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ABSTRACT

Term Structure Dynamics with Macroeconomic Factors. (December 2009)

Ha-Il Park, B.A., Yonsei University;

M.S., Korea Advanced Institute of Science and Technology

Chair of Advisory Committee: Dr. Hwagyun Kim

Affine term structure models (ATSMs) are known to have a trade-off in predicting

future Treasury yields and fitting the time-varying volatility of interest rates. First,

I empirically study the role of macroeconomic variables in simultaneously achieving

these two goals under affine models. To this end, I incorporate a liquidity demand

theory via a measure of the velocity of money into affine models. I find that this

considerably reduces the statistical tension between matching the first and second

moments of interest rates. In terms of forecasting yields, the models with the velocity

of money outperform among the ATSMs examined, including those with inflation

and real activity. My result is robust across maturities, forecasting horizons, risk

price specifications, and the number of latent factors. Next, I incorporate latent

macro factors and the spread factor between the short-term Treasury yield and the

federal funds rate into an affine term structure model by imposing cross-equation

restrictions from no-arbitrage using daily data. In doing so, I identify the high-

frequency monetary policy rule that describes the central bank’s reaction to expected

inflation and real activity at daily frequency. I find that my affine model with macro

factors and the spread factor shows better forecasting performance.
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CHAPTER I

INTRODUCTION

Affine term structure models (ATSMs) appeal to both practitioners and academic

researchers for tractability in econometric implementation and a sufficient degree of

freedom in specifying how bond market compensates investors for taking systematic

risk. Beginning with the pioneering studies by Vasicek (1977) and Cox, Ingersoll,

and Ross (1985), researchers extended ATSMs to explain several important aspects

of Treasury yields data.

Recently, Dai and Singleton (2000), Duffee (2002), and Duarte (2004) reported

that there exists a trade-off between improving forecast ability on future bond yields

and matching interest rate volatility in affine models. Since the market price of risk

setup can be modeled leaving the affine form of term structure intact as shown by

Duffie and Kan (1996), a sufficiently flexible setup for the market price of risk can be

one way to resolve these issues. Along this line, Duffee (2002) and Duarte (2004) use

alternative parameterizations of the market price of risk and report some success in

increasing the predictive power of ATSMs, but they still have difficulty in generating

the third fact unless they dispense with stochastic volatility.

In chapter II, I attempt to reduce this statistical tension by incorporating some

observable macroeconomic variables into ATSMs. Specifically, I use a measure of

liquidity demand, the velocity of money. For comparison, I also examine measures

of inflation and output gap which are now popular in macroeconomic term structure

studies. It is well known that inflation, output, and/or the velocity of money are

closely related to interest rates both empirically and theoretically. Obviously, the first

This dissertation follows the style of Econometrica.
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two variables are motivated from either the Fisherian theory or the recent monetary

policy rule literature, and the third variable is inferred by a typical liquidity demand

theory.

The influential work by Ang and Piazzesi (2003) shows that incorporating mon-

etary policy behaviors via inflation and output measure can help forecast bond yields

in an affine model with a conditionally homoscedastic setup. I emphasize the impor-

tance of macro factors in modeling term structure dynamics as well, but we depart

from their work in two directions. First, I explicitly model stochastic volatility to

tackle the estimation and prediction issues mentioned above. Second, I focus on liq-

uidity or money demand theory to impose an economic restriction to both bond yields

and key macroeconomic variables and compare my results with other affine models.

In this vein, I ask two research questions. First, do macroeconomic variables

help reduce the trade-off between matching the first and second moments of bond

yields? Second, which affine model, either in a latent or a (macro-latent) hybrid factor

structure, predicts future bond yields better? Regarding the first question, I find that

the statistical “tension” is considerably relaxed in my model. In addition, consistent

with this result, the affine model with the velocity of money predict future yields

better than all other ATSMs examined, even compared with the models including

inflation and real activity both in sample and out of sample.

In chapter III, I construct a tractable model at daily frequency with both the

typical latent factors and latent macro factors by imposing cross-equation restrictions

on yield movements from no-arbitrage while most term structure models incorporate

observable macroeconomic variables in monthly or quarterly frequency. In term struc-

ture models using low-frequency macro variables, it is hard to examine the role of

macro variables in explaining term structure dynamics in continuous time. Addition-

ally, I add the spread factor between the short-term Treasury yield and the federal
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funds rate into an affine term structure model to identify the high-frequency monetary

policy rule that describes the central bank’s reaction to expected inflation and real

activity at daily frequency. The benchmark and backward-looking high-frequency

policy rules are identified without difficulties. Although many other researchers place

Taylor rules incorporating inflation and the output gap in an affine model, those

macro variables are observable in monthly or quarterly frequency. In my model, dif-

ferent bond yields such as the real yield, nominal yield, and defaultable yield are used

and latent macro factors and the spread factor are extracted from yield relationships

by using cross-equation restrictions. Accordingly, I do not need to worry about the

discrepancy of data frequency between yields and macro variables. Thus, I do not

lose information available in matching high frequency yields data and low frequency

macro variables data.

When I assess my model in terms of out-of-sample forecasting, the term structure

model with macro factors and the spread factor shows better performance. Moreover,

I show that the spread between the 3-month Treasury yield and the federal funds rate

has strong predictive power for predicting excess bond returns and future changes in

yields from the results of two different regressions. Finally, I find that short-maturity

yields tend to rise and long-maturity yields tend to fall when the yield spreads widen,

which is inconsistent with the expectations hypothesis.
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CHAPTER II

YIELD FORECASTS AND STOCHASTIC VOLATILITY IN AFFINE MODELS

WITH MACRO FACTORS

A. Introduction

Affine term structure models (ATSMs) appeal to both practitioners and academic

researchers for tractability in econometric implementation and a sufficient degree of

freedom in specifying how bond market compensates investors for taking systematic

risk. Beginning with the pioneering studies by Vasicek (1977) and Cox, Ingersoll,

and Ross (1985), researchers extended ATSMs to explain several important aspects

of Treasury yields data. Some of them include:

∙ Treasury yields are persistent and move similarly over time. Most of yield

variations are well explained by three to five factors.

∙ Treasury yields have time-varying volatilities which are high (low) when the

levels of yields are high (low).

∙ Expected excess returns vary over time and the slope of yield curve has very

good predictive power for expected excess returns.

Litterman and Scheinkman (1991) conduct an exploratory factor analysis of

yields to show the first stylized fact. In response to this empirical finding, most

affine models are now estimated in their multivariate forms. The strong evidence

of time-varying volatility and volatility clustering is reported in various econometric

works on the models of conditional heteroscedasticity. Term structure models incor-

porating stochastic volatility such as Cox, Ingersoll, and Ross (1985) can generate

this feature. Lastly, Fama and Bliss (1987) and Campbell and Shiller (1991) are the
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first papers establishing the third stylized fact; their results imply that the expecta-

tions hypothesis of interest rates is rejected unless a relevant risk adjustment is made.

Putting together, a multi-factor term structure model with time-varying market price

of risk and stochastic volatility appears to explain all the stylized facts.

Recently, Dai and Singleton (2000), Duffee (2002), and Duarte (2004) reported

that there exists a trade-off between improving forecast ability on future bond yields

and matching interest rate volatility in affine models. Related, the models with

stochastic volatility fail to account for the third stylized fact. Since the market price

of risk setup can be modelled leaving the affine form of term structure intact as

shown by Duffie and Kan (1996), a sufficiently flexible setup for the market price of

risk can be one way to resolve these issues. Along this line, Duffee (2002) and Duarte

(2004) use alternative parameterizations of the market price of risk and report some

success in increasing the predictive power of ATSMs, but they still have difficulty in

generating the third fact unless they dispense with stochastic volatility.

I attempt to reduce this statistical tension by incorporating some observable

macroeconomic variables into ATSMs. Specifically, I use a measure of liquidity de-

mand, the velocity of money. For comparison, I also examine measures of inflation

and output gap which are now popular in macroeconomic term structure studies. It

is well known that inflation, output, and/or the velocity of money are closely related

to interest rates both empirically and theoretically. Obviously, the first two variables

are motivated from either the Fisherian theory or the recent monetary policy rule

literature, and the third variable is inferred by a typical liquidity demand theory.

The influential work by Ang and Piazzesi (2003) shows that incorporating mon-

etary policy behaviors via inflation and output measure can help forecast bond yields

in an affine model with a conditionally homoscedastic setup. I emphasize the impor-

tance of macro factors in modelling term structure dynamics as well, but I depart from
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their work in two directions. First, I explicitly model stochastic volatility to tackle

the estimation and prediction issues mentioned above. Second, I focus on liquidity

or money demand theory to impose an economic restriction to both bond yields and

key macroeconomic variables and compare my results with other affine models. As

Duffee (2002) points out, “[i]mposing these (economic) restrictions should allow us

to explain more of the information in the current term structure, and thus forecasts”

Furthermore, given that alternative economic restrictions are available, I believe that

it is important to compare those in light of forecasting term structure dynamics. In

so doing, it is also critical to verify if the models do not challenge the stylized facts

on the conditional moments of bond yields.

In this vein, I ask two research questions. First, do macroeconomic variables

help reduce the trade-off between matching the first and second moments of bond

yields? Second, which affine model, either in a latent or a (macro-latent) hybrid

factor structure, predicts future bond yields better? Regarding the first question, I

find that the affine models with the velocity of money and stochastic volatility can

explain all three stylized facts, while the purely latent factor models cannot. That is,

the statistical “tension” is considerably relaxed in my model. In addition, consistent

with this result, the affine model with the velocity of money predict future yields

better than all other ATSMs examined, even compared with the models including

inflation and real activity both in sample and out of sample. This finding is robust

across different maturities, forecasting horizons, price of risk specifications, and the

number of latent factors.

Chapter II is organized as follows. The next section shows some figures to mo-

tivate my study. Then I present my affine term structure model with latent and

macroeconomic variables. Then, I explain my estimation method, followed by pre-

senting estimation results. In so doing, I spell out econometric specifications. Then
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I compare in-sample and out-of-sample forecasts, and check whether or not the im-

provement of forecasting performance helps to resolve the trade-off mentioned above.

After some further discussions on my results, I conclude.

B. Interest Rates and Macroeconomic Variables

1. Data Description

My data set consists of two groups, bond yield data and macroeconomic data. Regard-

ing bond yields, I use monthly yield series of the U.S. Treasuries with the maturities

of 1, 3, 6, 12, 36 and 60 months, from June 1964 through December 2006, taken

from the Fama-Bliss data file in the Center for Research in Security Prices (CRSP)

data set. All bond yields are continuously compounded. Figure 2-1 plots monthly

yields of maturity 1 month, 12 months and 60 months and Table 2-1 shows summary

statistics for bond yields data. As stated in the introduction, the Treasury yields of

different maturities move persistently and similarly. There exists a common variation

of yields which is often called the level factor, followed by fluctuation related to the

difference between long-term and short-term yields (the slope). In addition, one can

notice that the differences between long-term and mid-term and between mid-term

and short-term yields vary in a heterogeneous fashion over time. This is so called the

curvature or the twist factor according to Litterman and Scheinkman (1991).

Figure 2-2 displays the time-varying volatility of the Treasury yields. The upper

panel displays the band-pass filtered part of the Treasury yields with the maturities

of 1, 12, and 60 months and the lower panel computes the realized volatility of those

yields. It is clear that high volatilities of yields are matched with high levels of yields.

Three macro variables are used in this study. Those are the velocity of money, in-

flation, and output growth. All of the data come from the St. Louis Fed (FRED). For
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Fig. 2-1. US Interest Rates

Fig. 2-2. Time Varying Volatility of Treasury Yields
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the velocity of money, I use the money definition of M2 minus. This money aggregate

is obtained from M2 subtracting small time deposits. Thus, M2 minus entails cur-

rency, demand/checkable deposits, savings accounts, money market deposit accounts

(MMDA), and retail money market fund (RMMF). Most of the assets do pay some

interest for holding, but they are close to zero. More importantly, these assets allow

check writing with no or very small transactions fee, and therefore can be regarded

as good substitutes for cash. Emergence of these monetary assets is mainly due to

financial innovations and deregulation since the late 1960s. Thus, without considering

this, measuring money demand using traditional definitions such as monetary base

or M1 will be misleading in light of capturing transactions motive.1 I calculate the

inflation measure using log(Pt/Pt−12) where Pt is the consumer price index (CPI).

The output growth is calculated as annual growth of industrial production.2

Figure 2-3 shows the three macro variables representing the velocity of money,

inflation, and output growth and Table 2-1 presents summary statistics for the data.

In Figure 2-3, I also mark recession periods recorded by the National Bureau of

Economic Research (NBER) as shaded areas to indicate that macroeconomic variables

have considerable co-movements around recession periods. In the next section, I

explain economic theories that I will use to analyze affine term structure models.

1Instead of using a broader concept of money, one can alternatively use a more
narrow definition of money such as M1 with an additional term or a function de-
scribing the financial innovations. Since I focus on liquidity demand side rather than
money supply side, I simply adopted the former method.

2I also experimented using other macroeconomic variables reflecting real activities.
They show very little differences.
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Fig. 2-3. Macroeconomic Variables and Business Cycles

Table 2-1. Summary Statistic of Data

1 mth 3 mth 6 mth 12 mth 36 mth 60 mth velo inf output

Mean 5.295 5.835 6.086 6.333 6.724 6.940 4.037 4.547 0.017
Std 2.483 2.714 2.776 2.758 2.582 2.481 0.675 2.898 3.111
Skew 1.122 1.015 0.935 0.804 0.846 0.888 0.132 1.484 -0.578
Kurt 5.497 4.832 4.487 4.067 3.808 3.598 3.065 4.696 4.742
Auto(1) 0.916 0.975 0.981 0.980 0.984 0.985 0.993 0.991 0.946
Auto(12) 0.703 0.758 0.775 0.790 0.820 0.835 0.826 0.746 -0.304

Correlation
1 mth 3 mth 6 mth 12 mth 36 mth 60 mth velo inf output

1 mth 1.000
3 mth 0.954 1.000
6 mth 0.947 0.994 1.000
12 mth 0.933 0.984 0.994 1.000
36 mth 0.880 0.941 0.956 0.977 1.000
60 mth 0.841 0.906 0.923 0.949 0.993 1.000
velocity 0.549 0.594 0.591 0.591 0.611 0.613 1.000
inflation 0.655 0.686 0.696 0.672 0.618 0.591 0.408 1.000
output gap 0.051 0.051 0.053 0.056 0.030 0.023 0.003 -0.133 1.000
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2. Liquidity Demand and Monetary Policy

A recent trend in studying term structure dynamics is to include inflation and real ac-

tivity variables as observable macro factors. This can be understood as an attempt to

incorporate monetary policy behavior into term structure models. According to Tay-

lor (1993), rule-like behaviors appear to approximate actual monetary policy changes.

Especially, Taylor suggests the following form

(2.1) rt = �0 + �t + ��(�t − �∗t ) + �ggt,

where rt is the short-term interest rate that the central bank can control, �t is a

measure of inflation, and gt is a measure of output gap. A caveat related to the

monetary policy literature is that interpretations of any results based on this approach

hinge upon how legitimate this type of linear policy rules is in light of describing actual

policy behaviors. If this rule appeals mainly to the normative side of monetary policy,

this may not be suitable for explaining and forecasting yield dynamics. In addition,

Fisher hypothesis tells that nominal rate is approximately the sum of (expected)

inflation and real interest rate. Thus, the identification of a policy rule is somewhat

ambiguous. Another issue with this policy rule is that expected variables, not the

current ones are the relevant target variables. Of course, there are several versions

of forward-looking rules available in the literature. However, since expected inflation

and expected output are not observable, using those forward looking rules to study

the term structure of interest rates is not a simple task. In this sense, estimated

parameters such as �� and �g using current variables may entail information about

conditional expectation on future economy as well as target behaviors of the central

bank. This can cloud the issue of monetary policy.

Nevertheless, the main advantage of this approach is that I can see how yields are
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Fig. 2-4. Treasury Bill (3 Months) and Taylor Rule

linked to some of the fundamental macroeconomic variables such as output growth

and inflation. In Figure 2-4 I plot the policy rule suggested by Taylor (1993) in

comparison with Treasury yield of three months maturity. The policy rule seems to

delineate the long-term trend of the bond yield well, though it is clearly more volatile

than the movement of actual yields.

An alternative way to impose a restriction on macro variables and interest rates

is using a money demand relationship

(2.2)
Mt

ptyt
= L(rt, zt),

where M/p is the real money balances, yt is the output, and zt is a vector of other

variables affecting the money demand. If properly defined, monetary variables can

reflect demand for transactions services. Specifically, transactions services can be

well represented by monetary assets providing low and stable interest rates close to

zero. For this purpose, I use M2 minus small time deposits, so called ‘M2 minus’ to
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Fig. 2-5. Treasury Bill (3 Months) and Velocity of Money (M2 Minus)

measure the liquidity demand of an economy. Figure 2-5 indicates that the velocity

of money (ptyy/Mt) and the short-term interest rate move closely together over the

post-war period. As long as the opportunity cost of holding these liquid assets varies

closely with policy rate changes, I expect monetary variables to be inversely related to

monetary policy changes. That is, under a stable money demand relationship, changes

in the money demand will have close link to monetary policy behaviors as well. In

this sense, including monetary variables in estimating term structure dynamics can

be regarded as an attempt to account for yield movements resulting from changes in

monetary policy behaviors via the lens of liquidity demand.

Both relationships offer strong theoretical links between interest rates and macroe-

conomic variables. Therefore, it is worthwhile to examine these two alternative

macroeconomic restrictions in terms of explaining the stylized facts of bond yields.

Especially, I are interested in the role of macro factors in resolving the statistical trade-

off between enhancing forecasting performance and fitting the time-varying volatility
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of bond yields.

C. Model

1. A Generic Affine Setup with Macro Variables

I present an affine term structure model with latent factors and observable macroeco-

nomic variables. I denote a state variable vector by Xt = (x1t, ⋅ ⋅ ⋅ , xkt, xk+1t, . . . , xnt)
′,

where the first k factors are unobservable and the remaining (n−k) factors are macroe-

conomic variables. Suppose that Xt follows an Ito process

(2.3) dXt = K[Θ−Xt]dt+
√
StdWt,

where K is an n × n matrix, Θ is an n × 1 vector. St is an n × n diagonal matrix

and the ith diagonal element is given as �i + �′iXt, where �i is a constant and �i is

an n× 1 vector. Wt is an n× 1 vector of independent Brownian motions under risk

natural measure. Sans arbitrage opportunities, the price at t of a zero coupon bond

maturing at � denoted as Pt(�) is expressed under the risk-neutral measure Q as

(2.4) Pt(�) = EQt
[
e−

∫ �
t rudu

]
,

where rt is the instantaneous short-term interest rate process. An affine term structure

model implies that rt is an affine function of Xt and the evolution of Xt under Q

measure follows another affine diffusion,

(2.5) dXt = K̃[Θ̃−Xt]dt+
√
StdW̃t,

where W̃t is an n× 1 vector of independent Brownian motions under the risk neutral

Q measure. Changes between two measures are possible via Girsanov transformation

under Novikov conditions. In this way, I can define a market price of risk Λt using
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the relationship dWt = dW̃t − Λtdt. While maintaining the affine diffusion property,

I use the market price of risk specification proposed by Duffee (2002)

(2.6) Λt =
√
St�1 + Zt�2Xt

where �1 is an n× 1 vector, �2 is an n× n matrix, and Zt is a diagonal n× n matrix

with

Zt(ii) =

⎧⎨⎩
1√

�i+�′
iXt

0

if inf(�i + �′iXt) > 0

otherwise
.

This setup is more flexible than the traditional one with �2 being null matrix and

thus can better capture the time-variability of term premia. Dai and Singleton (2000)

and Duffee (2002) provide an admissible class of this model by showing sufficient

conditions for the existence of Xt for alternative specifications which restrict the

parameter matrices and vectors. Under some additional technical conditions, Duffie

and Kan (1996) show that the bond prices are exponentially affine as

Pt(�) = eA(�)−B(�)′Xt ,(2.7)

rt =
n∑
i=1

xit,(2.8)

where A(�) and B(�) satisfy the ordinary differential equation (ODE) system of

∂B(�)

∂�
= 1n×1 − K̃ ′B(�)− 1

2

n∑
i=1

[B(�)]2i �i(2.9)

∂A(�)

∂�
= −Θ̃′K̃ ′B(�)− 1

2

n∑
i=1

[B(�)]2i �i.(2.10)

This can be easily solved through a numerical method using the initial condition of

A(0) = 0 and B(0) = 0n×1.
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D. Estimation Method

I use the Kalman filter approach to estimate the term structure models I proposed in

the previous section. This method in term structure estimation was used in Pennacchi

(1991), Lund (1997), and Duan and Simonato (1999).3 In non-Gaussian settings

where the exact form of conditional density for the state vector is not known, an

approximate linear filtering can be used and Monte Carlo results have shown that this

method performs well (Duffee and Stanton (2004)). Implementation of this filtering

relies on the availability of the first two conditional moments of the state variables

and hence works well with most of the affine term structure models. In the below, I

explain my estimation procedure more in detail.

The affine term structure model is re-casted in a state space setup as the mea-

surement equations and transition equations

(2.11)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y�1t

y�2t

y�3t

y�4t
...

y
�
N
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1/�1)A(�1)

−(1/�2)A(�2)

−(1/�3)A(�3)

−(1/�4)A(�4)

...

−(1/�
N

)A(�
N

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1/�1)B(�1)

(1/�2)B(�2)

(1/�3)B(�3)

(1/�4)B(�4)

...

(1/�
N

)B(�
N

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Xt +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

"t,1

"t,2

"t,3

"t,4
...

"t,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(2.12) dxit = �i(�i − xit)dt+
√
�i + �ixitdWit, i = 1, 2, ⋅ ⋅ ⋅ , n.

3There is another approach developed by Chen and Scott (1993), which basically
use the same idea of transforming yields into latent factors. In comparision, the
Kalman approach allows measurement errors for all the yields observed, while the
former method assumes that k yields are observed without an error for a k-factor
model.



17

In order to use the discrete-time state space model technique, I write down the tran-

sition equation as

(2.13) xit = ai( ,Δ) + bi( ,Δ)xit−Δ + �t �t ∼ N(0,Φi(xit−Δ ; ,Δ)),

where I know that

E(xit∣xit−Δ) = ai( ,Δ) + bi( ,Δ)xit−Δ,(2.14)

V ar(xit∣xit−Δ) = Φi(xit−Δ; ,Δ).(2.15)

For affine diffusion models, I can compute the closed form solutions for E(xit∣xit−Δ)

and V ar(xit∣xit−Δ) as affine functions according to Fisher and Gilles (1996) and Duan

and Simonato (1999). For my case, I compute those as

E(xit∣xit−Δ) = (1− e−�iΔ)�i + e−�iΔxit−Δ

(2.16)

V ar(xit∣xit−Δ) =
�i
2�i

(1− e−2�iΔ) + �i
�i
2�i

(1− e−2�iΔ) + (xit−Δ − �i)
�i
�i

(e−�iΔ − e−2�iΔ)

(2.17)

This method, however, cannot be used in case of more flexible market price of setup

such as Duarte (2004) because the drift of the state vector process under physical

measure may be non-linear. Although my model is essentially affine as in Duffee

(2002) such that the above method is still applicable, I suggest another method

using Milstein approximation of diffusion process. The basic idea of the Milstein

approximation can be explained as follows. Given the discrete nature of available

data, I oftentimes need to discretize a diffusion process for estimation. The simplest

method would be Euler scheme. Specifically, suppose I have

(2.18) dXt = �(Xt)dt+ �(Xt)dWt
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Then, I can approximate this process as

(2.19) Xt −Xt−Δ ≈ �(Xt−Δ)Δ + �(Xt−Δ)(Wt −Wt−Δ) +O(Δ)

for a small time interval Δ. Then I have the first two conditional moments as

E(Xt∣Xt−Δ) = �(Xt−Δ)Δ +Xt−Δ(2.20)

V ar(Xt∣Xt−Δ) = E([Xt −Xt−Δ − �(Xt−Δ)Δ]2) = �2(Xt−Δ)Δ(2.21)

The Euler approximation may be reasonable if I have data sampled at a sufficiently

high frequency, but otherwise it is biased. Instead, I can use a Milstein approximation

in which the diffusion process is approximated by

(2.22)

Xt−Xt−Δ ≈ �(Xt−Δ)Δ+�(Xt−Δ)(Wt−Wt−Δ)+
1

2
�
∂�

∂X
(Xt−Δ)

[
(Wt −Wt−Δ)2 −Δ

]
+o(Δ)

In this case, I can obtain the first two conditional moments as4

E(Xt∣Xt−Δ) = �(Xt−Δ)Δ +Xt−Δ(2.23)

V ar(Xt∣Xt−Δ) = �2(Xt−Δ)Δ +
1

2
�2

(
∂�

∂X
(Xt−Δ)

)2

Δ2(2.24)

Using these I can calculate the conditional mean and variance of state variables

for my model as

E(xit∣xit−Δ) = �i�iΔ + (1− �iΔ)xit−Δ(2.25)

V ar(xit∣xit−Δ) = (�i + �ixit−Δ)Δ +
1

8
�2
i Δ

2(2.26)

This implies that the transition equation over a discrete time interval can be written

4Derivations are in Appendix D.
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as

(2.27) xit = ai( ,Δ) + bi( ,Δ)xit−Δ + �t �t ∼ N(0,Φi(xit−Δ; ,Δ)),

where

ai( ,Δ) = �i�iΔ(2.28)

bi( ,Δ) = 1− �iΔ(2.29)

Φi(xit; ,Δ) = (�i + �ixit)Δ +
1

8
�2
i Δ

2(2.30)

Given the linearity of ai( ,Δ)+bi( ,Δ)xit−Δ and Φi(xit ; ,Δ), I can use the Kalman

filter recursion to obtain a prediction error decomposition in expressing and evaluating

the log of the quasi-likelihood function recursively.

For notational simplicity, this model in the state space form can be expressed as

follows:

Yt = A+BXt + "t(2.31)

Xt = a+ bXt−1 + �t(2.32)

E("t) = 0, E(�t) = 0, E("t"
′
t) = R, E(�t�

′
t) = Qt(2.33)

Let X̂ and Ŷ be the estimates of the n state variables and bond yields with N different

maturities. In addition, let Pt and Vt be the covariance matrices of the estimation

errors respectively. Then, given X̂t−1 and Pt−1, I can compute the one-period-ahead

prediction using X̂t/t−1 = a+ bX̂t−1/t−1 and Ŷt/t−1 = A+BX̂t/t−1 and the one-period-

ahead covariance matrices, Pt/t−1 = bPt−1/t−1b
′ + Qt and Vt/t−1 = BPt/t−1B

′ + R.

When Yt is observable, I update the prediction, X̂t/t = X̂t/t−1 + Pt/t−1B
′V −1
t/t−1(Yt −

Ŷt/t−1) and the covariance matrix, Pt/t = Pt/t−1 − Pt/t−1B
′V −1
t/t−1BPt/t−1. With et =
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Yt − Ŷt/t−1, the log of the quasi-likelihood function is given by

(2.34) logL(Y ;  ) =
T∑
t=1

−1

2
[N log(2�) + log(detVt/t−1) + e′tV

−1
t/t−1et]

The quasi-likelihood function can be evaluated through the usual Kalman filtering

recursive procedure. The estimated parameters are those which maximize the log of

the quasi-likelihood function.

E. Empirical Results

1. Estimated Models

Since the main objective of the paper is to evaluate empirical performance of affine

term structure model with the velocity of money, I will estimate various versions of

the affine model for comparison. Broadly, I have three groups of the model: i) yield

factor models, ii) hybrid factor models including the velocity of money, and iii) hybrid

factor models with inflation and output growth. Within each group, I have different

model specifications depending on the number of factors, the number of independent

volatility drivers, and the setup for market price of risk.

Regarding the number of latent factors, I have two to three unobservable fac-

tors with one to two macro factors. The biggest model I estimate is a five-factor

version which includes three latent factors and two macro factors. Another crite-

rion for classifying the estimated models is the number of independent state variables

determining the variance-covariance of the state vector Xt. As mentioned in the intro-

duction, there exists a tension between matching conditional mean and conditional

volatility of yields in that smaller number of instantaneous volatility drivers enhances

the forecast ability of the model. Thus, I examine whether or not the inclusion of

macroeconomic variables, especially the velocity of money helps relax this tension.
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At the same time, the models need to be checked if they are able to explain the term

premium variability.

For expositional purposes, I label the estimated models using notation similar to

Dai and Singleton (2000). AM(n, j; I) refers to an affine model with the total number

n of factors, j macroeconomic variables, M state variables affecting the instantaneous

volatility, and the market price of risk specification of Duffee (2002). The last ele-

ment I in the model AM(n, j, I) displays the macroeconomic variables included in the

estimated model. This entails the velocity of money (v), inflation (�), and output

growth (g). To distinguish the models in terms of risk price specifications, I also use

the notation CAM(n, j, I) referring to a completely affine model which employs the

risk price specification à la Dai-Singleton (i.e. �2 = 0). AM(M, 0) models are basically

multi-factor Cox-Ingersoll-Ross model with Duffee’s price of risk setup. Specifically I

estimate the following cases:

∙ Three-factor latent model: A1(3, 0), CA1(3, 0), A3(3, 0)

∙ Three-factor hybrid model: A1(3, 1; {v}), CA1(3, 1; {v}), A3(3, 1; {v})

∙ Four-factor hybrid model: A1(4, 1; {v}), CA1(4, 1; {v}), A2(4, 1; {v}), CA2(4, 1; {v}),

A4(4, 1; {v}), A4(4, 2; {�, g}), A4(4, 2; {v, g})

∙ Five-factor hybrid model: A5(5, 2; {�, g}), A5(5, 2; {v, g})

I impose restrictions (mostly zero restrictions) on the parameters of the models

above. Some of those come from the representation of the affine model as in Dai

and Singleton (2000), Duffee (2002), Ang and Piazzesi (2003), Duarte (2004), and

Aı̈t-Sahalia and Kimmel (2008). In addition, I make additional assumptions on the

parameters to make the model parsimonious. Four-factor hybrid versions are regarded

as my main model and I compare those with the three-factor latent models AM(3, 0)
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and five-factor hybrid models AM(5, 2; {�, g}) which are popular choices among the

affine models.

2. Parameter Estimates

This section reports parameter estimates of the several affine models I estimated.

Table A-1 ∼ Table A-3 in Appendix A display the estimates of the selected three-

, four-, and five-factor models together with standard errors given in parentheses.

Table A-1 entails two latent models: A1(3, 0), A3(3, 0), and two macro hybrid models:

A1(3, 1; {v}), A3(3, 1; {v}). Most parameters in all cases are estimated reliably. A

major difference between the latent models and the macro hybrid models in case of

three-factor model is that the latter has two persistent parameters (�1 and �v), while

the latent, three-factor models have one persistent factor (�1). I follow Duffee (2002)

for zero restrictions on the market price of risk in case of the essentially affine setups

and other restrictions come from Dai and Singleton (2000). Four and five factor

models are estimated in an identical manner except the number of macro factors I

incorporated. Table A-2 shows the estimation results from the four-factor models.

For conserving space, I do not provide all the results. Two of those have three latent

factors and one macro factor (money velocity), while the third one displayed in the

table has two macro factors, money velocity and output growth.5 Similar to the

three-factor case, four-factor models also have two relatively persistent factors, one

of which is the velocity of money. For five-factor models, I report only one case with

inflation and output gap as macro factors. Regardless of the number of factors, macro

factors seem to play an important role in capturing the time-variability of both bond

risk premia (�1 and �2) and conditional volatility of yields (�). In the next section, I

5I do not include the result with inflation and the output gap in case of four factor
model due to its relative weak performance.
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verify if this is indeed the case. In addition, I evaluate the accuracy of yield forecasts

these models generate both in and out of sample.

3. Yield Forecast, Term Premium, and Stochastic Volatility

My data set covers the periods between June 1964 and December 2006. To produce

out-of-sample forecasts, I estimate my models using the in-sample period of June

1964 through December 2003. Then, I forecast future bond yields during the out-of-

sample period of January 2004 through December 2006. I compute the root mean

squared errors (RMSE) from both the in-sample and the out-of-sample forecasts and

display in Table 2-2 ∼ Table 2-6 respectively. Lower RMSE values (%) indicate better

forecasts. I report the results for bonds with maturities of 1, 3, 6 months, 1 year, 3

years, and 5 years. For out-of-sample forecast horizons, 1, 3, 6, and 12 months are

used.

In Table 2-2 ∼ Table 2-6, the most significant result would be that the models

showing the lowest RMSE for each maturity are uniformly the ones with the velocity

of money. Although there is not a single specification dominating others, most of

four-factor models perform very well. Still, the forecasts from the essentially affine

model (A1(3, 0)) are comparable to those of the four-factor hybrid models. A notable

exception is the forecast horizon of twelve months for which a three factor model with

the velocity of money (A3(3, 1; {v})) shows the best performance. Its error reduction

over a three-factor essentially affine model (A1(3, 0)) is up to 47 basis point! These

results are maintained even if I use a different accuracy measure such as mean absolute

deviation (MAD). Macro models with inflation and output gap also show decent, often

better performance compared to latent factor models. But the models with the money

velocity still outperform in all horizons. In addition, the results show that the number

of factors is not a major ingredient boosting up forecast ability.
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Table 2-2. In-sample Fit Performance Using RMSE

Model ∖ Maturity 1 month 3 months 6 months 12 months 36 months 60 months

A1(3, 0) 0.6386 0.1682 0.1931 0.1159 0.2150 0.0517
CA1(3, 0) 0.5732 0.1773 0.1749 0.1677 0.2057 0.0961
A3(3, 0) 0.7016 0.1569 0.2164 0.1282 0.2039 0.2321
A1(3, 1; {v}) 0.7246 0.2491 0.2532 0.1731 0.2084 0.2042
CA1(3, 1; {v}) 0.7612 0.2949 0.2588 0.2228 0.0827 0.1820
A3(3, 1; {v}) 0.8011 0.2388 0.2428 0.2076 0.1225 0.1770
A1(4, 1; {v}) 0.6015 0.1707 0.1762 0.1366 0.1665 0.1360
CA1(4, 1; {v}) 0.6620 0.1332 0.1722 0.0853 0.1095 0.1578
A2(4, 1; {v}) 0.5455 0.3063 0.1661 0.0751 0.1444 0.0135
CA2(4, 1; {v}) 0.4801 0.3316 0.1703 0.1053 0.1421 0.0268
A4(4, 1; {v}) 0.7087 0.1403 0.1863 0.0643 0.1283 0.0235
A4(4, 2; {�, g}) 0.7841 0.2987 0.2588 0.1978 0.2303 0.2550
A4(4, 2; {v, g}) 0.8358 0.2564 0.2464 0.2148 0.1714 0.2327
A5(5, 2; {�, g}) 0.7810 0.1358 0.2062 0.1193 0.1497 0.1371
A5(5, 2; {v, g}) 0.7352 0.1385 0.1930 0.1121 0.1293 0.0250

Ang and Piazzesi (2003) find that including observable variables especially mea-

sures of inflation and real activity helps forecasting in an affine model with conditional

homoscedasticity. Specifically, they report that their hybrid five-factor models can

beat random walk and unconstrained vector auto regression models. My results show

that macro hybrid models with the velocity of money and stochastic volatility pre-

dict future yields better than all the other models I considered. Given my focus on

matching the conditional mean and the conditional volatilities of yields, I would be

interested in further investigating if the macro affine models with stochastic volatility

are able to generate yield forecasts consistent with the third stylized fact.

Toward this end, I run the following regressions echoing Fama and Bliss (1987)

and Campbell and Shiller (1991),

(2.35) y�t+k − Et[y�t+k] = 
0 + 
1 × term spread + error,

where Et[y
�
t+k] is computed as a forecast out of sample, using a term structure model
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Table 2-3. Out-of-sample Forecasts Performance Using RMSE (Forecast Horizon: 1

month)

Model∖Maturity (months) 1 3 6 12 36 60

A1(3, 0) 0.3638 0.1634 0.1879 0.1712 0.2620 0.2486
CA1(3, 0) 0.3684 0.1989 0.2184 0.1795 0.2566 0.2561
A3(3, 0) 0.4965 0.3027 0.2566 0.2606 0.2589 0.2633
A1(3, 1; {v}) 0.3601 0.1641 0.2503 0.2685 0.2468 0.2803
CA1(3, 1; {v}) 0.3755 0.1680 0.2799 0.3314 0.2523 0.2857
A3(3, 1; {v}) 0.4374 0.2020 0.1820 0.2372 0.2562 0.3032
A1(4, 1; {v}) 0.3641 0.1571 0.1530 0.1689 0.2550 0.2516
CA1(4, 1; {v}) 0.3659 0.1690 0.1759 0.1856 0.2690 0.2555
A2(4, 1; {v}) 0.4006 0.1483 0.1540 0.1801 0.2353 0.2496
CA2(4, 1; {v}) 0.3607 0.1534 0.1628 0.1716 0.2559 0.2426
A4(4, 1; {v}) 0.4211 0.2096 0.1412 0.1692 0.2510 0.2444
A4(4, 2; {�, g}) 0.4802 0.2427 0.2316 0.2598 0.2574 0.2808
A4(4, 2; {v, g}) 0.5096 0.2711 0.2460 0.2859 0.3046 0.3224
A5(5, 2; {�, g}) 0.5281 0.3052 0.2157 0.1995 0.2545 0.2676
A5(5, 2; {v, g}) 0.4766 0.2774 0.2193 0.1989 0.2469 0.2426

Table 2-4. Out-of-sample Forecasts Performance Using RMSE (Forecast Horizon: 3

months)

Model∖Maturity (months) 1 3 6 12 36 60

A1(3, 0) 0.3736 0.2468 0.3291 0.3358 0.4068 0.4236
CA1(3, 0) 0.4656 0.3808 0.4425 0.3887 0.4058 0.4354
A3(3, 0) 0.8463 0.6559 0.5326 0.4900 0.4318 0.4106
A1(3, 1; {v}) 0.4055 0.3647 0.4716 0.4798 0.4289 0.4338
CA1(3, 1; {v}) 0.4466 0.4418 0.5652 0.5752 0.4441 0.4299
A3(3, 1; {v}) 0.5239 0.3379 0.2941 0.3444 0.3836 0.4160
A1(4, 1; {v}) 0.3691 0.2299 0.3156 0.3566 0.4307 0.4204
CA1(4, 1; {v}) 0.4128 0.3235 0.4144 0.4385 0.4707 0.4255
A2(4, 1; {v}) 0.3636 0.2386 0.3251 0.3652 0.4174 0.4112
CA2(4, 1; {v}) 0.3936 0.2843 0.3621 0.3805 0.4336 0.4093
A4(4, 1; {v}) 0.5666 0.3701 0.2714 0.3103 0.4124 0.4081
A4(4, 2; {�, g}) 0.6241 0.5165 0.4884 0.5184 0.5534 0.5520
A4(4, 2; {v, g}) 0.6280 0.4554 0.4207 0.4250 0.3867 0.3925
A5(5, 2; {�, g}) 0.8054 0.6400 0.5084 0.4951 0.5602 0.5630
A5(5, 2; {v, g}) 0.7038 0.5068 0.3967 0.3606 0.4122 0.4067
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Table 2-5. Out-of-sample Forecasts Performance Using RMSE (Forecast Horizon: 6

months)

Model∖Maturity (months) 1 3 6 12 36 60

A1(3, 0) 0.4999 0.4246 0.4997 0.4715 0.4475 0.4850
CA1(3, 0) 0.7171 0.6819 0.7221 0.6091 0.4747 0.5081
A3(3, 0) 1.1567 0.8873 0.6920 0.5969 0.4407 0.3834
A1(3, 1; {v}) 0.7160 0.6774 0.7623 0.7145 0.4793 0.4133
CA1(3, 1; {v}) 0.8552 0.8397 0.9233 0.8581 0.5359 0.4200
A3(3, 1; {v}) 0.6904 0.4494 0.3548 0.3827 0.3501 0.3551
A1(4, 1; {v}) 0.5208 0.4657 0.5655 0.5692 0.5054 0.4562
CA1(4, 1; {v}) 0.7222 0.7139 0.8134 0.7844 0.6113 0.4737
A2(4, 1; {v}) 0.4844 0.4136 0.5140 0.5274 0.4876 0.4398
CA2(4, 1; {v}) 0.6234 0.5929 0.6773 0.6414 0.5234 0.4401
A4(4, 1; {v}) 0.7043 0.4512 0.3259 0.3638 0.4410 0.4298
A4(4, 2; {�, g}) 0.7450 0.5837 0.5694 0.5892 0.5465 0.5254
A4(4, 2; {v, g}) 0.7168 0.5188 0.5089 0.5303 0.4138 0.3764
A5(5, 2; {�, g}) 0.9205 0.6852 0.5389 0.5285 0.5621 0.5695
A5(5, 2; {v, g}) 0.6947 0.4424 0.3825 0.4160 0.4544 0.4249

Table 2-6. Out-of-sample Forecasts Performance Using RMSE (Forecast Horizon: 12

months)

Model∖Maturity (months) 1 3 6 12 36 60

A1(3, 0) 0.8184 0.8123 0.9039 0.8590 0.7095 0.7508
CA1(3, 0) 1.2498 1.2204 1.2537 1.1114 0.8055 0.7991
A3(3, 0) 1.0623 0.8269 0.6700 0.6081 0.5470 0.4812
A1(3, 1; {v}) 1.2215 1.2481 1.3248 1.2137 0.7659 0.5755
CA1(3, 1; {v}) 1.4867 1.5035 1.5609 1.4175 0.8744 0.5955
A3(3, 1; {v}) 0.6138 0.4339 0.4346 0.4925 0.4641 0.3996
A1(4, 1; {v}) 1.0169 1.0484 1.1519 1.0971 0.7792 0.6315
CA1(4, 1; {v}) 1.5392 1.5626 1.6341 1.5170 1.0032 0.6926
A2(4, 1; {v}) 0.8966 0.9214 1.0407 1.0103 0.7575 0.6197
CA2(4, 1; {v}) 1.2673 1.2696 1.3373 1.2309 0.8271 0.6140
A4(4, 1; {v}) 0.6418 0.4891 0.5200 0.5897 0.5748 0.5161
A4(4, 2; {�, g}) 0.5810 0.5504 0.6473 0.6648 0.5712 0.5131
A4(4, 2; {v, g}) 0.6270 0.6024 0.6886 0.7008 0.4905 0.3802
A5(5, 2; {�, g}) 0.7276 0.5526 0.4937 0.5194 0.5418 0.5555
A5(5, 2; {v, g}) 0.5627 0.5483 0.6960 0.7616 0.6326 0.5148
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estimated in sample. The spirit of this regression is simple: If a term structure model

captures the time-variability of the term premium, 
1 should not be significantly

different from zero. Previous affine models with flexible market price of risk have dif-

ficulty in generating this result unless the models assume a conditional homoscedastic

volatility. Since my macro models produce better forecasts than latent models de-

spite the stochastic volatility, it is interesting to see how my macro models perform.

I report the results in Table 2-7.

As clearly seen, the p-values of the latent factor models (A3(3, 0), A1(3, 0)) imply

that the affine models have trouble matching the term premium variability. Adjusted

R2s also indicate that term spreads still have considerable explanatory power for

forecasts errors. Meanwhile, the p-values of the hybrid models with the velocity of

money imply that most of the term premium variability is captured by the velocity

augmented affine models. This result is robust across different model specifications.

In conjunction with the best forecasts performance of those models shown in Table 2-

3 ∼ Table 2-6, it is argued that the tension between improving yield forecasts and

explaining the yield stochastic volatility disappears to a substantial degree. Note

that the model with inflation and output gap has similar p-values to those from

latent factor models, which implies that the model with inflation and output does not

sufficiently capture the term premium variability when stochastic volatility resides.

From a perspective of estimation, matching the first and the second moments is

more burdensome than explaining only the first moment. However, as I put in the

introduction, stochastic volatility and its clustering behavior is prevalent in the yield

data, hence it is necessary to deal with this statistical tension rather than ignore the

second moment property. Related, a good term structure model should be able to

explain the variety of stylized facts about the Treasury yield data. My finding suggests

that observable macro variables, especially those describing the liquidity demand of an
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Table 2-7. Regression of the Forecasting Residuals on the Term Spread
(Out-of-sample 6-month Ahead Forecasting)

Model∖Maturity 6 months 12 months 36 months 60 months

A1(3, 0)
Adj. R2 0.0685 0.1381 0.1502 0.1083

1 -0.0993 -0.1556 -0.2062 -0.1781

(0.0493) (0.0540) (0.0778) (0.0862)
p-value 0.0539 0.0075 0.0131 0.0482

A3(3, 0)
Adj. R2 0.7185 0.6035 0.2488 0.0640

1 -0.5907 -0.5077 -0.2646 -0.1351

(0.0872) (0.0807) (0.0711) (0.0715)
p-value 0.0000 0.0000 0.0009 0.0693

A3(3, 1; {v})
Adj. R2 0.2369 0.1760 -0.0296 -0.0014

1 -0.1937 -0.1884 -0.0306 0.0714

(0.0774) (0.0779) (0.0721) (0.0717)
p-value 0.0185 0.0224 0.6748 0.3279

A1(4, 1; {v})
Adj. R2 0.0427 0.1093 0.0980 0.0434

1 -0.0913 -0.1524 -0.1846 -0.1353

(0.0551) (0.0598) (0.0811) (0.0861)
p-value 0.1088 0.0166 0.0307 0.1275

A2(4, 1; {v})
Adj. R2 -0.0153 0.0561 0.1237 0.0998

1 -0.0420 -0.1068 -0.1894 -0.1751

(0.0511) (0.0549) (0.0800) (0.0871)
p-value 0.4182 0.0617 0.0250 0.0542

A4(4, 2; {v, g})
Adj. R2 0.1234 0.1420 0.0094 -0.0357

1 -0.1984 -0.2196 -0.0981 0.0003

(0.1151) (0.1121) (0.0933) (0.0778)
p-value 0.0958 0.0601 0.3019 0.9972

A5(5, 2; {�, g})
Adj. R2 0.0020 0.0463 0.0736 0.0608

1 -0.1088 -0.1671 -0.2088 -0.1904

(0.0567) (0.0512) (0.0659) (0.0762)
p-value 0.0656 0.0029 0.0037 0.0186
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economy are very useful to achieve this goal. Macroeconomic variables are known to

capture the variations of business conditions. Since expected excess returns of assets

are often negatively correlated with business conditions, the use of macro factors

may help capture expected bond return behaviors, or more specifically the market

price of risk. Furthermore, I emphasize the role of variables related to liquidity

demand such as the velocity of money among many observable macro factors. When

properly defined to reflect the correct nature of transactions services, the velocity of

money can explain the money demand of an economy which is in turn closely and

contemporaneously related to nominal interest rates. Thus, I believe that the velocity

of money plays an instrumental role in explaining both the level and the slope features

of bond yields, thereby providing the affine models with more room for fitting the

conditional variances of yields.

F. Conclusion

I report that incorporating observable macroeconomic variables not only helps the

affine term structure models better predict future yields but also considerably re-

duces the tension between matching the first and the second conditional moments.

Especially, the affine models with the velocity of money measured by M2 minus small

time deposits can capture all three major stylized facts in Treasury yields. For each

maturity, I estimate affine models with different risk price specifications, the number

of factors, the number of independent volatility factors, and different combinations of

macro factors. Although there is no clear winner that dominates across maturities, I

find that three to four factor models with the velocity of money, stochastic volatility,

and flexible market price of risk perform better than others in terms of out-of-sample

forecasts. These models can also match the term premium variability observed in the
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data.

My results imply that for the purpose of yield forecasts, macro-latent affine mod-

els can provide better results than simple forecasting methods such as random walk

or unconstrained vector auto regressions. It is well known that economic restrictions

such as the money demand relationship or monetary policy play a key role in under-

standing interest rates. My results suggest that those conditions are important for

the empirical evaluation of the term structure of interest rates as well.

One final point I would mention is that the results of my paper indicate that

affine models with stochastic volatility can be useful in studying macro term structure

models in general equilibrium frameworks, provided that liquidity demand is properly

modeled.
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CHAPTER III

ESTIMATING TERM STRUCTURE MODELS WITH MACRO FACTORS

USING HIGH FREQUENCY DATA

A. Introduction

The term structure of interest rate reflects the expectations and influences from

macroeconomic variables. Hence, the yield curve conveys information about the

future economy. Many other recent papers have modeled term structure dynam-

ics including observable macroeconomic variables such as inflation and the output

gap. Ang and Piazzesi (2003) propose a macro-finance model incorporating macroe-

conomic variables as observable state variables other than the typical latent factors.

They present a VAR model of the yield curve with inflation and real activity along

with latent factors. Ang and Piazzesi (2003) report that macro variables account for a

substantial portion of the variation in the short and middle of the yield curve and in-

corporating macro variables into affine models helps to improve forecasts. Moreover,

imposing the cross-equation restriction from no arbitrage improves the performance

of out-of-sample forecasting. Dewachter and Lyrio (2006) find that inflation expec-

tations are crucial for long-term bond yields and that both inflation and the real

interest rate are especially important for the short-end of the term structure.

Diebold, Rudebusch, and Aruoba (2006) estimate a term structure model with la-

tent factors and observable macro variables (inflation, real activity, and the monetary

policy instrument) to examine the interactions between the macroeconomic variables

and bond yields. They find evidences of macroeconomic effects on the future yield

curve and yield curve effects on the future macro economy as well. However, Diebold,

Rudebusch, and Aruoba (2006) do not impose no-arbitrage restrictions, which is un-
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usual in the term structure models, arguing that if the restrictions hold for the data

and the yield curve has a good fit, then these restrictions are approximately met.

Hördahl, Tristani, and Vestin (2006) construct a joint model of macroeconomic and

term structure dynamics. Their model performs very well in forecasting future bond

yields while yields do not appear to help to improve the performance in forecasting

macroeconomic variables. Duffee (2006) estimates a term structure model without

latent factors. He finds that there is a positive relationship between the short-term

interest rate and inflation and that short-term interest rates move approximately

one-for-one with changes in expected inflation.

However, macroeconomic variables which are used in those papers are measured

at monthly or quarterly frequency; thus, these types of macro-finance models cannot

match the higher frequency of the interest rates and the lower frequency of macro

variables. In this sense, it is hard to examine the role of macro variables in explaining

term structure dynamics in continuous time. For example, in the macro-finance model

using monthly frequency data, the intra-month information can be missed. To deal

with this problem, I propose a term structure model employing daily data. It is known

that using high frequency data improves the accuracy of the conditional volatility in

the same sample size. Particularly, with a shorter sample, employing daily data is

crucial for analyzing term structure dynamics.

Therefore, I construct a tractable model at daily frequency with both the typical

latent factors and latent macro factors by imposing cross-equation restrictions on yield

movements from no-arbitrage while most macro-finance models incorporate observ-

able macroeconomic variables in monthly or quarterly frequency. Additionally, I add

the spread factor between the short-term Treasury yield and the federal funds rate

into an affine term structure model to identify the high-frequency monetary policy

rule that describes the central bank’s reaction to expected inflation and real activity
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at daily frequency. The benchmark and backward-looking high-frequency policy rules

are identified without difficulties. Although many other researchers place Taylor rules

incorporating inflation and the output gap in an affine model, those macro variables

are observable in monthly or quarterly frequency. When I assess my model in terms

of out-of-sample forecasting, my term structure model with macro factors and the

spread factor shows better performance.

Finally, I show that the spread between the 3-month Treasury yield and the

federal funds rate has strong predictive power for predicting excess bond returns and

future changes in yields from the results of two different regressions. Also, I find that

short-maturity yields tend to rise and long-maturity yields tend to fall when the yield

spreads widen. These results are inconsistent with the expectations hypothesis.

In my model, different bond yields such as the real yield, nominal yield, and

defaultable yield are used and latent macro factors and the spread factor are extracted

from yield relationships by using cross-equation restrictions. Accordingly, I do not

need to worry about the discrepancy of data frequency between yields and macro

variables. Thus, I do not lose information available in matching high frequency yields

data and low frequency macro variables data. Another benefit is that the no arbitrage

assumption is enforced by imposing cross-equation restrictions.

Chapter III is organized as follows. The next section shows data used in this

paper. Section C presents affine term structure models estimated. Then, I explain

presenting estimation results. Finally, after some further discussions on my results, I

conclude.
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Fig. 3-1. US Daily Macroeconomic Variables

B. Data

As I mentioned, macro variables are not measured at daily frequency. Thus I should

find proxies for macro variables on a daily basis. From the Fisher Hypothesis, the

difference between the nominal and real yield can be regarded as expected inflation.

Regarding real activity or output, if business conditions become worse, investors re-

quire a higher expected return for the extra risk; accordingly, the default spread

increases. In other words, the default spread is inversely related to business condi-

tions. Therefore, the difference between the nominal and real yield, which represents

expected inflation, and the difference between the Treasury yield and corporate bond

yield, which represents the negative default spread, are considered to be the macro

variables in a term structure model at daily frequency.

Figure 3-1 and Figure 3-2 show macroeconomic variables on a daily basis. Fig-

ure 3-1 plots US daily macro variables representing 5-year TIPS-derived expected
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Fig. 3-2. UK Daily Macroeconomic Variables

inflation and negative default spread from January 2003 through December 2008.

Figure 3-2 plots UK daily macro variables from March 1997 through December 2008.

As clearly seen in Figure 3-1 and Figure 3-2, expected inflation is very stable and

low, but expected inflation has drastically decreased since July 2008. The negative

default spread has also decreased since July 2008. Thus, it is possible to guess that

the economy might fall into a recession. Figure 3-3 plots the inflation measure using

log(Pt/Pt−12) where Pt is the consumer price index (CPI) and 5-year TIPS-derived ex-

pected inflation on a monthly basis in the US. Inflation is more volatile than expected

inflation. Figure 3-4 plots the growth rate of industrial production (IP) measured as

the log difference at time t and t−12 and the negative default spread (5-year Treasury

bond yield - corporate bond yield(baa)) on a monthly basis in the US. The shaded

areas show periods of recessions as defined by the NBER. As clearly seen, they are

moving very similarly and are highly correlated. Thus, the negative default spread

could be a good proxy for real activity or output.
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Fig. 3-3. US Inflation and Expected Inflation

Fig. 3-4. US Real Activity and the Negative Default Spread
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Regarding bond yields, I use daily yield series of US Treasury constant maturity

bond yields with maturities of 3, 6, 12, 24, 36 and 60 months, from January 2003

through December 2008, taken from the the St. Louis Fed (FRED). In addition, UK

government bond yields with the maturities of 3, 6, 12, 24, 36 and 60 months, from

March 1997 through December 2008 are used, come from the Bank of England. All

bond yields are continuously compounded.

C. Model

1. A Term Structure Model with Macro Factors

Many empirical papers studying term structure dynamics incorporate inflation and

real activity as observable macro variables. This is because the central banks set the

short-term interest rate by reacting to inflation and the output gap. Taylor (1993)

suggests the following form

(3.1) it = r∗ + �t + ��(�t − �∗t ) + �ggt,

where it is the short-term interest rate that the central banks can control, r∗ is the

equilibrium real rate, �∗t is the central bank’s inflation target, �t is a measure of

inflation, and gt is a measure of output gap. In this Taylor rule, the short-term

interest rate is regarded as the sum of (r∗+ �t) and deviations from the policy goals.

Other versions of the Taylor rule are forward-looking Taylor rules using expected

inflation and expected output gap. Ang, Dong, Piazzesi (2007) place the Taylor rule

into a term structure model under no-arbitrage framework. They define the bench

mark Taylor rule as follows:

(3.2) it = 
0 + 
1,��t + 
1,ggt + "MP,T
t
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where "MP,T
t is the unobserved monetary policy shock which corresponds to a latent

term structure factor, fut . Hence, two observable macro variables �t, gt, and the only

one latent factor fut are incorporated into a term structure model as state variables

and various versions of Taylor rules are estimated.

Inspired by Ang, Dong, Piazzesi (2007), I set up a five-factor term structure

model with two macro factors besides the typical latent factors using the cross-

equation restrictions on yield movements from no arbitrage assumption. Now I know

that the nominal interest rate is approximately the sum of the real interest rate and

expected inflation, and the defaultable bond yield is the sum of the default-free bond

yield and the default spread. Using these relationships, I denote different bond yield

as follows:

yR,Dt = real defaultable bond yield (Corporate bond yield− expected inflation)

y$,D
t = nominal defaultable bond yield (Corporate bond yield)

y$
t = nominal default-free bond yield (Treasury yield)

Instantaneous short-term interest rates are defined as below and x1t, x2t,x3t are con-

sidered as the usual latent factors (level, slope, curvature).

rR,Dt = x1t + x2t + x3t(3.3)

r$,D
t = x1t + x2t + x3t + �et(3.4)

r$
t = x1t + x2t + x3t + �et + d−t (where d−t = −dt)(3.5)

In measurement equations, two more yields yR,Dt , y$,D
t are added to Treasury yields

with 6 different maturities in order to extract �et capturing expected inflation and

d−t capturing the negative default spread. Contrary to other macro-finance models,

macro variables in my model are latent factors by cross-equation restrictions on yield
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movements. The subscript of a matrix displays its dimensions.

(3.6)

⎛⎜⎜⎜⎜⎝
yR,Dt,1×1

y$,D
t,1×1

y$
t,6×1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
AR,D1×1

A$,D
1×1

A$
6×1

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
BR,D

1×3 0 0

B$,D
1×4 0

B$
6×5

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1t

x2t

x3t

�et

d−t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

(
"t,8×1

)

2. Identification of the High-frequency Monetary Policy Rule

To identify the high-frequency monetary policy rule, I set up a six-factor term struc-

ture model. I denote st as a latent factor capturing the spread between the short-term

Treasury yield and the federal funds rate (repo rate in the UK). Thus, the federal

funds rate, yF,Ft , is added to the measurement equations in other to extract a latent

factor st.

rR,Dt = x1t + x2t + x3t(3.7)

r$,D
t = x1t + x2t + x3t + �et(3.8)

rF,Ft = x1t + x2t + x3t + �et + d−t (where d−t = −dt)(3.9)

r$
t = x1t + x2t + x3t + �et + d−

t
+ st(3.10)

(3.11)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yR,Dt,1×1

y$,D
t,1×1

yF,Ft,1×1

y$
t,6×1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

AR,D1×1

A$,D
1×1

AF,F1×1

A$
6×1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

BR,D
1×3 0 0 0

B$,D
1×4 0 0

BF,F
1×5 0

B$
6×6

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1t

x2t

x3t

�et

d−t

st

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

(
"t,9×1

)
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Identifying the high-frequency policy rule that describes the central bank’s re-

action to expected inflation and the negative default spread, the parameters are

estimated by the Kalman filter procedure in the first step. Therefore, I obtain a

measurement equation of the federal funds rate as follows:

(3.12) yF,Ft = AF,F +BF,F
1 x1t +BF,F

2 x2t +BF,F
3 x3t +BF,F

4 �et +BF,F
5 d−t + "t

In the above equation, the parameters BF,F
4 and BF,F

5 are known, but �et and d−t

are the latent factors denoting expected inflation and the negative default spread,

respectively. Thus, I run OLS regressions to obtain equations to see how unobservable

macro factors (�et , d
−
t ) respond to changes in observable counterparts (Πe

t , D−t ) in the

second step. This can be interpreted as the process of scale adjustments to compare

my policy rules with other policy rules such as the standard Taylor rule.

�et = 
0,� + 
1,�Πe
t ( Πe

t = 5-year TIPS-derived expected inflation )

(3.13)

d−t = 
0,d + 
1,dD
−
t ( D−t = 5-year Treasury bond yield − corporate bond yield)

(3.14)

By plugging the equations in the second step into the measurement equation in the

first step, I can obtain a equation representing monetary policy rule on a daily basis.

This rule can be interpreted as the central bank’s activity adjusting policy rate in

response to movements in expected inflation and the negative default spread.

(3.15)

yF,Ft = AF,Fnew +BF,F
1 x1t+BF,F

2 x2t+BF,F
3 x3t+(BF,F

4 ×
1,�)Πe
t +(BF,F

5 ×
1,d)D
−
t +"newt

where AF,Fnew and "newt denote rearranged constant term and error term.

If I modify the above equation by including lagged macro variables in the second
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step, backward-looking policy rules can be identified easily. This could be one of the

advantages in my two-step estimation method. The intuition behind a backward-

looking policy rule is to smooth the federal funds rate by considering lagged macro

variables as well as current ones.

�et = 
0,� + 
1,�Πe
t + 
2,�Πe

t−1(3.16)

d−t = 
0,d + 
1,dD
−
t + 
2,dD

−
t−1(3.17)

yF,Ft = AF,Fnew +BF,F
1 x1t +BF,F

2 x2t +BF,F
3 x3t + (BF,F

4 × 
1,�)Πe
t(3.18)

+ (BF,F
5 × 
1,d)D

−
t + (BF,F

4 × 
2,�)Πe
t−1 + (BF,F

5 × 
2,d)D
−
t−1 + "newt

3. Estimated Models

Regarding the number of latent factors, I estimate the affine models with three typical

latent factors which are referred to as three-factor yields-only models. Additionally,

the affine models with five latent factors are estimated in comparison with a five-factor

term structure model with macro factors. I refer to an affine model with two macro

factors as a five-factor macro model. Also, a six-factor macro model is estimated.

Another criterion for classifying the estimated models is the number of independent

state variables determining the variance-covariance of the state vector Xt. It is well

known that there exists a tension between matching conditional mean and conditional

volatility of yields in that smaller number of instantaneous volatility drivers enhances

the forecast ability of the model. Thus, I estimate three-factor and five-factor yields-

only models with only one state variable determining the variance-covariance of the

state vector Xt.

For expositional purposes, I label the estimated models using notation similar to

Dai and Singleton (2000). AM(n, j) refers to an affine model with the total number
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n of factors, j macroeconomic factors, M state variables affecting the instantaneous

volatility, and the market price of risk specification of Duffee (2002). Specifically I

estimate the following cases:

∙ Three-factor Yields-Only Model: A3(3, 0), A1(3, 0)

∙ Five-factor Yields-Only Model: A5(5, 0), A1(5, 0)

∙ Five-factor Macro Model: XRA5(5, 2)

∙ Six-factor Macro Model: XRA6(6, 2)

I impose restrictions (mostly zero restrictions) on the parameters of the models

above. Some of those come from the representation of the affine model as in Dai

and Singleton (2000), Duffee (2002), Ang and Piazzesi (2003), Duarte (2004), and

Aı̈t-Sahalia and Kimmel (2008). Moreover, I make additional assumptions on the

parameters to make the model parsimonious. A five-factor macro model and a six-

factor macro model are regarded as my main models and I compare these with the

three-factor yields-only models AM(3, 0) which are popular choices among the affine

models.

This is the conventional model of term structure with the no-arbitrage restric-

tion, A3(3, 0), A1(3, 0) depending on the number of independent factors describing
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instantaneous volatility of yields.

rt =
3∑
i=1

xit,

d

⎛⎜⎜⎜⎜⎝
x1t

x2t

x3t

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
�1(�1 − x1t)

�2(�2 − x2t)

�3(�3 − x3t)

⎞⎟⎟⎟⎟⎠ dt+
√
StdWt,

[St]i = �i + �ixit,

Λt =
√
St

⎛⎜⎜⎜⎜⎝
�11

�12

�13

⎞⎟⎟⎟⎟⎠+ Zt

⎡⎢⎢⎢⎢⎣
�2(11) 0 0

0 �2(22) 0

0 0 �2(33)

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

x1t

x2t

x3t

⎞⎟⎟⎟⎟⎠ .

For the A1(3, 0) model, �1 = 0, �2 = �3 = 0, �2 = �3 = 0 are additionally imposed.

The admissibility condition by Dai and Singleton (2000) dictates that this model is

over-identified, especially in terms of the drift component of the Xt process, but I find

that relaxing this part does not change the likelihood nor the out-of-sample forecasting

performance much. The model specifications of two versions of five-factor yields-only

models, A5(5, 0), A1(5, 0), are identical to the three-factor yields-only models except

that two additional state variables are incorporated. The term structure models

are estimated through the Kalman filter approach. Given the first two conditional

moments of the state variables under the Milstein approximation, I can use the usual

Kalman filter procedure to evaluate the logarithm of the quasi-likelihood function

recursively.
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D. Empirical Results

1. Parameter Estimates and State Variables

This section reports parameter estimates of several affine models I estimated. Ta-

ble A-4 ∼ Table A-7 display the estimates of the 3-factor yields-only models and

5-factor yields-only models together with standard errors given in parentheses. Most

parameters in all cases are estimated reliably. I follow Duffee (2002) for zero restric-

tions on the market price of risk in case of the essentially affine setups and other

restrictions come from Dai and Singleton (2000). The 5-factor macro model and 6-

factor macro model are estimated in an identical manner. Table A-8 ∼ Table A-9

show the estimation results from the 5-factor macro model. The 5-factor yields-only

models have only one relatively persistent factor, the level factor. The 4th and 5th

factor have lower persistence. On the other hand, the 5-factor macro model has two

relatively persistent factors, one of which is the level factor, the other is the negative

default spread representing real activity.

By using the Kalman filter procedure to estimate the term structure models, I

can extract the usual latent factors (level, slope, curvature), macro factors, and the

spread factor. I compute correlation coefficients between the usual latent factors and

corresponding empirical proxies in case of the 6-factor macro model in the US. A

long-term yield (y60m
t ) is considered as an empirical proxy for level. The correlation

between the level factor and the proxy is -0.68, which is caused by including the

expected inflation factor, the negative default spread factor, and the spread factor

in the 6-factor macro model. The slope factor displays high 0.86 correlation with

its empirical counterpart (y3m
t − y60m

t ) and the curvature factor also shows high 0.91

correlation with its empirical proxy, (y3m
t +y60m

t )−2y24m
t . Therefore, two macro factors

and the spread factor affect the movement of the level factor while the slope factor and
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Fig. 3-5. Macro Factors and Observable Counterparts : US Six-factor Macro Model

curvature factor are not affected by those factors. Contrary to other macro-finance

models incorporating observable macro variables, I extract latent macro factors by

imposing cross-equation restrictions. In Figure 3-5, I plot the latent macro factors and

the spread factor between the short-term Treasury yield and the federal funds rate

together with their observable counterparts in case of the 6-factor macro model in the

US. The factors are moving together with their related observable counterparts and

their correlations are 1, 0.99, and 0.90, respectively. Thus, two latent macro factors

and the spread factor are perfectly capturing expected inflation, negative default

spread, and the spread between the 3-month yield and the federal funds rate.

2. High-frequency Monetary Policy Rule

In the first step, I obtain a measurement equation of the federal funds rate by the

Kalman filter procedure in a state-space setup and x1t, x2t, x3t are identified as level,

slope, and curvature factor, respectively. The coefficients in a measurement equation
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are close to 1 in both the US and the UK.

FFUS
t = 0.0001 + 0.9995x1t + 0.9967x2t + 0.9999x3t + 0.9992�et + 0.9997d−t

RPUK
t = 0.0005 + 0.9946x1t + 0.9797x2t + 0.9981x3t + 0.9931�et + 0.9992d−t

Since �et and d−t are latent macro factors, I run the regression by ordinary least squares

in the second step. From the standard errors in parentheses, most parameters are

estimated significantly.

∙ US �et = −0.0373 + 2.3574× Πe
t

(0.0000) (0.0001)

d−t = −0.0135 + 1.4138×D−t

(0.0001) (0.0045)

�et = −0.0373 + 2.3291× Πe
t + 0.0284× Πe

t−1

(0.0000) (0.0008) (0.0008)

d−t = −0.0135 + 1.2990×D−t + 0.1146×D−t−1

(0.0001) (0.1099) (0.1098)

∙ UK �et = −0.0451 + 2.1754× Πe
t

(0.0000) (0.0001)

d−t = −0.0115 + 1.1217×D−t

(0.0000) (0.0034)

�et = −0.0451 + 2.1529× Πe
t + 0.0225× Πe

t−1

(0.0000) (0.0003) (0.0003)

d−t = −0.0115 + 1.1186×D−t + 0.0024×D−t−1

(0.0000) (0.0373) (0.0373)

Finally, the benchmark and backward-looking high-frequency policy rules are
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identified. In the benchmark high-frequency policy rule for the US, the expected

inflation coefficient on the variable Πe
t is 2.3555, which implies that the Fed reacts

to expected inflation very aggressively. It is well known that the standard Taylor

rule is 1 + 1.5 × inflation + 0.5 × output gap. As plotted in Figure 3-3, expected

inflation is less volatile than inflation. Thus, the greater value of the expected inflation

coefficient relative to the inflation coefficient in the original Taylor rule shows the Fed’s

relatively more aggressive response to expected inflation. Even though the negative

default spread coefficient of 1.4134 is smaller than the expected inflation coefficient,

it is greater than 1. Compared to the coefficients in the UK, since the coefficients of

both Πe
t and D−t are larger, the Fed appears to adjust the federal funds rate more

actively. The backward-looking high-frequency policy rules including lagged macro

variables show that the central banks consider the lagged macro information as well

as the current macro variables to some extent. However, the sizes of the coefficients

of the lagged macro variables are relatively small in both the US and the UK. Until

now, I consider the policy rule for the federal funds rate, but I can also get the

high-frequency policy rule for the 3-month Treasury yield. Additionally, the spread

between the 3-month yield and the federal funds rate (repo rate) is included in the

policy rule. I find that the spread between the 3-month yield and the federal funds

rate affects the movements of the 3-month yield and that the coefficients of Πe
t , D

−
t
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are slightly smaller than those in the previous policy rules.

∙ Benchmark high-frequency policy rule for the federal funds rate

FFUS
t = −0.0508 + 0.9995× Levelt + 0.9967× Slopet + 0.9999× Curvaturet

+ 2.3555× Πe
t + 1.4134×D−t

RPUK
t = −0.0557 + 0.9946× Levelt + 0.9797× Slopet + 0.9981× Curvaturet

+ 2.1604× Πe
t + 1.1208×D−t

∙ Backward-looking high-frequency policy rule for the federal funds rate

FFUS
t = −0.0508 + 0.9995× Levelt + 0.9967× Slopet + 0.9999× Curvaturet

+ 2.3272× Πe
t + 1.2986×D−t + 0.0284× Πe

t−1 + 0.1145×D−t−1

RPUK
t = −0.0557 + 0.9946× Levelt + 0.9797× Slopet + 0.9981× Curvaturet

+ 2.1381× Πe
t + 1.1178×D−t + 0.0224× Πe

t−1 + 0.0024×D−t−1

∙ Benchmark high-frequency policy rule for the 3-month yield

3mUS
t = −0.0489 + 0.9951× Levelt + 0.9685× Slopet + 0.8167× Curvaturet

+ 2.2409× Πe
t + 1.3891×D−t + 0.6145× St

3mUK
t = −0.0532 + 0.9951× Levelt + 0.9685× Slopet + 0.8167× Curvaturet

+ 2.0801× Πe
t + 1.1161×D−t + 0.5123× St
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∙ Backward-looking high-frequency policy rule for the 3-month yield

3mUS
t = −0.0489 + 0.9951× Levelt + 0.9685× Slopet + 0.8167× Curvaturet

+ 2.2140× Πe
t + 1.2763×D−t + 0.5244× St

+ 0.0270× Πe
t−1 + 0.1126×D−t−1 + 0.0939× St−1

3mUK
t = −0.0532 + 0.9951× Levelt + 0.9685× Slopet + 0.8167× Curvaturet

+ 2.0587× Πe
t + 1.1131×D−t + 0.3409× St

+ 0.0215× Πe
t−1 + 0.0024×D−t−1 + 0.1816× St−1

3. Out-of-sample Forecasts Performance

My data sets cover the periods between January 2003 and December 2008 in the US

and between March 1997 and December 2008 in the UK. To produce out-of-sample

forecasts, I first estimate my models using the in-sample period and forecast future

bond yields during the out-of-sample period of September 2008 through December

2008. I compute the root mean squared errors (RMSE) from the out-of-sample fore-

casts. Lower RMSE values denote better forecasts with the best forecast highlighted

in bold. I report the results for bonds with maturities of 3, 6 months, 1 year, 2 years,

3 years, and 5 years. For out-of-sample forecast horizons, 1, 2, and 3 months are used.

In Table 3-1 and Table 3-2, I show a comparison of out-of-sample forecasts for

the several affine models. In the case of the US, the 6-factor macro model shows

better performance except for maturities of 3 months and 6 months at a 1-month

forecast horizon. At a 2-month and a 3-month forecast horizon, the 6-factor macro

model shows the lowest RMSE for maturities of 3 months, 6 months, 1 year, 2 years,

and 3 years while the 5-factor macro model performs best for maturity of 5 years.

As I increase the forecast horizon, the 5-factor macro model and 6-factor macro

model perform very well in terms of forecasting future bond yields. Interestingly, the



50

Table 3-1. Out-of-sample Yields Forecasts Performance Using RMSE (US)

Model ∖ Maturity 3 m 6 m 12 m 24 m 36 m 60 m

(Forecast Horizon: 1 month)
3-factor Yields-Only
A3(3,0) 0.7056 0.4628 0.4108 0.4758 0.4851 0.5717
A1(3,0) 0.6179 0.3656 0.3154 0.4799 0.5788 0.5787

5-factor Yields-Only
A5(5,0) 0.9869 0.8307 0.7447 0.6015 0.5385 0.6481
A1(5,0) 0.8128 0.6904 0.5819 0.4641 0.4763 0.5913

5-factor Macro
XRA5(5,2) 0.4297 0.4162 0.3254 0.3036 0.3375 0.3588

6-factor Macro
XRA6(6,2) 0.4299 0.3859 0.2956 0.2717 0.3146 0.3564

(Forecast Horizon: 2 months)
3-factor Yields-Only
A3(3,0) 1.1605 0.9220 0.8355 0.8532 0.8424 0.9524
A1(3,0) 1.0034 0.7527 0.7089 0.8831 0.9653 0.9723

5-factor Yields-Only
A5(5,0) 1.6650 1.4588 1.2668 1.0550 0.9668 1.0840
A1(5,0) 1.3494 1.1671 0.9644 0.8320 0.8501 0.9883

5-factor Macro
XRA5(5,2) 0.3399 0.3518 0.3528 0.4043 0.4467 0.4236

6-factor Macro
XRA6(6,2) 0.3337 0.2936 0.2802 0.3558 0.4092 0.4281

(Forecast Horizon: 3 months)
3-factor Yields-Only
A3(3,0) 1.5903 1.4590 1.3522 1.2278 1.1642 1.2859
A1(3,0) 1.4342 1.3217 1.2886 1.3341 1.3588 1.3426

5-factor Yields-Only
A5(5,0) 2.0759 1.9358 1.7450 1.4551 1.3316 1.4263
A1(5,0) 1.7517 1.6399 1.4512 1.2611 1.2478 1.3496

5-factor Macro
XRA5(5,2) 0.3971 0.3426 0.3161 0.4515 0.5023 0.2068

6-factor Macro
XRA6(6,2) 0.3634 0.2772 0.2251 0.3848 0.4550 0.2190
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Table 3-2. Out-of-sample Yields Forecasts Performance Using RMSE (UK)

Model ∖ Maturity 3 m 6 m 12 m 24 m 36 m 60 m

(Forecast Horizon: 1 month)
3-factor Yields-Only
A3(3,0) 1.0961 1.2355 1.1710 0.8314 0.6129 0.5380
A1(3,0) 0.9479 1.0996 1.0648 0.7568 0.5463 0.4720

5-factor Yields-Only
A5(5,0) 1.0876 1.1472 1.0733 0.8582 0.7008 0.5242
A1(5,0) 0.9160 0.9673 0.9447 0.7619 0.5797 0.4643

5-factor Macro
XRA5(5,2) 0.8002 0.8949 0.7920 0.3904 0.3062 0.4184

6-factor Macro
XRA6(6,2) 0.7327 0.9743 0.9920 0.5467 0.3132 0.3205

(Forecast Horizon: 2 months)
3-factor Yields-Only
A3(3,0) 2.2412 2.3619 2.2181 1.6280 1.2194 0.9362
A1(3,0) 1.9744 2.1259 2.0267 1.4866 1.0991 0.8317

5-factor Yields-Only
A5(5,0) 2.2128 2.2861 2.1626 1.7038 1.3583 0.9657
A1(5,0) 1.8489 1.9592 1.9201 1.5044 1.1443 0.8343

5-factor Macro
XRA5(5,2) 1.3058 1.4426 1.2982 0.6615 0.3511 0.5143

6-factor Macro
XRA6(6,2) 1.3147 1.5494 1.4836 0.8105 0.3783 0.3737

(Forecast Horizon: 3 months)
3-factor Yields-Only
A3(3,0) 3.1477 3.2574 3.0328 2.2051 1.6416 1.2015
A1(3,0) 2.8161 2.9625 2.7938 2.0329 1.4998 1.0669

5-factor Yields-Only
A5(5,0) 3.2377 3.3173 3.0966 2.3495 1.8284 1.2792
A1(5,0) 2.6915 2.8332 2.7143 2.0530 1.5455 1.0747

5-factor Macro
XRA5(5,2) 1.4086 1.5788 1.4215 0.6386 0.2414 0.2256

6-factor Macro
XRA6(6,2) 1.4913 1.7026 1.5698 0.7410 0.2537 0.2247
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5-factor yields-only models do not show better performance than the 3-factor yields-

only models. This result implies that the 4th and 5th latent factors do not play a

role of improving the forecasting performance. It is well known that the three factors

account for almost all of the variation of yields. Ang, Piazzesi, and Wei (2006) find

that higher factors other than the two factors (level, slope) account for less than 0.3%

of the movements of yields at quarterly frequency. Moreover, studies like Dai and

Singleton (2000), Duffee (2002), and Duarte (2004) report that there exists a trade-

off between improving forecast ability on future bond yields and matching interest rate

volatility in affine models. Accordingly, the 5-factor yields-only model with only one

stochastic volatility, A1(5, 0) displays better forecasting performance than A5(5, 0).

In the case of the UK, the macro models show better performance, which means that

including macro factors by imposing the cross-equation restriction helps to improve

the forecasting performance. However, the 5-factor macro model dominates the 6-

factor macro model at almost all maturities, indicating that the yield spread between

the 3-month yield and the repo rate is not helpful in terms of forecasting future bond

yields.

Now consider the results of macro variables forecasting performance. Due to

the cross-equation restrictions in the 5-factor macro model, I can easily obtain the

forecast values of macro variables. In other words, the cross-equation restrictions

from the no-arbitrage assumption allow the 5-factor macro model to endogenously

generate the forecasts of expected inflation and the negative default spread. Hence,

I can get the future forecast values of both the yields and macro variables at the

same time. For example, the forecast values of the negative default spread can be

derived from subtracting the forecast values of corporate bond yields from 5-year

Treasury yields. My benchmark is the RMSE from the AR(1) model that is commonly

used in forecasting macro variables. In addition, VAR(1) and ECM(1) models are
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Table 3-3. Out-of-sample Macro Variables Forecasts Performance Using RMSE

Expected inflation Negative default spread

Forecast Horizon(month) Forecast Horizon(month)
1 2 3 1 2 3

US
AR(1) 1.6504 2.3073 2.0832 1.1098 1.9204 2.5157
VAR(1) 1.6512 2.3100 2.0929 1.1937 2.1062 2.5753
ECM(1) 1.5028 2.1779 1.7661 1.1348 2.0428 2.3153
5-factor Macro 1.3132 2.0629 2.0454 1.1713 2.0582 2.7389

UK
AR(1) 1.3122 2.2737 3.0468 1.0605 2.0232 2.8879
VAR(1) 1.2992 2.2754 3.0467 1.0442 1.9984 2.8448
ECM(1) 1.3069 2.2844 3.1300 1.0127 1.9490 2.8545
5-factor Macro 1.2250 2.2935 3.1315 1.1408 2.1146 2.9686

used for comparison. Regarding expected inflation, the 5-factor macro model is the

best performing model at shorter horizon in both the US and the UK. In contrast,

with respect to the negative default spread, other benchmark models show better

forecasting performance compared to the 5-factor macro model even though there

is not a single dominating model at all forecast horizons. My results show that

the forecast values of macro variables derived from the 5-factor macro model are

comparable to those of other benchmark models.

4. Yield Spreads and the Expectations Hypothesis

The expectations hypothesis tells us that excess bond returns should not be pre-

dictable because long-maturity yield is an average of future short rates. However,

Fama and Bliss (1987) show that the spread between forward rates and short-maturity

yield predicts excess bond returns. Cochrane and Piazzesi (2005) find a single linear

combination of forward rate predicts excess bond returns. Thus, I examine time vary-

ing excess bond returns via different yield spreads. The data are daily from January

1982 to August 2008 in the US and from March 1997 to August 2008 in the UK. The
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following regression model is estimated:

(3.19) eℎprt,t+k = 
0 + 
1 × yield spreadt + "t,t+k, (k = 3, 6, 12, and 24 months)

I denote eℎprt,t+k as the k-period excess bond return and all excess holding period

returns are annualized. To the best of my knowledge, asset returns are volatile at

high frequencies. This volatility may make the coefficients of the standard OLS

regression meaningless. Thus, in addition to the classical OLS, I use the OLS with

a time change in sampling to accommodate a stochastic volatility in excess bond

returns. Table B-1 ∼ Table B-8 in Appendix B show the results from regressions

of excess bond returns on different yield spreads. OLS-TC denotes the OLS with a

time change method. The regression results show that the OLS with a time change

makes the size of the coefficient smaller. This is because volatility is taken care of by

using samples collected at random intervals with a time change method. In the US,

the coefficients on the yield spread between the 3-month yield and the federal funds

rate are significantly negative in both the 3-month and 6-month holding periods.

In addition, the coefficients on the spreads between intermediate-maturity yield and

short-maturity yield such as y24m
t − y3m

t , y12m
t − y3m

t are significantly positive. On the

other hand, the other spreads are statistically insignificant. Therefore, the spreads

in the short and middle of the yield curve have predictive power for excess bond

returns. In the UK, the some coefficients on the yield spread (y60m
t − y36m

t , y60m
t −

y24m
t , y24m

t − y12m
t ) are significantly negative, which implies that the spreads between

long-maturity yield and intermediate-maturity yield have information about future

excess bond returns.

I run additional OLS regressions that predict future changes in yields with a
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variety of yield spreads of the term structure. The regressions are

(3.20) y�t+k−y�t = �0+�1×yield spreadt+"t,t+k, (k = 1 month, 2 months, 3 months)

The yield change after k-periods is regressed on different yield spreads at t. Camp-

bell and Shiller (1991) find that a high yield spread between long-maturity yield

and short-maturity yield implies that shorter-term yield rises over the long term and

longer-term yield falls over the short term. These results are not consistent with

the expectation hypothesis of the term structure. Table C-1 ∼ Table C-16 in Ap-

pendix C show the results from regressions of future changes in yields on the yield

spreads using daily data from January 1982 to August 2008 in the US and from

March 1997 to August 2008 in the UK. In the US, if the future changes in yields

are regressed on the yield spreads such as y24m
t − y3m

t , y12m
t − y3m

t , the results tell

that short-maturity yields (federal funds rate and 3-month Treasury yield) rise and

longer-maturity yields(24-month and 60-month Treasury yields) tend to decline when

the spreads are greater. These results can be explained by time-varying risk premia,

which is equivalent to the expectations hypothesis puzzle. In the UK, when the yield

spreads (y60m
t −y36m

t , y24m
t −y3m

t , y12m
t −y3m

t ) widen, short-maturity yields (repo rate,

3-month government yield) rise and also long-maturity yield rises. These imply the

weak violation of the expectations hypothesis of interest rates in the UK.

Interestingly, the coefficients of the yield spread between the 3-month yield and

the federal funds rate (repo rate in the UK) are significantly positive at all maturities

in the US and at short-term maturity yields in the UK. It is known that changes

in monetary policy behavior induce changes in the federal funds rate because the

federal funds rate is directly controlled by the Fed. Consequently, the Treasury bill

rate moves through the monetary policy transmission mechanism. In turn, the short-

term Treasury bill rate may reflect the future federal funds rate. In other words,
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movements in the Treasury bill rate could affect the movement in the federal funds

rate. Regarding future changes in the federal funds rate, the coefficients on the yield

spread, y3m
t − fft, are significantly positive at the one percent level. Accordingly,

the federal funds rate tends to rise when the spread between the 3-month Treasury

yield and the federal funds rate widens. Even though the coefficients increase with

longer k-period, they still remain less than one. In terms of future changes in the

3-month Treasury yield, the coefficients are significantly greater than zero, but less

than those in case of the federal funds rate. Regarding the future changes of the repo

rate in the UK, the coefficients of the 3-month yield-repo rate spread are significantly

greater than one at the one percent level in the case of the two-month period and the

three-month period. Considering future changes in the 3-month government yield,

the coefficients are significantly positive, but less than those in case of the repo rate.

E. Performance of the Milstein Approximation

I compare the performance between conditional mean and variance under the Milstein

approximation and the closed form solutions for conditional moments in case of the

five-factor macro models.

Furthermore, I show the results of a Monte Carlo simulation to assess the per-

formance of the estimator by the Kalman filter under the Milstein scheme. I generate

1,000 data series of 2,872 daily observations (Δ = 1/252) of the state variables fol-

lowing the square root process with the Milstein approximation. This sample size is

used because it has the same length as our sample period of UK daily data.

Table 3-5 displays the results of 1,000 Monte Carlo simulations for a five-factor

macro model (XRA5(5,2)), comparing the distribution of the estimator Φ̂MIL through

the Kalman filter procedure using the approximated conditional moments under the
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Table 3-4. Out-of-sample Yields Forecasts Performance of Milstein using RMSE

Method ∖ Maturity 3 m 6 m 12 m 24 m 36 m 60 m

(Horizon : 1 month)
US

Closed 0.4298 0.4163 0.3252 0.3252 0.3369 0.3587
Milstein 0.4297 0.4162 0.3254 0.3036 0.3375 0.3588

UK
Closed 0.8006 0.8954 0.7925 0.3908 0.3061 0.4184
Milstein 0.8002 0.8949 0.7920 0.3904 0.3062 0.4184

(Horizon : 2 months)
US

Closed 0.3399 0.3518 0.3522 0.4032 0.4455 0.4234
Milstein 0.3399 0.3518 0.3528 0.4043 0.4467 0.4236

UK
Closed 1.3070 1.4438 1.2994 0.6626 0.3516 0.5146
Milstein 1.3058 1.4426 1.2982 0.6615 0.3511 0.5143

(Horizon : 3 months)
US

Closed 0.3975 0.3427 0.3155 0.4500 0.5006 0.2067
Milstein 0.3971 0.3426 0.3161 0.4515 0.5023 0.2068

UK
Closed 1.4107 1.5810 1.4237 0.6406 0.2419 0.2255
Milstein 1.4086 1.5788 1.4215 0.6386 0.2414 0.2256

Milstein scheme around the true value, to the distribution of the estimator Φ̂CLO

through the Kalman filter procedure using the closed form of conditional moments

around the true value. From the Table 3-5, I see that the distribution of the Φ̂MIL

is close to that of the Φ̂CLO. Neither estimator seems to dominate the other; that

is, the bias and standard deviation of the estimator Φ̂CLO are larger than those of

the estimator Φ̂MIL for some parameters, but smaller for others. Accordingly, the

approximated conditional moments under the Milstein scheme can be used when I

have trouble in calculating the closed form of conditional moments. From Table 3-

6, MSE (Mean Squared Error) comparison tells that no one dominates the other.
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Moreover, I compute the IQR (Inter Quantile Range) which is defined as ∣q75 − q25∣

where qi is the i-th quantile of the empirical distribution. IQR is the comparison

criteria when the outlier problem exits. As shown in Table 3-6, neither method

dominates the other, thus it is very difficult to tell which method performs better.

Figure 3-6 displays empirical distribution of the approximation error (Φ̂CLO − Φ̂MIL)

in a XRA5(5,2) model. The mean of the distribution is very small compared to the

mean difference between (Φ̂CLO − Φ̂TRUE).

Table 3-5. Monte Carlo Simulations for a Five-factor Macro Model (Distribution)

Parameter ΦTRUE Φ̂CLO − ΦTRUE Φ̂MIL − ΦTRUE

Mean Std. Dev. Mean Std. Dev.

�1 0.0030 -0.0025 0.0040 -0.0032 0.0040
�2 0.0250 -0.0304 0.0236 -0.0281 0.0199
�3 0.0100 -0.0095 0.0082 -0.0099 0.0140
�4 0.0300 -0.0290 0.0060 -0.0294 0.0054
�5 0.0100 -0.0098 0.0017 -0.0100 0.0020
�1 0.1000 0.0477 0.0269 0.0483 0.0323
�2 0.7500 -0.0145 0.0170 -0.0127 0.0156
�3 1.1500 -0.0073 0.0088 -3.457e-05 0.0062
�4 1.3200 0.0147 0.0122 0.0085 0.0100
�5 0.1000 0.0189 0.0190 0.0248 0.0171
�1 0.0030 -0.0148 0.0166 -0.0135 0.0132
�2 0.0020 0.0100 0.0199 0.0099 0.0136
�3 0.0020 -0.0038 0.0213 -0.0049 0.0186
�4 0.0040 0.0512 0.0152 0.0510 0.0129
�5 0.0020 0.0090 0.0072 0.0082 0.0091
�1 0.0040 0.0005 0.0323 -0.0111 0.0242
�2 0.0050 -0.0571 0.0377 -0.0414 0.0330
�3 0.0050 0.0016 0.0023 0.0005 0.0011
�4 0.0050 0.0027 0.0030 0.0011 0.0020
�5 0.0030 0.0020 0.0182 0.0015 0.0147



59

Table 3-6. Monte Carlo Simulations for a Five-factor Macro Model (MSE, IQR)

Parameter Φ̂CLO Φ̂MIL

MSE IQR50 MSE IQR50

�1 2.250e-05 0.0006 2.615e-05 0.0008
�2 0.0015 0.0303 0.0012 0.0229
�3 0.0002 0.0015 0.0003 0.0013
�4 0.0009 0.0028 0.0009 0.0021
�5 0.0001 0.0002 0.0001 0.0002
�1 0.0030 0.0423 0.0034 0.0439
�2 0.0005 0.0240 0.0004 0.0242
�3 0.0001 0.0109 3.896E-05 0.0067
�4 0.0004 0.0177 0.0002 0.0146
�5 0.0007 0.0198 0.0009 0.0198
�1 0.0005 0.0222 0.0004 0.0158
�2 0.0005 0.0275 0.0003 0.0176
�3 0.0005 0.0264 0.0004 0.0209
�4 0.0029 0.0156 0.0028 0.0148
�5 0.0001 0.0081 0.0002 0.0098
�1 0.0010 0.0393 0.0007 0.0367
�2 0.0047 0.0726 0.0028 0.0560
�3 7.782E-06 0.0026 1.422e-06 0.0010
�4 1.611E-05 0.0037 5.489e-06 0.0021
�5 0.0003 0.0215 0.0002 0.0174
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Fig. 3-6. Empirical Distribution of the Approximation Error (Φ̂CLO−ΦMIL) in a Five–

factor Macro Model

F. Conclusion

I propose an affine term structure model with both the typical latent factors and latent

macro factors by imposing cross-equation restrictions on yield movements from no-

arbitrage. Usually, macroeconomic variables are measured in monthly or quarterly

frequency; thus, it is hard to match the higher frequency of the interest rates and the

lower frequency of macro variables. To deal with this, instead of employing observable

macro variables, more yields such as the real yield, nominal yield, and defaultable

yield are used and latent macro factors are extracted from yield relationships by using

cross-equation restrictions.

Additionally, I add the spread factor between the short-term Treasury yield

and the federal funds rate into an affine term structure model to identify the high-

frequency monetary policy rule that describes the central bank’s reaction to expected

inflation and real activity at daily frequency. By using this two-step method, the



61

benchmark and backward-looking high-frequency monetary policy rules are identified

easily. In these monetary policy rules, the sizes of the expected inflation coefficients

are larger than 2 and the coefficients of the negative default spread are greater than

1, which implies that the central banks react to expected inflation very aggressively.

In comparison with the Bank of England, the Fed appears to adjust the federal funds

rate more actively. From the backward-looking high-frequency policy rules, I know

that the central banks consider the lagged macro information as well as the current

macro variables to some extent.

From the forecasting perspective, I find that macro factors and the spread factor

can help the affine term structure models better predict future yields than usual

latent models even though the spread factor is not helpful for improving out-of-sample

forecasting performance in the UK. These results imply that for the purpose of yield

forecasts, a term structure model with macro factors can provide better forecasting

results. Moreover, my macro model can generate forecasts of future expected inflation

and the negative default spread which are comparable to those by other benchmark

models.

Finally, I show that the spread between the 3-month Treasury yield and the

federal funds rate has strong predictive power for excess bond returns and future

changes in yields. In addition, I find that short-maturity yields tend to rise and long-

maturity yields tend to fall when the yield spreads are greater. These results are

inconsistent with the expectations hypothesis.
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CHAPTER IV

CONCLUSION

I show that incorporating observable macroeconomic variables not only helps the

affine term structure models better predict future yields but also considerably re-

duces the tension between matching the first and the second conditional moments.

Especially, the affine models with the velocity of money measured by M2 minus small

time deposits can capture all major stylized facts in Treasury yields. For each ma-

turity, I estimate affine models with different risk price specifications, the number of

factors, the number of independent volatility factors, and different combinations of

macro factors. Although there is no clear winner that dominates across maturities, I

find that three to four factor models with the velocity of money, stochastic volatility,

and flexible market price of risk perform better than others in terms of out-of-sample

forecasts. These models can also match the term premium variability observed in the

data.

The results imply that for the purpose of yield forecasts, macro-latent affine

models can provide better results than simple forecasting methods such as random

walk or unconstrained vector auto regressions. It is well known that economic restric-

tions such as the money demand relationship or monetary policy play a key role in

understanding interest rates. My results suggest that those conditions are important

for the empirical evaluation of the term structure of interest rates as well.

Usually, macroeconomic variables are measured in monthly or quarterly fre-

quency; thus, it is hard to match the higher frequency of the interest rates and

the lower frequency of macro variables. To deal with this, I propose an affine terms

structure model with both the typical latent factors and latent macro factors at

daily frequency by imposing cross-equation restrictions on yield movements from no-
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arbitrage. Additionally, I add the spread factor between the short-term Treasury

yield and the federal funds rate into an affine term structure model to identify the

high-frequency monetary policy rule. In the high-frequency monetary policy rules, the

sizes of the expected inflation coefficients are larger than 2 and the coefficients of the

negative default spread are greater than 1, which implies that the central banks react

to expected inflation very aggressively. From the backward-looking high-frequency

policy rules, I know that the central banks consider the lagged macro information as

well as the current macro variables to some extent.

From the forecasting perspective, I find that macro factors and the spread factor

can help the affine term structure models better predict future yields than the usual

latent models even though the spread factor is not helpful for improving out-of-sample

forecasting performance in the UK. I show that the spread between the 3-month

Treasury yield and the federal funds rate has strong predictive power for excess bond

returns and future changes in yields. In addition, I find that short-maturity yields

tend to rise and long-maturity yields tend to fall when the yield spreads are greater.

These results are inconsistent with the expectations hypothesis.
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APPENDIX A

PARAMETER ESTIMATES

Table A-1. Parameter Estimates for Selected Three Factor Models

parameters A1(3, 0) A3(3, 0) A1(3, 1; {v}) A3(3, 1; {v})
�1 0.0057 (0.0003) 0.0066 (0.0005) 0 0.0003 (0.0001)
�2 0 0.0321 (0.0058) 0 0.0322 (0.0028)
�3 (�v) 0 0.0172 (0.0014) 0.0296 (0.0006) 0.0311 (0.0007)

�1 0.0915 (0.0039) 0.0943 (0.0059) 0.0934 (0.0019) 0.0991 (0.0166)
�2 1.2741 (0.0575) 1.9312 (0.2832) 1.1022 (0.0507) 1.2101 (0.0639)
�3 (�v) 1.8624 (0.0725) 1.8219 (0.0314) 0.0869 (0.0018) 0.0874 (0.0019)

�11 -0.0827 (0.0037) -0.2611 (0.1577) 0 -0.1321 (0.1464)
�12 0 -0.7652 (0.0142) 0 -0.7658 (0.1172)
�13 (�1v) 0 -0.2010 (0.0033) -0.0998 (0.0049) -0.0983 (0.0352)
�2(11) 0 -0.0182 (0.0062) 0.0696 (0.0053) -0.0255 (0.0336)

�2(22) -0.1372 (0.0539) -0.5103 (0.2504) -0.1585 (0.0464) -0.0182 (0.0633)

�2(33) (�2(vv)) -0.1307 (0.0742) -0.1678 (0.0805) 0 -0.0487 (0.0286)

�1 0 0.0009 (0.0001) 0.0007 (0.0001) 0.0004 (0.0002)
�2 0.0014 (0.0004) 0.0092 (0.0033) 0.0012 (0.0002) 0.0063 (0.0035)
�3 (�3v) 0.0013 (0.0005) 0.0042 (0.0014) 0 0.0004 (0.0004)
�1 0.0122 (0.0003) 0.0094 (0.0009) 0 0.0119 (0.0036)
�2 0 0.0372 (0.0005) 0 0.0142 (0.0088)
�3 (�3v) 0 0.0333 (0.0005) 0.0097 (0.0010) 0.0102 (0.0060)
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Table A-2. Parameter Estimates for Selected Four Factor Models

A2(4, 1; {v})
parameters

latent 1 latent 2 latent 3 velocity

� 0.0057 (0.0004) 0 0 0.0296 (0.0001)
� 0.0903 (0.0054) 1.2318 (0.0551) 1.8624 (0.0277) 0.0869 (0.0001)
�1 -0.0813 (0.0041) 0 0 -0.0998 (0.0045)
�2 0 -0.1391 (0.0544) -0.1406 (0.0895) 0
� 0 0.0014 (0.0005) 0.0011 (0.0005) 0
� 0.0117 (0.0006) 0 0 0.0097 (0.0004)

A4(4, 1; {v})
parameters

latent 1 latent 2 latent 3 velocity

� 0.0063 (0.0004) 0.0319 (0.0042) 0.0104 (0.0012) 0.0311 (0.0008)
� 0.0977 (0.0064) 1.2254 (0.0635) 1.7953 (0.0146) 0.0874 (0.0023)
�1 -0.2985 (0.2009) -0.2103 (0.0676) -0.7658 (0.0047) -0.0983 (0.0690)
�2 -0.0901 (0.0009) -0.3113 (0.0365) -0.3018 (0.0211) -0.0487 (0.0148)
� 0.0007 (0.0001) 0.0061 (0.0034) 0.0093 (0.0011) 0.0007 (0.0002)
� 0.0121 (0.0036) 0.0147 (0.0088) 0.0187 (0.0010) 0.0102 (0.0028)

A4(4, 2; {v, g})
parameters

latent 1 latent 2 velocity output gap

� 0.0003 (0.0000) 0.0316 (0.0024) 0.0311 (0.0005) 0.0110 (0.0010)
� 0.0997 (0.0019) 1.2553 (0.0424) 0.0874 (0.0016) 1.3750 (0.1235)
�1 -0.1001 (0.1471) -0.2510 (0.0241) -0.0983 (0.0225) -0.1203 (0.0692)
�2 -0.0253 (0.0121) -0.0010 (0.0416) -0.0487 (0.0142) -0.0057 (0.1220)
� 0.0004 (0.0002) 0.0059 (0.0028) 0.0004 (0.0001) 0.0096 (0.0018)
� 0.0122 (0.0055) 0.0146 (0.0128) 0.0102 (0.0022) 0.0192 (0.0213)



69

Table A-3. Parameter Estimates for a Five Factor Model

parameters latent 1 latent 2 latent 3 inflation output gap

� 0.0085 0.0372 0.0102 0.0352 0.0111
(0.0006) (0.0069) (0.0006) (0.0013) (0.0003)

� 0.0765 1.3569 1.8979 0.0982 1.3750
(0.0049) (0.0647) (0.0131) (0.0036) (0.0401)

�1 -0.3711 -0.4176 -0.6208 -0.1078 -0.1203
(0.2776) (0.0149) (0.0081) (0.0942) (0.0347)

�2 -0.0931 -0.2109 -0.3241 -0.0077 -0.0057
(0.0207) (0.0705) (0.0261) (0.0289) (0.0497)

� 0.0008 0.0096 0.0012 0.0005 0.0096
(0.0002) (0.0036) (0.0003) (0.0004) (0.0035)

� 0.0111 0.0182 0.0132 0.0107 0.0192
(0.0105) (0.0010) (0.0002) (0.0053) (0.0357)



70

Table A-4. Parameter Estimates for Three-factor Yields-only Models (US)

A3(3, 0)
parameters

latent 1 latent 2 latent 3

� 0.0037 (0.0002) 0.0298 (0.0011) 0.0182 (0.0009)
� 0.1044 (0.0040) 0.8329 (0.0209) 1.4019 (0.0510)
�1 -0.2105 (0.0260) -0.3717 (0.0037) -0.2531 (0.0258)
�2 -0.0104 (0.0017) -0.2876 (0.0109) -0.1407 (0.0436)
� 0.0037 (0.0001) 0.0034 (0.0001) 0.0033 (0.0019)
� 0.0058 (0.0002) 0.0072 (0.0022) 0.0046 (0.0190)

A1(3, 0)
parameters

latent 1 latent 2 latent 3

� 0.0025 (0.0001) 0 0
� 0.1049 (0.0038) 0.6237 (0.0169) 1.5943 (0.0401)
�1 -0.1898 (0.0040) 0 0
�2 0 -0.1151 (0.0129) -0.1204 (0.0225)
� 0 0.0008 (0.0001) 0.0005 (0.0001)
� 0.0034 (0.0002) 0 0

Table A-5. Parameter Estimates for Three-factor Yields-only Models (UK)

A3(3, 0)
parameters

latent 1 latent 2 latent 3

� 0.0044 (0.0001) 0.0258 (0.0006) 0.0112 (0.0003)
� 0.1037 (0.0027) 0.7801 (0.0117) 1.7650 (0.0463)
�1 -0.2114 (0.0124) -0.1236 (0.0238) -0.2570 (0.0059)
�2 -0.0103 (0.0018) -0.2403 (0.0119) -0.1154 (0.0494)
� 0.0022 (0.0000) 0.0024 (0.0000) 0.0022 (0.0017)
� 0.0040 (0.0002) 0.0052 (0.0034) 0.0042 (0.0110)

A1(3, 0)
parameters

latent 1 latent 2 latent 3

� 0.0022 (0.0001) 0 0
� 0.1025 (0.0027) 0.7612 (0.0014) 1.7904 (0.0259)
�1 -0.2190 (0.0021) 0 0
�2 0 -0.1531 (0.0061) -0.1324 (0.0301)
� 0 0.0006 (0.0000) 0.0003 (0.0000)
� 0.0028 (0.0001) 0 0
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Table A-6. Parameter Estimates for Five-factor Yields-only Models (US)

A5(5, 0)
parameters

latent 1 latent 2 latent 3 latent 4 latent 5

� 0.0030 0.0283 0.0165 0.0009 0.0012
(0.0001) (0.0014) (0.0009) (0.0003) (0.0003)

� 0.0724 0.9332 1.3299 2.5322 2.6852
(0.0027) (0.0395) (0.0493) (0.3452) (0.5917)

�1 -0.2107 -0.3998 -0.2375 -0.1389 -0.2015
(0.0498) (0.0129) (0.0315) (0.0558) (0.1164)

�2 -0.0107 -0.2795 -0.1404 -0.1631 -0.3742
(0.0032) (0.0404) (0.0485) (0.0075) (0.6336)

� 0.0028 0.0038 0.0028 0.0032 0.0012
(0.0000) (0.0005) (0.0009) (0.0024) (0.0049)

� 0.0026 0.0072 0.0056 0.0012 0.0017
(0.0009) (0.0073) (0.0067) (0.1273) (0.1899)

A1(5, 0)
parameters

latent 1 latent 2 latent 3 latent 4 latent 5

� 0.0019 0 0 0 0
(0.0001)

� 0.0749 0.6237 1.4624 2.5241 2.6181
(0.0028) (0.0169) (0.0536) (0.1102) (0.1325)

�1 -0.1912 0 0 0 0
(0.0032)

�2 0 -0.1151 -0.1311 -0.1141 -0.0915
(0.0129) (0.0596) (0.0813) (0.0861)

� 0 0.0009 0.0005 0.0001 0.0002
(0.0001) (0.0001) (0.0001) (0.0001)

� 0.0026 0 0 0 0
(0.0002)
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Table A-7. Parameter Estimates for Five-factor Yields-only Models (UK)

A5(5, 0)
parameters

latent 1 latent 2 latent 3 latent 4 latent 5

� 0.0031 0.0234 0.0130 0.0012 0.0010
(0.0001) (0.0006) (0.0005) (0.0001) (0.0001)

� 0.1104 0.8341 1.6134 2.7269 2.8618
(0.0028) (0.0152) (0.0292) (0.1210) (0.1063)

�1 -0.2364 -0.1500 -0.2492 -0.1194 -0.2635
(0.0856) (0.0160) (0.0137) (0.0147) (0.0220)

�2 -0.0133 -0.2295 -0.1366 -0.1817 -0.2421
(0.0054) (0.0222) (0.0317) (0.0510) (0.0462)

� 0.0005 0.0032 0.0028 0.0023 0.0026
(0.0000) (0.0005) (0.0016) (0.0011) (0.0003)

� 0.0060 0.0062 0.0052 0.0028 0.0039
(0.0009) (0.0057) (0.0125) (0.0849) (0.0337)

A1(5, 0)
parameters

latent 1 latent 2 latent 3 latent 4 latent 5

� 0.0002 0 0 0 0
(0.0000)

� 0.0912 0.8762 1.6624 2.4411 2.7631
(0.0021) (0.0228) (0.1260) (0.0259) (0.0469)

�1 -0.2010(0.0029) 0 0 0 0

�2 0 -0.1311 -0.1297 -0.1231 -0.0751
(0.0197) (0.0924) (0.0376) (0.0315)

� 0 0.0006 0.0004 0.0001 0.0001
(0.0000) (0.0001) (0.0000) (0.0000)

� 0.0027 0 0 0 0
(0.0001)
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Table A-8. Parameter Estimates for a Five-factor Macro Model (US)

parameters latent 1 latent 2 latent 3 latent 4 latent 5

� 0.0037 0.0289 0.0131 0.0301 0.0125
(0.0011) (0.0003) (0.0004) (0.0009) (0.0005)

� 0.0503 0.6653 1.8203 0.5366 0.1575
(0.0104) (0.0216) (0.1117) (0.0154) (0.0052)

�1 -0.2104 -0.6160 -0.2575 -0.1014 -0.1235
(0.1509) (0.0905) (0.0044) (0.0075) (0.0209)

�2 -0.0106 -0.4040 -0.1414 -0.1082 -0.0161
(0.0117) (0.0214) (0.1161) (0.0159) (0.0029)

� 0.0038 0.0033 0.0028 0.0041 0.0027
(0.0001) (0.0000) (0.0018) (0.0001) (0.0000)

� 0.0053 0.0072 0.0030 0.0028 0.0074
(0.0005) (0.0009) (0.0019) (0.0009) (0.0006)

Table A-9. Parameter Estimates for a Five-factor Macro Model (UK)

parameters latent 1 latent 2 latent 3 latent 4 latent 5

� 0.0029 0.0233 0.0122 0.0282 0.0121
(0.0001) (0.0001) (0.0003) (0.0002) (0.0003)

� 0.1127 0.6714 1.0671 0.7322 0.0575
(0.0036) (0.0020) (0.0263) (0.0023) (0.0014)

�1 -0.2388 -0.5821 -0.2745 -0.1133 -0.1489
(0.0113) (0.0096) (0.0103) (0.0016) (0.0070)

�2 -0.0113 -0.3879 -0.1374 -0.3611 -0.0175
(0.0040) (0.0036) (0.0266) (0.0046) (0.0009)

� 0.0025 0.0022 0.0022 0.0039 0.0025
(0.0000) (0.0000) (0.0002) (0.0001) (0.0000)

� 0.0038 0.0052 0.0045 0.0045 0.0033
(0.0002) (0.0001) (0.0014) (0.0004) (0.0003)
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Table A-10. Parameter Estimates for a Six-factor Macro Model (US)

parameters latent 1 latent 2 latent 3 latent 4 latent 5 latent 6

� 0.0037 0.0278 0.0115 0.0287 0.0109 0.0021
(0.0008) (0.0005) (0.0005) (0.0008) (0.0004) (0.0001)

� 0.0506 0.6654 1.8203 0.5367 0.1576 2.5923
(0.0065) (0.0066) (0.0930) (0.0144) (0.0053) (0.0972)

�1 -0.2104 -0.6166 -0.2576 -0.1014 -0.1235 -0.2033
(0.0738) (0.0558) (0.0029) (0.0073) (0.0212) (0.0040)

�2 -0.0106 -0.4039 -0.1414 -0.1278 -0.0161 -0.0311
(0.0068) (0.0043) (0.0935) (0.0149) (0.0049) (0.1034)

� 0.0038 0.0033 0.0028 0.0041 0.0028 0.0011
(0.0000) (0.0000) (0.0005) (0.0000) (0.0000) (0.0018)

� 0.0053 0.0072 0.0030 0.0028 0.0074 0.0015
(0.0006) (0.0012) (0.0013) (0.0007) (0.0005) (0.0957)

Table A-11. Parameter Estimates for a Six-factor Macro Model (UK)

parameters latent 1 latent 2 latent 3 latent 4 latent 5 latent 6

� 0.0032 0.0254 0.0115 0.0283 0.0125 0.0020
(0.0001) (0.0001) (0.0003) (0.0002) (0.0003) (0.0001)

� 0.1132 0.6711 1.2141 0.7322 0.0575 3.2592
(0.0043) (0.0088) (0.0306) (0.0029) (0.0014) (0.1529)

�1 -0.2388 -0.5823 -0.2742 -0.1133 -0.1484 -0.2033
(0.0143) (0.0106) (0.0101) (0.0017) (0.0174) (0.0308)

�2 -0.0113 -0.3876 -0.1374 -0.3711 -0.0175 -0.0311
(0.0047) (0.0074) (0.0308) (0.0054) (0.0008) (0.1515)

� 0.0025 0.0023 0.0022 0.0039 0.0023 0.0010
(0.0000) (0.0000) (0.0002) (0.0001) (0.0000) (0.0040)

� 0.0038 0.0052 0.0045 0.0045 0.0034 0.0013
(0.0002) (0.0001) (0.0040) (0.0004) (0.0003) (0.6893)
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APPENDIX B

REGRESSIONS OF EXCESS BOND RETURNS ON THE YIELD SPREAD

Table B-1. Regressions of Excess Bond Returns on the Yield Spread (y3m
t − fft)

Holding Period
k= 3 months k= 6 months k= 12 months k= 24 months

US
OLS

1 -1.0563∗ -1.4365∗ -1.3381 -0.4276

(0.4161) (0.5736) (0.7265) (0.3679)
p-value 0.0116 0.0128 0.0665 0.2461

OLS-TC

1 -0.4779∗∗ -0.3383 -0.7314 -0.4142

(0.1420) (0.2548) (0.3925) (0.2769)
p-value 0.0009 0.1855 0.0635 0.1359

UK
OLS

1 -0.2781 -0.0404 1.4918 1.1630∗

(0.3359) (0.4903) (1.1012) (0.5139)
p-value 0.4092 0.9345 0.1780 0.0255

OLS-TC

1 -0.1069 -0.3829 0.5026 0.5760∗∗

(0.0992) (0.3294) (0.6111) (0.1981)
p-value 0.2835 0.2475 0.4127 0.0045

Notes: ∗ denotes significance at the 5 percent level and ∗∗ denotes significance
at the 1 percent level.
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Table B-2. Regressions of Excess Bond Returns on the Yield Spread (y60m
t − y3m

t )

Holding Period
k= 3 months k= 6 months k= 12 months k= 24 months

US
OLS

1 0.1325 0.2124 0.3088 0.0545

(0.1026) (0.1491) (0.2602) (0.1998)
p-value 0.1977 0.1553 0.2362 0.7854

OLS-TC

1 -0.0081 0.0199 -0.1937 0.0181

(0.0298) (0.0445) (0.1449) (0.1057)
p-value 0.7870 0.6559 0.1822 0.8638

UK
OLS

1 -0.0895 -0.0538 0.1373 0.3261∗∗

(0.0955) (0.1937) (0.3183) (0.1119)
p-value 0.3506 0.7818 0.6670 0.0043

OLS-TC

1 -0.0475 0.0191 0.0528 0.0808∗

(0.0349) (0.0705) (0.1083) (0.0336)
p-value 0.1761 0.7866 0.6273 0.0182
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Table B-3. Regressions of Excess Bond Returns on the Yield Spread (y60m
t − y24m

t )

Holding Period
k= 3 months k= 6 months k= 12 months k= 24 months

US
OLS

1 -0.3271 -0.2307 -0.2278 -0.5278

(0.2185) (0.3386) (0.5445) (0.3374)
p-value 0.1355 0.4961 0.6760 0.1188

OLS-TC

1 -0.0615 0.0477 -0.4119∗ -0.1346

(0.0364) (0.1006) (0.2023) (0.1938)
p-value 0.0926 0.6355 0.0427 0.4881

UK
OLS

1 -0.4039∗ -0.6451 -0.5899 -0.0192

(0.1777) (0.3952) (0.6706) (0.3734)
p-value 0.0246 0.1050 0.3807 0.9591

OLS-TC

1 -0.1871 -0.0478 -0.3323 0.0389

(0.0962) (0.1909) (0.3323) (0.0656)
p-value 0.0541 0.8027 0.3195 0.5545
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Table B-4. Regressions of Excess Bond Returns on the Yield Spread (y24m
t − y3m

t )

Holding Period
k= 3 months k= 6 months k= 12 months k= 24 months

US
OLS

1 0.4764∗ 0.6082∗ 0.8427∗ 0.4403

(0.2126) (0.2726) (0.4153) (0.3151)
p-value 0.0257 0.0264 0.0433 0.1634

OLS-TC

1 0.0912 0.0216 -0.1173 0.1822

(0.0733) (0.0673) (0.1935) (0.1529)
p-value 0.2147 0.7484 0.5448 0.2345

UK
OLS

1 -0.0384 0.1242 0.5563 0.7242∗∗

(0.1377) (0.2617) (0.4241) (0.1649)
p-value 0.7810 0.6359 0.1920 0.0000

OLS-TC

1 -0.0298 0.0546 0.2327 0.2393∗∗

(0.0428) (0.0882) (0.1373) (0.0860)
p-value 0.4872 0.5368 0.0929 0.0064
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Table B-5. Regressions of Excess Bond Returns on the Yield Spread (y60m
t − y36m

t )

Holding Period
k= 3 months k= 6 months k= 12 months k= 24 months

US
OLS

1 -0.6088 -1.4365∗ -0.5440 -0.9333

(0.3672) (0.5736) (0.8638) (0.5173)
p-value 0.0984 0.0128 0.5293 0.0722

OLS-TC

1 -0.1089 -0.3383 -0.6475∗ -0.2572

(0.0576) (0.2548) (0.3009) (0.3043)
p-value 0.0597 0.1855 0.0323 0.3988

UK
OLS

1 -0.7421∗∗ -0.0404 -1.4985 -0.4331

(0.2697) (0.4903) (1.0359) (0.6678)
p-value 0.0063 0.9345 0.1491 0.5171

OLS-TC

1 -0.3423∗ -0.3829 -0.7797 -0.0009

(0.1594) (0.3294) (0.5647) (0.1244)
p-value 0.0338 0.2475 0.1701 0.9943
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Table B-6. Regressions of Excess Bond Returns on the Yield Spread (y36m
t − y24m

t )

Holding Period
k= 3 months k= 6 months k= 12 months k= 24 months

US
OLS

1 -0.5711 -0.2101 -0.0837 -1.0636

(0.5019) (0.8133) (1.3853) (0.9099)
p-value 0.2560 0.7963 0.9518 0.2434

OLS-TC

1 -0.1290 0.1530 -1.0978 -0.2318

(0.0996) (0.2476) (0.6035) (0.5183)
p-value 0.1966 0.5372 0.0700 0.6550

UK
OLS

1 -0.0384 0.1242 0.5563 0.7242∗∗

(0.1377) (0.2617) (0.4241) (0.1649)
p-value 0.7807 0.6355 0.1906 0.0000

OLS-TC

1 -0.0293 0.0546 0.2327 0.2393∗∗

(0.0428) (0.0882) (0.1373) (0.0860)
p-value 0.4951 0.5368 0.0929 0.0064
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Table B-7. Regressions of Excess Bond Returns on the Yield Spread (y24m
t − y12m

t )

Holding Period
k= 3 months k= 6 months k= 12 months k= 24 months

US
OLS

1 0.3558 0.6219 1.4227 0.6724

(0.2749) (0.4277) (0.7986) (0.6270)
p-value 0.1965 0.1469 0.0758 0.2844

OLS-TC

1 0.1121 0.1659 -0.3500 0.2040

(0.1099) (0.1297) (0.4246) (0.3467)
p-value 0.3086 0.2019 0.4105 0.5568

UK
OLS

1 -0.7421∗∗ -1.3004∗ -1.4985 -0.4331

(0.2697) (0.6271) (1.0359) (0.6678)
p-value 0.0063 0.0389 0.1491 0.5171

OLS-TC

1 -0.3423∗ -0.1461 -0.7797 -0.0009

(0.1594) (0.3273) (0.5647) (0.1244)
p-value 0.0338 0.6562 0.1701 0.9943
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Table B-8. Regressions of Excess Bond Returns on the Yield Spread (y12m
t − y3m

t )

Holding Period
k= 3 months k= 6 months k= 12 months k= 24 months

US
OLS

1 1.0406∗∗ 1.2224∗ 1.3319 0.7137

(0.3769) (0.4787) (0.6791) (0.4844)
p-value 0.0061 0.0111 0.0508 0.1417

OLS-TC

1 0.1852 -0.1068 -0.1073 0.3782

(0.1334) (0.1419) (0.3083) (0.2241)
p-value 0.1664 0.4521 0.7280 0.0926

UK
OLS

1 -0.7799 -1.0755 -0.4939 0.6311

(0.4527) (0.9645) (1.6199) (0.7412)
p-value 0.0859 0.2657 0.7607 0.3952

OLS-TC

1 -0.3586 0.0071 -0.3710 0.2017

(0.2126) (0.4214) (0.7229) (0.1504)
p-value 0.0943 0.9865 0.6088 0.1828
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APPENDIX C

REGRESSIONS OF FUTURE CHANGES IN YIELDS ON THE YIELD SPREAD

Table C-1. Regressions of Future Changes in Policy Rate on the Yield Spread

(y3m
t − fft, y60m

t − y3m
t )

policy rate y3m
t − fft y60m

t − y3m
t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.2819∗∗ 0.6116∗∗ 0.9209∗∗ 0.0104 0.0481 0.0895

(0.0544) (0.1283) (0.2203) (0.0262) (0.0497) (0.0704)
p-value 0.0000 0.0000 0.0000 0.6925 0.3336 0.2047

R̄2 0.1213 0.1949 0.2425 -0.0025 0.0032 0.0109

OLS-TC
�1 0.1199 0.4132∗∗ 0.5929∗∗ 0.0435 0.0270 0.0553

(0.0698) (0.1239) (0.1703) (0.0222) (0.0567) (0.0812)
p-value 0.0877 0.0010 0.0006 0.0518 0.6338 0.4963

R̄2 -0.0017 0.1734 0.1938 -0.0116 -0.0331 -0.0215

UK
OLS
�1 0.6982∗∗ 1.2665∗∗ 1.7252∗∗ 0.0811∗ 0.1579∗ 0.2518∗

(0.0795) (0.1444) (0.2034) (0.0327) (0.0673) (0.0980)
p-value 0.0000 0.0000 0.0000 0.0144 0.0206 0.0114

R̄2 0.5026 0.5682 0.5481 0.1449 0.1779 0.2370

OLS-TC
�1 0.3926∗∗ 0.5202∗ 0.5608 0.0361∗ 0.0318 0.0169

(0.0848) (0.2398) (0.4313) (0.0163) (0.0298) (0.0327)
p-value 0.0000 0.0320 0.1961 0.0291 0.2887 0.6055

R̄2 0.3668 0.2415 0.1394 0.0948 0.0438 0.0087

Notes: ∗ denotes significance at the 5 percent level and ∗∗ denotes significance at the 1
percent level.
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Table C-2. Regressions of Future Changes in Policy Rate on the Yield Spread

(y60m
t − y24m

t , y24m
t − y3m

t )

policy rate y60m
t − y24m

t y24m
t − y3m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 -0.0126 0.0284 0.0829 0.0294 0.0902 0.1542

(0.0441) (0.0958) (0.1438) (0.0614) (0.1121) (0.1563)
p-value 0.7761 0.7668 0.5649 0.6328 0.4217 0.3248

R̄2 -0.0032 -0.0036 -0.0004 0.0002 0.0078 0.0157

OLS-TC
�1 -0.0343 -0.1317 -0.1133 0.1273∗∗ 0.1072 0.1791

(0.0310) (0.1146) (0.1825) (0.0332) (0.0784) (0.1093)
p-value 0.2704 0.2516 0.5352 0.0002 0.1732 0.1025

R̄2 -0.0446 -0.0178 -0.0228 0.0994 -0.0033 0.0155

UK
OLS
�1 0.0629 0.1280 0.2827 0.1347∗∗ 0.2635∗∗ 0.3939∗∗

(0.0821) (0.1603) (0.2434) (0.0420) (0.0871) (0.1290)
p-value 0.4441 0.4252 0.2463 0.0015 0.0027 0.0025

R̄2 0.0179 0.0188 0.0482 0.2079 0.2560 0.3016

OLS-TC
�1 0.0257 0.0183 -0.0347 0.0652∗∗ 0.0684 0.0518

(0.0301) (0.0450) (0.0464) (0.0240) (0.0526) (0.0552)
p-value 0.3947 0.6851 0.4565 0.0076 0.1953 0.3502

R̄2 0.0030 0.0095 0.0077 0.1528 0.0774 0.0294
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Table C-3. Regressions of Future Changes in Policy Rate on the Yield Spread

(y60m
t − y36m

t , y36m
t − y24m

t )

policy rate y60m
t − y36m

t y36m
t − y24m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 -0.0326 0.0109 0.0794 0.0032 0.1618 0.3447

(0.0801) (0.1624) (0.2373) (0.1028) (0.2329) (0.3572)
p-value 0.6845 0.9464 0.7380 0.9753 0.4879 0.3354

R̄2 -0.0026 -0.0042 -0.0023 -0.0035 -0.0012 0.0042

OLS-TC
�1 -0.0726 -0.2332 -0.2262 -0.0222 -0.2704 -0.1749

(0.0464) (0.1840) (0.2950) (0.0907) (0.2889) (0.4546)
p-value 0.1198 0.2066 0.4438 0.8072 0.3504 0.7008

R̄2 -0.0367 -0.0138 -0.0183 -0.0526 -0.0245 -0.0284

UK
OLS
�1 0.0463 0.1086 0.3253 0.2368 0.4636 0.8689

(0.1317) (0.2528) (0.3930) (0.1939) (0.3890) (0.5750)
p-value 0.7253 0.6678 0.4085 0.2228 0.2342 0.1317

R̄2 0.0064 0.0033 0.0199 0.0438 0.0511 0.0934

OLS-TC
�1 0.0221 0.0151 -0.0789 0.0939 0.0679 -0.0416

(0.0559) (0.0799) (0.0807) (0.0698) (0.1087) (0.1140)
p-value 0.6929 0.8509 0.3304 0.1811 0.5333 0.7154

R̄2 -0.0039 0.0077 0.0116 0.0178 0.0135 0.0039
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Table C-4. Regressions of Future Changes in Policy Rate on the Yield Spread

(y24m
t − y12m

t , y12m
t − y3m

t )

policy rate y24m
t − y12m

t y12m
t − y3m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0314 0.1542 0.2732 0.0570 0.1431 0.2365

(0.0814) (0.1573) (0.2217) (0.1270) (0.2286) (0.3197)
p-value 0.7001 0.3279 0.2187 0.6537 0.5320 0.4601

R̄2 -0.0025 0.0037 0.0105 0.0020 0.0075 0.0139

OLS-TC
�1 0.1771∗ 0.0546 0.1008 0.2344∗∗ 0.2556∗ 0.4065∗

(0.0795) (0.1611) (0.2600) (0.0592) (0.1282) (0.1812)
p-value 0.0272 0.7351 0.6985 0.0001 0.0475 0.0258

R̄2 0.0190 -0.0356 -0.0280 0.1323 0.0345 0.0602

UK
OLS
�1 0.2212∗ 0.4345∗ 0.6915∗ 0.2563∗∗ 0.4988∗∗ 0.7267∗∗

(0.1000) (0.2104) (0.3083) (0.0667) (0.1380) (0.2067)
p-value 0.0278 0.0397 0.0256 0.0001 0.0004 0.0005

R̄2 0.1119 0.1368 0.1833 0.2669 0.3272 0.3632

OLS-TC
�1 0.1029∗ 0.0946 0.0492 0.1283∗∗ 0.1486 0.1236

(0.0499) (0.0945) (0.1007) (0.0418) (0.0975) (0.0964)
p-value 0.0415 0.3192 0.6262 0.0026 0.1301 0.2020

R̄2 0.0778 0.0378 0.0077 0.2021 0.1116 0.0535
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Table C-5. Regressions of Future Changes in 3-month Yield on the Yield Spread

(y3m
t − fft, y60m

t − y3m
t )

3-month yield y3m
t − fft y60m

t − y3m
t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.1337∗ 0.2854∗ 0.5263∗ 0.0193 0.0598 0.0997

(0.0528) (0.1202) (0.2116) (0.0261) (0.0447) (0.0625)
p-value 0.0117 0.0181 0.0134 0.4594 0.1822 0.1116

R̄2 0.0249 0.0427 0.0842 0.0005 0.0100 0.0164

OLS-TC
�1 0.0784 0.0681 0.2096 0.0067 0.0085 0.0009

(0.0483) (0.0763) (0.1079) (0.0127) (0.0170) (0.0259)
p-value 0.1056 0.3731 0.0532 0.6002 0.6184 0.9715

R̄2 0.0122 -0.0327 0.0248 -0.0227 -0.0425 -0.0332

UK
OLS
�1 0.6110∗∗ 1.0107∗∗ 1.3533∗∗ 0.1043∗∗ 0.1754∗∗ 0.2695∗∗

(0.0788) (0.1686) (0.2449) (0.0327) (0.0652) (0.0964)
p-value 0.0000 0.0000 0.0000 0.0018 0.0081 0.0060

R̄2 0.4444 0.3631 0.3310 0.2551 0.2223 0.2654

OLS-TC
�1 0.4014∗∗ 0.4094∗∗ 0.4974∗ 0.0435∗ 0.0404 0.1154∗

(0.0733) (0.1389) (0.2151) (0.0187) (0.0319) (0.0480)
p-value 0.0000 0.0038 0.0224 0.0219 0.2072 0.0177

R̄2 0.3523 0.1458 0.1318 0.1596 0.0480 0.1218
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Table C-6. Regressions of Future Changes in 3-month Yield on the Yield Spread

(y60m
t − y24m

t , y24m
t − y3m

t )

3-month yield y60m
t − y24m

t y24m
t − y3m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0113 0.0701 0.1353 0.0373 0.0960 0.1490

(0.0382) (0.0841) (0.1377) (0.0596) (0.0991) (0.1279)
p-value 0.7681 0.4048 0.3266 0.5319 0.3335 0.2449

R̄2 -0.0028 0.0019 0.0060 0.0028 0.0118 0.0164

OLS-TC
�1 -0.0191 -0.0282 -0.0406 0.0368 0.0542 0.0370

(0.0199) (0.0287) (0.0452) (0.0246) (0.0326) (0.0485)
p-value 0.3362 0.3261 0.3691 0.1354 0.0973 0.4459

R̄2 -0.0189 -0.0379 -0.0259 0.0058 -0.0170 -0.0260

UK
OLS
�1 0.1154 0.2165 0.4138 0.1621∗∗ 0.2676∗∗ 0.3840∗∗

(0.0853) (0.1588) (0.2369) (0.0430) (0.0876) (0.1317)
p-value 0.1772 0.1739 0.0816 0.0002 0.0024 0.0038

R̄2 0.0506 0.0564 0.1048 0.3230 0.2683 0.2800

OLS-TC
�1 0.0482 0.0664 0.1273 0.0700∗∗ 0.0574 0.1339∗

(0.0348) (0.0554) (0.0731) (0.0165) (0.0389) (0.0598)
p-value 0.1690 0.2327 0.0837 0.0000 0.1423 0.0269

R̄2 0.0390 0.0215 0.0309 0.1928 0.0445 0.1009
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Table C-7. Regressions of Future Changes in 3-month Yield on the Yield Spread

(y60m
t − y36m

t , y36m
t − y24m

t )

3-month yield y60m
t − y36m

t y36m
t − y24m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0076 0.0881 0.1815 0.0558 0.2362 0.4266

(0.0659) (0.1395) (0.2220) (0.0925) (0.2062) (0.3466)
p-value 0.9086 0.5282 0.4142 0.5470 0.2530 0.2193

R̄2 -0.0030 0.0003 0.0036 -0.0020 0.0046 0.0098

OLS-TC
�1 -0.0345 -0.0519 -0.0675 -0.0398 -0.0562 -0.0991

(0.0324) (0.0467) (0.0729) (0.0512) (0.0745) (0.1178)
p-value 0.2867 0.2670 0.3559 0.4382 0.4508 0.4011

R̄2 -0.0172 -0.0360 -0.0253 -0.0213 -0.0407 -0.0271

UK
OLS
�1 0.1290 0.2651 0.5728 0.3614 0.6413 1.1139∗

(0.1385) (0.2559) (0.3870) (0.2025) (0.3793) (0.5591)
p-value 0.3525 0.3010 0.1398 0.0754 0.0919 0.0472

R̄2 0.0197 0.0275 0.0666 0.1015 0.0997 0.1520

OLS-TC
�1 0.0705 0.1086 0.1656 0.1289 0.1547 0.3973

(0.0551) (0.0842) (0.1079) (0.0892) (0.1440) (0.2196)
p-value 0.2029 0.1996 0.1274 0.1511 0.2848 0.0728

R̄2 0.0266 0.0187 0.0184 0.0543 0.0222 0.0497
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Table C-8. Regressions of Future Changes in 3-month Yield on the Yield Spread

(y24m
t − y12m

t , y12m
t − y3m

t )

3-month yield y24m
t − y12m

t y12m
t − y3m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0714 0.2011 0.2952 0.0542 0.1299 0.2107

(0.0734) (0.1413) (0.2062) (0.1263) (0.2056) (0.2573)
p-value 0.3314 0.1558 0.1533 0.6683 0.5280 0.4136

R̄2 0.0020 0.0121 0.0147 0.0017 0.0075 0.0119

OLS-TC
�1 0.0046 0.0234 -0.0300 0.1282∗∗ 0.1876∗∗ 0.1944∗

(0.0383) (0.0518) (0.0689) (0.0348) (0.0588) (0.0849)
p-value 0.9041 0.6522 0.6641 0.0003 0.0016 0.0229

R̄2 -0.0258 -0.0430 -0.0316 0.0803 0.0371 0.0155

UK
OLS
�1 0.2917∗∗ 0.4958∗ 0.7567∗ 0.2927∗∗ 0.4767∗∗ 0.6593∗∗

(0.1067) (0.2084) (0.3124) (0.0693) (0.1400) (0.2097)
p-value 0.0066 0.0180 0.0160 0.0000 0.0007 0.0018

R̄2 0.2071 0.1820 0.2146 0.3752 0.3026 0.2934

OLS-TC
�1 0.1110∗ 0.1026 0.3044∗ 0.1302∗∗ 0.1052 0.1995

(0.0522) (0.0913) (0.1263) (0.0289) (0.0617) (0.1094)
p-value 0.0353 0.2633 0.0174 0.0000 0.0905 0.0704

R̄2 0.1075 0.0278 0.0842 0.2297 0.0507 0.0936
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Table C-9. Regressions of Future Changes in 24-month Yield on the Yield Spread

(y3m
t − fft, y60m

t − y3m
t )

24-month yield y3m
t − fft y60m

t − y3m
t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.1864∗∗ 0.3235∗ 0.4722∗ -0.0017 -0.0163 -0.0245

(0.0680) (0.1298) (0.1881) (0.0328) (0.0601) (0.0801)
p-value 0.0065 0.0132 0.0125 0.9596 0.7866 0.7601

R̄2 0.0473 0.0515 0.0632 -0.0032 -0.0013 -0.0012

OLS-TC
�1 0.1092∗ 0.1911∗ 0.2900∗∗ 0.0070 0.0110 0.0311

(0.0467) (0.0852) (0.1047) (0.0142) (0.0232) (0.0259)
p-value 0.0200 0.0257 0.0060 0.6224 0.6359 0.2307

R̄2 0.0319 0.0251 0.0349 -0.0126 -0.0251 -0.0327

UK
OLS
�1 0.1973 0.2087 0.0870 0.0704∗ 0.1093 0.1498

(0.1176) (0.2212) (0.3179) (0.0350) (0.0715) (0.1036)
p-value 0.0958 0.3472 0.7848 0.0461 0.1286 0.1504

R̄2 0.0247 0.0110 0.0020 0.0609 0.0504 0.0548

OLS-TC
�1 0.0951 0.0711 0.0023 0.0289 0.0334 0.0175

(0.0804) (0.1649) (0.1612) (0.0189) (0.0239) (0.0354)
p-value 0.2389 0.6671 0.9885 0.1296 0.1651 0.6211

R̄2 0.0006 -0.0173 -0.0116 0.0100 -0.0071 -0.0090
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Table C-10. Regressions of Future Changes in 24-month Yield on the Yield Spread

(y60m
t − y24m

t , y24m
t − y3m

t )

24-month yield y60m
t − y24m

t y24m
t − y3m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0406 0.0810 0.1295 -0.0262 -0.0819 -0.1269

(0.0379) (0.0767) (0.1171) (0.0656) (0.1177) (0.1542)
p-value 0.2847 0.2917 0.2698 0.6899 0.4873 0.4111

R̄2 0.0004 0.0030 0.0052 -0.0004 0.0073 0.0108

OLS-TC
�1 -0.0104 -0.0090 0.0356 0.0287 0.0410 0.0601

(0.0239) (0.0406) (0.0467) (0.0240) (0.0402) (0.0432)
p-value 0.6635 0.8245 0.4464 0.2327 0.3076 0.1652

R̄2 -0.0133 -0.0265 -0.0382 -0.0035 -0.0188 -0.0303

UK
OLS
�1 0.1488 0.3152∗ 0.5086∗ 0.0868 0.1050 0.1192

(0.0821) (0.1560) (0.2286) (0.0497) (0.1045) (0.1480)
p-value 0.0708 0.0442 0.0268 0.0812 0.3160 0.4212

R̄2 0.0475 0.0733 0.1088 0.0479 0.0249 0.0186

OLS-TC
�1 0.0238 0.0695 0.0336 0.0492∗ 0.0385 0.0214

(0.0479) (0.0812) (0.1387) (0.0243) (0.0301) (0.0301)
p-value 0.6201 0.3939 0.8089 0.0452 0.2026 0.4799

R̄2 -0.0118 -0.0090 -0.0099 0.0211 -0.0115 -0.0096
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Table C-11. Regressions of Future Changes in 24-month Yield on the Yield Spread

(y60m
t − y36m

t , y36m
t − y24m

t )

24-month yield y60m
t − y36m

t y36m
t − y24m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0718 0.1499 0.2483 0.0809 0.1434 0.2065

(0.0606) (0.1205) (0.1859) (0.1041) (0.2072) (0.3097)
p-value 0.2372 0.2143 0.1826 0.4378 0.4895 0.5053

R̄2 0.0013 0.0049 0.0087 -0.0011 0.0002 0.0006

OLS-TC
�1 -0.0196 -0.0158 0.0541 -0.0182 -0.0189 0.0991

(0.0371) (0.0646) (0.0735) (0.0647) (0.1061) (0.1255)
p-value 0.5970 0.8065 0.4623 0.7791 0.8585 0.4305

R̄2 -0.0128 -0.0264 -0.0385 -0.0140 -0.0266 -0.0379

UK
OLS
�1 0.2280 0.5232∗ 0.8725∗ 0.3647 0.7074 1.0890∗

(0.1358) (0.2585) (0.3795) (0.1955) (0.3739) (0.5417)
p-value 0.0941 0.0438 0.0221 0.0631 0.0594 0.0453

R̄2 0.0377 0.0681 0.1076 0.0563 0.0728 0.0986

OLS-TC
�1 0.0197 0.1107 0.0601 0.0897 0.1682 0.0678

(0.0838) (0.1413) (0.2379) (0.1094) (0.1782) (0.3002)
p-value 0.8150 0.4349 0.8009 0.4141 0.3469 0.8217

R̄2 -0.0143 -0.0102 -0.0097 -0.0065 -0.0083 -0.0103
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Table C-12. Regressions of Future Changes in 24-month Yield on the Yield Spread

(y24m
t − y12m

t , y12m
t − y3m

t )

24-month yield y24m
t − y12m

t y12m
t − y3m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0178 -0.0083 -0.0443 -0.0802 -0.2105 -0.3089

(0.0864) (0.1606) (0.2224) (0.1216) (0.2125) (0.2751)
p-value 0.8373 0.9587 0.8421 0.5101 0.3227 0.2624

R̄2 -0.0029 -0.0021 -0.0019 0.0065 0.0214 0.0269

OLS-TC
�1 0.0130 0.0184 0.0520 0.0838∗ 0.1207 0.1596

(0.0424) (0.0642) (0.0717) (0.0392) (0.0772) (0.0898)
p-value 0.7605 0.7746 0.4686 0.0334 0.1190 0.0767

R̄2 -0.0139 -0.0263 -0.0391 0.0133 -0.0063 -0.0195

UK
OLS
�1 0.2212 0.3403 0.4555 0.1200 0.1025 0.0797

(0.1184) (0.2432) (0.3488) (0.0769) (0.1608) (0.2242)
p-value 0.0628 0.1629 0.1925 0.1197 0.5242 0.7223

R̄2 0.0617 0.0502 0.0521 0.0330 0.0099 0.0039

OLS-TC
�1 0.1048 0.1174 0.0559 0.0775∗ 0.0436 0.0291

(0.0643) (0.0856) (0.1206) (0.0374) (0.0549) (0.0499)
p-value 0.1054 0.1724 0.6437 0.0404 0.4287 0.5615

R̄2 0.0163 -0.0051 -0.0091 0.0188 -0.0161 -0.0101
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Table C-13. Regressions of Future Changes in 60-month Yield on the Yield Spread

(y3m
t − fft, y60m

t − y3m
t )

60-month yield y3m
t − fft y60m

t − y3m
t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.1451∗ 0.2423∗ 0.3390∗ -0.0199 -0.0577 -0.0839

(0.0650) (0.1208) (0.1718) (0.0290) (0.0540) (0.0719)
p-value 0.0263 0.0457 0.0493 0.4928 0.2859 0.2442

R̄2 0.0309 0.0312 0.0363 0.001 0.0096 0.0125

OLS-TC
�1 0.0711∗ 0.1318∗ 0.1153 0.0010 0.0070 0.0113

(0.0296) (0.0590) (0.0759) (0.0123) (0.0221) (0.0258)
p-value 0.0170 0.0262 0.1297 0.9348 0.7506 0.6619

R̄2 0.0116 0.0045 -0.0228 -0.0100 -0.0257 -0.0381

UK
OLS
�1 0.1131 -0.0004 -0.2311 0.0510 0.0669 0.0845

(0.1231) (0.2242) (0.3413) (0.0298) (0.0586) (0.0887)
p-value 0.3598 0.9986 0.4995 0.0890 0.2558 0.3427

R̄2 0.0094 0.0038 0.0110 0.0348 0.0254 0.0244

OLS-TC
�1 0.0796 0.0443 0.0430 0.0249 0.0270 0.0289

(0.0787) (0.1843) (0.2399) (0.0136) (0.0253) (0.0359)
p-value 0.3139 0.8103 0.8581 0.0703 0.2889 0.4224

R̄2 0.0140 -0.0110 -0.0123 0.0251 -0.0026 -0.0062
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Table C-14. Regressions of Future Changes in 60-month Yield on the Yield Spread

(y60m
t − y24m

t , y24m
t − y3m

t )

60-month yield y60m
t − y24m

t y24m
t − y3m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0181 0.0258 0.0454 -0.0551 -0.1446 -0.2146

(0.0342) (0.0674) (0.1015) (0.0556) (0.1003) (0.1318)
p-value 0.5971 0.7018 0.6551 0.3218 0.1502 0.1044

R̄2 -0.0021 -0.0016 -0.0012 0.0105 0.0306 0.0404

OLS-TC
�1 -0.0100 -0.0069 0.0029 0.0099 0.0248 0.0287

(0.0220) (0.0384) (0.0483) (0.0198) (0.0357) (0.0418)
p-value 0.6508 0.8570 0.9524 0.6152 0.4883 0.4925

R̄2 -0.0091 -0.0263 -0.0393 -0.0087 -0.0229 -0.0363

UK
OLS
�1 0.1163 0.2297 0.3746 0.0593 0.0523 0.0375

(0.0722) (0.1355) (0.2043) (0.0412) (0.0820) (0.1195)
p-value 0.1084 0.0911 0.0676 0.1511 0.5240 0.7538

R̄2 0.0319 0.0481 0.0752 0.0247 0.0106 0.0056

OLS-TC
�1 0.0372 0.0488 0.0561 0.0357∗ 0.0354 0.0338

(0.0383) (0.0791) (0.1213) (0.0177) (0.0310) (0.0436)
p-value 0.3329 0.5382 0.6444 0.0463 0.2561 0.4402

R̄2 0.0129 -0.0063 -0.0077 0.0261 -0.0039 -0.0083
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Table C-15. Regressions of Future Changes in 60-month Yield on the Yield Spread

(y60m
t − y36m

t , y36m
t − y24m

t )

60-month yield y60m
t − y36m

t y36m
t − y24m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 0.0436 0.0816 0.1381 0.0051 -0.0451 -0.0652

(0.0548) (0.1064) (0.1613) (0.0927) (0.1820) (0.2697)
p-value 0.4271 0.4438 0.3926 0.9564 0.8046 0.8091

R̄2 -0.0011 0.0002 0.0016 -0.0029 -0.0019 -0.0019

OLS-TC
�1 -0.0139 -0.0111 0.0049 -0.0304 -0.0175 0.0064

(0.0348) (0.0601) (0.0767) (0.0579) (0.1036) (0.1277)
p-value 0.6887 0.8534 0.9486 0.5996 0.8660 0.9599

R̄2 -0.0093 -0.0263 -0.0393 -0.0087 -0.0263 -0.0393

UK
OLS
�1 0.1788 0.3881 0.6646 0.2838 0.5020 0.7639

(0.1205) (0.2277) (0.3405) (0.1681) (0.3144) (0.4742)
p-value 0.1390 0.0893 0.0518 0.0924 0.1114 0.1082

R̄2 0.0256 0.0463 0.0796 0.0373 0.0456 0.0623

OLS-TC
�1 0.0483 0.0760 0.0950 0.1088 0.1209 0.1250

(0.0658) (0.1378) (0.2057) (0.0886) (0.1750) (0.2729)
p-value 0.4646 0.5823 0.6450 0.2219 0.4909 0.6477

R̄2 0.0095 -0.0073 -0.0076 0.0180 -0.0054 -0.0083
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Table C-16. Regressions of Future Changes in 60-month Yield on the Yield Spread

(y24m
t − y12m

t , y12m
t − y3m

t )

60-month yield y24m
t − y12m

t y12m
t − y3m

t

k = 1m k = 2m k = 3m k = 1m k = 2m k = 3m

US
OLS
�1 -0.0310 -0.1196 -0.2023 -0.1267 -0.3083 -0.4421∗

(0.0741) (0.1415) (0.1977) (0.0991) (0.1720) (0.2216)
p-value 0.6762 0.3987 0.3069 0.2019 0.0740 0.0469

R̄2 -0.0019 0.0031 0.0066 0.0239 0.0540 0.0661

OLS-TC
�1 0.0030 0.0160 0.0095 0.0305 0.0667 0.0865

(0.0355) (0.0620) (0.0724) (0.0332) (0.0628) (0.0751)
p-value 0.9338 0.7967 0.8962 0.3599 0.2887 0.2502

R̄2 -0.0100 -0.0260 -0.0393 -0.0062 -0.0186 -0.0310

UK
OLS
�1 0.1131 -0.0004 -0.2311 0.0708 0.0201 -0.0477

(0.1231) (0.2242) (0.3413) (0.0641) (0.1254) (0.1781)
p-value 0.3598 0.9986 0.4995 0.2702 0.8725 0.7890

R̄2 0.0094 0.0038 0.0110 0.0131 0.0042 0.0047

OLS-TC
�1 0.1704 0.2259 0.2739 0.0518 0.0442 0.0433

(0.0989) (0.1937) (0.2871) (0.0291) (0.0520) (0.0805)
p-value 0.0859 0.2443 0.3408 0.0778 0.3968 0.5914

R̄2 0.0401 0.0291 0.0260 0.0213 -0.0073 -0.0100
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APPENDIX D

CONDITIONAL MOMENTS WITH MILSTEIN APPROXIMATION

Using the Milstein approximation, I can approximate the first two conditional

moments as follows. For the conditional mean,

E(Xt∣Xt−Δ) = E(Xt −Xt−Δ∣Xt−Δ) +Xt−Δ

= �(Xt−Δ)Δ +Xt−Δ

Regarding the conditional variance, I have

V ar(Xt∣Xt−Δ)

= E([Xt −Xt−Δ − �(Xt−Δ)Δ]2)

= E([�(Xt−Δ)(Wt −Wt−Δ) +
1

2
�
∂�

∂X
(Xt−Δ)((Wt −Wt−Δ)2 −Δ)]2)

= E([�(Xt−Δ)Y +
1

2
�
∂�

∂X
(Xt−Δ)(Y 2 −Δ)]2) ( let Y = Wt −Wt−Δ, Y ∼ N(0,Δ) )

=

∫ ∞
−∞

[�(Xt−Δ)Y +
1

2
�
∂�

∂X
(Xt−Δ)(Y 2 −Δ)]2p(Y )dY ( p(Y ) : normal density )

= �2(Xt−Δ)

∫ ∞
−∞

Y 2p(Y )dY + �2 ∂�

∂X
(Xt−Δ)

∫ ∞
−∞

Y 3p(Y )dY

− �2 ∂�

∂X
(Xt−Δ)Δ

∫ ∞
−∞

Y p(Y )dY +
1

4
�2

(
∂�

∂X
(Xt−Δ)

)2 ∫ ∞
−∞

Y 4p(Y )dY

− 1

2
�2

(
∂�

∂X
(Xt−Δ)

)2

Δ

∫ ∞
−∞

Y 2p(Y )dY +
1

4
�2

(
∂�

∂X
(Xt−Δ)

)2

Δ2

∫ ∞
−∞

p(Y )dY

( ∵ E(Y 2) = Δ, E(Y 3) = 0, E(Y 4) = 3Δ2 )

= �2(Xt−Δ)Δ +
3

4
�2

(
∂�

∂X
(Xt−Δ)

)2

Δ2 − 1

2
�2

(
∂�

∂X
(Xt−Δ)

)2

Δ2 +
1

4
�2

(
∂�

∂X
(Xt−Δ)

)2

Δ2

Therefore, I can obtain the following.

V ar(Xt∣Xt−Δ) = �2(Xt−Δ)Δ +
1

2
�2

(
∂�

∂X
(Xt−Δ)

)2

Δ2
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