
MODELING, OPTIMIZATION AND TESTING FOR ANALOG/MIXED-

SIGNAL CIRCUITS IN DEEPLY SCALED CMOS TECHNOLOGIES

A Dissertation

by

GUO YU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2009

Major Subject: Computer Engineering

MODELING, OPTIMIZATION AND TESTING FOR ANALOG/MIXED-

SIGNAL CIRCUITS IN DEEPLY SCALED CMOS TECHNOLOGIES

A Dissertation

by

GUO YU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Peng Li
Committee Members, Gwan Choi

Edgar Sanchez-Sinencio
Duncan M. Walker

Head of Department, Costas N. Georghiades

December 2009

Major Subject: Computer Engineering

iii

ABSTRACT

Modeling, Optimization and Testing for Analog/Mixed-Signal

Circuits in Deeply Scaled CMOS Technologies. (December 2009)

Guo Yu, B.S., Fudan University;

M.S., Delft University of Technology

Chair of Advisory Committee: Dr. Peng Li

As CMOS technologies move to sub-100nm regions, the design and verification

for analog/mixed-signal circuits become more and more difficult due to the problems

including the decrease of transconductance, severe gate leakage and profound mis-

matches. The increasing manufacturing-induced process variations and their impacts

on circuit performances make the already complex circuit design even more sophis-

ticated in the deeply scaled CMOS technologies. Given these barriers, efforts are

needed to ensure the circuits are robust and optimized with consideration of paramet-

ric variations. This research presents innovative computer-aided design approaches

to address three such problems: (1) large analog/mixed-signal performance modeling

under process variations, (2) yield-aware optimization for complex analog/mixed-

signal systems and (3) on-chip test scheme development to detect and compensate

parametric failures.

The first problem focus on the efficient circuit performance evaluation with con-

sideration of process variations which serves as the baseline for robust analog cir-

cuit design. We propose statistical performance modeling methods for two popu-

lar types of complex analog/mixed-signal circuits including Sigma-Delta ADCs and

charge-pump PLLs. A more general performance modeling is achieved by employ-

ing a geostatistics motivated performance model (Kriging model), which is accurate

and efficient for capturing stand-alone analog circuit block performances. Based on

iv

the generated block-level performance models, we can solve the more challenging

problem of yield-aware system optimization for large analog/mixed-signal systems.

Multi-yield pareto fronts are utilized in the hierarchical optimization framework so

that the statistical optimal solutions can be achieved efficiently for the systems. We

further look into on-chip design-for-test (DFT) circuits in analog systems and solve

the problems of linearity test in ADCs and DFT scheme optimization in charge-pump

PLLs. Finally a design example of digital intensive PLL is presented to illustrate the

practical applications of the modeling, optimization and testing approaches for large

analog/mixed-signal systems.

v

To My father, YU Chenghua, and my mother, SHEN Meiqin

vi

ACKNOWLEDGMENTS

I would like to express my great thanks to my advisor, Dr. Peng Li, for his

kind guidance for my Ph.D. study. Dr. Peng Li shared his deep knowledge, research

experience and insight with me constantly and provided encouragement and support

to me during my research work. This dissertation would never have been completed

without his advice and help.

I am very grateful for having an exceptional doctoral committee and wish to

thank Dr. Edgar Sanchez-Sinencio, Dr. Gwan Choi and Dr. Duncan M. Walker for

their invaluable support and advice.

I really appreciate Dr. Hongzhou Liu and Dr. Hui Zhang in Cadence Design

System for being my mentors when I was interning there. They shared a great

industry experience and insights, which are an excellent treasure to me. In addition,

I would like to thank all my friends who made my stay at Texas A&M very enjoyable.

In particular I’d like to thank Zhuo Feng, Wei Dong and Xiaoji Ye in Dr. Li’s lab for

the collaboration and fruitful discussion. Thanks also go to Rajesh Garg, Shiyan Hu,

Zhanyuan Jiang in the Computer Engineering Group, and Heng Zhang, Xi Chen and

Yung-Chung Lo in the Analog & Mixed Signal Group for their valuable input on my

research projects.

My research work was supported by the FCRP Focus Center for Circuit & System

Solutions (C2S2), under contract 2003-CT-888. I thank the sponsor for providing

financial support.

Last, but not least, I would like to express my greatest gratefulness to my family

for their long-lasting encouragement and support.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Capture Statistical Performances Under Process Variations 3

B. Automatic Yield-aware System Synthesis 4

C. Enhance Performance Using On-chip Design-for-test Function 6

D. Design Case of All-digital PLL 8

II CIRCUIT PERFORMANCE MODELING UNDER PRO-

CESS VARIATIONS ∗ . 10

A. Lookup Table Based Sigma-Delta ADC Modeling 10

1. Sigma-Delta ADC Background 11

2. Look-up Table Modeling 13

a. Details of Model Extraction Setup 13

b. Controlling of Model Accuracy 16

3. Parametric LUT-based Macromodeling 17

a. Response Surface Modeling 17

4. Circuit Examples . 20

B. Parameter Dimension Reduced Phase-Locked Loop Modeling 23

1. PLL Background . 24

2. Hierarchical PLL Modeling 25

a. Voltage Controlled Oscillator 26

b. Charge Pump . 27

c. Other PLL Circuit Blocks 28

3. Efficient parametric-reduction PLL Modeling 30

a. RRR Based Parameter Dimension Reduction . . . 31

b. Parameterized Macromodeling Using Param-

eter Reduction 32

C. General Block Modeling Using Kriging Models 33

1. Mathematical Formulation 34

2. Circuit Examples . 37

a. Ring Oscillator 37

b. LC Oscillator . 38

D. Summary . 40

viii

CHAPTER Page

III YIELD-AWARE ANALOG CIRCUIT OPTIMIZATION 42

A. Yield-aware Circuit Block Optimization 44

1. Pareto Front Background 45

2. Iterative Search for Pareto Fronts 46

3. Fast Statistical Analysis Using Partial Kriging 48

4. Yield-aware Block Optimization 50

5. Block Optimization Examples 51

B. Yield-aware Hierarchical System Optimization 54

1. Hierarchical Optimization Background 55

2. Issues in Yield-aware Hierarchical Optimization 56

a. Pareto Front Generation Issues 57

b. System-level Optimization Issues 57

3. Multi-yield Pareto Fronts 59

4. System-level Optimization Formulation 60

a. Bridging Block-level and System-level 60

b. System-level Cost Function 61

c. Optimization Algorithm 62

5. System Optimization Examples 65

a. Two-stage Amplifier 65

b. Charge-pump PLL 68

C. Summary . 74

IV ON-CHIP TEST FOR ANALOG/MIXED-SIGNAL CIRCUITS 76

A. Linearity Test for Sigma-Delta ADCs 77

1. System Analysis Using Volterra Series 77

a. Nonlinear System Modeling 78

b. Nonlinear Transfer Function Analysis 79

2. Predicting INL using HDs 82

a. Relating INL with Transfer Functions 82

b. Relating INL with HDs 84

3. Simulation-based Model Generation 85

4. Circuit Example . 87

B. On-chip Test Design and Optimization for PLL 89

1. DFT schemes for Parametric Failure Detection 89

a. Scheme 1 . 91

b. Scheme 2 . 92

c. Scheme 3 . 92

2. DFT Evaluation and Optimization 93

ix

CHAPTER Page

a. Identification of Key System Level Variation Sources 94

b. DFT Evaluation and Optimization 94

3. Optimization Example 96

a. Performance Modeling 97

b. Test Scheme Evaluation and Optimization 97

c. DFT Scheme Verification 99

d. DFT Trade-off Analysis 102

C. Summary . 102

V DESIGN CASE: ALL-DIGITAL PLL 105

A. System Background . 105

B. System-level ADPLL Design 108

1. System Performance Analysis 108

2. Loop Filter . 110

3. Time-to-Digital Converter 111

4. Digital Controlled Oscillator 111

C. Block Modeling in ADPLL 112

1. TDC Modeling . 112

2. DCO Modeling . 115

D. Yield-aware ADPLL Optimization 116

1. Topology Selection . 116

2. Yield-aware Fine Tuning 117

E. Adaptive Self-tuning ADPLL Design 118

F. Optimization of Adaptive ADPLLs 121

1. Adaptive System Performance Calculation 121

2. Optimization of Adaptive ADPLLs 122

G. Experimental Results . 124

1. Normal ADPLL Optimization 125

2. Adaptive ADPLL Optimization 127

H. Summary and Discussion 129

VI CONCLUSIONS AND FUTURE DIRECTIONS 132

A. Conclusions . 132

B. Future Directions . 132

REFERENCES . 135

VITA . 143

x

LIST OF TABLES

TABLE Page

I ITRS predicted process variabilities [1]. 1

II Runtime and accuracy comparison for the proposed simulator. 21

III Comparison of Spectre and LUT based simulator. 22

IV Kriging model accuracy for ring oscillator. 38

V Kriging model accuracy for LC oscillator. 40

VI Hierarchical optimization results for PLL. 72

VII Runtime summary for PLL optimization. 74

VIII The accuracy of the maximum INL prediction. 88

IX Comparison of DFT schemes. 93

X PLL specifications. 96

XI Sensitivities of system performance to DFT schemes. 98

XII Comparison of DFT schemes to identify faulty chips. 100

XIII Optimization variable summary. 125

xi

LIST OF FIGURES

FIGURE Page

1 Block diagram of ΣΔ ADC. 11

2 Clocked ΣΔ modulator behavior. 12

3 The proposed LUT based simulation framework. 14

4 Model extraction setup for integrators. 15

5 Modified output voltage setup. 16

6 Response surface modeling of parameterized LUTs. 18

7 Spectrum comparison of Spectre and proposed simulator. 21

8 SNDR distribution with random parameter sweeping. 22

9 SNDR distributions with mismatching of DACs. 23

10 Block diagram of charge-pump PLL. 24

11 Schematic of a ring oscillator and VCO macromodel. 26

12 Schematic of charge-pump. 27

13 PLL macromodel generation flow. 29

14 LC oscillator schematic. 39

15 Illustration of pareto front. 45

16 Iterative pareto front generation. 46

17 Speeding up Monte-Carlo sampling via partial Kriging model evaluation. 49

18 Iterative yield-aware pareto front optimization. 51

19 Yield-aware pareto fronts for the ring oscillator. 52

xii

FIGURE Page

20 Verification of yield-aware pareto front. 52

21 Yield-aware pareto fronts for the LC oscillator. 53

22 Two-stage Op-Amp schematic. 53

23 Iterative pareto front generation for the two-stage Op-Amp. 54

24 Yield-aware pareto fronts for the two-stage Op-Amp. 54

25 Nominal hierarchical optimization flow. 56

26 Multi-yield pareto front generation. 59

27 Mapping from multi-yield pareto fronts to yield-aware system per-

formances. 63

28 Hierarchical optimization using multi-yield pareto fronts. 64

29 Schematic of two-stage operational amplifier. 65

30 Comparison of results of different optimization methods. 67

31 PLL modeling and optimization. 69

32 Multi-yield pareto fronts for charge pump (left) and VCO (right). . . 71

33 Trade-offs of lockin time and power at different yield levels. 72

34 Trade-offs of lockin time and jitter at different yield levels. 73

35 Verification of performance trade-offs for lockin time and power. . . . 73

36 Modeling of a second-order ΣΔ ADC. 79

37 Definition of integral nonlinearity. 83

38 Comparison of INL curves predicted by analytical model and sim-

ulated results. 88

39 The accuracy of INLmax prediction using the simulation-based model. 89

40 DFT scheme candidates. 90

xiii

FIGURE Page

41 Evaluation and optimization a DFT scheme. 93

42 Distribution of system performances. 98

43 Pass/fail predictions of three DFT schemes. 99

44 Chip prediction distribution for DFT scheme 1. 101

45 Chip prediction distribution for DFT scheme 3. 101

46 Digital output changes due to process variation for DFT scheme 1. . 102

47 Error v.s. number of test codes. 103

48 All-digital PLL system block diagram. 106

49 Phase noise contributions of TDC and DCO. 107

50 s-domain linear ADPLL noise model. 109

51 Modeling of TDC noise. 113

52 Modeling of DCO noise. 115

53 Yield-aware optimization flow for ADPLL. 118

54 Adaptive PLL system diagram. 119

55 Logic sequence of self compensation. 120

56 Conventional yield-aware optimization. 120

57 Proposed yield-aware optimization using adaptive operation. 121

58 Comparison of phase noise obtained by proposed method and

event-driven simulation. 126

59 Jitter distribution in topology selection. 126

60 Jitter distribution comparisons in fine tuning stage. 127

61 Power and jitter trade-offs in topology evaluation. 128

xiv

FIGURE Page

62 Area and jitter trade-offs in topology evaluation. 128

63 Power distribution for the reference optimization. 128

64 Power distribution for the adaptive optimization. 129

65 Yield-aware optimization with two-way adaption. 130

1

CHAPTER I

INTRODUCTION

As CMOS technologies move into nano-scale regions, the impact of manufacturing-

induced variations becomes more and more profound to integrated circuit perfor-

mances. The continuous feature size scaling causes increasing uncertainties in device

and circuit electrical characteristics, as illustrated in Table I. Consequently, circuit

performances are no longer deterministic values and the downgraded statistical per-

formances result in parametric failures which in turn cut down the yield of fabricated

chips [2]. Therefore the effects of process variations must be taken into considera-

tion in the circuit design stage so that the circuits can work properly once they are

fabricated. This requirement, however, is nontrivial and needs significant efforts in

understanding device level characterizations and utilizing these information to achieve

robust circuit design.

Table I. ITRS predicted process variabilities [1].

Year 08 09 10 11 12 13

Pitch(nm) 57 50 45 40 36 32

Vtℎ 37% 42% 42% 42% 58% 58%

Delay 46% 49% 50% 53% 54% 57%

Power 57% 57% 58% 58% 59% 59%

On the other hand, the proliferation of communication and consumer electronic

systems leads to high demands for low-power & high-performance analog/mixed-

signal circuits, either as stand-alone components or integrated IPs [3]. The design

This dissertation follows the style of IEEE Transactions on Automatic Control.

2

difficulties and complexities of modern analog/mixed-signal circuits have raised sig-

nificantly in recent years to accomplish sophisticated demands like multiple wireless

standards and ultra low power applications. The circuit design tasks become even

more challenging when process variations come into play. Statistical performance

analysis and optimization requirements in addition to the already lengthy analog and

mixed-signal system designs are pushing the product time-to-market to some far ends

which deeply hampers product profitability. Innovations are needed to address these

challenges.

In this dissertation, we focus on addressing the problems related to robust

analog/mixed-signal circuit design in modern CMOS technologies using computer-

aided approaches. The most fundamental questions to be answered is: what the

circuits will behave after fabrication when so many process uncertainties play roles.

Once we have the knowledge about the manners how the circuits behave, it is possible

to use these information to enhance circuit designs. Clearly there could be various

approaches to achieve system enhancements. One way is to consider the possible

performance downgrades in the early design stage and find design solutions that can

generate best overall system performances after fabrication. Other possible solutions

take advantage of the cheap digital processing capabilities in CMOS technologies. We

can develop built-in circuitries to detect performance failures due to the process vari-

ations and use digital control logic to compensate performance collapse in individual

chips. In the rest of this dissertation we explain these ideas and how to achieve the

goals in detail.

3

A. Capture Statistical Performances Under Process Variations

Although the hardware computation power has been climbing for decades, direct

use of SPICE-like simulators to evaluate statistical system performances are still

prohibitively expensive for complex analog/mixed-signal systems, especially for the

types of circuits with oversampling (e.g. Sigma-Delta ADCs and DACs) or coexistence

of slow and fast signals (e.g. Phase-locked Loops) [4, 5]. In these systems, a single

run of performance evaluation might take a few days or even weeks using dedicated

transistor-level simulators on today’s most powerful servers. Therefore, if we target to

address the problems of robust analog/mixed-signal design under process variations,

it is crucial to find efficient ways to measure system performances.

There is no general solution yet to possess both accuracy and efficiency for com-

plex analog/mixed-signal circuit simulation. In order to speed up circuit evaluation

procedure, some noncritical information have to be discarded to trade for simulation

speed. This treatment, however, is very circuit topology dependent since different

kinds of circuits operate in various manners. The system performance analysis be-

come even more challenging for scaled technologies when process variations have to

be counted and the system performances are now statistical variables. The accurate

capturing of system performance variations in terms of uncertainties in the device

level need to be developed to safeguard circuit design.

Our first attempt to solve this problem is developing efficient statistical system

performance evaluation methods for two popular types of analog/mixed-signal circuits

including Sigma-Delta ADCs and charge-pump PLLs. Parametric look-up tables are

utilized to capture the performance variations of the integrators, quantizers and feed-

back DACs caused by process uncertainties. Efficient statistical performance evalua-

tion can be achieved with four orders of magnitude runtime speedup over SPICE-like

4

simulators, which makes robust Sigma-Delta ADC design possible. We use a different

approach in PLL system simulation to acknowledge the circuit uniqueness. Efficient

behavioral simulation framework is developed to map building block performances to

the system level very efficiently. For block performance variation analysis, we propose

an efficient parameter-reduction modeling technique to encode process variations into

block performance models without much computation effort. In such way we achieve

the accurate and efficient PLL performance evaluation taking consideration of process

variations.

A further step to solve the statistical performance analysis problem leads to de-

veloping more general modeling method. It is well known that the performances of

complex analog/mixed-signal systems are very nonlinear and difficult to be modeled

accurately. However, for smaller scale analog circuits the performance-design vari-

able relationship are much simpler and can possibly be linked together using elab-

orated mathematical formulation. We employ Kriging models [6] to capture circuit

performances in terms of design parameters and process variables, and utilize these

models to evaluate circuit performances statistically. One of the unique character-

istics of Kriging performance model is that it can evaluate performance prediction

uncertainty for the new input variable set, which make it possible to enhance model

accuracy adaptively. This circuit performance modeling method can not only be used

to evaluate the performances of circuit blocks, but can also be utilized to achieve more

challenging task of complicated system performance optimization.

B. Automatic Yield-aware System Synthesis

The research and development of automatic analog design have been around for

decades and are drawing more attention recently as system complexities continue

5

to grow [3]. Analog design automation methodologies have been implemented as

various design-assist tools commercially available. However, most of these tools are

limited in terms of design variable number (e.g. can only handle simple amplifier or

oscillator designs). A more challenging problem in these tools is the lack of capabil-

ity to handle process uncertainness in automatic circuit designs for yield safeguard.

The gap between the demands of advanced analog designs and offering of current

automation tools must be filled.

We propose to utilize the powerful performance modeling capabilities provided

by Kriging models for automatic analog system design. Since the mapping from the

design and process variables to the circuit performances can be accurately captured

by Kriging modeling approach, we can search in the design space directly using the

Kriging performance models. In order to achieve this goal, we first sample in the whole

design space uniformly to find the optimum design points in global sense. Then we

start from the initial design solutions to perform local fine search for better design

solutions. The achieved new circuit performance trade-offs are compared with the

previous ones unless they have reached convergence. The device-level uncertainties are

considered during the optimization search. We use the best achievable performances

at the required yield levels as the optimization objects, so the design points obtained in

the optimization can guarantee to achieve the required yield levels. A novel simulation

algorithm is proposed to help statistical performance distribution analysis, which save

about 60% to 70% computation time when compared with the brute-force use of

Monte-Carlo simulation.

Performance modeling becomes more complicated for large analog/mixed-signal

systems and even Kriging model may not work properly when the performance map-

ping gets over nonlinear. The other barrier for the direct application of Kriging

models in large analog system performance modeling is the model complexity. As

6

the number of input variables goes up, even the linear increase of Kriging samples

leads to quadratic computation cost increase, which prevents us from directly em-

ploying the performance models in large system optimization. To solve this problem,

we adopt the hierarchical optimization idea. The complex systems are first decom-

posed into several well-isolated building blocks of smaller sizes, then optimization

searches are carried out individually for these blocks. The most difficult problems in

this framework are how to preserve process variation information in the final system-

level performance evaluations and how to handle the interactions between different

building blocks. We tackle these challenges by introducing the concept of multi-yield

pareto fronts to capture “near-optimal” design solutions in each building block and

perform statistical performance analysis at system level by doing Monte-Carlo simula-

tion for each transistor-level device. In such way we can achieve efficient and accurate

yield-aware design synthesis for large analog/mixed-signal systems.

C. Enhance Performance Using On-chip Design-for-test Function

Besides performing the yield-aware design concept to safeguard system robustness, it

is also possible to make use of the powerful digital processing capabilities in advanced

CMOS technologies to fight against process variations. The immediate requirement in

this framework is to detect performance failures induced by process variations, then

we can either carry out performance compensations or screen out the faulty chips.

In this dissertation we will focus more on the circuit failure detection side including

on-chip design-for-test (DFT) circuit design and optimization.

In commercial integrated circuit production, it is not cost-efficient to use sophis-

ticated external measurement instruments or stations to test individual chips. Some

circuit performances, for example, linearities of ADCs and lock-in time of PLLs can

7

not be measured by simple logic on chip. So the idea of self-test relies on apply-

ing some easy to measure circuit metrics to test these non-accessible system perfor-

mances. In order to validate these indirect performance measurement, the metrics

selected need to be highly correlated to these hard-to-measure target performances,

also we need to know the exact mapping relationship between the performance indica-

tors and the actual performances. We start from developing a cheap on-chip linearity

test scheme for Sigma-Delta ADCs with easy-to-access frequency distortion metrics.

Since direct linearity tests require super linear reference signal and mass data pro-

cessing, it is of advantage to replace it with frequency domain measurement. In order

to achieve this, we conduct discrete-time Volterra series analysis in the frequency do-

main and build correlation model between linearities and distortions. Experimental

results show excellent performance testing accuracy for the proposed method.

The cost of self-test circuit implementation is very critical in the whole system

design. The overhead needs to be kept in minimal while achieving the required test

accuracy. So it is crucial to optimize the DFT circuit schemes so that the system

can achieve the best overall performances. We employ the simulation framework

developed in Chapter II to facilitate the DFT circuit optimization for charge-pump

PLLs. Several potential self-test schemes are proposed to detect the parametric fail-

ures caused by process variations. Novel circuit-level macromodeling and powerful

statistical dimension reduction techniques are employed to evaluate the effectiveness

of each on-chip test scheme. We further perform optimization for the chosen scheme

topology by configuring internal scheme variables to achieve the optimal balance of

implementation cost and test accuracy.

8

D. Design Case of All-digital PLL

We demonstrate the usefulness of modeling, optimization and testing ideas using a

practical design example. The design case selected is a digital intensive PLL, a.k.a.

all-digital PLL (ADPLL) [7]. It is different from most of the conventional types of

PLL since all the control signals are in the digital domain. ADPLL, however, is

still analog/mixed-signal circuit since it relies on the analog circuit blocks like digital

controlled oscillator (DCO) to generate clock signals of adjustable frequencies and

time-to-digital converter (TDC) to measure frequency and phase differences. ADPLLs

are more process variation resistive than most of other mixed-signal circuits thanks

to the digital-intensive implementation, although the analog blocks are still affected

by the device-level uncertainties.

The uniqueness of ADPLL operation needs to be reflected in the system design

and optimization procedures. The most straightforward change is the discretized

design values in system implementation, which need to be treated differently from

analog-type variables. Typical implementations of ADPLLs require more transistors

than the analog counterparts, so it is important to develop an efficient system per-

formance simulation approach to evaluate the design solutions. The digital signal

processing is robust to process variations, so the yield-aware optimization framework

need to be modified to account for the circuit changes. We develop efficient variation-

aware performance models for building blocks and employ a two-step optimization

methodology including topology selection and block fine tuning to achieve the efficient

ADPLL system optimization.

Self healing of system performances are easier for ADPLLs thanks to the digital

type implementation. Many hard-to-detect circuit behaviors can now be measured ef-

ficiently with digital signal processing. For example, PLL lock-in time can be obtained

9

using simple digital logics to monitor digital frequency control signal. Other circuit

performances, however, still need elaborate measurement planning. We develop an

approach to capture the correlation between the system jitter performances and the

frequency differences so that the jitters in ADPLLs can be measured on chip. With

the system performance information measure by the DFT circuits, we can implement

the performance compensation functions to achieve circuit self healing. The digital

implementation of ADPLL systems give us the freedom to adjust filter characteris-

tics and TDC/DCO configurations without much hardware overhead. A prototype

of adaptive performance compensation scheme is implemented by measuring the fre-

quency shift levels which represent the ADPLL jitter performances, a throughout

search of different system configurations is trigged if the jitter exceeds the predefined

value. The configuration with best system performances is saved after the search and

the ADPLL is configured to this structure with enhanced system performances.

10

CHAPTER II

CIRCUIT PERFORMANCE MODELING UNDER PROCESS VARIATIONS ∗

In this chapter we focus on developing circuit modeling and simulation techniques

to achieve efficient and accurate system performance evaluation under consideration

of process variations. First we present efficient modeling techniques for two popular

mixed-signal circuits including Sigma-Delta ADCs [8] and charge-pump PLLs [9],

then we propose a more general circuit performance modeling approach employing

Kriging models [10].

A. Lookup Table Based Sigma-Delta ADC Modeling

Sigma-Delta (ΣΔ) ADCs have been widely used in data conversion applications due to

the good performances. However, oversampling and complex circuit behaviors render

the transistor-level analysis of these designs prohibitively time consuming. The ineffi-

ciency of the standard simulation approach also rules out the possibility of analyzing

the impacts of a multitude of environmental and process variations critical in modern

VLSI technologies. We present a lookup table (LUT) based modeling technique to

facilitate much more efficient performance analysis of ΣΔ ADCs. Various transistor-

level circuit nonidealities are systematically characterized at the building block level

∗ c⃝2007 IEEE. Part of this chapter is reprinted, with permission, from “Efficient
Lookup Table Based Modeling for Robust Design of Sigma-Delta ADCs”, by G. Yu
and P. Li, IEEE Trans. on Circuits and Systems - I, vol. 54, No. 7, pp. 1513-1528,
July 2007.
This material is posted here with permission of the IEEE. Such permission of the

IEEE does not in any way imply IEEE endorsement of any of the Texas A&M Uni-
versity’s products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promo-

tional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to
view this material, you agree to all provisions of the copyright laws protecting it.

11

and the whole system is simulated much more efficiently using these building block

models. Our approach can provide up to four orders of magnitude runtime speedup

over SPICE-like simulators, hence significantly shortening the CPU time required for

evaluating system performances such as SNDR (signal-to-noise-and-distortion-ratio).

The proposed modeling technique is further extended to enable scalable performance

variation analysis of complex ΣΔ ADC designs.

1. Sigma-Delta ADC Background

As illustrated in Fig. 1, the two basic components of ΣΔ ADCs are modulators and

digital filters. The analog input is sampled by a very high frequency clock in the ΣΔ

modulator, then the signal is passed through a loop-filter to perform noise-shaping.

The output of the loop-filter is quantized by an internal A/D converter, producing

a bit-stream at the same speed as the sampling clock. A low-pass digital filter then

removes the out-of-band noise and the down-sampler converts the high speed bit-

stream to the high resolution digital codes.

������� ���	
���
�����
��	��	� � ��������	� �
� ���� ����	� �
�� �� !�	��"�#$%&
'()*+,-(. $/012,-(.

1
1
1 1

a z

z

−

− −

1
2
1 1

a z

z

−

− −
�

2d
1d

���	
���
� 3���
Fig. 1. Block diagram of ΣΔ ADC.

The major components of a ΣΔ modulator are integrators, internal quantizers

and D/A converters. The whole system is clocked by an external sampling clock,

which makes it possible to model the performance of each component at sampling

12

intervals. The output of switched-capacitor integrators used in the ΣΔ converter is

a function of input signals and their previous states

y[k + 1] = F (y[k], x[k + 1], d[k + 1]), (2.1)

where y[k + 1] is the current output of the integrator, y[k] is the previous integrator

output, F is a nonlinear function describing the state transfer, x[k + 1] and d[k + 1]

are the current input signal and feedback digital output, respectively. As shown in

Fig. 2, since each integrator is clocked by the sampling clock, it is possible to use

lookup tables to model the output at the end of each clock cycle, as described in the

later sections.

������ ����	
���	�� ����	
��	��
�	�
 ��	��	���������� ��������������� ����	
���	�� ����	��	��
�	�
 ��	��	

1 1
2 2y[k+1]=F(y[k],x[k+],d[k+])

������
Fig. 2. Clocked ΣΔ modulator behavior.

On the other hand, various circuit-level nonidealities such as the finite DC gain,

bandwidth and slew rate of the operational amplifies, charge injections of the switches,

mismatching of the internal quantizers and D/A converters, etc, are difficult to ana-

lyze accurately by hand analysis, neither are their impacts on system performances.

The finite bandwidth, slew rate and saturation of the amplifier also introduce incom-

plete charge transfer, which shifts system transfer function. There is no simple way to

calculate the influence of the effects mentioned above in terms of SNDR, so normally

transistor-level simulation needs to be employed. Additionally, using transistor-level

simulation to predict the linearity of the design can be prohibitively expensive. For

13

example, transient analysis needs to be performed over at least (214 − 1) ⋅ 128 clock

cycles to fully characterize a ΣΔ ADC. The process variation analysis is another

challenge for the conventional simulators because a large number of long transient

simulations are needed to evaluate the performance of the circuit at different param-

eter corners. In the following sections, it will be shown that these issues can be well

addressed by adopting LUT based modeling.

2. Look-up Table Modeling

The proposed lookup table (LUT) based simulation framework is illustrated in Fig. 3.

In our fast ADC simulation methodology, various circuit blocks are modeled as follows.

The macromodel of each building block of the ΣΔ modulator is extracted at the

transistor-level using Cadence Spectre [11]. SNDR and THD are calculated using

Fast Fourier transform (FFT) to estimate the performance of the modulator. A two-

stage Cascaded Integrator Comb (CIC) filter is implemented as the decimator and the

decimation rate (same as OSR) is programmable to adjust for different applications.

Since the simulator can run long transient simulation very efficiently (2 seconds for

64K cycles), INL and Differential Nonlinearity (DNL) can be easily calculated by

applying an input ramp signal and evaluating the output digital codes.

a. Details of Model Extraction Setup

The setup of ΣΔ ADCs for the lookup table generation can be divided into two

parts, one consists of integrators and D/A converters, and the other consists of the

quantizer. The integrator output is a function of the input signals and the initial

state of the integrator, which is discretized to generate the lookup table. The number

of levels depends on the accuracy requirement of the simulator. Since ΣΔ ADCs

are quite linear in most cases [4], linear interpolation is good enough. The internal

14

������ �����	� ��	
��	
 ��	� ��
��
��	� ��	
��	
 ��	��� �
�����	
 ��	���	� ��	
 ��
��	
 ��	���	� ��	
 ����������
���� �������������

 �

!""#$% &'()* + !""#$% &'()* ,-./01 234.562 789:3;02 21549<85.239.1 =515

>;=96 9?185@13;.023.4 A/9@189
B;;CD0/ <5E69F529= A3G0651;83. >5165E

3.198/;6513;.
-./01 H � H H � � H H H� �

IJKLMNOA/9@180GP01/01Q343156P01/01
AR219G798S;8G5.@9 ATQUV <WQV -TB

Fig. 3. The proposed LUT based simulation framework.

15

voltage swing is determined by the system architecture, for low-voltage designs the

internal voltages can change from 0 to Vdd. To cover the whole range of the voltage

swing, we discretize the inputs and outputs of the integrators at N levels, from 0 to

Vdd.

The extraction setup for an integrator with a 2-bit DAC which is implemented in

thermometer code is shown in Fig. 4. A large inductor L together with a voltage source

Vs is used to set the initial value of the integrator output. The input of the integrator

is also set by a voltage source Vi. The digital output of the quantizer controls the

amount of feed back charge. The digital codes of 00 to 11 can be represented by

counting the number of three voltage sources Vd1, Vd2 and Vd3 which are set to Vdd.

For the ΣΔ modulators with 1-bit quantizer, the modeling of the digital signal is

simpler, with only one voltage source Vd.�������� �������� ���� �	
�

� ����������� �������� ��
�������� �������� ����������� ��������

���
��
�

��������
Fig. 4. Model extraction setup for integrators.

The nonidealities of the quantizer should also be taken into consideration. For a

1-bit quantizer, we can use Spectre to find the voltage levels where the digital output

switches from 0 to 1 (Voff+) and 1 to 0 (Voff−), the quantizer is then modeled as

d[k + 1] =

⎧













⎨













⎩

1 (Vin[k + 1] > Voff+)

d[k] (Voff− < Vin[k + 1] < Voff+)

0 (Vin[k + 1] < Voff−)

(2.2)

16

where d[k+1] is the current output of the quantizer, d[k] is the output of the quantizer

in the previous clock cycle. A 2-bit quantizer can be modeled in a similar way since

it is built from three 1-bit quantizers each of which is modeled as in Eqn. 2.2.

b. Controlling of Model Accuracy

To achieve good accuracy for the LUT methodology, several issues regarding with

modeling must be taken into consideration. When we perform the lookup table gen-

eration, the inductor L and the voltage source Vs are used to set the initial condition

of the integrator as shown in Fig. 5, here we redraw it in Fig. 5.��� �� �����	
��
������ ����� ���	
�������
Fig. 5. Modified output voltage setup.

As shown in the right part of Figure 5, the initial output voltage of the integrator

was not setup correctly in [12]. To see this, suppose that the gain of the amplifier is

A, the input voltage is Vin and the initial voltage of the amplifier output is Vs, we get

A ⋅ Vin = −(Vs − Vin), (2.3)

so the voltage at the input node can be written as Vin = −Vs/(1 + A). Suppose

Vs = Vdd/2 and A = 60dB, we will get an offset voltage of ∣Vin∣ = Vdd/2002. This

offset voltage occurs each time when the table is built and will be transferred to the

amplifier output through Vs, which makes the tables generated inaccurate. In our

experiments, it has been observed that such an offset voltage can introduce as much

17

as 5dB error in SNDR with the input signal in full voltage swing.

Another issue to be noticed is that, if we take a look into the charging consequence

of the integrator in one clock cycle from nT to (n+1)T , we can see that the sample-

and-hold circuit follows the input signal during the first half clock cycle. So we have

to use the input signal at (n + 1/2)T instead of (n + 1)T as the index to the LUT

during simulation. This should be taken into consideration and the Eqn. 2.1 will be

rewritten as y[k+1] = F (y[k], x[k+1/2], d[k+1/2]), which was not handled correctly

in [12]. Since the digital output of the DAC remains the same within a clock cycle,

d[k] can be used to replace d[k + 1/2].

3. Parametric LUT-based Macromodeling

Environmental and process variations can introduce noticeable shifts in the perfor-

mance of ΣΔ ADCs. To allow a feasible variation analysis, we combine the response

surface modeling with the LUT based methodology in this section. The term circuit

design variable includes environmental variation, process variation, mismatching, etc,

which has an impact on the circuit performance.

a. Response Surface Modeling

To find the influence of different circuit parameters to the performance of a system,

parameterized lookup tables can be used to approximate the system performance un-

der the circuit parameter variations as illustrated in Fig. 6. Given a set of n responses

y1, y2, ⋅ ⋅ ⋅ , yn and n sets of m input variables x1, x2, ⋅ ⋅ ⋅ , xm which represent the en-

vironmental and process variations, we can determine a set of simplified formulas

18

ℎ̂1, ℎ̂2, ⋅ ⋅ ⋅ , ℎ̂n to relate x and y as [13]

ŷ1 = ℎ̂1(x11, x12, ⋅ ⋅ ⋅ , x1m)

ŷ2 = ℎ̂2(x21, x22, ⋅ ⋅ ⋅ , x2m)

...

ŷn = ℎ̂n(xn1, xn2, ⋅ ⋅ ⋅ , xnm)

, (2.4)

where

ŷi ith approximated response,

ℎ̂i a function relating y and x,

xi ith set of circuit variables,

m number of circuit variables,

n number of experimental runs.��� �
������	��
��� ���
 �
	���
���	
�� � 	������������	
���� ���	��
�� ���� ��
���
� ������� �������� �����
����
�� 	���� �����

 ������	��
 ^ ^ ^ ^

0
1 1 1

m m m

i i ij i j
i i j

y x x xβ β β
= = =

= + +∑ ∑∑

�� !"#$�%%&'"(')*� %�+ ,
��� - ��� �

Fig. 6. Response surface modeling of parameterized LUTs.

To construct the parameterized LUTs, a number of simulations should be per-

formed to get enough sets of response values. In order to minimize the cost of LUT

generation while keeping reasonable accuracy, RSM can be applied to generate a

19

quadratic function relating each entry in the table with the circuit parameters [13]

ŷ = �̂0 +
m
∑

i=1

�̂ixi +
m
∑

i=1

m
∑

i=1

�̂ijxixj , (2.5)

where

xi ith circuit variable,

ŷ approximated response (an table entry),

�̂ estimated fitting coefficients,

m number of circuit variables.

Since minimizing the number of simulation is a major consideration, an experi-

mental plan to reuse all runs which are performed during variable screening for fitting

coefficients construction is needed [13]. Here a second-order central composite plan

consists of cube design plan and star design plan is employed [14]. The cube design

plan is a two-level fractional factorial plan which can be used to estimate first-order

effects (e.g., xi) and interaction effects (e.g., xixj), but it is not possible to estimate

pure quadratic terms (e.g., x2
i). The star design plan is used as a supplementary

training set to provide pure quadratic terms in Eqn. 2.5.

When we perform variation analysis, the range for each circuit variable is specified

at the very beginning. The discretization of the circuit variables can be arbitrary, but

in the two-level factorial experimental design plan, each factor takes on two values

−1 and +1 to represent the minimum and the maximum value of the circuit variable,

respectively. Each factor in the star plan takes on three levels −�, 0, �, where 0

represents the circuit variable in nominal case and ±� are two standardized values of

the circuit variable between the two ends (−1,+1) of the circuit variable. Once the

experimental plan has been determined by RSM, the fitting coefficients in Eqn. 2.5

can be constructed using least-square fitting. In reality, numerically more stable

algorithms such as SVD can be used to solve the nonlinear least square problem.

20

4. Circuit Examples

We use two second-order ΣΔ ADCs designed with a 1-bit and a 2-bit quantizer as

design example to demonstrate the effectiveness of the proposed simulation frame-

work. Both converters are implemented in 0.13�m CMOS technology with single

1.5 V supply. The oversampling ratio is set to 128 and the sampling clock used is

1MHz and the stimuli is a 2kHz 0.8Vp−p sinusoidal signal. For each converter, we

perform 65,536 (216) + 100 clock cycles transient simulation with the first 100 points

thrown. A Kaiser window is applied to the digital output in FFT analysis. We con-

sider process and environment variation for the ΣΔ ADC with 1-bit quantizer, and

the internal DAC mismatching for the ΣΔ ADC with 2-bit quantizer. Because the

1-bit DAC in the ΣΔ ADC is quite linear, nonlinearities are mainly due to process

variation, also the major part of nonlinearities in the 2-bit ΣΔ ADC come from the

mismatching of the internal DACs, this approach is a good approximation for circuit

performance evaluation.

The generation of parameterized LUTs is time consuming because traditional

simulators are used for transient simulation, while since the tables are reusable once

they are built, the speed up of the LUT based simulator is calculated by the ratio of

the run time of the LUT based simulator and Spectre. A comparison of the model

extraction time, simulation time, SNDR and THD of the LUT based simulator and

Spectre are shown in Table II.

Fig. 7 shows the the output spectrum of the ΣΔ ADC with 2-bit quantizer in

nominal case. Two spectra fit very well, especially for the signal and distortions which

are of most interest in the performance analysis, indicating the good accuracy of the

LUT simulator.

The eight parameters selected to represent the environmental and process vari-

21

Table II. Runtime and accuracy comparison for the proposed simulator.

LUT based simulator Spectre

Design Nom. Para. Time SNDR THD Time SNDR THD

SDM (1bit) 7 min 9.5 hr 2 s 73.8 dB -63.1 dB 4.5 hr 74.1 dB -62.6 dB

SDM (2bit) 20 min 15 hr 4 s 86.8 dB -76.2 dB 9.5 hr 86.2 dB -76.8 dB

0 1000 2000 3000 4000 5000 6000 7000 8000
−150

−100

−50

0

Frequency (HZ)

A
m

pl
itu

de
 (

db
)

LUT based simulator
Spectre

Distortion

Fig. 7. Spectrum comparison of Spectre and proposed simulator.

ation of the ΣΔ ADC with 1-bit quantizer are presented as follows. Temperature

(Temp) changes from −97Co to 127Co, the threshold voltage of PMOS (Vtℎp) and

NMOS (Vtℎn), the carrier mobility in PMOS (�op) and NMOS (�on), the effective

channel length of PMOS (LeffP) and NMOS (Leffn), and the oxide thickness (Tox)

are all swept ±40% from their nominal values. A Resolution VI 28−2 fractional fac-

torial design plan that includes 64 runs for the cube design plan and 17 runs for the

star design plan is used to build the parameterized lookup table. The high speed of

the LUT simulator makes it possible to perform statistical simulation, which is too

time consuming to be done with conventional simulators. A statistical performance

analysis is carried out with 1000 runs of transient simulation. It will take 4500 hours

for Spectre to complete, but only 20min for the LUT simulator. Four sets of environ-

mental and process parameters are selected randomly and transient analysis of 64K

22

Table III. Comparison of Spectre and LUT based simulator.

Spectre LUT simulator Error Speed up

set1 72.4dB 72.1dB 0.3dB 8100X

set2 73.2dB 72.3dB 0.9dB 8100X

set3 74.0dB 73.9dB 0.1dB 8100X

set4 74.8dB 74.6dB 0.2dB 8100X

clock cycles are performed to evaluate the accuracy of the LUT simulator, as shown

in Table III. The error of SNDR is within 1dB, which demonstrates the effectiveness

of our method for capturing process variation.

An experiment of SNDR distribution of the 1-bit quantizer ΣΔ ADC with eight

parameters swept randomly for 1000 runs is shown in Fig. 8. We can see that the

ADC is most likely to have a SNDR of 73dB and the deviation is small, which means

the design of the converter is very robust.

67 68 69 70 71 72 73 74 75 76 77
0

10

20

30

40

50

60

70

SNDR (dB)

N
um

be
r

Fig. 8. SNDR distribution with random parameter sweeping.

In today’s CMOS technology, the mismatching of capacitors can be controlled

within±1%, here we set the maximum mismatching to±2% to cover all the situations.

Statistical simulations are performed to analyze the influence of the mismatching of

the two internal DACs in the ΣΔ ADC with 2-bit quantizer by sweeping the ca-

pacitances of the three charging capacitors within ±2% randomly for each DAC. The

23

distributions of SNDR for the Sigma-Delta ADC using two DACs are shown in Fig. 9.

We can see from the two figures that the mismatching of the DAC connected to the

65 70 75 80 85 90
0

20

40

60

80

100

SNDR (dB)

N
um

be
r

65 70 75 80 85 90
0

20

40

60

80

100

SNDR (dB)

N
um

be
r

Fig. 9. SNDR distributions with mismatching of DACs.

first stage integrator (left figure) has much more influence to the system performance

then that of the other DAC (right figure). This can be explained by the fact that

the first DAC is connected directly to the input, so the feedback error because of the

DAC mismatching will be magnified by the second stage integrator, which makes the

mismatching more severe. This analysis provides useful information to the designer

that more attention should be paid to the first stage DAC to make it linear.

B. Parameter Dimension Reduced Phase-Locked Loop Modeling

As an essential building block, PLLs are widely used in today’s communication and

digital systems for purposes such as frequency synthesis, low-jitter clock generation,

data recovery and so on. Although the input and output signals of PLLs are in the

digital domain, most PLLs implementations consist of both digital and analog com-

ponents, which make them prone to process variation influences. In this section we

propose an efficient parameter-reduction modeling technique to capture process vari-

ations and further achieve low-cost system performance evaluation using hierarchical

system simulation. The proposed method can not only be used for robust PLL design

24

under process variation, but also paves the road for effective built-in self-test circuit

design as to be discussed in Chapter IV.

1. PLL Background

As illustrated in Fig. 10, a typical charge-pump PLL system consists of a frequency

detector, a charge pump, a loop filter, a voltage-controlled oscillator (VCO) and

a frequency divider. The frequency of the output clock signal Fout is N times of

that of reference clock signal Fref , where N can be an integer number or fractional

number. The PLL design options include VCO topologies and component sizes, filter

characterizations, charge current in the charge pump and so on. The metrics of PLL

systems usually include acquisition/lock-in time, output jitter, system power, total

area, etc. Capturing these performances are of great importance in PLL design.�����������	��	
� ��
����������
�� �

����	�� �������������������
���� �������� �
�	��

Fig. 10. Block diagram of charge-pump PLL.

Due to the mixed-signal nature, the modeling of PLL system is quite complex

and costly. For example, a long transient simulation (in the order of hours or days) is

needed to obtain the lock-in time behavior of PLL, which is one of the most impor-

tant performance metrics for a PLL. The difficulty of system performance evaluation

can be addressed by adopting a bottom-up modeling and simulation strategy. The

performances of analog building blocks can be evaluated and optimized without too

much cost. When the behaviors of analog building blocks are extracted, these building

25

blocks can be mapped to Verilog-A models for fast system level evaluation [15]. By

using this approach we can avoid the scalability issue associated with time consuming

transistor-level simulations.

When process variations are considered, the situation becomes more sophisti-

cated. The large number of process variables and the correlations between different

building blocks introduce more uncertainties for PLL performance under process vari-

ations. In order to utilize the hierarchical simulation method while taking into consid-

eration of statistical performance distributions, we propose an efficient macromodeling

method to handle this difficulty. The key aspect of the proposed macromodeling tech-

niques is the extraction of parameterized behavioral models that can truthfully map

the device-level variabilities to variabilities at the system level, so that the influence

of fabrication stage variations can be propagated to the PLL system performances.

Parameterization can be done for each building block model as follows. First,

multiple behavioral model extractions are conducted at multiple parameter corners,

possibly following a particular design-of-experiments (DOE) plan [14]. Then, a pa-

rameterized behavioral model is constructed by performing nonlinear regression over

the models extracted at different corners. This detailed parametric modeling step

is advantageous since it systematically maps the device-level parametric variations

to each of the behavioral models. However, difficulties arise when the number of

parametric variations is large, which leads to prohibitively high parametric model

extraction cost. We address this challenge by applying design-specific parameter di-

mension reduction techniques as described in the following section.

2. Hierarchical PLL Modeling

In this section we first describe the nominal behavioral model extraction for each PLL

building block, then we discuss how a parameterized model can be constructed in the

26

next section.

a. Voltage Controlled Oscillator

The voltage controlled oscillator (VCO) is the core component of a PLL. The two

mainstream types of VCOs are LC-tank oscillators and ring oscillators. A 5-stage ring

oscillator and a VCO behavioral model are shown in Fig. 11. In this VCO model, the

dynamic and static characteristics of the voltage to frequency transfer are modeled

separately first and then combined to form the complete model.

����
��� ������	

Vcon’

Freq

Vcon’

Freq

Vcon Vcon’ FreqDelay

Element

H(s)

��
���� �� ���
Fig. 11. Schematic of a ring oscillator and VCO macromodel.

As shown in the figure, the static VCO characteristic can be written as Fout =

f(V ′
con), where Fout is the output frequency, V ′

con is the delayed control voltage, and

f(⋅) is a nonlinear mapping relating the voltage with the frequency. f(⋅) can be

further represented by an n-th order polynomial function

Fout = a0 + a1 ⋅ V
′
con + a2 ⋅ V

′
con

2
+ ⋅ ⋅ ⋅+ an ⋅ V

′
con

n
, (2.6)

where a0, a1, ⋅ ⋅ ⋅ , an are the coefficients of the polynomial. To generate the above

polynomial, multiple VCO steady-state simulations are conducted at different control

voltage levels and a nonlinear regression is performed using the collected simulation

data. The dynamic behavior of the VCO is modeled by adding a delay element that

produces a delayed version of the control voltage, V ′
con. The delay element can be

27

expressed using a linear transfer function H(s) (e.g. a second-order RC network

consisting of two R’s and two C’s).

b. Charge Pump

The schematic of a widely-used charge pump is shown in Fig. 12. The control signals

of the two switches come from the outputs of the phase and frequency detector. The

currents through M1 and M2 can be turned on-and-off to provide desired charge-up

or charge-down currents.

������ ���
�	
��
�
���� �� ��� ���
�
�����������

��������
���
�
���

��

		

Fig. 12. Schematic of charge-pump.

The existing charge pump macromodels are very simplistic. Usually, both the

charge-up and charge-down currents are modeled as constant values [16, 17]. A con-

stant mismatch between the two currents may be also considered [15]. However, this

simple approach is not sufficient to model the behavior of charge pump accurately.

As indicated in Fig. 12, the current sources are implemented using transistors so that

the actual output currents will vary according to the voltages across these MOSFET

(M1 and M2). Therefore, the dependency of charge-up and charge-down currents on

Vcon must be considered.

In our charge pump model, for each output current, the current vs. Vcon char-

acteristics is divided into two regions. When the output voltage Vcon is close to the

28

supply voltage, then M1 will be biased in triode region. The charge-up current Iup in

the triode region (shadow in Fig. 12) is given as

Iup = �pCox
W
L
[(Vgs − Vtℎp)Vds − 0.5V 2

ds]

Vds = Vdd − Von − Vcon

(2.7)

where Vdd is the supply voltage, Von is the on-voltage across the switch, Vgs is the gate-

source voltage, �p is the mobility, Cox is the oxide capacitance, W is width and L is

the length of M1. We can see from Eqn. 2.7 that the charge-up current is dependent

on the output voltage Vcon. We use a polynomial to explicitly model such voltage

dependency

Iup = b0 + b1 ⋅ Vcon + b2 ⋅ V
2
con + b3 ⋅ V

3
con

(2.8)

where b′is are the polynomial coefficients. Similarly, the charge-down current has a

strong Vcon dependency when Vcon is low. This voltage dependency is modeled in a

similar fashion. When M1 and M2 operate in saturation region, they act as part of

the current mirrors. In this case, constant output current values are assumed while

the possible mismatch between the two are considered in our Verilog-A models.

c. Other PLL Circuit Blocks

The phase detector and the frequency divider are digital circuits so that they are more

amenable to behavioral modeling. The two key parameters of the phase detector and

the frequency divider are the output signal delay and the transition time, which are

easy to extract from transistor-level simulation. The loop filters are usually comprised

of passive RC elements, which can be directly modeled using Verilog-A. The complete

PLL macromodel generation flow is shown in Fig. 13.

29

������ ���	
�� �

�������
������ ���������� �����������	�������� ��
�� !�"�#$"��

!�����"%"��&

������ ���	
�� !�����"%"��& '()*+, -)./- 0123 (*455626+(7 8,7129/:(;;0<0:,=>?@4A3BC3445DDDE0(*4>FB4:62;1;41(201/-3,2)'()*+, '()*+, @/(0/(23 (*455626+(7 8,712-A6;, G HIJK.LEI1)4'()90/:(;;0-A6;,BJK.LEMH3DD5D,2)'()*+,����������N��
���"��OP ����"Q�� Q� � ���"�����
�

Fig. 13. PLL macromodel generation flow.

30

3. Efficient parametric-reduction PLL Modeling

When process variations are considered, parameterization can be done for each build-

ing block model as follows. First, multiple behavioral model extractions are conducted

at multiple parameter corners, possibly following a particular design-of-experiments

plan. Then, a parameterized behavioral model is constructed by performing nonlinear

regression over the models extracted at different corners. This detailed parametric

modeling step is advantageous since it systematically maps the device-level paramet-

ric variations to each of the behavioral models. However, difficulties arise when the

number of parametric variations is large, which leads to a prohibitively high para-

metric model extraction cost.

The key parametric variations for a single transistor may include variations in

mobility �, gate oxide Tox, threshold voltage Vtℎ, effective length Leff and so on [18].

The consideration of all possible sources of variations in transistors and interconnects

can easily lead to explosion of the parameter space, rendering the parametric model-

ing infeasible. Although the widely used principle component analysis (PCA) [19] can

be adopted to perform parameter dimension reduction, its effectiveness may be rather

limited since parameter reduction is achieved by only considering the statistics of the

controlling parameters while neglecting the important correspondence between these

parameters and the circuit performances of interest. As such, the extent to which

the parameter reduction can be achieved is not sufficient for our analog macromod-

eling problems. To address this difficulty, a more powerful design-specific dimension

reduction technique, which is based on reduced rank regression (RRR), is developed.

This new technique considers the crucial structural information imposed by the de-

sign and has been shown to be quite effective for parametric interconnecting modeling

problems [20, 21].

31

a. RRR Based Parameter Dimension Reduction

Suppose we have a set of n process variations, X , and a set of N performances, Y .

The objective is to identify a smaller set of new variables Z, based on X , which are

statistically significant to the performances of interest, Y . Without loss of generality,

let us assume Y nonlinearly depends on X through a quadratic model

Y = f(X) ≈ [�1 �2]

⎡

⎢

⎢

⎣

X

X ⊗X

⎤

⎥

⎥

⎦

(2.9)

where �1 and �2 are the first and second order coefficients, X ⊗ X represents the

quadratic terms of X . The combination of the linear and quadratic terms of X are

then defined as a new predictor vector X̂ = [XT (X ⊗ X)T]T . Now the quadratic

model in (2.9) can be cast into a linear model in X̂ as: Y = AX̂ + ". To identify the

redundancy in X to facilitate parameter reduction, we seek a reduced rank regression

model in the form

Y = ARBRX̂ + ", (2.10)

where AR and BR have a rank of R (R < n), and BR has only R columns. We denote

the covariance matrix of X̂ as Cov(X) = ΣX̂X̂ , and covariance matrix between X̂

and Y as Cov(Y, X̂) = ΣY X̂ . It can be shown that an optimal reduced rank model

(in the sense of mean square error) is given as [21]

AR = U,BR = UTΣY X̂Σ
−1
X̂X̂

, (2.11)

where U contains R(R < n) normalized eigenvectors corresponding to the R largest

eigenvalues of the matrix: D = ΣY X̂Σ
−1

X̂X̂
ΣX̂Y . It is important to note that a success-

ful construction of the above reduced rank model indicates that only a smaller set of

R new parameters Z = BRX̂ are critical to Y in a statistical sense, hence facilitating

32

the desired parameter reduction.

It should be noted that the reduced rank regression is only employed as a means

for parameter reduction so as to reduce the complexity of the subsequent parame-

terized macromodeling step. Hence, Y in the above equations do not have to be the

true performances of interest and can be just some circuit responses that are highly

correlated to the performances. This flexibility can be exploited to more efficiently

collect ΣY X̂ though Monte-Carlo sampling if Y are easier to obtain than the true

performances in simulation.

b. Parameterized Macromodeling Using Parameter Reduction

The parameterized PLL macromodel extraction flow is shown in Fig. 13. As men-

tioned in Eqn. 2.6 and 2.8, each behavioral model parameter is expressed as a poly-

nomial in the underlying device-level variations, such as

� = f(Vtℎ1, Leff1, Tox1, ⋅ ⋅ ⋅ , Vtℎn, Leffn, Toxn), (2.12)

where Vtℎi, Leffi, Toxi, etc represent the parameters of i-th transistor, f(⋅) is the non-

linear polynomial function. f(⋅) is very difficult to obtain if the number of parameters

is large. Hence, RRR-based parameter reduction is applied, which leads to a set of

R new parameters Z that are the most important variations for the given circuit

performances of interest. If R is small, then a new parameterized model in terms of

Z can be easily obtained through conventional nonlinear regression

� = f̂(Z1, Z2, ⋅ ⋅ ⋅ , ZR). (2.13)

In addition to reducing the cost of parameterized macromodeling, parameter di-

mension reduction also leads to more efficient statistical simulation of the complete

PLL. This is because instead of analyzing the design performance variations over

33

the original high-dimensional parameter space, statistical simulation can be now per-

formed more efficiently in a much lower dimensional space that carries the essential

information of the design variability. The application of the parameter reduction can

also improve the efficiency of DFT schemes as to be described in Chapter IV.

C. General Block Modeling Using Kriging Models

We have presented the efficient modeling techniques for Sigma-Delta ADCs and

charge-pump Phase-locked Loops. The ability to accurately model arbitral analog

circuits are important and necessary for automatic circuit performance optimization.

The complex nature of analog/mixed-signal systems, however, makes this task dif-

ficult and costly. In this section, we adopt a Geostatistics motivated approach (i.e.

Kriging model) for efficient generation of performance models considering both de-

sign and process variables for analog circuits [6]. Kriging model is attractive for our

yield-aware analog performance modeling problem because of two appealing features.

First, Kriging model enables robust regression of global trends of complex mapping

between design parameters and resulting performances. The capability in capturing

global trends of the performance space is very beneficial as it helps prevent trapping

into local optimum that may happen in optimization-based approaches. Second, in

addition to providing performance predictions, Kriging model also provides an uncer-

tainty level for each prediction in the form of mean-square-error (MSE). The ability

in providing such an assessment on prediction accuracy immediately allows an it-

erative update scheme wherein new data can be selectively added in the regions of

high uncertainty level to improve the model accuracy. We further utilize the ob-

tained performance models of building blocks to achieve efficient hierarchical system

optimization in the next chapter.

34

1. Mathematical Formulation

Kriging model was first proposed by Matheron in 1963 [6] for geostatisics problems.

Unlike physical experiments, computer simulation does not posses any random errors.

However, under the framework of Kriging, a deterministic circuit performance using

Kriging model is considered as a realization stochastic process, Y (x), where x is

an n-dimensional vector containing design parameters (and/or process variations).

This fundamental treatment of Kriging model provides a statistical framework for

deterministic function approximation and quantification of approximation uncertainty

[22]. The stochastic process Y (x) is cast into a regression model as

Y (x) = Z(x) + �T f(x) (2.14)

where f(x) = [f1(x) f2(x) ⋅ ⋅ ⋅ fn(x)]
T is a vector of predefined regression functions,

� = [�1 �2 ⋅ ⋅ ⋅ �n]
T is the vector of unknown regression coefficients. The term �T f(x)

represents the global trend of Y (x) across the input space and Z(x) is a random

process and used to capture the systematic departure of the performance from the

global regression portion. Z(x) is assumed to have zero mean and a correlation matrix

Corr(Z(xi), Z(xj)) = R(xi, xj) (2.15)

for Z(xi) and Z(xj) with two input vectors xi and xj . The correlation matrix in

Eqn 2.15 is often parameterized and can be chosen to be a product of stationary

one-dimensional functions

R(xi, xj) =
n
∏

k=1

e−�k∣xi,k−xj,k∣
pk (2.16)

where � = [�1 �2 ⋅ ⋅ ⋅ �n]
T and p = [p1 p2 ⋅ ⋅ ⋅ pn]

T are unknown coefficients with

constrains �k ≥ 0 and 0 ≤ pk ≤ 2.

35

In order to apply Eqn 2.14 for performance modeling, we need to estimate the

unknown parameters �2, �, p and �. Suppose m sets of simulations are performed,

we have Xs = [xs,1, xs,2, ⋅ ⋅ ⋅ xs,m]
T as the input vectors (can be design variables or

process variables) and Ys = [ys,1, ys,2, ⋅ ⋅ ⋅ ys,m]
T be the corresponding performances.

An m ×m matrix R is defined by Ri,j = R(xi, xj). The goal of Kriging model is to

find a predictor of the system performances at the new point xnew.

If we denote r(xnew) = [R(xnew − x1) R(xnew − x2) ⋅ ⋅ ⋅ R(xnew − xm)]
T and

F (x) = [f(x1) f(x2) ⋅ ⋅ ⋅ f(xm)]
T , the predictor Ŷ (xnew) can be written as [23]

Ŷ (xnew) = f(xnew)
T �̂ + rTR−1

(

Ys − F �̂
)

(2.17)

where

�̂ =
[

F TR−1F
]−1

F TR−1Ys. (2.18)

The MSE of the predictor Ŷ (xnew) and the real performance value can be ob-

tained as

MSE[Ŷ0] = �̂2

⎛

⎜

⎜

⎝

1−
[

fT r
]

⎡

⎢

⎢

⎣

0 F T

F R

⎤

⎥

⎥

⎦

−1 ⎡

⎢

⎢

⎣

f(xnew)

r(xnew)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

(2.19)

where �̂2 is given as

�̂2 =
1

m

[

Ys − F �̂
]T

R−1
[

Ys − F �̂
]

. (2.20)

To get the performance prediction, the Maximum likelihood estimate (MLE) of

correlation parameters � and p as well as � and �2 is performed. The likelihood

function can be written as

L(�, p, �, �2) = 1
(2�)m/2 ⋅

1
(�2)m/2 ⋅

1
(det(R))1/2

⋅ exp
(

− 1
2�2 [Ys − F�]T R−1 [Ys − F�]

)

. (2.21)

Substituting Eqns 2.18 and 2.20 into Eqn 2.21 leads to the log of the likelihood

36

function

L(�, p) = −
1

2

[

m log �̂2 + log(det(R))
]

. (2.22)

In practical implementation, we can first select a proper value for p (e.g. 2),

and solve Eqn 2.22 numerically to find �̂. Then, Eqn 2.18 and Eqn 2.20 are used to

compute �̂ and �̂2. Finally, the estimated performance at xnew is given by Eqn 2.17

and the MSE of Ŷ (xnew) is given by Eqn 2.19, which can be used to evaluate the

prediction accuracy. A relative prediction uncertainty is more meaningful

Err =
(

MSE[Ŷ0]
)1/2

/Ŷ0. (2.23)

We summarize the application of Kriging model for circuit performance modeling

in Algorithm. 1. Here the goal is to predict the system performance P at any design

point D in the design space.

Algorithm 1 Generation of Kriging Performance Model
Input: Circuit netlist, target performance P , design variables D = [d1, ⋅ ⋅ ⋅ , dn], max
relative error tolerance Errmax, # of test points n.
Output: The Kriging model P = K(D).

1: Evenly sample the design space using m date points D1, ⋅ ⋅ ⋅ ,Dm and find the corre-
sponding performances P1, ⋅ ⋅ ⋅ , Pm via SPICE simulation.

2: Construct an initial Kriging model P = K(D) by maximizing Eqn 2.22.
3: for i = 1 to n do

4: Randomly generate a design sample DT,i and evaluate the relative MSE Erri using

Eqn 2.23 for P̂ (DT,i);
5: if Erri > Errmax then

6: Perform a SPICE simulation at DT,i to compute the exact performance PDT,i
.

7: Include {DT,i, PDT,i
} as an additional data and update the Kriging model.

8: end if

9: end for

The above algorithm iteratively constructs a Kriging model for a single perfor-

mance. The model is updated in the areas where the Kriging models do not possess

of enough accuracy, which leads to the iterative model updating feature. If more

37

than one performance are of interest, multiple Kriging models can be extracted in-

dividually. With the help of Kriging performance models we can achieve yield-aware

hierarchical analog/mixed-signal system optimization and also help develop efficient

built-in self-test circuits, which will be discussed in detail in the next chapters.

2. Circuit Examples

In order to demonstrate the accuracy and efficiency of the proposed Kriging perfor-

mance methodology, we use two test circuit cases including one ring oscillator and

one LC oscillator which are implemented in 90-nm CMOS technology.

a. Ring Oscillator

The first circuit under analysis is a typical five-stage ring oscillator similar as in

Fig. 11. The total number of transistors in this circuit is 23. We consider the sizes

(width W with length set to the minimum) of all the transistors with symmetry

constrains, that is the inverters should be identical across different stages. Therefore,

there are 7 design parameters in our design example. Threshold voltage Vtℎ of all

the 23 transistors are assumed to follow Gaussian distributions to model the process

variations. The circuit performance considered are power, maximum frequency and

VCO gain at the center operation frequency.

We set the following design constrains: each transistor width can be varied within

±40% of the initial design value and should be at least greater than the minimal tran-

sistor width. The variation of Vtℎ is set to 3� = 15% to account for the process varia-

tions. The initial Kriging model is built with 50 uniform samples in the design space.

After the generation of the Kriging model, we compare the predicted performance

and corresponding predicted relative MSE with the SPICE simulation results for four

randomly selected points as shown in Table IV. Yp is the predicted performance, Ya

38

is the measured results by SPICE, MSE is the predicted relative error and Err is

the actual relative error of Yp w.r.t. Ya. From Table IV, we can clearly see that the

Table IV. Kriging model accuracy for ring oscillator.

Freqmax Yp(GHz) Ya(GHz) MSE(%) Err(%)

Point 1 2.768 2.782 0.53 -0.53

Point 2 2.462 2.440 0.36 0.90

Point 3 2.164 2.151 0.41 0.60

Point 4 1.878 1.861 0.66 0.92

Power Yp(�W) Ya(�W) MSE(%) Err(%)

Point 1 51.98 51.91 0.29 0.14

Point 2 42.50 42.72 0.41 -0.50

Point 3 39.85 39.89 0.23 -0.099

Point 4 36.54 36.79 0.48 -0.69

Gain Yp (G/V) Ya (G/V) MSE(%) Err(%)

Point 1 5.607 5.671 0.54 -1.14

Point 2 4.823 4.796 0.47 0.56

Point 3 4.489 4.517 0.70 -0.63

Point 4 4.100 4.105 1.31 -0.11

predicted performances match well with the actual measured performance values.

b. LC Oscillator

The second circuit example is an LC oscillator as shown in Fig. 14. There are totally

six transistors including two acting as a variator. We use R1 and R2 to model the

parasitics resistances of the two inductors L1 and L2, and Cf1 and Cf2 to model the

39

parasitic capacitances at the two output nodes.���

�������	 ����

�� �

�� ���� ����
��� ��

�
�� �
�� ����
Fig. 14. LC oscillator schematic.

Width W of all the transistors are considered as design parameters with sym-

metry constrains between M3 and M4, M5 and M6, respectively. The biasing current

Ib is also selected as a design parameter. In terms of process variation modeling, we

consider the threshold voltage Vtℎ of each transistor and the mismatch between induc-

tors L1 and L2, the parasitic capacitances and resistances are sources of variability.

The ranges of the transistor widths and the bias current are set to be within ±30%

of the initial design, and transistor widths should also satisfy the minimal width

requirement. The variations of Vtℎ and parasitic parameters are set to be 3� = 10%.

We consider the VCO gain and the power for this LC oscillator and build Krig-

ing models to predict the system performance. The accuracy of the Kriging model

−→
K (
−→
D,
−→
V) is demonstrated in Table V, in which we pick up four random combinations

of the design parameters
−→
D and process variations

−→
V .

40

Table V. Kriging model accuracy for LC oscillator.

Power Yp(�W) Ya(�W) MSE(%) Err(%)

Point 1 55.25 55.17 0.76 0.14

Point 2 50.42 50.44 0.07 -0.03

Point 3 56.90 56.78 0.11 0.21

Point 4 50.18 50.15 0.13 0.07

Gain Yp (G/V) Ya (G/V) MSE(%) Err(%)

Point 1 1.107 1.106 0.83 0.09

Point 3 1.250 1.249 0.54 0.08

Point 2 1.316 1.294 0.77 1.67

Point 4 1.071 1.071 1.24 0.02

D. Summary

In this chapter, we propose an efficient lookup table based modeling technique for

Sigma-Delta ADC performance evaluations. By combining response surface modeling

technique, parameterized LUT models in terms of important underlying circuit pa-

rameters are constructed. Our modeling framework can be employed to perform fast

nominal and statistical simulation of various Sigma-Delta ADC designs and provide a

basis for performance and robustness trade-off analysis. We also look into the model-

ing of charge-pump PLLs by presenting a macromodeling strategy with reduced-rank

regression to perform fast statistical PLL performance evaluations. The PLL mod-

eling frameworks are used to efficiently evaluate the PLL performance distributions

under process variation. A geostatistics motivated yield-aware modeling approach

is presented for general analog circuit performance modeling. The MSE metric pro-

vided by the Kriging model is instrumental in controlling modeling accuracy via

41

well-controlled model updates. Experimental results are presented to demonstrate

the effectiveness of the proposed performance modeling approaches. The proposed

performance modeling approaches are critical for the analog/mixed-signal system op-

timizations and performance verifications, as to be discussed in the following chapters.

42

CHAPTER III

YIELD-AWARE ANALOG CIRCUIT OPTIMIZATION

Optimization of large analog/mixed-signal systems is difficult due to the costly sys-

tem performance evaluation procedures and the large design variable space. The

optimization task becomes even more challenging when process variations come into

consideration. In this chapter we utilize Kriging performance models to first achieve

circuit block level performance trade-offs and then use these models to facilitate yield-

aware hierarchical system optimization [24].

Design centering technique is a widely used yield enhancement approach by mov-

ing the nominal designs to increase the overlap of the process distribution and the

feasible performance space [25]. Although the idea is simple and straightforward,

the implementations of design centering techniques could vary. One variant of the

design centering implementation uses linear model with sensitivity analysis to form

an approximation of the overall feasibility region as polytope [26]. Other implemen-

tations may treat the performance feasible region as an ellipsoid rather than a convex

polytope, then the optimization target becomes to move the final design to the center

of the ellipsoid [27]. The major drawback of these simplifications is the accuracy,

simple linear models have very poor capability to capture the complex process varia-

tion behaviors in modern CMOS technologies, so improved techniques are needed for

paretical yield-aware analog optimizations.

One of the two most popular commercial yield-enhance tools for analog circuit

designs is NeoCircuit by Cadence Design Systems [28]. It employs Monte-Carlo sim-

ulations to find the process parameter combinations which corresponds to the worst

system performances, then the tool performs design space optimization to meet these

process corners. The underlining theory is simple, if the design can meet the spec-

43

ifications in the worst performance corners, it can meet the specifications in all the

other process variation conditions, hence the design is optimized in the center. The

other analog optimization tool, WiCkeD developed by MunEDA, utilizes the worst

case distance to guide the optimization search [29]. In that optimization framework,

the major difference from NeoCircuit is that the process corners used to guide the

yield optimization are not from Monte-Carlo simulations but from the numerical cal-

culation of the worst-case distance [30].

There exist several drawbacks in these traditional design centering techniques

for analog yield optimization. First of all, no matter model-based or corner-based

yield analysis techniques, they can only maintain the accuracy for the specified local

design points. Once the design points are shifted during the system optimization,

process models or corners need to be updated in the new design points, hence no

optimization convergence can be guaranteed. Second, the yield analysis are rough in

these optimization frameworks. The accuracy of the yields calculated using process

space models heavily depend on the model accuracy and the shape of process distri-

butions, while the corner based approaches can not specify the required yield levels.

And lastly, these traditional optimization methods lack of the capabilities to address

the problems of large scale analog circuit optimization.

In order to address the limitations of these traditional analog optimization ap-

proaches, we propose to use the accurate and efficient global modeling technique, the

Kriging modeling method, as the key element in our yield-aware analog optimization

framework. The Kriging model bridges the design and process variable spaces and the

system performance spaces. The performance models are updated iteratively in the

whole design space to enhance the accuracy, so we can use the Kriging performance

models to search for the global optimal solutions. The statistical system performances

are analyzed using the device-level Monte-Carlo simulations which are evaluated us-

44

ing the efficient partial Kriging models, so the yields calculated are accurate. The

proposed optimization framework keeps the structure of efficient hierarchical system

performance analysis so the computation time of the performance evaluation within

each optimization iteration can be reduced significantly. In this chapter we start with

the optimization of smaller scale analog circuits with the consideration of process

variations, then present the more challenging hierarchical yield-aware analog system

optimization framework.

A. Yield-aware Circuit Block Optimization

The mathematical forms of Kriging models have been presented in the previous Chap-

ter. Suppose we denote the Kriging performance model as
−→
K (
−→
D,
−→
V) where

−→
D is the

design parameter set and
−→
V represents the process variation information. Perfor-

mances of small scale analog/mixed-signal circuits can be modeled accurately using

Kriging model, so we can perform circuit optimization using
−→
K (
−→
D,
−→
V) by searching

in the design space
−→
D while injecting process uncertainties using

−→
V .

In this section, we first evaluate circuit performance trade-offs (pareto fronts)

without considering process variations using iterative search with nominal Kriging

performance models. The generated nominal building block pareto fronts serve as

the baseline to generate the yield-aware performance trade-offs. Then we use the

nominal pareto fronts as starting points to search for the performance trade-offs in

different yield levels achieving better convergence. The yield-aware optimization is

obtained by optimizing system cost functions consisted of all the system performances

in the specified yield levels. The statistical system performance distribution analysis

is achieved using partial Kriging models, which save about 60% to 70% computation

time when compared with brute-force use of Monte-Carlo simulation. We demonstrate

45

the efficiency and accuracy of the proposed yield-aware optimization framework using

design examples of two oscillator and one amplifier.

1. Pareto Front Background

In most circuits, different performance objectives compete against each other and it

is infeasible to find a design point to reach the best value for all performances at the

same time. The design task then becomes a multi-objective optimization problem. As

shown in Fig. 15, pareto front consists of the optimal performance trade-offs between

different performances. In multi-objective optimization, performance pa dominates

performance pb (suppose smaller value is better) when [31, 32]

pa ≺ pb : ∀(pai ≤ pbi) ∧ ∃(pai < pbi), i = 1, ⋅ ⋅ ⋅ , n (3.1)

where pai and pbi are the i-th performances of interest, and there are totally n perfor-

mances. A set of performances is considered as pareto-optimal if it is not dominated

by any other set of performances.������ ����� 	
��
�����
 ����

��

������
����������� ��!"#$���%��#�"��&� ��#&�'

�()� �()� �(
����%#$�#�&�"�#�* ��& � +���%#�"�"!�&���

D
→

()c ⋅

()K D
→ →

Fig. 15. Illustration of pareto front.

In practice, it is impossible to obtain the entire pareto front in the closed form

and it has to be approximated by finding a number of points on the front. So the

multi-objective optimization problem is often transformed to multiple single-objective

46

optimization problems by assigning a suitable weight to each performance [31, 32].

2. Iterative Search for Pareto Fronts

With the definition in Eqn. 3.1, we start to build pareto fronts without consider-

ing process variations by employing nominal Kriging performance models. Although

Kriging model provides a general performance modeling machinery, its practical ap-

plication in circuit modeling must be facilitated by well controlling accuracy and

complexity. The key idea is to develop an iterative model accuracy refining scheme so

that the pareto fronts generated represent the actual circuit performance trade-offs.

Our strategy help control the total number of transistor-level circuit performance

evaluations (SPICE simulations) by exploiting the prediction power of Kriging model

and adopting incremental updates.

�������� ����
���	
���
���
��
����
 �����

D
→

���
����� ������������
� ���	 ����� ����� ! "#�$��$%&'(! $(�(# ��&�()K D
→ →�� �������� ���� ����

)
�*��� ������
� �

����
 ����� ���	+����
� ��
�� �������� ���� ���������	 *�������� *��
� �
����� ������ *��
��,-��� �*
����
�������� . ���/01234567 89:;:<;=>47? @:6A =>973>:<6B CD EFGHI
�������� ���� ����J����
����
 ����������	 ���	 K����
� ��
��

)�
���
K����
� ��
��
�������� ���� ����)�
���
������ *��
�

������ ���� ���
��
��������� *��
� ���	 K����
� ��
���������� ���� ���� �������L� ������*��
� ,�
���
����� ���*����
������������
�����MNOPQRSQT UVRQWN XRNOW �����	 *�������� *��
�
Fig. 16. Iterative pareto front generation.

1) As shown in Fig. 16, our nominal-case iterative pareto front extraction starts

from a coarse sampling of design space
−→
D by using a limited number of SPICE

simulations. This initial set of SPICE simulation data serves as a basis of constructing

an initial Kriging model as in Eqn 2.17 for predicting circuit performances.

47

2) In the following step, the complete design space is sampled uniformly to cap-

ture the global trend of design parameter to performance mapping through multiple

evaluations of the Kriging model. The Kriging model accuracy is improved by adding

additional SPICE simulation data when the relative MSE in Eqn 2.19 exceeds a user-

defined threshold. In our experiments, it has been observed the cost of these selective

SPICE simulations is rather mild.

3) With a conditionally updated Kriging model and the set of Kriging model

evaluations in the previous step, an initial pareto front is extracted by sorting the

evaluated performance values. The cost due to sorting is usually insignificant.

4) As the initial pareto front only captures the global trends of design parameters

to circuit performances mappings, a local design space search is conducted around

the initial pareto front to refine the initial pareto front. A number of additional

design points in the neighborhood of the initial pareto front are evaluated using the

Kriging model. Note that this local design space exploration is not expensive since

performance evaluation is achieved through Kriging.

5) The pareto front is updated by examining performances of all the design

points involved in the local design space search, and this iterative process continues

till the a converged pareto front is reached. It has been observed that the convergence

can be usually reached in a few iterations in our experiments.

The obtained nominal pareto fronts serve as the baseline for the yield-aware

pareto front generation. Although the “optimal” performance tradeoffs associated

with the nominal case pareto front often represent overly optimistic performance

combinations under significant process variations, one key observation is that the

design parameters on the nominal pareto front are often still the near-optimal design

candidates in the presence of process variations. This allows us to use the nominal

pareto front as the starting point and adopt a well-controlled iterative process to

48

search for pareto fronts under varying yield levels.

3. Fast Statistical Analysis Using Partial Kriging

Although Kriging model is a much more efficient surrogate than circuit simulation, a

brute-force use of Kriging model to run Monte-Carlo simulations could be rather ex-

pensive. Our key idea to alleviate the cost is to facilitate computation sharing between

Monte-Carlo simulations across the design space via Partial Kriging Model Evalua-

tion. This is achieved by properly choosing a correlation function (i.e. Eqn 2.16) and

exploiting special structure of the Kriging model.

Let us examine Eqn 2.17 that provides the circuit performance predication by the

Kriging model. Without loss of generality, in the following discussion, we only concern

with a scalar performance. In the practical implementation, f(⋅) can be simply chosen

as constants, then only variable in Eqn 2.17 is vector r, which corresponds to the

correlations between the untried input x0 and the m inputs xs,1, ⋅ ⋅ ⋅ , xs,m based on

which the Kriging model is built. Eqn 2.17 is now written as

Ŷ0 = c+ rT q, (3.2)

where c is a constant and q = R−1(Ys − F �̂) ∈ Rm, both of which are known after

the Kriging model is constructed. The main cost of a Kriging model evaluation is due

to the computation of r that involves of computation of nm exponential terms and

their products as in Eqn 2.16, where m is the range of a few hundreds and n is the

dimension of the combined design and process parameter space, which is typically in

the range of a few tens. The computation of r takes the most significant portion of

model evaluation time.

Our key observation is that due to the specific structure of our Kriging model,

the design and process variables are well separated in the evaluation of r. To see this

49

more clearly, we rewrite Eqn 2.16 as

R(x0, xi) =
ND
∏

k=1

e−�k∣x0,k−xi,k∣
pk ⋅

ND+NV
∏

k=ND+1

e−�k∣x0,k−xi,k∣
pk , (3.3)

where ND is the number of the design parameters and NV is the number of process

parameters, and ND +NV = n. Note that the second product Rr(x0, xi) of the above

equation does not depend on the design parameters, so it can be pre-computed and

shared for different design points. Essentially, before the yield-aware design space

starts, we first perform one run of Monte-Carlo sampling in the process space by

pre-computing a set of Rr(x0, xi) samples. This set of samples do not complete the

Kriging model evaluations solely by themselves, therefore this step is referred to as

Partial Kriging Model Evaluation. This set of Rr(x0, xi) samples can be shared with

other design points to facilitate fast Monte-Carlo simulations in the design space

efficiently. For instance, as shown in Fig. 17, for any give design point, we only need

to evaluate

Rl(x0, xi) =
ND
∏

k=1

e−�k∣x0,k−xi,k∣
pk (3.4)

and combine it with the Rr(x0, xi) samples to quickly generate the statistical per-

formance distribution at this design point. Our technique is especially attractive in

practice since under most cases NV > ND.

(,)P K D V
→ → → →

= ����������	
����
��� ���
�0, , 0, ,| | | |
0

1 1

(,)
D VD p pk k

k k i k k k i k

D

N NN
x x x x

i
k k N

R x x e eθ θ
+

− − − −

= = +

= ⋅∏ ∏

��������������������� 0, ,| |

1

D V pk
k k i k

D

N N
x x

k N

e θ
+

− −

= +
∏

0 , ,| |

1

D V pk
k k i k

D

N N
x x

k N

e θ
+

− −

= +
∏

0, ,| |

1

D V pk
k k i k

D

N N
x x

k N

e θ
+

− −

= +
∏������� ������� ���� ����� !"!#!$%& !$%"

'()* +(,-./(0.12+-/(). /314-
D
→

!$
!&1D

→

2D
→

567 867967 :0.;- <1=20 /(,>21;(0.(. +-/(). /314-567967 867?=^ ^ ^
1

0
T T

sP f r R Y Fβ β−

@ A
= + −

B CD E
Fig. 17. Speeding up Monte-Carlo sampling via partial Kriging model evaluation.

50

4. Yield-aware Block Optimization

In the previous section, we have described how partial Kriging model evaluation

can be exploited to facilitate efficient Monte-Carlo simulations in the design space

based on Kriging models
−→
K (
−→
D,
−→
V) that span across both the design and process

spaces. However, the construction of such Kriging models can be considerably costly

compared with the case of the nominal case modeling due to a higher input space

dimensionality. We tackle this difficulty by including Kriging model construction as

part of iterative pareto front extraction procedure where only localized updates and

search are involved.

Although the “optimal” performance tradeoffs associated with the nominal case

pareto front often represent overly optimistic performance combinations under sig-

nificant process variations, one key observation is that the design parameters on the

nominal pareto front are often still the near-optimal design candidates in the presence

of process variations. This allows us to use the nominal pareto front as a starting

point and adopt a well-controlled iterative process to search for pareto fronts under

varying yield levels as shown in Fig. 18.

Starting from the nominal pareto front, we perform local design space search by

evaluating additional design points in the neighborhood of the initial pareto front.

Here, each design point is not only evaluated in the nominal sense, but also statisti-

cally by performing Monte-Carlo sampling in the process space. Hence, performances

that can be achieved at varying yield levels (e.g. 60% or 80%) are obtained after the

Monte-Carlo simulation. It shall be noted the cost of these Monte-Carlo simulation

is well controlled by performing Partial Kriging Model Evaluation based fast tech-

nique. The relative MSE of each full Kriging model evaluation is also checked and

the Kriging model is again conditionally updated by performing additional SPICE

51

�������� ���� �������	
��
����� ���
�
�� ���������� ������ ���� ! �"��" ��#$� %�� & %����'(�#��$! �"��"��#$� ���� �� $������)* +,-�.

�������� ���� ���� ,�,� /�������
0�1
�0�2�1	3
1
�0�456789:8; <=8>;?@A@98 B@98C5 D956CEFGHIGHJGH K�	3	
3 ��L��M
L���
������ ���� ���� ��N�����	O�
��������
� M
L��	
3P�0�� L�1	3
1
�0� 1���0Q

R
L���L
����� ���
�
������ ���� ����

STUVTU WTU
������ ����X���0Q ���
����� ���
�

Fig. 18. Iterative yield-aware pareto front optimization.

simulation if the MSE exceeds the specified threshold. Next, for any required yield

level �, performances that can be achieved at yield � in the local design space search

are sorted and the pareto front is updated accordingly. This iterative process con-

tinues till a converged pareto front is reached for each yield level �. The achieved

yield-aware pareto fronts represent the best achievable performance trade-offs in the

required yield level.

5. Block Optimization Examples

In this section we first apply the yield-aware optimization method for the two design

cases illustrated for Kriging model accuracy in Chapter II. The 50% yield and 80%

yield pareto fronts as well as the nominal pareto fronts as in Fig. 19 for the ring

oscillator in Fig. 11.

To verify that the pareto fronts we have obtained in Fig. 19 are globally optimal,

we perform Monte-Carlo simulations in the neighborhoods of these found fronts and

also in the far away regions in the design space, to check the optimality of our Pareto

fronts. The pareto front with 50% yield is selected as an example and the simulation

52

1.5

2

2.5

330

40

50

60

3

3.5

4

4.5

5

5.5

6

Max Frequency (GHz)Power (uW)

G
ai

n
(G

H
z/

V
)

Nominal pareto front
50% yield pareto front
80% yield pareto front

Fig. 19. Yield-aware pareto fronts for the ring oscillator.

results are shown in Fig. 20. In the figure, we examine the performance space region

where the maximum frequency is at 2.4GHz± 0.1GHz. As can be seen from the figure,

the additional design points are inferior to the found pareto front, demonstrating the

effectiveness of our yield-aware pareto front generation method.

35 40 45 50 55 60

4.6

4.7

4.8

4.9

5

5.1

Power (uW)

G
ai

n
(G

H
z/

V
)

Random samples
50% yield pareto front

Fig. 20. Verification of yield-aware pareto front.

Similar as the ring oscillator example, we plot the pareto fronts for the LC

oscillator in Fig. 21. Fig. 21 clearly shows the difference between the nominal pareto

fronts and the pareto fronts at different yield levels. We can see that if a higher yield

is needed, the corresponding performance trade-offs become worse.

53

0.9511.051.11.151.21.251.31.35
47

48

49

50

51

52

53

54

55

Gain (GHz/V)
P

ow
er

 (
uW

)

Nominal pareto front
50% yield pareto front
80% yeild pareto front

Fig. 21. Yield-aware pareto fronts for the LC oscillator.

We further perform optimization for a two-stage operational amplifier as shown

in Fig. 22. There are totally 8 transistors in the circuit and we consider 5 design

variables for the optimization and 8 transistor mismatch parameters to represent

process variations, set up with the same range as those of the LC oscillator.

��
�� �� �� ����	
 ��		 ��

�� �
 ������� �
���
���

Fig. 22. Two-stage Op-Amp schematic.

The performance we select to generate pareto fronts are the DC gain and the

3-dB bandwidth. We show an intermediate step in our pareto front search algorithm

and the converged front in Fig. 23.

The yield-aware pareto fronts of 20%, 50% and 80% are plotted in Fig. 24 for

the two-stage opamp. The pareto front curve denote the best achievable circuit

54

0510

15

20

25

30

35

40

45

50

Bandwidth (MHz)

G
ai

n
(d

B
)

0510

15

20

25

30

35

40

45

50

Bandwidth (MHz)

G
ai

n
(d

B
)

Sort for the
 pareto front

Converged
pareto front

Initial pareto front

Fig. 23. Iterative pareto front generation for the two-stage Op-Amp.

performance trade-offs at the required yield levels.

234567

22

24

26

28

30

32

34

Bandwidth (MHz)

G
ai

n
(d

B
)

20% yield
50% yield
80% yield

Fig. 24. Yield-aware pareto fronts for the two-stage Op-Amp.

B. Yield-aware Hierarchical System Optimization

The yield-aware hierarchical optimization is dictated by the need for safeguarding

large analog/mixed-signal designs in scaled CMOS technologies. Although in the

previous section we successfully achieved yield-aware synthesis for small scale analog

circuits, it is of much more interest to solve the problem of automatic design for

large analog systems. Hierarchical optimization is a promising approach for large

55

system designs. However, the existing flows are lack of the ability to consider process

variations in the automatic system design, which is much needed to ensure the system

yield.

We address two fundamental difficulties in achieving efficient robust analog sys-

tem optimization: yield-aware pareto performance characterization at the building

block level and yield-aware system-level optimization problem formulation. It is

shown that the proposed approach is not only able to effectively capture the block

performance trade-offs at different yield levels, but also correctly formulate the whole

system yield and efficiently perform system-level optimization in presence of process

variations. Our approach extends the efficiency of hierarchical analog optimization,

enjoyed for improving nominal circuit performances, to yield-aware optimization. The

proposed methodology is demonstrated by the two examples of a two-stage amplifier

and a phased locked loop (PLL) consisting of multiple building blocks.

1. Hierarchical Optimization Background

In hierarchical optimization, a large analog system is decomposed into several build-

ing blocks. In order to get the best overall system performances, it is natural to find

the design points which result in best performances for the building blocks. Pareto

fronts presented in the previous section are the good representation of the perfor-

mance trade-offs needed in hierarchical optimization framework. The optimal system

performances can be achieved by searching within building block-level pareto fronts.

A general flowchart of hierarchical optimization using pareto fronts is shown in

Fig. 25. Circuit level design parameters (sizes of transistor and passive components,

biasing, etc) are explored within the design constrains to find the best possible per-

formance trade-offs. Then system-level optimization is carried out by searching in

the space restricted using block-level pareto fronts. If the mappings from system

56

performances to building block parameters and block-level variables to circuit-level

parameters are known, we can retain the corresponding circuit design parameters

to the optimal system performances. There exist two key benefits for this hierar-

chical optimization. First, since the number of performances in the block level is

much smaller than that of the original design space, the space exploration can be re-

duced significantly. An equally important benefit here is that system-level behavioral

models can be used to quickly estimate system-level performances, thereby further

significantly reducing the overall optimization cost.����������	��
���
�	���������
���	 ��	�����������������
�
������
���������� ������ !"�# $!#��� %&'%&(%''%'()*#+, -)*#+, .

/ � 0 +, �#0*#+, � ! 1
2345 65 75 111

%8%''5%'(9 %8%&'5%&(9/ � 0 +, �#:"���� � ! 1
Fig. 25. Nominal hierarchical optimization flow.

2. Issues in Yield-aware Hierarchical Optimization

Considering process variations in pareto front generation requires statistical simula-

tions for each design point, which typically imposes two orders of magnitude compu-

tation cost for statistical performance evaluation. Since there are much more device-

level process variables than design variables, scalability and accuracy become crucial

to the development of performance models. The more challenging requirement comes

from how to perform hierarchical optimization. In the nominal case, circuit blocks

can be individually characterized in terms of block-level pareto performance models.

57

However, in the case of yield-aware optimization, it is critical to capture the impacts

of device-level variations on the system-level performances. This need makes individ-

ual extraction of block-level pareto models and system-level optimization much more

complicated, which are discussed in the following sections.

a. Pareto Front Generation Issues

To obtain yield-aware pareto models, block-level design points that provide robust

best block-level performance tradeoffs are collected. This can be achieved by assuming

a single yield target for possibly multiple block-level performances, then the pareto

front can be generated. However, there exists a disconnection between the block-level

models and the system-level performances, where statistical variations are considered

at the system level. In other words, the single yield level at the block level is not

sufficient to provide enough statistics based on which the whole system yield can be

estimated. So a way to generate statistical pareto fronts which can correctly pass

yield information as well as block performance trade-offs is needed.

b. System-level Optimization Issues

In [32], the authors suggested to use building block pareto fronts with all the perfor-

mances at one specified yield level in the hierarchical optimization. And the obtained

system-level optimization points were supposed to have the same yield level as build-

ing blocks. This approach, however, may not work properly due to several reasons.

Firstly, the transformations from building block-level performances to system-

level performances may be complex. This dependency may allow the low yield level

of one building block be compensated by other blocks in the same system. Similarly,

the performances within one building block may also be compensated by the block-

to-system transformation. As a result, the relationship between building block yields

58

and the system yields can be non-monotonic and complex. Only using the speci-

fied yield level pareto fronts in the hierarchical optimization will lose many possible

promising block-level performance combinations which may lead to better system-

level performances in the end.

The severer problem comes from the statistical correlations between various

circuit blocks. In reality, the device variations in different blocks may share com-

mon/global physical origins. As a result, not only the device variations are correlated,

so are the block-level performances across the blocks. In the prior yield aware pareto

front modeling works [33, 32, 10], such correlations are not captured since each block

is optimized independently. This issue is especially severe if a single yield target is

assumed for all the block-level performances when the pareto models are extracted.

Such a simple yield-aware pareto model can not provide full statistical information

to determine the whole system yield. Consider a simple example, where the entire

system consists of two blocks with two block-level performances P1 and P2. And the

system performance is simply assumed to be: Ps = P1+P2. If P1 and P2 are of Gaus-

sian distribution then the system Ps will also be Gaussian. In [32], it is suggested

that to achieve a system-level yield target, say 84.1%, the block-level pareto models

at the same yield level should be considered. In this simple case, the system perfor-

mance that achieves the yield target is at: �1 + �2 +
√

�2
1 + �2

2 + 2�1�2 ⋅ cov(P1, P2).

Obviously, the value for this performance level depends on the correlation between

P1 and P2. Without such knowledge, the correct system-level performance cannot be

decided. The situation becomes even more complex if the block performance distri-

butions are non-Gaussian. In this case, knowing only the correlation factor is also

not sufficient. We address these challenges by using the techniques described in the

following sections.

59

3. Multi-yield Pareto Fronts

Unlike the prior work where a single fixed yield level is used when extracting the yield-

aware pareto front for multiple performances [33, 32, 10], we introduce the notation

of multi-yield pareto fronts, where best performance trade-offs are extracted in terms

of combinations of yield level parameters individually specified for each performance.

For example, a block with two performances P1 and P2, will be characterized in terms

of two sperate yield level parameters Y1 and Y2, one for each performance.

The multi-yield pareto fronts are generated by varying yield level for each per-

formance individually. For the i-th building block our proposed multi-yield pareto

front is in the form of

MY (
−→
Y Bi,

−→
P Bi) = 0

−→
Y Bi Min ≤

−→
Y Bi ≤

−→
Y Bi Max

(3.5)

where
−→
P Bi are the best block performances that can be achieved at the yield level

−→
Y Bi. For practical purpose,

−→
Y Bi is constrained within [

−→
Y Bi Min,

−→
Y Bi Max]. The yield

level
−→
Y Bi can vary for different performances in a building block. An example of two-

performance multi-yield pareto front generation is shown in Fig. 26. In this case,

a fixed-yield pareto model is extracted at each combination of the two performance

yield targets.

����
����

������� ������	
������	�������

��
 �������
 ���� ��
�
������ �������� ����� ���! ��
"� ���! ��
"� ���! ��
"
���

��

��

���
���
Fig. 26. Multi-yield pareto front generation.

The use of multi-yield pareto fronts allows us to identify a more complete set

60

of “near optimal′′ block-level design points for hierarchical optimization. Facing the

lack of system-level interaction during individual pareto model extraction stage, this

choice relaxes the artificial constrains set in the fixed-yield pareto models and allows

the system-level optimization be conducted in a larger number of promising block level

performance tradeoffs. However, the search space for the system-level optimization

are still constrained by the block-level best performances trade-offs. Therefore, the

hierarchical nature of the overall optimization is preserved.

4. System-level Optimization Formulation

With the multi-yield pareto fronts, we have the information of device level process

uncertainties. These multi-yield pareto front models are used to achieve efficient

system-level optimization.

a. Bridging Block-level and System-level

In order to evaluate system performance distributions correctly, we need the perfor-

mance distributions of building blocks for all possible promising design points. As

such, the yield levels in multi-yield pareto fronts are not used directly but together

with block performances to identify the design parameters. A specified yield level

and performance set (
−→
Y Bi,

−→
P Bi) can identify a unique design point in the multi-yield

pareto front of the i-th building block. When appropriate, interpolation along the

pareto front can be conducted. The mapping to the design space of the i-th building

block can be denoted as

−→
DBi = DPYi

(
−→
Y Bi,

−→
P Bi). (3.6)

This mapping can be achieved by using Kriging performance models to generate dense

points forming pareto fronts instead of analytical formulas, so the mapping back to

61

the design parameters is naturally obtained.

b. System-level Cost Function

The goal of the yield-aware circuit optimization is to find the optimal system perfor-

mances at targeted system yields. There can be more than one performances for the

whole system. Therefore, we can also specify different system yield levels for different

performances. Due to process variations, the system performances are all statisti-

cal variables. For the k-th statistical system performance Ps,k (smaller the better),

suppose we need a yield of Ys,k, then the yield-aware performance P
Ys,k

s,k satisfies the

following probability condition

P{Ps,k ≤ P
Ys,k

s,k } = Ys,k. (3.7)

Eqn. 3.7 implies that for Ps,k, the best achievable performance value is P
Ys,k

s,k when yield

level Ys,k is required. P
Ys,k

s,k is considered as the yield-aware k-th system performance

and to be used in the system-level optimization.

For multi-objective systems, the system-level cost function F for M system per-

formances with yield Ys = [Ys,1, ⋅ ⋅ ⋅ , Ys,M] can be formulated as

F (
−→
Y B,
−→
P B) =

M
∑

k=1

Ws,k ⋅ P
Ys,k

s,k (
−→
Y B,
−→
P B)

Speck
(3.8)

where Ws,k is the weighting coefficient for the k-th system performance and Speck is

its specified performance achievable at yield level Ys,k. The input variables for the

cost function are the yield and performance set [
−→
Y B,
−→
P B] of all the building blocks.

With Eqn. 3.8, the objective of yield-aware optimization is to minimize the cost

function F (
−→
Y B,
−→
P B) at specified system yield levels Ys,k. By changing the weighting

coefficients Ws for different system performances, the system-level optimization can

be set to tradeoff between different system performances.

62

c. Optimization Algorithm

The system cost function has been formulated. Now the question is how to optimize

it. As we are interested in the system performances in the statistical sense, accurate

evaluation of statistical system performances is required. Since the optimization

variables are [
−→
Y B,
−→
P B], we need to know the mapping function fs,k to get P

Ys,k

s,k from

the multi-yield pareto fronts, formulated as P
Ys,k

s,k = fs,k(
−→
Y B,
−→
P B).

To achieve this, we first transfer the optimization variables in each building block

back to the design space using Eqn. 3.6, then we perform Monte-Carlo simulation at

each design point to evaluate the block performance distributions. This step can be

accelerated by extracting an empirical Kriging based regression model. If there are

correlations between device-level parameters across different building blocks, they can

be naturally captured in the block performance distributions as it is now possible to

generate Monte-Carlo samples at the block level with such correlations considered.

The correlated block performance distributions are then mapped into the system per-

formance distributions using system-level behavioral simulation. Again, if needed,

this step can be spedup by extracting a Kriging regression model. The system perfor-

mances at yield Ys are obtained by finding the values meeting the yield requirement

in the system performance distributions. The mapping flow from multi-yield pareto

fronts to system performances is shown in Fig. 27.

The flowchart of the hierarchical optimization using multi-yield pareto fronts is

illustrated in Fig. 28. We start from the yields and performances of multi-yield pareto

fronts, get back to the design points, then obtain the statistical system performances

to evaluate the system cost function. The optimization goal is to reduce the cost

function in Eqn. 3.8. Since the multi-yield pareto fronts are self constrained, the

optimizer also need to take Eqn. 3.6 as the optimization constrain.

63

������� �����	�
���
��������
 ����������� ��������� ���� !"#
$%���&����%
��
��
 %'(�%�)
��'*

$����&+���	
����% '�%��
 ,��-�.- ��������� ���� !"#,1BD
/0

,B iD
12

,B ND
34[,]B BY P

56 56
1 1(,)B BY P

78 78
(,)Bi BiY P
9: 9:

;+
���&�����(�<���%���
�������%� ��= ������ >���?�����������.@�%�)
��'%������

,

, , (,)s kY
B Bs k s kP f Y P=

AB AB ��= ������ >���?C� ����� DEFGHC�C������IC��C���.�
DEFG

, (,)B i Bi BiPYiD D Y P=
JK JK JK

Fig. 27. Mapping from multi-yield pareto fronts to yield-aware system performances.

For a system with M performances and N building blocks, the complete system-

level optimization can be formulated as

min F (
−→
Y B,
−→
P B)

s.t.

⎧













⎨













⎩

P
Ys,k

s,k = fs,k(
−→
Y B,
−→
P B), k = 1, 2, ⋅ ⋅ ⋅M

MY (
−→
Y Bi,

−→
P Bi) = 0, i = 1, 2, ⋅ ⋅ ⋅N

−→
Y Bi Min ≤

−→
Y Bi ≤

−→
Y Bi Max

(3.9)

where the optimization variables are multi-yield pareto front yields and performances

[
−→
Y B,
−→
P B] for all the N building blocks. The dimensions of

−→
Y Bi and

−→
P Bi in each

building block are the same, which depend on the number of block-level performances

considered. Note that each multi-yield pareto front acts as an constraint in the

optimization and reduces the degrees of freedom for of the system-level optimization

by one. Suppose the i-th block of has Li block-level performances, the dimension of

the optimization search space is
∑N

i (2Li − 1). Hence, the proposed approach extends

the efficiency of hierarchical analog optimization from deterministic optimization to

statistical optimization.

The system-level optimization problem can be solved by any suitable optimiza-

tion method, particularly a derivative free method. Global optimization algorithm

64

based on multilevel coordinate search (MCS) [34] is adopted in the optimization flow.

((,))B BMin F Y P
�� ��,1SY

,S kY ,S MY

,1SP ,S kP ,S MP
��� � ���	�
��
���������� ������� ���� ����� ������������� ��������������� !"#$%&'()'*%+,-.*&/ 0./1&20/. 3%/45 678[,]B BY P

9: 9:,

, , (,)s kY
B Bs k s kP f Y P= ;< ;<

,1BD
=>

,B iD
=>

,B ND
?@

(,) 0Bi BiMY Y P =
AB AB

C*2'D1 ,-.-E0/. 3%/45 678 F������������	G
Fig. 28. Hierarchical optimization using multi-yield pareto fronts.

We summarize the complete algorithm consisting of Kriging modeling construc-

tion, multi-yield pareto front generation and system-level optimization in Algorithm 2.

Algorithm 2 Yield-aware Hierarchical Optimization Flow

Inputs: Design variable set
−→
D = {D1,D2, ⋅ ⋅ ⋅ ,Dn}, system specifications

{Spec1, Spec2, ⋅ ⋅ ⋅ , Specm} and weighting coefficients {!1, !2, ⋅ ⋅ ⋅ , !m}
Outputs: Optimized system performances

−→
P sysopt and corresponding design variables

−→
Dopt.

1: divide system into N sub-blocks
2: construct Kriging performance model

−→
K (
−→
D) in nominal case for each building block

3: generate nominal pareto front
−−→
PF (
−→
P B) using iterative search

4: construct Kriging performance model
−→
K(
−→
D,
−→
V) containing both design and process

variables
5: build multi-yield pareto front MY (

−→
Y Bi,

−→
P Bi) = 0 for each building block

6: construct system cost function using Eqn. 3.8
7:
−→
P sysopt = min(F (

−→
Y B ,

−→
P B)) s.t. Eqn. 3.9

8: return
−→
P sysopt and

−→
Dopt

65

5. System Optimization Examples

We demonstrate the detailed applications of the proposed yield-aware hierarchical

optimization including behavioral modeling, multi-yield pareto front generation and

system-level optimization formulation by looking into two design examples in this

section.

a. Two-stage Amplifier

To illustrate important aspects of yield-aware hierarchical optimization, we use a

simple but revealing two-stage operational amplifier example as shown in Fig. 29.

This amplifier is designed for the application of low-bandwidth pre-amplification and

requires low-power consumption with reasonable gain. The amplifier is implemented

in a 90nm CMOS technology. The design parameters consist of transistor sizes,

biasing currents and the capacitance. We consider a global process variable of gate

oxide thickness Tox with 3�=15% for all the transistors, 3�=10% mismatch of gate

length L for each transistor and 3�=10% variation for capacitance and resistance.

��
�� �� �� �����	 ���� �

�� �� �
����� � ����
������ ������

Fig. 29. Schematic of two-stage operational amplifier.

The amplifier is partitioned into two stages and we model each stage as one

building block. The global process variable Tox are modeled as input variable in

the Kriging performance models of both stages. The block performances are gain

66

and power, the system performances selected are also gain and power. We also im-

pose a requirements of phase margin to make sure the optimized circuits are stable.

For this circuit, the behavioral models that transfer block performances to system

performances are rather straightforward and can be evaluated analytically:

Gainsystem = Gainstage1 ×Gainstage2

Powersystem = Powerstage1 + Powerstage2

(3.10)

The cost function in Eqn. 3.8 is rewritten for the amplifier case,

F (
−→
Y B,
−→
P B) = WG ⋅

Gainamp(YG)

GainSpec

+WP ⋅
Powamp(YP)

PowSpec

(3.11)

The optimization target is to reduce the system cost function together with the phase

margin requirement, here we set the phase margin to be larger than 60o, so the system

optimization is formulated as

min
(

F (
−→
Y B,
−→
P B)

)

s.t. PM ≥ 60o
(3.12)

In order to verify if the multi-yield hierarchical optimization can find the actual

system optimal point, we compare the results of the proposed method and that of

the flat yield-aware optimization method. The fixed-yield hierarchical optimization

method is also evaluated for comparison. The flat optimization is performed by using

a simulation-based optimization approach similar to a commercial optimization tool

[28]. The optimizer [34] calls Spectre [11] to run Monte-Carlo simulation at each

design point it reaches and uses the simulated performances at targeted yields level

as the guidance for brute-force optimization search. The major computation cost for

the proposed multi-yield hierarchical optimization method comes from generating the

multi-yield pareto fronts, which needs around 20 minutes. Once the multi-yield pareto

fronts are obtained, system-level optimization requires only 1-2 minutes, since the

67

performance mapping from block-level to the system-level is analytical as in Eqn. 3.10.

The comparison of results of different optimization methods are illustrated in

Fig. 30. The system-level yields YG and YP are set to 70% for both gain and power.

The data in the plots are all evaluated with transistor-level Monte-Carlo simulation

using Spectre for better accuracy. From the figure, we can see that the system trade-

offs at the converged optimization points captured by the proposed method match

the flat optimization results very well, while the fixed yield pareto front optimization

is not able to converge to the actual optimal system performance trade-off curves.

20 40 60 80 100 120 140 160

0

50

100

150

200

250

300

Power (uW)

G
ai

n Multi−yield pareto

Fixed−yield pareto

Flat optimization

Fig. 30. Comparison of results of different optimization methods.

From the amplifier example presented above, we can see clearly that directly

applying the pareto fronts at fixed yield levels in the hierarchical optimization is not

able to find the system optimal solutions, while the results of proposed optimization

methodology with multi-yield pareto fronts match the flat optimization results very

well. Although the circuit by itself is simple, it demonstrates that the conventional

hierarchical yield-aware optimization method is not suitable and our proposed multi-

yield pareto optimization approach can be a good solution to perform yield-aware

hierarchical optimization. Next we will discuss a more realistic and complicated case,

where flat optimization is not possible because of the huge simulation time needed

for the direct simulation.

68

b. Charge-pump PLL

Due to the nature of coexistence of fast and slow signals, the design and evaluation of

PLL system is quite complex and costly. So the brute-force optimization by searching

in the design space with transistor-level simulation is infeasible for PLL designs. In

this example, we demonstrate the effectiveness of the proposed yield-aware optimiza-

tion methodology using a charge-pump PLL optimization as design example.

The PLL system investigated contains a voltage control oscillator (VCO), a phase

detector, a charge pump, a loop filter and a frequency divider. Among these com-

ponents, the phase detector and the frequency divider are digital components which

have few tunabilities and are robust to process variations. So we restrict our focus

on the optimization of VCO, charge pump and filter in this example.

The performances selected to build VCO behavioral models are jitter, power,

VCO gain KV CO and Frequency Foffset at certain control voltage Voffset. The VCO

voltage-frequency curve is linearized around Voffset with the slope of KV CO. Voffset

is predefined as the center of VCO linear gain region. These coefficients are used

to capture the complete voltage-frequency curve, which preciously models the PLL

acquisition procedure especially in low/high control voltages. The model used is

of advantage to the conventional models only considering the VCO gain within a

fixed frequency region [15, 35], since the VCO behaviors in nonlinear regions are also

captured here.

For the charge pump, we include jitter, charge up current Iup and charge down

current Idown in the behavioral model. The parameters of loop filters are the capac-

itances of C1 and C2 with the resistance of R, which can all be handled directly at

system-level simulation. The power of charge pump and loop filter can be calculated

with charge pump currents [15]. The behaviors of digital building blocks in the sys-

69

tem, including frequency divider and the phase detector, are also characterized using

delay and slew and included in the behavioral models. The simulation and modeling

of PLL is shown in Fig.31.

������ ����	
��
�
���� ���

		 ��

Charge Pump Ring Oscillator Digital Blocks

��������������� �������
�������� ��
��!"#$%& '()*'()* +,-.���/�0/1�

234567 849:8 ;<=> 35?@@A=A63B C7B<=D:E3FF;G;E7HIJK?L>MN>??@OOOP;35?IQM?EA=F<F?<3=;<:8>7=4234567 234567 K:3 ;:3=> 35?@@A=A63B C7B<=8LAF7 R STUV9WPT<4?234D;:E3FF;8LAF7MUV9WPXS>OO@O7=4234567
YZ[\�[�]^�[_[]_�Z �`aZb[��c�de�1fg h���ijk_[Z
�lYZ[\�[�]^�jmj�[ZYn%& o01g/�1p Y
�qY&r Lockin time

Jitter

Power

Verilog-A

models

sk[�t[ka^
Jitter, Iup, Idown Jitter, Power, Gain, OffsetR, C1, C2

Loop Filter

ouv�wxy F?A?<: GJz :5EK7o{|} o~u�~
o�|v o�� o|����	

Fig. 31. PLL modeling and optimization.

When the behaviors of analog building blocks are extracted, they are mapped

into Verilog-A models for the system-level simulation [15, 36]. In the system level, the

performances of PLL are considered as lockin time T , power P (exclude digital blocks)

as well as jitter J [37]. With the Verilog-A behavioral models, the mapping from

block-level performances to the system-level performances can be achieved efficiently.

Multi-yield pareto fronts for individual building block are extract to perform

yield-aware hierarchical optimization. For VCO, since the frequency Foffset is only

a model parameter which is not considered as performance metric, we generate the

70

pareto fronts considering power, jitter and gain as PV CO(power, jitter, gain). The

designed Iup and Idown should be equal for the charge pump, but when the process

variations are considered, there will be mismatch between Iup and Idown, which can

introduce extra jitter and impact lockin time significantly. So for the charge pump, we

generate pareto fronts considering jitter, average charge current Icp = 0.5⋅(Iup+Idown)

and mismatch current Imis = abs(Iup − Idown) as PCP (jitter, Icp, Imis). Charge pump

power is not included in the pareto fronts since it is proportional to Icp. The cost

function in Eqn. 3.8 is rewritten for the PLL case as

F (
−→
Y B,
−→
P B) = WP ⋅

PPLL(YP)

PSpec
+WJ ⋅

JPLL(YJ)

JSpec
+WT ⋅

TPLL(YT)

TSpec
(3.13)

The design space constrains in Eqn. 3.9 is further expressed for the PLL case as

⎧













⎨













⎩

MYCP (Yjit, Pjit, YIcp, PIcp, YImis, PImis) = 0

MYV CO(Yjit, Pjit, Ypow, Ppow, Ygain, Pgain) = 0

Rmin ≤ R ≤ Rmax;Cmin ≤ C ≤ Cmax; Ymin ≤ Y ≤ Ymax

(3.14)

The input variables for the system level optimization include not only the yield-levels

and performances of VCO and charge pump multi-yield pareto fronts, but also loop

filter parameters since they can be evaluated directly in the system-level simulation.

The PLL example is implemented in 90nm CMOS technology, the process vari-

ations considered include threshold voltage Vtℎ for each transistor with a variation of

3�=10%. For the system-level simulation, a single transient simulation of 10�s for

jitter and lockin time analysis requires about 40 seconds even with Verilog-A models.

To alleviate the optimization cost, we build another Kriging model to map all the

building block-level performances (V COpower, V COjitter, etc) and filter parameters

to the PLL system performances, then use these high-level Kriging models to guide

the optimizer to find optimal solutions. To ensure the accuracy, when the optimiza-

71

tion design points are obtained, we use Spectre and Verilog-A models to find the

performances with specified yields in these points.

The examples of multi-yield pareto fronts for charge pump and VCO are illus-

trated in Fig. 32.

0246
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Icp (uA)

Im
is

 (
uA

)

30 40 50 60 70 80

2

2.2

2.4

2.6

2.8

3

3.2

Power (uW)
V

C
O

 g
ai

n
(G

H
z/

V
)

Y1=50%, Y2=50%

Y1=60%, Y2=80%

Y1=80%, Y2=60%

Y1=95%, Y2=95%

Y1=50%, Y2=50%
Y1=60%, Y2=80%
Y1=80%, Y2=60%
Y1=95%, Y2=95%

Fig. 32. Multi-yield pareto fronts for charge pump (left) and VCO (right).

In the system level, the lockin time and power trade-offs for the PLL are ana-

lyzed. We change the weighting coefficients for power and lockin time in Eqn. 3.13,

then different optimal PLL performance combinations can be obtained, as shown in

Fig. 33. The two system performances are set to the same yield level. The system

performances shown in the figure are simulated using Spectre with Verilog-A models.

The performance trade-offs without consideration of yield are obtained similar to [15],

also shown in Fig. 33. We can see from the figure that the yield could be very low if

we do the optimization without considering the yield information, especially for the

region around the point denoted as “Opt. point”. The nominal system performances

of “Opt. point” and the initial design point evaluated using direct Spectre simulation

are also plotted in Fig. 33, denoted as “Init. design” and “Opt. design”, respectively.

72

0.5 1 1.5 2 2.5 3 3.5
35

40

45

50

55

60

65

70

Lockin time (us)
P

ow
er

 (
uW

)

50% Yield
80% Yield
Nominal

Init. design

Opt. designOpt. point

Fig. 33. Trade-offs of lockin time and power at different yield levels.

Table VI. Hierarchical optimization results for PLL.

PLL VCO Charge pump
Power Lockin Gain Offset Power Jitter Iup Idown Jitter

Init. D 61.9�W 2.37�s 2.43G/V 1.54GHz 57.2�W 0.87ps 2.11�A 2.07�A 54.2fs

Opt. D 43.4�W 0.95�s 2.36G/V 1.36GHz 36.0�W 0.92ps 3.55�A 3.53�A 63.0fs

Opt. P 45.4�W 0.84�s 2.39G/V 1.33GHz 36.7�W 1.18ps 3.64�A 3.62�A 68.6fs

Table VI shows the results of nominal performances comparison for the initial

design and the “Opt. point” in the obtained pareto front. The system and block-

level performances of initial design and “Opt. point” are both evaluated with direct

transistor-level Spectre simulation and listed in the first and second row, respectively.

The PLL system results in the third row are simulated using Spectre and Verilog-

A models, the building block performances are obtained from Kriging models for

the design parameters of “Opt. point”. We can see they are quite close to the direct

Spectre simulation as in the second row, which validates the accuracy of our Verilog-A

behavioral models.

Similarly, the trade-offs between jitter and lockin time at different yield levels

are plotted in Fig. 34.

As stated before, it is not possible to use direct transistor-level optimization to

verify if the proposed method can find the optimal system-level performance trade-offs

73

0.5 1 1.5 2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Lockin time (us)
Ji

tte
r

(p
s)

50% Yield

80% Yield

Fig. 34. Trade-offs of lockin time and jitter at different yield levels.

as in the two-stage amplifier case. So we randomly sample in the design space and

simulate the corresponding PLL system performances using the Verilog-A models.

Fig. 35 shows an example of the trade-offs of power and jitter at 80% yield level and

the performances of 200 random design samples. It can be seen that the performance

trade-off curve in Fig. 35 is superior to all the verification points, which confirms that

our proposed method achieves optimal designs.

1 2 3 4 5 6 7
30

40

50

60

70

80

90

100

110

Lockin time (us)

P
ow

er
 (

uW
)

Performance trade−off
Verification points

Fig. 35. Verification of performance trade-offs for lockin time and power.

The runtime information is summarized in Table VII, the computation cost for

the complete flow is only a few hours, which is quite acceptable for large analog circuit

synthesis.

74

Table VII. Runtime summary for PLL optimization.

VCO Charge pump

Kriging model gen. 12 min 5 min

Multi-yield pareto gen. 103 min 117 min

Cost function optimization 10 min/point

C. Summary

Automated syntheses of complex analog systems in scaled CMOS technologies are pro-

posed by conducting numerical optimization based on efficient circuit modeling and

system optimization formulation in this chapter. We start with yield-aware optimiza-

tion for small-scale analog circuits by employing iterative search based optimization

approach to efficiently seek optimal performance tradeoffs under yield constraints in

high-dimensional design parameter and process variation spaces. We demonstrate the

proposed approach by constructing pareto front analog performance models. More-

over, specific techniques including partial Kriging evaluation approach have been

developed to facilitate efficient design space exploration while considering process

variations. Experimental results of one oscillator and one operational amplifier con-

firm the good accuracy and efficiency of the presented optimization approach.

In order to handle the large analog/mixed-signal system optimization problems,

we further propose a methodology to perform yield-aware hierarchical optimization

by addressing the problems of generating yield-aware pareto fronts of building blocks

and formulating system performances at specified yield levels. The system-level per-

formance distributions are naturally captured by searching in the multi-yield pareto

fronts while still maintaining the efficiency of hierarchical optimization. The proposed

methodology is validated through the optimizations of a two-stage amplifier and a

75

large charge-pump PLL design with good efficiency achieved in both design cases.

76

CHAPTER IV

ON-CHIP TEST FOR ANALOG/MIXED-SIGNAL CIRCUITS

Besides performing yield-aware system optimization, the other approach to alleviate

the influences of process variations in analog/mixed-signal systems is to use on-chip

test and performance compensation functions to self heal the failing chips caused

by process variations. The implementations of on-chip test/diagnoise idea can vary.

The access of internal analog signals could be very difficult for integrated circuits,

so circuitries are designed to modify the original structures to improve the circuit

performance accessibilities. These design techniques that add testability features

are classified as design for test (DFT), which make the testing of analog/mixed-signal

circuit easier. A more complete realization is to integrate the measurement and failure

classification function blocks in the analog/mixed-signal circuits so the systems can

perform self diagnose and make go/no-go decisions. This approach is called built-in

self-test (BIST) [38].

Careful design and optimization for on-chip testing function blocks are required

for efficient and effective parametrical yield capturing. In this chapter we first propose

a cost-effective linearity test method targeting for switched-capacitor Sigma-Delta

ADCs [39]. The underlining system analysis supports our idea that complex sys-

tem performances can be indirectly tested by some easy-to-measure alternatives. As

such we can achieve efficient and accurate built-in self-testing in analog/mixed-signal

systems. We further look into different design choices of design-for-test schemes for

charge-pump PLLs and perform optimization to enhance test circuit efficiency [9].

77

A. Linearity Test for Sigma-Delta ADCs

Static linearity test of Sigma-Delta ADCs imposes stringent requirement on the pre-

cision of test signals and leads to excessive test time. Consequently, ADC test re-

mains as a bottleneck to the product development and contributes significantly to

the devolvement cost. In this section, a cost-effective linearity test and diagno-

sis methodology is presented for Sigma-Delta ADCs with multi-bit internal DACs.

Frequency-domain nonlinear circuit analysis is employed to systematically establish

the connection between the static linearity measure (INL) and its frequency domain

counterpart (harmonic distortions (HDs)), making it possible to predict INL using

much simpler HD measurements. The efficacy of the proposed technique is demon-

strated by successful construction of accurate simulation-based INL prediction models

which are also compared against with closed-form models resulted directly from our

circuit analysis.

1. System Analysis Using Volterra Series

Our central approach in achieving the low-cost ADC test and diagnosis is to pre-

dict INL via frequency-domain measurements (HDs) easily obtainable by applying a

sinusoidal input to the circuit under test (CUT). To achieve this goal, the connec-

tion between INL and HDs must be established. This is accomplished by performing

discrete-time Volterra series analysis suitable for analyzing the nonlinear circuit be-

haviors of the targeted switched-capacitor ΣΔ ADCs.

In Volterra series, the output of a nonlinear system is considered as a sum of the

responses of increasing orders [40]. In the frequency domain, Volterra series can be

used rather straightforwardly to calculate harmonic distortions and intermodulations

under multiple-tone excitations. If the input signal u(k) is an n-tone input u(k) =

78

ej!1k + ej!2k + ⋅ ⋅ ⋅ + ej!nk, the intermodulation component at the sum frequency

!1 + !2, ⋅ ⋅ ⋅ , !n can be written as

yn(k) = n!Hn(!1, !2, ⋅ ⋅ ⋅ , !n)e
jk(!1+!2,⋅⋅⋅+!n) (4.1)

where Hn(!1, !2, ⋅ ⋅ ⋅ , !n) is the n-th order nonlinear transfer function. The nonlinear

transfer functions can be considered as extensions to the familiar linear (first order)

transfer function and are used as a canonical characterization of the weakly nonlinear

system behavior. For ΣΔ ADCs, the transfer functions can be used to calculate HDs

and INLs.

a. Nonlinear System Modeling

The switched-capacitor ΣΔ ADCs are intrinsically nonlinear discrete-time systems.

To make Volterra series applicable for ΣΔ ADCs, we need to model the internal

quantizers properly. A widely used approach in design analysis is to consider the

quantizer as a linear gain model with added quantization noise at the output [4].

Usually, this additive quantization noise can be modeled as white noise over the

entire signal bandwidth. In spite of the approximation introduced, this choice allows

us to consider the strong nonlinear behavior of quantization through the standard

means of quantization noise.

For each switched-capacitor integrator in the system, the state transfer can be

modeled as a nonlinear function of the integrator’s inputs and its current state

y(k + 1) = F (y(k), x(k), d(k)), (4.2)

where y(k + 1) is the current output of the integrator, y(k) is the previous output,

x(k) and d(k) are the previous input signal and digital feedback signal, respectively.

79

The nonlinear function can be further written as

F (y(k), x(k), d(k)) = y(k) + a1 ⋅ u(k) + a2 ⋅ u(k)
2 + ⋅ ⋅ ⋅+ an ⋅ u(k)

n (4.3)

where u(k) is the difference between the input analog signal and the digital feedback

signal, a1 is the linear gain of the integrator transfer characteristics, and a2, ⋅ ⋅ ⋅ , an

are the second-order to the n-th order coefficients which are used to model the non-

linearities of the integrator.

The transfer curve of an internal D/A converter in the system can be written as

f = b0 + b1 ⋅D + b2 ⋅D
2 + ⋅ ⋅ ⋅+ bn ⋅D

n (4.4)

where f is the DAC output, D is the digital input, b0 is the offset, b1 ⋅D, ⋅ ⋅ ⋅ , bn ⋅D
n

are the first to the n-th order components at the DAC output.

b. Nonlinear Transfer Function Analysis

With the previous analysis, we start to derive transfer functions in the frequency

domain using Volterra series. As an example, we will consider a second-order ΣΔ

ADC with 2-bit internal quantizer as shown in Fig. 36.�� ��
()Y k2 ()X k1()X k()u k

10 11 12 13, , , ,b b b b � 20 21 22 23, , , ,b b b b �11 12, ,a a � 21 22, ,a a �
Fig. 36. Modeling of a second-order ΣΔ ADC.

The nonlinear characteristics of the integrators and the internal DAC will be

modeled using second and third order polynomials, respectively. The state equations

80

for the whole system can be written as

X1(k + 1) = X1(k) + a11Fd,1(k) + a12Fd,1(k)
2,

X2(k + 1) = X2(k) + a21Fd,2(k) + a22Fd,2(k)
2,

Y (k) = � ⋅X2(k),

(4.5)

where X1(k) is the output of the first-stage integrator, X2(k) is the output of the

second-stage integrator and Y (k) is the digital output. Fd,1(k) and Fd,2 are given as

Fd,1(k) = u(k)− b10 − b11Y (k)− b12Y (k)2 − b13Y (k)3

Fd,2(k) = X1(k)− b20 − b21Y (k)− b22Y (k)2 − b23Y (k)3, (4.6)

where b10, b11, b12, b13, b20, b21, b22, b23 are the coefficients of transfer curves for the two

internal feedback DACs, a11, a12, a21, a22 are the nonlinear coefficients for the two

integrators and � is the linear gain for the quantizer. In Volterra analysis, transfer

functions and responses at different orders are analyzed recursively [41, 42]. We start

from deriving the first order (linear) transfer functions. When a single-tone signal

ej!k is applied as the input, we substitute each output X(k) by its linear response

X(k) = H1(!)e
j!k into Equation 4.5 and solve the resulting system equations. We

obtain the first order transfer functions as

Hx1

1 (!) = a11(ej!−1)+a11a21b21�
(ej!−1)2+a21b21�(ej!−1)+a11a21b11�

,

Hx2

1 (!) = a11a21
(ej!−1)2+a21b21�(ej!−1)+a11a21b11�

,

Hout
1 (!) = a11a21�

(ej!−1)2+a21b21�(ej!−1)+a11a21b11�
,

(4.7)

where Hout
1 (!) is the first order transfer function at the quantizer output.

To derive the second order transfer functions, a two-tone input ej!1k + ej!2k is

applied to the system. For any response X(k), we consider its frequency component

81

at !1 + !2, which is given as

X(k) = 2H2(!1, !2)e
j(!1+!2)k. (4.8)

We substitute each second order response into Equation 4.5 and keep only the signal

components at !1 + !2. A set of equations are obtained as

2Hx1

2 (!1, !2)e
j(!1+!2)(k+1) = 2Hx1

2 (!1, !2)e
j(!1+!2)k

+a11[−2b11Y (!1, !2)e
j(!1+!2)k − 2b12H1(!1)H1(!2)e

j(!1+!2)k]

+a12[−b11H1(!1)− b11H1(!2)]
2,

2Hx2

2 (!1, !2)e
j(!1+!2)(k+1) = 2Hx2

2 (!1, !2)e
j(!1+!2)k

+a21[2H
x1

2 (!1, !2)e
j(!1+!2)k − 2b21Y (!1, !2)e

j(!1+!2)k

−2b22H
x2

1 (!1)H
x2

1 (!2)e
j(!1+!2)k]

+a22[−b21H1(!1)e
j!1k − b21H1(!2)e

j!2k]2,

Y (!1, !2)e
j(!1+!2)k = �Hx2

2 (!1, !2)e
j(!1+!2)k,

(4.9)

where Hx1

2 (!1, !2) and Hx2

2 (!1, !2) are the second order transfer functions at the first

and the second stage integrator outputs. The second order transfer function of the

ADC output Hout
2 (!1, !2) can be shown to be

Hout
2 (!1, !2) = �F21

F22

H1(!1)H1(!2),

F21 = 2a12b12 − a11a21b12 − (2a22b
2
22 − a21b22)(e

j(!1+!2) − 1),

F22 = (ej(!1+!2) − 1)2 + a21b21�(e
j(!1+!2) − 1) + a11a21b11�,

(4.10)

In a similar way, the third order transfer function of the ADC output can be

82

derived as

Hout
3 (!1, !2, !3) = �F31

F33

+ �F32

F33

(ej(!1+!2+!3) − 1),

F31 = (2a21a12b
2
11 − 2a21a11b12)H1(!1)H2(!2, !3)

+(2a21a12b11b12 − a21a11b13)H1(!1)H1(!2)H1(!3),

F32 = (2a22b
2
21 − 2a21b12)H1(!1)H2(!2, !3)

+(2a22b11b12 − 2a21b12)H1(!1)H1(!2)H1(!3),

F33 = (ej(!1+!2+!3) − 1)2 + a21b21�(e
j(!1+!2+!3) − 1)

+a11a21b11�.

(4.11)

We only consider transfer functions up to the third order, which are usually adequate

to describe the weakly nonlinear system behavior.

2. Predicting INL using HDs

a. Relating INL with Transfer Functions

The definition of INL is the deviation of the actual ADC transfer curve from the ideal

transfer curve. The ideal curve can be determined either by a least-square fitting

through the acquired samples or by a straight line through the two end points of the

ADC [43]. Here, the two end points method is used to define the INL [44] as shown

in Fig. 37.

The ADC transfer curve after offset and gain correction can be represented by

an n-th order polynomial

yactual(x) = �1x+ �2x
2 + ⋅ ⋅ ⋅+ �nx

n, (4.12)

where yactual(x) is the ADC output, x is the analog input and �1, �2, ⋅ ⋅ ⋅ , �n are the

coefficients to model the system nonlinearity. Suppose that the input ramp signal

used to measure the INL rises from −A to A. The slope
 of the ideal transfer curve

connecting the two end points can be determined by evaluating the two end point

83������� ������								

			

		

	
	

	

		

	

	

 ������ �����

�����
���������� ����� ��� ���� �

�����
�� �������� �����! "�# $����� ��% &�"� �$�����"$�
'%���
���������� �����

2
1 2

n
ny x x xβ β β= + + +()� �*

y x bγ= +

Fig. 37. Definition of integral nonlinearity.

ADC outputs using nonlinear transfer functions at DC

 = AH1(0)+⋅⋅⋅+AnHn(0,⋅⋅⋅,0)
A−(−A)

− (−A)H1(0)+⋅⋅⋅+(−A)nHn(0,⋅⋅⋅,0)
A−(−A)

(4.13)

If only the first three orders of transfer functions are considered, the ideal transfer

slope becomes H1 + A2 ⋅ H3 with offset A2 ⋅ H2. So the ideal transfer curve can be

written as

yideal(x) = (H1 + A2 ⋅H3) ⋅ x+ A2 ⋅H2 (4.14)

where H1, H2, H3 are the transfer functions at DC. With Equation 4.12 and Equa-

tion 4.14, INL can be written as

INL(x) = Vscale ⋅ (x
2H2 + x3H3 − x ⋅ A2 ⋅H3 −A2 ⋅H2)

Vscale =
2n−1

2A⋅(H1+A2⋅H3)

, (4.15)

where Vscale is the scaling factor used to convert the deviation from the ideal transfer

curve into LSB scale.

84

b. Relating INL with HDs

The relationship between INL and transfer functions have been derived in the previous

section. Measuring harmonic distortions using automatic test equipment will become

a feasible way to estimate INL if a relationship of INL and HDs can be derived.

Consider applying a sinusoidal input A ⋅ cos(!k) to measure the HDs. Such input can

be decomposed into a pair of two complex exponentials A/2 ⋅ ej!k and A/2 ⋅ e−j!k.

The corresponding response can be computed using nonlinear transfer functions and

leads to the following expressions for HDs

l1(!) =
1
2
AH1(!)e

j!k + 1
2
AH1(−!)e

−j!k

= 1
2
AH1(!)e

j!k + 1
2
AH∗

1 (!)e
−j!k,

l2(2!) =
1
4
A2H2(!, !)e

2j!k + 1
4
A2H2(−!,−!)e

−2j!k

= 1
4
A2H2(!, !)e

2j!k + 1
4
A2H∗

2 (!, !)e
−2j!k,

l3(3!) =
1
8
A3H3(!, !, !)e

3j!k + 1
8
A3H3(−!,−!,−!)e

−3j!k

= 1
8
A3H3(!, !, !)e

3j!k + 1
8
A3H∗

3 (!, !, !)e
−3j!k,

(4.16)

where l1(!), l2(2!) and l3(3!) are the first, second, third order harmonic components

at the output, H1, H2, H3 are the first, second, third order transfer functions, and

H∗
1 , H

∗
2 , H

∗
3 are the conjugates of H1, H2, H3, respectively. Combining the real and

imaginary parts of the response, we can rewrite Equation 4.16 as

l1(!) = ARe(H1(!)) cos(!k)− AIm(H1(!)) sin(!k),

l2(2!) =
1
2
A2Re(H2(!, !)) cos(2!k)−

1
2
A2Im(H2(!, !)) sin(2!k),

l3(3!) =
1
4
A3Re(H3(!, !, !)) cos(3!k)

−1
4
A3Im(H3(!, !, !)) sin(3!k).

(4.17)

Notice that one of the characteristics of ΣΔ ADCs is oversampling. This means the

sampling frequency is much higher than the input signal bandwidth. The maximum

85

discrete-time input signal frequency is given as

!max = 2� ⋅ fb/fsample = �/OSR, (4.18)

where fb is the input signal bandwidth, fsample is the sampling frequency and OSR is

the oversampling ratio. Normally OSR is quite large, so !max is very small and the

imaginary parts of transfer functions in Equation 4.11 can be neglected. Therefore,

the real parts of the transfer functions are good approximation of the complete transfer

functions. In this case, Equation 4.16 can be rewritten as

l1(!) ≈ AH1(!),

l2(2!) ≈
1
2
A2H2(!, !),

l3(3!) ≈
1
4
A3H3(!, !, !),

(4.19)

where ! is near DC.

The amplitude and phase of each output frequency component can be measured

using spectrum analyzer or on-chip FFT function block. The phase information can

be used to determine the sign of the transfer functions. Combining Equation 4.15

and Equation 4.19, we can compute INL from HDs analytically. If we define each

harmonic distortion as the ratio of the harmonic distortion to the first order response,

i.e. HDi = li/l1, then Equation 4.15 can be rewritten as

INL(x) ≈
2n − 1

A3
(x2AHD2 + 2x3HD3 − 2xA2HD3 − A3HD2). (4.20)

3. Simulation-based Model Generation

We have derived closed-form models for predicting INL using simple HD measure-

ments. However, one limitation of these models is the limited prediction accuracy

especially for INL due to the weakly nonlinear assumption made and omission of

other sources of nonlinearity such as quantizers. To generate more accurate predic-

86

tion models, we adopt a simulation-based approach where regression models predict-

ing INL using HDs are extracted based upon a large population of simulation data.

Compared to closed-form analytical models, this simulation-based approach allows a

more truthful account for various circuit nonlinearities. However, the difficulty is that

generating a large set of simulation data by transistor-level simulation while injecting

various parametric variations is computationally infeasible. To address this challenge,

we adopt the fast ΣΔ ADC simulation technique presented in Chapter II.

In principle, by using the simulation data, a regression model can be generated

for INL based on the HD measurements. For example, we can express a specification

of interest as a polynomial function of the harmonic distortions and use least square

fitting to construct such model. In our case, the second and third order harmonic

distortions with sign information, together with the linear system gain (to represent

b11) are used as the input parameters to the prediction model. We can formulate such

a polynomial regression model as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 H11 ⋅ ⋅ ⋅ H11HD21 H11HD31 ⋅ ⋅ ⋅

...

1 H1n ⋅ ⋅ ⋅ H1nHD2n H1nHD3n ⋅ ⋅ ⋅

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1

...

�m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F1

...

Fn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.21)

where n sets of training data are used, H1i is the i-th set of linear system gain (the

ratio of the output signal power and the input signal power), HD2i and HD3i are the

i-th set of second and third order harmonic distortions. The polynomial model we

propose to use is of second order, so there are totally 10 terms to represent a single

output. F1 to Fn are the values corresponding to the input sets and we get the vector

� from least square fitting as the coefficients for the polynomial regression model.

For the linearity test, we are mainly interested in the largest nonlinearity level

in the system, so the maximum INL (INLmax) is a good representation for the overall

87

nonlinearity. The operation to find the maximum INL, however, is quite nonlinear.

Therefore, a low-order polynomial regression model may not be sufficient to relate

the HDs with the maximum INL. To address this issue, a more suitable regression

tool, Support Vector Machine (SVM) is adopted. Support Vector Machine (SVM)

[45] is a powerful method to build highly nonlinear multivariate regression models.

In SVM regression, we consider a set of training data {(x1, y1), (x2, y2), ⋅ ⋅ ⋅ , (xn, yn)},

where xi is the input and yi is the corresponding output. The input X is mapped into

a high dimensional feature space using nonlinear transformation, then a best fitting

function is constructed in this feature space as

f(x) = ! ⋅ �(x) + b (4.22)

where � is the nonlinear transformation, b is the bias term, and ! is the model

parameter to be decided. The goal of SVM regression is to find the value of ! and b

such that the values of x can be determined by minimization the regression risk.

4. Circuit Example

We demonstrate the accurate prediction of INL using simulation-based models and

compare them against simpler closed-form analytical models. The test circuit is a

second-order switched-capacitor ΣΔ ADC with 2-bit internal DAC. It is implemented

in 0.13�m CMOS technology with a single 1.5 V supply. The oversampling ratio is

set to 128, the sampling clock is 1MHz and the digital filters are designed to generate

11-bit digital codes. The major sources of nonlinearities considered are the internal

DAC mismatch which is bounded within a typical value of 1%.

We use Equation 4.20 to calculate INL from harmonic distortions directly. Fig. 38

compares the calculated INL from HDs using the analytical expression and the what

is simulated by the LUT-based simulator. We can see that the analytical model can

88

predict the overall trend of the INL curve very well.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

6

7

Input (v)
IN

L
 (

L
S

B
)

Calculated INL
Actual INL

Fig. 38. Comparison of INL curves predicted by analytical model and simulated re-

sults.

The simulation-based INL prediction model is built with 1,000 simulation runs of

the LUT-based simulator. In each run, the maximum INL value INLmax and HDs are

collected. The simulation-based model is built as a SVM [45] regression model. Since

it is too time consuming to use the traditional transistor-level simulation to perform

a complete INL simulation, here we only compare the predicted INLmax values with

what are simulated by our fast LUT-based simulator, as shown in Table VIII for three

circuit samples.

Table VIII. The accuracy of the maximum INL prediction.

Actual INL Analytical Simulation-based

(LSB) (LSB) (LSB)

3.5819 3.2573 3.5818

4.9884 4.7706 4.9307

3.0084 2.6986 3.0364

In Fig. 39, the accuracy of the simulation-based INL prediction model is verified

for a large set of circuit instances. We can observe that the accuracy of the prediction

model is very good. In this case, the average relative error is 0.69%.

89

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

Actual INL (LSB)

P
re

d
ic

te
d

 IN
L

 (
L

S
B

)
Fig. 39. The accuracy of INLmax prediction using the simulation-based model.

B. On-chip Test Design and Optimization for PLL

Test of phase-locked loops has been hampered by the complex mixed-signal nature

of the system operation. While several on-chip test schemes have been proposed to

reduce the cost of PLL test, a more systematic DFT development methodology, spe-

cially targeting at the growing parametric failures in nanometer VLSI technologies, is

yet to be developed. In this section, we utilize the PLL modeling framework in Chap-

ter II which can realistically map the device-level process variations to the variations

of system-level performances. Our parametric modeling techniques allow us to exam-

ine the correlations between the system performances and specific DFT measurements

feasibly through behavioral-levels simulations. An efficient methodology is developed

to facilitate evaluation and optimization of PLL DFT schemes. The application of

our DFT development methodology is demonstrated by generating optimized DFT

schemes that produce low mis-prediction levels for detection of parametric failures of

charge-pump PLLs.

1. DFT schemes for Parametric Failure Detection

The direct measurement of internal circuit nodes in a PLL is costly and it may also

degrade the PLL performance [46, 47]. A better approach is to utilize the exist-

90

ing digital blocks, such as to use the frequency divider as counter and read out its

state in order to detect chip failures [46, 47, 48, 49]. As illustrated in this chap-

ter, the performances of different blocks are intrinsically connected. It is expected

that the frequency divider/counter output will change significantly if there exists a

catastrophic fault. However, parametric failures may produce smaller variations in

the readout values. Hence, they are more difficult to detect and deserve more care-

ful treatments. The three DFT schemes shown in Fig. 40 are under consideration.

���������	�

�
�������
�	��	�
�� ���
������ �������	�
 ����
��

����	�

��
��	�	�
	�
��
��������
���������	�

�
�������
�	��	�
 ���
������ �������	�
 ���
�	�
	�
��
������

�
��
����	�

��
��	

�� ��
��� !"#$# %
��� !"#$# &

���������	�

�
�������
�	��	�
�� ���
������ �������	�
 ���

�	�
	�
��
������
�
��

����	�

��
��	
�����' �������� ����� !"#$# ()*+, -����	�
 .

.
.

)*+, -����	�

)*+, -����	�

/0112/0112/0112 �
�������
�3�
�
�4�5�6789: 8,9;<8
/0112/0112/0112 �
�������
�3�
�
�4�5�6789: 8,9;<8
/0112/0112/0112 �
�������
�3�
�
�4�5�6789: 8,9;<8

Fig. 40. DFT scheme candidates.

Similar in spirit to the existing DFT schemes, the main idea of the proposed DFT

schemes is to control the charge pump in a way such that the output frequency of the

PLL will be altered and the state of the frequency divider is read out at certain time

91

instance for failure detection. Device-level variations and mismatch will perturb the

operation of the PLL and can push the system performances out of the specification

window. The same parametric variations may be reflected in the variations in the

readout values of the frequency divider. Parametric failures may be detected if the

states of the frequency divider are strongly correlated with the design performances.

The difference of the counter output ΔN during a constant time period can be

written as

ΔN =
∫ T2

T1

Fvco(t)dt =
∫ T2

T1

f(Vcon(t))dt (4.23)

where T1 and T2 define the time interval. Fvco is the VCO frequency, which is a

function of the control voltage Vcon for the VCO. When it comes to the DFT scheme

development, we will need to decide the way in which the the VCO control voltage

is altered and define suitable test time T1 and T2 for failure detection. Each of the

DFT schemes in Fig. 40 is discussed in details as follows.

a. Scheme 1

The first DFT scheme is similar to the one adopted in [48]. In the normal operation

mode, the reference input and the output of the frequency divider are applied to

the frequency detector to form the closed loop configuration. In the test mode,

the output of the frequency divider is disconnected from the input of the frequency

detector. The reference input and or its delayed versions are fed through the muxes

to the frequency divider forming a open loop configuration. The first delay element

has a larger delay value than the second one. To charge up the VCO, the reference

input and its delayed version through delay 2 are applied to the frequency detector.

To charge down the VCO, the delayed versions of the reference input by both delay

1 and delay 2 are selected. The delay values of the two delay elements determine the

92

phase error introduced at the frequency detector inputs. Hence, they also dictate the

coverage of the VCO tuning range in this DFT setup. Under typical design values,

delay values in the order of ten’s of the reference clock signal period are required,

which may cost significant silicon area to implement.

For all these three schemes, the counter read-out signals, which control the start

and end points for a single test run, are generated by passing the reference clock

signal Fref through a series of D flip-flops. As such, the contents of the frequency

divider within a defined time interval are read out.

b. Scheme 2

To solve the silicon overhead problem of the scheme 1, we propose the second DFT

scheme which employs an inverter to introduce the phase difference. Since this con-

figuration introduces a constant phase delay of � at the inputs of frequency divider,

the charge pump experiences the following sequence of operation: charge up → stop

→ charge up → stop until the control voltage of the VCO reaches the fully voltage

swing.

c. Scheme 3

The third DFT scheme is configured as follows: first the PLL is put in a standard

closed-loop configuration and then a standard phase lock test is performed. Once the

PLL is locked, the feedback signal frequency is changed from Fout to 2Fout by using

the mux to select the output of the second last D flip-flop in the divider.

A brief comparison of the three DFT schemes is shown in Table IX.

93

Table IX. Comparison of DFT schemes.

DFT Area cost Test time

Scheme 1 high short

Scheme 2 low short

Scheme 3 low medium

2. DFT Evaluation and Optimization

The overall flow of the evaluation and optimization of a given DFT scheme is shown in

Fig. 41. The most straightforward way to evaluate a DFT scheme is to perform Monte-

Perform Monte-Carlo PLL simulations

using parametric Verilog-A models;
Collect samples of specifications

Perform parameter reduction to

identify a reduced set of key Verilog
parameters: Zv

For a given DFT scheme:

Perform a few simulations to build
a nonlinear regression model for each

measurement: Ti= fi(Zv) in Zv

Use the above regression models to

quickly generate large samples of
measurements for each Ti

Construct a regression model relating

the specifications with the
measurements

Compute sensitivities of specifications

w.r.t. measurements

Have achieved high

sensitivities? End

Adjust DFT setups

Fig. 41. Evaluation and optimization a DFT scheme.

Carlo simulations and examine the ability of using the specific DFT measurements to

predict the pass/fail status of the design. Since a set of few hundred Monte-Carlo PLL

simulations may take tens of hours to complete, more runtime efficient approaches

are needed, especially for the optimization purpose.

94

a. Identification of Key System Level Variation Sources

As shown in Fig. 41, prior to the evaluation of any DFT scheme, Monte-Carlo simula-

tions utilizing pre-characterized parametric Verilog-A models are conducted to collect

a set of PLL performance samples by sampling the underlying process variations. Al-

though being expensive, this process presents a one-time cost since it is only used to

establish the correspondence between the device-level variations and variations in the

system performances.

To facilitate efficient subsequent DFT evaluation and optimization steps, it is

desired to identify a potentially smaller set of key system-level variation sources that

contribute to most of specification variations. If such goal is achieved, the following

steps can be more efficiently conducted over a compressed parameter space consisting

of the most critical sources of variation. This parameter dimension task can be

achieved by applying the design-specific dimension reduction technique described in

Chapter II. More specifically, by utilizing the simulation data collected in the prior

step, the RRR-based parameter dimension reduction is applied to identify a small

set of new critical system-level variation sources, Zv, which are linear or nonlinear

combinations of a potentially large set of various behavioral-level model parameters

of all the PLL building circuit blocks.

b. DFT Evaluation and Optimization

The optimization of a given DFT scheme with n digital outputs is illustrated in the

second half of Fig. 41. Since a DFT scheme may be evaluated many times under

different setups (e.g., the time interval within which the states of the frequency divider

are read out) within the optimization loop, the correlation between the DFT schemes

and the PLL performance must be efficiently conducted. This goal is achieved by

95

utilizing the critical sources of variations, Zv, identified in the previous step.

Noticing that Zv only contains a small set of variations, a nonlinear empirical

model relating each measurement Ti of the given DFT scheme and Zv can be rather

efficiently generated. This is achieved by conducting a few Verilog-A based PLL sim-

ulations at different Zv samples and performing nonlinear regression: Ti = ftv(Zv).

Note that this step does not incur a high simulation cost since regression models

are only built over a low-dimension parameter space represented by Zv. Using these

easily obtained regression models, a large set of samples for each Ti can be efficiently

generated. By examining the measurement data and the pre-computed system per-

formance data, sensitivities measures can be computed to evaluate the effectiveness

of the DFT scheme as follows. The overall sensitivity of the i-th system performance

Si with respect to a given DFT scheme is defined as

Mi =

∣

∣

∣

∣

∣

∂Si

∂T1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂Si

∂T2

∣

∣

∣

∣

∣

+ ⋅ ⋅ ⋅+

∣

∣

∣

∣

∣

∂Si

∂Tn

∣

∣

∣

∣

∣

, (4.24)

where n is the number of total digital outputs in the DFT, and ∂Si

∂Tj
is the sensitivity of

Si with respect of the j-th digital output. All these sensitivities in the above equation

are obtained via least square fitting based on the measurement and performance data

mentioned before. Note that ∂Si

∂Tj
is normalized with respect to the variance of Tj .

For a given DFT scheme, efficient optimization is conducted to find an optimal setup

that leads to a highest overall sensitivity.

Once an optimal DFT scheme has been identified, a more accurate correlation

model that is capable of accurate pass/fail chip prediction using the corresponding

DFT measurements is extracted. To capture the potential nonlinear correspondence

between the design performances and the measurements, Support Vector Machine

(SVM) is adopted as an accurate classifier. Support Vector Machine (SVM) [45] is a

powerful method to build highly nonlinear multivariate regression/classification mod-

96

els. In SVM regression, we consider a set of training data {(x1, y1), (x2, y2), ⋅ ⋅ ⋅ , (xn, yn)},

where xi is the input vector and yi is the corresponding output. The input X is

mapped into a high dimensional feature space using nonlinear transformation, then

a best fitting function is constructed in this feature space as

y = f(x) = ! ⋅ �(x) + b (4.25)

where � is the nonlinear transformation, b is the bias term, and ! represents the model

parameters to be decided. Based on this nonlinear function f(⋅), we can classify the

chip as faulty or not with the DFT circuit outputs.

3. Optimization Example

We demonstrate the application of the proposed DFT development methodology with

a PLL design example. The PLL circuit and proposed on-chip test schemes are

implemented in 90-nm CMOS technology, specifications of the PLL are listed in

Table X.

Table X. PLL specifications.

Technology 90 nm CMOS

Supply Voltage 1.2 V

Power Consumption 0.98 mW

Reference Signal 10.7 MHz

Center Frequency 1.37 GHz

Frequency Divider Ratio 128

We consider three system performances. The first one is the startup time from

power on to the locked mode, which is actually the lock time from the zero frequency

condition to the operation frequency. We denote it as locktime1. The second spec-

97

ification locktime2 is mainly targeted for the dynamic behavior of the PLL, which

is measured as the time needed from the locked mode to the new locked mode with

half output frequency. The third specification considered is the maximum frequency

maxfreq, which determines the highest clock frequency that the PLL can generate.

The device-level parameter variations with spatial correlations are modeled following

the work in [50, 51]. We use multivariate Gaussian distributions to model vari-

ous transistor parameter variations such as the variations of the threshold voltages.

For each variational parameter, the variance is set to 3� = 10% for 90-nm CMOS

technology [27].

a. Performance Modeling

The frequency versus control voltage curve of the VCO is extracted using the efficient

modeling framework in Chapter II. First we simulate the VCO for a few clock cycles

and gather the time-domain output response as Y . Then RRR is applied to get

a reduced parameter set Z to represent the important device-level parameters. A

parametric model of the VCO in terms of Z is then built. To model the statistical

characteristics of the VCO accurately, a 6-th order polynomial fitting is used to fit

the output frequency vs. control voltage curve.

The Verilog-A models for other building blocks are extracted in a similar fashion.

Specifically, the charge pump model is generated using a 3-rd order polynomial in the

output voltage for each charge-up/down current. There are a total of 17 Verilog-A

model parameters extracted for the complete PLL design.

b. Test Scheme Evaluation and Optimization

Prior to the DFT evaluation and optimization, we perform Monte-Carlo simulations

to collect a large set of system performances samples. This is accomplished using our

98

efficient parametric modeling infrastructure. The distribution of each specification is

shown in Fig. 42. The pass/fail decision is based on whether all specifications can

meet the performance windows or not. The targeted specification windows are set as

follows: locktime1 < 2.5�s, locktime2 < 2.5�s and maxfreq > 2.085GHz.

1 2 3 4 5
0

100

200

300

400

Locktime1 (us)

N
u

m
b

er
 o

f
S

am
p

le
s

0 1 2 3 4 5
0

100

200

300

400

Locktime2 (us)

N
u

m
b

er
 o

f
S

am
p

le
s

2.08 2.085 2.09 2.095 2.1
0

100

200

300

400

Maxfreq (GHz)

N
u

m
b

er
 o

f
S

am
p

le
s

Fig. 42. Distribution of system performances.

As discussed previously, each DFT scheme is based on reading out the states

of the frequency divider and the corresponding digital codes are used to identify

parametric failures. Since the bit length of each digital code is limited by the number

of D flip-flops in the frequency divider, overflow may occur. When overflow happens,

we add 2m to compensate it, where m is the number of D flip-flops in the frequency

divider. The proposed DFT evaluation and optimization methodology is applied to

each of three DFT schemes. At the end of the optimization, we rank the effectiveness

of each test scheme by computing the total DFT sensitivity to each specification, as

listed in Table XI. Our analysis results indicate the scheme 1 is the most effective

Table XI. Sensitivities of system performance to DFT schemes.

Spec. 1 Spec. 2 Spec. 3

DFT Scheme 1 4.7439 2.457 1.8836

DFT Scheme 2 2.3752 0.6124 0.0905

DFT Scheme 3 2.6324 1.4951 1.2698

99

scheme since it has the largest sensitivities for all the specifications. Scheme 2 is

identified as the least effective scheme.

c. DFT Scheme Verification

The three DFT schemes have been ranked in the previous section using sensitivity

analysis. To verify this result, for each scheme, a SVM model is extracted to pre-

dict the pass/fail status of the chips based on the corresponding DFT outputs. 400

Monte-Carlo simulation samples are generated by conducting PLL system simulation

using Verilog-A macromodels. These data are used to generate the SVM model. To

evaluate the effectiveness of the each scheme more reliably, another 100 Monte-Carlo

simulations are carried out and used as the test data for checking the accuracy of the

SVM model. The pass/fail predictions achieved through the three SVM models are

compared against the simulated chip performances, as shown in Fig. 43. Here, the

predictions made through the simulation are labeled as “direct measurement”, and

+1 indicates a chip being classified as “fail” while −1 indicates the opposite. Some

offset has been applied to each DFT scheme when fail chip detected (at points of +1)

for easier comparison.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

Chip Index

P
as

s/
F

ai
l

Direct measurement
DFT scheme 1
DFT scheme 2
DFT scheme 3

Fig. 43. Pass/fail predictions of three DFT schemes.

100

From Fig. 43 we can see that DFT scheme 1 only has only 1 misclassification.

The performance of DFT scheme 2 is verified to be poor as it can only detect two

faulty chips which may have largest variations. DFT scheme 3 can detect more failures

than scheme 2 but is still not as good as scheme 1. The performance of each DFT

scheme are summarized in Table XII. The Monte-Carlo simulation results confirm

the validity of our sensitivity analysis.

Table XII. Comparison of DFT schemes to identify faulty chips.

Defect Yield Overall

escape loss accuracy

DFT Scheme 1 0.0% 1.0% 99%

DFT Scheme 2 13.0% 0.0% 87%

DFT Scheme 3 7.0% 3.0% 90%

The faulty chips that can not be detected by various DFT schemes are mostly

near the system specification boundaries. This can confirmed by examining the loca-

tions of mis-predictions in the specification space. Such an analysis is done for schemes

1 and 3 in Fig.44 and Fig.45, where the dashed cube represents the acceptance region

of the specifications.

For an effective DFT scheme, the change of process parameters shall be reflected

in the digital outputs such that the potential parametric failures may be detected.

To examine this, we consider two specific perturbed PLL circuits. In the first circuit,

relatively small parametric variations are introduced in the VCO and the circuit

is verified to be meeting all the specifications. While in the second circuit, large

perturbations are introduced into the charge-pump, causing parametric failures. We

show the digital outputs produced by DFT scheme 1 for the nominal circuit and the

two perturbed circuits in Fig. 46. As can be seen, the digital outputs of the first

101

0 1 2 3 4
0

2
4

2.08

2.085

2.09

2.095

2.1

2.105

Locktime1 (us)Locktime2 (us)

M
ax

fr
eq

 (
G

H
z)

Correct prediction

Misprediction

Fig. 44. Chip prediction distribution for DFT scheme 1.

0
1

2
3

0
1

2
3

4
2.08

2.085

2.09

2.095

2.1

Locktime1 (us)Locktime2 (us)

M
ax

fr
eq

 (
G

H
z) Correct prediction

Misprediction

Fig. 45. Chip prediction distribution for DFT scheme 3.

102

circuit do not vary significantly from those of the nominal circuit and the circuit is

classified correctly as a good chip by the DFT results. In contrast, the digital outputs

of the second circuit vary significantly from the nominal values, which is also correctly

classified by the DFT scheme as a failing chip.

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

Readout index

D
ig

it
al

 o
u

tp
u

t
Norminal circuit

Charge pump variation

VCO variation

Fig. 46. Digital output changes due to process variation for DFT scheme 1.

d. DFT Trade-off Analysis

We further look into the trade-off between the accuracy and the number of digital

outputs for the considered DFT schemes. This is important since fewer test codes

will correspond to a shorter test time, if a similar accuracy can be achieved. This

trade-off analysis is conducted for every scheme in Fig. 47. It can be observed that

for a small number of digital outputs, the accuracy of scheme 2 is actually higher

than that of scheme 3. It can be also seen that the accuracy of scheme 3 becomes

quickly saturated as the number of outputs increases. Under all the cases, scheme 1

is always the optimal choice.

C. Summary

In this chapter we address the problems of testing analog/mixed-signal circuit per-

formances with consideration of process variations. We propose to use Volterra series

103

3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

Number of test codes

E
rr

o
r

DFT scheme 1

DFT scheme 2

DFT scheme 3

Fig. 47. Error v.s. number of test codes.

to analyze the nonlinear circuit behaviors of Sigma-Delta ADCs in the frequency

domain. This analysis allows us to formally relate the linearity metrics with eas-

ily obtained harmonic distortions measurements. The closed-form analytical models

have been derived to allow lost-cost linearity test based on simple HD measurements.

In order to further improve the prediction accuracy, a simulation-based model gener-

ation approach is adopted which is enabled by the fast LUT-based ADC simulation

technique presented in Chapter II. The good accuracy of the proposed prediction

models is verified by the close fitting of the INLs obtained by the proposed linearity

test method and the actually simulated values.

Design-for-test development methodology targeting at the detection of paramet-

ric failures in charge-pump PLLs is presented. Such methodology is enabled by de-

tailed bottom-up macromodeling which leads to a scalable parametric PLL simula-

tion infrastructure based on Verilog-A behavioral modeling presented in Chapter II.

In conjunction with the powerful dimension reduction techniques that are employed

to deal with high process variation space, efficient PLL DFT scheme evaluation and

optimization are conducted. As a demonstration of the proposed techniques, three

DFT schemes are evaluated and optimized. Monte-Carlo simulations are performed,

which confirm the results obtained from our DFT methodology. Furthermore, trade-

104

off analysis concerning detection accuracy and test time for the DFT schemes are also

performed.

105

CHAPTER V

DESIGN CASE: ALL-DIGITAL PLL

In this chapter we apply the modeling, optimization and testing techniques discussed

in the previous chapters in a complicated all-digital PLL (ADPLL) design case. We

start with understanding the operation of ADPLL system, then implement the build-

ing blocks in transistor level. System optimization considering the uniqueness of

digital intensive implementation and system reconfigurations is performed with effi-

cient variation-aware block models. On-chip performance detection and performance

tuning functions are also implemented to detect parametric failures and carry out

performance compensation.

A. System Background

The concept of ADPLL was first proposed for clock generation with integer-N fre-

quency multiplication [52, 53]. With the digital interface, PLL frequencies can be

controlled directly by digital logic blocks or microcontrollers. Since the clock gener-

ation does not require very accurate frequency steps, most of these systems featured

ring oscillators with integer-N frequency multiplication. The recent proposed ADPLL

designs are mainly targeted at wireless communication applications, which have tight

system specifications for jitter, power and frequency resolution [54, 55, 56, 57]. Most

of these systems feature fractional-N frequency multiplication and employ LC-tank

oscillators to achieve good phase noise performances. In this chapter, we focus on the

design of fractional-N ADPLLs with LC-type oscillator cores.

An example of ADPLL block diagram is shown in Fig. 48. The system output

frequency Fout is determined by the frequency division ratio (FDR). Suppose Ni is the

integer part of the frequency division ratio and Nf is the fractional part, the system

106

output frequency Fout equals to FDR = Ni+Nf times the reference signal frequency

Fref . ����������	
����
������ ����������������� ��� !"!#!$
Fig. 48. All-digital PLL system block diagram.

The core of ADPLL is digital controlled oscillator (DCO), of which the frequency

is controlled by digital codes. The control words for DCO come from the phase

difference of reference signal and the output signal. During a reference clock period,

clock accumulator (ACU) is used to count the integer number of the output clock

Fout cycles in this reference clock period, and time-to-digital converter (TDC) is used

to calculate the fractional part.

If PLL is stabilized, the accumulated clock cycle number should be equal to the

frequency division ratio.

ACU [k]−ACU [k − 1] + TDCgain ⋅ (TDC[k]− TDC[k − 1]) = N i +Nf (5.1)

where ACU [k] and TDC[k] are ACU and TDC outputs in the k-th clock cycle,

TDCgain is the scaling factor to convert TDC outputs from digital measurement

results to the frequency domain. Suppose the resolution of TDC is Tres and the

output clock period is Tout, TDC gain can be calculated as [58]

TDCgain =
Tres

Tout

= Tres ⋅ Fout (5.2)

If the counted output clock cycles do not meet the required frequency division

ratio, the difference detected by ACU and TDC will be passed through loop filter to

107

adjust DCO frequency. The digital filter in the loop is to make the frequency tuning

smooth. In ADPLL systems, the digital implementation of loop filters can eliminate

large capacitors needed in conventional charge-pump PLL and is robust to process

variations.

In real world, there always exist nonlinearities and noises in building blocks like

thermal noise in DCO and limited time resolution in TDC. These nonlinearities are

noise-shaped by loop filters at system output as shown in Fig. 49. Careful design

of loop characterizations can reduce the total phase noise by balancing the contribu-

tions from different noise sources, so the filter design is very critical for the ADPLL

performance. ��� ����� ��� �����	
� 	
�	��
�� 	��
��
OUTφ

Fig. 49. Phase noise contributions of TDC and DCO.

ADPLL system design is mainly focused on constructing key building blocks.

There are different topologies for each building block and many trade-offs to consider.

For example, we can use a high-resolution TDC for better frequency detection with

more power burned, but whether it is a good choice really depends on system spec-

ifications. The trade-off analysis becomes more complicated when process variations

are taken into consideration. The varying transistor characterizations make system

performances statistical variables, so the designs tuned in nominal operation may not

be optimal under process variations. To solve these problems, we first explore pos-

sible architectures of building blocks and evaluate their system performances. Then

we perform yield-aware transistor tuning to optimize circuit design under specified

system configurations.

108

B. System-level ADPLL Design

Traditionally, PLL designers would choose a topology for PLL based on the open loop

transfer function then set the gain and pole/zero locations to achieve the required

phase/gain margin [59]. The choice of building blocks and loop filter characterizations

is the first step in ADPLL design. Since the number of possible choices is limited,

it is beneficial to evaluate the system performances with these discretized topology

parameters as the starting point.

1. System Performance Analysis

It is very difficult or impossible to use SPICE-like simulators to evaluate ADPLL

system performances due to the extraordinarily long computation time, which may

take weeks or months for a single transient run. Transfer function based simulation

approach is proven to be accurate and efficient to evaluate phase noise [7, 59, 60] if

block noises are modeled accurately.

Since ADPLL operates in the digital domain, the corresponding transfer function

is z-operator. A Backward-Euler transformation from z-domain to s-domain can be

written as in Eqn. 5.3 for small ! [7]. This approximation is valid as long as the

frequencies of interest are much smaller than the sampling rate, which is Fref in this

case. It is widely accepted that this linear approximation holds as long as the PLL

bandwidth FBW is at least 10 times smaller than the sampling rate [61]. Here the

PLL bandwidth is set to a few ten KHz while the reference signal frequency is over

ten MHz, so the transformation in Eqn. 5.3 holds the accuracy.

z = ej� ≈ 1 + j� = 1 +
j!

Fref

= 1 +
s

Fref

(5.3)

The noises of building blocks can be modeled and injected to ADPLL systems

109

as in Fig. 50 [7]. Noises will go through high-pass or low-pass shaping depending on

the different locations they are injected in.

1
s

outφ
,n TDCφ ,n DCOφ

1Z −

��� ������� ������ �	
��
���� ������
���� ����

REFφ
,n REFφ N ��	

refF

s

��
��� ������
Fig. 50. s-domain linear ADPLL noise model.

Suppose we have loop filter transfer function HLF (f), the TDC noise at the

system output No,TDC can be written as

No,TDC =

∣

∣

∣

∣

∣

HLF (f)

1 +HLF (f)

∣

∣

∣

∣

∣

2

�n,TDC (5.4)

where �n,TDC is the total TDC noise. The DCO noise at the system output No,DCO

can be written as a function of total DCO noise �n,DCO

No,DCO =

∣

∣

∣

∣

∣

1

1 +HLF (f)

∣

∣

∣

∣

∣

2

�n,DCO (5.5)

Similarly the reference signal noise contribution No,REF is

No,REF =

∣

∣

∣

∣

∣

N ⋅HLF (f)

1 +HLF (f)

∣

∣

∣

∣

∣

2

�n,REF (5.6)

where N is the frequency division ratio and �n,REF is the reference signal noise.

Total system phase noise No,tot can be calculated by adding these noise contri-

butions together

No,tot = No,TDC +No,DCO +No,REF (5.7)

As can be seen in Eqn. 5.7, loop characterizations and block noises determine

110

system noise performances. Other system performances like power and area are much

easier to be included in the system level, as long as we know the corresponding

numbers of building blocks, they can be simply added in the system level. So in the

following sections we will put our focus on noise performance modeling.

2. Loop Filter

The filters in ADPLL systems can be configured as Type-I or Type-II, which have

different phase noise shaping capabilities. The transfer function of type-I filter can

be considered as a direct feedforward path with a tunable loop gain �. Type-II filter

has an extra pole and its transfer function can be written as [7]

HLPF (f) = � +
� ⋅ FREF

s
(5.8)

where � is the filter coefficient.

High order filters can also be added for better phase noise suppression. IIR filters

are typically used for the simplicity [7]. To ensure loop stability, cascading of single-

pole IIR filters can be used. For a M-th order IIR filter, the transfer function can be

expressed as

HIIR(f) =

(

1 + s/FREF

1 + s/ (�FREF)

)M

(5.9)

where � is the IIR filter gain.

Digital filters are superior to traditional analog implementations since they are

robust to process variations, so we can save the effort of modeling of process variations

for loop filters. For loop coefficients/gains, numbers in the powers of 2 are much easier

to be implemented in digital circuits, so we select these discretized values in the system

design space exploration.

111

3. Time-to-Digital Converter

Time-to-digital converters in ADPLL behave like phase detectors in charge-pump

PLLs to detect the frequency/phase differences between input signals. The basic

principle of TDC is that the fast input signals are passed through delay chains and

the comparators are used to detect the point when the two signals exchange leading.

The nonlinearities of TDC are mainly due to the limited time resolution, which equals

to the minimum cell delay Tres. It behaves quite like the quantization noise in analog-

to-digital converters (ADCs). For an ideal TDC, the noise power can be written as

[58]

�n,TDC =
1

12 ⋅ FREF

(

2� ⋅ Tres

Tout

)2

(5.10)

As can be seen from Eqn. 5.10, TDC noise power is proportional to the square

of TDC time resolution Tres, which is typically a buffer or inverter delay. So it is of

interest to use higher resolution TDC implementation to reduce associated noise with

a penalty of extra power [57, 62]. The choice of fine resolution TDC is also treated

as a topology selection variable in the ADPLL system design exploration.

Process variations will cause nonlinear time-to-digital conversion, which makes

the TDC noise level increase and causes additional noise in the ADPLL system output.

We will discuss this effect and introduce a numerical method to calculate the influence

in the next section.

4. Digital Controlled Oscillator

The nature of DCO is still oscillator, so the flicker noise and thermal noise inevitably

affect DCO performances. These natural oscillator noises can be characterized us-

ing simulators like SpectreRF [63] and their influences at the system output can be

calculated using Eqn. 5.5.

112

As the frequency control of oscillator is implemented by the capacitance tuning,

the minimum varactor capacitance switching determines the frequency resolution.

Due to the size of varactors, the minimum frequency resolution achievable by switch-

ing varactors is a few ten KHz [7]. Better frequency resolutions can be achieved by

using digital-to-analog converters (DACs) to control the unit varactor capacitance

continuously [56] or applying Sigma-Delta modulation (SDM) for varactor banks [7].

For the DAC based approach, the extra noise power can be written as [60]

�n,DAC(f) = 4KTReq
1

1 + (f/fp)
2 (5.11)

where Req and fp are the equivalent resistance and corner frequency of the DAC. The

noise power of the SDM approach is [7]

�n,SDM(f) =
1

12

(

fres
f

)2
1

fdtℎ

(

sinc
f

fdtℎ

)2

(5.12)

where fres is the DCO frequency resolution and fdtℎ is the dithering frequency. The

selection of DAC or SDM approach is used as a discretized system design parameter.

C. Block Modeling in ADPLL

In this section, we model the performances of TDC and DCO with different design

variables and process variations. The models presented in this section are used in

both transistor-level fine tuning and system-level performance distribution analysis.

1. TDC Modeling

Process variations will cause mismatch between TDC cells, which in turn makes

the time-to-digital transfer curve nonlinear. The process variation induced nonlinear

transfer curve will cause extra phase noise in addition to the inherent quantization

113

noise in Eqn. 5.10 [64], so careful analysis is needed for the TDC modeling under

process variations.

From Eqn. 5.1 we can see that TDC output TDC[k] travels through all the

digital codes with equal probabilities as long as Nf ∕= 0. The accurate time steps

in TDC transfer curve can be obtained using the transistor-level simulation. With a

determined TDC cell delay distribution, we can calculate the TDC noise numerically.

As shown in Fig. 51, we calculate the power of the statistical variable which deviates

from the ideal transfer curve, and add its power along the whole range of input time

differences to get the total TDC noise.

����� ������� �� ������� ������� � � � �
	
�
�
� ���

�
�� �
��������
����� ������ ��!�" #$��� !%�& '�%'(&�!�)&

iL i iT L−

2 2

0 0

i i iL T L

iP e de e de
−

= +∫ ∫
	��
* ���� �
+�
��,

Fig. 51. Modeling of TDC noise.

Detailed analysis and calculation of TDC power are presented as follows. For the

i-th TDC step, we start from the interception point of the ideal transfer curve and

the real transfer curve and set the two ends as Li and Ti − Li. With the assumption

that the input time is evenly distributed, the noise within this time step equals to

the probability of e deviates from the ideal point

Pi =
∫ Li

0
e2de+

∫ Ti−Li

0
e2de (5.13)

114

The total noise of the TDC can be calculated by adding noise in every TDC delay cell

and averaging it over the whole TDC input range which equals to the output signal

period

�n,TDC =
1

Tout

∑M

i=1
Pi (5.14)

here M is the total number of TDC cells.

There are a few constrains to be noticed when using Eqn. 5.13 and 5.14. First,

Li and Ti are related geometrically, Eqn. 5.15 shows the constraint when the ideal

transfer curve has a unity slope. Second, the ideal transfer curve is “best-fitting

curve” the coefficients of which can be calculated by minimizing the total noise in

Eqn. 5.14. Third, since the total TDC cell number M = Tout/Tavg may not be an

integer number, the last digit of TDC will contribute higher noise. Here Tnorm is the

averaging single TDC cell delay.

(Ti−1 − Li−1) + Li = Tavg (5.15)

As discussed in the previous section, using fine resolution TDC can cut down

the TDC noise. Another option for noise reduction is to search for sets of transistor

designs which can reduce TDC cell mismatches under process variations. So we

model TDC performances with design and process variables targeting for statistical

optimization. A formal TDC model is defined as

−→
P TDC(

−→
T TDC ,

−→
DTDC,

−→
V) (5.16)

where
−→
P TDC represent TDC performances,

−→
T TDC account for the TDC topology

selection,
−→
DTDC are transistor sizes in the TDC design and

−→
V stand for process

variations.

115

2. DCO Modeling

Inherent DCO noise contributes a significant part of total system noise. Generally

phase noise/jitter in DCO drop as the current through LC-tank increases (SNR in-

creases with higher signal power), but the phase noise will go up again when the

current is too large and output signals start clipping. The modeling of DCO phase

noise is illustrated in Fig. 52.

����� ��������	�
��
���
� �������� ��
� ��� ����� ����� !
"��#(, ,)DCO DCO DCOP T D V

Fig. 52. Modeling of DCO noise.

Larger biasing current results in higher power, this trade-off needs to be consid-

ered in the ADPLL optimization. So we model the DCO phase noise and power in

terms of biasing current and transistor sizes. Process variations also have an impact

on DCO noise performances and should be included in the performance model. We

formulate the DCO model as

−→
P DCO(

−→
T DCO,

−→
DDCO,

−→
V) (5.17)

where
−→
P DCO represent DCO performances,

−→
T DCO account for the choice of SDM

or DAC to increase the ADPLL frequency resolution, DDCO represent the transistor

sizes and biasing current and V stand for process variations

116

D. Yield-aware ADPLL Optimization

With ADPLL building block models and transfer functions obtained in the previous

sections, we introduce the yield-aware optimization framework for optimal ADPLL

design. Costly system performance analysis are replaced by the efficient simulation

framework using s-domain circuit models. We first evaluate the performances of

different topologies for each building block, then perform the refined device-level

variable tuning scheme to achieve the optimal system performances.

1. Topology Selection

Since there are different choices of circuit blocks to build an ADPLL system, it is of

benefit to choose the suitable topology combinations for ADPLL systems first. These

topology selection variables are discretized numbers
−→
T = {TDCO, TTDC , TF ilter}. The

primary goal in topology evaluation stage is to find a reduced set of possible topolo-

gies for faster localized design parameter tuning, and generate a picture of system

performance trade-offs.

There are always trade-offs in circuit designs. It is almost impossible to achieve

a solution of best performance for each specification. To solve this problem, we

construct multi-objective system cost functions to balance different performance re-

quirements. We explore system performances in the discretized topology space by

evaluating the cost functions and then achieve the optimal solutions. We do not

stop at the design combination with the lowest cost function as the only optimum

solution. This is because some “near-optimal” discretized design points may have

better statistical performances when we perform block tuning and take into the con-

sideration of process variations. So a few discretized system design choices are kept,

and fine tuning of building blocks are carried out for these points. Retaining a few

117

tens of discretized design choices in the fine tuning stage would be good enough for

optimization in practice.

2. Yield-aware Fine Tuning

After the topology selection, we have a few optimized discretized system topologies

to choose from, denoted as
−→
T opt. In this stage we perform the tuning of TDC and

DCO within the reduced discretized system space.

Due to the process variations, system performances also become statistical vari-

ables. For k-th statistical system performance Pk (smaller the better), suppose we

need a yield of Yk, then the yield-aware performance P Yk
k satisfies the following prob-

ability condition

P{Pk ≤ P Yk
k } = Yk (5.18)

Eqn. 5.18 implies that for Pk, the best achievable performance value is P Yk
k when yield

level Yk is required. P Yk
k is considered as the yield-aware k-th system performance

and to be used in the overall system optimization.

Since we perform fine tuning for each discretized system configuration set, the

yield-aware fine tuning can be formulated as minimizing the cost function in the

building-block space within

minCost
(−→
P TDC(

−→
DTDC),

−→
P DCO(

−→
DDCO)

)

∣−→
T opt

(5.19)

where design variables of TDC and DCO models are selected as input variables to

minimize the statistical system cost function. Any suitable optimization packages

can be used for this minimization problem. In this chapter, we employ the multi-

ple coordinate search algorithm in [34]. The proposed two-step optimization flow is

summarized and illustrated in Fig. 53.

118�������������	
�� �
��	
�
������������������� ���������������� ����� �!"�#�������� ������ ���������������������$ �������# %&'()* +, -./)01.&2&. 3&4+5, 46')&7879 7: 7879 7:;<=<> ?@AB>;<=<> ?@AB> ;<=<> ?@AB>;<=<> ?@AB>
,min (), () |

TDC DCO
TDC TDC DCO DCO C CCost P D P D

→ → → →
C DE FG H

Fig. 53. Yield-aware optimization flow for ADPLL.

E. Adaptive Self-tuning ADPLL Design

System performance monitoring needs to be addressed before any compensation block

can be designed. Thanks to the digital implementation, all the control signals in

ADPLL systems are in the digital domain and easy to be processed. When the

ADPLL loops are stabilized, the frequency errors measured by the TDCs are found

to possess of strong correlation to the system phase noises [65]. The TDC itself

behaves like a jitter measurement block since it detects the differences between the

reference signal edges and the output signal edges. So we use the RMS value of

frequency differences (FERMS) as the indicator of system jitter performances. For

simplicity, the RMS value is calculated for every 64 clock cycles.

The goal of using FERMS as system jitter indicator is to facilitate cheap perfor-

mance monitoring. A predefined threshold number for frequency error (FETRE) is

calculated in the design stage by statistical simulation and can be further calibrated

using silicon measurement results. If the frequency error is large than the threshold

value, it indicates that the system needs to be reconfigured to enhance the perfor-

mances. As mentioned earlier, the power consumption for the fine resolution TDC

119

is pretty high, so in the system level design we need to perform trade-off analysis to

see whether the fine resolution TDC should be turned on or off. Loop configurations,

including loop gain and loop filter orders can be modified without power penalty, so

they are free of tunability. The adaptive PLL system diagram is shown in Fig. 54.

The DCO biasing current is calibrated off-chip for the current design.

���������	
���	�� �
� ����� �������� ���� ���� ������ ���� !" �#$$%&'�(� ���� ���� ����� ���� �������)*�� ���)*��+,- ��*�
./ 0� !1!" 20 �/ 3"45 0��46 20

�� 7&' ,-89��	��: ��;<+=->�?�+@A..����� BCDEFDCCGCHGICJDKLHBMNDKLH
DSP

8�O8PP ��*���Q
� R*�)*��
S	
���:9�:*���	*��
Fig. 54. Adaptive PLL system diagram.

The detailed logic control sequence of the performance self-compensation func-

tion is shown in Fig. 55. When the self-healing block detects FERMS > FETRE ,

it first reconfigures loop gain within [2−10, 2−9, 2−8, 2−7] and loop order within [1, 2],

a total of 8 different combinations. For each new configuration, we wait for T1 cy-

cles to let loop gets stabilized and calculate FERMS in the next T2 cycles. If the

minimum FERMS in these 8 configurations is lower than FETRE , the compensation

algorithm will stop and save the configuration with the lowest FERMS as the new

loop configuration. If the best FERMS still higher than FETRE , fine-resolution TDC

will be powered on and the system will go through the 8 loop configurations. The

configuration with the best FERMS will be saved to reconfigure the ADPLL system.

The performance monitoring and control function blocks are designed in Verilog

HDL and synthesized using ARM Artisan standard cell library. Total gate counts for

the block implementation is about 10,000.

120

�� � �������	
��
�
� ��������� ��������	����� �������������������
��������� 	��� ����
��������� � 	��� ! ������������� "��� �� #���� ������$ ��	��� ��
���������
 %��� 	�%��� ������"��� ��
���
�� #��� ������$ ������� ����
������ �� ���
�
� ��
�&��� �
������������� ������������� ��	��� ��
���������
%��� 	�%��� ������$��
�
� ��#�	�������
��������� 	���
Fig. 55. Logic sequence of self compensation.

By employing the self-compensation operation in ADPLL systems, we can detect

the failure chips and make compensation to bring them back to meet the require-

ments. Employing this approach has the potential to achieve better overall system

performances than the synthesis of analog circuits by only sizing transistor sizes. Con-

ventional analog optimizations for yield enhancement tend to push designs to high

performance corners. This approach works since the chips with performance dropping

induced by process variations can be tuned to meet the specifications. However, as

discussed in [32] and [24], these improvements are often achieved with the sacrifice

of other performances. Fig. 56 illustrates one of the scenarios where power increases

and the overall yield may even drop if power specification is tight.'()*)+, -./01/2+(3. 4)5*/)67*)1(
'()*)+, -18./ 4)5*/)67*)1(

9.8 -./01/2+(3. 4)5*/)67*)1(
9.8 -18./ 4)5*/)67*)1(:-.3

;<./+=.-18./ ;<./+=.-18./)(3/.+5.
>?@AB@CDEF?GHIJCJKDIJBELMNO

Fig. 56. Conventional yield-aware optimization.

The self-healing function in the adaptive ADPLL systems works by switching to

higher performance configurations only when process variations cause the chips fail

121

to meet the specifications, so we do not need to design the system in the high per-

formance and high power configurations to fight for process variations. As illustrated

in Fig. 57, adaptation kicks in when the chips fail to meet the required performance

targets, which is statistically rare. The new circuit configuration burns more power

only for the portion of chips not meeting the specifications, so the statistical power

consumption can be improved when compared with conventional yield-aware opti-

mization results. ������� ���	
������
���������
�
������� �
���
���������
�

��� ���	
������
���������
�
��� �
���
���������
�����

��������
��� ������������
�����������
��������� �!"#$�$%�#$��&$#' �(�"#$)�*+*#��,-./ 01/234567189-:1;

Fig. 57. Proposed yield-aware optimization using adaptive operation.

In the next section we look into the optimization of ADPLL systems by correctly

modeling the operations of adaptive function and including these information into

the system optimization flow.

F. Optimization of Adaptive ADPLLs

1. Adaptive System Performance Calculation

The optimization of adaptive ADPLLs also depends on the variation-aware block

performance models for TDC, DCO and filter. The performance and yield calculation

in adaptive systems are different from conventional systems since the adaptation

122

operation needs to be accounted. The system is reconfigured when the performance

monitoring block indicates failure to meet specification for certain process variation

scenario. So the calculation of statistical performances in adaptive systems is essential

for the system optimization.

The algorithm to find performance distributions under process variations for a

certain design parameter set
−→
D and topology set

−→
T is illustrated in Algorithm 3. The

target of the algorithm is to find the jitter and power distribution efficiently, which is

also implemented in hardware to perform ADPLL adaptation control. The main idea

is to find the system configuration with lowest power consumption while still meets

the required jitter specification. The jitter calculation is based on the integration of

system noise [66].

As indicated in the algorithm, we first check if the initial configuration can meet

the required system specification. Then we adopt the highest performance configura-

tion to see if it can meet the specification. If the chip with configuration
−→
Cmax meets

the specifications, we continue to search and save the configuration with the lowest

power consumption, otherwise the chip is classified as failure since it can not work in

the best performance configuration.

2. Optimization of Adaptive ADPLLs

We can perform different optimization tasks for adaptive ADPLL systems. Here we

select the optimization target as to minimize overall system power while keeping the

yield at the required level. The statistical power and jitter distributions are calculated

using Algorithm 3, and the system optimization problem is formulated as

min power(
−→
D)

st. Y ield(
−→
J) ≥ Y ieldreq,

−→
T ∈ {

−→
T ′

opt},
−→
C ∈ {

−→
C }

(5.20)

123

Algorithm 3 Statistical Performance Calculation for Adaptive ADPLL

Input: ADPLL configuration set
−→
C , Monte-Carlo process variable samples

−→
V = {V1, V2, ⋅ ⋅ ⋅ , VN}, initial configuration set

−→
C init after topology selection, jitter

specification Jspec

Output: Jitter distribution
−→
J and power distribution

−→
P .

1: set j ← 1,
−→
C ←

−→
C init.

2: for i = 1 to N do

3: calculate system jitter J(
−→
C ,
−→
T ,
−→
D,Vi) under process variable set Vi;

4: if J(
−→
C ,
−→
T ,
−→
D,Vi) > Jspec then

5: select highest performance and power configuration
−→
Cmax for ADPLL

6: if J(
−→
Cmax,

−→
T ,
−→
D,Vi) > Jspec then

7: return.
8: else

9: for configuration
−→
C k increase performance and power from

−→
C init to

−→
Cmax do

10: if J(
−→
C k,
−→
T ,
−→
D,Vi) > Jspec then

11: save Jj = J(
−→
C k,
−→
T ,
−→
D,Vi), Pj = P (

−→
C k,
−→
T ,
−→
D,Vi).

12: j ← j + 1
13: break.
14: end if

15: end for

16: end if

17: else

18: save Jj = J(
−→
C ,
−→
T ,
−→
D,Vi), Pj = P (

−→
C ,
−→
T ,
−→
D,Vi).

19: set j ← j + 1.
20: end if

21: end for

124

where {
−→
C } are adaptive tuning space which are determined by the implementation

of ADPLL systems.

We perform the ADPLL topology selection similarly as in the conventional AD-

PLL optimization, then search within the optimized topology sets {
−→
T ′

opt} after topol-

ogy evaluation, note that the filter order in topology selection
−→
T is reconfigurable and

considered as part in
−→
C , so we rewrite {

−→
T opt} as {

−→
T ′

opt}. The formulation of the

optimization problem is in Algorithm 4.

Algorithm 4 Fine Tuning for Adaptive ADPLLs

Input: optimized topology sets {
−→
T ′

opt}, design variables
−→
D , initial design

−→
D init after

topology optimization, required jitter yield Y ieldreq
Output: topology and design variables for minimum power.

1: for all topologies in {
−→
T ′

opt} do

2: set
−→
D ←

−→
D init

3: calculate jitter
−→
J (
−→
D) and power

−→
P (
−→
D) distribution using Algorithm 1, with 200

process variation samples.
4: calculate jitter yield Y ieldJ and average power Avg(power).
5: if Y ieldJ < Y ieldreq then

6: add penalty p ∝ exp(Y ieldreq − Y ieldJ) to object function Avg(power) for conver-
gence speedup.

7: end if

8: while min(Avg(power)) not converge do

9: set new
−→
D using coordinate search [34]

10: repeat step 3-7
11: end while

12: save minimum power of current topology.
13: end for

14: select the topology and design variables of minimum power.

G. Experimental Results

In this section, we demonstrate the effectiveness of the proposed yield-aware system

optimization approach for ADPLLs by going through a design example. The build-

ing block designs are implemented in a 90nm CMOS technology with 1.2V power

125

Table XIII. Optimization variable summary.

T (selection) D (variable)

DCO 2 (DAC or SDM) 4

TDC 2 (Reg. or Fine) 4

Type 2 (I or II) N/A

Filter Gain N/A 1

IIR order 4 (0 or 1 or 2 or 3) N/A

IIR gain N/A 3

supply. TDC and DCO options are designed manually and the digital circuits are

synthesized using standard cell libraries. The performance models of TDC and DCO

are generated using Kriging models [10] with data samples collected using SpectreRF

[63] simulations. Process variation information is extracted using PDK statistical

simulation and included in the system performance models.

The optimization targets are set to the system jitter integrated from 1KHz to

10MHz based on [66], system power and system area. The jitter specification is set

to 0.5ps, the power specification is set to 15mW and the area specification is set to

0.5mm2.

1. Normal ADPLL Optimization

We first optimize an ADPLL without adaptive tuning function. The numbers of topol-

ogy choices and the dimensions of TDC and DCO design variables are summarized

in Table XIII.

Event-driven simulation technique is of good accuracy and much faster than

SPICE-like simulators for the ADPLL system performance evaluation [67]. We com-

pare the phase noise spectrum calculated using the proposed approach and that from

126

the event-driven simulation in Fig. 58. The close fitting of the two curves demon-

strates the accuracy of our proposed transfer function based simulation method.

10
4

10
5

10
6

10
7

−180

−160

−140

−120

−100

−80

−60

Frequency (Hz)

P
ha

se
 N

oi
se

 (
dB

c/
H

z)

Calcualted by perf. model

Simulated by event−driven

Fig. 58. Comparison of phase noise obtained by proposed method and event-driven

simulation.

In the topology selection stage, we plot the jitter distribution with all discretized

topology choices in Fig. 59. As can be seen from the figure, the major portion of the

discretized system design variables generate much higher jitters than the specification,

so we can safely filter out these design points after the topology selection stage and

use the remaining topology choices for the transistor-level fine tuning.

0 1 2 3 4 5

x 10
−12

0

10

20

30

40

50

60

70

Jitter (s)

D
es

ig
n

N
um

be
r

Fig. 59. Jitter distribution in topology selection.

127

The proposed optimization flow is quite efficient and can be finished within about

one hour. In the fine tuning stage, system performance distributions are optimized.

The jitter distribution of the initial design is compared with the optimized design

after fine tuning in Fig. 60.

0.9 0.95 1 1.05 1.1

x 10
−12

0

5

10

15

Jitter (ps)
(a) initial

N
um

be
r

7.4 7.6 7.8 8 8.2

x 10
−13

0

5

10

15

Jitter (ps)
(b) optimized

N
um

be
r

Fig. 60. Jitter distribution comparisons in fine tuning stage.

2. Adaptive ADPLL Optimization

We use the similar setups as the previous example for the optimization of adaptive

ADPLL. In the topology selection stage, we evaluate different system topologies and

build the idea of the system performance trade-offs and near-optimal circuit configu-

rations. The yield-aware topology evaluation results for power and jitter are plotted

in Fig. 61.

Similarly the trade-offs of area and jitter performances are plotted in Fig. 62.

From the figure we can see that the area changes are small (less than 10%) and all

meet the requried specification. In the ADPLL fine tuning stage, we focus on the

power minimization.

We set the yield target at 99% and minimize the power consumption using the

approaches presented in Algorithm 4. The power distribution after conventional yield-

aware tuning is presented in Fig. 63.

128

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
8

10

12

14

16

18

20

22

Jitter (ps)

P
ow

er
 (

m
W

) 80% yield

95% yield

Fig. 61. Power and jitter trade-offs in topology evaluation.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.42

0.43

0.44

0.45

0.46

0.47

0.48

Jitter (ps)

A
re

a
(m

m
*m

m
) 80% yield

95% yield

Fig. 62. Area and jitter trade-offs in topology evaluation.

16.8 17 17.2 17.4 17.6 17.8 18 18.2 18.4 18.6
0

2

4

6

8

10

12

Power (mW)

Fig. 63. Power distribution for the reference optimization.

129

As comparison, the power distribution for the adaptive ADPLL system is shown

in Fig. 64. The average power value for the traditional optimization is 17.71mW

which the one of the adaptive ADPLL is 13.76mW , which presents 22.3% power

reduction.

12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

Power (mW)

Fig. 64. Power distribution for the adaptive optimization.

H. Summary and Discussion

A mixed-signal circuit design example is presented in this chapter. We design an all-

digital PLL circuit to apply the modeling, optimization and testing ideas illustrated

in the previous chapters. The noise performances of ADPLL are calculated using the

efficient s-domain transfer function approach. Process variation-aware models are

developed for the building blocks of analog natures, these models are then utilized

to optimize ADPLL system performances. The yield-aware ADPLL optimization is

achieved efficiently by first performing topology selection and then doing fine tuning

for design variables. System performance self-healing functions are analyzed and im-

plemented to enhance the ADPLL performances. Experimental results demonstrate

the effectiveness of our modeling and optimization framework and also indicate that

adaptive system designs have the ability to achieve better overall system performances

130

than these of only performing automatic transistor sizing.

We have demonstrated that the system adaption is very useful in yield enhance-

ments for analog/mixed-signal circuits in scaled CMOS technologies. The failure chips

can be brought back to the working condition with on-chip performance detection and

system self-healing functions. In addition to the performance enhancements, system

adaption can also be used to downgrade the system performances to save power, as

illustrated in Fig. 65. Some portion of the fabricated chips may have much higher

performances with large power consumptions, which can be considered as overdesign.

It is of interest to reduce the power of these chips by “self-downgrading” the system

performances and lowing the overall power consumption. This “two-way” style sys-

tem adaption optimizes system performances and power whenever possible with single

on-chip logic function and hence can achieve even better overall system performances.������� ���	
������
���������
�
������� �
���
���������
�

��� ���	
������
���������
�
��� �
���
���������
�����

��������
��� �
������� ��������
��� ��
����
�

��������� ��!"#�#$�"#��%#"& "%�'%�(�)�!"�"#��*+,- ./0123/40/5
6783 9:;/<=:5/>:; 9:;/<=:5/

./0125:;?8<45/5

Fig. 65. Yield-aware optimization with two-way adaption.

In real system implementations, the power reduction in the system adaption can

be achieved by reconfiguring supply voltage [68] or body bias [69]. In the ADPLL

131

design case, we can also consider the DCO biasing current as a tunable variable to save

the system power. In this dissertation we do not focus on using the system adaption

to push power reduction since the circuits are designed to be of the minimum power

consumption at the starting point. However, it is still of potential benefit to have both

the self-healing and self-downgrading system adaption functions to further enhance

the system performances.

132

CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

A. Conclusions

The focuses of this dissertation are employing computer methods to design and op-

timize large analog/mixed-signal systems in highly scaled CMOS technologies. We

have addressed the problems of efficient circuit performance modeling and expedi-

tious simulation for robust Sigma-Delta ADC and Phase-locked Loop designs with

consideration of process variations. General performance modeling of small scale

analog blocks are achieved using Kriging modeling method which is integrated in

the framework of yield-aware hierarchical analog system optimization. We have also

investigated the problem of robust circuit design by employing built-in self-testing

circuitries in analog/mixed-signal systems so that individual chips can perform self-

healing of performances after fabrication to fight against process variations. A circuit

design example of digital-intensive PLL is presented to illustrated the ideas of large

mixed-signal system modeling, optimization and testing.

B. Future Directions

Currently in the industry, most portion of analog circuits are still designed by experi-

enced circuit engineers instead of automatic design approaches. The designers utilize

their expertise in circuit designs and the process information from the foundries to

accomplish robust analog/mixed-signal designs. The immediate drawbacks of such

approaches turn out to be 1) rapidly increasing design closure cycle, the designers need

to wait for days or weeks to justify a small design change using current transistor-

level simulation tools, 2) the large number of tunable design parameters makes it

133

almost impossible to achieve global optima by performing handcrafted design, and 3)

the inefficient use of foundry process variation information may cost a few tape-out

iterations before converging to yield-stable design choices.

Despite of the shortcomings of manual design procedures, automatic circuit de-

sign ideas have not been adopted by the majority in analog design society yet, when

compared with the grate success of digital VLSI design methodologies. There are

many reasons to explain this situation but it clearly indicates there are missing pieces

and still long way to go for analog EDA research and developments. The barri-

ers keeping analog circuit designers from adopting automatic design methodologies

come from various aspects. The accuracy concerns of fast performance evaluation

and optimization tools always stay on the top of circuit designers’ minds. Many

computer-aided design enhancement tools are circuit topology specified and require

dedicated human involvement with steep learning curves, which makes them difficult

to build standardized design flows. Human beings is always reluctant to switch from

familiar and established procedures to something unfamiliar unless completely neces-

sary. And lastly computer designs can not do innovations which are valued as crucial

by some analog designers.

As CMOS technologies scale further following Moore’s law (or the development

of technologies), there could be increasing opportunities for automatic analog design

methodologies to gain popularity. Several scenarios could happen in the next few

years/decades and make the automatic design method essential in industry design

practice. For example, the process variations might become so severe (refer to Table

I) that the impacts of variabilities may change the circuit characters instead of in-

flecting them in quantities. For high-performance or high-yield circuit designs, circuit

layout have to be designed and calibrated by the foundries for individual manufac-

turing processes to achieve best manufacturability. In that case, the foundries have

134

to build and verify element circuits and their layouts, then ship the performance

and characteristic models of these circuits as fundamental building blocks to the de-

signers/system integrators to design electronic systems. It is no longer necessary for

the designers to deal with transistor-level design problems under such circumstances.

Clearly the modeling and optimization techniques proposed in this dissertation would

be of great value for such kind of digital-like design procedures in the future. The re-

cent acquisition of the world’s largest analog IP provider by the EDA giant Synopsys

signals that analog design revolution might be already on the way [70].

135

REFERENCES

[1] The International Technology Roadmap for Semiconductors,

http://public.itrs.net, Accessed July 2009.

[2] S. Nassif, “Process variability at the 65nm node and beyond,” in Proc. of IEEE

Custom Integrated Circuits Conf., 2008, pp. 1–8.

[3] G. Gielen and R. Rutenbar, “Computer-aided design of analog and mixed-signal

integrated circuits,” Proc. of the IEEE, vol. 88, no. 12, pp. 1825–1852, Dec.

2000.

[4] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters:

Theory, Design, and Simulation, Piscataway, NJ: IEEE Press, 1997.

[5] R. Best, Phase-Locked Loops Design, Simulation, and Applications 5th edition,

New York City, NY: McGraw-Hill Professional, 2003.

[6] G. Matheron, “Principles of geostatistics,” Economic Geology, vol. 58, no. 8,

pp. 1246–1266, Dec. 1963.

[7] R. Staszewski and P. Balsara, All-Digital Frequency Synthesizer in Deep-

submicron CMOS, Hoboken, NJ: Wiley-Interscience, 2008.

[8] G. Yu and P. Li, “Lookup table based simulation and statistical modeling of

sigma-delta ADCs,” in Proc. IEEE/ACM Design Automation Conf., 2006, pp.

1035–1040.

[9] G. Yu and P. Li, “A methodology for systematic built-in self-test of phase-locked

loops targeting at parametric failures,” in Proc. of IEEE Int. Test Conf., 2007,

pp. 1–10.

136

[10] G. Yu and P. Li, “Yield-aware analog integrated circuit optimization using

geostatistics motivated parametric failures,” in Proc. of IEEE/ACM Int. Conf.

on CAD, 2007, pp. 464–469.

[11] Cadence Design Systems Technical Staff, Affirma Spectre Circuit Simulator User

Guide, Cadence Design Systems, Inc., San Jose, CA, 2000.

[12] R. J. Bishop, J.J. Paulos, M. B. Steer, and S. H. Ardalan, “Table-based modeling

of delta-sigma modulators,” IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 447–

451, March 1990.

[13] K. K. Low and S. W. Director, “An efficient methodology for building macro-

models of IC fabrication processes,” IEEE Trans. Computer-Aided Design In-

tegr. Circuits Syst., vol. 8, no. 12, pp. 1299–1313, December 1989.

[14] G.E.P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters :

Design, Innovation, and Discovery, Hoboken, NJ: John Wiley & Son, 2005.

[15] J. Zou, D. Mueller, H. Graeb, and U. Schlichtmann, “A CPPLL hierarchical

optimization methodology considering jitter, power and locking time,” in Proc.

of IEEE/ACM Design Automation Conf, 2006, pp. 19–24.

[16] N. Godambe and C. J. R. Shi, “Behavioral level noise modeling and jitter sim-

ulation of phase-locked loops with faults using VHDL-AMS,” in Proc. of IEEE

VLSI Test Symposium, 1997, pp. 177–182.

[17] A. Phanse, R. Shirani, R. Rasmussen, R. Mendel and J. Yuan, “Behavioral

modeling of a phase locked loop,” in Southcon’96, 1996, pp. 400–404.

[18] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in IEEE

Custom Integrated Circuits Conference, 2001, pp. 223–228.

137

[19] D. Morrison, Multivariate Statistical Methods, New York City, NY: McGraw-

Hill, 1976.

[20] Z. Feng and P. Li, “Performance-oriented statistical parameter reduction of

parameterized systems via reduced rank regression,” in Proc. of IEEE/ACM

Int. Conf. on CAD, 2006, pp. 868–875.

[21] G. Reinsel and R. Velu, Multivariate Reduced-Rank Regression, Theory and

Applications, New York City, NY: Springer-Verlag, 1998.

[22] J. Sacks, W. Welch, T. Mitchell, and H. Wynn, “Design and analysis of computer

experiments,” Statistical Science, vol. 4, no. 4, pp. 409–435, Nov. 1989.

[23] M. Bernardo, R. Buck, L. Liu, W. Nazaret, J. Sacks, and W. Welch, “Inte-

grated circuit design optimization using a sequential strategy,” IEEE Trans. on

Computer-Aided Design, vol. 11, no. 3, pp. 361–372, March 1992.

[24] G. Yu and P. Li, “Yield-aware hierarchical optimization of large analog inte-

grated circuits,” in Proc. of IEEE/ACM Int. Conf. on CAD, 2008, pp. 79–84.

[25] M. Driscoll, W. Daasch, and C. Sembakutti, “Efficient design centering of analog

integrated circuits using binary search,” Analog Integrated Circuits and Signal

Processing, vol. 6, pp. 157 – 169, 1994.

[26] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H. Graeb, and K. Antreich,

“Mismatch analysis and direct yield optimization by specwise linearization and

feasibility-guided search,” in Proc. of IEEE Design Automation Conference,

2001, pp. 858–863.

[27] Y. Xu, K. Hsiung, X. Li, I. Vausieda, S. Boyd and L. Pileggi, “OPERA: Opti-

mization with ellipsoidal uncertainty for robust analog IC design,” in Proc. of

138

IEEE/ACM Design Automation Conference, 2005, pp. 632–637.

[28] Cadence Design Systems Technical Staff, Virtuoso NeoCircuit User Guide, Ca-

dence Design Systems, 2009.

[29] MunEDA Technical Staff, WiCkeD User Guide, MunEDA, 2009.

[30] K. Antreich, H. Graeb, and C. Wieser, “Circuit analysis and optimization driven

by worst-case distancess,” IEEE Trans. on Computer-aided Design, vol. 13, no.

1, pp. 57 – 71, Jan. 1994.

[31] G. Stehr, H. Braeb, and K. Antreich, “Performance trade-off analysis of ana-

log circuits by normal-boundary intersection,” in Proc. of IEEE/ACM Design

Automation Conference, 2003, pp. 958–963.

[32] S. Tiwary, P. Tiwary, and R. Rutenbar, “Generation of yield-aware pareto sur-

faces for hierarchical circuit design space exploration,” in Proc. of IEEE/ACM

Design Automation Conf, 2006, pp. 31–36.

[33] B. Smedt and G. Gielen, “HOLMES: Capturing the yield - optimized design

space boundaries of analog and RF integrated circuits,” in Proc. of IEEE/ACM

Design, Automation and Test in Europe Conference and Exhibition, 2003, pp.

19–24.

[34] W. Huyer and A. Neumaier, “Global optimization by multilevel coordinate

search,” Journal of Global Optimization, vol. 14, no. 4, pp. 331–355, June 1999.

[35] S. Tiwary, S. Velu, R. Butenbar, and T. Mukherjee, “Pareto optimal modeling

for efficient PLL optimization,” in Nanotech 2004 Vol. 2, 2004, pp. 195–198.

[36] Open Verilog International, Verilog-A Language Reference Manual,

www.verilog.org, Accessed Sept. 2009.

139

[37] K. Kundert, Predicting the Phase Noise and Jitter of PLL-Based Frequency

Synthesizers, www.designers-guide.org, Accessed Aug. 2006.

[38] G. Roberts, “Metrics, techniques and recent developments in mixed-signal test-

ing,” in Proc. of IEEE/ACM Int. Conf. on CAD, 1996, pp. 514 – 521.

[39] G. Yu, P. Li, and W. Dong, “Achieving low-cost linearity test and diagnosis of

sigma delta ADCs via frequency-domain nonlinear analysis and macromodeling,”

in Proc. of IEEE Int. Symposium on Quality Electronic Design, 2007, pp. 513–

518.

[40] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems, Hoboken,

NJ: John Wiley & Son, 1980.

[41] P. Wambacq and W. Sansen, Distortion Analysis of Analog Integrated Circuits,

Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998.

[42] W. J. Rugh, Nonlinear System Theory - The Volterra/Wiener Approach, Balti-

more, MD: The Johns Hopkins University Press, 1981.

[43] N. Csizmadia and A.J.E.M. Janssen, “Estimating the integral non-linearity of

AD-converters via the frequency domain,” in IEEE Int. Test Conf., 1999, pp.

757–762.

[44] INL/DNL measurements for high-speed analog-to-digital converters ADCs - AN

283, Maxim Integrated Products, Dallas, TX, Nov. 2001.

[45] V. Vapnik, Statistical Learning Theory, Hoboken, NJ: Wiley-Interscience Pub-

lishers, 1998.

[46] S. Sunter and A. Roy, “BIST for phase-locked loops in digital applications,” in

Proc. of IEEE International Test Conference, 1999, pp. 532–540.

140

[47] S. Kim and M. Soma, “An all-digital built-in self-test for high-speed phase-

locked loops,” IEEE Trans. on Circuit and Systems -II: Analog and Digital

Signal Processing, vol. 48, no. 2, pp. 141–150, Feb. 2001.

[48] C. Hsu, Y. Lai and S. Wang, “Built-in self-test for phase-locked loops,” IEEE

Trans. on Instr. and Measurement, vol. 54, no. 3, pp. 996–1002, June 2005.

[49] F. Azais, Y. Bertrand, M. Renovell, A. Ivanov and S. Tabatabaei, “An all-digital

DFT scheme for testing catastrophic faults in PLLs,” IEEE Design & Test of

Computers, vol. 20, no. 1, pp. 60–67, Jan. 2003.

[50] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Statistical

modeling of device mismatch for analog integrated circuits,” IEEE J. Solid-State

Circuits, vol. 24, no. 5, pp. 1433–1440, October 1989.

[51] U. Schaper, J. Einfeld, and A. Sauerbrey, “Parameter variation on chip-level,”

in IEEE Int. Conf. on Microelectronic Test Structures, 2005, pp. 155–158.

[52] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, “An all-digital phase-

locked loop with 50-cycle lock time suitable for high-performance microproces-

sors,” IEEE J. Solid-State Circuits, vol. 30, no. 4, pp. 412–422, Apr. 1995.

[53] C. Chung and C. Lee, “An all-digital phase-locked loop for high-speed clock

generation,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 347–351, Feb. 2003.

[54] R. Staszewski, K. Muhammad, D. Leipold, C. Hung, Y. Ho, and et al, “All-

digital TX frequency synthesizer and discrete-time receiver for bluetooth radio

in 130-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2278–2291,

Dec. 2004.

141

[55] H. Chang, P. Wang, J. Zhan, and B. Hsieh, “A fractional spur-free ADPLL with

loop-gain calibration and phase-noise cancellation for GSM/GPRS/EDGE,” in

Proc. of ISSCC Dig. Tech. Papers, 2008, pp. 200–202.

[56] C. Hsu, M. Straayer, and M. Perrott, “A low-noise wide-BW 3.6GHz digital ds

fractional-N frequency synthesizer with a noise-shaping time-to-digital converter

and quantization noise cancellation,” in Proc. of ISSCC Dig. Tech. Papers, 2008,

pp. 340–342.

[57] C. Wu, E. Temporiti, D. Baldi, and F. Svelto, “A 3GHz fractional-N all-digital

PLL with precise time-to-digital converter calibration and mismatch correction,”

in Proc. of ISSCC Dig. Tech. Papers, 2008, pp. 344–346.

[58] R. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P.T. Balsara, “1.3 V

20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE

Tran. on Circuits and Systems. - II, vol. 53, no. 4, pp. 769–777, Mar. 2006.

[59] C. Lau and M. Perrott, “Fractional-N frequency synthesizer design at the trans-

fer function level using a direct closed loop realization algorithm,” in Proc. of

IEEE/ACM Design Automation Conference, July 2003, pp. 526–531.

[60] C. Hsu, Techniques for High-Performance Digital Frequency Synthesis and Phase

Control, PhD dissertation, MIT, Cambridge, MA, 2008.

[61] F. Gardner, “Charge-pump phase-locked loops,” IEEE Trans. on Communica-

tions, vol. 28, pp. 1849 – 1858, Nov. 1980.

[62] M. Lee and A. Abidi, “A 9b, 1.25 ps resolution coarse-fine time-to-digital con-

verter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State

Circuits, vol. 43, no. 4, pp. 769–777, Apr. 2008.

142

[63] Cadence Design Systems Technical Staff, SpectreRF Circuit Simulator User

Guide, Cadence Design Systems, June 2008.

[64] K. Waheed and R. Staszewski, “Digital RF processing techniques for device

mismatch tolerant transmitters in nanometer-scale CMOS,” in Proc. of IEEE

International Symposium on Circuits and Systems, May 2007, pp. 1253–1256.

[65] R. Staszewski, I. Bashir, and O. Eliezer, “RF built-in self test of a wireless

transmitter,” IEEE Tran. on Circuits and Systems - II, vol. 39, no. 12, pp.

2278–2291, Dec. 2004.

[66] Clock Jitter and Phase Noise Conversion - Maxim AN 3359, Maxim Integrated

Products, Dallas, TX, Dec. 2004.

[67] R. Staszewski, C. Fernando, and P. Balsara, “Event-driven simulation and mod-

eling of phase noise of an RF oscillator,” IEEE Tran. on Circuits and Systems.

- I, vol. 52, no. 4, pp. 723–733, Apr. 2005.

[68] T. Chen and S. Naffziger, “Comparison of adaptive body bias (ABB) and adap-

tive supply voltage (ASV) for improving delay and leakage under the presence

of process variation,” IEEE Trans. on VLSI, vol. 11, no. 5, pp. 888–899, May

2003.

[69] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and

V. De, “Adaptive body bias for reducing impacts of die-to-die and within-die

parameter variations on microprocessor frequency and leakage,” IEEE J. on

Solid-States Circuits, vol. 27, no. 11, pp. 1396–1402, Nov. 2002.

[70] Synopsys Acquires Analog Business Group of MIPS Technologies, PR Newswire,

Mountain View, CA, May 2009.

143

VITA

Guo Yu received the B.S. and M.S. degrees in electrical engineering from Fudan

University, Shanghai, China and Delft University of Technology (TU Delft), Delft, the

Netherlands, in 2003 and 2005, respectively. He worked at Philips Semiconductors

Netherlands from Oct. 2004 to Aug. 2005, and Cadence Design Systems Pittsburgh

during the summer of 2007 as a research intern respectively. His research interests in-

clude modeling and optimization for analog/mixed-signal circuits, built-in test scheme

design, timing and yield analysis for VLSI circuits, and device modeling. He can be

reached at WERC 331A, Department of Electrical and Computer Engineering, Texas

A&M University, College Station, TX 77843-3128.

The typist for this thesis was Guo Yu.

