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ABSTRACT

Exact Methods in Fractional

Combinatorial Optimization. (December 2009)

Oleksii Ursulenko, B.S., Kyiv Polytechnical Institute;

M.S., Kyiv Polytechnical Institute

Chair of Advisory Committee: Dr. Sergiy Butenko

This dissertation considers a subclass of sum-of-ratios fractional combinatorial opti-

mization problems (FCOPs) whose linear versions admit polynomial-time exact algo-

rithms. This topic lies in the intersection of two scarcely researched areas of fractional

programming (FP): sum-of-ratios FP and combinatorial FP. Although not extensively

researched, the sum-of-ratios problems have a number of important practical appli-

cations in manufacturing, administration, transportation, data mining, etc.

Since even in such a restricted research domain the problems are numerous,

the main focus of this dissertation is a mathematical programming study of the

three, probably, most classical FCOPs: Minimum Multiple Ratio Spanning Tree

(MMRST), Minimum Multiple Ratio Path (MMRP) and Minimum Multiple Ratio

Cycle (MMRC). The first two problems are studied in detail, while for the other one

only the theoretical complexity issues are addressed.

The dissertation emphasizes developing solution methodologies for the consid-

ered family of fractional programs. The main contributions include: (i) worst-case

complexity results for the MMRP and MMRC problems; (ii) mixed 0–1 formulations

for the MMRST and MMRC problems; (iii) a global optimization approach for the

MMRST problem that extends an existing method for the special case of the sum of

two ratios; (iv) new polynomially computable bounds on the optimal objective value

of the considered class of FCOPs, as well as the feasible region reduction techniques
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based on these bounds; (v) an efficient heuristic approach; and, (vi) a generic global

optimization approach for the considered class of FCOPs.

Finally, extensive computational experiments are carried out to benchmark per-

formance of the suggested solution techniques. The results confirm that the suggested

global optimization algorithms generally outperform the conventional mixed 0–1 pro-

gramming technique on larger problem instances. The developed heuristic approach

shows the best run time, and delivers near-optimal solutions in most cases.
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CHAPTER I

INTRODUCTION

Optimization is a phenomenon that we observe everywhere around us, starting with

the laws of physics, making an object to assume a position with the minimum potential

energy, to the process of evolution, that optimizes the characteristics and behavior of

species so that they are adapted to its environment in the best possible way. Hence,

it is not surprising that once a human being learns to perform an operation X, one

of the first questions that follow is: “How to perform the operation X better ?”. The

optimization science is, therefore, in a general sense the formalization of one of the

most natural human aspirations - the human’s drive for perfection.

The development of foundations of the modern optimization techniques dates

back to the times of Gauss, who invented the steepest descent method. Other early

contributions were made by Fourier (1823) and de la Valee Poussin (1911). But it

was not until late 1940s that the optimization science developed into the independent

branch of applied mathematics. By that time the progress of the economy, industry

and warfare advanced so far that the human society was compelled to formalize the

ways of making “best possible” decisions in practical situations of great complexity.

In 1947 the theory of linear programming (LP) emerged, founded by George

Dantzig and John von Neumann, and also Leonid Kantorovich who pioneered the

subject in 1939 but whose works were not known on the West for almost 2 decades.

Very soon the introduction of the computing machinery caused a burst in the ad-

vances of LP and its applications, since many practical problems became numerically

solvable. The uses of optimization spread far beyond its initial applications - economy

The journal model is Mathematical Programming.
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and military logistics.

Linear models are still very popular in practice, even though often applying a

linear model requires considerable simplification of the underlying system. However,

there are numerous practical problems that cannot be satisfactorily described via

linear models, hence making them unlikely applications of LP. As a consequence,

nonlinear programming (NLP) and its various branches started developing rapidly

since early 1950s, when the famous Karush-Kuhn-Tucker conditions were established.

Fractional programming (FP), a subdomain of which we consider in this disser-

tation, is a branch of nonlinear optimization that studies the problems in which the

objective function involves one or several ratios of functions. Such problems are often

called fractional problems or hyperbolic programs in the literature. This terminology

is derived from the seminal paper “Programming with Linear Fractional Functionals”

published by A.Charnes and W.W.Cooper in 1962.

Three kinds of fractional programs are mainly considered in the literature: sin-

gle ratio problems that seek to optimize only one ratio; min-max (max-min) multiple

ratio problems, and sum-of-ratio problems. The single ratio models are particularly

applicable when optimization of some kind of return-on-allocation ratio is required.

They can also be viewed as a type of multiobjective optimization, when a compro-

mise is sought between minimization of one function and maximization of another.

Examples of single ratio FP applications include financial planning (debt/equity or

return/investment ratio), production planning (inventory/sales ratio), fire power dis-

tribution on enemy targets, and many others.

Single ratio FP dominated the literature almost exclusively until early 1980s. A

lot of important theoretical results were obtained, especially for the case of optimizing

a ratio of a concave function and a convex function. It is interesting, however, that

one of the earliest publications on FP, though not under this name, is the classical
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1937 paper on a model of a general economic equilibrium by John von Neumann that

analyzes a multi-ratio fractional program. Still, multi-ratio fractional models seem

to be underappreciated in the literature. Among those the sum-of-ratios programs

are the least researched, despite of the fact that they have a number of practical

applications as well. These problems typically arise in decision making when a balance

is sought between several weighted ratios that are to be optimized simultaneously.

Examples of such situations include bond portfolio optimization as formulated by

Konno and Inori [22]; layered matufacturing [25, 24], for instance material layout

problems and cloth manufacturing [3]. A sum-of-ratios model is used in hospital

administration in the State of Texas to distribute relative charge increases between

medical procedures in various departments [37]. Another important application is

data mining [20, 6]: if the objective of the data analysis is to minimize the sum

of the average squared distances between the entities within the groups, then the

problem becomes a minimum sum-of-ratios problem. Furthermore, when the data is

represented as a graph this problem falls into the category of combinatorial fractional

programs, which form yet another subdomain of FP that has received very little

attention in the literature.

In this dissertation we focus on sum-of-ratios fractional combinatorial optimiza-

tion problems (FCOPs), a topic that lies in the intersection of two scarcely researched

areas of FP: sum-of-ratios FP and combinatorial FP. Although little is known about

the properties of continuous sum-of-ratios problems, it is a fact that they are typically

hard to solve even when the feasible region is convex. This is due to the fact that

the objective function is, in general, multiextremal. Combinatorial problems of this

kind are hence expected to be hard to solve as well. Therefore, it is unlikely that an

efficient algorithm can be devised for fractional combinatorial problems in general.

Yet it is a task of those working in the field of computational optimization to solve
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these problems, however difficult they are. The traditional and, perhaps, the only way

to succeed in such case is to break up a general class of problems into a number of

special cases according to some specific properties pertinent to these problems in each

of the cases, and exploit these properties to the benefit of the solver. This is the path

that we take in this dissertation. We consider a subclass of sum-of-ratios FCOPs such

that the linear versions of these problems can be easily solved, i.e., admit polynomial-

time exact algorithms. Naturally, even in such restricted domain the problems are

numerous. Hence, we concentrate our attention on the generalizations of the three,

perhaps, most classical fractional combinatorial problems: minimum ratio spanning

tree (MRST), minimum ratio shortest path (MRSP), and minimum ratio shortest cy-

cle (MRSC). The sum-of-ratios versions of these problems respectively have “multiple

ratio” instead of “ratio” in their names.

In this work we establish some complexity results for the aforementioned prob-

lems and attempt to solve them with both traditional mixed integer programming

techniques and global optimization approaches that exploit polynomial-time solvabil-

ity of their linear versions.

The rest of the dissertation is organized as follows. The next chapter is devoted to

the review of the related theoretical background and the work that has been done by

the other researchers in the area so far. In Chapter III we establish several complexity

results for the considered problems. Chapter IV contains the mixed binary formu-

lations. In Chapter V we develop a global optimization approach for the Minimum

Multiple Ratio Spanning Tree Problem based on the existing algorithm for a special

case of this problem. An improved version of the algorithm is suggested in Chapter

VI. Finally, Chapter VII summarizes our work and outlines possible directions for

improvements and further research in this area.
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CHAPTER II

BACKGROUND

This chapter provides formal definitions of the problems studied in this dissertation,

briefly reviews their applications, and outlines the general ideas behind the algorithms

proposed for solving the problems of interest.

A fractional combinatorial optimization problem is defined as follows:

min
x∈X

f(x)

g(x)
, (2.1)

where X ⊆ {0, 1}p is a set of certain combinatorial structures, and f and g are real-

valued functions defined on X . In addition, it is common to assume that g(x) > 0

for all x ∈ X [35].

One of the classical fractional combinatorial optimization problems is the mini-

mum ratio spanning tree (MRST) problem [7], which is defined as follows. Consider

a graph G = (V,E) with the set V of n vertices and the set E of m edges. Given

a pair of numbers (aij, bij) for each edge (i, j) ∈ E, find a spanning tree τ ∗, which

solves

min
τ∈T

∑
(i,j)∈τ aij∑
(i,j)∈τ bij

, (2.2)

where T denotes the set of all spanning trees of G.

The practical applications of this problem include the minimal cost-reliability

ratio spanning tree problem [8], where the functions in the numerator and the de-

nominator of (2.2) represent the cost and the reliability of the spanning tree τ ∈ T ,

respectively. This problem can be solved in polynomial time usingO(|E|5/2 log log |V |)

arithmetic operations [8, 9, 21]. Closely related classes of problems, where X is a cy-

cle, a path, or a cut in graph G also admit polynomial time solution approaches
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[2, 28, 34, 35]. An example of such a problem is the minimum cost-to-time ratio cycle

problem, also known as the tramp steamer problem [2]. A short survey on fractional

combinatorial optimization problems and related solution approaches can be found

in [35].

Recently, Skiscim and Palocsay [39, 40] have introduced a generalization of the

MRST problem, where the objective function is given by the sum of two ratios. The

resulting two ratio minimum spanning tree (TRMST) problem is defined as follows.

Consider a graph G = (V,E) with the set V of n vertices and the set E of m edges.

Given a set of 4 real positive numbers (aij, bij, cij, dij) for each edge (i, j) ∈ E, find a

spanning tree τ ∗, which solves

min
τ∈T

∑
(i,j)∈τ aij∑
(i,j)∈τ bij

+

∑
(i,j)∈τ cij∑
(i,j)∈τ dij

, (2.3)

where T denotes the set of all spanning trees of G.

A closely related class of combinatorial optimization problems is optimization of

the ratio of two linear 0–1 functions:

max
x∈{0,1}n

f(x) =
a0 +

∑n
i=1 aixi

b0 +
∑n

i=1 bixi
. (2.4)

This problem is a special case of (2.1) and is usually referred to as a single-ratio

hyperbolic 0-1 programming problem or single-ratio fractional 0–1 programming prob-

lem [5]. In a generalization of this problem one considers the sum of ratios of linear

0–1 functions in the objective:

max
x∈{0,1}n

f(x) =
k∑
j=1

aj0 +
∑n

i=1 ajixi
bj0 +

∑n
i=1 bjixi

, (2.5)

This problem is known as the multiple-ratio hyperbolic (fractional) 0-1 programming

problem [33, 41]. A short survey of the literature dealing with the fractional 0–1
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programming problems can be found in [31]. Applications of constrained and un-

constrained versions of these problems can be found in service systems design [14],

facility location [41], query optimization in data bases and information retrieval [20],

data mining [6], etc.

Both the minimum ratio spanning tree problem and the single-ratio hyperbolic

0–1 programming problem are polynomially solvable if the denominator is always

positive, but become NP -hard if the denominator can take both positive and negative

values [32, 39]. On the other hand, their multiple-ratio versions (2.3) and (2.5) are

NP -hard for two ratios, even if all denominators are always positive [33, 39]. Some

other complexity aspects of unconstrained single- and multiple-ratio fractional 0–

1 programming problems, including complexity of uniqueness, approximability and

local search, are addressed in [32, 33].

Generally speaking, multiple-ratio problems arise in case of multiple fractional

performance metrics that need to be optimized, e.g., a fleet of cargo ships in the tramp

steamer problem. Related discussion can be found in [10, 37] and references therein.

Analogously with the definition of the multiple-ratio hyperbolic 0–1 programming

problem, the multiple-ratio fractional combinatorial optimization (MRFCO) problem

can be defined as

min
x∈X

k∑
i=1

fi(x)

gi(x)
, (2.6)

where X ⊆ {0, 1}p is a set of certain combinatorial structures, and fi and gi, i =

1, . . . , k, are real-valued function defined on X .

Obviously, the TRMST problem mentioned above is a simple example of the

MRFCO problem. Then the multiple-ratio version of the MRST problem is formu-

lated as follows. Let G = (V,E) be a graph with the set V of n vertices and the set E

of m edges. Given k pairs of real positive numbers (a1
ij, b

1
ij), (a2

ij, b
2
ij), . . ., (akij, b

k
ij) for
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each edge (i, j) ∈ E, the minimum multiple-ratio spanning tree (MMRST) problem

is to find a spanning tree τ ∗, which solves

min
τ∈T

k∑
r=1

∑
(i,j)∈τ a

r
ij∑

(i,j)∈τ b
r
ij

, (2.7)

where T denotes the set of all spanning trees of G. Note that, similarly to [40], we

assume that all the coefficients in the pairs (a1
ij, b

1
ij), (a2

ij, b
2
ij), . . ., (akij, b

k
ij) are positive

for each arc (i, j) ∈ A.

We consider two different types of approaches to solving the MMRST problem

formulated above: mixed integer programming (MIP) and a global optimization al-

gorithms based on representing the problem in the image space pioneered by Falk

and Palocsay for general fractional programming [15, 16]. Two MIP formulations

for the MMRST problem used in computational experiments are derived via Miller-

Tucker-Zemlin (MTZ) subtour elimination constraints [29] and the single commodity

flow-based formulation of the minimum spanning tree (MST) problem [23]. In both

MIP models we also utilize linearization approaches for multiple-ratio fractional 0–1

programming [42]. The suggested global optimization algorithm has evolved from the

ideas behind the work on two-ratio minimum spanning trees by Skiscim and Paloc-

say [39], who also employed the idea of the image space mentioned above.

The image space of the feasible set T [16] is obtained via introducing a mapping

M : T → Rk, such that

Y =

{
M(x) ≡

(
aT1 x

bT1 x
,
aT2 x

bT2 x
, . . . ,

aTk x

bTk x

)T
: x ∈ T

}
. (2.8)

The idea of the image space became popular in research related to solving the prob-

lems involving the sum of ratios. One reason is that using the image space may sig-

nificantly reduce the computational burden when k << n, which is usually the case

in practical applications. This especially applies to our case, since for combinatorial
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problems like MST the dimension of the original feasible region is often extremely

large. Another reason is that, when translated to Rk, the MMRST problem (2.7) is

equivalent to the linear program

min eTy

subject to y ∈ conv(M(T )),
(2.9)

where e denotes the corresponding vector of all ones. Unfortunately, neither we have

a description of conv(M(T )) nor there exists a systematic way of generating its facets

or extreme points. It may be possible, however, to build a sort of an approximation of

conv(Y ), which would be accurate enough in the neighborhood of an optimal extreme

point y∗ to guarantee a solution as close to y∗ as needed. This is precisely the idea

our global optimization algorithms utilize.

We will also consider the following related problems. Consider an acyclic directed

graph G = (N,A) with the set N of n nodes and the set A of m arcs, where a pair

of real numbers (aij, bij) is given for each arc (i, j) ∈ A. Let two nodes s, t ∈ N be

given. The minimum ratio path (MRP) problem is to find a directed path p∗ from

node s to node t, which solves

min
p∈P

∑
(i,j)∈p aij∑
(i,j)∈p bij

, (2.10)

where P denotes the set of all directed paths from node s to node t of G(N,A).

The minimum multiple-ratio path (MMRP) problem generalizes the MRP problem

by considering k pairs of real numbers (a1
ij, b

1
ij), (a2

ij, b
2
ij), . . ., (akij, b

k
ij) for each arc

(i, j) ∈ A. The objective is then to find a directed path p∗ from node s to node t,

which solves

min
p∈P

k∑
r=1

∑
(i,j)∈p a

r
ij∑

(i,j)∈p b
r
ij

, (2.11)

where P denotes the set of all directed paths from node s to node t of G(N,A). The
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minimum cost-to-time ratio cycle (MRC) and minimum multiple cost-to-time ratio

cycle (MMRC) problems are defined similarly, by considering cycles in the place of

paths.

Table 1 summarizes the list of abbreviations used throughout this dissertation.

Table 1 The abbreviations used

CMRST constrained minimum ratio spanning tree

DAG directed acyclic graph

FCOP fractional combinatorial optimization problem

FP fractional programming

LP linear programming

MIP mixed integer programming

MMRST minimum multiple-ratio spanning tree

MMRC minimum multiple cost-to-time ratio cycle

MRC minimum cost-to-time ratio cycle

MRFCO multiple-ratio fractional combinatorial optimization

MRP minimum ratio path

MRSC minimum ratio shortest cycle

MRSP minimum ratio shortest path

MRST minimum ratio spanning tree

MST minimum spanning tree

MTZ Miller-Tucker-Zemlin

NLP nonlinear programming

TRMST two ratio minimum spanning tree
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CHAPTER III

COMPLEXITY RESULTS

In order to be able to propose effective solution approaches for an optimization prob-

lem, it is essential to understand the problem’s complexity [17]. This chapter discusses

the known complexity results for some of the problems of interest and establishes the

computational complexity for other related problems that have not been studied in

the literature. The reader is referred to the classical text by Garey and Johnson [17]

for introduction to computational complexity and the theory of NP -completeness.

It is well-known (see, e.g., [20]) that there exists a polynomial time algorithm

for solving an single-ratio hyperbolic 0–1 programming problem (2.4), if the following

condition holds:

b0 +
n∑
i=1

bixi > 0, ∀x ∈ {0, 1}n. (3.1)

Note that if the term b0 +
∑n

i=1 bixi can take the value zero, then problem (2.4) may

not have a finite optimum. If

b0 +
n∑
i=1

bixi 6= 0, x ∈ {0, 1}n (3.2)

holds, but the term b0 +
∑n

i=1 bixi can take both negative and positive values, the

single-ratio problem (2.4) is known to be NP -hard [20]. In other words, the sign

of the denominator is “the borderline between polynomial and NP -hard cases” of

the single-ratio problem (2.4) [20]. As for the multiple-ratio problem (2.5), the 2-

ratio case of (2.5) becomes NP -hard, even if all denominators are restricted to be

positive [33].

Similar results can be established for the spanning tree problems [40]. The MRST

problem is NP -hard if we allow the denominator to take both positive and negative
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values, and the TRMST problem is NP -hard even with both numerator and denom-

inator restricted to be positive.

Next we show that these results hold for the minimum cost-to-time ratio cycle

and minimum multiple cost-to-time ratio cycle problems, as well as for the minimum

ratio path and minimum multiple-ratio path problems.

Recall the classical SUBSET SUM problem: Given a set of positive integers

S = {s1, . . . , sn} and a positive integer K, does there exist a vector x ∈ {0, 1}n, such

that
n∑
i=1

sixi = K? (3.3)

This problem is known to be NP -complete [17]. We will use a polynomial-time

reduction from SUBSET SUM to establish the NP -hardness of the MRP problem.

Proposition 1. The MRP problem is NP -hard if we allow bij take both positive and

negative values for all (i, j) ∈ A.

Proof. The polynomial-time reduction we use in this and the next propositions follows

the ideas used to prove the same result for the MRST problem [40] and single-ratio

hyperbolic 0–1 programming problem [5]. Let an instance of the SUBSET SUM

problem be given, i.e., we have a set of positive integers S = {s1, . . . , sn} and a

positive integer K. We construct a directed graph G = (N,A) with |N | = 3n + 1

nodes and |A| = 4n arcs, where

N = {v0, v1, . . . , vn}
⋃
{t1, . . . , tn}

⋃
{t̃1, . . . , t̃n, }

and

A = {(v0, t1), (v1, t2), . . . , (vn−1, tn)}
⋃
{(v0, t̃1), (v1, t̃2), . . . , (vn−1, t̃n)}

⋃
⋃
{(t1, v1), (t2, v2), . . . , (tn, vn)}

⋃
{(t̃1, v1), (t̃2, v2), . . . , (t̃n, vn)}.
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Let

aij = 1
2n

for all (i, j) ∈ A,

bij = −1+2K
2n

for arcs (v0, t1), . . . , (vi, ti+1), . . . , (vn−1, tn),

bij = −1+2K
2n

for arcs (t1, v1), . . . , (ti, vi), . . . , (tn, vn),

bij = −1+2K
2n

+ si for arcs (v0, t̃1), . . . , (vi, t̃i+1), . . . , (vn−1, t̃n),

bij = −1+2K
2n

+ si for arcs (t̃1, v1), . . . , (t̃i, vi), . . . , (t̃n, vn).

(3.4)

Consider a set of directed paths P with v0 and vn as starting and end nodes respec-

tively. Any directed path from v0 to vn goes through nodes vi−1 − ti − vi or through

nodes vi−1− t̃i− vi for all i = 1, . . . , n. Define a 0–1 variable xi, which is equal to 1 if

the directed path goes through vi−1 − t̃i − vi and 0, otherwise, i.e., if it goes through

vi−1 − ti − vi. Then any directed path p from v0 to vn is determined by a vector

x = (x1, . . . , xn) ∈ {0, 1}n and (2.10) can be rewritten as follows:

min
x∈{0,1}n

1

2(
∑n

i=1 sixi −K)− 1
(3.5)

This is the same 0–1 programming problem used in [5] to prove that (2.4) is NP -hard.

It is easy to observe that the optimal objective function value of (3.5) is equal to −1

if and only if we have a “yes” instance of the SUBSET SUM problem.

Using the same idea and results from [32] we can prove that if bij take both

positive and negative values for all (i, j) ∈ A then

(i) it is NP -hard to check if the solution of the MRP problem, i.e., the optimal

directed path, is unique or not (see Lemma 1 of [32]),

(ii) the MRP problem remains NP -hard even the global solution is unique (see

Lemma 4 of [32]).
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Proposition 2. The MMRP problem is NP -hard for any k ≥ 2 even if the values of

arij and brij are positive for all (i, j) ∈ A and r = 1, . . . , k.

Proof. It is enough to prove this result for the case k = 2. In this case the objective

function (2.11) is given as

min
p∈P

∑
(i,j)∈p aij∑
(i,j)∈p bij

+

∑
(i,j)∈p cij∑
(i,j)∈p dij

. (3.6)

For a given instance of the SUBSET SUM problem, we construct the same same

graph G = (N,A) as in the previous proof. For each arc (i, j) ∈ A, the values of aij,

bij, cij and dij should be assigned as follows:

aij = 1
2n

for arcs (v0, t1), . . . , (vi, ti+1), . . . , (vn−1, tn),

aij = 1
2n

for arcs (t1, v1), . . . , (ti, vi), . . . , (tn, vn),

aij = 1
2n

+ si

2
for arcs (v0, t̃1), . . . , (vi, t̃i+1), . . . , (vn−1, t̃n),

aij = 1
2n

+ si

2
for arcs (t̃1, v1), . . . , (t̃i, vi), . . . , (t̃n, vn),

bij = 1
2n

for all (i, j) ∈ A,

cij = (K+1)2

2n
for all (i, j) ∈ A,

dij = 1
2n

for arcs (v0, t1), . . . , (vi, ti+1), . . . , (vn−1, tn),

dij = 1
2n

for arcs (t1, v1), . . . , (ti, vi), . . . , (tn, vn),

dij = 1
2n

+ si

2
for arcs (v0, t̃1), . . . , (vi, t̃i+1), . . . , (vn−1, t̃n),

dij = 1
2n

+ si

2
for arcs (t̃1, v1), . . . , (t̃i, vi), . . . , (t̃n, vn).

(3.7)

Then any directed path p from v0 to vn is determined by a vector x = (x1, . . . , xn) ∈

{0, 1}n and (3.6) can be rewritten in terms of variables xi as follows:

min
x∈{0,1}n

1 +
n∑
i=1

sixi +
(1 +K)2

1 +
∑n

i=1 sixi
(3.8)

Performing some simple manipulations with the objective function in (3.8) we obtain
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1 +
n∑
i=1

sixi +
(1 +K)2

1 +
∑n

i=1 sixi
=

1 + 2
∑n

i=1 sixi + (
∑n

i=1 sixi)
2 +K2 + 2K + 1

1 +
∑n

i=1 sixi
(3.9)

=
(
∑n

i=1 sixi)
2 + 2

∑n
i=1 sixi + 2 + 2K +K2

1 +
∑n

i=1 sixi

=
(
∑n

i=1 sixi −K)2 + (2K + 2)(1 +
∑n

i=1 sixi)

1 +
∑n

i=1 sixi

=
(
∑n

i=1 sixi −K)2

1 +
∑n

i=1 sixi
+ 2(K + 1),

which implies that solution of (3.8) is equal to 2(K + 1) if and only if the SUBSET

SUM problem has a solution.

These results can be also extended for the case of the minimum cost-to-time

ratio cycle and minimum multiple cost-to-time ratio cycle problems. Indeed, we can

modify the graph G = (N,A) from Propositions 1 and 2 by adding one more node ṽ

with arcs (vn, ṽ), (ṽ, v0) and changing the values of aij, bij, cij and dij correspondingly,

making sure that the discussed reductions to hyperbolic 0–1 programming problem

(3.5) and (3.8) remain valid. We obtain the following statements.

Proposition 3. The MRC problem is NP -hard if we allow bij take both positive and

negative values for all (i, j) ∈ A.

Proposition 4. The MMRC problem is NP -hard for any k ≥ 2 even if the values of

arij and brij are positive for all (i, j) ∈ A and r = 1, . . . , k.
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CHAPTER IV

LINEAR MIXED 0–1 PROGRAMMING FORMULATIONS

A mathematical programming formulation often gives an important insight into the

structure of the considered problem. With the advent of powerful MIP solver engines,

such as CPLEX, Xpress, GLPK, etc., such formulations gain even more importance.

Indeed, in cases when the software can deliver a solution in reasonable time based on

the mathematical description of a problem, the need for developing problem-specific

solution techniques is questionable.

In this chapter we develop mixed 0–1 formulations for the MMRST and MMRP

problems and perform experiments to test their efficiency from the computational

point of view. The first section is allotted to the MMRST problem. There, we

develop an MST formulation based on the directed-out spanning tree via Miller-

Tucker-Zemlin constraints, suggest several valid inequalities, and transform it into

the MMRST formulation using the results of Wu [42]. We use this transformation

throughout the chapter to linearize our sum-of-ratios problems, and therefore we

elaborate on the relevant details when we use it for the first time. Also, in the first

section we provide another, flow-based, MMRST formulation. The second section

contains the MMRP formulation that is derived from the classic network flow model

for the Shortest (s, t)-path problem. The chapter is concluded by a section where we

present and discuss the numerical results.
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IV.1. Formulations for the MMRST problem

IV.1.1. Formulation via Miller-Tucker-Zemlin constraints

Consider an instance of the MMRST problem, which is given by a simple undirected

graph G = (V,E) with the set V of n vertices and the set E of m edges, where

each edge (i, j) ∈ E is associated with k pairs of numbers (arij, b
r
ij), r = 1, . . . , k.

Then the directed version of G is defined as a network G̃ = (N,A), where the set

of nodes N coincides with V , the set of arcs A has two directed arcs (i, j) and (j, i)

for every undirected edge (i, j) in E, and each arc is associated with the same k

pairs of numbers as the corresponding edge in E, i.e., arij = arji and brij = brji for all

r = 1, . . . , k. Therefore, we obtained a directed graph G̃ = (N,A) with |N | = n and

|A| = 2m.

The formulation is designed based on the observation that any feasible solution

to MMRST problem corresponds to a directed-out spanning tree rooted at node 1

(i.e., there is a unique directed path in the resulting tree from node 1 to every other

node of the graph), and vice versa. Let xij, i 6= j, be 0–1 variables such that xij = 1

if an arc (i, j) appears in the optimal tree sought, and xij = 0, otherwise. The total

number of variables xij is equal to n(n − 1), however, if (i, j) /∈ A we can assign

xij = 0, with only |A| = 2m variables remaining. Then the objective function for the

MMRST problem can be formulated as follows:

min
xij∈{0,1}

k∑
r=1

∑
(i,j)∈A a

r
ijxij∑

(i,j)∈A b
r
ijxij

. (4.1)

Next we need to find a mathematical description of the set of all directed-out spanning

trees rooted at node 1 in terms of the introduced decision variables. This can be done

using the following set of linear constraints. Since the tree is rooted at node 1, we
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have ∑
(1,j)∈A

x1j ≥ 1. (4.2)

The tree is directed out, therefore the in-degree of each of the nodes 2, . . . , n is exactly

1, and the in-degree of node 1 is 0:

∑
i:(i,j)∈A

xij = 1, j = 2, . . . n, (4.3)

x(i,1) = 0, ∀i : (i, 1) ∈ A. (4.4)

The total number of arcs in the spanning tree is n− 1:

∑
(i,j)∈A

xij = n− 1. (4.5)

To ensure the connectivity, we will use the classical Miller-Tucker-Zemlin (MTZ)

constraints that were originally proposed in [29] in order to prevent subtours in the

traveling salesman problem (TSP):

ui − uj + (n− 1)xij ≤ n− 2, ∀i, j ≥ 2, i 6= j, (i, j) ∈ A, (4.6)

where the variables ui, i = 1, . . . , n satisfy

u1 = 0 and 1 ≤ ui ≤ n− 1, i = 2, . . . , n. (4.7)

These constraints (4.6)-(4.7) are usually referred to as Miller-Tucker-Zemlin (MTZ)

constraints.

Proposition 5. Constraints (4.2)-(4.7) define a directed-out spanning tree rooted at

node 1.

Proof. Observe that since we require condition (4.3)-(4.4) to be satisfied then we may

have only directed cycles and do not have cycles, which involve node 1. MTZ con-
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straints (4.6)-(4.7) prevent any other directed cycle in the final solution [29]. There-

fore, we need to show only the existence of the solution. Let the values xij correspond

to some directed-out spanning tree rooted at node 1. If xij = 0 then

ui − uj ≤ n− 2, (4.8)

which is obviously true due to (4.7). If xij = 1 then

ui − uj ≤ −1,

that is

uj ≥ ui + 1. (4.9)

Condition (4.9) implies that for any node j of the subtree rooted at node i the value

of corresponding uj should be greater than ui. It is easy to notice that if we numerate

the nodes of the directed-out spanning tree rooted at node 1 according to the order

we visit the nodes of the tree in depth-first, or breadth-first search procedure than

constraints (4.9) will be satisfied for all arcs (i, j) in the tree.

Remark. As we mentioned above the values of ui imply that for any node j of

the subtree rooted at node i the value of corresponding uj should be greater than ui.

Therefore, indices ui define some topological ordering of the final tree. This fact is

not surprising since we know that a graph has a topological ordering if and only if it

is acyclic [2]. Therefore, we can conclude that

Corollary 1. Subgraph induced by nodes 1, 2, . . ., n and the constraints (4.6)-(4.7)

is topologically ordered, where the values of u1, u2, . . ., un define the order labels of

the nodes.

Next, following a standard procedure for multiple-ratio fractional 0–1 program-

ming introduced in [42] (see also [32, 41] for some additional discussion), we define k
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new variables yr as follows:

yr =
1∑

(i,j)∈A b
r
ijxij

, r = 1, . . . , k, (4.10)

which, assuming that the denominator in (4.10) cannot be equal to zero, is equivalent

to ∑
(i,j)∈A

brijxijyr = 1, r = 1, . . . , k. (4.11)

We define 2km new variables zrij such that

zrij = xijyr. (4.12)

The nonlinear constraints (4.12) can be equivalently replaced by 4 linear inequalities

zrij ≤ U rxij, zrij ≤ yr − Lr(1− xij),

zrij ≥ Lrxij, zrij ≥ yr − U r(1− xij),
(4.13)

where U r and Lr are upper and lower bounds on variable yr, respectively. These

bounds can be defined, for example, as

U r ≥ max
τ∈T

1∑
(i,j)∈τ b

r
ijxij

and Lr ≤ min
τ∈T

1∑
(i,j)∈τ b

r
ijxij

. (4.14)

If brij ≥ 0 for (i, j) ∈ A and r = 1, . . . , k, then these bounds can be defined as follows

U r ≥ 1∑
(i,j)∈τmin

brij
and Lr ≤ 1∑

(i,j)∈τmax
brij
, (4.15)

where τmin and τmax are minimum and maximum, respectively, weight spanning trees

of the initial undirected graph G with weights brij assigned to its edges.

The resulting linear mixed 0–1 formulation of the MMRST problem is given as:

min
k∑
r=1

∑
(i,j)∈A

arijz
r
ij. (4.16a)
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subject to

∑
i:(i,j)∈A

xij = 1, j = 2, . . . n; (4.16b)

∑
j:(1,j)∈A

x1j ≥ 1 and xi1 = 0, ∀i : (i, 1) ∈ A; (4.16c)

∑
(i,j)∈A

xij = n− 1; (4.16d)

ui − uj + (n− 1)xij ≤ n− 2, ∀i, j ≥ 2, (i, j) ∈ A; (4.16e)∑
(i,j)∈A

brijz
r
ij = 1, r = 1, . . . , k; (4.16f)

zrij ≤ U rxij, z
r
ij ≤ yr − Lr(1− xij), ∀(i, j) ∈ A, r = 1, . . . , k; (4.16g)

zrij ≥ Lrxij, z
r
ij ≥ yr − U r(1− xij), ∀(i, j) ∈ A, r = 1, . . . , k; (4.16h)

xij ∈ {0, 1}, ∀(i, j) ∈ A; (4.16i)

u1 = 0 and 1 ≤ ui ≤ n− 1, i = 2, . . . , n, Lr ≤ yr ≤ U r, r = 1, . . . , k; (4.16j)

zrij ≥ 0, ∀(i, j) ∈ A, r = 1, . . . , k; (4.16k)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (4.16l)

The bounds U r and Lr are defined by (4.14) (or by (4.15) in case of positive brij). The

total number of variables is O(mk+ n), out of which 2m are binary, and the number

of constraints is O(mk + n).

IV.1.1.1. Valid inequalities

In [11] the following valid inequalities were developed for the improvement of MTZ

constraints in the TSP:

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2, i 6= j, i, j = 2, . . . , n, (4.17)
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ui ≥ 1− (n− 3)xi1 +
n∑

j=2,j 6=i

xji, i = 2, . . . , n, (4.18)

ui ≤ n− 1− (n− 3)x1i −
n∑

j=2,j 6=i

xij, i = 2, . . . , n, (4.19)

Constraints (4.17), (4.18)-(4.19) are lifted versions of (4.6) and (4.7), respectively.

Proposition 6. Constraint (4.17) is a valid inequality for the directed-out spanning

tree formulation and the value of uj (j = 1, . . . , n) defines the depth of node j in the

final tree, i.e., the length of the path from the root node 1 to the node j.

Proof. The proof just follows the arguments in [11]. It is obviously true for xji = 0.

In case of xji = 1 constraints (4.17) force ui = uj + 1, which is true if and only if we

numerate the nodes according to their distance from the root node 1.

In our case, constraints (4.18)-(4.19) should be replaced by

ui ≥ 2− x1i, i ≥ 2, (1, i) ∈ A, (4.20)

ui ≤ n− 1−
∑

(i,j)∈A,j 6=1

xij, i ≥ 2, . . . , n. (4.21)

Proposition 7. Constraints (4.20)-(4.21) are valid inequalities for the directed-out

spanning tree formulation.

Proof. The proof just follows the arguments from the proof above taking into account

that the considered graph structure a directed-out spanning tree.

IV.1.2. Flow-based formulation

We consider a variation of the flow-based linear mixed 0–1 formulation for the mini-

mum spanning tree problem proposed in [23]. Assume that node 1 serves as a source
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node that sends a unit of some flow to every other node. We will denote by fij the

variable representing the flow on edge (i, j) in the direction i to j. For each edge

(i, j), i < j, we define a variable xij that indicates whether (i, j) is a part of the tree

sought. Then we have:

min
∑

(i,j)∈E,i<j

wijxij. (4.22a)

subject to

∑
i:(1,i)∈E

(f1i − fi1) = n− 1; (4.22b)

∑
i:(v,i)∈E

(fvi − fiv) = 1, ∀v ∈ V, v 6= 1; (4.22c)

fij ≤ (n− 1)xij, fji ≤ (n− 1)xij, ∀(i, j) ∈ E, i < j; (4.22d)∑
(i,j)∈E,i<j

xij = n− 1; (4.22e)

xij ∈ {0, 1}, ∀(i, j) ∈ E, i < j; (4.22f)

fij ≥ 0 ∀(i, j) ∈ E. (4.22g)

Following (4.16) and the respective discussion in the previous subsection, formu-

lation (4.22) can be easily modified to model the MMRST problem. As a result, we

obtain the following formulation:

min
k∑
r=1

∑
(i,j)∈E,i<j

arijz
r
ij. (4.23a)

subject to ∑
i:(i,1)∈E

(f1i − fi1) = n− 1; (4.23b)

∑
i:(v,i)∈E

(fvi − fiv) = 1, ∀v ∈ V, v 6= 1; (4.23c)

fij ≤ (n− 1)xij, fji ≤ (n− 1)xij, ∀(i, j) ∈ E, i < j; (4.23d)
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∑
(i,j)∈E,i<j

xij = n− 1; (4.23e)

∑
(i,j)∈E,i<j

brijz
r
ij = 1, r = 1, . . . , k; (4.23f)

zrij ≤ U rxij, zrij ≤ yr − Lr(1− xij), ∀(i, j) ∈ E, i < j, r = 1, . . . , k; (4.23g)

zrij ≥ Lrxij, zrij ≥ yr − U r(1− xij), ∀(i, j) ∈ E, i < j, r = 1, . . . , k; (4.23h)

Lr ≤ yr ≤ U r, r = 1, . . . , k; (4.23i)

zrij ≥ 0, ∀(i, j) ∈ E, i < j, r = 1, . . . , k; (4.23j)

fij ≥ 0, ∀(i, j) ∈ E; (4.23k)

xij ∈ {0, 1}, ∀(i, j) ∈ E, i < j. (4.23l)

The flow-based formulation (4.23) contains O(mk+ n) variables and O(mk+ n)

constraints as well as the formulation (4.16). However, the number of binary variables

is m instead of 2m in (4.16), since only one binary variable per edge is introduced.

IV.2. Formulation for the MMRP problem

Consider a directed graph G = (N,A) with |N | = n nodes and |A| arcs, and weights

wij ∈ R+ associated with each arc (i, j). Several classical mathematical programming

formulations for the Shortest (s, t)-path problem are well-known in the literature (e.g.,

see [2]). One of the most popular is the following network-flow-like formulation, where

the arcs (i, j) are associated with the binary variables xij.

min
∑

(i,j)∈A

wijxij (4.24a)

subject to ∑
(i,j)∈A

xij −
∑

(j,i)∈A

xij = 0, ∀i 6= s, t, i ∈ N ; (4.24b)
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∑
i:(i,s)∈A

xis −
∑

i:(s,i)∈A

xsi = −1; (4.24c)

∑
i:(i,t)∈A

xit −
∑

i:(t,i)∈A

xti = 1; (4.24d)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (4.24e)

To transform (4.24) model into a mixed 0–1 formulation for the MMRP problem, we

again resort to the transformation by Wu, that we used for the MMRST problem.

Assuming that k pairs of real numbers (arij, b
r
ij), r = 1, . . . , k are associated with each

arc (i, j) ∈ A, and that none of the denominators may be 0, we define k new variables

yr and km new variables zrij in the same way as in (4.10) and (4.12), respectively.

After adding the constraints (4.13) along with the bounds (4.14) on yr we arrive at

the final formulation:

min
k∑
r=1

∑
(i,j)∈A

arijz
r
ij (4.25a)

subject to

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xij = 0, ∀i 6= s, t, i ∈ N ; (4.25b)

∑
i:(i,s)∈A

xis −
∑

i:(s,i)∈A

xsi = −1; (4.25c)

∑
i:(i,t)∈A

xit −
∑

i:(t,i)∈A

xti = 1; (4.25d)

∑
(i,j)∈A

brijz
r
ij = 1, r = 1, . . . , k; (4.25e)

zrij ≤ U rxij, zrij ≤ yr − Lr(1− xij), ∀(i, j) ∈ A, r = 1, . . . , k; (4.25f)

zrij ≥ Lrxij, zrij ≥ yr − U r(1− xij), ∀(i, j) ∈ A, r = 1, . . . , k; (4.25g)

Lr ≤ yr ≤ U r, r = 1, . . . , k; (4.25h)
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zrij ≥ 0, ∀(i, j) ∈ A, i < j, r = 1, . . . , k; (4.25i)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (4.25j)

This formulation contains O(mk) variables and O(mk + n) constraints. This is not

surprising, since the transformation that we use always spawns k(m + 1) new con-

tinuous variables, whenever we have m binary variables involved in the fractional

objective function.

IV.3. Computational results

The computational experiments were carried out for k = 1, . . . , 5. For all graphs

the parameters ae1, . . . , a
e
k, b

e
1, . . . , b

e
k for each edge e of a graph are uncorrelated and

follow standard uniform distribution. We rely on the Mersenne Twister MT19937 [26]

random number generator implementation from the Boost random number library [27]

to create random variates for our instances. For MMRST problem we consider two

types of test instances: complete graphs and connected random graphs.

We use CPLEX 9.13 solver with default settings to test performance of the MIP

models (4.16) and (4.23). The experiments were performed on a computer with Intelr

CoreTM 2 Duo 3.16 GHz CPU and 3.23 GB of RAM.

Tables 2 and 3 summarize the computational results for MMRST instances with

complete and sparse connected random graphs, respectively. Probability of an edge in

the latter type of instances is set to 0.1 when |V | = 20, and 0.05 otherwise. We tested

a batch of 3 instances for each reported pair (k, n). For each approach the target gap

value is set to 1%, and computation time is limited to 1 hour. When the average

gap is not available, it means that no feasible solution was found for any instance in

the batch by the method within the allotted time. If the solver was unable to find a

feasible solution for some instances in the batch, the gap value is marked with (∗).
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Table 2 Performance of MMRST MIP models on complete graph instances

MTZ 1 MTZ 2 FLOW

k n run time gap run time gap run time gap

(sec.) (%) (sec.) (%) (sec.) (%)

2

10 1.7 0.9 1.9 0.9 0.6 1.0

15 27.0 1.0 115.7 1.0 128.0 1.0

20 2468.0 5.4 2713.0 5.2 1337.0 2.6

30 3600.0 22.3 3600.0 20.9 3600.0 17.2

40 3600.0 25.5 3600.0 30.7 3600.0 33.8

50 3600.0 34.2 3600.0 32.4 3600.0 29.9∗

80 3600.0 50.5 3600.0 43.7 3600.0 n/a

100 3600.0 n/a 3600.0 45.7 3600.0 n/a

3

10 2.4 1.0 2.7 1.0 0.6 0.9

15 1603.9 2.9 1528.7 2.9 504.6 1.0

20 3600.0 15.5 3600.0 13.3 3600.0 8.0

30 3600.0 29.5 3600.0 29.5 3600.0 25.0

40 3600.0 35.6 3600.0 32.4 3600.0 29.9

50 3600.0 41.8 3600.0 37.5 3600.0 n/a

4

10 15.3 1.0 14.3 1.0 5.4 1.0

15 3600.0 9.7 3600.0 9.9 3002.0 5.2

20 3600.0 23.3 3600.0 23.0 3600.0 19.3

30 3600.0 27.1 3600.0 30.5 3600.0 31.5

5

10 65.0 1.0 56.7 1.0 17.3 1.0

15 3600.0 13.5 3600.0 13.3 3600.0 7.8

20 3600.0 n/a 3600.0 20.1 3600.0 16.3
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Table 3 Performance of MMRST MIP models on sparse random graph instances

MTZ 1 MTZ 2 FLOW

k n run time gap run time gap run time gap

(sec.) (%) (sec.) (%) (sec.) (%)

2

20 0.1 0.7 0.1 0.6 0.1 0.6

40 0.4 0.9 0.5 0.8 0.1 0.7

60 2291.0 2.6 1296.0 1.7 146.1 0.9

80 3600.0 7.8 3600.0 4.6 2493.7 1.8

100 3600.0 14.7 3600.0 10.0 3600.0 7.0

120 3600.0 24.7 3600.0 16.3 3600.0 n/a

140 3600.0 29.1 3600.0 21.7 3600.0 27.8∗

160 3600.0 28.4 3600.0 23.0 3600.0 n/a

3

20 0.1 0.9 0.2 0.7 0.1 0.6

40 11.4 0.7 8.9 0.9 0.1 0.7

60 3600.0 7.5 3600.0 6.3 1806.0 1.4

80 3600.0 10.9∗ 3600.0 8.2 3600.0 3.5

100 3600.0 20.3 3600.0 17.4 3600.0 12.4∗

4

20 0.1 0.6 0.1 0.5 0.1 0.4

40 4.4 0.9 1.58 0.9 0.1 0.6

60 3600.0 4.0 2806.7 2.6 1002.6 0.9

80 3600.0 12.8 3600.0 9.36 3600.0 4.6

5

20 0.8 0.6 0.7 0.8 0.1 0.9

40 24.1 1.0 17.2 1.0 0.3 0.9

60 3600.0 5.5 3600.0 4.8 1052.7 1.0

The results for the MIP formulations are reported in the columns under ‘MTZ 1’,
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‘MTZ 2’ and ‘FLOW’. The MTZ columns respectively refer to the formulation (4.16)

with no added valid inequalities, and (4.16) augmented by the inequalities (4.17).

Experiments with added constraints (4.20) and (4.21) were also performed, but only

adding (4.17) consistently yields a noticeable benefit in terms of run time, mostly for

sparse graphs. In fact, the constraints (4.21) increase the run time significantly.

The directed acyclic graphs (DAGs) G = (N,A) that we use for our MMRP

instances have the following structure. The undirected version of such a graph is a

complete (l + 1)-partite graph with subsets N1, . . . , Nl+1 ⊂ N forming the partition.

Each subset Ni has w nodes with the exception of N1 = {s} and Nl+1 = {t}. In

a directed graph the nodes are connected in a way so that (v, u) ∈ A if and only if

v ∈ Ni, u ∈ Nj such that j > i. Therefore an (l,w) DAG would have

|N | = (l − 1)w + 2 and |A| = (|N | − 2)(|N | − w)

2
+ 2|N | − 3.

Such graph structure allows to completely describe it with a pair of positive integers

(l, w). The MMRP instances for the computational experiment were chosen to ap-

proximately match the graph sizes of the complete MMRST instances with 15, 30, 50,

100 and 160 vertices. Table 4 summarizes the results in a self-explanatory manner.

Performance of the MMRST MIP models is affected by two main factors: the

number of ratios in the objective and the number of edges in the graph. The latter fac-

tor translates directly into the number of binary variables involved in the considered

MIP formulations, and has a strong effect on the performance. In fact, comparison

of the data from Tables 2 and 3 suggests that, given the computation resources, both

models fail to reach the target gap value in the allotted time frame when the num-

ber of binaries approaches 180. This roughly corresponds to a 15-vertex complete or

60-vertex random instance for the MTZ model, that has 2 binary variables per edge.

These numbers are respectively 20 and 80 for the flow-based model, that has a single
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Table 4 Performance of the MMRP MIP model on tested instances

k = 2 k = 3 k = 4 k = 5

(l, w) run time gap run time gap run time gap run time gap

(sec.) (%) (sec.) (%) (sec.) (%) (sec.) (%)

(5,3) 0.0 0.0 0.0 0.0 0.3 0.0 1.0 0.0

(7,5) 10.7 0.1 52.0 0.1 98.7 0.1 247.3 0.1

(9,7) 270.3 0.1 2646.0 5.2 3373.3 33.5 3600.0 52.6

(12,10) 3600.0 68.2 3600.0 79.6 3600.0 81.0 3600.0 81.1

(14,12) 3600.0 86.4 3600.0 84.1 3600.0 85.9 3600.0 85.5

binary per edge, and, as expected, performs slightly better. The flow-based model,

however, consistently shows difficulty finding a feasible solution for larger instances.

The same general observations apply to the MMRP model as well. However, it

shows somewhat better performance if we solely take into consideration instance graph

size. This is probably due to the fact that an MMRP instance of the given structure

contains fewer feasible solutions than a complete MMRST instance of similar size.
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CHAPTER V

A GLOBAL OPTIMIZATION APPROACH FOR THE MMRST

PROBLEM

The optimization algorithm presented in this chapter is, to some extent, a general-

ization of the approach used by Sciskim and Palocsay in [39] for a Minimum Two

Ratio Spanning Tree Problem. Just like the latter algorithm, it is based on the

representation of the problem in the image space mentioned in Chapter II.

In order to proceed with description of the algorithm, let us introduce some

additional notation that we use throughout the rest of the paper. Recall the definition

of the image Y , M(T ) of the feasible set T of the MMRST problem introduced in

(2.8), where M : T → Rk is given by

M(x) ≡
(
aT1 x

bT1 x
,
aT2 x

bT2 x
, . . . ,

aTk x

bTk x

)T
for any x ∈ T . Given x ∈ T , we will denote by Mr(x) the r-th ratio aTr x/b

T
r x. Given

y ∈ Y , we will denote by M−1(y) the inverse image {x ∈ T : M(x) = y} . Note

that since T is finite, Y is also finite. For a rectangular region Q = {y ∈ Rk : lr ≤

yr ≤ ur, r = 1, . . . , k}, we denote the vector l = (l1, . . . , lk) by L(Q), and its r-th

component by Lr(Q). Similarly, U(Q) and Ur(Q) denote u and ur, respectively.

On each step j of our algorithm, an approximation of the portion of conv(Y ) con-

taining optimal solution y∗ is given by a set of rectangular regions Sj = {Qj
1, . . . , Q

j
t},

such that for all steps j and i, where j < i, we have

1. y∗ ∈
⋃

Q∈Sj

Q;

2.
⋃

Q∈Si

Q ⊆
⋃

Q∈Sj

Q;
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3. ȳj ∈
⋃

Q∈Sj

Q and ȳi ∈
⋃

Q∈Si

Q are available s.t. eTy∗ ≤ eT ȳi ≤ eT ȳj.

Note that eTL(Qj
p) provides a lower bound on the optimal objective of (2.9) over

the rectangle Qj
p. Without loss of generality, we can assume that on every step j

the rectangular regions in the set Sj are sorted in the nondecreasing order of such

lower bounds, i.e., we have eTL(Qj
p) ≤ eTL(Qj

q) ∀p < q. Then eTL(Qj
1) provides

the lower bound on (2.9) available from the approximation Sj. Let us denote this

lower bound by
¯
zj, and the current upper bound, which is the best feasible solution

found so far, by z̄. Sj+1 is obtained from Sj by reducing Qj
1 and/or partitioning it

into two subregions. The reduction is done similarly to [39], by solving the following

subproblem for a particular ratio r ∈ {1, . . . , k}:

min{yr : y ∈ Y ∩Qj
1, ys ≤ us, s = 1, . . . , k} (5.1)

where

us = max{ys : y ∈ Qj
1, e

Ty ≤ z̄} = z̄ −
¯
zj + Ls(Q

j
1), s = 1, . . . , k.

Let ỹ be an optimal solution to (5.1). Then Qj
1 may be reduced to

P = {y ∈ Qj
1 : ys ≤ us, s = 1, . . . , k, s 6= r, yr ≥ ỹr}

without discarding any y ∈ Y ∩ Qj
1 that are no worse than the best incumbent

solution to (2.9). If ỹr > Lr(Q
j
1), then

¯
zj+1 will be a better lower bound than

¯
zj.

Certainly, P is discarded from further consideration if eTL(P ) ≥ z̄. Otherwise, ỹ may

improve on the current incumbent solution. If ỹr = Lr(Q
j
1), then P is partitioned

into P ′ = {y ∈ P : yh ≤ (Lh(P ) + ỹh)/2} and P ′′ = {y ∈ P : yh ≥ (Lh(P ) + ỹh)/2},

where

h = arg max{|ỹs − Ls(P )| : s = 1, . . . , k}. (5.2)
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Thus ỹ becomes separated from L(P ′), making the next iteration likely to improve

¯
z. Of course, (5.1) does not have to be solved when ỹ ∈ P such that ỹr = Lr(Q

j
1) is

already known from previous steps of the algorithm.

The formal description of the algorithm is provided in Algorithm 1. Note that

T is passed to the main procedure implicitly through the description of graph G. We

discuss how the subproblems (5.1) are solved along with some other important details

in the following subsections. Figure 1 illustrates the steps of Algorithm 1 in detail on

a small numerical example with two ratios.

Theorem 1. Algorithm 1 converges in a finite number of steps.

Proof. Let z̄j denote the value of z̄ after j steps of the algorithm. The algorithm

terminates when z̄j −
¯
zj ≤ εz̄. Suppose that the stopping criterion is not satisfied

in a finite number of steps, i.e., the algorithm generates infinite sequences of bounds

{
¯
zj : j ≥ 1} and {z̄j : j ≥ 1}. Since {

¯
zj : j ≥ 1} is monotonously nondecreasing,

{z̄j : j ≥ 1} is monotonously nonincreasing, and
¯
zj ≤ z̄j for any j ≥ 1, both sequences

must converge:

lim
j→∞¯

zj =
¯
z∗, lim

j→∞
z̄j = z̄∗, and

¯
z∗ < z̄∗.

The last inequality is strict because of the assumption that we do not have a finite

convergence of the algorithm. Consider an arbitrary δ > 0. We will show that there

exists ĵ such that for any j ≥ ĵ : z̄j −
¯
zj ≤ δ, thus obtaining a contradiction.

Note that finiteness of Y guarantees that
¯
z improves after a finite number of

steps, and the lower bound can increase only due to one of the following two reasons:

1. ỹr > Lr(P ), in which case the lower bound increases by yr − Lr(P );

2. P ′ is not added to S, i.e., eTL(P ′) ≥ z̄, in which case the increase in lower

bound value would be (ỹh − Lh(P ))/2.
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Algorithm 1

Require: G; ar, br ∈ Rn, r = 1, . . . , k; 0 < ε < 1.

Ensure: x̄, an ε-optimal solution to (2.7).

1: yr ← arg min{yr : y ∈ Y }, r = 1, . . . , k;

2: ȳ ← arg min{eTy : y ∈ {y1, . . . , yk} };
3: z̄ ← eT ȳ;

4: Q← {y ∈ Rk : yr ≥ yrr , r = 1, . . . , k};
5: S =← {Q};
6: Choose r ∈ {1, . . . , k};
7: repeat

8: Q← the first set in S;

9: Remove Q from S;

10:
¯
z ← eTL(Q);

11: P ← {y ∈ Q : ys ≤ z̄ −
¯
z + Ls(Q), s = 1, . . . , k};

12: ỹ = arg min{yr : y ∈ Y ∩ P};
13: if eT ỹ < z̄ then

14: z̄ ← eT ỹ;

15: ȳ ← ỹ;

16: end if

17: if ỹr = Lr(P ) then

18: Choose h ∈ {1, . . . , k}(h 6= r) that maximizes ỹh − Lh(P );

19: P ′ ← {y ∈ P : yh ≤ (Lh(P ) + ỹh)/2};
20: P ′′ ← {y ∈ P : yh ≥ (Lh(P ) + ỹh)/2};
21: if eTL(P ′′) < z̄ then

22: S ← S ∪ {P ′′};
23: end if

24: else

25: P ′ ← {y ∈ P : yr ≥ ỹr};
26: end if

27: if eTL(P ′) < z̄ then

28: S ← S ∪ {P ′};
29: end if

30: until z̄ −
¯
z ≤ εz̄

31: return x̄ ∈M−1(ȳ);
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Fig. 1 An illustrative example: complete image space, initial region Q and the first

several steps of the algorithm.
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Fig. 1 Continued.
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Fig. 1 Continued.



38

0.5 0.6 0.7 0.8 0.9 1 1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

0.5 0.6 0.7 0.8 0.9 1 1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

0.5 0.6 0.7 0.8 0.9 1 1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

0.5 0.6 0.7 0.8 0.9 1 1.1

0.5

0.6

0.7

0.8

0.9

1

1.1

Fig. 1 Continued.

Due to finiteness of Y it is possible to choose δ1 < min{|y′r− y′′r | : y′, y′′ ∈ Y, y′r 6=

y′′r}, δ2 ≤ min{δ1, δ/(2k)}, and due to convergence of {
¯
zj : j ≥ 1} there exists ĵ

such that for any j ≥ ĵ we have |̄zj −
¯
zj+1| < δ2. On the other hand, if

¯
zj in the

algorithm increases because ỹr > Lr(P ) then the increase must be at least δ2. Thus,

if j ≥ ĵ,
¯
zj can increase only due to the second reason, and the corresponding increase

(ỹh−Lh(P ))/2 must be less than δ2. Since h maximizes ỹs−Ls(P ), s = 1, . . . , k and
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yh is a feasible solution, we have

z̄j −
¯
zj ≤ eT ỹ − eTL(P ) ≤ k(ỹh − Lh(P )) < 2kδ2 ≤ δ.

Thus, z̄∗ =
¯
z∗, and we obtain the contradiction with our assumption that the stopping

criterion is not satisfied in a finite number of steps. The finite convergence follows.

V.1. Solving the subproblem

Computational complexity of each iteration of the algorithm described above is de-

fined by the complexity of solving the subproblem (5.1), therefore it is imperative to

solve this problem effectively. Returning to the original variable x, for a rectangular

region Q ∈ Rk it is formulated as

min aTr x/b
T
r x (5.3a)

subject to x ∈ T ∩ B, (5.3b)

where B defines Q in terms of x:

(ai − Ui(Q)bi)
Tx ≤ 0, i = 1, . . . , k; (5.3c)

(Li(Q)bi − ai)Tx ≤ 0, i = 1, . . . , k. (5.3d)

The constrained minimum ratio spanning tree (CMRST) problem (5.3) above is a

generalization of the capacity-constrained version of the MST problem. Unfortu-

nately, the latter problem is NP -hard, as shown by Aggarwal et al. [1], even in the

case of one constraint. Unless we specifically mention otherwise, Lr(Q) and Ur(Q) in

(5.3c)-(5.3d) should be assumed −∞ and∞, respectively, i.e., k = 2 refers to a single

constraint case of (5.3).

An effective branch-and-bound approach is suggested in [1] for the MST problem
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with a single capacity constraint. This approach can be directly extended to our

problem when k = 2, but because it heavily exploits the ability to obtain solutions

that satisfy the capacity constraint, further generalization for k > 2 is difficult, if

at all possible. In fact, the case of multiple capacity constraints in such classical

combinatorial optimization problems as the MST problem and the shortest path

problem is not addressed in the literature. Therefore, we have developed our own

branch-and-bound approach for solving the general CMRST problem when k ≥ 2.

Each node N of our branch-and-bound tree is characterized by the sets F 0
N =

{e ∈ E(G) : xe is fixed to 0} and F 1
N = {e ∈ E(G) : xe is fixed to 1}. To obtain

a good lower bound on the objective in each node, we dualize the constraints (5.3c)

and (5.3d) and solve the fractional Lagrangian dual introduced by Gol’stein in [18].

Assuming, without loss of generality, that r = 1, the Lagrangian dual problem to

(5.3) is defined as

max
v≥0

min
x∈T
L(x, v), (5.4)

where v ∈ R2k−2 and

L(x, v) = max
v≥0

min
x∈T

(
aT1 x

bT1 x
+

k∑
r=2

vr−1(ar − Ur(Q)br)Tx

bT1 x
+

k∑
r=2

vk+r−2(Lr(Q)br − ar)Tx

bT1 x

)
.

(5.5)

We can solve (5.4), e.g., via some subgradient optimization algorithm [30]. We employ

the Kelley’s cutting plane method, since for moderate k it converges fast for piecewise

linear functions in practice. Each new cutting plane generated by the Kelley’s method

corresponds to a tree x ∈ T , which may or may not be feasible for our CMRST

problem. Depending on whether this is the case, they will be used differently in

computing a lower bound for the CMRST problem.

We adopt a branching rule similar to the one introduced in [1]. Suppose that

solving the dual problem in node N yields a solution x̂ ∈ T feasible to (5.3), and let
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e1, . . . , ep (p ≤ m− 1) be all edges of the tree corresponding to x̂ that are not fixed in

node N . We produce p child nodes M1, . . . ,Mp of N by additionally fixing some of

those edges at each child node. Specifically, a child nodeMj (j = 1, . . . , p) is created

by additionally fixing j edges out of e1, . . . , ep according to the rule:

F 0
Mj

= F 0
N ∪ {ej};

F 1
Mj

= F 1
N ∪ {e1, e2, . . . , ej−1}.

(5.6)

Note that if F 1
N is a forest, then it is guaranteed that F 1

Mj
is a forest. If several

trees feasible to (5.3) are available in N , then we choose a tree that yields the best

objective value.

However, it is possible that the procedure that solves (5.4) does not encounter a

solution feasible to (5.3). Then we use a different criterion for choosing the edges to

branch upon. Let v̄ be the optimal solution to (5.4), and the trees t1, . . . , tw define

the hyperplanes that are tangent to the lower epigraph of L(v) = min
x∈T
L(x, v) at v̄

for some w ≥ 1. Since epiL ⊂ R2k−1, to define v̄ uniquely we need at least 2k − 1

hyperplanes. Thus, eliminating w − 2k + 2 of the w trees guarantees increase in the

optimal value of L(v). Therefore, the branching should be performed on the edges of

those particular trees.

However, it may be difficult to obtain all hyperplanes tangent to the lower epi-

graph of L(v) at v̄. Instead, we branch on the edges of the trees t1, . . . , tα, corre-

sponding to the last α hyperplanes produced by Kelley’s method to approximate the

epigraph of L(v). We choose p′ edges occurring most frequently in t1, . . . , tα, that are

not yet fixed, and produce p′ child nodes according to the rule (5.6). Clearly, because

in this case there is no guarantee for a child node Mj that F 1
Mj

is a forest, we have

to check this fact, and discard the node if it is not.

Solving (5.4) via the Kelley’s method, in turn, involves solving a sequence of



42

problems of the form

min
x∈T

aTx/bTx, (5.7)

which is polynomially solvable. We solve (5.7) using the Dinkelbach’s method [12],

which, again, involves solving a sequence of MST problems. Consequently, to derive

a lower bound for (5.3), we examine a sequence of spanning trees of G, each of them

being a feasible solution to the original MMRST problem (2.7). Therefore, as we

obtain each spanning tree, we examine the value of the original objective that it

yields, and improve the upper bound z̄ whenever possible.

V.2. Partitioning the feasible region

There is a subtle, yet extremely important from the computational perspective, dif-

ference between the cases k = 2 and k > 2. To solve (2.9) for k = 2, one can take

advantage of the fact that alternating r = 1 and r = 2 in

min yr (5.8a)

subject to Li(Q) ≤ yi ≤ Ui(Q), i 6= r (5.8b)

y ∈ Y (5.8c)

virtually rules out the necessity to partition Q ⊂ R2. Note also that Li(Q) may be set

to −∞, and thus efficient procedures suggested in [1, 19] for solving (5.8) with only

one side constraint may be utilized. In fact, this is the strategy used in the algorithm

by Skiscim and Palocsay [39]. Indeed, suppose that y1 is the solution to (5.8) for

r = 1 and

Q = {y ∈ R2 : (l1, l2) ≤ y ≤ (u1, u2)}.
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Now Q is reduced to

Q′ = {y ∈ R2 : (y1
1, l2) ≤ y ≤ (eTy1 − l2, y1

2)}.

Let y2 be a solution to (5.8) for r = 2 and Q = Q′.

If eTy2 < eTy1, then we can further reduce Q′ to

Q′′ = {y ∈ R2 : (y1
1, y

2
2) ≤ y ≤ (y2

1, e
Ty2 − y1

1)}

thus forcing y1 /∈ Q′′, since eTy2 < eTy1 ⇒ eTy2 − y1
1 < y1

2. Now that y1 is separated

from L(Q′′), we can again solve (5.8) for r = 1 and Q = Q′′ to further improve the

bounds on the optimal objective of (2.9).

If eTy2 > eTy1, then we can reduce Q′ to

Q′′′ = {y ∈ R2 : (y1
1, y

2
2) ≤ y ≤ (eTy1 − y2

2, y
1
2)}

forcing y2 /∈ Q′′′, and we can proceed with solving (5.8) for r = 2 and Q = Q′′′.

The only case when the algorithm cannot proceed is eTy2 = eTy1. In [39] the

authors restart the procedure by improving the upper bound, thus reducing Q′ and

forcing both y1 and y2 outside of the resulting rectangle. To achieve this, either a local

search is performed, or, if the local search fails to improve an incumbent solution, the

procedure is applied recursively to {y ∈ Q′ : ys ≤ (Ls(Q) + Us(Q))/2}, s = 1, 2 until

either a better incumbent is found or ε-optimality of the current incumbent is proved.

Consider now the case k > 2. Let Q ⊂ Rk such that

Ls(Q) = min{ys ∈ R : y ∈ Y ∩Q},

with ys being the respective optimal image point, s = 1, . . . , k; and

Us(Q) = z̄ −
k∑

s′=1,s′ 6=s

Ls′(Q), s = 1, . . . , k,
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Fig. 2 A two-dimensional illustration of condition (5.9) where r = 1.

where z̄ = min{eTys, s = 1, . . . , k}.

It is likely that ys ∈ Q′ for all s = 1, . . . , k when k > 2. This case is analogous

to eTy2 = eTy1 for k = 2 above, and the procedure by Sciskim and Palocsay [39]

outlined above stalls. Improvement of the upper bound, unless it is large enough

(which cannot be guaranteed), does not restart the procedure. Therefore, for k > 2

partitioning Q is a vital step for the algorithm to proceed. Moreover, it turns out that

the way the feasible region is partitioned has a significant impact on the computational

performance of the algorithm. In particular, we would like to avoid solving (5.3) with

finite Lr(Q). Suppose such subproblem may have to be solved and

∃Q′, Q′′ ∈ S : Lr(Q
′) ≥ Ur(Q

′′), Ls(Q
′) ≤ Ls(Q

′′) ≤ Us(Q
′) for some s 6= r, (5.9)

i.e., the regions Q′ and Q′′ are positioned as shown in Figure 2 with r = 1 and s = 2.

As the following proposition implies, the situation described by the condition



45

(5.9) may lead to extremely inefficient computations. Assume that B is defined as in

(5.3c)-(5.3d), Lr(Q) > −∞, and L(x, v) is the fractional Lagrangian function of (5.3)

obtained via dualizing the constraints defining B. Then the following proposition is

true.

Proposition 8. Let conv(T ) ∩ B 6= ∅, and x̃ ∈ T be such that aTr x̃/b
T
r x̃ < Lr(Q),

and all other inequalities that define B are satisfied in x̃. Then

sup
v≥0

inf
x∈T
L(x, v) = Lr(Q).

Proof. Take some x̄ ∈ conv(T )∩B. Let x̂ = αx̄+ (1− α)x̃ for some 0 ≤ α < 1 such

that aTr x̂/b
T
r x̂ = Lr(Q). Since B is convex, such x̂ exists. Moreover, it is an optimal

solution to the linear relaxation of (5.3)

min aTr x/b
T
r x (5.10a)

subject to x ∈ conv(T ) ∩ B. (5.10b)

Indeed, x ∈ B enforces the lower bound of Lr(Q) on the objective, and this bound

is achieved at x̂. On the other hand, it follows from the results in fractional duality

[4, 18, 36] that

Lr(Q) = inf{aTr x/bTr x : x ∈ conv(T ) ∩ B} = sup
v≥0

inf{L(x, v) : x ∈ conv(T )}.

Since L(x, v) is quasiconcave for any fixed v ≥ 0, it achieves its minimum over conv(T )

in some x∗ that is a vertex of conv(T ). Thus x∗ ∈ T and

sup
v≥0

inf{L(x, v) : x ∈ T } = sup
v≥0

inf{L(x, v) : x ∈ conv(T )} = Lr(Q).
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Suppose that Q′, Q′′ are defined as in (5.9), and T ⊂ T is such that

∀x ∈ T Mr(x) ∈ Q′′ and Ls(Q
′) ≤Ms(x) ≤ Us(Q

′), s = 1, . . . , k, s 6= r.

The example displayed on Figure 2 shows M(T ) as the image points encircled by a

dash line. Then, if the CMRST subproblem (5.3) with the box constraints defined

by Q′ is solved via the procedure described in subsection V.1, the lower bound on

the optimal value of (5.3) obtained in all nodes of the branch-and-bound tree will be

equal to Lr(Q
′) until at least one edge is excluded for each x ∈ T . Not only this may

be a weak bound; what is worse, it leaves the branching process without direction

for choosing the next node to process, thus dramatically increasing run time. To

rule out the possibility of such a situation to occur, we do not alternate the index r,

but choose it to be fixed in Algorithm 1. This way, the boxes can only be split by

hyperplanes that are parallel to the r-th coordinate axis. Hence, since we start with

a single box, the projections of boxes in Sj at any step j of the algorithm onto any

coordinate axes other than r-th never overlap.

It should be clear, that the run time of the main algorithm does depend on the

choice of r, as it depends on the shape of conv(Y ). It may be chosen, for example,

by running a few iterations of the algorithm for every r = 1, . . . , k, and choosing the

ratio along which the lower bound progresses faster.

As a side note, it is clear from the proof above, that (5.4) will yield the same

bound as (5.10) due to the integrality of conv(T ). However, even “compact” descrip-

tions of the MST polytope (see, for example [23]) may be huge for moderate instances.

Moreover, solving a linear program would neither provide numerous incumbent solu-

tions for MMRST, nor would it give information for branching as valuable as (5.4)

does.
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V.3. Computational experiments

In order to be consistent, we test the global optimization algorithm on the same batch

of the MMRST instances that was used in numerical experiments in Chapter IV.

All algorithms are implemented in C++ using Microsoft Visual Studio 2003

environment1. We rely on the Boost Graph Library [38] implementation of adjacency

matrix to represent graphs. The experiments were performed on a computer with

Intelr CoreTM 2 Duo 3.16 GHz CPU and 3.23 GB of RAM.

Tables 5 and 6 summarize the computational results for complete graph instances

and sparse connected random graphs, respectively. As in Chapter IV, we tested a

batch of 3 instances for each reported pair (k, n). For each approach the target gap

value is set to 1%, and computation time is limited to 1 hour. Average run time,

average number of steps (i.e., subproblems solved), as well as average final gap values

are reported for each batch.

It is evident that performance of this optimization approach depends on both

k and |T |. On one hand, both of these factors have their impact on how difficult

it is to build the approximation of conv(Y ) that is accurate enough. On the other,

computational complexity of each iteration also depends on both of these factors. As

expected, the results suggest that k primarily affects the number of iterations, and

that |T | mostly affects the time per iteration. A less expected (and encouraging)

empirical conclusion can be drawn from Figure 3, which presents convergence of

bounds on the optimal objective value for the hardest tested instances. It turns out

that an optimal or near-optimal solution is found by the algorithm early, and most

of the time is spent on proving quality of an incumbent. This tendency is even more

obvious for easier instances. Most likely this should be contributed to a large number

1The source code is available upon request.
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Table 5 Performance of Algorithm 1 on complete graph instances

k n steps run time gap

(sec.) (%)

2

10 12.4 0.1 0.6

15 20.0 0.6 0.9

20 26.0 2.6 0.9

30 37.0 16.8 0.9

40 28.6 37.0 0.9

50 39.0 87.0 0.9

80 65.4 1053.0 1.0

100 65.8 2941.0 3.9

3

10 51.0 1.1 0.9

15 104.2 14.6 0.9

20 190.4 108.0 1.0

30 495.6 1801.0 1.0

40 322.0 3465.0 1.9

50 46.0 3600.0 16.2

4

10 318.0 19.8 0.9

15 999.4 441.0 1.0

20 1773.2 3424.0 1.9

30 198.6 3600.0 17.7

5

10 1534.0 181.0 0.9

15 4101.2 3600.0 2.9

20 710.0 3600.0 8.9
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Table 6 Performance of Algorithm 1 on sparse random graph instances

k n steps run time gap

(sec.) (%)

2

20 5.8 0.1 0.8

40 6.0 0.3 0.8

60 16.6 8.9 0.9

80 20.6 46.9 0.9

100 50.6 371.0 0.9

120 54.0 996.3 1.0

140 63.6 2677.0 1.2

160 50.0 3600.0 3.5

3

20 19.4 0.25 0.7

40 34.0 6.8 0.9

60 141.2 387.7 0.9

80 184.6 3000.6 1.1

100 49.6 3600.0 6.3

4

20 23.4 0.6 0.8

40 210.0 87.0 0.9

60 386.2 2610.0 1.7

80 39.6 3600.0 10.6

5

20 154.0 3.3 1.0

40 610.0 208.0 1.0

60 243.6 3600.0 6.0
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Fig. 3 Convergence of bounds for the hardest complete graph instances.

of trees examined on each step of the algorithm. Therefore, when the size of the

instance does not allow to prove near-optimality in a reasonable time, the suggested

algorithm may still be used as a good heuristic.
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CHAPTER VI

A GLOBAL OPTIMIZATION APPROACH FOR THE CLASS OF

FRACTIONAL COMBINATORIAL PROBLEMS

This chapter inherits most of the notation from Charter V. Whenever we depart

from the notation adopted there, we specifically mention this. In the previous chapter

we solved MMRST via approximating the portion of the problem’s image polytope

conv(Y ) that contained the optimal vertex. Specifically, we did this by building a

sequence of sets

Sj = {Qj
1, . . . , Q

t
j}, t ≤ j.

The sets Qj
i ⊂ Rk are rectangular regions, and for some M ∈ N the sequence satisfied

eT ȳ − inf{eTL(Q) : Q ∈ Sm} ≤ εeT ȳ ∀ε > 0,m > M,

where ȳ is the image of an incumbent solution to the original problem. Although the

algorithm can be easily extended to other FCOPs of the considered class, it has an

inherent drawback. In order to construct Sm we had to solve m NP-hard subproblems.

Taking into account that m may be large, however effective the procedure for solving

a subproblem may be, this design is hardly suitable for large-scale instances.

Another way to tackle this class of problems is to use the approach that is

traditional in linear integer programming. That is, to solve the problem via branch-

and-bound using linear relaxation for underestimation of the optimal value in a tree

node. Unfortunately, following this approach directly leads us to the same pitfall,

since the objective function

f(x) =
k∑
i=1

aTi x

bTi x
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is in general multiextremal, and thus finding its global extremum over a convex set

is a hard problem. Consequently, in each node of the branch-and-bound tree we still

would have to solve a hard problem, ultimately performing exponential number of

iterations, each having exponential complexity. In order to reduce the computational

load in each node of the branch-and-bound tree, several approaches may be used. For

instance, one could use an underestimator of f(x) that is polynomially computable.

The success in this case depends on how tight such an underestimation is. Another

conceptually related way is to obtain an initial partition of the search space in the

root node, and underestimate f(x) in each region separately in every node. This

should significantly reduce the computational load as the depth of the tree increases,

as well as tighten the overall approximation.

In this chapter we develop the global optimization algorithm for a class of FCOPs

that have a polynomially solvable single-ratio version. Thus we refer to the search

space as X rather than T used for the set of characteristic vectors of trees in a

graph G in order to emphasize more diverse nature of the combinatorial objects. Our

approach here is generally based on a branch-and-bound with an underestimation

of f(x) over conv(X ) guiding the search. In order to mitigate the computational

complexity of underestimation, we use a combination of the approaches mentioned

above. The resulting optimization technique is the main contribution of the research

described in this chapter.

VI.1. Obtaining outer approximation of conv(X )

In order to underestimate the sum-of-ratios objective f in conv(X ) and partition a

feasible region, we use an algorithm that, similarly to Algorithm 1 in Chapter V,
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∀ε > 0 builds a set S of rectangles in the image space Rk such that

f̄ − inf{eTL(Q) : Q ∈ S} ≤ ε inf{eTL(Q) : Q ∈ S}. (6.1)

By f̄ we denote here an upper bound for inf{f(x) : x ∈ conv(X )}. The difference

between the algorithms is that Algorithm 1 approximates a portion of conv(Y ), while

Algorithm 2 that we describe in this section does the same thing to Y ≡M(conv(X )).

It takes Q0 ⊂ Rk as an initial approximation of a portion of Y that is interesting to

us, and continues refining the approximation until the desired accuracy is achieved.

The starting rectangle Q0 may be computed as in the initial steps of Algorithm 1.

Specifically, we can put

Li(Q0) = inf{yi : y ∈ Y } i = 1 . . . , k;

Ui(Q0) = ū−
k∑

j=1
j 6=i

Lj(Q0), i = 1 . . . , k;
(6.2)

provided we have an upper bound ū for inf{eTy : y ∈ Y }. For the class of problems

considered here such Q0 is guaranteed to contain global minimizers of eTy over both

Y and Y (the former may not be true when conv(X ) is not integral).

We use the following additional notation in the listing of the algorithm to express

the stopping criterion (6.1). Let Q ⊂ Rk be a rectangle; we put

πr(Q) =
k∑

i=1
i 6=r

Ui(Q)− Li(Q).

In coherence with the previous chapter we also denote M−1(Q), i.e., the polyheadral

cone in Rn that corresponds to a rectangle Q ⊂ Rk, as C(Q).

Proposition 9. Algorithm 2 terminates after finite number of steps and returns a
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Algorithm 2

Require: X ; Q0 ∈ Rk; r ∈ {1, . . . , k}; ai, bi ∈ Rn, i = 1, . . . , k; 0 < ε < 1.

Ensure: S = {Q1, . . . , Qm} that satisfies (6.1),
¯
z = inf{eTL(Q) : Q ∈ S}

1: Q← {y ∈ Q0 : yr ≥ infy∈Y∩Q0 yr};
2: if Lr(Q) =∞ then

3: return ∞;

4: end if

5: t← 1;

6: St ← {Q};
7:

¯
z ← eTL(Q);

8: while πr(Q) > ε
¯
z do

9: Choose j ∈ {1, . . . , k}, j 6= r that maximizes Uj(Q)− Lj(Q);

10: Q′ ← {y ∈ Q : (Lj(Q) + Uj(Q))/2 ≥ yj};
11: Q′′ ← {y ∈ Q : (Lj(Q) + Uj(Q))/2 ≤ yj};
12: Q′ ← {y ∈ Q′ : yr ≥ infy∈Y∩Q′ yr};
13: Q′′ ← {y ∈ Q′′ : yr ≥ infy∈Y∩Q′′ yr};
14: St+1 ← St \ {Q} ∪ {Q′, Q′′};
15: t← t+ 1;

16: Q← arg min{eTL(q) : q ∈ St};
17:

¯
z ← eTL(Q);

18: end while;

19: return St,
¯
z;

lower bound
¯
z for z∗ = inf{f(x) : x ∈ C(Q) ∩ conv(X )} such that

z∗ −
¯
z ≤ ε

¯
z ∀ε > 0.

Proof. On each step t the algorithm maintains an invariant

Y ∩Q ⊂ ∪q : q ∈ St,

and by the definition of the image space

inf{f(x) : x ∈ C(Q) ∩ conv(X )} ≡ inf{eTy : y ∈ Q ∩ Y}.

Hence
¯
z ≤ z∗. On the other hand, the steps 1,12 and 13 of the algorithm guarantee
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that ∀Q ∈ St, t > 0,∃y ∈ Y ∩ Q such that yr = Lr(Q). Consequently, denoting

arg min{eTL(Q) : Q ∈ St} by Qt, we have

eTL(Qt) ≤ z∗ ≤
k∑

i=1,t6=r

Ui(Qt) + Lr(Qt) ∀t > 0.

Therefore, after iteration t we have

z∗ −
¯
z ≤

k∑
i=1,i 6=r

Ui(Qt) + Lr(Qt)− eTL(Qt) = πr(Qt).

Since the partitioning rule (lines 9-11 of the algorithm) ensures that πr(Qt) → 0 as

t → ∞. Assuming without loss of generality that
¯
z 6= 0, the stopping condition is

met for ε > 0 in finite number of steps.

Algorithm 2, in fact, is a special case of a more general sum-of-ratios optimiza-

tion scheme suggested by Dur et al. in [13]. It is interesting to observe how Y and its

outer approximation given by the algorithm compare to conv(Y ), the “image poly-

tope” that we attempted to approximate in chapter V via Algorithm 1. Figures 4 and

5 visualize these comparisons respectively for a random complete MMRST instance

with 6 vertices and 2 ratios. The initial rectangle Q0 was chosen as in (6.2). These

figures provide some empiric insight of how well Y may approximate conv(Y ), thus

emphasizing importance of representing Y adequately via S for the sake of computa-

tional efficiency of the global optimization algorithm that we discuss in Section VI.4

of this chapter. As a side note, the instance with the least resemblance between Y

and conv(Y ) has been chosen for illustration from among multiple ones. The size of

the graph has to be small, since total enumeration of the combinatorial objects is re-

quired to visualize conv(Y ). Obviously, Algorithm 2 has exponential computational

complexity, since it solves an NP-hard problem with any given accuracy. Let us,

nevertheless, assess its performance with more scrutiny. Observe that the algorithm
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Fig. 4 Comparison of conv(Y ) vs. Y .

explores the given initial rectangle Q0 in a branch-and-bound fashion, and the value

of πr(Q), Q ∈ St, uniquely determines the branch-and-bound tree depth at which Q

was obtained. The following facts follow from this observation.

Proposition 10. Let Q0, r and ε be inputs to Algorithm 2. Denote the value of

πr(Q) obtained at the branch-and-bound tree depth d by πdr (Q0).

1. Algorithm 2 terminates after at most 2d steps, where d is the minimum depth
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Fig. 5 Comparison of conv(Y ) vs. approximation of Y via Algorithm 2 after 25 steps.

such that

πdr (Q0) ≤ εeTL(Q0).

2. After m steps, Algorithm 2 guarantees accuracy no worse than

ε =
π
blog2mc
r (Q0)

eTL(Q0)
.

Proof. (1) Suppose we change the stopping criterion of the algorithm to πr(Q) ≤

εeTL(Q0). The convergence result still holds, since it is true for any ε > 0.
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Moreover, since eTL(Q0) is the minimum possible value for the lower bound,

the number of iterations performed by the algorithm does not decrease with

this stopping criterion. The algorithm in this case obviously terminates when

the branch-and-bound tree reaches the depth d, hense the maximum number of

iterations in is bounded by 2d.

(2) After m steps the branch-and-bound tree is guaranteed to reach the depth

dlog2me. Consequently, a rectangle Q obtained at the depth at least blog2mc

has been found to provide the smallest lower bound among the members of S.

Underestimating z̄ by eTL(Q0) gives the minimum guaranteed accuracy.

The facts above give some justification for our choice of partitioning the search

region over the uniform grid approach. Also, they express quantitatively the tradeoff

between the size of partition and accuracy of the approvimation of Y in the vicinity

of an optimal solution. These objectives are conflicting, but each is important for

reducing the computational burden as we look for an ε-optimal solution to a FCOP.

Yet several ways for improvement along both are evident:

• Try to reduce the initial region Q0 as much as possible;

• Attempt to improve upon the ‘easy’ lower bound of eTL(Q);

• Choose r appropriately.

The first two items are discussed in the next sections. A justified choice for the input

r is revealed in the discussion above. In order to reduce worst-case computational

complexity it is reasonable to choose r that minimizes πr(Q0). This remark should

seem irrelevant now, since Q0 calculated as in (6.2) is cubic, i.e., π1(Q0) = π2(Q0) =

. . . = πk(Q0). It will gain more meaning in section VI.3.
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The amount of computations in Algorithm 2 can be reduced. Notice that in the

lines 12-13 in order to find

l′ = inf{yr : y ∈ Y ∩Q′} and

l′′ = inf{yr : y ∈ Y ∩Q′′}

we do not have to always solve optimization problems in both cases, because Q′∪Q′′ =

Q, and L(Q) is known. Therefore, if we find that l′ < L(Q), we can set l′′ = L(Q).

The following fact allows us to further reduce the computational load in the special

case of 2 ratios by eliminating the lower bound constraint when solving constraint

ratio subproblems in Algorithm 2.

Proposition 11. Let ai, bi ∈ Rn, i = 1, 2, and l, u ∈ R such that l ≤ u. Let x∗ be a

minimizer of aT1 x/b
T
1 x over conv(X ). Then ∀l ≤ aT2 x

∗/bT2 x
∗ the problems

P1 : min aT1 x/b
T
1 x P2 : min aT1 x/b

T
1 x

s.t: aT2 x/b
T
2 x ≤ u; and s.t: aT2 x/b

T
2 x ≤ u;

aT2 x/b
T
2 x ≥ l; x ∈ conv(X );

x ∈ conv(X );

have the same optimal objective value.

Proof. Observe that both problems must be either feasible or not simultaneously. The

case when both have no solutions is trivial. Otherwise, because aT1 x/b
T
1 x is monotonic

along every direction in Rn, ∀x′ ∈ conv(X ) such that aT2 x
′/bT2 x

′ = l ∃x′′ ∈ conv(X )

such that aT2 x
′′/bT2 x

′′ = u and aT1 x
′′/bT1 x

′′ ≤ aT1 x
′/bT1 x

′. Therefore, the constraint

l ≤ aT2 x/b
T
2 x in P1 is superfluous and can be removed without affecting the optimal

objective value.
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VI.2. Underestimation of f(x)

In this section we suggest several ways to underestimate f(x) over conv(X ) or its

part intersecting the cone C(Q) defined by an image space rectangle Q = {y ∈ Rk :

li ≤ yi ≤ ui, i = 1, . . . , k}. To make the notation less cumbersome, let us consider

f(x) in some polytope P ⊂ Rn : 0 /∈ P . We also maintain our assumption that

bTi x > 0 ∀x ∈ P , i = 1, . . . , k, and, in addition, assume that the numerators aTi x,

i = 1, . . . , k are unisignant on P . The latter precondition is a little restrictive, as the

sign of the numerator does not affect polynomial-time solvability of the FCOPs under

our consideration, but we can overcome this obstacle at additional computational

expense by partitioning P appropriately and computing the bounds separately in

each part. Note that the conic constraints that define Q give explicit bounds on the

values of the ratios, and hence the numerators (assuming that the denominators are

positive). So suppose that

I+ = {i : aTi x ≥ 0 ∀x ∈ P} and I− = {i : aTi x < 0 ∀x ∈ P}

We start with a linear underestimator. Suppose we replace bTi x by

βi =

 supx∈P b
T
i x i ∈ I+,

infx∈P b
T
i x i ∈ I−.

Then, obviously,

aTi x

βi
≤ aTi x

bTi x
∀x ∈ P, i = 1, . . . , k.

and consequently

φ1(x) =
k∑
i=1

aTi x

βi
=

(
k∑
i=1

ai
βi

)T

x ≤ f(x) ∀x ∈ P. (6.3)

The benefit of this underestimator is that it is computationally cheap, since the vector
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βi ∈ Rk can be computed via solving k linear problems.

Next, we consider an underestimator based on the sum of at most two linear

fractions. Suppose we overestimate the vectors bi, i ∈ I+, by a vector β̄ = (β̄1, . . . , β̄n),

where

β̄j = max
i∈I+
{bij} j = 1, . . . , n,

and underestimate the vectors bi such that i ∈ I−, by a vector
¯
β = (

¯
β1, . . . ,

¯
βn), where

¯
βj = min

i∈I−
{bij} j = 1, . . . , n,

To unify the notation, when reasonable, let us introduce

¯
¯
β =

 β̄ i ∈ I+

¯
β i ∈ I−

.

Then again, under the assumptions mentioned above, we have

aTi x
¯
¯
βTx

≤ aTi x

bTi x
∀x ∈ P, i = 1, . . . , k.

The underestimator above is expected to be rather weak, since, provided there is no

j ∈ I+ such that bj ≥ bi ∀i ∈ I+, or j ∈ I− such that bj ≤ bi ∀i ∈ I−,

∀i :
aTj x

¯
¯
βTx

<
aTj x

bTj x
∀x ∈ P, i = 1, . . . , k.

Moreover, assuming low pairwise correlation between the denominator vectors, the

bound should deteriorate as the distance ‖bi− bj‖ increases. The following modifica-

tion aims to remedy this weakness. Since

aTi x

bTi x
=

(
¯
¯
βTx

bTi x

)
aTi x
¯
¯
βTx

i = 1, . . . , k,
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we have

aTi x

bTi x
≥
(

inf
x∈P

β̄Tx

bTi x

)
aTi x

β̄Tx
≥ aTi x

β̄Tx
i ∈ I+, (6.4)

and

aTi x

bTi x
≥

(
sup
x∈P

¯
βTx

bTi x

)
aTi x

¯
βTx

≥ aTi x

¯
βTx

i ∈ I−. (6.5)

In fact, unless all bi are equal for i ∈ I+, the last inequality in (6.4) is strict for at

least one i ∈ I+. The same is true for (6.5) unless all bi, i ∈ I− are equal. Also, such

strengthening guarantees that the first inequlities in (6.4) and (6.5) are respectively

tight in at least

arg min
x∈P

β̄Tx

bTi x
, i ∈ I+ and arg max

x∈P
¯
βTx

bTi x
, i ∈ I−.

Finally, we arrive at

φ2(x) = φ+
2 (x) + φ−2 (x)

=

∑
i∈I+

inf
ξ∈P

β̄T ξ

bTi ξ
ai


T

x

β̄T x
+

∑
i∈I−

sup
ξ∈P

¯
βT ξ

bTi ξ
ai


T

x

¯
βT x

≤ f(x) ∀x ∈ P.

(6.6)

This underestimation is much more computationally expensive than (6.3). In order

to obtain the coefficients we need to solve up to k + 2 linear FCOPs. Minimizing

it is also a sum-of-ratios problem unless either I− or I+ is empty, but we can again

underestimate (6.6) using (6.3), or simply by computing

¯
φ2 = inf

x∈P
φ+

2 (x) + inf
x∈P

φ−2 (x).

Finally, we suggest another quasiconvex piecewise linear fractional underestimator of

f(x) =
k∑
i=1

aTi x

bTi x
, x ∈ P.
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For some j ∈ {1, . . . , k}, multiply every fraction by bTj x/b
T
j x:

f(x) =
aTj x

bTj x
+

k∑
i=1
i6=j

(
bTj x

bTi x

aTi x

bTj x

)
⇒ f(x) ≥

aTj x

bTj x
+

k∑
i=1
i 6=j

αji
aTi x

bTj x

where

αji =


inf
x∈P

bTj x

bTi x
i ∈ I+

sup
x∈P

bTj x

bTi x
i ∈ I−

, 1 ≤ i ≤ k, i 6= j.

Performing this for every j = 1, . . . , k, we arrive at

φ3(x) = max
1≤j≤k


(

k∑
i=1

αjiai

)T
x

bTj x

 ≤ f(x) ∀x ∈ P. (6.7)

Underestimator (6.7) is also a computationally intensive one. Calculating coefficients

only requires solving k(k−1) linear fractional problems. In our case this, however, can

be done using efficient combinatorial algorithms. But φ3, being a pointwise maximum

of quasiconcave (and also quasiconvex) functions, is no longer necessarily quasicon-

cave, and thus may not reach its minimum in a vertex of P . Therefore, we cannot rely

on combinatorial algorithms to compute infx∈P φ3(x). We can still do this in poly-

nomial time using other techniques, because φ3 is quasiconvex. One such approach

is the generalized Dinkelbach’s algorithm [12], but the procedure requires solving a

sequence of LPs. Other methods are available and have similar computational com-

plexity. Taking into account formidable size of analytical representation of P even

for moderate instances of the considered combinatorial problems, we deem direct use

of φ3 for calculating the lower bound on infx∈P f(x) impractical. We may, however,

find it useful for another purpose, as we show in the next section. Also we can derive
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a weaker, but easier to compute lower bound based on (6.7):

¯
φ3 = max

1≤j≤k

 inf
x∈P

(
k∑
i=1

αjiai

)T
x

bTj x

 ≤ inf
x∈P

φ3(x) ≤ inf
x∈P

f(x). (6.8)

This bound requires solving k2 single-ratio FCOPs, hence it still remains significantly

more computationally intensive than (6.3) and (6.6).

A legitimate question is: how do the lower bounds
¯
φ1 = inf

x∈P
φ1(x),

¯
φ2 and

¯
φ3

compare to the simple bound

¯
φ0 =

k∑
i=1

inf
x∈P

aTi x

bTi x

and to each other? The answer is that, in general, neither of
¯
φi, i = 0, . . . , 3 dominates

any other. For each bound at least one problem instance was generated on which that

particular bound outperforms the others in P defined by (6.2). In particular,
¯
φ0 gives

the highest value in the setup used for the figures 4 and 5. To benchmark average

performance, we generate 2 batches of instances: one for MMRST and one for MMRP

problem. Both batches have similar structure; they include instances with 10 different

graph sizes, and for each graph size we generate an instance for 2, 3, 5 and 10 ratios,

totaling 40 instances per batch. We compare average performance of the bounds
¯
φi,

i = 1, . . . , 3 against
¯
φ0 as

¯
φi −

¯
φ0

|
¯
φ0|

.

The same results are presented relative to instance size and number of ratios in the

objective. Tables 7 and 8 contain the results for the MMRST problem. All tested

MMRST instances are complete graphs with standard uniform edge parameter vectors

ai, bi. In addition to an obvious empiric conclusion about the quality of the lower

bound
¯
φ2, there are several other things to mention. For example, the linear lower
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Table 7 Average performance of the suggested lower bounds vs. k for MMRST in-

stances

k
φ

1
−φ

0

|φ
0
|

φ
2
−φ

0

|φ
0
|

φ
3
−φ

0

|φ
0
|

2 2.80 4.15 10.2

3 6.54 8.29 0.99

5 12.3 14.15 0.78

10 18.9 20.24 0.31

bound
¯
φ1 seems to perform surprisingly well for the MMRST problem. In fact, both

¯
φ1 and

¯
φ2 significantly outperform

¯
φ0 on all 40 instances. This does not contradict

our remark above about the case when the latter bound dominated the others, since

the notorious 6-vertex instance was not included in the benchmark due to its size.

The bound
¯
φ3, on the other hand, shows poor performance, and dominated

¯
φ0 only

in 85% cases. Also, the results for the MMRST instances demonstrate an interesting

tendency for all bounds to improve their quality compared to
¯
φ0 as the graph size

increases. This appears to be true for the first two bounds as the number of ratios

increases, too, while
¯
φ3 shows the opposite. The performance trends are roughly

the same, however less pronounced, for the MMRP instances according to the results

presented in Tables 9 and 10. The major differences for MMRP instances are that the

linear underestimator performs significantly worse (dominates
¯
φ0 for 63% instances),

while
¯
φ3 does significantly better (91%). The linear fractional underestimator is still

a clear winner.

VI.3. Localization of optimal solutions to min
x∈X

f(x).

In this section we suggest ways to reduce the initial set conv(X ) to a smaller set, in

which optimal solutions to min{f(x) : x ∈ X} lie. Our main algorithm works with
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Table 8 Average performance of the suggested lower bounds vs. graph size for

MMRST instances

|V | φ
1
−φ

0

|φ
0
|

φ
2
−φ

0

|φ
0
|

φ
3
−φ

0

|φ
0
|

10 0.50 0.58 -0.0003

20 1.35 1.61 0.17

30 2.24 2.60 0.17

50 3.81 4.46 0.38

70 5.47 6.39 0.57

100 6.82 8.04 0.64

200 13.37 15.43 1.14

300 18.08 20.65 1.31

400 22.71 26.11 1.59

500 27.16 31.22 1.81

conic partition of X , which corresponds to the rectangular partition of the image

space set Y . For this reason we choose to look for the reduced search region in the

form of smallest possible image space rectangle Q that contains the optimal image

points. In [39] Skiskim and Palocsay start with the rectangle Q0 calculated as in

(6.2). We can try to reduce it further using an iterative procedure similar to the

optimization algorithm for continuous sum of linear ratios by Falk and Palocsay [15].

By analogy with section VI.1, we adopt here the following notation:

π(Q) =
k∑
i=1

Ui(Q)− Li(Q).

We use π(Q) as an indicator of the overall size of Q. Also, we assume that a heuristic

H is available that, given a description of the problem P and a rectangle Q ∈ Rk

provides a solution H(P , Q) ∈ X . This is not a restrictive assumption, since a feasible
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Table 9 Average performance of the suggested lower bounds vs. k for MMRP in-

stances

k
φ

1
−φ

0

|φ
0
|

φ
2
−φ

0

|φ
0
|

φ
3
−φ

0

|φ
0
|

2 0.14 1.31 0.89

3 0.06 1.78 0.59

5 0.56 3.59 0.60

10 0.32 3.47 0.09

Table 10 Average performance of the suggested lower bounds vs. graph size for

MMRP instances

(l, w)
φ

1
−φ

0

|φ
0
|

φ
2
−φ

0

|φ
0
|

φ
3
−φ

0

|φ
0
|

(5,3) -0.25 1.22 0.60

(7,5) -0.30 1.72 0.44

(9,7) 0.04 2.54 0.50

(12,10) -0.12 4.26 0.56

(14,12) 0.05 6.62 1.18

(17,15) 0.38 1.81 0.58

(20,18) 0.44 1.19 0.14

(22,20) 0.39 1.73 0.21

(24,22) 0.79 1.67 0.53

(27,25) 1.28 2.61 0.65

solution is easy to find for the class of problems that we consider in this dissertation.

Our implementation does not use H explicitly. Instead, the procedure that is used
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Algorithm 3

Require: P = (X , a1, . . . , ak, b1, . . . , bk), 0 < ε < 1.

Ensure: Q ∈ Rk, x̄

1: Compute Q0 as in (6.2);

2: x̄← H(P , Q0);

3: j ← 0;

4: repeat

5: j ← j + 1;

6: li ← inf{yi : y ∈ Y ∩Qj} i = 1, . . . , k;

7: ui = f(x̄)−
k∑

r=1
r 6=i

lr i = 1, . . . , k;

8: Qj ← {y ∈ Rk : l ≤ y ≤ u};
9: x̃← H(P , Qj);

10: if f(x̃) < f(x̄) then

11: x̄← x̃;

12: end if

13: until
π(Qj−1)−π(Qj)

π(Qj)
< ε ;

14: return Qj, x̄;

for solving a problem

min
cTx

dTx
;

s.t.: Ax ≤ b;

x ∈ conv(X );

(6.9)

yields a set of feasible solutions as a side result. However, in principle, other (and dis-

tinct) methods may be used for solving (6.9) and finding x ∈ X ; therefore, when rea-

sonable, we prefer to emphasize this in the pseudocodes of our algorithms. Algorithm

3 terminates after a finite number of steps. This is obvious, since π(Qj) reduces either

through the reduction of U(Qj), or the increase in L(Qj). Both U(Qj) and L(Qj)

are bounded; the latter from above by inf{f(x) : x ∈ conv(X ))}, and the former by

inf{f(x) : x ∈ X )}, and so a finite improvement by some η > 0 can only happen

for a finite number of times. Note that we do not want to make an impression that,
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given ε = 0, arg min{f(x) : x ∈ conv(X )} belongs to the boundary of Qj, j →∞. It

may happen so, but in general the algorithm stalls as soon as for each i = 1, . . . , k

∃ arg min{yi : y ∈ Y ∩Qj} ∈ Qj+1.

Let (Q, x̄) be the result of Algorithm 3, P = conv(X ) ∩ C(Q) and f(x̄) = ū. It

may be possible to reduce Q further. It is easy to see that the upper bound Ur(Q)

for the ratio r, as suggested by Falk and Palocsay in [15] and calculated in line 7 of

Algorithm 3 is nothing but the result of summation of the inequalities

aTr x

bTr x
+

k∑
i=1
i 6=r

aTi x

bTi x
≤ ū

−a
T
i x

bTi x
≤ − inf

x∈P

aTi x

bTi x
i = 1, . . . , k, i 6= r.

(6.10)

Returning to the results of the previous section, let us denote by
¯
φri (P ) the bound

¯
φi that is calculated over P as if the ratio r has been excluded from the objective,

but all constraints of C(Q) regarding this ratio are still in place. Then the sum of

right-hand sides of the inequalities in the second line of (6.10) above gives exactly

¯
φr0(Q). The computational results in the prevous section of this chapter suggest that,

if k > 2, we are likely to substantially improve the upper bounds on each ratio in P

by setting

Ur(Q) = ū− max
0≤i≤3 ¯

φri (P ) r = 1, . . . , k. (6.11)

For this, however, we have to assume that the ratios 1, . . . , k are all unisignant in P .

If that is not the case, than we have to partition P appropriately first, and then apply

this approach. Hence, the unisignance assumption does not affect generality. Also

note that improvement of the bounds via the above approach calls for an iterative

procedure. Indeed, once U(Q) is reduced according to (6.11), L(Q) may be improved

again by minimizing individual ratios in the reduced P , possibly leading to another

improvement of U(Q). Then the bounds may be recalculated, and (6.11) applied
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again, and so until no substantial improvement can be achieved.

It is relevant now to mention a remark about the rational choice of the ratio

index r to use in Algorithm 2 from section VI.1. After application of (6.11) to Q it

may no longer be cubic, and therefore the choice r = arg min1≤i≤k πi(Q) may indeed

reduce the computational effort to approximate the boundary of Y ∩Q.

Further reduction of the initial search region is still possible. Let us apply our

underestimators of f(x) in yet another way. Since φ1, . . . , φ3 achieve their minima

over P in potentially distinct points, it may be that all of them, or at least some of

them, do not lie in the intersection of the lower level sets

Di(ū) = {x ∈ P : φi(x) ≤ ū} i = 1, 2, 3.

In such case adding the inequalities that describe these level sets explicitly to P may

allow us to improve the bounds on the optimal values of the ratios further. This can

be done by the following linear constraints. Below we keep the notation adopted in

section VI.2. For φ1 we have simply(
k∑
i=1

ai
βi

)T

x ≤ ū. (6.12)

For φ2, unless I+ or I− is empty, the lower level sets are not necessarily convex, and

therefore cannot be described by linear inequalities. However, D2(ū) is contained in

the polyheadral set defined by the following two constraints and the inequalities of

P :

(γ̄ − (ū− inf
ξ∈P

¯
γT ξ

¯
βT ξ

)β̄)Tx ≤ 0;

(
¯
γ − (ū− inf

ξ∈P

γ̄T ξ

β̄T ξ
)
¯
β)Tx ≤ 0;

(6.13)
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where γ̄,
¯
γ ∈ Rn are

γ̄ =
∑
i∈I+

inf
ξ∈P

β̄T ξ

bTi ξ
ai and

¯
γ =

∑
i∈I−

sup
ξ∈P

¯
βT ξ

bTi ξ
ai.

If either I− or I+ is empty, then D2(ū) can be represented exactly with the help of

(γ̄ − (ūβ̄)T )x ≤ 0; or (
¯
γ − (ū

¯
β)T )x ≤ 0, (6.14)

respectively. To describe D3(ū) we need to add the following k inequalities to P :

(
k∑
i=1

αjiai − ūbj)Tx ≤ 0 j = 1, . . . , k (6.15)

where αji are as defined in the previous section of this chapter.

Taking into account the nature of coefficients αji, βi, ū and vectors β̄,
¯
β, γ̄ and

¯
γ, and the fact that for a positive polytope P ⊂ Rn and n-vectors a1, a2

a1 ≥ a2 ⇒ {x ∈ P : aT1 x ≤ 0} ⊆ {x ∈ P : aT2 x ≤ 0},

it is easy to see that that the constraints (6.12-6.15) become stronger as P reduces.

This can be performed iteratively, which is what our final procedure for tightening

the initial image space rectangle is based upon. One final remark concerns (6.12):

this inequality is different from (6.13)-(6.15) and the constraints that define C(Q),

because it is not conic. It may prove useful in conjunction with the conic constraints

when tightening linear relaxation (6.9), because it is likely to cut off a large portion

of conv(X ). We can derive a Chvatal-Gomory cut from (6.12), too, but it is hardly

useful for large instances with highly fractional coefficients.

In the listing of Algorithm 4 we refer to the polytope described by (a subset

of) constraints (6.12)-(6.15) as B(Q) ⊂ Rn to emphasize that the constraints depend

on Q. They certainly depend on conv(X ) as well, but it is assumed to be a part
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Algorithm 4

Require: P = (X , a1, . . . , ak, b1, . . . , bk), 0 < ε < 1.

Ensure: S = {Q1, . . . , Qp ⊂ Rk}

1: Obtain R ⊂ Rk, x̄ ∈ Rn from Algorithm 3;

2: Partition R into R1, . . . , Rm so that all components of y ∈ Ri, i = 1, . . . ,m are

unisignant;

3: ū← f(x̄);

4: S ← ∅;
5: for all R ∈ {R1, . . . , Rm} do

6: Q0 ← R;

7: j ← 0;

8: repeat

9: Calculate B(Qj);

10: ur ← ū− max
0≤i≤3 ¯

φri (conv(X ) ∩ C(Qj) ∩B(Qj)) r = 1, . . . , k;

11: Q′j ← {y ∈ Qj : y ≤ u};
12: lr ← inf{aTr x/bTr x : x ∈ conv(X ) ∩ C(Q′j) ∩B(Qj)} r = 1, . . . , k;

13: Qj+1 ← {y ∈ Q′j : l ≤ y};
14: j ← j + 1;

15: until Qj = ∅ or
π(Qj−1)−π(Qj)

π(Qj)
< ε ;

16: if eTL(Qj) < ū then

17: S ← S ∪ {Qj};
18: end if

19: end for

20: return S;

of the problem description. Also, in Algorithm 4 for the most part we refer to the

original problem space Rn, since the constraints (6.12)-(6.15) cannot be described in

the image space easily.

To evaluate efficacy of the suggested range reduction technique we performed

computational experiments on the same batches of instances as in the previous sec-

tion. We measure performance of Algorithms 3 and 4 based on how they reduce

Q0 computed by (6.2). The reported results include the average relative perimeter
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Table 11 Optimal ratio range reduction results vs. k for MMRST instances

k
Algorithm 3 Algorithm 4

gap, %
π(Q)
π(Q0)

,% vol(Q)
vol(Q0)

,% π(Q)
π(Q0)

,% vol(Q)
vol(Q0)

,% minπr(Q)
πr(Q0)

, %

2 0.17 <0.01 0.16 <0.01 0.08 5.65

3 82.38 57.13 30.13 5.21 19.76 33.39

5 93.60 73.72 34.81 2.20 27.61 39.34

10 95.61 64.69 36.57 0.04 32.85 44.12

reduction π(Q)/π(Q0), average relative volume reduction

vol(Q)

vol(Q0)
, vol(Q) =

k∏
i=1

(Ui(Q)− Li(Q));

and, for Algorithm 4, relative reduction of min1≤i≤k πi(Q). We also provide the av-

erage IP gap remaining after the range reduction. The results are provided in the

same format as in the previos section, i.e., against the number of ratios and against

the graph size. Tables 11 and 12 present the results for the MMRST instances.

The results suggest that Algorithm 3 performs well on average for the 2-ratio

instances. It is thus not surprising that the improvement of Algorithm 4 on the results

of Algorithm 3 for k = 2 is negligible. The reason is that the reduction (6.11) is not

applicable in this case, so we can only expect improvement through application of

the level set constraints (6.12)-(6.15). Even then it is hard to reduce Q further, since

it is already small. However, performance of the first method deteriorates sharply

when k > 2. For the second method the decrease of performance with k is much less

noticeable in terms of all measures.

The same benchmark data, when looked upon against the size of the graph,

suggests that Algorithm 4 does yield stable and significant reduction of the region

containing optimal image points. The gap column here is worth of a separate remark:
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Table 12 Optimal ratio range reduction results vs. graph size for MMRST instances

|V |
Algorithm 3 Algorithm 4

gap, %
π(Q)
π(Q0)

,% vol(Q)
vol(Q0)

,% π(Q)
π(Q0)

,% vol(Q)
vol(Q0)

,% minπr(Q)
πr(Q0)

, %

10 73.18 64.15 47.85 10.77 37.11 27.94

20 72.02 59.66 34.21 3.65 26.36 30.14

30 68.01 48.38 29.27 1.59 22.98 29.82

50 68.03 52.53 26.42 0.93 20.88 30.77

70 70.52 58.26 24.32 0.71 19.18 30.36

100 66.04 43.23 21.93 0.41 17.46 31.42

200 65.62 44.48 19.74 0.23 15.82 31.51

300 64.49 35.96 17.26 0.12 13.96 31.16

400 66.22 42.27 17.01 0.09 13.81 31.61

500 65.23 39.91 16.14 0.08 13.13 31.47

stability of the average gap does not mean, as shown in Table 11, that we should

expect a value of about 30% after applying Algorithm 4. It does suggest that, on av-

erage, in terms of this measure performance of the algorithm changes with k similarly

for the tested graph sizes.

Tables 13 and 14 present the same results for the MMRP instances. The average

performance trends are seen to be very similar. One additional thing worth men-

tioning is that for 2 ratios the (5,3) and (7,5) instance were solved to optimality via

Algorithm 3. This is yet another empirical evidence of how close the boundaries of

conv(Y ) and Y may be near the optimal image point for small k.

Note that although the output of Algorithm 3 serves as the input to Algorithm

4, this is done in order to (1) reduce the size of partition in the line 2 of the latter

algorithm in the case of non-unisignant ratios and (2) to decrease run time of the
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Table 13 Optimal ratio range reduction results vs. k for MMRP instances

k
Algorithm 3 Algorithm 4

gap, %
π(Q)
π(Q0)

,% vol(Q)
vol(Q0)

,% π(Q)
π(Q0)

,% vol(Q)
vol(Q0)

,% minπr(Q)
πr(Q0)

, %

2 0.02 <0.01 0.01 <0.01 0.01 0.17

3 71.05 51.87 32.44 7.56 20.78 27.76

5 92.24 76.12 33.86 0.68 26.46 36.34

10 98.07 85.41 38.79 0.03 34.69 41.77

Table 14 Optimal ratio range reduction results vs. graph size for MMRP instances

(l, w)
Algorithm 3 Algorithm 4

gap, %
π(Q)
π(Q0)

,% vol(Q)
vol(Q0)

,% π(Q)
π(Q0)

,% vol(Q)
vol(Q0)

,% minπr(Q)
πr(Q0)

, %

(5,3) 68.86 52.00 42.97 10.18 31.93 26.05

(7,5) 70.81 63.94 32.50 2.06 25.28 24.69

(9,7) 65.60 49.14 33.23 4.44 25.51 28.85

(12,10) 69.31 48.30 23.19 0.29 18.61 24.73

(14,12) 64.54 54.91 29.10 1.34 22.67 28.81

(17,15) 65.25 55.65 29.76 1.69 23.34 31.08

(20,18) 57.38 45.94 17.76 0.12 14.31 25.29

(22,20) 54.15 48.78 16.00 0.05 13.21 22.03

(24,22) 75.00 75.00 19.17 0.21 15.15 26.47

(27,25) 62.56 39.83 19.05 0.31 14.84 27.12

overall range reduction procedure, since, although Algorithm 4 can obviously achieve

the same reduction on its own, it would have to perform possibly more iterations, each

of which may, in fact, be more expensive that the first algorithm as a whole. Also,

we have to admit that the constraints (6.15), as well as the underestimator φ3 they
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are based on, do not seem to perform well enough to justify their high computational

cost.

VI.4. A global optimization algorithm

Finally, we suggest a global optimization algorithm for the considered class of FCOPs

based on our findings in this chapter. The algorithm is essentially a branch-and-bound

procedure applied to a partition S obtained from Algorithm 2 after applying it to an

initial image rectangle Q.

During the initial stage we compute the starting partition S using Algorithm

4. Then we apply Algorithm 2 to each Q ∈ S. At this point, its purpose is not

obtaining the approximation of Y , but obtaining a good incumbent solution and the

upper bound on the optimal value. Therefore, we use a different stopping criterion

for Algorithm 2 during the initial stage: we stop building the approximation once the

upper bound does not improve for a specified number of steps.

We perform a branch-and-bound in the main stage of the algorithm. With each

node N we associate the lower bounf
¯
f(N), an image space partition S(N) and two

sets that contain the indices of the variables that are fixed at node N : E0 = {i : xi =

0} and E1 = {i : xi = 1}. The branching strategy is different from the one adopted

in Chapter V for solving CMRST problems, because, since we perform a substantial

amount of calculations at each node, the branching suggested by Aggarwal et al. [1]

is extremely time consuming even for relatively small instances. Instead, we rely

on the observation that, for combinatorial problems, the good solutions often have

some structural similarity, i.e., they are comprised of the similar sets of elements

(e.g., edges for spanning trees, arcs for directed paths). Therefore, as the algorithm

proceeds, we collect the information about the encountered good solutions in the
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vector ω ∈ Rn such that ω =
∑
x∈W

x, where W is a set of incumbent solutions that

yield good upper bounds. Then the branch-and-bound tree nodes N ′ and N ′′ can be

obtained by determining j /∈ E(N) such that ωj is maximum and setting

E1(N ′) = E1(N) ∪ {j}, E0(N ′) = E0(N);

E1(N ′′) = E1(N), E0(N ′′) = E0(N) ∪ {j}.

The partitions S(N ′) and S(N ′′) can be obtained from S(N) by applying Algorithm

4 to each Q ∈ S(N) after fixing the variables appropriately. Once this is done, the

lower bounds
¯
f(N ′) and

¯
f(N ′′) are computed by applying a fixed number of streps of

a modified Algorithm 2 to S(N ′) and S(N ′′). This modification only involves using

the lower bound max{
¯
φ0,

¯
φ1,

¯
φ2} instead of

¯
φ0, and therefore does not change the

structure of Algorithm 2 in any significant way. The rest of the details concerning the

suggested branch-and-bound approach is clarified in the pseudocode of the algorithm.

To conclude this section, we would like to make another short remark regarding

the variable fixing process, since the pseudocode of Algorithm 5 does not capture

these details. Unless solving the constrained minimum ratio problems is done via

linear programming techniques, which is impractical due to large sizes of such LPs,

fixing the variables of a characteristic vector x ∈ Rn to 0 or 1 requires forcing the

corresponding elements of the sought combinatorial objects out of, or, respectively,

into the solution. For example, when we are looking for a spanning tree, fixing xi = 0

means excluding the edge ei from the graph. Forcing xi = 1 could be achieved via

either contracting the endpoints of ei, or modifying the weight of an edge so that

it is guaranteed to be included in any feasible solution. When we are looking for

an optimal path in a directed acyclic graph G = (V,A), fixing a variable to 1 is

convenient to do in the following manner. Suppose the arc (v, u) is to be forced into
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Algorithm 5

Require: P = (X , a1, . . . , ak, b1, . . . , bk), 0 < ε < 1, m1,m2.

Ensure: x̄ - the best incumbent solution found,
¯
z - the lower bound for the optimal

objective value

1: Obtain S from Algorithm 4;

2: Run Algorithm 2 starting with S0 = S until the incumbent solution x̄ does not

improve for m1 steps;

3: S(N)← S, E0(N)← ∅, E1(N)← ∅,
¯
f(N)←

¯
z;

4: ω ← x̄;

5: N ← {N};
6: while N 6= ∅ do

7: Choose N ∈ N with the smallest
¯
f(N);

8:
¯
z ←

¯
f(N);

9: N ← N \ {N};
10: Choose j such that ωj is maximum, 1 ≤ j ≤ n, j /∈ E0(N) ∪ E1(N);

11: E1(N ′)← E1(N) ∪ {j}, E0(N ′)← E0(N);

12: E1(N ′′)← E1(N), E0(N ′′)← E0(N) ∪ {j};
13: for M ∈ {N ′, N ′′} do

14: xi ← ξi ∀i ∈ Eξ(M), ξ = 0, 1;

15: S(M)← S(N);

16: Obtain S ′(M) by applying Algorithm 4 to each Q ∈ S(M);

17: Obtain a lower bound
¯
f(M) and an incumbent x̄M via running

Algorithm 2 started with S0 = S ′(M) for m2 steps;

18: if |f(x̄M)− f(x̄)| ≤ ε|f(x̄)| then

19: ω ← ω + x̄M ;

20: if f(x̄M) < f(x̄) then

21: x̄← x̄M ;

22: end if

23: end if

24: if |f(x̄)−
¯
f(M)| > ε|f(x̄)| then

25: N ← N ∪ {M};
26: end if

27: end for

28: end while

29: return x̄,
¯
z;
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the solution. Define

R = {w ∈ V (G) : w is reachable from u}.

Then forcing (v, u) into the solution means deleting all arcs (p, q) such that p /∈ R

and q ∈ R.

VI.5. Computational results

This section concludes the chapter with the computational results that assess the

performance of the algorithms suggested in this chapter on MMRST and MMRP in-

stances. In order to be consistent, we test the global optimization algorithm on the

same batch of the instances that was used in numerical experiments in Chapters IV

and V. Algorithm 5 is tested in two settings: with no approximation steps performed

at a branch-and-bound tree node (denoted as Algorithm 5-0), and with 8 approxima-

tion steps performed at a branch-and-bound tree node (denoted as Algorithm 5-8).

For both of these settings the target gap value is set to 1%, and computation time

is limited to 1 hour. Along with the branch-and-bound scheme we provide the per-

formance results of Algorithm 2 used as a heuristic in conjunction with the search

space reduction technique described in Algorithm 4. It yields both the best feasible

solution found, and the lower bound achieved from the approximation (hence the gap

value). The targes IP gap value for Algorithm 2 is also set to 1%, but the runtime

is limited to 10 minutes or 30000 iterations, whichever is reached sooner. In all cases

the performance estimates are obtained by averaging the results for over 3 instances.

All algorithms are implemented in C++ using Microsoft Visual Studio 2003

environment1. We rely on the Boost Graph Library [38] implementation of adjacency

1The source code is available upon request
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matrix to represent graphs. The experiments were performed on a computer with

Intelr CoreTM 2 Duo 3.16 GHz CPU and 3.23 GB of RAM.

Tables 15 and 16 summarize the results for the complete and sparse MMRST

instances, respectively. It is evident that the performance of the branch-and-bound

scheme suggested in this chapter, although comparable to the performance of the

considered MIP models, is inferior to the algorithm from the previous chapter. The

fact that it outperforms all other used methods (except for the heuristic) on the

2-ratio instances should not be attributed to the branch-and-bound scheme, but to

the Algorithm 2-based heuristic instead, since it runs before the branch-and bound

procedure starts, and almost always reaches the target gap - in fact, after the reduction

step usually. This is clear since no branch-and-bound tree nodes were processed for

almost all MMRST instances with k = 2. On the other hand, the performance of

Algorithm 2, when used as a heuristic, is impressive on MMRST instances for all

tested values of k. This, however, raises a legitimate question: Is it always true that

Y approximates conv(Y ) accurately in the vicinity of an optimal solution?

Table 17 summarizes the results for the MMRP instances. Although the perfor-

mance of the heuristic is still very good for this problem, it is clear that MMRP image

polytopes of the considered instances may not be approximated by calY as well as for

the MMRST problem. This conclusion is suggested by the fact that for some smaller

instances the heuristic reaches the iteration limit, but is unable to bridge the gap.

Such difference in performance on MMRST and MMRP instances may be possibly

explained by the structural difference of the solutions to these problems: a spanning

tree always contains |V − 1| edges, while an (s, t)-path may contain as few as 1 arc,

or as many as l arcs for the considered instances.

On the other hand, the branch-and-bound scheme for the MMRP problem shows

much stronger performance than for the MMRST, and, in particular, it by far outper-
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Fig. 6 IP gap progress in Algorithm 2 with different lower bounds used.

forms the considered MIP model. This is most likely due to the effectiveness of the

branching rule suggested in the end of the previous section for the MMRP problem.

Another remark should be made regarding the approximation algorithm. Al-

though the bounds
¯
φ1, and

¯
φ2 are typically much stronger than

¯
φ0, they start to

converge fast as the image space partition S derived by Algorithm 2 becomes more

refined. This phenomenon is captured in Figure 6 for a complete MMRST instance

with 30 vertices and 5 ratios. The same tendency is observed for the considered

MMRP instances. Therefore, although these bounds are very helpful when reduction

of the initial image rectangle is performed, using them in Algorithm 2 is not justified

because of a much higher computational cost.
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Table 15 Performance of Algorithm 2 and Algorithm 5 on complete MMRST in-

stances

Algorithm 2 Algorithm 5-0 Algorithm 5-8

k n steps gap run time nodes gap run time nodes gap run time

×103 (%) (sec.) ×103 (%) (sec.) ×103 (%) (sec.)

2

10 0.0 0.9 0.0 0.0 0.9 0.0 0.0 0.9 0.0

15 0.0 0.9 0.0 0.0 0.9 0.0 0.0 0.9 0.0

20 0.0 0.8 0.7 0.0 0.8 0.7 0.0 0.8 1.0

30 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.3

40 0.0 0.9 3.3 0.0 0.9 3.3 0.0 0.9 4.0

50 0.0 0.8 4.7 0.0 0.8 4.7 0.0 0.7 10.7

80 0.0 0.7 33.0 0.0 0.7 33.0 0.0 0.8 55.7

100 0.0 1.0 70.3 0.0 1.0 70.3 0.3 0.6 42.0

3

10 0.2 1.0 0.0 0.6 0.0 3.7 0.6 0.2 21.0

15 0.2 1.0 1.0 70.0 0.0 644.0 17.2 1.4 1780.0

20 0.4 1.0 2.7 148.3 22.4 3600.0 24.9 5.5 3600.0

30 0.6 1.0 10.3 79.4 18.3 3600.0 13.0 14.5 3600.0

40 0.5 1.0 13.0 55.2 18.7 3600.0 6.4 19.9 3600.0

50 0.5 1.0 18.7 35.4 22.9 3600.0 3.9 21.9 3600.0

4

10 3.1 1.0 16.0 14.5 0.0 99.0 22.7 8.3 2491.7

15 6.0 1.0 49.3 197.5 32.6 3600.0 24.3 10.5 2798.6

20 11.9 1.0 148.0 160.5 16.0 3600.0 19.6 16.5 3600.0

30 13.7 1.0 335.7 88.2 21.7 3600.0 9.7 23.5 3600.0

5

10 40.7 1.0 304.0 28.4 0.00 1945.7 22.5 8.6 2563.6

15 49.0 1.1 600.0 23.3 16.5 3600.0 23.7 11.47 2982.0

20 34.6 1.8 600.0 12.8 21.4 3600.0 16.6 20.3 3600.0
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Table 16 Performance of Algorithm 2 and Algorithm 5 on sparse MMRST instances

Algorithm 2 Algorithm 5-0 Algorithm 5-8

k n steps gap run time nodes gap run time nodes gap run time

×103 (%) (sec.) ×103 (%) (sec.) ×103 (%) (sec.)

2

20 0.0 0.8 0.0 0.0 0.8 0.0 0.0 0.8 0.0

40 0.0 0.9 0.0 0.0 0.9 0.0 0.0 0.9 0.0

60 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0

80 0.0 1.0 0.7 0.0 1.0 0.7 0.0 1.0 0.7

100 0.0 1.0 5.0 0.0 1.0 5.0 0.0 1.0 5.0

120 0.0 1.0 7.0 0.0 1.0 7.0 0.0 1.0 7.0

140 0.0 1.0 18.0 0.0 1.0 18.0 0.0 1.0 18.0

160 0.0 1.0 13.3 0.0 1.0 13.3 0.0 1.0 13.3

3

20 0.0 1.0 0.0 0.2 0.1 1.7 0.1 0.7 3.3

40 0.0 1.0 0.0 109.5 1.2 1381.7 8.8 0.6 1113.0

60 0.1 1.0 2.0 103.6 13.1 3600.7 11.5 7.5 3599.7

80 0.2 1.0 4.0 62.2 19.1 3600.0 6.8 10.9 3600.0

100 0.3 1.0 10.3 41.2 24.1 3600.0 4.1 14.8 3600.0

4

20 0.1 1.0 0.3 0.5 0.3 4.0 0.2 0.6 16.3

40 0.6 1.0 5.7 81.6 1.0 1219.0 8.7 2.0 1283.0

60 1.0 1.0 21.7 96.8 13.3 3600.0 9.1 13.0 3600.0

80 2.8 1.0 103.7 58.6 22.2 3600.0 5.3 19.4 3600.0

5

20 1.3 1.0 7.7 0.9 0.5 9.3 0.8 0.4 49.0

40 2.6 1.0 35.3 85.8 1.6 2107.3 22.8 2.3 3600.0

60 9.5 1.0 284.0 73.1 14.8 3600.0 8.7 15.4 3600.0
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Table 17 Performance of Algorithm 2 and Algorithm 5 on MMRP instances

Algorithm 2 Algorithm 5-0 Algorithm 5-8

k (l, w) steps gap run time nodes gap run time nodes gap run time

×103 (%) (sec.) ×103 (%) (sec.) ×103 (%) (sec.)

2

(5,3) 20.0 3.4 177.7 0.0 0.0 0.0 0.0 0.7 0.3

(7,5) 10.0 0.8 117.3 0.0 0.1 0.7 0.0 1.0 2.3

(9,7) 0.0 0.7 0.0 0.0 0.7 0.0 0.0 1.0 8.7

(12,10) 4.3 1.4 202.7 0.0 0.5 12.3 0.0 1.0 25.3

(14,12) 0.0 0.8 4.0 0.0 0.8 3.0 0.0 1.0 112.0

3

(5,3) 0.1 0.8 0.3 0.0 0.2 0.0 34.8 1.0 2287.3

(7,5) 10.1 3.3 149.0 0.1 0.0 2.3 10.1 20.5 3600.0

(9,7) 12.6 2.1 401.3 0.0 0.3 8.7 3.2 25.1 3600.0

(12,10) 0.2 1.0 23.0 0.2 0.0 64.7 0.8 27.6 3600.0

(14,12) 0.4 1.0 96.7 0.2 0.3 187.3 0.4 28.6 3600.0

4

(5,3) 20.7 2.1 222.0 0.0 0.3 1.0 31.2 11.3 3599.7

(7,5) 1.2 1.0 21.7 0.1 0.4 8.0 7.3 25.4 3600.0

(9,7) 3.3 1.0 151.0 0.9 0.0 70.0 2.1 29.5 3600.0

(12,10) 4.0 2.3 600.0 2.4 0.6 641.7 0.5 31.9 3600.0

(14,12) 1.8 3.1 595.7 5.9 2.2 3312.7 0.2 32.7 3600.0

5

(5,3) 21.1 1.8 262.0 0.1 0.0 1.3 32.9 13.8 3600.0

(7,5) 12.8 1.0 293.7 0.3 0.1 14.0 6.2 28.6 3600.0

(9,7) 7.5 2.6 449.3 1.4 0.0 129.7 2.0 33.3 3600.0

(12,10) 2.6 7.1 600.0 9.3 2.7 2684.7 0.4 34.7 3600.0

(14,12) 1.2 11.1 600.0 5.0 6.4 3600.0 0.2 35.7 3600.0
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

This dissertations considers a subclass of sum-of-ratios FCOPs whose linear versions

admit polynomial-time exact algorithms. Since the objective function involved in

such FCOPs is, in general, multiextremal, it is expected that these discrete problems

are hard to solve. We formally establish this result in Chapter III for the MMRP and

MMRC problems.

Since in this work we are primarily interested in developing solution techniques,

it is logical to try the most generic and traditional MIP approach first. Unfortu-

nally, the combinatorial problems do not typically lend themselves for compact linear

MIP formulations. Furthermore, the available techniques for linearizing the sum-of-

ratios objective function further substantially enlarges the models, both in terms of

constraints and variables. It is not surprizing therefore that the computational ex-

periments confirm that even a state-of-the-art MIP software such as CPLEX is only

able to solve very small instances in reasonable time.

When generic solution methodologies do not give satisfactory results, it is nat-

ural to use methods that exploit properties of a specific problem. One such global

optimization approach for the MMRST is developed in Chapter V. It is based on

the existing algorithm by Sciskim and Palocsay [39] for this problem that addresses

a special case of k = 2 ratios, and can be extended to other FCOPs relatively easily.

The developed global optimization procedure shows consistently better performance

on denser and larger instances than the linear mixed 0–1 formulations. However,

in order to guarantee a near-optimal solution in reasonable time for large scale in-

stances and large number of ratios in the objective, this approach needs substantial
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improvement.

Relying on an empiric observation that an image Y ⊂ Rk of a convex hull X ⊂ Rn

of the feasible solutions gives a good approximation of a convex hull conv(Y ) ⊂

Rk of their images, we develop a generic algorithm that attempts to exploit good

lower bounds obtained from such approximation in order to solve FCOPs via branch-

and-bound. This approach is used in conjunction with the underestimators φ1−3

of the sum-of-ratios objective function that we develop in Chapter VI. The lower

bounds
¯
φ1−3 given by these underestimators are more expensive to compute than

the simplistic lower bound
¯
φ0 used by other authors, but typically improve upon

it significantly. Based on these findings we develop a technique for reduction of the

ranges of values that the individual ratios in the objective take at an optimal solution.

Computational experiments show that for k > 0 this technique reduces the search

space significantly compared to a simple techniques used in [15, 16] and [39]. However,

the overall performance of the global optimization method described in Algorithm 5,

which uses both new bounds and the suggested reduction technique, is discouraging:

its results on the MMRST instances show that it is clearly inferior to Algorithm 1

developed in Chapter V.

On the other hand, a good approximation of conv(Y ) given by Y can be used in

a different way. Since in the process of computing the approximation via Algorithm

2 we obtain a collection of feasible solutions, the approximation algorithm itself may

be used as a heuristic approach for solving FCOPs. Such approach certainly may not

guarantee that the problem will be solved to optimality, but since it yield the lower

bound on the objective values as well, the quality of a solution, once it is obtained,

is known immediately. For all generated instances this heuristic, in conjunction with

the search reduction technique, by far outperforms the developed global optimization

algorithms and the MIP models.
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Several research directions are evident from the results of the dissertation. It

is interesting to rigorously determine how well conv(Y ) is represented via Y , and

attempt assess the quality of such representation in different cases. A related direction

is to study the case k = 2 more closely in order to establish the properties of the

problem that make it so much easier to solve in the case k = 2. Also numerous

improvements can be made to Algorithm 5. For example, the fact that it uses the

bounds that are typically better than the bounds used in the branching process by

Algorithm 1 suggests that the branching strategy used by the latter algorithm is

superior. It is logical to adapt it for Algorithm 5.
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