile water and inoculum in 2x TPB were also 

completed. Immediately following plate preparation, optical density of the test wells at 630 nm 

(OD630) was measured at 0 h using an EL800 absorbance microplate reader (BioTek® 

Instruments, Inc., Winooski, VT). Optical density at 630 nm was used in order to minimize 

absorption of light by the growth medium and optimize light scattering by cells (Burton and 

Kaguni 1997). Microplates were aerobically incubated for 24 h at 35 °C before being retrieved 

for a 24 h OD630 reading.  

Antimicrobial inhibition testing of each antimicrobial at all concentrations was 

replicated at least twice for each strain. Concentrations of antimicrobial that produced a <0.05 

change (∆) in OD630 from 0 h to 24 h following appropriate baseline adjustment over 

replication were classified as inhibitory. The MIC for each antimicrobial was defined as the 

lowest concentration of antimicrobial that produced <0.05 ∆OD630 after 24 h incubation 

following subtraction of the baseline OD630 values of the negative controls from the treatment 

well OD630 values (Figure 12). 
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Figure 12-Broth dilution microplate setup and interpretation for tests at pH 5.0. 

 

Antimicrobial Combinations Susceptibility Testing 

The response of L. monocytogenes to combinations of antimicrobials: OCT combined 

with ACS (OCT+ACS), and OCT combined with NIS (OCT+NIS), was evaluated using a 

checkerboard broth  dilution  microassay. Minimum inhibitory concentrations previously 

determined from single antimicrobial susceptibility tests were used as starting concentrations for 

the combination assays. Serial (1:2) dilutions of antimicrobials were made from these starting 

concentrations so as to produce a 5X5 checkerboard of combinations between the two 

antimicrobial compounds. Concentrations of working solutions were again devised so as to 

provide the correct concentration of test antimicrobial when finally delivered to the test wells. 

Sterile barrier tips and sterile pipettes were used in making dilutions and in plate loading so as to 

minimize potential for cross-contamination.  

For the OCT+ACS combination, L. monocytogenes strains were exposed to 25.00, 

12.50, 6.25, 3.13, and 1.56 µg/g active OCT in combination with 1.56, 0.78, 0.39, 0.20, and 0.10 
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ml/L ACS. The first preliminary working solution of OCT was created by dissolving 2340 µl of 

Octa-Gone in 10.0 ml DI H2O; a second working solution of OCT was generated by dissolving 

1095 µl of the first solution in 10.0 ml DI H2O. After diluting 832 µl of the second working 

solution in 10.0 ml DI H2O to create the solution needed to deliver 25.00 µg/g OCT, serial 

dilutions of 2500 µ l into 5.0 ml DI H2O were used to make the remainder of the solutions. A 

primary working stock of ACS was generated by dissolving 999 µl of Safe2O RTE:01 in 10.0 

ml DI H2O; the first solution of ACS used for transfer to wells was created by dissolving 782 µl 

of the primary solution into 10.0 ml of DI H2O. All subsequent solutions were generated by 

dissolving 2500 µl of the previous solution into 5.0 ml DI H2O. 

In carrying out the OCT+NIS combination, different concentrations of nisin were 

utilized for different strains. This was a result of variable sensitivity between strains of L. 

monocytogenes when they were exposed to the compound during single antimicrobial testing. 

Strains Scott A and 310 were exposed to 25.00, 12.50, 6.25, 3.13, and 1.56 µg/g active OCT in 

combination with 0.20, 0.10, 0.05, 0.02, and 0.01µg/g NIS. Strains NADC 2783 and NADC 

2045 were exposed to 25.00, 12.50, 6.25, 3.13, and 1.56 µ/g active OCT in combination with 

1.56, 0.78, 0.39, 0.20, and 0.10 µg/g active NIS. All OCT solutions were generated as previously 

described for the OCT+ACS combination. For testing of strains Scott A and 310, a primary 

working solution of NIS was generated by dissolving 500 µl of the 250.0 µg/g stock solution of 

NIS in 10.0 ml DI H2O. An aliquot of 781 µl of this primary working solution was dissolved in 

10.0 ml of DI H2O to create the solution needed to deliver 0.20 µg/g NIS; dilutions of 2500 µl of 

the previous solution into 5.0 ml of DI H2O were used for the generation of all following 

solutions. With respect to testing strains NADC 2783 and NADC 2045, a primary working 

solution of NIS was created by dissolving 1998 µl of the 250.0 µg/g stock solution of NIS in 

10.0 ml DI H2O; the first usable solution of NIS was generated by diluting 1564 µl of this 
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primary solution into 10.0 ml DI H2O. Thereafter, all solutions of NIS were made by dissolving 

2500 µl of the previous solution into 5.0 ml DI H2O. 

Ninety-six well microtiter plates were again used for carrying out the checkerboard 

assay (Figure 13). Seventy-five µl of antimicrobial A solution (OCT in OCT+ACS and 

OCT+NIS) was added to the test wells in columns along with 50 µ l of antimicrobial B solution 

(ACS in OCT+ACS and NIS in OCT+NIS) added in rows. L. monocytogenes inoculum in 2x 

TPB (125 µl) was then added to the 125 µl of combined antimicrobial solutions. Sterile barrier 

tips were used to load solutions into the wells so as to minimize potential for cross-

contamination. Wells containing only antimicrobial-containing solutions and sterile 2x TPB 

were built in as negative controls for baseline correction adjustment of optical density values. 

Wells containing only sterile water and inocula in double-strength TPB were again built in as 

positive controls. Two 96 well plates were used to contain all samples in order that positive and 

negative controls for all wells would be located on the same plate as test wells. Figure 13 is a 

schematic of the design and layout of the first plate of each combination used for the 

checkerboard assay. 

After loading plates, OD630 was measured at 0 h and 24 h using the same protocol from 

the single antimicrobial susceptibility tests (described above). All susceptibility tests for each 

combination of test antimicrobials were repeated at least twice for each strain. Wells that 

produced a <0.05 ∆OD630 after 24 h incubation over both replications were again classified as 

being inhibitory. Inhibitory combinations that utilized the least amounts of one compound in 

combination with the other were then classified as optimal inhibitory combinations (OIC) 

(Figure 14). An example of differentiation between a normal inhibitory combination and an 

optimal inhibitory combination would be the case of 12.50 µg/g OCT + 0.10 ml/L ACS and 

12.50 µg/g OCT  + 0.20 ml/L ACS.  Though  both  are  inhibitory, the  former would be the  OIC  
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Figure 13-Checkerboard assay microplate setup and interpretation for tests at pH 5.0.  
 

 

because it uses a lower concentration of ACS. The same would hold true for OCT concentrations 

where 1.56 µg/g OCT + 0.78 ml/L ACS would be an OIC, and 3.13 µg/g OCT + 0.78 ml/L ACS 

would not be an OIC. Because several combinations may work in this way, multiple OIC points 

for each combination are possible and often do occur. The respective concentrations of the two 

compounds that were added together in these OICs were the values reported. 

Assessment of Antimicrobial Interactions 

Fractional inhibitory concentrations were calculated by dividing the concentration of 

antimicrobial A needed to produce an OIC by the MIC of antimicrobial A from single 

antimicrobial testing (Figure 4). FIC values for each antimicrobial were plotted to form 

isobolograms  (Parish and Carroll 1988).  Isobologram  plots  that  displayed a slope =-1 denoted  
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Figure 14-Schematic for determination of combined antimicrobial OICs for antimicrobial 
interaction characterization and isobologram construction for tests at pH 5.0. 
 

 
additive interactions, while plots that curved toward or away from the origin defined synergistic 

or antagonistic interactions, respectively. A schematic for interpretation of isobologram shapes is 

given in Figure 5. FIC indices were calculated by adding the FIC of antimicrobial A for an OIC 

point to the FIC of antimicrobial B at the same OIC point (Figure 4). Antimicrobial interactions 

were defined as antagonistic (FICI >1), additive (FICI =1.0), or synergistic (FICI <1.0) (Branen 

and Davidson 2004). 
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Antimicrobial Bactericidal Activity 

For both single antimicrobial and combined antimicrobials susceptibility testing, single 

antimicrobials and antimicrobial combinations were evaluated for bactericidal activity. 

Bactericidal activity was assessed by spreading 100 µl aliquots from wells that were classified as 

inhibitory onto TPA. Inoculated plates were aerobically incubated at 35 °C for 24 h and 

survivors were enumerated. Concentrations of single antimicrobials and antimicrobial 

combinations that produced at least a 3.0 log10 CFU/ml (99.9%) decrease in viable cells from the 

starting concentration of the inoculum were classified as bactericidal (Branen and Davidson 

2004). The lowest concentration of antimicrobial applied alone or in combination producing 

bactericidal effects was used to declare the MBC. Bactericidal combinations that utilized the 

least amounts of one compound in combination with the other were then classified as optimal 

bactericidal combinations (OBC), which used the same principle for determination of optimal 

points as the OIC classifications. The respective concentrations of the two compounds that were 

added together in these OBCs were reported as the combination MBCs in the table on page 114. 

Results 

Pathogen Inhibition via Single Antimicrobials 

The minimum inhibitory and bactericidal concentrations of experimental antimicrobials 

tested at pH 5.0 are given in Table 8. Significant strain-dependent sensitivity was observed with 

NIS-driven inhibition of experimental strains. L. monocytogenes Scott A and 310 were inhibited 

at 0.20 µg/g NIS with bactericidal effects being observed at 0.39 µg/g NIS. Conversely, L. 

monocytogenes NADC 2783 and NADC 2045 were inhibited at 1.56 µg/g NIS and 0.78 µg/g 

NIS, respectively; the observed MBC was 1.56 µg/g NIS for both NADC 2783 and NADC 2045 

(Table 8). However, it must be noted that these values for NADC 2783 and NADC 2045 

fluctuated between  several  repetitions,  and  that  only  consistently  inhibitory  and  bactericidal  
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Table 8-Experimentally determined MICs and MBCs of antimicrobials against strains of L. 

monocytogenes at pH 5.0.a 

 

Antimicrobialb 
(Units) 

  L. monocytogenes 

  Scott A   310   NADC 2783   NADC 2045 

    MIC MBC   MIC MBC   MIC MBC   MIC MBC 

NIS (µg/g)   0.20 0.39   0.20 0.39   1.56 1.56   0.78 1.56 

ACS (ml/L) 
 

1.56 6.25 
 

1.56 6.25 
 

1.56 6.25 
 

1.56 6.25 

OCT (µg/g)   25.00 Nonec   25.00 Nonec   25.00 Nonec   25.00 Nonec 

             a. MIC values are determined as the lowest concentration of antimicrobial for which ΔOD630 is 
<0.05 after 24 h incubation at 35 °C over two replications. MBC values are determined as the 
lowest concentration of antimicrobial for which a 3 log cycle reduction is observed. 
b. NIS- nisin, ACS- acidic calcium sulfate, OCT- octanoic acid. 
c. None = No MBC obtained. 
 

values are reported. In the case of ACS, MIC and MBC values of the antimicrobial for all L. 

monocytogenes strains were 1.56 ml/L and 6.25 ml/L, respectively. The MIC for octanoic acid 

against all strains of L. monocytogenes was 25.00 µg/g, and no experimental concentration of the 

antimicrobial exhibited bactericidal capacity against target pathogen strains. 

Pathogen Inhibition by Combined Antimicrobials 

When octanoic acid was combined with acidic calcium sulfate, no experimental 

combination exhibited bactericidal activity, resulting in no OBC identifications (Table 9). 

However, optimal OCT + ACS inhibition was seen at 12.50 µg/g OCT + 0.39 ml/L ACS for 310 

and NADC 2045; 12.50 µg/g OCT + 0.20 ml/L ACS for Scott A; 12.50 µg/g OCT + 0.10 ml/L 

ACS for NADC 2783; 6.25 µg/g OCT + 0.20 ml/L ACS for NADC 2783; 3.13 µg/g OCT + 0.78 

ml/L ACS for 310; and 1.56 µg/g OCT + 0.78 ml/L ACS for all strains except 310 (Table 9). 

With respect to Scott A and 310, no combinations of OCT and NIS produced optimal inhibition 

(lower than that expected for the compounds by themselves), and amounts greater than the MIC 

for NIS were required for inhibition in some cases. The combination of 12.50 µg/g OCT + 0.20 
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µg/g NIS was an example of a combination that produced inhibition at levels below the MIC for 

OCT, but since 0.20 µg/g NIS was the original MIC for NIS, the combination was not 

considered to be an OIC (Table 9). The pairing of 12.50 µg/g OCT + 0.20 µg/g NIS was the 

combination that consistently produced inhibition of strain NADC 2783 with the lowest 

concentrations of both antimicrobials combined. The same was the case for 3.13 µg/g OCT + 

0.39 µg/g NIS against NADC 2045. However, because variations in individual NIS 

concentrations needed for inhibition occurred across repetitions, and at times were lower than the 

OIC concentrations, such values were not considered to be OIC values (Table 9). In addition, no 

combinations of OCT+NIS were bactericidal at levels below the MBCs of NIS for Scott A, 310, 

and NADC 2783. Strain NADC 2045 did show slightly lower bactericidal concentrations for NIS 

(0.78 µg/g as opposed to 1.56 µg/g), but such bactericidal activity occurred only when lower 

concentrations of OCT (>25.00 µg/g) were present in the solution. Because this cidal activity 

could not be maintained at higher concentrations of OCT, no bactericidal pairings of OCT+NIS 

were considered to be OBCs for NADC 2045 (Table 9). 

Characterization of Antimicrobial Interactions 

OIC values in Table 9 were transformed into FIC values for each combination using the 

operations previously described (Figure 4). FIC values for the OCT+ACS combination and each 

strain were plotted onto the isobologram on page 116 with antimicrobial A FIC values plotted 

against antimicrobial B FIC values. Interactions were classified based on the shape of the 

isobologram (Figure 5). FIC index values for each combination were obtained by adding the 

values of the two individual compound FIC values together. Determinations of synergism, 

additivism (also known as indifference), and antagonism were deduced using these values and 

the scale that was previously described (<1, 1, >1). Because no OIC values were able to be   

determined for the  OCT+NIS  interaction  and  because  several  combinations of concentrations 
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Table 9-Optimal inhibitory and optimal bactericidal combinations of antimicrobials tested at pH 
5.0.a 

 

L. monocytogenes  
Strain 

Optimal Inhibitory (OIC) and Bactericidal (OBC) Combinations 
Antimicrobialb (Units) 

 

OCT (µg/g) + 
NIS (µg/g) OIC 

OCT (µg/g) + 
ACS (ml/L) OIC 

OCT (µg/g) + 
NIS (µg/g) OBC 

OCT (µg/g) + 
ACS (ml/L) OIC 

Scott A Nonec 12.50+0.20 Nonec Nonec 
    1.56+0.78     
310 Nonec 12.50+0.39 Nonec Nonec 
    3.13+0.78     
NADC 2783 Nonec 12.50+0.10 Nonec Nonec 

 
 

6.25+0.20 
      1.56+0.78     

NADC 2045 Nonec 12.50+0.39 Nonec Nonec 
    1.56+0.78     

     a. OICs were the inhibitory (ΔOD630 = <0.05 after 24 h incubation at 35 °C) combinations with 
the lowest concentrations of antimicrobial A combined with antimicrobial B. For example, though 
12.50 µg/g OCT + 0.10 ml/L ACS and 12.50 µg/g OCT + 0.20 ml/L ACS are both inhibitory for 
NADC 2783, only 12.50 µg/g OCT + 0.10 ml/L ACS would be an OIC since it utilizes a lower 
concentration of ACS. OBC values were determined using the same sort of criteria but dealt with 
bactericidal combinations. Thus, OBCs were the bactericidal (3 log cycle reduction is observed) 
combinations with the lowest concentrations of antimicrobial A combined with antimicrobial B. 
 

b. NIS = nisin, ACS = acidic calcium sulfate, OCT = octanoic acid. 
  

c. No OICs or OBCs were obtained at tested concentrations. 
 

 
permitted growth at levels above that of the MIC for NIS in Scott A and 310, no FICs, FIC 

indices, or isobolograms were constructed for the antimicrobial combination. In contrast, OCT in 

combination with ACS functioned synergistically against all strains of L. monocytogenes, as 

observed by the shape of the isobologram for all strains (Figure 15). Calculated FICI values for 

the OCT+ACS combination were 0.63 and 0.56 for Scott A; 0.75 and 0.63 for 310; 0.56, 0.38, 

and 0.56 for NADC 2783; and 0.75 and 0.56 for NADC 2045 (Table 10). All values were less 

than 1 and were indicative of synergistic interactions.  
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Discussion 

Based on the variability of MIC and MBC results gathered for each strain from the 

single antimicrobials testing, it can be noted that certain predisposing factors must play a 

significant role in determining the sensitivity of each L. monocytogenes strain to nisin at pH 5.0. 

Strains Scott A and 310 both demonstrated a greater sensitivity to nisin than did the NADC 2783 

strain and the NADC 2045 strain. Both the Scott A and 310 strains had MIC and MBC values of 

0.20 and 0.39 µg/g, respectively, while NADC 2783 displayed MIC and MBC values of 1.56 and 

1.56 µg/g and NADC 2045 demonstrated MIC and MBC values of 0.78 and 1.56 µg/g. Because 

increased tolerances to nisin have been shown to result from prior exposures to antimicrobials 

and acid tolerance responses (Bonnet and others 2006), strains not previously exposed to the 

antimicrobial were used in this study to control this effect. Yet,  because varying tolerances were 

 

 
Table 10-Fractional inhibitory concentration indices for antimicrobials tested at pH 5.0.a 

 

L. monocytogenes  
Strain 

Combination Fractional Inhibitory Concentrations 
Antimicrobialb (Units) 

 

OCT (µg/g) + 
NIS (µg/g) 

OCT (µg/g) + 
ACS (ml/L) 

Scott A Nonec 0.63 
    0.56 
310 Nonec 0.75 
    0.63 
NADC 2783 Nonec 0.56 

 
 

0.38 
    0.56 
NADC 2045 Nonec 0.75 
    0.56 

   a. FIC values were determined dividing concentrations comprising OICs combinations by their 
respective MICs from single antimicrobial testing. FIC values were then added to create the FICI 

values shown above. 
b. NIS- nisin, ACS- acidic calcium sulfate, OCT- octanoic acid. 
c. None = No FIC values were able to be calculated because no MIC values were obtained from 
single antimicrobial testing. 
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Figure 15-Isobologram of antimicrobial FIC values for Octanoic Acid (OCT) in combination 
with Acidic Calcium Sulfate (ACS).  
An FIC was defined as the OIC concentration of antimicrobial A divided by the MIC of 
antimicrobial A from single antimicrobial susceptibility testing. FIC values are ratios and are 
therefore unitless. 
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observed, the data seems to suggest that strain-specific factors, rather than stress responses, must 

have led to the divergences in sensitivity. It has been shown that some strains do possess an 

innate potential to form nisin-resistant mutants over others (Davies and Adams 1994) and to do 

so with a high degree of frequency (Harris and others 1991). Such decreases in nisin sensitivity 

may be afforded by the ability of certain strains to rapidly counteract the activity of nisin by 

creating shifts in membrane fatty acid profiles from more fluid unsaturated fatty acids to less 

fluid   straight-chain   fatty   acids  (Ming  and  Daeschel  1993;  Mazzotta  and  Montville  1997; 

Crandall and Montville 1998). Some studies have shown that such disparities among strains can 

produce nearly 8-fold differences in MIC values for nisin (Mohamed and others 1984). Taking 

this into account, the variable nisin results seem to be in agreement with previous research. 

 In contrast to nisin, no differences in MIC and MBC values across strains were 

observed for ACS or OCT. Variances in sensitivity to such compounds usually stem from some 

sort of inherent acid resistance (Samelis and Sofos 2003), which leads to production of other 

stress factor proteins to counteract the damage of other stresses (Farber and Pagotto 1992; Leyer 

and Johnson 1993). The fact that these variations in acid response across strains were not seen 

provides further suggestion that strain-specific factors, rather than stress responses, led to the 

variability with nisin sensitivity. Though the inability of low levels of octanoic acid to produce 

bactericidal effects at experimental conditions was a concern related to decreased sensitivity 

toward the fatty acid, previous research with similar experimental parameters has shown that 

such behavior is not related to an abnormal tolerance. Nair and others (2004) demonstrated that 

25 mM octanoic acid was unable to produce bactericidal effects (>3.0 log cycle decrease) on a 5-

strain mixture of L. monocytogenes grown in milk at 37 °C after 24 h. Thus, even though the 

compound can produce consistent inhibition, the lack of a complete bactericidal effect is in 

agreement with previous research and is likely not due to a stress response.  
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In the analysis of antimicrobial interactions from combinations testing, the OCT+NIS 

combination presented unique challenges in the interpretation of its interaction type. As 

previously noted, growth of strains Scott A and 310 occurred at the 0.20 µg/g MIC of nisin for 

both Scott A and 310 when the bacteriocin was used in combination with several sub-MIC 

concentrations of OCT. This data seemed to suggest antagonistic activity exists between the two 

antimicrobials. Additional inconsistencies in the MIC of nisin for the NADC 2783 and NADC 

2045 strains when paired with OCT demonstrated the activity of the bacteriocin might be made 

inconsistent when paired with the organic acid solution. Though irregularities in each strain’s 

sensitivity to nisin could have caused the interaction to appear antagonistic (MICs of nisin alone 

varied over repetitions for each strain), the disturbance of nisin activity in the presence of fatty 

acids has been observed before (Henning and others 1986b). Likewise, deactivation of nisin 

activity by the other minor components of the OCT solution, such as the emulsifiers polysorbate 

80 and polysorbate 20, must also be taken into account. Indeed, the emulsifiers Lamegin DW 

8000 Schuppe, DK Ester F160, Lamegin NSL, and Lamegin ZE 30 Schuppe and Monomuls 90-

25 have all been shown to have an antagonistic effect on the activity of nisin (Henning and 

others 1986a). Though addition of polysorbate 80 has been shown to counteract loss in activity 

of nisin in broth and fluid milk (Jung and others 1992; Bhatti and others 2004), the effect of 

polysorbate 20 on nisin varies between potentiation (Li and others 2002) and deactivation at 

certain concentrations (Castro and others 2009). Thus, since it is unknown whether actual 

interactions between octanoic acid itself and nisin produced the antagonistic effect observed, or 

whether such responses were due to interference by secondary components of the OCT solution, 

a conclusive interaction type cannot be assigned to the OCT+NIS pairing. Rather, modified 

procedures should be used to better characterize the interaction and to understand the true effect 

obtained by pairing the two antimicrobials. 
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In contrast to OCT+NIS, the pairing of octanoic acid and acidic calcium sulfate yielded 

synergistic activity in terms of inhibition of the pathogen. Since all FICI values were 

significantly lower than 1, and as low as 0.38 for some strains, the interaction between the two 

compounds was highly characteristic of synergism. As a result, the compounds would be 

expected to behave in a manner that yields a greater effect than the sum of the effects observed 

when the two antimicrobials are used separately to inhibit growth of the pathogen (Barry 1976); 

thus, an enhancement of the individual inhibitory activities would be observed. However, the 

synergistic effect of the combination was not evident in the bactericidal responses produced by 

the two compounds at sub-MBC levels for each strain, as no combinations OBCs were reached. 

Because no concentration of OCT had been bactericidal during single antimicrobial testing, this 

was not unexpected.  

Though drawing decisive conclusions on the specific mode of action of the two 

compounds in combination is beyond the scope of this study, suggestions for the synergistic 

activity observed for the OCT and ACS pairing can be raised. Fatty acids, like octanoic acid, 

have been shown to pass through the bacterial membrane more easily in their protonated forms 

and thus be more active (Cramer and Prestegard 1977; Eklund 1983). The ACS solution 

possesses a unique mechanism to reprotonate its constituent lactic acid and continually challenge 

cells by producing protonated organic acids (Kemp and others 2003). Thus, one suggestion for 

the observed synergism is that the same component that is used by the ACS solution to 

regenerate the protonated form of lactic acid may also act on the octanoic acid to reprotonate it, 

allow it to work at an even greater extent, and yield an enhanced effect. Also, because the 

OCT+ACS combination entails the use of two organic acids, which inhibit cell growth by 

creating disturbances in proton motive force by acidifying the cellular cytoplasm (Salmond and 

others 1984), a second suggestion is that the simultaneous attack of the two agents may have 
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produced a level of stress on proton motive force that was unable to be overcome by the 

microorganism. Though such a mechanism would not entail the targeting of multiple cellular 

sites to produce starkly different stresses upon the cell, it is possible that the cumulative effect on 

this one means of cellular energy balance may be enough to cause severe homeostasis disruption. 

Postulations such as these must be tested in future research to correctly elucidate the inhibitory 

mechanism of the OCT and ACS combination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 121

CHAPTER VI 

CONCLUSIONS 

 
Conclusions from Assays at pH 7.3 

This study investigated the MIC and MBC of five food-approved antimicrobials (nisin, 

sodium lactate, ε-Poly-L-Lysine, lauric arginate ester, and acidic calcium sulfate) that resulted 

when L. monocytogenes strains were exposed to them in vitro at pH 7.3. Strain-dependent 

sensitivities were noted in the MICs and MBCs of nisin and ε-Poly-L-Lysine, while acidic 

calcium sulfate and lauric arginate ester showed no signs of strain-dependent tolerances, and 

sodium lactate was unable to produce inhibition under the test conditions utilized. 

Results from antimicrobial testing indicate that nisin and acidic calcium sulfate interact 

synergistically to inhibit growth of L. monocytogenes in vitro. Such synergism is likely due to 

protonation of the nisin from the organic acid component of ACS, and from simultaneous 

distress imposed on the proton motive force of the cells. Thus, using lower concentrations of the 

two compounds in combination is able to produce the same or greater effect than using the 

compounds individually. Results from combinations testing also indicate that pairings of EPL 

with ACS and nisin with LAE interact in an additive manner. Therefore, replacing a particular 

amount of one antimicrobial with a proportional amount of the other antimicrobial will result in 

the same effect as using either compound individually. The interference in EPL bactericidal 

activity as a result of combinations with certain concentrations of ACS should also be 

investigated in further detail to determine the cause for the decreased activity of the pair. The 

combination of SL+ACS was unable to conform to the limitations of the procedure to produce a 

conclusive classification, but because interactions were noted between the two compounds, the 

combination might be considered additive/indifferent in nature if modified testing is performed. 
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Conclusions from Assays at pH 5.0 

This study investigated the minimum inhibitory concentrations and minimum 

bactericidal concentrations that resulted when L. monocytogenes strains were exposed to three 

food-approved antimicrobials (nisin, octanoic acid, and acidic calcium sulfate) in vitro at pH 5.0. 

Strain-dependent sensitivities were noted in the MICs and MBCs of nisin, while acidic calcium 

sulfate and octanoic acid showed no signs of strain-dependent tolerances under the test 

conditions utilized. No bactericidal effect was achieved using the OCT solution alone. 

Results from antimicrobial combinations testing indicate that octanoic acid and acidic 

calcium sulfate are able to synergistically interact to inhibit growth of L. monocytogenes in vitro. 

Thus, using lower concentrations of the two compounds in combination is able to produce the 

same or greater effect than using the compounds individually. The combination of OCT+NIS 

appeared to be antagonistic in nature, but because of procedural limitations and uncertainty about 

interactions with secondary components of the antimicrobial solution, a conclusive classification 

was not deduced for the combination. Therefore, further examinations and modifications of test 

procedures are necessary to correctly identify the type of interaction that is observed when 

octanoic acid and nisin are paired. 

Application of Findings 

Overall, this research provides valid suggestions for antimicrobial usage conditions for 

the inhibition of L. monocytogenes on RTE meats. However, because these results only 

demonstrate the in vitro activity of the compounds against the pathogen and potential 

interactions between antimicrobials and food matrices can occur, in vivo applications of the 

antimicrobial pairings must be completed to validate their effectiveness on the surfaces of RTE 

meats. Also, because differences due to pH and temperature were not used as variables in this 

experimental design, studies that take these factors into account as variables would also be 
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avenues for future research. Thus, future research should focus on the application of synergistic 

pairings like NIS+ACS and OCT+ACS on the surfaces of RTE meat products to help improve 

their safety, and should investigate the effect that temperature and pH have on the interactions of 

the combinations 
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