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ABSTRACT

Prediction of Damage Zone Growth in Composites

Using Continuum Damage Mechanics. (December 2009)

Wesley Ross McLendon, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John D. Whitcomb

The continuum damage mechanics (CMD) approach is used to model damage

zone growth in a unidirectional polymer matrix composite failing under shear stress.

The long, single cracks that develop under this configuration do not match well with

the homgenized distribution of defects that CDM was originally conceived to model,

and so for many of the geometries and loading cases examined, the model fails to

correctly predict the growth of the damage zone of the composite. From the results

obtained, it is apparent that the material anisotropy of the unidirectional material

tends to cause CDM to make these incorrect predictions. It is also noted that when

shear failure occurs due to a local shear stress concentration near some defect which

is loaded under global tensile loading, CDM yields much better predictions of damage

zone growth. It is finally noted that under shear loading, certain initially damaged

geometries do cause CDM to yield predictions which match the overall behavior ob-

served experimentally. An approach is presented which attempts to create such a

geometry where a new damage zone is determined to arise in order to cause CDM to

correctly predict the further growth of that damage zone. Initial results are shown

that suggest that this approach can improve the predictions made by CDM for the

simplified geometry examined in this work.
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CHAPTER I

INTRODUCTION

The use of composites in engineering has grown tremendously in the past several

decades as manufacturing technology has improved and expertise in the field of design

using composites has increased. As more and more products make use of composites

in their design, it becomes more critical that engineers be able to predict composite

behavior accurately. One aspect which is particularly challenging to model in compos-

ites is that of failure. Composites, being structures in and of themselves, are subject

to a number of different failure mechanisms which operate at different scales, mak-

ing them particularly difficult to model. As composite configurations become more

and more complicated, as is the case for textile composites, the failure mechanisms

become even more complex and exist on a wider variety of scales than typically seen

in other configurations such as laminates.

One popular approach for modeling failure in composites is that of continuum

damage mechanics (CDM). Failure in composites often occurs in the form of a large

number of small-scale cracks, typically referred to as damage. CDM deals with dam-

age by homogenizing it and accounting for its effect on the overall response of the

material where it exists by modifying the material’s contitutive properties. This

method lends itself nicely to finite element analysis, where elements become the re-

gions over which constitutive properties are altered. It is a method particularly well

suited to representing distributed micro-scale cracking at a meso or macro-scale level

where many analyses are performed as the geometry of the cracks is not important

beyond determining how to degrade constitutive properties. For this reason, CDM

The journal model is IEEE Journal of MicroElectroMechanical Systems.
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has been widely used to model damage in textile composite structures for which the

geometry of the architecture can become very complicated.

The CDM approach for modeling mechanical damage in composites is typically

broken down into two major components. The first is the failure criteria. This involves

determining where in a model failure has occurred as well as the nature of the damage

which now exists as a result of that failure. Types of failure possible in composites

include matrix cracking, fiber breakage, and fiber buckling, among others. The type

of damage which occurs is generally determined by the stress component which causes

the failure. The second major aspect of CDM involves the modification of material

properties due to damage. Based on the damage which is predicted to have occurred

by the failure criterion, the material properties are altered in a manner so that the

homogenized effect of the damage is captured by the new constitutive properties.

It has recently been observed by Gorbatikh, et al. [1] that CDM fails to properly

predict damage propagation in textile composites which fail due to shear stress acting

along the fibers. It was observed from analyses that in 45◦ braid tows in a textile

composite under tension (a situation leading to high shear loading of the braid tows),

CDM predicted a damage zone that was unrealistically large and which developed

in a direction contrary to the expected behavior of damage growth along the fibers

(Figure 1). Two configurations were compared to investigate this phenomena. The

first was a discrete crack running along the fiber direction. The second configuration

was a circular region with a diameter equal to the length of the crack with material

properties degraded according to the Murakami-Ohno degradation scheme [2],[3] for

a composite with failure due to transverse or shear loading (Figure 2), which was

analyzed using the elasticity solution by Eshelby [4]. When these two configurations

were placed under shear loading, the stress concentrations leading to damage growth

occurred at different locations, suggesting that the two models would predict different
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Fig. 1. Damage growth prediction observed by Gorbatich et al. [1]

damage growth behaviors. The Murikami-Ohno model was modified in an attempt

to account for differences between the configurations, but the modified model still

failed to predict a maximum stress concentration location matching that of a discrete

crack. It was finally concluded that CDM is unable to correctly predict damage growth

resulting from shear failure in textiles because the damage which occurs under shear

stress in such models (tow-scale cracking along the fiber direction) is discrete and

exists on a large scale, characteristics which do not correspond to the distributed

small-scale defects that CDM was originally conceived to model.

A. Literature Survey

The continuum damage mechanics approach was originally proposed by Kachanov

in 1958 [5] as a means of modeling creep. Talreja [6] extended CDM to composite

Fig. 2. Configurations compared by Gorbatich et al. [1]
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materials using a vector-field to describe the damage. Within textile composites,

CDM has been extensively used as a tool for predicting the macro-scale response of

a textile architecture based upon meso or tow scale analyses of unit cells. Among

the most popular models used for such analyses are those developed by Blackketter

et al. [7] and Murakami and Ohno [2, 3]. Chapman and Whitcomb [8] developed a

model which, while similar to that of Blackketter, differed slightly with regards to

some of the factors used to degrade material properties of damaged material. Zako

et al. [9] developed a model which utilizes a tensor to describe the damage of the

material, thereby affecting off-diagonal terms of the compliance and stiffness matrices,

for the analysis of failure in unidirectional composites. In later years this model was

adapted and utilized in conjunction with the Murikami Ohno model in an analysis

which tracked damage evolution in plain-weave composites loaded under tension [10].

Another model, proposed by Chioy and Tamma [11], makes use of physical arguments

to determine how properties should be degraded for various failure modes. In the

work performed by Gorbatikh et al., it was noted that previous work in progressive

damage analysis of textiles has not generally included a critical inspection of damage

propagation in tows undergoing shear stress. They worked to develop an improved

degradation model based on Murikami-Ohno by matching the elastic response of a

degraded region to that of a crack. It was observed that the Murikami-Ohno model in

its basic form over-estimated how much the stiffness, particularly the shear stiffness,

should be degraded for the region. However, as mentioned, this effort did not allow

accurate prediction of the direction of damage propagation for shear extending from

the initially degraded region.
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B. Overview of Research

The research reported by Gorbatikh et al. [1] did not include an investigation of the

shape of the initially damaged region. The shape of an inclusion greatly affects the

stress distribution around it, as is evidenced by the differences in stress around a sharp

crack and a hole under the same loading. For this research, it was hypothesized that

sufficient directionality in an initially damaged region may allow a CDM approach to

correctly predict the further growth of damage resulting from shear stress. Therefore,

an investigation was conducted into a number of simple configurations spanning var-

ious geometries which result in damage occurring due to shear. Models under global

shear loads, as well as models experiencing local shear concentrations resulting from

defects such as holes under tensile loading were examined. Also, models which are

representative of a finite element mesh experiencing damage initiation (with just a

few elements damaged) were investigated.

Based on observations made from these investigations, a possible modification to

the CDM approach was developed which aims to include geometric information about

the damage which is not contained within the basic CDM algorithm. This modifica-

tion was applied to a very simple configuration. The work presented is intended to

put forward a possible improvement to the CDM algorithm for cases in which discrete

damage may grow to a scale too large to be considered part of a continuum, such as

the case observed by Gorbatikh et al. [1]; it is not intended as a rigorous validation

of the modification.
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CHAPTER II

FORMULATION OF ELASTIC FINITE ELEMENTS IN THREE DIMENSIONS

The analyses performed in this work used an implementation of the three-dimensional

elastic finite element method. Although the configurations and loadings of the anal-

yses in this work were primarily two dimensional in nature, the particular routines

associated with damage modeling which were used were implemented in three dimen-

sions, and so three dimensional elements were used.

The finite element method consists of the discretization of the physical prob-

lem domain into a mesh. Various constitutive properties are then assigned to sub

domains within the mesh, generally corresponding to various materials. These con-

stitutive properties lead to the definition of element stiffnesses which are determined

from the governing equations of equilibrium. Boundary conditions defining either

force or displacement are defined for all surfaces of the mesh. The definition of suffi-

cient boundary conditions leads to the formation of a system of linear equations whose

solution is the set of nodal displacements and forces resulting in static equilibrium

for the entire problem domain. These displacements can be spatially differentiated

to obtain strains through kinematic relationships, which can then be converted into

stresses using constitutive relationships. The mathematical details of the finite ele-

ment method are discussed in detail in the following sections.

A. Kinematic Relationships

The constitutive relationship between strain and stress in a body depends first on how

strain is defined for the body. Assume a body is initially in some reference configu-

ration. Two refernce frames exist for describing the configuration of the body. The

first, the Lagrangian frame, defines the configuration of the body using reference, or
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material coordiates Xi(t). The second, Eulerian reference frame, defines the config-

uration of a deformed body by the spatial coordinates xi(t) which follow the body

as it deforms. The Eulerian description of the body’s configuration can be expressed

in terms of the Lagrangian reference frame by a mapping function χ(Xi, t) such that

xi = χ(Xi, t). The deformation gradient is then defined as

Fij =
∂xi
∂Xj

=
∂χ(Xi, t)

∂Xj

(2.1)

Also define the displacement of some point on the body as

ui = xi −Xi (2.2)

Next, define Bij and Cij the left and right stretch tensors, respectively.

Bij = FikFjk

Cij = FkiFkj

(2.3)

From these stretch tensors, one can derive two strains. First, the Green - St. Venant

Strain is defined as

Eij =
1

2
(Cij − δij)

=
1

2
(FkiFkj − δij)

=
1

2

(

∂uj
∂Xi

+
∂ui
∂Xj

+
∂uk
∂Xi

∂uk
∂Xj

)

(2.4)

where δij is the Kronecker delta. Second, the Almansi-Hamel Strain is defined as

eij =
1

2

(

δij − B−1
ij

)

=
1

2

(

δij − (FikFjk)
−1)

=

(

∂uj
∂xi

+
∂ui
∂xj

− ∂uk
∂xi

∂uk
∂xj

)

(2.5)
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Now, the linearizing assumption will be inserted into the derivation. It will be as-

sumed for all deformations, that the deformation gradient is small. That is

‖ ∂ui
∂Xi

‖ = O(δ) δ ≪ 1 (2.6)

It follows that

∂ui
∂Xi

=
∂ui
∂xi

+O(δ2) (2.7)

Appealing to the assertions in Eq. (2.6) and Eq. (2.7) in the context of the strains

of Eq. (2.4) and Eq. (2.5) yields

Eij = εij +O(δ2)

eij = εij +O(δ2)

(2.8)

where εij is the linearized strain tensor, defined as

εij =
1

2

(

∂uj
∂Xi

+
∂ui
∂Xj

)

≈ 1

2

(

∂uj
∂xi

+
∂ui
∂xj

) (2.9)

It can be seen that the strain tensor will always be symmetric, as the addition of a

matrix with its transpose always results in a symmetric matrix. Also, it can be seen

that the linearized strain is very nearly equal when taken in either a Eulerian or La-

grangian reference frame. From this point forward in the derivations, the distinction

between the two becomes unimportant, and all spatial coordinates will be given in

the form xi.

B. Constitutive Relationships

With the linearized strain now defined, it is possible to clearly state the constitutive

relationship between stress and strain. The linear elastic constitutive model is founded
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on two major assumptions. The first is that for a given material, the relationship

between stress and strain is linear within the loads experienced by the model. In a

sense, this is not true of the analyses performed in this work as once a load results

in failure, the constitutive properties of the material will be changed. Once the

properties are reduced, the material is once again treated as a linear elastic material

until some other failure mode occurs, so in reality any given portion of the analysis

is linear elastic. The second assumption of linear elastic constitutive relationships is

that the body will not dissipate energy and will return to its reference configuration

upon removal of the load (in essence, it will exhibit a coefficient of restitution equaling

1). Within a given analysis step of the work performed here, this holds true, although

from step to step energy is released as material stiffness is degraded at locations of

failure.

The most general relationship between the stress and strain tensors is given by

σij = Cijklεkl (2.10)

where Cijkl is a fourth-order tensor, often referred to as the stiffness tensor, con-

taining 81 constants. It is convenient to represent this fourth order tensor as a

two-dimensional matrix by expressing the stress and strain tensors as vectors with 6

components by exploiting their symmetry. Like the strain tensor, the stress tensor for

a static body is symmetric. The symmetry of the stress tensor is required to main-

tain equilibrium for angular momentum for all points in the body. Exploiting these

symmetries implies that Cijkl = Cjikl = Cijlk and reduces the number of constants
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relating stress and strain from 81 to 36 as can be seen in the following relationship.
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(2.11)

The overall symmetry of the stiffness tensor is established by relating stress and strain

using the strain energy density functional U . This relationship is given as

σij =
∂U

∂εij
= Cijklεkl =⇒ ∂2U

∂εij∂εkl
= Cijkl (2.12)

which implies that Cijkl = Cklij due to the fact that the order of differentiation will

not change its result. This reduces the total number of independent constants relating

stress and strain to 21.

The number of terms in C can be further reduced by appealing to material

symmetries. For the analyses in this work, it will be assumed that all materials are

orthotropic. That is, all materials possess three planes of symmetry about which a

reflection can take place with no change in the response of the material. It is assumed

that the material will be defined such that these planes of symmetry are aligned with

the coordinate axes. The orthogonal transformation matrices associated with these

reflections are given in table I.
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Table I. Orthogonal reflection transformation matrices

Reflection

Plane

Transformation

Tensor

23 Q =
(

−1 0 0
0 1 0
0 0 1

)

31 Q =
(

1 0 0
0 −1 0
0 0 1

)

12 Q =
(

1 0 0
0 1 0
0 0 −1

)

The stiffness matrix resulting from such a reflection is given as

C ′
ijkl = QipQjqQkrQlsCpqrs (2.13)

Provided that Qij represents a reflection about a material plane of symmetry, it can

be stated that

Cijkl = C ′
ijkl (2.14)

Applying Eq. (2.13) and Eq. (2.14) to Eq. (2.11), it is found that a number of terms

must equal zero to satisfy the material symmetry. The resulting stiffness tensor for

orthotropic materials contains 9 constants as follows.

C =

































C1111 C1122 C1133 0 0 0

C1122 C2222 C2233 0 0 0

C1133 C2233 C3333 0 0 0

0 0 0 C2323 0 0

0 0 0 0 C3131 0

0 0 0 0 0 C1212

































(2.15)

Material properties are given in terms of engineering constants. These constants are

most conveniently expressed in the compliance tensor S, which is the inverse of the
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stiffness tensor. The compliance tensor for orthotropic materials relates strain to

stress in the following manner.
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E1

−ν12
E1

−ν13
E1

0 0 0

−ν21
E2

1
E2
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E2

0 0 0

−ν31
E3

−ν32
E3

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12
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ν23
E2

= ν32
E3

ν31
E3

= ν13
E1

ν12
E1

= ν21
E2

(2.16)

C. Governing Equations of Elasticity and the Weak Form

The primary equation governing the loading of elastic bodies is that of equilibrium.

For static bodies, the equilibrium equation takes the following form:

∂σij
∂xj

+ ρbi = 0 (2.17)

where ρ is density and bi is the specific body force. Eq. (2.17) is then multiplied by

test functions (often referred to as virtual displacements) δui and integrated over the

problem domain Ω. The resulting “weak form” of the equation of equilibrium is

∫

Ω

δui

(

∂σij
∂xj

+ ρbi

)

dΩ =

∫

Ω

(

δui
∂σij
∂xj

+ δuiρbi

)

dΩ = 0 (2.18)

The first term of Eq. (2.18) can be expanded through integration by parts.

∫

Ω

(

δui
∂σij
∂xj

)

dΩ =

∫

Ω

∂ (δuiσij)

∂xj
dΩ−

∫

Ω

(

∂δui
∂xj

σij

)

dΩ (2.19)
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Applying the result of Eq. (2.19) into Eq. (2.18) yields the following expression for

the weak form.

∫

Ω

∂ (δuiσij)

∂xj
dΩ +

∫

Ω

(

ρbiδui −
∂δui
∂xj

σij

)

dΩ = 0 (2.20)

Applying Gauss’s divergence theorem to the first term in Eq. (2.20) yields

∫

Γ

(δuiσijnj) dΓ +

∫

Ω

(

ρbiδui −
∂δui
∂xj

σij

)

dΩ = 0 (2.21)

Γ is the surface of the domain Ω, and ni is the normal vector at a point on Γ. Now,

Cauchy’s stress formula for the traction on a surface, Ti, will be incorporated.

Ti = σijnj (2.22)

Incorporating Eq. (2.22) into Eq. (2.21) yields

∫

Γ

(δuiTi) dΓ +

∫

Ω

(

ρbiδui −
∂δui
∂xj

σij

)

dΩ = 0 (2.23)

Additionally, The symmetry of the Cauchy stress tensor and Eq. (2.9) allow the

following equivalence to be established

∂δui
∂xj

σij = δǫijσij (2.24)

Applying the relationship established in Eq. (2.24) to the last term in the volume

integral of Eq. (2.23) yields the following

∫

Γ

(δuiTi) dΓ +

∫

Ω

(ρbiδui − δεijσij) dΩ = 0 (2.25)

Now Galerkin approximations will be used to represent the trial function δui.

The approximation is based upon the principle that a function can be represented as

an infinite sum of smooth basis functions ψ(m). In the finite element analysis, there

will be as many basis functions as there are nodes in the element. This results in the
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trial function taking the following form.

δui =
n

∑

m=1

δu
(m)
i ψ(m) (2.26)

such that m denotes the mth node in the element and n is the total number of nodes

in the element. All components of all nodal displacements u
(m)
i for an element will

be combined into one vector qα for convenience (in essence, a vector of all degrees of

freedom for the element).

qα =

(

u
(1)
1 , u

(1)
2 , u

(1)
3 · · · , u(m)

1 , u
(m)
2 , u

(m)
3 , · · · , u(n)1 , u

(n)
2 , u

(n)
3

)

(2.27)

such that subscripts represent the component of displacement and superscripts repre-

sent the node of the element. Virtual displacement and strain can now be expressed

in the following manner.

δui =
∂ui
∂qα

δqα (2.28)

δεij =
∂εij
∂qα

δqα (2.29)

Substitution of Eq. (2.28) and Eq. (2.29) into Eq. (2.25) and summing over the

nodes of an element yields

δqα

(∫

Γ

(

∂ui
∂qα

Ti

)

dΓ +

∫

Ω

(

ρbi
∂ui
∂qα

)

dΩ−
∫

Ω

(

∂εij
∂qα

σij

)

dΩ

)

= 0 (2.30)

Since this relationship must hold for any arbitrary non-zero value of the test function

δqα, it is necessary that for all values of α

∫

Γ

(

∂ui
∂qα

Ti

)

dΓ +

∫

Ω

(

ρbi
∂ui
∂qα

)

dΩ−
∫

Ω

(

∂εij
∂qα

σij

)

dΩ = 0 (2.31)

For convenience, Voigt notation will be used from this point forward to represent the
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strain and stress tensors as follows

ε = εij =













ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33













=

































ε11

ε22

ε33

ε23 = ε32

ε31 = ε13

ε12 = ε21

































= εk =

































ε1

ε2

ε3

ε4

ε5

ε6

































(2.32)

This notation simplifies the formation of the strain-displacement matrix, Bkα, which is

defined through the kinematic relationship defining strain in Eq. (2.9) in conjunction

with the Galerkin approximation for displacement of Eq. (2.26).

Bkα =
∂εk
∂qα

=

































∂ψ(1)

∂x1
0 0

0 ∂ψ(1)

∂x2
0

0 0 ∂ψ(1)

∂x3

0 ∂ψ(1)

∂x2

∂ψ(1)

∂x3

∂ψ(1)

∂x1
0 ∂ψ(1)

∂x3

∂ψ(1)

∂x1

∂ψ(1)

∂x2
0

· · ·

∂ψ(n)

∂x1
0 0

0 ∂ψ(n)

∂x2
0

0 0 ∂ψ(n)

∂x3

0 ∂ψ(n)

∂x2

∂ψ(n)

∂x3

∂ψ(n)

∂x1
0 ∂ψ(n)

∂x3

∂ψ(n)

∂x1

∂ψ(n)

∂x2
0

































(2.33)

The strain displacement matrix is used to calculate strains based on the element

displacement vector by

εk = Bkαqα (2.34)

This results in the final term of Eq. (2.31) taking the form

∫

Ω

(Bkασk) dΩ (2.35)

Furthermore, through the constitutive relationship of Eq. (2.10) the stress tensor can
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be represented in the following manner

σk = Cklεl = CklBlαqα (2.36)

Incorporating Eq. (2.36) into Eq. (2.35) leads to the formation of the familiar element

stiffness matrix in the following manner

∫

Ωe

(Bkασk) dΩe =

∫

Ωe

(BkαCklBlβqβ) dΩe =

∫

Ωe

(BkαCklBlβ) dΩe qβ = Kαβqβ (2.37)

or, in matrix form (with boldface representing a matrix or vector),

∫

Ωe

(

BTσ
)

dΩe =

∫

Ωe

(

BTCBq
)

dΩe =

∫

Ωe

(

BTCB
)

dΩe q = Kq (2.38)

The subscript e signifies that the integral is taken over the domain of a single element.

The partial derivative of the displacement field with respect to the nodal displace-

ments which appears in the remaining terms of Eq. (2.31) can be expressed using a

method similar to Eq. (2.33).

∂ui
∂qα

=













ψ(1) 0 0

0 ψ(1) 0

0 0 ψ(1)

· · ·
ψ(m) 0 0

0 ψ(m) 0

0 0 ψ(m)

· · ·
ψ(n) 0 0

0 ψ(n) 0

0 0 ψ(n)













(2.39)
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This leads to the creation of the element force vector as follows

fα =

∫

Γe

(

Ti
∂ui
∂qα

)

dΓe +

∫

Ωe

(

ρbi
∂ui
∂qα

)

dΩe

=

































































∫

Γe

(

T1ψ
(1)
)

dΓe +
∫

Ωe

(

ρb1ψ
(1)
)

dΩe

∫

Γe

(

T2ψ
(1)
)

dΓe +
∫

Ωe

(

ρb2ψ
(1)
)

dΩe

∫

Γe

(

T3ψ
(1)
)

dΓe +
∫

Ωe

(

ρb3ψ
(1)
)

dΩe

...
∫

Γe

(

T1ψ
(m)

)

dΓe +
∫

Ωe

(

ρb1ψ
(m)

)

dΩe

∫

Γe

(

T2ψ
(m)

)

dΓe +
∫

Ωe

(

ρb2ψ
(m)

)

dΩe

∫

Γe

(

T3ψ
(m)

)

dΓe +
∫

Ωe

(

ρb3ψ
(m)

)

dΩe

...
∫

Γe

(

T1ψ
(n)

)

dΓe +
∫

Ωe

(

ρb1ψ
(n)

)

dΩe

∫

Γe

(

T2ψ
(n)

)

dΓe +
∫

Ωe

(

ρb2ψ
(n)

)

dΩe

∫

Γe

(

T3ψ
(n)

)

dΓe +
∫

Ωe

(

ρb3ψ
(n)

)

dΩe

































































(2.40)

Eq. (2.37) and Eq. (2.40) allow the weak formulation of Eq. (2.31) to be expressed

for an element in the familiar form of a linear system of equations

Kq = f (2.41)

D. Element Formulations

1. Basis Functions

Recall from Eq. (2.26) that the displacement throughout an element is determined

by summing the products of the nodal displacements and their corresponding basis

functions. The formation of basis functions for an element is critical to its computa-

tion. Generally, a basis function for a node is formed such that it possesses a value

of unity at that node and a value of zero at all other nodes. For these elements, the
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Fig. 3. 20 node hexahedron master element

basis functions will be in the form of polynomials. This will allow their exact integra-

tion using quadrature rules, the importance of which will be explained in following

subsections.

Although elements can assume non-regular shapes in the problem domain de-

scribed in the global coordinates (x, y, z), the shape function formulations will be

calculated in the master element coordinate system defined by (ξ, η, ζ), in which the

element assumes a regular shape and extends from -1 to 1 in all coordinate directions.

For these analyses, 20 node hexahedron elements are used. The node numbering con-

vention for such an element takes the form seen in figure 3.
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The 20 node hexahedron is often referred to as a type of serendipity element

because it is a quadratic element in which all the nodes exist on edges (as opposed

to the Lagrange family of elements which possess internal nodes). It is a quadratic

element because as will be seen, the basis functions are second-order polynomials. The

process for forming the basis functions occurs in the following manner. For the first

node, which possesses coordinates (1, 1, 1), it is desired to construct a basis function

with a value of unity at node 1 and a value of zero at all other nodes. Therefore,

the basis function for node 1 should vanish on the planes defined by the following

functions.

ξ + 1 = 0 (nodes 3, 4, 5, 10, 11, 15, 16, and 17)

η + 1 = 0 (nodes 5, 6, 7, 11, 12, 17, 18, and 19)

ζ + 1 = 0 (nodes 13, 14, 15, 16, 17, 18, 19, and 20)

ξ + η + ζ − 2 = 0 (nodes 2, 8, and 9)

(2.42)

This yields a function of the following form

ψ(1) (ξ, η, ζ) = C (ξ + 1) (η + 1) (ζ + 1) (ξ + η + ζ − 2) (2.43)

It is desired that ψ(1) have a value of unity at node 1, resulting in

ψ(1) (ξ, η, ζ) =
1

8
(ξ + 1) (η + 1) (ζ + 1) (ξ + η + ζ − 2) (2.44)

This convention can be followed for the remainder of the nodes, yielding the following
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set of basis functions for the master element.

ψ(1) = 1
8
(ξ + 1) (η + 1) (ζ + 1) (ξ + η + ζ − 2)

ψ(2) = −1
4
(ξ2 − 1) (η + 1) (ζ + 1)

ψ(3) = 1
8
(ξ − 1) (η + 1) (ζ + 1) (ξ − η − ζ + 2)

ψ(4) = 1
4
(ξ − 1) (η2 − 1) (ζ + 1)

ψ(5) = 1
8
(ξ − 1) (η − 1) (ζ + 1) (−ξ − η + ζ − 2)

ψ(6) = 1
4
(ξ2 − 1) (η − 1) (ζ + 1)

ψ(7) = 1
8
(ξ + 1) (η − 1) (ζ + 1) (−ξ + η − ζ + 2)

ψ(8) = −1
4
(ξ + 1) (η2 − 1) (ζ + 1)

ψ(9) = −1
4
(ξ + 1) (η + 1) (ζ2 − 1)

ψ(10) = 1
4
(ξ − 1) (η + 1) (ζ2 − 1)

ψ(11) = −1
4
(ξ − 1) (η − 1) (ζ2 − 1)

ψ(12) = 1
4
(ξ + 1) (η − 1) (ζ2 − 1)

ψ(13) = 1
8
(ξ + 1) (η + 1) (ζ − 1) (−ξ − η + ζ + 2)

ψ(14) = 1
4
(ξ2 − 1) (η + 1) (ζ − 1)

ψ(15) = 1
8
(ξ − 1) (η + 1) (ζ − 1) (−ξ + η − ζ − 2)

ψ(16) = −1
4
(ξ − 1) (η2 − 1) (ζ − 1)

ψ(17) = 1
8
(ξ − 1) (η − 1) (ζ − 1) (ξ + η + ζ + 2)

ψ(18) = −1
4
(ξ2 − 1) (η − 1) (ζ − 1)

ψ(19) = 1
8
(ξ + 1) (η − 1) (ζ − 1) (ξ − η − ζ − 2)

ψ(20) = 1
4
(ξ + 1) (η2 − 1) (ζ − 1)

(2.45)

2. Spatial Mapping

The integrations of Eq. (2.37) are performed using Gaussian Quadrature, which

requires that the integration be performed over a specific domain. This is the domain

over which the master element is defined. This master domain is mapped to an
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element’s actual physical domain by the following formula

xi (ξ, η, ζ) =
n

∑

m=1

x
(m)
i ψ(m) (ξ, η, ζ) (2.46)

x
(m)
i represents the physical coordinates of themth node of the element, and xi (ξ, η, ζ)

is the set of physical coordinates that correspond to the coordinates (ξ, η, ζ) on the

master element. Note that this formulation is isoparametric, that is to say the spatial

approximation over the element matches the approximation for the displacement over

the element.

It can be noted from Eq. (2.33) and Eq. (2.37) that the calculation of the element

stiffness matrix requires integrating the spatial derivatives of the basis functions in

the physical domain. However, This integration must be carried out in the master

element domain, and the basis functions are defined in terms of the master element

coordinates. A transformation of these derivatives is therefore necessary. By the

chain rule, Eq. (2.46) yields the following relationship between basis function spatial

derivatives in the physical and master domains.













∂ψ(m)

∂ξ

∂ψ(m)

∂η

∂ψ(m)

∂ζ













=













∂x
∂ξ

∂y

∂ξ
∂z
∂ξ

∂x
∂η

∂y

∂η
∂z
∂η

∂x
∂ζ

∂y

∂ζ
∂z
∂ζ

























∂ψ(m)

∂x

∂ψ(m)

∂y

∂ψ(m)

∂z













= J













∂ψ(m)

∂x

∂ψ(m)

∂y

∂ψ(m)

∂z













(2.47)

where J is the Jacobian matrix. As noted, however, the inverse relationship is needed.

The spatial derivatives of the basis functions must be expressed as derivatives with

respect to the master coordinates. The spatial derivatives of the physical coordinates

with respect to the master coordinates can easily be determined by differentiating

Eq. (2.46), but the spatial derivatives of the master coordinates with respect to

the physical coordinates are required. These derivatives make up the inverse of the
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Jacobian.












∂ψ(m)

∂x

∂ψ(m)

∂y

∂ψ(m)

∂z













=













∂ξ

∂x

∂η

∂x

∂ζ

∂x

∂ξ

∂y

∂η

∂y

∂ζ

∂y

∂ξ

∂z

∂η

∂z

∂ζ

∂z

























∂ψ(m)

∂ξ

∂ψ(m)

∂η

∂ψ(m)

∂ζ













= J−1













∂ψ(m)

∂ξ

∂ψ(m)

∂η

∂ψ(m)

∂ζ













(2.48)

The partial derivatives of the master coordinates with respect to the physical coor-

dinates (such as ∂ξ

∂x
) cannot be calculated directly from Eq. (2.46) to allow direct

computation of J−1, so instead, the Jacobian will be calculated and then inverted.

By differentiating Eq. (2.46) with respect to the master coordinates, the Jacobian is

found to be the following

Jij = x
(m)
j

∂ψ(m)

∂ξi
=













∑n

m=1 x
(m) ∂ψ(m)

∂ξ

∑n

m=1 y
(m) ∂ψ(m)

∂ξ

∑n

m=1 z
(m) ∂ψ(m)

∂ξ

∑n

m=1 x
(m) ∂ψ(m)

∂η

∑n

m=1 y
(m) ∂ψ(m)

∂η

∑n

m=1 z
(m) ∂ψ(m)

∂η

∑n

m=1 x
(m) ∂ψ(m)

∂ζ

∑n

m=1 y
(m) ∂ψ(m)

∂ζ

∑n

m=1 z
(m) ∂ψ(m)

∂ζ













(2.49)

Note that for the inversion of the Jacobian to be possible, its determinant cannot be

zero at any point in the element.

3. Numerical Integration

With a method for obtaining the derivatives of the basis functions with respect to

physical coordinates, it is now possible to perform the stiffness matrix integration of

Eq. (2.37) over the master domain using Gaussian Quadrature. Gaussian quadrature

is based on the principle that the following relationship is exact for polynomials f (ξ)

of degree 2n−1 or less, provided an appropriate selection of points ξi and weights wi.

∫ 1

−1

f (ξ) dx ≈
n

∑

i=1

wif (ξi) (2.50)



23

Table II. Points ξi and weights wi for various orders of Gaussian quadrature

n ξi wi

1 0 2

2 ±
√

1/3 1

3
0 8

9

±
√

3/5 5
9

4
±
√

(

3− 2
√

6/5
)

/7 18+
√
30

36

±
√

(

3 + 2
√

6/5
)

/7 18−
√
30

36

The selection of points ξi and weights wi is conducted using Legendre polynomials

Pn (ξ). These polynomials are given by the following equation

Pn (ξ) =
1

2nn!

dn

dξn

[

(

ξ2 − 1
)n
]

(2.51)

To start, Pn (ξ) is normalized to give Pn (1) = 1. Point ξi is the ith root of Pn (ξ).

The weight is given by the following relation.

wi =
2

(1− ξ2i ) (P
′
n (ξi))

2 (2.52)

Table II gives the points and weights for a number for different quadrature schemes.

Integration over three dimensions is simply the result of multiple one dimensional

integrations, where the points are simply tensor-products of the one dimensional

formulation. The integral of Eq. (2.37) is transformed to the master domain for
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evaluation, resulting in

K =

∫

Ωe

(

BTCB
)

dΩe

=

∫

Ω̂e

(

BTCB
)

|J |dΩ̂e

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

(

BTCB
)

|J | dξ dη dζ

(2.53)

where Ω̂e is the master domain of the element and |J | is the determinant of the

Jacobian matrix. One final step remains to permit the integration of the element

stiffness matrix. The strain-displacement matrix B of Eq. (2.33) contains the spatial

derivative of the basis functions ψ(m) with respect to the physical coordinates, but

the basis functions are defined in terms of the master coordinates. Therefore, the

elements of B must undergo the following transformation outlined in Eq. (2.48),

that is

∂ψα
∂xi

= J−1
ij

∂ψα
∂ξj

(2.54)

where ξi represents the master coordinates.

Finally , the element force vector is calculated by transforming the integration

of Eq. (2.40) to the master domain as follows

fα =

∫

Γe

(

Ti
∂ui
∂qα

)

dΓe +

∫

Ωe

(

ρbi
∂ui
∂qα

)

dΩe

=

∫

Γ̂e

(

Ti
∂ui
∂qα

)

|J |dΓ̂e +
∫

Ω̂e

(

ρbi
∂ui
∂qα

)

|J |dΩ̂e

(2.55)

The element stiffness matrices and force vectors for all elements of the model are

then combined through the process of assembly into a global system which is solved

for nodal displacements using any number of schemes for solving symmetric-positive-

definite linear systems.
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E. Post-processing

Once nodal displacements are determined, the displacement at any location can be

calculated via the Galerkin approximation by

ui =
n

∑

m=1

u
(m)
i ψ(m) (2.56)

These displacements can now be used to calculate strain by the relationship specified

in Eq. (2.34). It ends up that the error reaches a minimum at the points used

for Gaussian quadrature, so strain is calculated at these locations. Once strain has

been calculated at a point, the stress at that point can be determined using the

constitutive relationship of Eq. (2.10). These quadrature point stresses are used to

examine failure criteria at the quadrature points. For plotting field data which is

calculated at quadrature points, the field values are extrapolated to the nodes of the

element. Then, nodal averages are taken between adjacent elements with the same

material. Discontinuities are generally permitted across material interfaces, meaning

that nodes on interfaces generally possess one value of the field variable for each

material type with a boundary at that node. These nodal averaged field values are

then used to generate a contour plot visualizing the field.
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CHAPTER III

CONTINUUM DAMAGE MECHANICS

There are two major aspects to the continuum damage mechanics model. The first

is the criteria which is used to determine when failure occurs in a material. For

composite materials, it is also necessary to identify what kind of failure has occurred.

The second aspect of the CDM model is the degradation scheme used to degrade

material properties. Material properties are degraded according to the nature of the

damage which exists due to the failure in an attempt to cause the degraded region to

have an overall response matching a region containing discrete defects.

A. Failure Criteria

Because of the wide variety of failure modes which can occur in composites, predict-

ing failure is a challenging problem. For isotropic materials, Tresca and Von Mises

failure criteria are the the primary models used for predicting failure. For composites,

however, there is a much larger variety of failure criteria which are widely used. Mod-

els such as Tsai-Hill, Hoffman, and Tsai-Wu examine the combined effect of stress

components to predict failure. However, the increased accuracy which is obtained

by examining the contribution of multiple stress components also makes it difficult

to determine which component of stress is primarily responsible for causing failure.

Therefore, these models are not optimal for systematic use in CDM.

The maximum stress failure criterion does not examine the combined effect of

multiple components of stress. However, it clearly identifies the component of stress

which causes failure. In addition, its simplicity makes it a good choice for quickly

calculating failure. In its complete form, the max stress criteria predicts that a

composite material has failed when one of the following inequalities are satisfied.
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σ1 > Xt σ2 > Yt

σ1 < Xc σ2 < Yc

τ > |Ss|

(3.1)

where Xt and Xc are the tensile and compressive longitudinal strengths, respectively,

Yt and Yc are the tensile and compressive transverse strengths, respectively, and Ss

is the shear strength. If compressive and tensile strengths are taken to be equal and

opposite, then material strengths can be expressed as a tensor Sij with components

corresponding to those in the stress tensor. Given this strength tensor, it is convenient

to define a parameter called the failure index, FI, as follows.

FI =

∣

∣

∣

∣

σij
Sij

∣

∣

∣

∣

(3.2)

Given this definition, a material is predicted to fail when FI > 1.0 for any

component of stress. This method works best for models in which compressive stresses

are mostly absent, as compressive and tensile failure vary significantly for composite

materials.

B. Constitutive Degradation Model

The complex structure of composite materials means that the material response varies

significantly across various failure modes. For instance, a composite which contains

matrix cracking due to excessive transverse loading can still possess high stiffness in

the fiber direction so long as the fibers have not failed. This leads to the necessity for

development of a degradation scheme that affects constitutive properties differently

for different composites. To develop such a scheme, one must first examine the various

failure modes which can occur in composites, which are illustrated in figure 4.
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Fig. 4. Composite failure modes

A variety of models have been developed to address the issue of how various types

of damage affect overall material response. Some of these include models proposed

by Murakami and Ohno [2], Murikami [3], Blackketter et al. [7], Chapman and

Whitcomb [8], Choiy and Tamma [11], and Zako et al. [10]. In many of these

models, damage is represented by either a vector or a tensor which operates upon the

material stiffness or compliance tensor. To facilitate the implementation of a variety

of models in a single framework, the degradation schemes have been expressed in

terms of degradation of engineering constants. These models are very similar with

regards to which constitutive properties are degraded for a particular failure mode.

They vary primarily according to how much the constitutive properties are degraded.

The work performed in [1] utilized the Murakami-Ohno model of [2]. This work

determined that the spurious behavior noted for prediction of damage due to shear

stress by CDM was not improved by modification of the degradation model, leading

to the conclusion that the particular constitutive degradation model selected does

not contribute to the problems associated with CDM. While this was not explicitly

investigated in the current work, it was supported by the fact that similar incorrect
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predictions for damage growth were observed when using a damage model that was

not the Murikami model. In the current work, the Blackketter model of [7] is utilized.

The Blackketter scheme, expressed as a reduction of engineering constants, is shown

in table III.

Table III. Blackketter degradation factors

Failure Stress
Engineering Constant to Degrade

E1 E2 E3 G12 G23 G13 ν12 ν23 ν13

σ11 100 100 100 100 100 100 100 100 100

σ22 1 100 1 5 5 1 1 100 1

σ33 1 1 100 1 5 5 1 1 1

σ12 1 100 1 100 1 1 1 100 1

σ23 1 100 100 100 100 100 1 100 1

σ13 1 1 100 1 5 100 1 1 1

In the current implementation damage either exists completely or does not exist

for a particular mode - there is no “in-between” state of partial damage for a given

stress component. If, after one mode of damage occurs, an additional mode occurs

that results in a more severe damage factor for one of the engineering constants, then

the degradation factor is increased to the value for the new damage mode.

C. Implementation

For the analyses performed in this research, the continuum damage mechanics model

was implemented in a linear finite element framework. Applied displacements were
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1. Perform linear analysis

2. Scale load and solution vector such that the maximum failure index at any

quadrature point in the model is 1.001 to ensure that new failure occurs

3. Iterate at constant load to achieve equilibrium as follows

(a) Identify quadrature points with failure using the max stress failure criterion

(b) If no quadrature points are in failure, the model is in equilibrium and

iteration is ended (go on to step 4)

(c) Degrade the properties at failed quadrature points by dividing the engi-

neering constants by the appropriate degradation factors

(d) Perform linear analysis

(e) Return to step (a)

4. Return to step 2 until the desired load is reached

Fig. 5. Algorithm for CDM implementation in FEA

small, resulting in volume average strains not exceeding 1%. The algorithm for im-

plementation is given in figure C.
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CHAPTER IV

CONFIGURATIONS

A variety of numerical experiments were performed, primarily to investigate the major

issue which was not examined in the research performed by Gorbatikh et al. [1] - the

effect of the geometry of the initially damaged region. Only two damaged geometries

were examined in [1], a discrete crack and a circular degraded region. Understandably,

a circular region represents a general inclusion without any directional bias in its

shape, and it is conducive to obtaining an analytical elasticity solution. However,

there are several issues to be addressed regarding the selection of a circular region

for comparison to a crack by way of an analytical elasticity solution. First, except

for a few very specialized implementations, there are no circular elements in finite

elements. Second, in the progression of an analysis using CDM the damaged region

will obtain a shape which will most likely possess some directional bias instead of

being circular. Finally, the elasticity solution can only identify where new damage

will initiate around the existing circular degraded region. It cannot predict the overall

shape that the damage zone will evolve into as loading is increased and the damage

zone grows.

In investigating the effect of the initially degraded geometry on the resulting

damage zone, four configurations were investigated. Each investigates a different as-

pect of the shape of the degraded region. The configurations investigated were an

initial discrete crack, an elliptical hole, an elliptical inclusion, and a row of degraded

elements. Each of these configurations attempts to address at least one of the issues

with using a circular inclusion in comparison to a discrete crack. Furthermore, differ-

ent loadings are examined which result in different types of shear stress concentrations

around the initially damaged region.
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(a) (b) (c)

Fig. 6. Overall model geometry (a) analyzed region (b) shear load BCs (c) tensile

load BCs

A. Model Geometries

In general, the models represent one eighth of a thin plate. Symmetry and anti-

symmetry conditions are utilized to reduce model size. Two general loading cases are

examined, in-plane shear and fiber-direction tension. In all cases, loads are applied

as specified displacements on the boundaries. The general configuration of the model

is shown in figure 6.

1. Discrete Crack

The first model examined possesses an initial discrete crack in the mesh. This geom-

etry should provide the most accurate representation of the stress state which would

exist around an actual crack that can be obtained using FEA, provided that the

mesh is sufficiently refined. Such a model serves as a useful test for CDM. If CDM

cannot correctly predict the growth of a damage zone when provided a stress state

that very closely corresponds to that found around an actual crack, then it is unlikely

that any other initially damaged geometry for which the nature of the damage is

not distributed micro-defects would result in CDM making an accurate prediction of



33

Fig. 7. Discrete crack model geometry

damage growth.

To introduce a crack into the model, a portion of the anti-symmetry or symmetry

(depending on the loading) boundary condition was replaced with a traction free

boundary condition as shown in figure 7. This model for a discrete crack is somewhat

simplified in that crack surface inter-penetration is not prevented, nor is crack surface

friction accounted for. A variety of crack lengths 2a were investigated, both running

along the fiber direction (for plates under shear load) and running transverse to the

fibers (for plates under fiber-direction tensile load). Mesh refinement in these models

was varied to identify mesh dependencies on the result. For all models, the elements

along the crack surface and near the tip are square, and elements away from the crack

are as close as possible to square.
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Fig. 8. Elliptical hole model geometry

2. Elliptical Hole

Like a crack, a hole in a plate represents a form of discrete damage. For uniaxial com-

posites under tension, holes result in the formation of a well-documented H pattern of

damage resulting from local shear stress concentrations. Therefore, a variety of hole

models, as shown in figure 8, were run to determine if CDM is able to correctly predict

the development of such an H pattern of damage. Also, a hole could be considered

to represent a region degraded using a primitive degradation model in which all stiff-

ness is eliminated without regard for the stress which caused the damage (essentially

complete element death). Various hole eccentricities were examined to determine if

the behavior of a hole approaches the behavior of a model with a discrete crack. The

impact of mesh refinement was also examined.

3. Elliptical Inclusion

An elliptical inclusion was studied for the purpose of expanding upon the investiga-

tions of Gorbatikh et al.[1]. While in that work only a circular inclusion was inves-
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Fig. 9. Elliptical inclusion model geometry

tigated, this study aims to determine if the the eccentricity of the inclusion changes

the overall shape of damage zone growth predicted by the CDM model. A number of

ellipses were examined by varying b, the dimension of the minor axis. For all ellipses,

a, the major axis dimension, was held constant to 1/10th the model size as shown in

figure 9. Results will be reported in terms of eccentricity, defined in Eq. (4.1)

e =

√
a2 − b2

a
(4.1)

4. Line of Degraded Elements

One issue regarding all of the geometries previously mentioned is that they all involve

pre-existing damage with a well-defined geometry. Initially degraded regions can be

described with highly refined meshes that yield results which closely match those

obtained from an elasticity analysis (with the exception of the discrete crack which

will not yield the infinite stress concentration predicted by elasticity due to the finite

nature of the discretization). This situation varies greatly from the normal procedure
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Fig. 10. Line of degraded elements model geometry

of a progressive damage analysis using CDM, however. In a such an analysis analysis,

typically there will not be any initial damage. Instead, the damage zone will nucleate

at most likely one quadrature point in the model and grow from that point. Therefore,

early in the process of damage zone growth the damage zone will be represented

very coarsely by the mesh since it will most likely encompass only one or a few

elements. Also, at its initial formation, its shape will depend wholly upon the shape

of the element where damage first occurs. Therefore, one other type of geometry was

examined. This geometry is a uniform mesh with just one or a few degraded elements,

generally arranged in a row as shown in figure 10. Various patterns were examined

to determine if CDM can correctly predict damage zone growth provided sufficient

directional bias in a degraded region with low mesh refinement.

B. Material Properties

The material properties utilized for this analysis are those utilized by Guagliano and

Riva [12] and are given in table IV. Orthotropic properties are assumed throughout

the analysis. It has been observed that damage in composites occurs either aligned
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with or orthogonal to the fibers, meaning that the symmetries of Eq. (I) remain valid

after damage has occurred, and the material therefore remains orthotropic.

Table IV. Material properties of homogenized carbon fiber-matrix

Moduli Strengths

E1 165 GPa S11 2550 MPa

E2, E3 9.95 GPa S22 152 MPa

G12, G13 7.26 GPa S33 152 MPa

G23 3.9 GPa S12 97 MPa

ν12, ν13 0.24 GPa S23 55 MPa

ν23 0.5 GPa S13 97 MPa
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CHAPTER V

RESULTS

A. Discrete Crack

Applying traction-free boundary conditions along part of the surface of symmetry

introduces a discrete crack into the mesh. As mesh refinement around the crack is

increased, the stress state in the vicinity of the crack more closely matches the stress

predicted by elasticity. As the failure criteria for the CDM implementation is based

upon stress, it is hypothesized that the stress distribution around an actual crack will

result in an accurate prediction for the growth of the damage zone. If this is not the

case, then there is little possibility that CDM could correctly predict damage zone

growth around an initial damage zone that only somewhat approximates an actual

crack for the same loading.

1. Initial Crack Along Fibers Under Shear Loading

In [1], it was predicted that for a unidirectional composite containing a crack running

along the fiber direction under shear stress, crack growth would occur along the fiber

direction since this is the direction requiring the lowest energy release rate. In such a

situation, the fibers serve to arrest crack growth in the transverse direction, allowing

only matrix cracking to accumulate running along, but not crossing, the fibers. Since

CDM does not model cracks discretely, it will be deemed successful in predicting dam-

age growth for this case if it predicts a narrow band of damaged elements initiating

at the tip of the discrete crack and growing along the fiber direction.

It was found that as mesh refinement is increased, CDM correctly predicts dam-

age zone growth for a discrete fiber-direction crack under shear load. Insufficient mesh
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Fig. 11. Discrete crack under shear, 400 elements, a = 0.1

refinement yields wholly inaccurate results as seen in figure 11. In this case, CDM

predicted that damage grew in the x2 direction, contrary to the predicted behavior.

As mesh refinement is increased as in figure 12, the model begins to behave in a

more correct fashion, although some spurious damage growth in the x2 direction is

still predicted. Further increase of mesh refinement, however, yields damage growth

in the x1 direction only, matching the predicted behavior as seen in figure 13. For

shorter cracks (a < 1/10) , it was found that six or more elements along the crack

length yielded an accurate prediction. For longer cracks, seven elements along the

crack length were required to obtain correct results. These findings support the hy-

pothesis that the if provided a sufficiently accurate stress field, CDM can correctly

predict the direction of damage zone growth.

It may be noted for the previous models that the damage zone extends into the

elements along the crack surface. This surface, however, is traction free, and therefore
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Fig. 12. Discrete crack under shear, 900 elements, a = 0.1
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Fig. 13. Discrete crack under shear, 4900 elements, a = 0.1
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Fig. 14. Progression of damage zone for discrete crack

it would be expected that no damage would occur in this location. To address this

issue, it is important to understand the progression of the damage zone. In all of

these cases, the shown damage zone occurred in a single load step. In all cases, on an

iteration-by-iteration basis, damage initiated at the tip of the crack and proceeded to

grow away from the crack tip all the way to the edge of the model as shown in figure

14. At this point, the model is essentially completely failed as the combined crack

and damage zone span the entire mesh. However, because the damaged material

still possesses stiffness to x1 direction tensile load (note in table III that E1 is not

degraded for failure due to σ12), the model is still able to carry some load. This leaves

the elements along the crack surface as the primary load path, and they in turn fail

starting at the crack tip moving along the crack surface. So, although this region

should be damage free, the presence of damage here is not an issue of concern as it

occurs only after the model has completely failed in a logical manner.
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2. Initial Crack Transverse to Fibers, Fiber Direction Tensile Loading

Cracks which run transverse to the fiber direction for composites behave differently

under fiber direction tension than they would in a metal. Near the crack tip, there

exists a concentration of both σ11 and σ12. In a composite, the elevated σ12 causes

failure as S12 is typically significantly lower than S11. The result is the development

of damage zones which initiate at the crack tip and grow along the fiber direction

as the matrix joining the strip of material containing fibers cut by the crack and

the remainder of the composite structure fails under shear stress. The resulting

H pattern of damage has been extensively obseerved both experimentally [13] and

through numerical analysis [3].

This configuration was tested using CDM to predict the growth of the damage

zone. In all cases tested, the shear stress concentration around the crack resulted in

a damage zone which began at the crack tip and ran along the fiber direction to the

opposite edge of the model before damage zone growth transverse to the fibers began,

as seen in figure 15. This result was independent of the mesh refinement relative to the

crack length, and matched the behavior observed for composites exactly. This result

further supports the belief that CDM can accurately predict damage growth when

provided with an accurate stress field, and also shows that CDM is able to accurately

predict damage growth when the damage occurs due to a shear stress concentration

resulting from some defect under a global tensile load.

B. Elliptical Hole

While an elliptical hole represents discrete damage, it does not result in singular

stress concentrations as a crack does (provided the ellipse eccentricity is not approach-

ing a limit of 1). The location of the greatest shear stress concentration between an
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Fig. 15. Damage zone for transverse crack under tension

elliptical hole and a crack varies significantly as well. For a crack, the shear stress

reaches a maximum at the tip on the x1 axis for a crack running along the fiber di-

rection. For a traction-free elliptical hole centered at the origin, however, equilibrium

requires that the shear stress where the hole meets the x1 axis be zero.

Both shear loading and fiber-direction tensile loading were examined. For the

case of shear loading, the expected behavior is local failure due to elevated σ12 or σ22

(the stress causing failure depends on material properties) on the hole surface which

progresses along the fiber direction. For the case of fiber-direction tension, damage

should initiate at the maximum σ12 concentration on the hole near the x2 axis (but

not on it), and then grow along the fiber direction, forming an H pattern similar to

that observed for a crack [13].
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Fig. 16. Damage zone for elliptical hole under shear, eccentricity = 0

1. Shear Loading

For models with a circular hole under global shear load, the damage zone initiated on

the hole at the location of maximum σ12 and immediately began growing in the x2

direction, transverse to the fibers, as seen in figure 16. This damage growth behavior

does not match the physical realities of composite materials, but does match the

spurious behavior noted by Gorbatikh et al. [1] as well as the damage growth the CDM

predicted for an elliptical inclusion, reported in the following section. Furthermore,

this behavior was found to be mesh independent for a circular hole.

In order to study the effect of the hole’s shape on predicted damage growth,

holes with a variety of eccentricities were examined in the hope that a sufficiently

flat ellipse could correctly predict damage growth. It was found that as eccentricity

increased and approached 1, the shear stress concentration moved closer and closer to

the x1 axis. However, provided that the mesh around the ellipse tip was sufficiently
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Fig. 17. Damage zone for elliptical hole under shear, eccentricity = 0.968

refined, the initial failure never occurred on the x1 axis itself, and the damage zone

grew transverse to the fibers (in the x2 direction), as seen in figure 17.

There was a peculiar mesh dependence observed for this model. It was noted

that if the refinement near the tip of the ellipse was reduced, eventually the initial

damage location moved from the ellipse surface to a location a little ways off the

ellipse tip but on the x1 axis. From this initial failure, the damage zone proceeded to

grow in the fiber direction. This does not suggest that the CDM model is accurately

predicting damage growth in this situation because these “correct” results only occur

when the stress field around the discrete damage is not accurately represented (due

to the coarser mesh). This mesh dependence was also observed for models of elliptical

inclusions with eccentricities approaching 1, and is described in greater depth in the

section reporting results for those models.
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(a) (b)

Fig. 18. Damage zone for circular hole under tension (a) 256 elements (b) 4096 ele-

ments

2. Fiber-Direction Tensile Loading

A number of models of circular holes under fiber-direction tension were analyzed to

determine if CDM could predict the development of the H pattern of damage for this

initial defect as it could for a crack. The analyses showed that sufficient mesh re-

finement around the hole resulted in logical predictions for damage progression(figure

18). Furthermore, more refined meshes resulted in narrower damage zones that grew

further along the fiber direction before transverse failure began to occur near the hole.

These findings provide further support to the idea that CDM is able to effectively

predict damage growth due to shear failure when the failure is due to a shear stress

concentration resulting from a defect in the presence of global tensile stress.

C. Elliptical Inclusion

The third configuration examined was an elliptical inclusion. This most directly

corresponds to the investigation conducted by Gorbatikh et al. [1], in which the
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stress distribution around a circular degraded inclusion was investigated. In this

investigation, two additional aspects are examined. The first is the effect of adding

directionality to the degraded region. The second is to examine damage zone growth

beyond its initiation ([1] only examined the location of initial damage occuring around

the degraded region). Also, since this is a finite element analysis and not an analytical

elasticity solution, the effect of mesh refinement is examined.

For this investigation, an elliptical inclusion was introduced into the mesh. Its

properties were degraded according to the Blackketter model for failure due to σ12

(see table III). Like the investigation of an elliptical hole, several eccentricities were

examined. As the eccentricity of the degraded region approaches 1, it becomes more

and more crack like. While the interface of the degraded region is not traction free

as it was for the hole, the shear stress on the interface near the x1 and x2 axes will

be relatively low. This is because the degraded region has a low shear stiffness (G12

has been degraded by a factor of 100) and therefore will not carry significant shear

loading at these locations (requiring that the adjacent material also have low shear

stress to maintain equilibrium).

The first analysis performed was a linear elastic analysis of several inclusions of

various eccentricities to determine the effect of shape on the location of the maximum

stress concentration (figure 19). It was found that as the eccentricity was increased,

the shear stress concentration (which for this case resulted in the highest failure index

and therefore will be responsible for the initial failure) moved closer to the ellipse tip,

but it never completely reached the ellipse tip. The model region adjacent to the

inclusion tip and on the x1 axis was found to be a region of low stress, although the

stress rapidly increased to a local maximum a little ways away from the tip along the

x1 axis.

There was an interesting mesh dependence which was noted in the performance of
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(c) (d)

Fig. 19. Stress distribution around elliptical inclusion (maximum noted) (a) e = 0 (b)

e = 0.866 (c) e = 0.968 (d) e = 0.992
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Fig. 20. Mesh dependence observed for an elliptical inclusion (a) Stress concentration

(b) Resulting damage zone growth

this investigation, shown in figure 20. Provided that mesh refinement around the tip

of the ellipse was high enough, the maximum shear stress concentration was located

on the inclusion interface no matter how close the eccentricity was to 1. However, for

ellipses with high eccentricities, if the mesh refinement near the tip was reduced, the

stress field around the inclusion was altered. In such cases, the stress concentration

on the inclusion interface was reduced and the local maximum a little ways off the tip

of the inclusion on the x1 axis became the greatest stress concentration in the model.

It was found that for all models in which the mesh refinement was sufficient to

result in a maximum stress concentration on the inclusion interface, the damage zone

grew from this point of maximum stress transverse to the fibers (in the x2 direction),

contrary to the expected behavior, as seen in figure 21. This held true for ellipses

of all eccentricities, provided that the mesh was sufficiently refined. In models with

meshes which were coarse, resulting in the maximum stress concentration existing
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Fig. 21. Damage zone growth for an elliptical inclusion with e = 0.997 (a) Early

damage zone growth (b) Final damage zone growth

on the x1 axis a little ways off the ellipse tip, the damage zone grew along the fiber

direction as seen in figure 20. Although this behavior matches the expected behavior

for a composite, it is considered spurious as it results from an inaccurate stress field.

It is interesting to note in this case that “correct” behavior is obtained only when the

mesh is not sufficiently refined to accurately represent the stress which exists in the

model.

D. Line of Degraded Elements

All of the results discussed up to this point were obtained from models with clearly

defined initial damage. While such investigations are useful for investigating the

overall behavior of CDM in an attempt to model large-scale discrete defects, they

are not truly representative of a typical analysis utilizing CDM. In such an analysis,

damage will not initially exist in the model. The model load will be increased to

the point that failure occurs at one location. Properties at that location will be
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degraded and constant-load iterations will take place to restore equilibrium to the

model. Since damage only occurs at a limited number of quadrature points, there

will likely only be one or a few elements with degraded properties initially. The

damage zone will therefore only be coarsely defined by the mesh, and its shape will

largely be determined by the shape of the elements in which the initial damage occurs.

To determine if CDM can correctly predict damage zone growth when the damage

zone is only very coarsely represented by a few elements, a uniform mesh was created

and a limited number of elements were degraded in the mesh.

1. Single Degraded Element

The first model which was investigated was a uniform mesh of square elements in

which one element was degraded. Therefore, like the circular region from [1], this

initially degraded region lacked any directionality in its geometry. This configuration

was found to result in damage zone growth transverse to the fibers as seen in figure

22, contrary to the expected behavior but matching the behavior previously observed

for other degraded regions lacking any geometric directionality.

To ensure that the element orientation itself was not affecting the results of

this model, the material system and loading were both rotated 45◦. The results

from this analysis matched the unrotated case, with damage growing transverse to

the fiber direction as shown in figure 23. These results combined with previous

observations appear to indicate that without any directionality in the geometry of

the damage, CDM cannot accurately predict the direction of damage zone growth

for composites experiencing large-scale cracking due to shear failure. It also suggests

that the material anisotropy actually drives the direction of predicted damage zone

growth in the incorrect direction.
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Fig. 22. Damage growth around a single degraded element

2. Multiple Degraded Elements

The next investigation was intended to determine if some directionality in a coarsely

defined damaged zone could lead to correct damage zone growth predictions. For

this analysis, a few elements in a row running along the x1 direction were degraded.

For the material properties given in table IV, it was determined that if a row of four

or more uniform square elements were degraded in a mesh of 1600 square elements,

CDM predicted damage zone growth along the x1 direction as seen in figure 24. To

further investigate the effect that shape played in influencing damage zone growth,

the mesh was modified. The damage zone shape (a row of 4 square elements) was

held constant, but different mesh refinements were tried. First, a model was run with

elements with an aspect ratio of 4:1 such that the damaged zone occupied only one

element. Next, a 6400 element mesh with uniform square elements was used. In

this case, the damage zone occupied a region of 2 elements in the x2 direction and 8
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Fig. 23. Damage growth around a single degraded element, mesh rotated 45◦
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Fig. 24. Damage zone growth around damaged region with 4:1 dimensional ratio, 1600

elements

elements in the x1 direction. Both of these meshes exhibited damage growth along

the fibers, matching the predicted behavior for composites. This result indicates that

for coarsely defined damage, sufficient directionality in the damage zone can lead to

a correct prediction for damage zone growth, and that for low mesh refinement the

shape of the damage zone is more important than the mesh refinement of the damage

zone.

The effect of material anisotropy in driving the damage direction was further

investigated by running a series of models with varying material properties. The

properties were simply varied in a linear fashion between the properties for composites

given in table IV to those characteristic of 2024-T4 Aluminum Alloy, an isotropic

material with Young’s Modulus E of 73.1 GPa, a Poisson Ratio ν of 0.33, and a

tensile strength of 469 MPa. It was found that as the ratio between E1 and E2

reduced to 1, the length of the initially damaged region required to cause damage
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Fig. 25. Length of degraded region required for correct damage growth for varying

anisotropy

to grow in the predicted direction decreased, eventually reaching the point where a

single degraded element resulted in correct damage propagation for a material with

E1/E2 ≈ 2.5 (Figure 25). Although the degradation model’s applicability to this

fictitious material is dubious, the results of this investigation further support the idea

that the material anisotropy found in composite materials is a significant contributor

to CDM’s inability to correctly predict damage under shear stress in the absence of

sufficient directionality in the initially damaged region. Furthermore, the fact that

materials with lower anisotropy exhibited correct damage zone growth with a single

degraded element suggests that the degradation model tends to cause damage to

grow in the expected direction, as these models had no directional bias in the region

of initial damage.
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CHAPTER VI

PREDICTIVE DEGRADATION MODEL

The results observed thusfar show that there are issues with utilizing CDM to predict

the behavior of a composite which is experiencing large-scale cracking that cannot be

considered in a continuum sense. However, it has also been shown that there are cases

where CDM yields correct results even for damage it was not originally conceived to

model. Due to its simplicity as a tool, as well as the complexity of accounting for a

large number of cracks which can arise in complex composite architectures, it would

be advantageous to identify some modification to the analysis overall that would cause

CDM to generally better predict damage growth for these these probelmatic failure

modes. Based on the results obtained from degrading a limited number of elements in

a uniform mesh, it is observed that sufficient directional bias in the initially degraded

region can cause the damaged region to grow in a manner that is logical for shear

failure in a composite. However, one of the arguments for only degrading a small

number of elements was that when damage initially occurs in a model, it generally

will not occur with any particular directional bias. In order to exploit the findings

of the previous section, some modification must be made to the algorithm for CDM

which has been followed up to this point (figure C) to encourage the creation of an

inital damage zone which possesses sufficient directionality to drive damage growth

in a logical manner in subsequent load steps.

A. Method

In order create such a degraded region, an obvious approach is to somehow degrade

elements around the element where failure initially occurs. The most straightforward

method would be to directly degrade engineering constitutive properties in quadrature
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points that lie in a certain geometry around the location of initial failure. Another

method is to reduce the strength of quadrature points that lie within a certain ge-

ometry of the initially damaged region. This second option was chosen for further

investigation as it leaves more flexibility in the model for damage to evolve in a variety

of ways. The basic algorithm that was investigated is outlined in figure A.

Two issues must be considered for this modification of the CDM approach. The

first is how large a region must be given degraded strengths. This issue, for the case of

a uniform mesh in a 2D-esque configuration, is addressed by the investigation of a rows

of degraded elements in chapter V, section D. A more extensive study would need to

be performed to address three dimensional models and non-uniform meshes, but that

is beyond the scope of this initial investigation. The second issue to be addressed is

how much the strengths must be degraded within the identified region. The behavior

exhibited in previous experiments suggests that this likely depends on the degree of

material anisotropy, with higher anisotropy requiring greater degradation of strength

to cause the formation of an inital damage zone which will result in logical damage

zone growth.

In order to determine the nature of this dependency, a model was developed

such that the strength of the central element was degraded to ensure it would fail

before all others when the model was subjected to uniform shear stress. Immediately

after this initial failure occurred, the failure indices of the surrounding elements were

examined (Figure 27). The required strength degradation factor is determined in the

following manner. First, the maximum failure index for shear stress in the element

directly above the initially failed element (the element that represents incorrect dam-

age growth, shaded yellow) is determined. Then, based on the material anisotropy

and the findings reported in figure 25, the maximum failure index for shear stress

is identified in each element that lies within the geometric zone which must be de-
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1. Perform linear analysis

2. Scale load and solution vector such that the maximum failure index at any

quadrature point in the model is 1.001 to ensure that new failure occurs

3. Check if damage already exists in some element adjacent to the element with a

max failure index of 1.001

(a) If no damage exists (meaning this is the start of a new damage zone) then

do the following to create an initial damage zone with sufficient direction-

ality for correct damage zone growth

i. Degrade the constitutive properties of the failed quadrature points

ii. Define a geometric region around the degraded quadrature points

where failure is expected based on the failure mode

iii. Degrade the strengths for the elements within this geometric region

by some factor

(b) If damage does already exist (this is an already existing damage zone that

is growing) then utilize the iterative process in step three from figure C

4. Return to step 1 until the desired load is reached

Fig. 26. Modified algorithm for CDM implementation in FEA
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Fig. 27. Elements of interest in examining effects of anisotropy on required strength

degradation

graded to cause correct damage zone growth (shaded blue). The required strength

degradation factor is the number by which the strengths of these elements (the blue

elements) would have to be divided so that all of their maximum failure indices ex-

ceeded the maximum failure index of the element above the initial damage (the yellow

element). In other words, it represents how much the strengths must be degraded for

the elements in the expected damage zone so that they fail before damage begins to

grow in the incorrect direction. The findings are reported in figure 28. As expected,

the required strength degradation factor exhibits a strong dependence on material

anisotropy.

Again, these strength degradation factors apply only to a uniform mesh in a

more-or-less 2D configuration. Also, it is certainly plausible that strength degradation

factors lower than those shown in this study could result in the desired damage zone

growth since the stress state, and therefore the failure indices, will change as the

damage zone evolves from iteration to iteration.
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Fig. 28. Required strength degradation factors for various degrees of material

anisotropy

B. Results From Method

Some experimentation was performed on a 20x20 uniform mesh using this modifica-

tion to the CDM algorithm (Figure 29). The model used the proprieties for homog-

enized carbon fiber-matrix given in table IV. After a bit of experimentation, it was

found that the required degradation factor for this material was 1.23 and this only

needed to be applied to the two elements next to the initially degraded element. The

likely reason that the required damage zone wasn’t as long as predicted in figure 25

is that the damage zone which develops from degrading the strengths of these two

elements only includes some of the quadrature points in each element.

The work presented in this chapter is a possible way that the CDM algorithm

could be modified to improve its performance for certain situations in which the scale

of discrete damage grows too large for it to be considered in a continuum sense,

such as shear damage in textile composites. Significant work remains to be done in

determining how these modifications could be applied to a three dimensional model,

as well as applying them to non-uniform meshes. Additional validation would need
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Fig. 29. Strength degradation method and resulting damage zone

to follow, likely including comparison to models in which the damage is discretely

modeled as well as experimental results. This validation is particularly important

when considering that the success of these modifications is based wholly upon their

ability to result in behavior which matches that which is expected and observed in

experimentaiton. Such investigations, however, lie beyond the scope of this thesis.
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CHAPTER VII

CONCLUSION

The experiments which were conducted overall tend to indicate that when continuum

damage mechanics is used to predict damage zone growth in composites resulting

from shear failure, it often fails to predict the correct direction of growth. Gorbatikh

et al. [1] attributed this poor behavior to the fact that the discrete damage in such

models exists on a scale that CDM was not intended to handle, a conclusion which

in light of the current research performed appears valid.

It appears that the material anisotropy which exits in composite materials tends

to drive the damage zone to grow in a manner contrary to the behavior expected for

simple configurations under shear. However, it should be noted that generally, models

which experience shear stress concentrations which result from some defect, (i.e. a

crack or hole) under global tensile load tend to show logical damage zone growth,

provided that the model’s mesh is sufficiently refined. Also, it was found that if the

stress state around a physical crack under shear is represented with sufficient accuracy,

CDM properly predicts a damage zone growing away from the crack tip along the

fiber direction. However, for cases where the initial defect (be it a degraded inclusion

or a hole) is smooth, is under global shear loading, and is meshed with sufficient

refinement, it was found that the CDM approach will always predict damage zone

growth across the fibers, contrary to the expected behavior. The overall direction of

damage zone growth in such configurations with high eccentricity appears to be closely

tied to the location of damage initiation near the tip of the elliptical defect. For these

high-eccentricity defects, lower mesh refinement slightly alters the stress distribution

near the tip of the ellipse and completely changes the damage zone propagation

behavior, causing damage growth along the fibers.
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The effect of material anisotropy becomes very apparent in investigations in-

volving uniform meshes with a few degraded elements. It was found that sufficient

directional bias in the initially degraded region will result in subsequent damage zone

growth that matches the expected behavior. As anisotropy is decreased for these

models, the amount of directional bias which is required for obtaining well-behaved

damage zone growth decreases to the point that an initially degraded region with

no directional bias yields accurate results. This finding suggests that the property

degradation scheme tends to drive damage growth in the correct direction, but is

unable to overcome the influence of anisotropy for highly orthotropic materials such

as carbon-fiber composites.

These findings suggest that it may be possible to modify the basic CDM algo-

rithm to obtain better predictions of damage zone growth for failure modes which

do not necessarily match the zone of distributed micro-defects which CDM was orig-

inally concieved to model. When damage first occurs, by degrading the strength of

the material within a certain geometry around the initial damage, it may be possible

to cause a damage zone to form which will result in further damage growth that

is consistent with the along-the-fiber matrix cracking which has been observed for

composites failing under shear failure.
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