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ABSTRACT

User Importance Modelling in Social Information Systems:

An Interaction Based Approach. (December 2009)

Anupam Aggarwal, B.Tech, National Institue of Technology, Kurukshetra

Chair of Advisory Committee: Dr. James Caverlee

The past few years have seen the rapid rise of all things “social” on the web

from the growth of online social networks like Facebook, to real-time communication

services like Twitter, to user-contributed content sites like Flickr and YouTube, to

content aggregators like Digg. Beyond these popular Web 2.0 successes, the emer-

gence of Social Information Systems is promising to fundamentally transform what

information we encounter and digest, how businesses market and engage with their

customers, how universities educate and train a new generation of researchers, how

the government investigates terror networks, and even how political regimes interact

with their citizenry. Users have moved from being passive consumers of information

(via querying or browsing) to becoming active participants in the creation of data

and knowledge artifacts, actively sorting, ranking, and annotating other users and

artifacts.

This fundamental shift to social systems places new demands on providing de-

pendable capabilities for knowing whom to trust and what information to trust, given

the open and unregulated nature of these systems. The emergence of large-scale user

participation in Social Information Systems suggests the need for the development

of user-centric approaches to information quality. As a step in this direction this

research proposes an interaction-based approach for modeling the notion of user im-

portance. The interaction-based model is centered around the uniquely social aspects

of these systems, by treating who communicates with whom (an interaction) as a
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core building block in evaluating user importance. We first study the interaction

characteristics of Twitter, one of the most buzzworthy recent Social Web successes,

examining the usage statistics, growth patterns, and user interaction behavior of over

2 million participants on Twitter. We believe this is the first large-scale study of

dynamic interactions on a real-world Social Information System. Based on the anal-

ysis of the interaction structure of Twitter, the second contribution of this thesis

research is an exploration of approaches for measuring user importance. As part of

this exploration, we study several different approaches that build on the inherent

interaction-based framework of Social Information Systems. We explore this model

through an experimental study over an interaction graph consisting of 800,000 nodes

and about 1.9 million interaction edges. The user importance modeling approaches

that we present can be applied to any Social Information System in which interactions

between users can be monitored.
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CHAPTER I

INTRODUCTION

A. Introduction

The past few years have seen the rapid rise of all things “social” on the web – from the

growth of online social networks like Facebook, to real-time communication services

like Twitter, to user-contributed content sites like Flickr and YouTube, to content ag-

gregators like Digg. Beyond these popular Web 2.0 successes, the emergence of Social

Information Systems is promising to fundamentally transform what information

we encounter and digest, how businesses and market engage with their customers,

how universities educate and train a new generation of researchers, how the govern-

ment investigates terror networks [11], and even how political regimes interact with

their citizenry (e.g., the use of Twitter and Facebook in the recent Iranian election

controversy [12]).

Unlike traditional database and web-based information systems, Social Informa-

tion Systems are centered around user-contributed content, socially-generated meta-

data (e.g., comments, ratings, tags), and person-to-person social connections. Users

have moved from being passive consumers of information (via querying or browsing)

to becoming active participants in the creation of data and knowledge artifacts, ac-

tively sorting, ranking, and annotating other users and artifacts. Figure 1 illustrates

how users can interact with one another in a Social Information System. Some users

are content creators, some are passive consumers, while others actively participate in

the content creation by tagging documents or annotating them. Users are thus, di-

rectly or indirectly in contact with one another, constantly evaluating content created

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Social Information System

by their peers. These new features have encouraged an explosion of user-generated

content, led to the development of new modes of social information discovery, and

generated a huge research interest in studying and analyzing these emerging systems.

B. Research Challenges

Along with these new opportunities, the fundamental shift to social systems places

new demands on providing dependable capabilities for knowing whom to trust and

what information to trust, given the open and unregulated nature of these systems.

Indeed, both the database and information retrieval communities have recently rec-

ognized the immense research challenges inherent in these emerging social systems

[1]. Critics of information systems incorporating social computing features argue

that these systems undermine the notion of expertise: anyone can post content and

share opinions even though they might not have the appropriate credentials to au-
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thor the content, or might have hidden biases, leading to the content being irrelevant

and misguided [30]. Thus, there is a high variance in the distribution of quality of

socially-generated content.

Traditional Web approaches for assessing online information quality have typ-

ically focused on content-based and link-based approaches for assessing the quality

of Web documents. Prominent examples of this style include PageRank [8], HITS

[15], and linguistic analysis[6]. While these and related document-centric approaches

have shown great success over traditional (Web 1.0) information resources (e.g., CNN,

Texas A&M University, IBM), the emergence of large-scale user participation in Social

Information Systems suggests the need for the development of user-centric approaches

to information quality.

The concept of finding importance of users in Social Information Systems is a

relatively new and encouraging research area. There have been some attempts to

find high-quality user content based on the quality of comments [13], ratings of other

users [16], quality of tags, and so on. However these studies have focussed more on

identifying high quality content from other content (like comments and tags); they

have not looked at the source of the content, i.e., the user itself. We believe that if

it is possible to identify a set of important, high-quality users then content coming

from them can be trusted.

A user who is important among his peers, whose opinions matter to other users

on the network, and who is trusted by other users can be safely assumed to be the

author of high quality content in some form, as he would have gained his following

on account of his significant contributions in the past. Determining a set of good

users would automatically help to ensure quality of documents, obviating the need

to analyze the quality of user generated data (e.g., tags, comments, content) coming

out of these users. Another reason we are interested in finding out importance is to
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discover people who are popular in the network, or whose opinions matter to other

users of the network. Identifying a set of important users can have several applications

in advertising, and recommendation systems.

Coupled with the challenge of determining user quality is the explosion of avail-

able information about users in the system. Users leave behind a trail of online fin-

gerprints, including the content submitted by each user, their ratings of other users

and content, their annotations (e.g., tags and comments), and their connections to

other users (via friendship links in the social network). While none of these individual

pieces of evidence may reveal the quality of a user, it is the assertion of this thesis that

these implicit signals can be harvested to support robust user importance modeling.

C. Overview of Thesis

As a step in the direction of modeling and assessing user quality in Social Information

Systems, this thesis research proposes an interaction-based approach for modeling

user importance. The interaction-based model is centered around the uniquely social

aspects of these systems, by treating who communicates with whom (an interaction)

as a core building block in evaluating user importance.

Concretely, this thesis makes two contributions:

• The first contribution of this thesis research is a large-scale study of the in-

teraction characteristics of Twitter, one of the most buzzworthy recent Social

Web successes. Twitter is a microblogging service that has attracted millions of

users who communicate via short messages of 140 characters or less (“tweets”).

We examine the usage statistics, growth patterns, and user interaction behavior

over 2 million participants on Twitter. We believe this is the first large-scale

study of dynamic interactions on a real-world Social Information System.
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Fig. 2. Social networks: A microscopic view of Web 2.0

• Based on the analysis of the interaction structure of Twitter, the second contri-

bution of this thesis research is an exploration of approaches for measuring user

importance. As part of this exploration, we study several different approaches

for measuring user importance that build on the inherent interaction-based

framework of Social Information Systems. We explore this model through an

experimental study over an interaction graph consisting of 500,000 nodes and

about 1.9 million interaction edges.

While this thesis is focused on the concrete interaction patterns over the Twitter

information service, the user importance modeling approaches that we present can be

applied to any Social Information System in which interactions between users can be

monitored. Our hope is that the insights drawn from our study of one particular sys-

tem (Twitter) can be adapted and deployed in other emerging social systems.Figure

2 shows the social interactions in twitter.

The rest of this thesis is organized as follows. Chapter II discusses some of
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the related research in the analysis of social networks. In chapter III we analyze

the Twitter social network and describe some of the structural characteristics of

the interaction patterns in Twitter. In chapter IV we present several techniques

for measuring user importance, with an emphasis on approaches that leverage the

interaction characteristics of the social network. Chapter V concludes the thesis by

discussing some possible extensions of this research and its significance.
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CHAPTER II

RELATED WORK

In this section we give an overview of related research, focused on: (i) Expert Finding

and Content Quality Evaluation; (ii) Characterization of User Behavior on Twitter;

and (iii) Structural Analysis of Online Social Graphs.

A. Expert Finding and Content Quality Evaluation

Researchers have studied social interactions primarily with the aim of identifying

high quality user content. In these researches about content quality user importance

implicitly plays an important role. Study of interaction dynamics is undertaken by

Zhang et al. [17] in their study aimed at identifying expert users in an online Java

Forum, a large online help seeking community. Their aim of identifying expert users

is related to our goal of identifying important people, however while their criteria of

importance is mainly concerned with expert authors in social communities, our notion

of importance is more generic. In our view of user importance, users don’t necessarily

have to be content creators, or expert contributors. They could be actors, sportsman,

CEO’s, politicians or anyone who is perceived as important in they eyes of society.

They construct a directed post-reply graph to model interactions similar to our social

interaction network and run link based algorithms similar to PageRank and HITS

to calculate expertise on the underlying linked structure. Structural analysis of the

java community also exhibits some similarity to ours, like the existence of bow tie

structures. Campbell et al. [18] compute authority score of HITS over the user-user

graph to show its correlation to content quality. Dom et al. [20] rank people on

the basis of their expertise on a network of email exchanges. Agichtein et al. [16]

investigate methods for exploiting community feedback to automatically identify high
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quality content.

Notion of whom to trust is dependent upon identifying a set of trusted users. Our

view of Importance inherently captures this notion of trust. Guha et al. [21] examine

how trust is propagated in social networks by constructing a trust graph consisting

of trust and distrust edges between users. Importance in our study is propagated

through the web graph in a similar manner to trust.

B. Characterization of User Behavior on Twitter

Krishnamurthy et al. [3] have focused on studying the nature of user connections of

over 100,000 profiles in the Twitter social network. As compared to our study (of

over a million users), however their study is on a relatively smaller scale. Based on

this study they characterize users into broadly three distinct classes: (i) Broadcasters

or users that have a much larger number of followers then what they themselves

follow (news stations like NYT, CNN etc); (ii) Acquaintances, who tend to exhibit

reciprocity in their relationships; and (iii) Miscreants or Evangelists, users who follow

a much larger number of people then they have followers. Java et al. [5] study the

different types of user interactions in social networks that they have broadly classified

as daily chatter, conversations, sharing information and reporting news. According

to Quantcast [28] 55% of the Twitter users are female and 43% are in the age group

of 18-34. Kelly et al. [27] classify tweets into five main categories. News, Spam,

Self Promotion (tweets that promote a product/service/individual), Pointless Babble

(which they use to classify normal tweet status messages of users, i.e., messages of

type “I am going to the supermarket now”), Conversational (containing replies of one

profile to another profile, i.e., those prefixed by an @ symbol) and Pass-Along value

(tweets similar to forwarded emails). According to them most of the tweets are either
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conversational 37.5% or in the category of Pointless Babble 40%. This fact is also

observed by us in our study. Golder et al. [2] show that people message or interact

with a very limited number of social connections in Facebook. They also find that

message reciprocity is relatively rare even in these interactions among friends. Kumar

et al. [19] characterize users as either passive members of the network; or as inviters

who encourage offline friends and acquaintances to migrate online; and linkers who

fully participate in the social evolution of the network.

C. Structural Analysis of Online Social Graphs

Kumar et al. [19] study how friendship structures evolve in these social networking

communities. Based on their analysis of Flickr and Yahoo 360 they segment the

structure of these social networks into three regions: singletons who do not participate

in the network; isolated communities which overwhelmingly display star structure;

and a giant component anchored by a well-connected core region which persists even

in the absence of stars. Our analysis of the interaction structure of Twitter yields very

similar results. We also find the existence of a large strongly connected component

formed as a result of profile interactions along-with the presence of large number of

singleton profiles who do not participate in the community.

In their study of Twitter, Krishnamurthy et al. [3] have observed a correla-

tion between tweet frequency of the user and the number of followers of the profile.

This correlation between tweet frequency of a user and his follower/following count

is the motivation for our idea of biasing PageRank computation by the number of

follower/followers. Most of their findings about user behavior, social relationships

are consistent with other earlier related studies [5], however their study of friend-

ship based interactions is based, just like other related studies, on examining the
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immediate profile neighborhood. They only look at direct relationships (or just the

immediate followers and following profiles). Our approach on the other hand is much

more global in sense that it looks at the global graph of such friend relationships and

their interactions.

Java et al. [5] do some usage analysis which shows that the growth rate of Twitter

has slowed possibly because the initial hype has died down, along with the fact that

user activity declines with time for a vast majority of users suggesting that there

are a sizeable amount of users who join the networks out of curiosity. This fact also

underlines that a traditional friendship based approach for detecting user importance

is not suitable as it does not capture user activity over time. Their study of social

networking relationships is also, like earlier studies based on the traditional friendship

(follower-following) graph structure. They construct a directed graph G(V,E) where V

represents the users and E(edges) represent the set of friend relations where a directed

edge e between two users u and v exists if user u declares v as a friend. Their analysis

of the nature of this friendship graph and its properties like average degree of a node,

reciprocity, existence of strongly connected components, size, etc. also indicate that

the network shows a large amount of reciprocity in the friend graph suggesting that

new friends join the network mainly by invitation from other friends. This leads us

to believe that one aspect of measuring user importance can be simply the number

of friends a profile has (which is the motivation for biasing TrustRank computation

by the number of followers). However this is not entirely true as there are users

who follow updates of large number of other profiles (thus becoming their friends)

for dubious reasons (for example a recruiter can follow updates of large number of

profiles to find out about profiles that are looking for networking opportunities, or

employers can follow updates of their employees to keep tabs on their activities).



11

CHAPTER III

ANALYSIS OF INTERACTION STRUCTURE ON TWITTER

The first contribution of this thesis research is an analysis of the interaction structure

of Twitter. In the past much of the study of social networking communities has

focused around the static relationship structure among participants, e.g., the declared

friendship structure of Facebook members. However a study based on friendship-

based linked structure does not reveal the actual interactions among people. Such a

study does not reveal, for instance, the friends people communicate more often with

and who among them reciprocate this attention. Golder et al. [2] show that people

message or interact with a very limited number of social connections in Facebook.

They also find that message reciprocity is relatively rare even in these interactions

among friends.

As part of this first research thrust, we investigate the dynamic interactions on

a real-world Social Information System. In particular, we study the characteristics

of one such social network Twitter, its usage statistics, growth patterns and user

interaction behavior. We study several standard metrics like average indegree and

outdegree of a node, the degree of reciprocity, the percentage of terminal and dangling

nodes in the network, and so on. We believe this is the first large-scale study of

dynamic interactions on a real-world Social Information System. The results of this

study have important implications for modeling user importance, for example, by

considering the frequency of interaction between individuals as an approximation of

their relationship strength. In the rest of this section, we present an overview of

Twitter, describe the Twitter data collected as part of this study, discuss how we can

view Twitter as a social interaction network, and present an analysis of the interaction

structure on Twitter.
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A. Twitter: An Overview

Twitter is a free social networking and micro-blogging service created by Jack Dorsey

in 2006, that enables its users to send and read short messages of 140 characters

known as tweets [23]. These tweets are delivered as feeds to profile pages of all the

followers of that profile. Followers are people who subscribe to receiving the person’s

updates. Senders can either make their feeds private in which case they can only be

viewed by their friends (or followers) or make them public in which case they can

be viewed by anyone on the network. Twitter has a broadcast nature of message

delivery which is one of the reasons why it has become such an important source

for discovering real time events. Users can send and receive these tweets not only

through the website but can also use their phones, and other third party applications

to tweet. According to Quantcast.com [28] Twitter had about 30 Million profiles as

of July 2009.

Figure 2 gives an overview of user interactions in Twitter. In Twitter people can

either interact directly or indirectly. They can post links to video’s, photos or other

content, inviting comments from other users. Twitter helps people to keep tabs on

the activities of set of people they think are important.

Table I. User composition and popularity of Twitter [26]

Country Percentage of Users Traffic Rank in the Country

USA 42.5 13

Germany 8.1 14

India 7.3 13

UK 6.2 13

Japan 2.9 63
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Twitter has been described as the SMS of the internet by [25]. It is one of the

fastest growing (growth rate of 1382% per month) and amongst the top 50 most

popular websites of the world[26]. Most of the users on Twitter come from the

United States. The detailed composition is given by Table I. Essential to the real

time characteristic of Twitter is a real time search engine which can instantly index

any public update sent from anywhere in the world. This enables Twitter to keep

track of happenings around the world and function as a real-time discovery engine of

news from all over the world.

Figure 3 shows an example of a profile on Twitter for user Ashton Kutcher. Ash-

ton Kutcher is amongst the most popular profile on Twitter with 3,345,264 followers

following his feeds. He in turn follows 207 other profiles. Out of the several tweets

on his page the tweets prefixed by an @ sign are the replies from aplusk’s profiles to

other users. These replies are usually addressed to a single profile and can be viewed

as an indication of direct communication intent between two users. The other tweets

(those not prefixed by an @ sign) can be general statements or comments targeted at

the entire follower population.

B. Dataset Description

We model our approach of detecting user importance using data crawled from the

Twitter social network. Our data collection methodology involves crawling the public

timeline of Twitter [14]. The Public Timeline of Twitter is a profile page consisting of

tweets sampled randomly from all the public profiles on Twitter. This profile provides

all the data for our study [14]. Crawling the public timeline can give a fairly accurate

snapshot of events going in the world at that particular time. We crawl the public

timeline and gather about 600 tweets per minute. The tweets are stored in xml format
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Fig. 3. Twitter profile of Ashton Kutcher (aplusk)
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with roughly 15 days of tweets being used for analysis at a time.

Fig. 4. xml format of the stored information crawled from public timeline

Figure 4 shows the xml format in which we store the information crawled from

the public timeline. The tweet contents are stored between the text nodes. The user

information corresponding to that tweet is contained in the user nodes. This xml

snippet consists of information about a user named Lamar Romero having the screen

name of FundingUrBiz. The text node contains his reply to another profile having

the name of susanmcool.

This 15 days of public timeline data contains information about roughly 2 million

distinct users. Since the public timeline is cached for 60 seconds we hit the public

timeline page once per minute, each time collecting about 100 tweets.

Table II shows that the number of distinct users found out from a crawl of the
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Table II. Basic usage statistics of Twitter dataset
Statistic 1-17 Dec 08 17-31 Dec 08 31 Dec-19 Jan 09

No. of Users 1, 171, 631 1,075,142 1,433,158

No of Users receiving replies 393, 502 346,428 468,746

No of users posting general
comments

698, 795 649,903 864,548

No. of RepliesTo 3, 662, 112 3,357,671 4,625,594

No. of Total Tweets 12, 509, 510 11,734,153 15,240,176

public timeline remains fairly constant (around 1.5 million for 15 days). Approxi-

mately 25% of the tweets are replies to, the other being general comments. This

result is consistent with the trend observed by [27].

Figure 5 shows the distribution of the frequency of replies to profiles. This graph

gives us an idea of the nature of tweets of users. The majority of users have fewer

than 100 replies addressed to them. This shows that users primarily do not use

replies addressed to their individual friends to communicate. This behavior can be

attributed to the broadcast nature of Twitter by which user status feeds are visible to

all of their friends. Since the number of replies are scarce we can safely assume that

the users who are the addresses of the replies are important to the person replying

directly to them. This forms the basis of our technique of modeling replies as a vote

of importance or as an intent of showing special interest to the receiving user.

C. Viewing Twitter as a Social Interaction Network

In this section, we show how to view Twitter as a social interaction network. We

begin our study by first considering the declared social network corresponding to the

declared relationships in the network (e.g., followers, following). This static network

gives only a partial view of the dynamics of the interactions that make a social

network vibrant; hence, we then study the interaction dynamics and usage statistics

of Twitter. This is essential in order to understand the nature of communication
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Fig. 5. Distribution of reply frequencies with profiles

between Twitter users. This would help us answer questions like, how do users in

Twitter interact with one another, what is the primary interface they use, what is

the frequency of these interactions, what is the nature of most of the tweets, whether

they are general comments or addressed to friends directly etc.

1. The Declared Social Network

A declared social network is constructed over the following relations in Twitter. Fol-

lowing profiles are all those profiles whose updates a profile subscribes to receiving.

They indirectly model expression of interest in the profile being followed as typically

users follow all those profiles which are of interest to them. These profiles might be

of their close friends or some social celebrities. Thus these relations indirectly model

notion of profile importance as perceived by the followers.

We constructed the declared social network over all the profiles in our dataset.
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Fig. 6. Indegree distribution of following graph

We also discarded all those profiles that were being followed but were not in our

dataset. Formally a declared social network is a graph constructed over following

relations is a directed graph G(V,E) where the vertices V represent the profiles and

and E represent the directed edges. If a profile A follows profile B there would be an

edge from A to B. E thus represents the entire set of these edges.

The reason why we constructed a graph over the following relations and not

the follower relations is because of the fact that following profiles are less in number

whereas the followers might me of order of several thousands. This makes graph

construction easy as it takes less memory and computation is more efficient. However

since both follower and following relations are reciprocal it really does not matter

whether graph is constructed over the followers or the following.

Figure 6 shows the indegree distribution of the friendship graph and figure 7

shows the outdegree distribution. The indegree distribution shows an exponential

decrease in the number of users with increase in indegree. Indegree of a profile can

be indirectly correlated to the number of followers of a profile. A profile having



19

Fig. 7. Outdegree distribution of following graph

large indegree would have a large number of followers and vice versa. The outdegree

distribution however gives an indication of the number of profiles followed by the

profile in consideration. From the graphs we see that the number of profiles becomes

very less as outdegree increases beyond 100. This goes to show that more than 90%

of users on twitter follow less than 100 profiles. In contrast however there are still a

substantial number of users having indegree more than 100.

Table III gives some of the statistics of the friendship graph. In the graph the

maximum indegree profile is of Barack Obama. Maximum indegree node signifies a

profile having the maximum number of followers in our dataset. Barack Obama is

the current president of US and one of the most important persons in the world. This

goes to show that the indegree or the number of followers of a profile can be a fairly

useful metric for measuring profile importance.
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Table III. Friendship graph statistics (constructed over same dataset as interaction

network)

Statistic Value

Number of Nodes 802144

Average Indegree and Outdegree 10.7

Max Outdegree 97

Max Outdegree Profile speakeroftruth

Max Indegree 34199

Max Indegree Profile BarackObama

Percentage of dangling nodes 57

2. The Interaction-Based Social Network

Since Twitter users can communicate with other users through the use of the “reply”

mechanism, regardless of declared friend relationships, we can view these direct replies

as interactions. In the aggregate, we view the collection of users and their replies as

the basis of a social interaction network. Formally, a social interaction network is a

directed graph G(V,E) formed over the replies where V represent the nodes in the

graph which represent user profiles and E represents the directed edges indicating the

reply. A directed edge from user A to B indicates that at some point user A tweeted

user B (e.g., A tweeted a message to B in the form “@B...message...”). We construct

two variants of this Reply-to graph the weighted variant and the unweighted variant.

In the weighted variant of the social interaction network, the edge weights on the

edges indicate the frequency of the interaction between users representing the edge

nodes. If profile A tweets profile B 5 times we put an edge weight of 5 on the edge

A-B.
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Fig. 8. Social Interaction Network in neighborhood of profile aplusk

As an illustration, Figure 3 shows a snapshot of Twitter user aplusk (Ashton

Kutcher) and Figure 8 shows the corresponding social interaction network in the

immediate neighborhood of aplusk. Unlike the declared social network, which is a

static graph not affected by the extent of communication between friends, the inter-

action network captures the frequency of interactions between the users on twitter.

It thus gives an indication of profile activity of a profile. Typically a profile which

uses twitter very frequently would have a dense network of edges around it. Disinter-

ested/infrequent users therefore can be easily found out using this graph.

Table IV gives an overview of the properties of the social interaction network

constructed over a period of 15 days. The graph consists of lots of dangling nodes.

These are profiles that do not participate in conversation with anyone but might

have incoming tweets directed at them. These properties of the social interaction
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Table IV. Reply-to graph statistics (constructed over 15 days period)

Statistic Value

Number of Nodes 802144

Average Indegree and Outdegree 2.1

Max Outdegree 934

Max Outdegree Profile Mstweet

Max Indegree 7661

Max Indegree Profile stephenfry

Percentage of dangling nodes 32

network are fairly consistent across time (for a graph constructed over roughly the

same duration of time in the weeks immediately preceding and following the period

of study).

We observe some basic differences in the interaction graph from the declared

friend graph on examining Table IV. One of the most important difference is the

average indegree and outdegree. This is due to the fact that in a declared friend

graph a profile typically follows many other profiles. An interaction graph only cap-

tures profiles these profiles actually interact with. From the value of indegree and

outdegree it is evident that profiles only interact with a subset of their friends. Also

the maximum outdegree of profile in the social interaction network is a lot more than

the friendship graph. This indicates that there is large variance of user characteristics

in the social interaction network with some users tweeting others a lot. A declared

friendship graph on the other hand does not have these large variances in the degree

distribution. This variation is also evident after comparing the outdegree distribution

of the social interaction network and the declared friend graphs (Figures 10 and 7).
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Fig. 9. Indegree distribution of nodes in reply-to graph

One interesting statistic is the maximum outdegree of a node and the corre-

sponding user profile on Twitter. A node having the maximum outdegree on the

social interaction network will represent a profile that has tweeted a lot of other pro-

files. If the number of outlinks from this profile is unusually large than there are

high chances of the profile being a spam profile. This holds true for the maximum

outdegree node profile in our social interaction network also. In our graph we find

that the profile MStweet corresponding to the node with the highest outdegree is

indeed a spam profile that has been suspended by Twitter. This suggests that a node

having a large number of inlinks (The maxindegree profile is that of stephenfry who is

a famous writer, blogger from UK) can be safely assumed to be an important profile.

While this assumption holds true generally it is not the sole criteria for a profile to

be important.

Figures 9 and 10 show the distribution of indegree and outdegree of nodes in the

Twitter network.
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Fig. 10. Outdegree distribution of nodes

The distribution of indegree and outdegree for the social interaction network are

very similar. This is expected as the indegree and outdegrees are reciprocal in nature.

The number of users decrease exponentially with increasing number of replies. Most

of the users in this graph have a low indegree/outdegree which indicates that within

the 15 day period majority of users are not very active. They usually converse with

less than 25 different friends. The graph therefore helps us to find those few important

friends whom majority of users talk to. In comparison to the declared friend graph the

decrease in the outdegree/indegree is much higher in the social interaction network.

We also observe strongly connected components of varying sizes in the social in-

teraction network. The strongly connected components are a set of maximal strongly

connected subgraphs. There is a path from each vertex to every other vertex in such

components. In our context they can be viewed as a set of communication chains that

connects different profiles. The strongly connected components were calculated us-

ing Tarjan’s algorithm. A regular feature observed in the social interaction networks
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Table V. Strongly connected components (for Feb 1-19th Dataset)

Number of SCC’s Size

9504 2

1594 3

492 4

199 5

92 6

39 7

23 8

16 9

7 10

5 11

5 12

1 13

2 14

1 17

1 16

1 220638

constructed over different period was the existence of one big strongly connected

component.

In Table V we observe one component of size 220,638. The regular existence of

this big strongly connected component can be attributed to the crawl methodology of

the Twitter Public timeline. Public time line crawl typically goes breadth wise from

some select random profiles. Because of this breadth wise crawl typically follower and

following profiles of the seed profiles also get crawled. Since most of the replies are

addressed to the followers and the following profiles the graph formed tends to have

a connected nature.

Table V shows the number of strongly connected components of each size. The

composition of some of these components are shown in Table VI. Table VI shows the

existence of bow-tie structures in the social interaction network. Presence of bow-tie

structures is a regular feature in the webgraph. Figure 11 shows what a bow-tie
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Table VI. Composition of strongly connected components

Mutual links Inlinks(Links into component) Outlinks Size

1339588 106497 291538 220638

72 5 12 17

61 3 10 16

37 1 3 14

28 13 12 13

24 1 20 12

18 9 25 11

Fig. 11. Bow-tie structure

structure is. The social interaction network has many characteristics similar to a

webgraph constructed over hyperlinks, this suggests that we can use link structure

based algorithms such as PageRank that determine importance of web pages to model

user importance in these social interaction networks.

In this section we looked at the interaction characteristics of users on Twitter.

We examined some usage characteristics of Twitter and gave an overview of our data

collection methodology. As part of this study, we described the construction of the

declared social network and the social interaction network and studied the properties

of both graphs. This also gives us important insights about user behavior and their
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interaction characteristics. Based on this analysis, we propose in the following chapter

several approaches for measuring user importance in a Social Information System.
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CHAPTER IV

EXPLORING USER IMPORTANCE MEASURES

Based on the analysis of the interaction structure of Twitter, the second contribution

of this thesis research is an exploration of approaches for measuring user importance.

As part of this exploration, we study several different approaches for measuring user

importance that build on the inherent interaction-based framework of Social Infor-

mation Systems. We explore this model through an experimental study over an

interaction graph consisting of 800,000 nodes and about 1.9 million interaction edges.

Determining a set of important users has applications in advertising, recommen-

dation systems, and in improving the quality of content in social networks on the

whole. It can help us to determine whom to trust, and consequently what informa-

tion to trust. In this section we propose a set of methods to examine this notion

of user importance. Our notion of user importance includes all people who gain im-

portance in social networks by virtue of their contribution to the community (e.g.,

good sources of comments, tags), and also on account of their celebrity status (like

politicians, athletes, actors, CEOs, etc.).

A. Modeling User Importance: Initial Approaches and Results

In this section we examine some basic approaches to model user importance and ex-

amine some of their limitations along with analyzing the results obtained by following

these approaches. Note that there is no gold standard for whether the users identi-

fied by the proposed approaches are indeed “important”. Hence, this chapter serves

primarily as an exploration of several approaches; future research will be needed to

evaluate the user quality estimates through a formal user study or application sce-

nario. Also, our study of user importance is dependent on how users communicate in
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the social network and how direct interactions are represented in the social network.

In our study for example we parsed @ prefixed in front of the profile names in the

public timeline to extract the direct messages. In Facebook this convention is not used

for direct messages, instead users comment on each other’s statuses directly under

the message text. Though our approach for modeling importance based on direct in-

teractions is general to most social information systems, how those direct interactions

are captured depends on the characteristics of the social networks in consideration. It

is also affected by how users use the social network. For example in Twitter,a small

percentage of people might not prefix @ in front of the receiving users profile name

to communicate with them. In Facebook they might send direct messages or emails

instead of commenting on the status.

1. Number of Followers

One simple criteria for measuring the importance of a profile on Twitter can be the

number of followers of the profile. Twitter has a lot of celebrities, along with lots of

fans who follow their updates. A celebrity profile can be any profile that is perceived

as important in the society by other peer profiles. They include profiles associated

with entertainment industry, sports, politics or any other walk of life.

The broadcast nature of Twitter allows people to keep tabs on the activities of

these celebrity profiles. In our study we have observed that most of these celebrities

have a large number of followers. On compiling a list of all profiles by the decreasing

number of their follower counts we observe that several socially recognized celebrities

figure in the list. Table VII shows some top profiles by the follower count.

The results show that even a basic metric like follower count can be useful in

determining importance. However the limitation of this method is that it is Twitter-

specific as there is no concept of followers, in other social networks. Moreover, this
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Table VII. Top profiles by follower count for Jan 31-Feb 19th dataset

Profiles Follower

Count

Rank Description

britneyspears 274406 1 Internationally renowned singer

stephenfry 272708 2 Famous writer, British actor & blogger

cnnbrk 246423 3 Profile of world famous news network CNN

nprpolitics 210459 4 Profile of NPR news

mashable 209238 5 Popular Internet news blog Mashable

kevinrose 197471 6 Founder of social media site Digg

lancearmstrong 195822 7 Seven times winner of Tour de France

THE REAL SHAQ 193886 8 Famous NBA player Shaquile o Neal

Twitter 191080 9 Profile operated by Twitter itself

ev 180960 10 Profile of CEO of Twitter, Evan Williams

aplusk 179463 11 Famous Hollywood actor Ashton Kutcher

MCHammer 179090 12 Rapper, entertainer and dancer Hammer

TechCrunch 175134 13 Weblog profiling new internet products

method helps us to discover only socially recognized celebrities. This method for

instance does not help to discover quality content contributors, or people who might

not be popular in society as a whole but are very popular among their friends. After

examination of Table VII we see that all the profiles are very well recognized. There is

a good mix of influential people from all walks of life: actors, news and entertainment,

bloggers, CEO’s etc.

Another limitation of this method is that it does not capture user activity. Lots

of people join social networks like Twitter just because of the initial hype; after a while

they do not participate as much and consequently might lose their importance. A

method based on follower counts would not be able to take into account this message

dynamics and profile activity. However one advantage of this method is that it is

reasonably robust to spam. This is because spam profiles on Twitter typically do

not have so many followers, hence they would show up low on the list of top follower

users.
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2. Number of Incoming Tweets

Another criteria for measuring the importance of a profile can be the number of

incoming messages to a profile. The number of incoming messages indicates interest

in a profile. The basic motivation for this approach is that people usually interact

with their close friends through direct messages, rather than general status updates

meant for the consumption of all the followers. The Twitter equivalent of these direct

messages are messages prefixed by the @ sign. Counting the number of incoming

tweets into a profile can thus serve as an important indicator of importance.

We rank users in decreasing rank by the total number of tweets directed at them

(which might include multiple tweets from the same user) and also by the number of

unique users tweeting them. Table VIII shows the top profiles by the total number of

tweets for the duration of Jan 31-Feb 19th(counting distinct tweets from same profile

as different), whereas Table IX shows the top profiles by the number of unique users

replying to that profiles (only one tweet is counted per user).

After analyzing these results we observe some interesting trends. After comparing

Table IX and VIII, the results of Table IX seem more intuitive. In the case of top

users by total number of tweets a single profile can be responsible for a large fraction

of the tweets received by its neighbors. This is typically the case with spam profiles

or with profiles which have a habit of tweeting others profiles excessively. In Table

VIII we do observe some spam/suspicious profiles. In fact the profile having a rank

of 1 turned out to be a spam profile. While ideally a spam profile should have lots

of outgoing messages it can also show up high on the list of top tweet receivers as its

spam tweets might prompt other users to reply to that particular profile resulting in

a high incoming tweet count. Table VIII contains profiles of some regular users for

which we did not find any indicators of profile importance after examining the profiles.
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Table VIII. Top profiles by total incoming Tweet frequency for Jan 31-Feb 19th dataset

Profiles Rank Description

masterconsole 1 Account suspended due to suspicious activity(Bot)

badchewy 2 Self described “search” guy/passionate about search

reasio 3 Account no longer exists

Umma 4 Regular user profile(No special importance indicators)

Lady12s 5 Regular user profile(No special importance indicators)

iamtheplague 6 Self described Twitter addict

HerrTwiggs 7 Locally popular musician based in Germany

eljuncoenpie 8 Regular user profile

al67 9 Avid guitarist and repairs guitar(Regular user)

rdarmanin 10 Wannabe journalist and blog writer

KmD25 11 Suspicios user/spam profile

erinwarde 12 Blogwriter

kaboogie 13 Owns small time recycled leather business

Takammy 14 Regular user

mountflorida 15 Writer, Blogs about career in Music

It could just be that these users received lots of tweets from a relatively smaller subset

of their friends during this interval which resulted in their high rank on the list. This

is evident also from the fact that some of the users in our table describe themselves as

Twitter addicts, they might be using Twitter a lot to communicate with their select

friends which might lead to a high overall incoming Twitter count.

We also observe that some profiles which figure in this list have changed sig-

nificantly since the time their activity was last captured by our dataset. One such

example is of profile kmd25. On examining this profile we do not see any indications

of its high rank (the profile has 1 follower and does not follow any other profile). This

leads us to believe that this profile is most likely a Bot or a spammer as if it was a

genuine profile it would have had more followers replying to this profile.

However importance as measured by count of unique users replying does seem to

be a good measure of finding importance. All the profiles are genuine and of relatively
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Table IX. Top profiles by number of unique users Tweeting for Jan 31-Feb 19th dataset

Profiles Rank Description

stephenfry 1 Famous writer, British actor

Schofe 2 Profile of Philip Schofield, a British television presenter

ijustine 3 Avid Twitter and blogger

bobbyllew 4 Robert Llewellyn’s profile-English actor, presenter, and
writer.

lilyroseallen 5 Lily Allen’s profile-English recording artist, talk show

host and actress

ricksanchezcnn 6 Profile of Rick Sanchez, a CNN news anchor

warrenellis 7 A writer based in England

xxandip 8 Profile of Andy Peters, a TV personality

feliciaday 9 Felicia day’s profile-she is an actress, gamer and Misan-

thrope

Fearnecotton 10 Profile of Fearne Cotton a popular British TV presenter

chrispirillo 11 Founder and maintainer of network of blogs, web forums

greggrunberg 12 An American TV actor

LeoLaporte 13 US based technology journalist

important personalities, as is indicated from Table IX. One more interesting aspect

of this result is that we find lots of writers and bloggers on the list. This method helps

us to capture influential content creators of social media. Hence it gives us a different

flavor of importance than the follower count based method. These profiles although

not very important in society on the whole, are profiles of individuals who contribute

a lot to social media and profiles other people communicate with frequently.

This result is according to our expectations as typically a writer or a blogger

would have a tendency to tweet more than average as compared to a regular Twitter

user. This leads to these profiles attracting more replies as well resulting in high

tweet count and rank. We have also observed a trend in Twitter these days of or-

dinary people reaching out to these writers, journalists directly by means of tweets

(addressing them using @) in order to post their views about some article that the

blogger or writer wrote.
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From the above discussion we conclude that rank by number of unique users

tweeting the profile is a better method than rank by total number of incoming tweets

which does not capture notion of importance as effectively. In the following ap-

proaches we combine both the factors of measuring importance by profile activity (by

assigning weights according to frequency of interactions) and importance perceived

as by peer users (based on follower count).

B. Modeling User Importance: Using the Social Interaction Network

In this section we describe some of the approaches to measure user importance using

the social interaction network. These random walk approaches have their origins

in citation analysis developed in the 1950s by Eugene Garfield at the University of

Pennsylvania, a concept borrowed by Larry Page et al. in their influential PageRank

paper [8].

1. Random Walk Importance Model

The first approach assumes that a profile importance can be gauged from not only the

aggregate number of inlinks to the profile in the social interaction network but by also

taking into account which profiles those links come from. Thus, we look at a profile’s

importance from the perspective of the importance of its peers, similar to how a web

page importance is determined by the importance of the webpages having outlinks

to it. Thus for our social interaction network constructed in the neighborhood of

Ashton Kutcher (Figure 3) if Ashton Kutcher who is an important celebrity tweets

users David lynch and loyby some of the importance of Ashton Kutcher would be

transferred to david lynch and loyby.

Formally, the importance of a user profile can be stated as:
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Impu = c
∑

v∈B(u)

Impv/Nv (4.1)

where u represents a user profile. B(u) is the set of profiles that tweet u. Imp(u)

and Imp(v) are importance scores of profiles u and v, respectively. Nv denotes the

number of outgoing tweets of profile v and c is a factor used for normalization.

or in matrix form

Imp = α.T.Imp + (1 − α).1/N.IN (4.2)

where Imp is the user importance vector and T is the transition matrix.

In a random surfer model over the social interaction network the movement of the

random walk is determined by the transition matrix T. The surfer can either follow

one of the outlinks from a profile or if a profile does not have any outlinks randomly

choose any profile to move to. To take into account this random teleportation to a

random profile we choose a parameter α having a value of 0.85. This basically means

that the surfer is guided by the transition matrix 85% of the time and 15% of the

time he randomly picks up a profile to visit. The matrix T has a property that all the

entries are non negative with all the entries in each column summing upto 1, hence

it is a stochastic matrix.

The matrix Imp is a stochastic vector as it is a combination of stochastic matrices,

implying it has a stationary state. The rate of convergence to steady state can

be controlled through modifying the parameter α. After sufficient iterations the

Importance vector converges to steady state after which the importance scores do not

change.

Intuitively, the random walk method is better than the static follower count

method because it is immune to user inactivity. It is also better than the tweet



36

frequency method because it does not look at the immediate followers/following be-

havior, but instead looks at the global behavior of all the users on the network. The

other advantage of the random walk model is that it also considers importance of

friends in order to calculate profile importance. In this way profiles who are friends

with important people would be more important than profiles who are friends with

less important people.

Our model is similar to PageRank wherein if one does a random walk over the

social interaction network he would end up on important profiles more often than non

important ones. We keep on iterating until the rank order does not change. In our

case we observed the Imp vector to converge after 35 iterations. We used the Jacobi

iteration method for computation of importance scores [29]. We continue our study

by examining some extensions to the basic random walk approach of determining

importance.

2. Weighted Random Walk Importance Model

The basic model of ranking profiles has some drawbacks: for instance it does not

take into account the frequency of interactions. Going by the basic model a user who

tweets a lots of different profiles would be considered more important than a user who

converses with a few profiles but interacts with those selected profiles a lot.

In order to overcome this shortcoming we modify our basic model to take into

account the edge weights of the social interaction network. In our modified model

of random walk the edge weights (which signify the frequency of tweets exchanged

between vertex nodes) are also incorporated in the score computation. Thus a profile

will distribute its importance score to its neighbors not equally but according to the

frequency with which they interact with their neighbors in the past.
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The importance thus becomes:

Impu = c
∑

v∈B(u)

Impv ∗ W (u, v) (4.3)

where w(u,v) represents the interaction frequency between profiles u and v. Equiva-

lently, in matrix form:

Imp = α.T.Wu,v (4.4)

where W is the Matrix consisting weights for each u,v.

3. Incorporating Trust

We also calculate user importance based on another model that has its origins in Trust

rank [7] algorithm. In this model we bias our random walk on the social interaction

network based on a static trust score. This profile specific trust score is assigned

on the basis of some static property of the profile. One metric that we use in our

computation is the number of followers of a profile. A profile having large number of

followers would be more trusted in general than a profile having few followers.

User importance vector in this case would be:

Imp = α.T.Imp + (1 − α).Pref (4.5)

where Pref is a normalized static score distribution vector of non-negative entries

summing up to one. It assigns a non-zero static trust score to profiles based on their

follower count. This score is then spread during the iterations to the profiles they have

replied to. This biases the random walk computation in favor of profiles having high

values of follower counts and helps us to combine both the perceived user importance

of profiles among peers (like those of actors, sportsman) to the algorithmic importance



38

determined by the random walk importance model.

We also augment this basic trust based approach by incorporating edge weights

into the computation. These edge weights represent the frequency of interactions

between two users, or in other words an edge weight on an edge from user A to user

B indicates number of times A has replied to user B.

The importance score thus becomes:

Impu = c
∑

v∈B(u)

Impv ∗ W (u, v).Pref (4.6)

where w(u,v) represents the interaction frequency between profiles u and v and Pref

is the normalized trust vector

C. Results and Analysis of Random Walk Based Approaches

In order to find out the effectiveness of our technique we collect the top 6000 profiles

retrieved by each of the proposed importance algorithms and compare them against

each other. Comparing our results against the top profiles by the number of incoming

tweets helps us to illustrate how our criteria for modeling user importance through a

random walk is better than calculating importance by simply counting the number

of incoming tweets.

While there is no standard criteria of evaluating user importance we do some

manual inspection of the top profiles returned by our algorithm to get an idea of the

effectiveness of our approach. We observe some very intuitive results that seem to

suggest that our algorithms are effective in evaluating user importance. The results

are for the Jan 31-Feb 19th dataset.

Tables X and XI shows some of the top profiles that we got after running the

vanilla Random Walk model and the Weighted Random Walk model on the social
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Table X. Top profiles by random walk importance
Profile Follower

count

Rank Description

stephenfry 149369 1 Famous writer, British actor

Schofe 51051 2 Philip Schofield-British television presen-
ter

CHRISDJMOYLES 61567 3 Chris Moyles-English Broadcaster, author
and DJ

Wossy 99176 4 Jonathan Ross- British television,radio

presenter

aplusk 63448 5 Profile of Ashton Kutcher, famous holly-
wood actor

lancearmstrong 59042 6 Seven time Tour de France winner

richardpbacon 9403 7 BBC Radio Fivelive presenter

ijustine 52966 8 Avid Twitter user and blogger

wilw 73775 9 Will Wheaton- American actor and writer

scott mills 8959 10 English radio DJ

levarburton 25620 11 American actor, director and educator

mrskutcher 15421 12 Profile of Demi Moore, famous hollywood
actress

THE REAL SHAQ 49913 13 Profile of Shaquile O Neal, NBA star

interaction network. In the table for the Random Walk model, several celebrities

figure amongst the top results. These results are slightly different than the ones

obtained by the top tweet count method. In addition to writers and bloggers we

also observe people from other walks of life like sportsmen, actors etc. The top 13

profiles that we obtained after the Random Walk importance model are indeed very

popular. Results of the Weighted Random Walk model, however, are still dominated

by bloggers, and writers like the top tweet count results. This can be attributed to the

frequent tweeting characteristics of these profiles. As a result of more profile activity

around their profiles (more incoming tweets) and high weights on their incoming

edges more importance gets transferred to them as compared to profiles who do not

receive as many tweets. In the list for Weighted Random Walk importance, we also

observe some profiles who have protected information about their biography because
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Table XI. Top profiles by weighted random walk importance
Profile Follower count Rank Description

Sugarwilla 507 1 Small time actress

vojha 372 2 Blogger

ninjen 970 3 Profile of a blogger

brentschooley 220 4 iphone applications developer

radiojen 39 5 Appears to be a radio jockey

Lynnie36 96 6 Profile no longer exists

Spoonsie 90 7 Blogger

Slugger41 1131 8 Not enough information

chriswalts 244 9 Tv show host based in canada

TidyCat 317 10 Not enough information

DaveJMatthews 28122 11 African-American Grammy Award win-
ning musician

tygerbaby 1145 12 Not enough information

RightGirl 909 13 Blogger

of which it becomes difficult to get an accurate idea about their profile importance.

Also most of these bloggers and writers are pretty regular users, while examination

of their blogs do suggest a keen interest of other people in their blog posts we do

not find any information in their profiles which can account for such a high rank on

the Weighted PageRank results. The only possible explanation is that perhaps they

interact very closely and frequently with a select few people and because of the higher

edge weights they get a majority of the importance share from their neighbors.

Tables XII and XIII shows the top profiles after running the Trust-based Random

Walk importance model and the Trust-based Weighted Random Walk model. The

results of the Trust-based model seem to be quite similar to those of the vanilla

Random Walk model with stephenfry, aplusk and wossy being the common profiles

amongst the top 5 users. Results of the Trust-based model seems to capture the notion

of importance correctly with a good mix of writers, bloggers and media personalities.

While the top 13 results for Weighted Trust-based random walk model are exactly

identical to the Weighted random walk model results, a closer examination of the list
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Table XII. Top profiles by trust-based random walk model
Profile Rank Description

stephenfry 1 Famous writer, British actor

aplusk 2 Profile of Ashton Kutcher, famous hollywood actor

Wossy 3 Jonathan Ross- British television,radio presenter

hodgman 4 John Hodgman- American voice actor, author and humorist

guykawasaki 5 Co-founder of social network Alltop.

kevinrose 6 Founder of social media site Digg

wilw 7 Will Wheaton- American actor and writer

chrisbrogan 8 President, New Marketing Labs(media agency).

Schofe 9 Philip Schofield-British television presenter

pop17 10 Sarah Austin-alternative media producer and online life-

caster

Veronica 11 V Belmont-co-host of the Revision3 show Tekzilla

lancearmstrong 12 Seven time Tour de France winner

of 6000 top users show some slight differences between the two algorithm results.

However the two lists are still very much identical having an overlap of about 80%.

One reason for the large number of common results between weighted versions of

vanilla random walk model and Weighted Trust-based random walk is that the top

profiles obtained by Weighted random walk model have nearly the same number of

followers. Since we biased the random walk by the number of followers of a profile

,having comparable number of followers mitigates the effect of biasing the importance

score computation by a initial static trust score. The scores are still dominated by

scores obtained by doing a random walk on the linked structure and are not influenced

a lot by the initial trust vector biasing. However as we go down the list the difference

in the number of followers of profiles leads to some profile getting a different rank in

Weighted Trust-based random walk than the Weighted random walk model.

Finally, we also considered a random walk approach over the declared social

network (instead of the social interaction network) to better understand if the random

walk style approach would generate reasonable importance rankings. This approach

however suffers from the same limitations as the naive approach based on follower
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Table XIII. Top profiles by trust-based weighted random walk model
Profile Follower count Rank Description

Sugarwilla 507 1 Small time actress

vojha 372 2 Blogger

ninjen 970 3 Profile of a blogger

brentschooley 220 4 iphone applications developer

radiojen 39 5 Appears to be a radio jockey

Lynnie36 96 6 Profile no longer exists

Spoonsie 90 7 Blogger

Slugger41 1131 8 Not enough information

chriswalts 244 9 Tv show host based in canada

TidyCat 317 10 Not enough information

DaveJMatthews 28122 11 African-American Grammy Award win-
ning musician

tygerbaby 1145 12 Not enough information

RightGirl 909 13 Blogger

count, it does not take profile activity into account and is susceptible to follower-spam.

These results over the traditional friendship (following relation) graph are shown in

Table XIV.

The top profiles that we obtained by using the random walk model do not seem

to be very important. Moreover most of the profiles in our top results are profiles

of users of other countries communicating in a foreign language, because of which it

becomes difficult for us to get an idea of their importance.

In the results the top profile is of kemptownben who is a city councillor of Queen

Park, Brighton, UK and a parliamentary candidate. While he does appear to be a

popular politician it is unclear why he is the top result. His high rank could perhaps

be attributed to the fact that majority of his followers appear in our crawled dataset.

We could perhaps get a better idea of profile importance if we construct the graph

over follower relations. However its impractical to do so as typically there could be

millions of followers of a profile making the PageRank computation very expensive

due to the huge size of the webgraph.
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Table XIV. Top profiles obtained by random walk on the friend graph
Profile Rank Description

KemptownBen 1 Green Party activist, politician, socialist and council-

lor(Brighton, UK)

tonio888 2 Not enough information from profile/regular user

contemplation 3 Regular user/Not enough information

jaifaitunreve 4 Regular user/Not enough information

William 5 Regular user

misc987 6 Regular user

xcazin 7 French Blogger

remiforall 8 Blogs about Web, Art, Music etc

Wimby 9 Protected information

fumetsuka 10 Protected information

roadtohappiness 11 Blogger/regular user

D. Rank Correlation

Finally, we investigate the relative rankings generated by different techniques over

datasets of different time periods and also compare the ranks obtained over the same

time period. This analysis reveals how the different methods compare, and how

these methods adapt to change in frequency of interaction and profile activity. To

get an idea of correlation between rankings of different algorithms we computed the

Kendall tau coefficient for rankings produced by the same algorithm over different

time periods and also rankings of different algorithms over the same time period. The

main motivation for computing the Kendall tau coefficients was to get a sense of how

similar the rank order was. In case there is high similarity we can use a combination

of one or two approaches to detect user importance.

The Kendall tau coefficient is defined as:

τ =
nc − nd

1
2
n(n − 1)

(4.7)

where nc is the number of concordant pairs, and nd is the number of discordant pairs

in the data set. In statistics, a concordant pair is a pair of a two-variable (bivariate)
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observation data-set X1, Y1 and X2, Y2, where:

sgn(X2 −X1) = sgn(Y2 − Y1) (4.8)

Correspondingly, a discordant pair is a pair, as defined above, where

sgn(X2 − X1) = −sgn(Y2 − Y1) (4.9)

and the sign function, often represented as sgn, is defined as: sgnx = −1 if x is less

than 0, 0 if x=0 and 1 if x us greater than 1.

1. Comparing Importance Rankings across Different Time Periods

Random walk Rank Correlation: Between the datasets of Jan 31st - Feb 19th

and Feb 19th- Mar 8 there were 52% common users in the top ranked users list with

a Kendall tau coefficient of 0.465. Between the datasets of Feb 19th-March 8 and

Mar 8- March 19th there were 47% common users in the top ranked users list with

a Kendall tau coefficient of 0.435. This high overlap in the random walk model rank

is consistent with our expectations. This is because the random walk model takes

into account global importance (profile activity) and not just profile activity in the

immediate neighborhood, even if some immediate users stop tweeting an important

profile over time there will still be many incoming edges from other profiles. A high

value of Kendall tau rank coefficient between the two lists suggests that the relative

rank order is almost the same in both the lists showing that rank order does not

change a lot in a small period.

Trust Based Random walk Rank correlation: Between the datasets of Jan

31st - Feb 19th and Feb 19th- Mar 8 there were 60% common users in the top ranked

users list with a Kendall tau coefficient of 0.51. Between the datasets of Feb 19th-
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March 8 and Mar 8- March 19th there were 55% common users in the top ranked

users list with a Kendall tau coefficient of 0.52. The high overlap in the rank lists can

be attributed to the same reason as the overlap in case of basic random walk model.

The percentage of overlap is higher in this case because Trust-based random walk

scores are also influenced by the follower count (as we have used number of followers

to bias our trust based random walk computation). Typically number of followers of

important profiles grow by the similar rate and do not change a lot within 15 days.

Top followers list correlation: Between the datasets of Jan 31st - Feb 19th

and Feb 19th- Mar 8 there were 82% common users in the top follower users list with

a Kendall tau coefficient of 0.78. Between the datasets of Feb 19th-March 8 and Mar

8- March 19th there were 81% common users in the top follower users list with a

Kendall tau coefficient of 0.80. The high overlap in top follower count is expected as

the rate of increase of followers of important profiles remains mostly same. It might

however, get influenced by some special events , like competition between profiles of

cnnbrk(cnn) and aplusk(Ashton Kutcher) to reach 1 million followers. Similarly, the

high values of the Kendall tau coefficients can be explained due to the fact that the

relative rank order of the top followers does not change as number of followers grow

by roughly the same amount.

Top Tweet receivers(total) correlation: Between the datasets of Jan 31st -

Feb 19th and Feb 19th- Mar 8 there were 22% common users in the top tweet receivers

list with a Kendall tau coefficient of 0.175. Between the datasets of Feb 19th-March

8 and Mar 8- March 19th there were 17% common users in the top tweet receivers list

with a Kendall tau coefficient of 0.10. The low overlap in the top tweet receivers list

can be attributed to the frequently changing interaction dynamics.The relative rank

order also changes significantly due to this very reason.

Weighted Random walk Rank Correlation: Between the datasets of Jan
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31st - Feb 19th and Feb 19th- Mar 8 there were 43% common users in the top ranked

users list with a Kendall tau coefficient of 0.28. Between the datasets of Feb 19th-

March 8 and Mar 8- March 19th there were 17% common users in the top ranked

users list with a Kendall tau coefficient of 0.059.

The lowest overlap in the Top Tweet receivers lists can be attributed to the fact

that this algorithm takes into account edge weights in the incoming replies. As edge

weights are dependent on the frequency of interaction which changes a lot over brief

periods of time it affects the rank computation. Sometimes a user might get involved

in some conversation with his friend which might lead to high weight on the reply to

edge between the users for that time period of observation, at other times he might

not tweet this particular user at all or tweet him very less leading to a lower edge

weight.

2. Comparing Importance Rankings Generated by Different Approaches

In this section we investigate the relative rankings generated by different techniques

over the same time period. This helps us to understand how differently the algorithms

model the notion of importance.

Table XV shows the percentage of overlap between the top 6000 users obtained by

different algorithms. After analyzing this table we observe that there is a high amount

of overlap between Weighted random walk rank and Weighted Trust based random

walk model. This can be attributed to the fact that most of the top profiles that

figure high on the Weighted random walk list have comparable number of followers.

The effect of biasing rank computation thus does not have much effect on the ranking.

Out of these lists top tweet frequency count based method has the least number

of common profiles to other lists. This can be attributed to the fact that it is just

based on profile activity which cannot necessarily capture importance that effectively,
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Table XV. Percentage of overlap in user ranks between different algorithms
Algorithm Weighted

random
walk

Basic

random
walk

Trust-

based
random

walk

Weighted

Trust
based

random
walk

Top Fol-

lowers

Top

Tweet
Reciev-

ers

Weighted ran-

dom walk

100 19 19 83 10 6

Basic random
walk

19 100 55 22 28 6

Trust-based

random walk

19 55 100 23 49 7

Weighted
Trust based

random walk

83 22 23 100 14 6

Top followers 10 28 49 14 100 7

Top Tweet Re-

ceivers

6 6 7 6 77 100

as discussed earlier in our results. The high overlap between top follower list and top

tweet receiver list can be attributed to the fact that profile having large number of

followers get more incoming reply tweets as their status/ tweets reach a large audience

due to the high number of followers subscribing to them.

On the other hand random walk models all utilize the same reply graph and due

to the nature of these algorithms a profile that is very popular will get a mention

in almost all the different flavors of the random walk. To get an idea of how these

algorithms rank profiles differently we compared the ranks of some preselected profiles

obtained by different algorithms which is shown in Table XVI N/A here stands for

the case when the profile does not figure in the top 6000 list. stephenfry is ranked

first in almost all of the algorithms because he has large number of followers as well

lots of incoming messages, his blog posts, status messages attract a lot of replies and

interest amongst his followers.

Table XVII shows the Kendall tau correlation coefficient between the different
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Table XVI. Ranks of common profiles obtained by different algorithms
Profile Nature

of Pro-
file

Weighted

random
walk

Basic

ran-
dom

walk

Trust

based
ran-

dom
walk

Top Fol-

lowers

Top

Tweet
Reciev-

ers(Total
fre-

quency)

cnnbrk Major
News

channel

N/A 1019 18 3 N/A

aplusk Hollywood
actor

424 5 2 18 N/A

masterconsole Spam

Profile

N/A N/A N/A N/A 1

lancearmstrong Famous
sporstman

1639 6 12 21 N/A

kevinrose CEO of

Digg

1718 17 6 5 N/A

stephenfry Famous
Blogger

720 1 1 1 N/A

rankings by algorithms over the same time period.

From this table we observe that the highest Kendall tau coefficient was between

the Weighted Trust based random walk and Weighted random walk results. This

shows that the two lists agree highly on the rank order. The amount of overlap

in the lists is also high. Both these factors suggest that the two methods are very

similar. The reason for the high overlap and high value of Kendall tau coefficient can

be attributed to the fact that the top profiles in case of Weighted random walk have

comparable number of followers because of which if we bias our random walk by the

number of followers(as in Weighted Trust based random walk) it does not lead to a

significant change in the rank order or the top profiles.

The high Kendall tau coefficient between the top Followers list and the top

Trust based random walk results can be attributed to using follower count to bias the

random walk computation in case of Trust based random walk.
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Table XVII. Kendall Tau coefficients for different algorithms over same period
Algorithm Weighted

random
walk

Basic

random
walk

Trust

based
random

walk

Weighted

Trust
based

random
walk

Top Fol-

lowers

Top

Tweet
Re-

ceivers

Weighted

random
walk

0.01 0.06 0.74 0.11 -0.04

Basic ran-

dom walk

0.01 0.35 0.21 0.26 0.397

Trust based
random

walk

0.06 0.35 0.032 0.41 0.146

Weighted
Trust based

random
walk

0.74 0.21 0.032 0.082 -0.14

Top follow-

ers

0.11 0.26 0.41 0.08 -0.14

Top Tweet
Receivers

-0.04 0.11 0.146 -0.014 -0.14

We also observe that mostly negative values of Kendall tau coefficient are ob-

served between top Tweet receivers list and other algorithms. This coupled with the

fact that we see least overlap in the top Tweet receivers list and other algorithms

suggests that this method is the least similar to other methods. This is a further

proof of the fact that this method does not capture importance effectively as it is

based on the profile activity alone and is thus highly prone to spam, and bots. The

ranking generated by this algorithm has the least agreement with other techniques.

In this section we discussed various approaches to model user importance based

on the interaction graph along with giving their mathematical background. We com-

pared results of the various algorithms to get an idea of how differently each algorithm

models importance. Our results suggest that out of the various approaches a random

walk based approach incorporating trust is closest to our notion of user importance
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as it takes into account both interaction characteristics of users along with incorpo-

rating the notion of trust. It can also be modified to incorporate different flavors

of importance. For example in our calculation we biased the random walk by the

number of followers, if we want to get users that are more active on twitter we can

bias the computation by the number of incoming tweets. We can also assign initial

trust scores based on other criteria like number of profile views if the social network

in consideration has support for finding that out. This method can thus be used to

find importance according to the desired property, it incorporates the advantages of

both the random walk models and the static naive approaches.

In the following section we discuss some possible extensions of our work.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this thesis we have presented the first large-scale study of the dynamic interactions

on a real-world Social Information System. Our study over the Twitter microblog-

ging service has examined the usage statistics, growth patterns, and user interaction

behavior of over 2 million participants. Based on the analysis of the interaction

structure of Twitter, we have explored several approaches for measuring user im-

portance by leveraging the interaction dynamics of the social network. We have seen

how interaction-based user importance measures differ from traditional static network

measures.

Determining user importance is especially important on the emerging social com-

puting framework, as users are now central to content creation, annotation, and rat-

ing. Based on our observations in this thesis, we conclude by presenting a roadmap

for future studies of how user importance can be incorporated into applications cen-

tered on Social Information Systems. We consider three potential applications of our

research: in detecting spam [22], in building more sophisticated recommendation and

advertising systems [24], and in improving the quality of social event detection.

Spam detection: Our study on detecting user importance can help in detecting

spam profiles on Twitter. Spam profiles in Twitter are typically those that follow a

large number of other profiles and send unwanted tweets. Follower spam is also

getting to be quite common in Twitter. In this type of spam the spammers send a

request to large number of profiles asking for permission to follow them, out of these

profiles a small percentage of profiles like to reciprocate this request and follow these

spammers back, not realizing that these are spam profiles. They would then see all

the spam messages on the spammer’s profile. Sometimes spammers prefix the tweets
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by @username, which then causes the tweets to show up in the timeline of the profile

of the user. There have been recent attempts by Twitter to address this issue by

adding a verified attribute to a profile which shows up on the homepage of the profile

letting users know that the profile is a genuine one. However this is not enough.

By constructing the social interaction network, spam profiles can be identified;

typically a spam profile would have a large outdegree in the social interaction network

but a low algorithmic importance. For example, in the Twitter-based interaction

network described in Chapter III, the node having the maximum outdegree MStweet,

happens to be a spam profile. The underlying link structure of the social interaction

network coupled with the fact that it reflects the current snapshot of interactions

between profiles can be effectively used in spam detection. Another way of detecting

spam would be to construct the transpose of the social interaction network graph and

run PageRank. The high ranked profiles which follow a large number of other profiles

would be then ideal candidates of spam profiles.

Advertising and recommendation systems: In the context of the immense

advertising potential of Twitter, it is important to gather information about profile

activity and its importance among its peers. Another reason why Twitter and in

general other microblogging networks are so critical to advertising is that the very

nature of information exchange on this network has a very real-time character to it.

Users usually tweet about what they are doing or about some products they find

interesting. Advertisers could use this information to recommend their products to

those users. If we had a mechanism that could broadcast advertisements from the

so called “important” profiles it can have a huge potential to increase advertising

revenue. People are more likely to follow recommendation of profiles they consider

important and take their advice about a company product than a direct advertising

campaign coming from a company.
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Event Detection and community detection: Profile activity of important

profiles, like the topic that profile tweets about, can also help in determining im-

portance of events. An event talked about by majority of important profiles can be

safely assumed to be important to majority of people. This is especially relevant

to the conversational nature of Twitter. Since the social interaction graph consists

of several strongly connected components, it would be interesting to find out what

all those profiles in the strongly connected component tweet about, and how these

communities grow.
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