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ABSTRACT 

 

Toward an Improved Model of Asphalt Binder Oxidation in Pavements.  

(December 2009) 

Nikornpon Prapaitrakul, B.E., Chulalongkorn University; 

M.E., Texas A&M University 

Chair of Advisory Committee: Dr. Charles J. Glover 

 

Asphalt binder oxidation in pavements has been proven to be an ongoing process 

throughout a pavement’s service life. Understanding the nature of the oxidation process 

is a critical step toward better pavement design to achieve greater pavement durability. 

The main component in asphalt binder oxidation in pavements is binder oxidative 

hardening. As the aromatic compounds in asphalt binders are oxidized, more polar 

carbonyl compounds are created, which results in stronger associations between asphalt 

components and eventually leads to an increase in asphalt elastic modulus and viscosity. 

Consequently, the performance of pavements is affected directly by asphalt binder 

hardening.  

Also, low levels of accessible air voids in pavements potentially relate to binder 

oxidation according to a recent research study. When the pavements have sufficiently 

high accessible air voids (4 percent or greater), the oxidation rate is largely determined 

by the temperature in the pavement. On the other hand, when the percentage of 

accessible air voids in the pavement is considerably lower (2 percent or less), the 

hardening rate of binders in pavements is reduced significantly.  

Field evidence is mounting that asphalt binder oxidization in pavements produces 

a binder that is more susceptible to thermal and fatigue cracking. While the 

fundamentals of this oxidation process are fairly well known, predicting quantitatively 

the rate of oxidation as a function of depth in the pavement, is not straightforward. A 

thermal and oxygen transport model, coupled with binder reaction kinetics, provides the 
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basis for such calculations. A one-dimensional thermal transport model, coupled with 

site-specific model parameters and recent improvements in the availability of required 

input climate data, enables calculation of pavement temperatures throughout the year, 

which then is used in an asphalt binder oxidation and transport model to calculate binder 

properties in the pavement over time. Calculated binder property changes with depth and 

time are compared to measurements of binder oxidation in the field. 

The work in this study is aimed at understanding the oxidation kinetics of asphalt 

binders in pavements, determining the impact of accessible air void levels on asphalt 

hardening, and ultimately developing an improved model of asphalt binder oxidation in 

pavements. 
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 NOMENCLATURE 

 

oη  Original Viscosity 

tη  Viscosity at Time t 

η'(ω) Dynamic Shear Viscosity 

ηr  Rate of Hardening 

rCA Binder Oxidation Rate (Rate of Carbonyl Area Formation) 

A Frequency (Pre-Exponential) Factor 

P Pressure 

α Oxygen Reaction Order 

Ea Activation Energy 

R Gas Constant 

G'(ω) Elastic (Storage) Dynamic Shear Modulus 

G'/(η'/G') DSR Function 

PAV Pavement Aging Vessel 
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 The dissertation follows the style of the AIChE Journal. 
 

CHAPTER I 

INTRODUCTION TO ASPHALT OXIDATION MODEL IN PAVEMENTS  

 

Introduction 

 

 Asphalt pavements exist in human transportation history since 1,500 A.D. In the 

United States, the first asphalt roadways appeared in the early 1870s.1 However, the use 

of hot mix asphalt (HMA) in pavement construction was not introduced until the 

beginning of the 20th century. According to the Federal Highway Administration 

(FHWA), approximately 60 percent of public roadways in the United States are paved 

roadways, which account for roughly 2.6 million miles of pavements.2  

 One of the main purposes of flexible asphalt pavements is to support the load of 

vehicles. Typically, these pavements are called flexible because the asphaltic pavement 

structure bends to support the traffic loads. However, if the asphalt materials become 

stiffer, the pavement structure loses its flexibility, making pavements more susceptible to 

cracking. In previous research studies, spanning the last 15 years, it was found that 

asphaltic binders experience oxidation and a consequent embrittlement over time that 

reduces the performance of flexible pavements. In addition, asphalt oxidation in 

pavements has been shown to be an ongoing process throughout a pavement’s service 

life. Also, there is evidence that demonstrates that oxidation occurs through the depth of 

the pavement and has a significant effect on pavement performance.3,4 

 Pavement engineers have spent years of research to determine the nature of the 

oxidation process in pavements, focusing mainly on binder oxidation chemistry, reaction 

kinetics, and the effect of oxidation on binder rheology. Additionally, some studies have 

worked to gain an understanding of how deep into the pavement and how fast the 

oxidation occurs, as well as how differences in climate impact pavement performance, 

and how to appropriately implement maintenance programs on asphalt pavements. A key 
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concern in pavement engineering is that while pavements are designed for optimum 

performance initially, over time as asphalt binders oxidize the properties of binder 

change and lead to a decrease in pavement durability.  

Yet, to address this concern experimentally requires an extended field study, 

extended in both the number of parameters that must be studied in different climates 

across the country, but also extended over years of time. Therefore, there is a need for a 

pavement durability predictive tool to assist pavement engineers in forecasting asphalt 

binder properties in pavements over time.  

The goal of this dissertation is to develop a reliable transport computational 

model for use as a guide to designing field and laboratory experiments for the purpose of 

evaluating the impact of diffusion resistance on the oxidation rate of binders in 

pavements as a function of asphalt binder types, pavement air void structure, and 

weather climate zones. Ultimately, laboratory results and this proposed transport model 

could be used to benefit pavement engineers in improving pavement design protocols 

and pavement maintenance scheduling. This chapter presents introductory background 

information on elements of such a transport model including asphalt reaction kinetics, 

oxygen availability to pavements, and evidence of binder oxidation in pavements. 

 

Asphalt Binder Oxidation and Hardening Kinetics 

 

 Binder oxidation greatly affects the physical and chemical properties of binders 

and over time makes binders harder and stiffer.5,6,7 As binders oxidize, carbonyl (– C=O) 

groups are formed that increase the polarity of their host compounds and make them 

much more likely to associate with other polar compounds.6,8 As they form these 

associations, they create less soluble asphaltene materials, the formation of which leads 

to asphalt hardening. 

Without diffusion resistance, the asphalt binder hardening mechanism can be 

shown as: 
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( ) ( ) ( )timerjotot ηηηηη +Δ+Δ+= lnlnlnln     (I-1) 

 

where oη  is the original viscosity, tη  is the viscosity at any time, ( )otηlnΔ  is the 

hardening in the hot-mix plant simulated by an oven test, ( )jηlnΔ  is the hardening that 

occurs in an early rapid “initial jump” stage, and ηr  is the subsequent constant rate of 

hardening. Equation I-1 is shown as the hardening progression in Figure I-1, where otη  

is the viscosity after the oven test and jη  is the viscosity after the initial jump defined by 

the intercept of the constant-rate line. Region A and B are time periods for the initial 

jump and constant-rate regions, respectively.  

 Asphaltene formation is the primary cause of binder hardening due to asphalt 

oxidation,9,10,11 and the hardening rate is: 

 

t
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∂
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∂

∂
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ηη
η

lnln     (I-2) 

 

where AS∂∂ ηln  is viscosity hardening due to asphaltene (AS) formation. CAAS ∂∂  is 

asphaltene formation due to increasing carbonyl area (CA), and tCA ∂∂ is the rate of CA 

production. It was found that CA formation has a linear correlation with oxidation.6 

Also, Equation I-2 can be rewritten as: 

 

CArHSr ⋅=η       (I-3) 

 

where HS, hardening susceptibility, is the combination of the first two terms in Equation 

I-2. For oxidation temperature below 100  °C, HS can be considered as a constant.5,12 
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Figure I-1. Typical Hardening Response of an Unmodified Asphalt Binder  

to Oxidation10 

 

 Several studies have been conducted to explore basic binder oxidation 

chemistry.5,13,14 From these reports, after an early, fast-rate period, the carbonyl 

compounds are formed at a rate that is a function of temperature and oxygen partial 

pressure. The rate of CA production can generally be described using an Arrhenius 

expression for temperature variation and pressure dependence as given in Equation        

I-4.10,11,15,16 

 

RTE
CA

aeAP
t

CAr −=
∂

∂
= α      (I-4) 

where A is the frequency (pre-exponential) factor, P is the pressure, α is the reaction 

order with respect to oxygen pressure. Ea is the activation energy, R is the gas constant, 

and T is the absolute temperature. Values of A, Ea, and, α depend on the type of asphalt 
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binder, while A and Ea are generally correlated.15 Also, activation energy, Ea, depends on 

pressure and is a function of asphaltenes.17 Equation I-5 summarizes these results as: 

 

( ) ( )timePHSPTrP CAjott ][],[][lnlnln ⋅+Δ+= ηηη    (I-5) 

 

where [T, P] or [P] indicates that the property is a function of temperature and pressure 

or only pressure, respectively.  

Asphalt binder oxidation in pavements has been proven to be an ongoing process 

throughout a pavement’s service life. Also, there is evidence that demonstrates that 

oxidation occurs through the depth of the pavement and has a significant effect on 

pavement performance3,4 Understanding the nature of the oxidation process and being 

able to predict the level of oxidation that occurs in pavements as a function of time and 

depth are critical to pavement design improvement that will provide greater pavement 

durability. 

The important consequence of asphalt binder oxidation in pavements is oxidative 

hardening. As non-asphaltene polar aromatic compounds in asphalt binders oxidize, they 

become asphaltenes, associated species that act like solid particles suspended in the 

asphalt, thereby producing an increase in asphalt elastic modulus and viscosity.5,7,9,12 

Consequently, the performance of pavements is affected directly by asphalt binder 

oxidative hardening. Several studies by Walubita et al.18,19,20,21 indicate that oxidation of 

asphalt binder in pavements leads to a decline in pavement fatigue resistance.  

Also, low levels of accessible air voids in pavements potentially relate to binder 

oxidation.22 When pavements have sufficiently high accessible air voids (4 percent or 

greater), the oxidation rate is largely determined by the temperature in the pavement. On 

the other hand, when the accessible air voids in the pavement is considerably lower (2 

percent or less), the hardening rate of binders in pavements is reduced significantly.  

 According to the oxidative hardening discussed above, asphalt binders harden 

and become more brittle, which decreases the performance in terms of flexibility over 

time and eventually destroys the pavement. This embrittlement of binders can be 
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displayed through a correlation with binder ductility (measured at 15 °C, 1 cm/min) and 

binder DSR properties (dynamic shear modulus, G', and dynamic viscosity, η', equal to 

G''/ ω), shown in Figure I-2. Binder ductility correlates very well with G'/(η'/G'), 

indicating a good relationship between elastic stiffness and the ability of the asphalt 

binder to flow. Such correlation can be represented on a “map” of G' versus (η'/G'), as 

shown in Figure I-3, which traces an asphalt binder as it ages.23 On this map, as the 

binder ages over time, it moves from the lower right to the upper left as the result of the 

increase in elastic stiffness and viscosity. As observed from the map, G' increases more 

than η' since the movement is from right to left, toward smaller η'/G' values. Within this 

map, there are several different aged binders from SH-21 between Bryan and Caldwell, 

Texas (originally constructed in 1988). Samples were obtained in 1989, 1992, 1996, and 

2002. It is clear from Figure I-3 that asphalt binders behave the same way as discussed 

above. 

  

 
Figure I-2. Correlation of Aged-Binder Ductility with the DSR Function  

(G'/ (η'/G')) for Unmodified Binders23 
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These results are rather remarkable and strongly suggest, as noted above, that 

oxidative aging rates are remarkably constant over time and, beyond the very top portion 

of the pavement, proceed at remarkably uniform rates, at least to several inches below 

the surface of the pavement.  

It should be noted that the literature reports that ductility values in the range of 2 

to 3 cm for 15 °C at 1 cm/min appear to correspond to a critical level for age-related 

cracking .24 Thus, the top left corner of the pavement aging map (Figure I-3) is a suspect 

region for adequate pavement performance. While this region has not yet been verified 

conclusively to be a critical zone, recent pavement data (from Texas Department of 

Transportation [TxDOT] Project 0-1872, including several Long Term Pavement 

Performance, LTPP, pavements) are consistent with this early conclusion.  

 

 
Figure I-3. Binder Aging Path on a G' versus η'/G' Map (Pavement-aged Binders)3 
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Binder Oxidation in Pavements 

 

The oxidation of binders in asphalt pavements has been a subject of interest for a 

significant number of years, even decades.3,4,5,12,14,20,25 A very well cited and accepted 

literature report by Coons and Wright25 concludes that binder oxidation occurs only in 

the top 1.5 inch of the pavement and that below the top inch, the binder is left virtually 

unaffected by years of use and years of environmental exposure as shown in Figure I-4. 

The conclusion by Coons and Wright25 is formalized in a recently developed 

mechanistic-empirical pavement design guide (MEPDG)26 that assumes in its calculation 

that binders oxidize only in the top inch. Parenthetically, calculations18 using the 

MEPDG suggest that binder oxidation and the consequent increase in pavement stiffness 

(and the presumed decrease in deformation under load as a result of this stiffness) 

actually have a positive impact on pavement fatigue life. 
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Figure I-4. Average Viscosity of Field Samples versus Depth25  
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These conclusions are adopted in the global aging model (GAM) of Mirza and 

Witczak27 and subsequently incorporated into the National Highway Cooperative 

Research Program (NCHRP) mechanistic empirical design guide.26 Mirza and Witczak27 

discussed the relationship between binder viscosity and pavement depth such that the 

greatest change in binder viscosity in pavements occurs only in the top few inches. 

Furthermore, the GAM assumes a hyperbolic aging function so that the great bulk of the 

hardening occurs in the first 10 years of service.  

One difficulty with the data on which the assumptions above are based is that the 

solvent recovery process most likely left enough solvent in the recovered binder to 

soften its properties significantly.28 Mirza and Witczak note that typically the recovery 

method for the materials in their master database was not included in the reference 

sources, with the implication that needed modifications were not employed. Residual 

solvent levels will be greater for the more heavily aged binders. Thus, stiffer binders will 

be more affected by residual solvent, leading to a compression of binder properties and 

thus erroneously small relative viscosity values when binder properties are tracked over 

time. 

 

Oxygen Availability in Pavements 

 

 According to the asphalt binder oxidation kinetics described previously, a key 

element in asphalt oxidation is the oxygen availability in the pavements. Therefore, air 

void structure and pavement air permeability are crucial to the study of pavement 

oxidation. Since the measurement of air permeability in pavements is extremely difficult, 

the measurement of pavement water permeability and interconnected air void channels 

from top to bottom of the pavement should be adequate to ensure the availability of 

oxygen in the pavement under the assumption that the pavement is porous and ambient 

air can diffuse and/or flow into those air void channels in the pavements.  

 Several studies have shown that the air void content in asphalt pavement should 

not be lower than approximately 3 percent to prevent rutting and shoving or higher than 
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approximately 8 percent allowing water and air to penetrate into the pavement to prevent 

moisture damage in pavements.29  

 As for the relationship between pavement air void content and pavement water 

permeability, many researchers reported that when the in-place air void content 

increases, the water permeability of dense-graded pavements also increases.30,31 In 

addition to air void contents in mixtures, it was also found that other factors such as 

aggregate gradation, aggregate shape, lift thickness, and compaction method influence 

the water permeability characteristics of asphalt mixtures.32,33,34,35,36,37,38 

The relationship between in-place air voids and water permeability for 9.5 mm 

nominal maximum aggregate size (NMAS) is illustrated in Figure I-5 by Brown et al.39 

The water permeability values of coarse-graded and fine-graded mixtures were measured 

in the laboratory, and the air void contents of the corresponding mixtures were also 

measured using Corelok®.40 The reported R2 values for both coarse-graded and fine-

graded mixes were relatively high (0.70 and 0.86, respectively) and both relationships 

are significant (p-value = 0.000). At 8 percent air voids, the pavement is expected to 

have a water permeability of 60 × 10-5 cm/s for a coarse-graded mix and 10 × 10-5 cm/s 

for a fine-graded mix. At lower void levels, the coarse-graded mixes are more permeable 

than fine-graded mixes. 
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Figure I-5. Plot of Water Permeability versus In-Place Air Voids26 

 

 There were also several attempts to study the air void characteristics in 

pavements in further detail using imaging techniques. Al-Omari et al.41 used X-ray 

computed tomography (CT) and image analysis techniques to measure the material 

properties. Their analysis demonstrated the complex distribution of air voids in asphalt 

mixes. The work by Masad et al.42 used X-ray CT imaging techniques to study the 

moisture transport through the air void channels in asphalt mixtures and discovered that 

air void channels in pavement were connected from top to bottom of the specimen. Also, 

the paths of the connected voids can be determined by using a connectivity algorithm 

with the computer software.  

 According to these previous findings, the air void channels in pavements are 

accessible from top to bottom of the pavements and can be determined by the use of 

appropriate methods. Therefore, it should be possible for asphalt binder oxidation to 

occur well below the surface of the pavement. 
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Current Findings on Pavement Oxidation 

 

Recent literature indicates that binder oxidation in pavements can have a very 

significant negative impact on pavement fatigue life.20 While the mechanism of this 

fatigue life decline with oxidation is not yet well understood, it is believed to be a very 

important phenomenon, and early data indicate that there may be significant differences 

between different mixture designs. 

Yet, the work of Coons and Wright25 described above (Figure I-4) and the 

assumption of the MEPDG26 on binder oxidation and hardening would appear to make 

any negative impact of binder oxidation on fatigue a moot point. If oxidation occurs in 

only the top inch of pavements, then any effects it might have below the top inch are 

irrelevant. 

However, contradicting the work of Coons and Wright25 and the assumptions of 

the MEPDG26 are the extensive data reported in Glover et al.3  in which a large number 

of Texas pavements were cored and the binder extracted and recovered and tested to 

determine binder stiffness as a function of age in the pavement. The results of this work 

indicate rather strongly that in fact binders can age in pavements well below the surface 

and that the hardening of binder in the pavement is virtually unabated over time. These 

data also are reported in a recent paper by Al-Azri et al.4 

In addition, Woo et al.22 discovered evidence of binder oxidation in pavements to 

extend to a depth of more than 3 inches. Table I-1 contains the information of field core 

samples collected from pavement sites in Minnesota. The MnRoad site is located in 

Minnesota near Minneapolis-St. Paul and is a suitable site for the scientific study of road 

pavements and their performance, including the performance of binder properties.43 The 

MnRoad test site consists of a portion of I-94 in Minnesota with part of it being the main 

line interstate highway and part of it a test loop just off of the interstate highway. Cells 1 

and 3 used an unmodified asphalt concrete (AC) 120-150 penetration grade binder, and 

Cells 33, 34, and 35 contain an unmodified base binder (Cell 33) and two levels of SBS 

(styrene-butadiene-styrene) modification to produce a performance graded (PG) 58-34 
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binder (Cell 34) and a PG 58-40 binder (Cell 35). Cells 1 and 3 were constructed in 

1992, whereas Cells 33 through 35 were constructed in 1999. Coring of all of these cells 

occurred first in November of 2004 and the second coring was in July of 2006, thus 

giving 12 years of service for the first coring in Cells 1 and 3 and 5 years of service for 

the first coring of Cells 33 through 35.  

 

Table I-1. Collected Cores from MnRoad22 

MnRoad 
District Highway Thickness: 

Inch 
PG 

(Modifier) 
Construction 

Date 
1st  

Coring 
2nd  

Coring 
Ce11 1 5.9 

Ce11 3 6.3 
AC 120/150  

(Un) 1992 

Ce11 33 4.04 58-28 (Un) 

Ce11 34 3.92 58-34 (SBS) 

Ce11 35 

I 94 

3.96 58-40 (SBS) 

1999 

11/2004 07/2006 

 
 

The accessible or interconnected air voids of core samples from the MnRoad site, 

shown in Figure I-6, are particularly interesting and appear to bear on the binder 

oxidation. Cells 33, 34, and 35 all have a fairly uniform interconnected air void content 

from 3 to 5 percent. Cell 35 seems to have a significantly higher accessible air void 

percentage in the surface layer, but this higher level may be due to a surface roughness 

that might distort the actual interconnected air voids measurement. From the accessible 

air voids of cores from Cells 1 and 3, the interconnected air voids level is quite low, even 

below 1 percent for the layers in the top half of the core (top 3 inches), and then as the 

layers progress down deeper into the core, they increase to the 4 to 5 percent range of the 

other cores. The reason for these cells having such low interconnected air voids could be 

the result of binder content coupled with the mix design and compaction during 

construction.  
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Figure I-6. MnRoad Accessible Air Voids22 

 

Woo et al.22 also reported the condition of extracted and recovered binder from 

the Cell 1 and 3 cores that were obtained in 2004 as shown in Figure I-7. The binders 

were extracted and recovered from the cores, which were sliced into layers of ½ inch 

thickness and then were tested for DSR properties to determine the level of oxidation. 

The G'/(η'/G') (DSR function) properties are plotted in Figure I-7 on the DSR map, 

which is a plot of G' versus the ratio of η' to G'. This plot of a binder’s elastic modulus 

versus the ratio of its viscosity to elastic modulus shows the progression of a binder as it 

oxidatively hardens. As this hardening occurs, a binder moves from the vicinity of the 

lower right corner toward the top left corner.23 
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Figure I-7. MnRoad Aging Comparison of the Surface to  

the Bottom Layers22 

 

For the top four layers from the top 2.5 inches of the pavement as shown in the 

DSR plot (Figure I-7), the binder that is deeper in the pavement is less aged. This finding 

follows the general trend that the progression from layer to layer is in a direction of the 

binder being less aged with depth into the pavement. The order of this progression would 

be expected if the temperature in the pavement with depth into the pavement is lower 

and if the access of oxygen to the binder at greater depths in the pavement is reduced.  

However, the binder DSR data for the bottom five layers of the Cell 1 and 3 

cores move in the opposite direction. That is, as binder is recovered from progressively 

greater depths into the pavement (from 2.6 to 6 inches deep into the pavement), the 

binder is progressively more aged, even to the extent that the binder that is recovered 

from the layer that is nearly 6 inches deep into the pavement is as aged as the binder at 

the surface of the pavement. One might attribute this range of binder DSR data that is 

covered in Figure I-7 to experimental variation except that the progression is so orderly, 

first decreasing monotonically in stiffness with increasing depth from the surface to the 
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middle of the core, and then increasing monotonically with increasing depth from the 

middle to the bottom of the core. 

Referring back to the accessible air void contents, the Cell 1 and 3 cores had a 

significantly lower level of interconnected air voids than any of the others, and these 

lower levels were evident in the top layers of the pavement while the bottom layers were 

in the range of 2 to 5 percent interconnected air voids. A possible conclusion is that the 

variation in aging levels of that core with depth in the pavement is the result of these 

very low interconnected air voids. From Figure I-7, it can be seen that the air voids are 

less than 2 percent for the top five layers and then the sixth, seventh, eighth, and ninth 

layers increase progressively from 2 to 5 percent interconnected air voids. These data 

suggest that the progressively lower amount of aging deeper into the pavement could be 

due to this very low level of interconnected air voids and then that the increased aging 

towards the bottom of the pavement layer is a result of the increasing air voids with 

depth in that part of the pavement.  

In addition to the recovered binder properties in Figure I-7, the original binder 

properties aged to different levels is also shown. These levels include the equivalent of a 

rolling thin film oven test aging procedure (designated Stirred-Air Flow Test, SAFT) and 

two aging states that were obtained in a Strategic Highway Research Program (SHRP) 

pressure aging vessel (PAV) apparatus. A stirred air flow test (SAFT) which simulates 

the hot mix process was used for short-term aging.44 The standard pressure aging vessel 

(PAV) procedure was modified and is referred to as the PAV* procedure. This PAV* 

method was conducted at 90 °C and in 1 mm thick films and conducted for two test 

periods: 16 hr and 32 hr of aging, both at 20 atmospheres of air pressure. The thin film 

provides increased access of the binder to oxygen and thus enhancement to the binder 

aging rate, even at 20 atmospheres air pressure.  

On the DSR map in Figure I-7, asphalt binder with SAFT aging originates at the 

lower right corner of the map, and the PAV* 32 hr aging is moved toward the top left 

corner near the dashed line that indicates a ductility of 10 cm. These dashed ductility 

lines are obtained from the correlation by Ruan et al.23 and come from his correlation for 
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unmodified binders between the DSR function and ductility measured at 15 °C, 1 

cm/min. 

 

Dissertation Outline 

 

 With the background knowledge of asphalt oxidation, oxygen availability to 

pavements, and pavement oxidation in the field described in this chapter; the objective 

of this dissertation is to develop an improved asphalt binder oxidation model in 

pavements, which includes all the important elements of pavement oxidation, in order to 

predict asphalt binder properties in pavements as a function of service life. To further 

improve the model, the effects of local climate would also be incorporated into the 

model. 

 The approaches for each chapter to accomplish the goal of this dissertation are 

stated as follows: 

Chapter II discusses the effects of different levels of air void contents in the 

pavements on asphalt binder oxidation. Several pavements in Texas were included in 

this study. 

 Chapter III presents the analysis of air void characteristics in pavement core 

samples determined using X-ray CT and image analysis. The stacked images obtained 

from the CT scans were analyzed by Image-Pro® Plus software to calculate the average 

size of air voids in the core samples. Then the average distance between air voids was 

calculated in the second stage using a Fortran-built algorithm. The results of the analysis 

from this chapter will be used as oxidation model inputs in the later chapters. 

 Chapter IV discusses the development of an improved pavement oxidation 

transport model, which is based on three interlinked processes: 1) diffusion of oxygen 

into the asphalt binder, 2) heat transfer into the pavement, and 3) asphalt binder 

oxidation. The improved oxidation model was developed in a more realistic cylindrical 

coordinate system that is able to capture the effects of air void structure in pavements 

and include such effects into model calculations. 
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 Chapter V includes the extensive studies of the binder oxidation model 

developed in Chapter IV. In this chapter, the model was studied under the constant 

temperature condition. The oxidation rates calculated from the model were compared 

with the oxidation rates of asphalt binder recovered from core samples that undergo 

environmental room (ER) aging at 60 °C. Later in the chapter, the process for estimating 

model parameters with the least-squares method is discussed. This estimation process is 

used to determine unknown oxidation model parameters from known measured 

parameters together with measured ER mixture aging rates. 

 Chapter VI presents the discussion on integrating the pavement temperature 

prediction model with the pavement binder oxidation model. The oxidation rates 

calculated based on predicted pavement temperature are compared with available field 

oxidation rates. 

 Finally, Chapter VII provides an executive summary, conclusions, and 

recommendations based on the dissertation. 
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CHAPTER II 

THE EFFECT OF ACCESSIBLE AIR VOIDS  

ON BINDER PROPERTIES AND AGING 

 

Introduction 

 

 When the accessible air voids in a pavement are reduced, it might be expected 

that oxygen transport to the binder is also reduced and therefore that binder aging would 

be slowed. Similarly, to the extent an increased binder content results in a thicker binder 

film, the transport of oxygen throughout the binder could be reduced. Either of these 

effects conceivably could result in a reduction in hardening rates of binder in pavements. 

 The air void information and binder rheological properties reported in this 

chapter were from the study for seal treatment effectiveness in pavements.45 In the study, 

the treatment did not have significant impact on binder rheological properties. Therefore, 

both treated and untreated samples in treatment study were used as core replicates. 

 Several Texas pavements were studied over a period of 2 years in order to 

understand the effects of different air void levels in pavements on binder oxidation. 

Tables II-1 and II-2 summarize the information on the pavement sites studied. In Tables 

II-1 and II-2, the site of the core is followed with a number in parentheses that indicates 

the number of cores that were taken at each site. Also included in Tables II-1 and II-2 is 

whether the site was an airport pavement, the original construction date of the pavement, 

and the coring date. 

 In this chapter, the impact of the accessible air voids – those that water can 

penetrate when the CoreLok® vacuum bag is opened underwater – to asphalt binder 

oxidation in pavements was determined. It was found that pavements with low level of 

accessible air voids (less than 3 percent) suffer less hardening than the pavements with 

high level of accessible air voids ( more than 6 percent). 
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Table II-1. Site Information for the 1st Coring of the Study 

Site (# of cores) Location Construction 
Date Coring Date

Abilene (18) SH 36 1998 2004-2005
Carrizo Springs (6) Airport 1995 2004-2005
Fort Worth 2000 (6) FM 4 2000 2005
Fort Worth 2003 (6) FM 4 2003 2005
Georgetown '89 (7) Airport 1989 2004
Georgetown '95 (6) Airport 1995 2004
Jacksonville (6) Airport 2004 2004
Lufkin (6) Bus 59 1995 2004
Pleasanton (6) Airport 1985 2004

1st Core (2004-2005)

 
 

Table II-2. Site Information for the 2nd Coring of the Study 

Site (# of cores) Location Construction 
Date Coring Date

Abilene (21) SH 36 1998 2006
Atlanta CM (6) IH 20 2001 2006
Atlanta DG (6) IH 20 2001 2006
Atlanta SP (6) IH 20 2001 2006
Atlanta 67 (6) US 67 2003 2006
Carrizo Springs (6) Airport 1995 2006
Fort Worth 2000 (6) FM 4 2000 2006
Fort Worth 2003 (6) FM 4 2003 2006
Georgetown '89 (6) Airport 1989 2006
Georgetown '95 (9) Airport 1995 2006
Jacksonville (6) Airport 2004 2006
Lufkin (6) Bus 59 1995 2006
Odessa SH 149 (6) SH 191 1983 2006
Odessa SH 349 (6) SH 349 1996 2006
Pleasanton (6) Airport 1985 2006
Tyler (6) US 79 2002 2006

2nd Core (2006)
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Research Objectives 

 

The objective of this chapter is to assess the effects of the accessible air voids 

and of binder content on binder aging by comparing asphalt binder physical properties 

extracted from Texas pavements with different levels of accessible air voids and binder 

content.  

 

Methodology 

 

 The pavement cores were sliced into nominal ¼-inch layers through the top inch 

of the pavement. Then for each of the slices, the total air voids and the accessible air 

voids were determined. Additionally, the binder in each of these slices was extracted and 

recovered to provide the binder content, and measurement of the binder’s DSR 

properties provided values for binder stiffness. The binder rheology was then assessed 

for each core as to its correlation to accessible air voids and binder content. Detailed 

information of the test methods are described subsequently.  

 

Coring Plan 

 

During the first year, coring locations for roadway sections were established that 

would provide one core from the inside edge of the wheelpath, one from the wheelpath, 

and one from the outside edge of the wheelpath. Figure II-1 illustrates this layout and the 

coring rig used during that first round of coring. The thought was that selecting the cores 

from the traveled area (wheelpath) and from the less traveled areas (inside and outside of 

the wheelpath) would provide a range of in-place densities and air voids. 
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Figure II-1. Layout of Coring Plan and Coring Rig 

 

Core Preparation and Test Methods 

 

The original sample preparation and test procedures are as shown in Figure II-2. 

Three core samples (replicates) were received from each site. At first, core samples were 

trimmed to approximately 3 inches thick and then the air void content of each core 

sample was measured. After air voids measurement, the specimen was sliced into ¼-inch 

disks for further testing. Figure II-3 shows a core being prepared for slicing, and Figure 

II-4 shows a set of slices being dried prior to additional testing. Due to the cutting blade 

thickness, the real thicknesses of slice samples needed to be estimated. Then, the binder 

from each slice was extracted and recovered for further testing. The extracted binders’ 

properties were measured using the Dynamic Shear Rheometer (DSR) and Fourier 

transform-infrared (FT-IR) methods, which are discussed later in this chapter. 
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Figure II-2. Test Plan Diagram 

 

 

 
Figure II-3. Slicing Cores for Further Testing 
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Figure II-4. Core Slices Being Dried 

 

Air Voids Measurement 

  

 A number of properties of intact pavement cores are of interest. These include 

the bulk and maximum specific gravities and the total and accessible air voids content. 

These properties are determined by a number of weight measurements including the 

weight of the dry core in air, the weight of the saturated core underwater, and the weight 

of the dry core underwater. Two methods were used to determine these weights, a 

saturated surface-dry (SSD) method46 and the Corelok® method.47,48 The Corelok® 

operating procedure can be found in the Corelok® Operator’s Guide49 The SSD method 

uses measurements of the unsealed core, while the Corelok® method uses underwater 

measurements of the evacuated core sealed in a plastic bag. 
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 The measurements and the calculations for the two methods are given by the 

following equations and notation:  

 

method) (SSD   Gravity  SpecificBulk 
SaA-SaW

DA
=     (II-1) 

 

method) (SSD    VoidAir  Accessible
SaA-SaW
SaA-DA

=     (II-2) 

 

method)(Corelok    Gravity  SpecificBulk 
SeA-SeW

DA
=     (II-3) 

 

method)(Corelok     VoidAir  Accessible

sg

sg

B
BA

SeA-SeW-

(DA-SaW)
B
BA

SeA-SeW- −

=   (II-4) 

 

   Gravity  Specific Maximum

sgB
BA

W)-SeA-(SaW+B

DA
=     (II-5) 

 

  
Gravity Specific Maximum

Gravity SpecificBulk 
1 VoidAir  Total −=      (II-6) 

  

where  

 DA  = dry sample weight in air (g) 

 BA  = bag weight in air (g) 

 BW  = bag weight in water (g) 

 Bsg  = bag specific gravity 
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 SaA  = saturated sample weight in air (g) 

 SaW  = saturated sample weight in water (g) 

 SeA  = sealed sample weight in air (g) 

 SeW  = sealed sample weight in water (g) 

 

Each of these methods of determining air voids has inherent measurement errors, 

and taken together, the two provide a useful check, and their comparisons provide an 

indication of the types of errors. For example, the SSD method is subject to greater error 

for more open, porous mixtures. This is because the SSD method relies on being able to 

obtain a weight of the saturated core that still contains all of the water inside the pores of 

the core. However, if the mixture is open enough, the water will tend to drain out, giving 

a lower saturated weight and also higher air voids. The Corelok® method will give 

higher air voids if the surface of the core has a rough texture because the bag cannot 

collapse around this texture completely and therefore, this texture appears as air voids in 

the pavement.  

 

Binder Extraction and Recovery 

 

 Extraction and recovery of the binder in the cores is conducted based on the 

procedures outlined by Burr et al.50 These procedures provide for a thorough wash and 

therefore extraction of the binder from the aggregate but with minimal hardening or 

softening of the binder in the solvent and with care taken to assure complete solvent 

removal during the recovery process.28,50,51,52,53 For the extraction process, a solution of 

15 percent by volume of ethanol in toluene was used to extract the asphalt binder from 

each sliced core. Before extraction, each core was broken into small pieces to increase 

contact surface with the solvent. After the crushed core was washed with the solvent 

mixture for 20 minutes, the asphalt solution was separated from aggregate using 

filtration and centrifugation. This step was repeated until there was practically no asphalt 

remaining in the aggregate – the aggregate can be seen through the solution. All of the 
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asphalt solutions from each wash were combined into one solution, and then passed to 

the recovery process.  

In the recovery process, a Brinkman rotovap apparatus was used to evaporate all 

solvent from the asphalt. Asphalt solution was put into the evaporator for about 80 

minutes under vacuum and with a nitrogen purge to assist solvent removal. The 

recovered asphalt binder was then subjected to further chemical and physical analyses. 

Figure II-5 shows the extraction/recovery process. 

 The binder content for each slice was calculated as the combined weight of 

asphalt binder from the recovery container, the filter, and the side of rotovap column 

(Figure II-5). 
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Figure II-5. Asphalt Binder Extraction and Recovery Process 
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Dynamic Shear Rheometer (DSR) 

 

Two types of rheological property data were obtained from DSR measurements: 

the viscosity master curve at 60 °C and an estimated ductility of the asphalt binder. A 2.5 

cm diameter parallel-plate geometry with a 500 µm gap was used for the measurements. 

To acquire the viscosity master curve at the 60 °C reference temperature, complex 

viscosity measurements were obtained in a controlled-stress mode by performing two 

frequency sweeps at 60 °C and 80 °C over a frequency range of 100 to 0.1 rad/s. Then, a 

shift factor was used to adjust the frequency range, moduli, and viscosities of 80 °C to 

match with 60 °C reference temperature data. As a result, a single master curve with 

wider range of frequency at 60 °C can be constructed. After this time-temperature 

superposition procedure, the viscosity master curve at 60 °C had a frequency range from 

0.001 to 100 rad/s. At the lower end of the frequency range, the viscosity approaches a 

low shear rate limiting viscosity (also termed the “zero-shear” viscosity), a useful 

characteristic of the binder. An estimate of the binder’s ductility at 15 °C and 1 cm/min 

extension rate can be calculated from the DSR value, G' and G" at 44.7 °C, and 10 

rad/s.23 The DSR function relationship is shown below: 

 

DSR Function
δ
ω

η tan
*'

'
'

' G

G

G
=

⎟
⎠
⎞⎜

⎝
⎛

=                                            (II-7) 

 

where   
ω

η "' G
=  and =

'
"

G
G  tan δ 

ω = angular frequency (rad/s) 

δ = phase angle (degree) 

 

Then, G' versus (η'/G') can be plotted on the map with lines of constant ductility 

indicating the identified calculated ductility of each asphalt binder. 
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Fourier Transform-Infrared Spectrometer 

 

The FT-IR spectrometer used in this research was a Mattson 5020 Galaxy 

Spectrometer, and the attenuated total reflectance method was used as described by 

Jemison et al.54 Infrared spectra of asphalt binders coated on a zinc selenide prism were 

collected and analyzed over wavenumbers from 1800 to 700 cm-1. The band from 1820 

to 1650 cm-1 is the carbonyl band, and the area under the part of the spectrum is termed 

the carbonyl area and indicates the level of oxidation of the binder.  

 

Results and Discussion 

 

 The bulk core properties are provided for each layer and for each site in Tables 

II-3 through II-19. Reported for layer-by-layer are the core bulk specific gravity, the 

maximum specific gravity, the total air voids, the accessible air voids, and the binder 

content. Note that not all of the data are reported for each of the slices. Also note that 

two methods were used for determining the air voids: the saturated surface-dry method 

(SSD)46 and the Corelok®47,48 methods discussed previously. 

 In addition, the descriptions of the abbreviations from Table II-3 through II-19 

are given subsequently. 

 

 SH – State Highway   IH – Interstate Highway 

 BUS – Business Route  US – United States Highway 

 R1 – Southbound Outside Lane L1 – Southbound Inside Lane 

 R2 – Northbound Outside Lane L2 – Northbound Inside Lane  

 U, T – Sample Replicates  CM – Coarse Matrix Mixture 

 DG – Dense-Graded Mixture  SP – SuperPave Mixture  
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Table II-3. Properties of the Abilene L1 and L2 Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Content

U3 1st - - - - - - - -
2nd - - - - - - - -

1st Core 3rd - - - - - - - -
Abilene L1 T3 1st 2.27 2.05 2.54 10.84 19.28 6.35 14.57 5.06

2nd 2.26 2.13 2.54 10.76 16.20 7.54 12.25 5.09
3rd 2.25 2.09 2.51 10.48 16.83 7.64 13.25 5.37

U1 1st 2.26 2.11 2.44 7.61 13.66 7.84 12.89 3.72
2nd 2.25 2.15 2.44 8.00 11.99 7.54 10.61 4.40
3rd 2.23 2.14 2.45 9.10 12.58 8.87 11.08 4.28

U2 1st 2.22 2.11 2.47 10.12 14.47 10.37 13.01 3.79
2nd 2.22 2.11 2.47 10.27 14.69 9.47 12.50 4.09

2nd Core 3rd 2.22 2.11 2.47 10.14 14.51 9.64 12.56 4.69
Abilene L1 T1 1st 2.22 2.07 2.45 9.36 15.49 8.39 13.47 4.55

2nd 2.23 2.10 2.47 9.94 14.96 9.04 12.80 4.40
3rd 2.23 2.06 2.48 10.15 16.96 9.58 15.01 4.35

T2 1st 2.22 2.09 2.45 9.49 14.77 9.46 13.33 4.37
2nd 2.21 2.06 2.46 10.21 16.20 9.87 14.36 5.05
3rd 2.21 2.11 2.46 10.09 14.48 9.95 12.78 4.60

U3 1st - - - - - - - 4.22
2nd - - - - - - - 5.38

1st Core 3rd - - - - - - - 4.90
Abilene L2 T3 1st - - - - - - - 4.88

2nd - - - - - - - 5.42
3rd - - - - - - - 5.30

U1 1st 2.20 2.07 2.45 10.00 15.61 10.65 14.46 4.07
2nd 2.22 2.14 2.47 10.00 13.54 10.14 12.03 4.96
3rd 2.24 2.11 2.50 10.69 15.55 8.68 12.44 3.84

U2 1st 2.21 2.02 2.47 10.55 18.37 10.71 16.79 3.89
2nd 2.22 2.03 2.43 8.69 16.74 9.39 16.02 4.64

2nd Core 3rd 2.26 2.21 2.47 8.55 10.76 7.88 9.05 4.35
Abilene L2 T1 1st 2.21 2.04 2.45 9.48 16.64 8.81 14.80 4.54

2nd 2.23 2.09 2.44 8.70 14.48 7.75 12.62 4.82
3rd 2.24 2.17 2.48 9.60 12.58 8.72 10.48 4.63

T2 1st 2.20 2.04 2.44 9.94 16.60 7.82 13.66 4.17
2nd 2.23 2.02 2.46 9.29 17.94 8.40 16.04 4.69
3rd 2.26 2.21 2.49 9.29 11.41 8.60 9.50 4.13

Accessible A.V.Total A.V.Bulk S.G.
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Table II-4. Properties of the Abilene R1 and R2 Cores 

  Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U3 1st 2.33 2.14 2.57 8.95 16.36 4.45 11.89 4.14
2nd 2.32 2.15 2.54 8.77 15.17 5.26 11.43 4.86

1st Core 3 rd 2.28 2.16 2.51 8.98 13.84 6.99 11.14 4.96
Abilene R1 T3 1st 2.29 2.07 2.51 8.76 17.57 4.96 13.74 4.68

2nd 2.29 2.01 2.55 10.00 21.16 5.54 16.78 5.32
3 rd 2.27 2.09 2.52 10.04 17.02 7.41 13.71 5.15

U1 1st 2.25 2.02 2.48 9.26 18.50 8.16 16.49 3.99
2nd 2.23 2.05 2.46 9.30 16.81 8.66 15.05 4.36
3 rd 2.28 2.25 2.48 8.34 9.50 7.38 7.62 4.79

U2 1st 2.26 2.07 2.46 8.14 15.85 6.52 13.68 3.94
2nd 2.26 2.07 2.47 8.48 16.18 7.12 14.12 4.08

2nd Core 3 rd 2.30 2.25 2.50 7.93 9.82 6.86 7.96 3.89
Abilene R1 T1 1st 2.24 2.04 2.46 8.78 17.07 7.45 14.98 4.17

2nd 2.22 2.08 2.45 9.47 15.29 8.77 13.41 4.30
3 rd 2.28 2.26 2.48 7.87 8.90 6.50 6.80 4.65

T2 1st 2.25 2.08 2.46 8.22 15.18 4.72 11.58 4.30
2nd 2.24 2.09 2.45 8.48 14.76 7.97 13.26 4.51
3 rd 2.31 2.28 2.46 5.81 7.11 3.73 4.80 4.97

U2 1st - - - - - - - -
2nd - - - - - - - -

1st Core 3 rd - - - - - - - -
Abilene R2 T2 1st - - - - - - - 4.72

2nd - - - - - - - 4.60
3 rd - - - - - - - 5.68

U1 1st 2.22 1.97 2.48 10.48 20.46 10.66 18.95 3.65
2nd 2.42 2.16 2.46 1.77 12.06 9.01 17.31 4.31
3 rd 2.27 2.12 2.44 6.86 13.02 0.45 7.04 4.96

U2 1st 2.17 1.90 2.48 12.34 23.42 5.19 16.74 3.78
2nd 2.23 2.17 2.45 9.06 11.35 8.61 9.68 5.06

2nd Core 3 rd 2.28 2.27 2.45 6.92 7.13 5.46 5.14 5.02
Abilene R2 T1 1st 2.21 1.98 2.46 10.24 19.76 10.33 18.26 4.34

2nd 2.24 2.16 2.46 8.73 12.16 7.71 10.18 5.07
3 rd 2.27 2.21 2.44 6.90 9.44 5.49 7.54 5.50

T2 1st 2.23 1.98 2.48 10.10 20.16 9.44 18.24 3.62
2nd 2.30 2.25 2.45 6.11 8.06 4.20 5.88 5.35
3 rd 2.29 2.27 2.38 3.84 4.66 2.02 2.78 7.05

Bulk S.G. Total A.V. Accessible A.V.
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Table II-5. Properties of the Atlanta IH 20 CM Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.26 1.88 2.48 8.80 24.00 10.69 24.00 2.92
2nd 2.33 2.13 2.42 3.79 11.76 0.54 8.78 3.66
3rd 2.28 2.14 2.28 0.00 5.89 6.49 11.56 3.55

U2 1st 2.27 1.99 2.48 8.68 19.68 7.25 17.62 3.50
1st Core 2nd 2.24 2.12 2.42 7.45 12.47 5.04 9.75 4.48
Atlanta 3rd 2.27 2.15 2.44 6.89 11.96 6.59 10.95 4.29

IH 20 CM T1 1st 2.25 2.05 2.41 6.81 14.96 7.54 14.72 3.71
2nd 2.29 2.09 2.49 8.14 16.10 6.57 13.96 3.71
3rd 2.32 2.07 2.49 6.81 16.56 5.39 14.82 3.59

T2 1st 2.29 1.98 2.45 6.78 19.41 5.71 17.99 3.60
2nd 2.29 2.13 2.48 7.73 14.31 6.33 12.34 3.63
3rd 2.29 2.16 2.45 6.87 12.03 6.03 10.62 3.68

Bulk S.G. Total A.V. Accessible A.V.

 
 

 

Table II-6. Properties of the Atlanta IH 20 DG Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.26 2.09 2.47 8.46 15.44 9.11 14.74 3.31
2nd 2.33 2.23 2.50 7.12 10.87 6.26 9.37 4.11
3 rd 2.29 2.18 2.48 7.56 11.94 6.38 10.13 3.94

U2 1st 2.28 2.06 2.51 9.31 18.15 7.93 15.92 3.48
1 st Core 2nd 2.30 2.22 2.52 8.63 12.01 6.11 8.94 3.49
Atlanta 3 rd 2.31 2.23 2.48 6.98 10.15 5.66 8.32 4.26

IH 20 DG T1 1st 2.30 2.07 2.50 8.04 17.13 6.20 14.86 3.35
2nd 2.28 2.17 2.49 8.47 12.66 7.22 10.59 3.59
3 rd 2.32 2.20 2.51 7.41 12.21 5.23 9.68 3.18

T2 1st 2.29 2.04 2.49 8.02 18.13 6.73 16.27 3.77
2nd 2.31 2.17 2.49 7.37 12.88 6.23 11.16 3.46
3 rd 2.32 2.21 2.50 7.08 11.77 5.95 10.09 3.66

Bulk S.G. Total A.V. Accessible A.V.
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Table II-7. Properties of the Atlanta IH 20 SP Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.34 2.20 2.53 7.51 13.02 5.52 10.62 3.44
2nd 2.38 2.38 2.53 6.06 6.03 3.66 3.38 3.82
3 rd 2.37 2.34 2.52 5.96 7.06 3.85 4.70 4.40

U2 1st 2.33 2.22 2.51 7.12 11.45 7.01 10.52 4.06
1 st Core 2nd 2.36 2.30 2.52 6.19 8.72 4.76 6.92 4.31
Atlanta 3 rd 2.35 2.32 2.50 6.24 7.46 5.46 6.16 4.20

IH 20 SP T1 1st 2.35 2.11 2.53 7.01 16.34 5.54 13.96 3.99
2nd 2.36 2.26 2.59 8.95 12.88 5.86 9.44 4.00
3 rd 2.38 2.28 2.54 6.39 10.48 4.65 8.38 4.15

T2 1st 2.31 2.12 2.52 8.26 15.60 7.44 14.52 3.90
2nd 2.35 2.25 2.53 6.84 10.90 5.96 9.33 3.85
3 rd 2.35 2.27 2.54 7.46 10.43 5.98 8.44 3.77

Bulk S.G. Total A.V. Accessible A.V.

 
 

 

Table II-8. Properties of the Atlanta US 67 Cores 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.26 2.19 2.43 7.06 9.96 6.30 8.54 4.04
2nd 2.28 2.26 2.43 6.27 6.96 5.34 5.52 4.69
3rd 2.28 2.25 2.43 6.16 7.23 5.74 6.23 4.64

U2 1st 2.24 2.19 2.43 7.66 9.76 5.21 6.88 4.11
1st Core 2nd 2.27 2.26 2.45 7.32 7.66 5.38 5.21 4.35
Atlanta 3rd 2.27 2.26 2.44 6.85 7.28 5.85 5.68 4.69
US 67 T1 1st 2.27 2.22 2.45 7.32 9.15 5.18 6.57 4.40

2nd 2.24 2.21 2.46 8.80 10.07 6.09 6.74 4.70
3rd 2.24 2.23 2.45 8.60 8.90 7.40 6.75 4.58

T2 1st 2.26 2.20 2.43 6.93 9.39 5.75 7.67 3.90
2nd 2.28 2.22 2.42 6.11 8.49 5.42 7.30 4.45
3rd 2.28 2.22 2.43 6.22 8.71 6.22 8.05 4.24

Bulk S.G. Total A.V. Accessible A.V.
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Table II-9. Properties of the Carrizo Springs Airport Cores 

  Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U3 1st 2.31 2.30 2.59 10.80 11.23 5.06 5.05 4.38
1st Core 2nd 2.34 2.40 2.57 9.21 6.82 3.91 1.09 5.08
Carrizo 3 rd 2.34 2.32 2.50 6.25 7.18 0.23 1.22 5.21
Springs T3 1st 2.26 2.22 2.61 13.39 14.85 5.35 6.44 5.30
Airport 2nd 2.30 2.32 2.56 10.37 9.50 5.78 4.26 5.23

3 rd 2.31 2.32 2.57 9.96 9.74 4.40 3.81 5.05
U1 1st 2.28 2.22 2.49 8.56 10.77 7.31 8.64 4.61

2nd 2.32 2.31 2.46 5.87 6.36 4.79 4.87 4.86
3 rd 2.30 2.31 2.49 7.40 7.13 4.72 4.04 4.66

U2 1st 2.28 2.21 2.51 8.83 11.80 7.61 9.64 4.48
2nd Core 2nd 2.32 2.31 2.49 6.76 7.32 4.68 4.85 4.41
Carrizo 3 rd 2.32 2.32 2.47 5.99 6.12 4.37 4.15 4.45
Springs T1 1st 2.29 2.28 2.46 6.68 7.29 5.98 5.96 4.60
Airport 2nd 2.33 2.34 2.48 6.08 5.51 3.98 3.11 4.83

3 rd 2.33 2.35 2.45 4.79 3.89 3.17 2.07 4.76
T2 1st 2.27 2.25 2.48 8.73 9.46 7.77 7.46 4.20

2nd 2.31 2.31 2.46 6.13 6.12 3.89 3.60 4.73
3 rd 2.32 2.33 2.46 5.83 5.40 3.79 3.08 4.72

Bulk S.G. Total A.V. Accessible A.V.
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Table II-10. Properties of the Fort Worth FM 4 (2000) Cores 

  Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.32 1.91 2.43 4.43 21.56 6.12 22.40 -
2nd 2.24 2.08 2.25 0.40 7.65 3.63 10.42 -
3 rd 2.17 2.09 2.14 0.00 2.60 3.88 7.10 -

U2 1st 2.33 1.85 2.55 8.76 27.70 2.04 22.31 -
2nd 2.22 2.03 2.38 6.57 14.63 4.59 12.47 -
3 rd 2.17 2.05 2.31 5.94 11.18 3.78 8.89 -

U3 1st 2.12 1.81 2.55 16.95 28.82 4.76 18.02 5.21
1st Core 2nd 2.18 2.01 2.34 6.71 14.03 5.21 12.19 9.61

Fort Worth 3 rd 2.14 2.03 2.29 6.65 11.34 5.68 9.87 10.18
FM 4 T1 1st 2.27 1.87 2.50 9.34 25.07 7.73 22.89 -
(2000) 2nd 2.19 2.05 2.34 6.15 12.30 4.42 10.35 -

3 rd 2.13 2.08 2.23 4.55 6.91 3.63 5.77 -
T2 1st 2.30 1.91 2.48 7.49 23.20 6.81 21.96 -

2nd 2.22 2.01 2.37 6.31 15.20 4.03 12.87 -
3 rd 2.09 2.03 2.22 5.68 8.40 4.80 7.14 -

T3 1st 2.26 1.94 2.45 7.54 20.60 5.46 18.35 5.69
2nd 2.22 2.01 2.39 6.89 15.81 4.94 13.65 8.09
3 rd 2.12 2.03 2.23 5.11 8.93 3.22 6.92 13.77

U1 1st 2.29 1.97 2.45 6.58 19.82 4.69 17.85 6.13
2nd 2.24 2.03 2.36 5.20 14.00 2.99 11.83 8.37
3 rd 2.15 2.12 2.25 4.13 5.74 1.87 3.46 11.99

U2 1st 2.32 1.95 2.46 5.52 20.68 5.48 20.20 4.94
2nd 2.25 2.07 2.36 4.72 12.28 2.41 10.05 9.20
3 rd 2.18 2.13 2.27 3.90 5.97 1.80 3.85 10.66

U3 1st 2.30 1.92 2.47 7.05 22.36 4.28 19.76 -
2nd Core 2nd 2.16 2.06 2.36 8.29 12.61 2.06 6.59 -

Fort Worth 3 rd 2.17 2.08 2.28 4.95 8.76 2.85 6.60 -
FM 4 T1 1st 2.25 1.97 2.39 5.95 17.80 5.25 16.75 9.38
(2000) 2nd 2.19 2.06 2.31 5.35 10.80 4.04 9.28 9.07

3 rd 2.12 2.07 2.22 4.44 6.70 3.02 5.15 11.54
T2 1st 2.26 1.95 2.36 4.21 17.49 5.55 18.17 6.95

2nd 2.21 2.05 2.34 5.39 12.57 3.74 10.80 8.37
3 rd 2.10 2.07 2.24 6.01 7.74 0.67 2.48 11.25

T3 1st 2.23 1.86 2.41 7.46 23.06 1.59 18.14 -
2nd 2.19 2.09 2.31 5.10 9.52 3.48 7.76 -
3 rd 2.10 2.05 2.22 5.58 7.73 3.32 5.32 -

Bulk S.G. Total A.V. Accessible A.V.
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Table II-11. Properties of the Fort Worth FM 4 (2003) Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.10 2.00 2.20 4.60 9.23 2.36 7.00 -
2nd 2.19 2.13 2.27 3.86 6.35 0.93 3.47 -
3 rd 2.34 2.24 2.56 8.38 12.54 3.36 7.55 -

U2 1st 2.03 1.84 2.26 10.14 18.38 1.78 10.73 -
2nd 2.02 1.98 2.07 2.49 4.40 0.59 2.54 -
3 rd 2.36 2.23 2.48 4.73 10.15 2.43 7.88 -

U3 1st 2.15 1.96 2.28 5.55 13.99 1.93 10.63 14.93
1st Core 2nd 2.07 2.01 2.18 5.09 7.95 1.20 4.16 15.71

Fort Worth 3 rd 2.36 2.28 2.49 4.98 8.11 1.66 4.84 6.80
FM 4 T1 1st 2.11 1.96 2.16 2.42 9.42 2.11 9.06 -
(2003) 2nd 2.11 2.08 2.19 3.77 5.36 0.95 2.57 -

3 rd 2.36 2.28 2.49 5.17 8.55 2.91 6.21 -
T2 1st 2.12 1.94 2.23 5.15 13.22 0.21 8.71 -

2nd 2.12 2.08 2.17 2.34 4.13 0.37 2.19 -
3 rd 2.36 2.29 2.48 4.62 7.55 2.10 5.03 -

T3 1st 2.19 2.09 2.22 1.66 6.08 1.26 5.68 13.58
2nd 2.16 2.15 2.25 3.75 4.46 1.78 2.44 12.36
3 rd 2.38 2.24 2.51 5.14 10.62 3.20 8.61 4.33

U1 1st 2.14 1.97 2.24 4.19 11.94 2.92 10.62 13.08
2nd 2.16 2.17 2.26 4.34 4.20 0.88 0.72 12.74
3 rd 2.41 2.37 2.51 4.15 5.77 2.35 3.91 4.14

U2 1st 2.20 1.96 2.33 5.28 15.58 3.80 14.02 9.21
2nd 2.18 2.16 2.24 2.86 3.63 1.57 2.30 12.16
3 rd 2.39 2.34 2.50 4.49 6.60 2.69 4.70 4.18

U3 1st 2.10 2.00 2.17 3.35 7.84 2.01 6.49 -
2nd Core 2nd 2.30 2.21 2.40 4.28 8.08 1.59 5.44 -

Fort Worth 3 rd 2.32 2.11 2.49 6.96 15.35 4.12 12.48 -
FM 4 T1 1st 2.09 2.03 2.16 3.42 6.04 1.60 4.22 15.45
(2003) 2nd 2.21 2.20 2.29 3.69 3.99 2.07 2.29 10.10

3 rd - - - - 4.05
T2 1st 2.06 2.01 2.11 2.68 4.89 1.36 3.56 16.48

2nd 2.21 2.20 2.28 3.08 3.53 1.16 1.59 10.54
3 rd 2.41 2.21 2.57 6.13 14.00 3.66 11.51 3.00

T3 1st 2.05 1.95 2.12 3.45 7.92 1.29 5.83 -
2nd 2.04 2.01 2.08 2.21 3.60 0.66 2.06 -
3 rd 2.39 2.25 2.53 5.44 11.02 3.70 9.14 -

Bulk S.G. Total A.V. Accessible A.V.

 
 

 

 

 

 



37 
 

 

Table II-12. Properties of the Georgetown Airport (1989) Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U3 1st 2.19 2.12 2.50 12.69 15.30 10.95 11.71 5.18
1 st Core 2nd 2.31 2.27 2.47 6.84 8.23 3.25 4.50 6.43

Georgetown 3 rd 2.31 2.22 2.39 3.39 7.13 0.07 3.94 6.53
Airport T3 1st 2.26 2.13 2.47 8.51 13.68 7.49 11.79 5.55
(1989) 2nd 2.32 2.27 2.51 7.58 9.56 4.31 6.02 5.65

3 rd 2.32 2.27 2.47 6.08 8.26 3.55 5.56 5.70
U1 1st 2.21 2.09 2.49 11.10 16.17 10.46 13.86 4.59

2nd 2.31 2.27 2.46 6.30 7.93 3.85 5.24 5.60
3 rd 2.34 2.32 2.48 5.65 6.44 2.05 2.79 6.13

U2 1st 2.21 2.06 2.49 11.00 17.19 10.45 15.00 4.37
2nd Core 2nd 2.29 2.28 2.45 6.27 6.96 3.86 4.30 5.71

Georgetown 3 rd 2.34 2.33 2.42 3.05 3.51 1.40 1.83 6.41
Airport T1 1st 2.23 2.10 2.49 10.67 15.89 8.95 12.99 4.60
(1989) 2nd 2.31 2.31 2.45 5.67 6.00 3.08 3.24 5.22

3 rd 2.31 2.29 2.46 6.17 7.11 3.58 4.31 5.32
T2 1st 2.22 2.07 2.51 11.46 17.53 9.24 14.12 4.94

2nd 2.30 2.30 2.44 5.64 5.71 3.52 3.36 5.54
3 rd 2.31 2.29 2.46 5.85 6.82 2.81 3.67 6.03

Bulk S.G. Total A.V. Accessible A.V.
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Table II-13. Properties of the Georgetown Airport (1995) Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U3 1st 2.23 2.14 2.54 12.02 15.64 8.67 11.19 5.19
1 st Core 2nd 2.28 2.25 2.38 4.27 5.45 6.08 6.59 5.65

Georgetown 3 rd 2.29 2.24 2.54 9.85 11.69 5.63 6.99 5.32
Airport T3 1st 2.16 2.15 2.43 10.94 11.61 9.52 8.70 6.19
(1995) 2nd 2.25 2.28 2.59 12.92 11.99 7.03 5.16 5.70

3 rd 2.23 2.22 2.52 11.69 11.96 6.76 6.24 5.97
U1 1st 2.25 2.16 2.47 9.25 12.89 2.54 6.33 4.68

2nd 2.30 2.29 2.46 6.65 7.05 4.32 4.39 5.41
3 rd 2.32 2.32 2.44 4.91 4.87 2.46 2.30 5.77

U2 1st 2.24 2.15 2.49 10.33 13.89 8.71 11.09 4.87
2nd 2.26 2.25 2.46 7.82 8.53 6.46 6.44 5.19
3 rd 2.28 2.27 2.46 7.38 7.63 5.33 5.07 5.59

T1 1st 2.22 2.19 2.45 9.38 10.52 7.59 7.77 5.49
2nd Core 2nd 2.28 2.28 2.48 7.96 8.14 5.32 5.00 5.39

Georgetown 3 rd 2.29 2.29 2.47 7.43 7.26 4.62 4.06 5.63
Airport T2 1st 2.21 2.00 2.44 9.47 17.98 0.62 9.95 5.40
(1995) 2nd 2.29 2.29 2.45 6.40 6.62 4.82 4.63 5.60

3 rd 2.32 2.31 2.45 5.61 5.84 3.59 3.59 5.69
T1* 1st 2.24 2.13 2.44 8.34 12.91 7.84 11.42 5.47

2nd 2.27 2.25 2.49 8.45 9.40 6.71 6.89 4.73
3 rd 2.27 2.27 2.47 8.19 8.34 6.25 5.71 5.40

T2* 1st 2.22 2.16 2.45 9.39 11.82 8.94 10.06 4.76
2nd 2.27 2.24 2.46 7.81 8.81 6.32 6.63 5.44
3 rd 2.31 2.29 2.48 6.98 7.82 4.94 5.36 4.73

Bulk S.G. Total A.V. Accessible A.V.
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Table II-14. Properties of the Jacksonville Airport Cores 

  Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U3 1st 2.27 2.17 2.51 9.29 13.56 6.74 10.37 5.89
1st Core 2nd 2.33 2.26 2.44 4.48 7.48 1.93 4.94 7.48

Jacksonville 3 rd 2.28 2.26 2.47 7.43 8.20 4.97 5.32 6.72
Airport T3 1st 2.29 2.24 2.46 6.73 8.78 2.54 4.56 7.37

2nd 2.35 2.32 2.45 3.82 5.37 1.49 3.04 6.74
3 rd 2.36 2.32 2.46 4.08 5.42 2.04 3.34 6.65

U1 1st 2.28 2.19 2.50 8.80 12.21 8.18 10.51 5.50
2nd 2.32 2.25 2.47 6.08 8.93 4.08 6.69 6.37
3 rd 2.30 2.24 2.47 6.87 9.24 4.48 6.56 6.43

U2 1st 2.29 2.22 2.50 8.51 11.23 7.48 9.28 5.62
2nd Core 2nd 2.32 2.27 2.48 6.56 8.44 5.14 6.58 6.20

Jacksonville 3 rd 2.33 2.30 2.47 5.98 7.04 5.02 5.64 6.39
Airport T1 1st 2.23 2.14 2.45 9.02 12.65 8.76 11.14 5.76

2nd 2.26 2.24 2.46 8.27 8.95 7.19 6.98 6.16
3 rd 2.26 2.22 2.46 8.40 9.74 7.75 8.08 6.09

T2 1st 2.24 2.17 2.49 9.91 12.82 8.33 10.14 6.16
2nd 2.24 2.20 2.47 9.04 10.70 8.03 8.63 6.20
3 rd 2.24 2.19 2.26 0.82 3.10 7.80 8.89 6.48

Bulk S.G. Total A.V. Accessible A.V.

 
 

 

Table II-15. Properties of the Lufkin BUS 59 Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U3 1st - - - - - - - 3.89
1 st Core 2nd - - - - - - - 4.31
Lufkin 3 rd - - - - - - -
BUS 59 T3 1st - - - - - - - 4.50

2nd - - - - - - - 4.36
3 rd - - - - - - - 4.20

U1 1st 2.30 2.22 2.55 9.66 12.95 8.71 10.79 3.19
2nd 2.29 2.25 2.56 10.31 12.11 8.04 8.79 4.06
3 rd 2.29 2.21 2.53 9.55 12.85 8.32 10.52 3.77

U2 1st 2.32 2.21 2.56 9.33 13.44 8.01 11.12 3.21
2nd Core 2nd 2.30 2.23 2.58 10.72 13.52 8.13 9.91 3.53
Lufkin 3 rd 2.29 2.23 2.52 9.27 11.76 7.00 8.72 3.69
BUS 59 T1 1st 2.30 2.28 2.50 8.04 8.91 6.26 6.46 3.88

2nd 2.31 2.29 2.49 7.16 8.23 5.86 6.34 3.94
3 rd 2.28 2.19 2.47 7.71 11.31 7.83 10.40 4.48

T2 1st 2.33 2.31 2.51 7.06 7.87 4.86 5.25 3.17
2nd 2.32 2.31 2.51 7.40 7.80 5.62 5.47 3.93
3 rd 2.31 2.28 2.51 7.90 9.31 6.81 7.44 3.70

Bulk S.G. Total A.V. Accessible A.V.
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Table II-16. Properties of the Odessa SH 149 Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.14 2.03 2.11 0.00 3.77 0.86 6.05 11.38
2nd 2.31 2.24 2.36 2.14 4.77 0.00 2.39 5.88
3 rd 2.35 2.35 2.43 3.27 3.23 0.67 0.62 4.95

U2 1st 2.15 2.01 2.24 3.94 10.49 1.50 8.17 9.94
1 st Core 2nd 2.30 2.29 2.34 1.91 2.31 0.64 1.04 6.60
Odessa 3 rd 2.34 2.34 2.42 3.27 3.10 1.39 1.18 4.50
SH 149 T1 1st 2.13 2.00 2.22 3.87 9.98 2.07 8.21 11.00

2nd 2.32 2.32 2.35 1.53 1.25 0.41 0.12 5.97
3 rd 2.32 2.32 2.43 4.56 4.41 2.10 1.86 4.62

T2 1st 2.12 2.03 2.19 3.18 7.32 1.50 5.67 11.40
2nd 2.32 2.34 2.36 1.83 1.12 0.71 0.00 5.86
3 rd 2.33 2.34 2.41 3.53 3.06 1.18 0.68 4.74

Bulk S.G. Total A.V. Accessible A.V.

 
 

 

Table II-17. Properties of the Odessa SH 349 Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.10 2.02 2.17 3.39 6.93 1.92 5.45 8.95
2nd 2.28 2.24 2.39 4.86 6.27 3.09 4.35 5.48
3 rd 2.27 2.24 2.40 5.26 6.64 3.45 4.65 5.76

U2 1st 2.05 1.91 2.10 2.32 9.15 1.76 8.57 9.13
1 st Core 2nd 2.27 2.20 2.44 6.93 9.91 4.69 7.35 5.00
Odessa 3 rd 2.21 2.18 2.27 2.74 4.26 2.43 3.84 8.03
SH 349 T1 1st 2.16 2.01 2.26 4.38 11.22 2.34 9.23 10.85

2nd 2.35 2.35 2.41 2.33 2.45 0.55 0.67 4.58
3 rd 2.30 2.29 2.32 1.04 1.18 0.81 0.93 6.42

T2 1st 2.11 2.02 2.17 2.68 6.98 1.08 5.43 8.79
2nd 2.31 2.30 2.23 0.00 0.00 1.30 1.92 5.91
3 rd 2.29 2.25 2.39 4.21 5.83 1.17 2.81 7.05

Bulk S.G. Total A.V. Accessible A.V.
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Table II-18. Properties of Pleasanton Airport Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U3 1st 2.29 2.17 2.39 4.28 9.18 4.37 8.94 5.93
1 st Core 2nd 2.34 2.38 2.45 4.21 2.54 1.76 0.00 6.30

Pleasanton 3 rd 2.35 2.33 2.42 2.81 3.99 1.26 2.42 6.11
Airport T3 1st 2.26 2.16 2.44 7.23 11.30 4.37 8.24 6.77

2nd 2.30 2.16 2.49 7.76 13.18 5.06 10.20 5.53
3 rd 2.29 2.23 2.46 7.04 9.39 3.93 6.08 5.76

U1 1st - - - - - - - -
2nd - - - - - - - -
3 rd - - - - - - - -

U2 1st - - - - - - - -
2nd Core 2nd - - - - - - - -

Pleasanton 3 rd - - - - - - - -
Airport T1 1st 2.24 2.19 2.42 7.31 9.50 5.22 6.98 6.54

2nd 2.31 2.27 2.44 5.53 7.24 3.65 5.15 5.27
3 rd 2.32 2.30 2.45 5.34 6.12 3.06 3.68 5.05

T2 1st 2.24 2.19 2.41 7.16 9.22 4.87 6.56 6.00
2nd 2.31 2.26 2.45 5.77 7.91 3.40 5.38 5.12
3 rd 2.32 2.28 2.48 6.69 8.03 0.95 2.36 5.07

Bulk S.G. Total A.V. Accessible A.V.

 
 

 

Table II-19. Properties of Tyler US 79 Cores 

Replicate layer Maximum Binder
SSD Corelok S.G. SSD Corelok SSD Corelok Contents

U1 1st 2.30 2.17 2.55 9.98 14.77 8.30 12.07 2.90
2nd 2.34 2.24 2.54 7.81 11.93 6.23 9.77 3.83
3 rd 2.36 2.28 2.52 6.65 9.78 5.51 8.15 3.50

U2 1st 2.32 2.16 2.57 10.03 15.95 9.99 14.36 3.01
1 st Core 2nd 2.34 2.24 2.55 8.10 12.13 6.66 10.00 3.67
Tyler 3 rd 2.35 2.26 2.52 6.79 10.29 6.45 9.26 3.90
US 79 T1 1st 2.31 2.20 2.56 9.84 13.99 9.41 12.16 3.54

2nd 2.32 2.26 2.55 8.90 11.27 8.32 9.55 3.37
3 rd 2.33 2.27 2.52 7.42 9.93 7.80 9.28 3.24

T2 1st 2.33 2.21 2.54 8.47 13.26 8.21 11.91 3.16
2nd 2.35 2.28 2.54 7.62 10.29 6.42 8.41 3.59
3 rd 2.37 2.31 2.52 6.09 8.28 5.89 7.47 3.60

Bulk S.G. Total A.V. Accessible A.V.
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 Binder rheology measurements are reported in Appendix A in Tables A-1 

through A-17. The binder rheology η* master curves are presented in Appendix B in 

Figures B-1 through B-29. The air voids results are presented in Appendix C in Figures 

C-1 through C-28b, and the data on binder content are presented graphically in 

Appendix D, Figures D-1 through D-19. The air voids results are presented two ways. 

The first comparison is in Figures C-1 through C-9 in which the accessible air voids in 

each figure are for a particular site, but are grouped according to layer so that all of the 

first-layer binders (first year, second year) are compared side by side as bar graphs; all of 

the second-layer binders are compared side by side; and the third-layer binders are 

compared side by side. The second comparison in Figures C-10a through C-28b presents 

the accessible air voids in one figure and the total air void in another figure for each site, 

but also the layers in each core are compared directly to each other. Thus the first, 

second, and third layers for one core are compared to each other, side by side, and then 

they are compared to each other for another core and so on. Again, this latter comparison 

is done for both the accessible air voids and the total air voids in Figures C-10a through 

C-28b. For the binder contents in Appendix D, the results are compared layer by layer 

for each core.  

 Figures II-6 and II-7 are comparisons of the DSR function to the accessible air 

voids for all sites and all slices. Figure II-6 presents the DSR function versus accessible 

air voids, with each site identified. Note that the range of accessible air voids is from 

nearly 0 percent to approximately 11 percent, a surprisingly wide range, with many data 

points at each value within this range. The DSR function, of course, increases as the 

binder stiffens with aging. Therefore, if accessible air voids is a factor in aging, the DSR 

function would tend to be less where there is low accessible air voids and higher where 

accessible air voids are higher. However, there is so much scatter to the data in Figure II-

6 that such a correlation is not evident.  
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Figure II-6. DSR Function versus Accessible Air Voids Content  

for All Cores and Sites 

 

 Figure II-7 shows the data in a different way. This is a plot of the DSR function 

versus service life of the pavement with the data categorized by the accessible air voids 

level. Low accessible air voids (less than 3 percent) are identified by green diamond 

symbols, moderate accessible air voids (between 3 and 6 percent) are indicated by blue 

squares, and high accessible air voids (greater than 6 percent) are indicated by red 

triangles. In Figure II-7, binders that were in the portions of the pavements having low 

accessible air voids tended to be lower in binder stiffness throughout the service life of 

the pavement compared to those associated with high accessible air voids. Moderate 

accessible air voids appear to be in between. The separation appears better at longer 

service times, and very few of the high accessible air voids slices contained binders with 

low DSR function values. From these results, one might infer that lower accessible air 

voids can contribute to lower binder hardening rates. 
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 Figure II-8 presents a similar comparison as that shown in Figure II-7, except the 

data are categorized by binder content. In this case the green symbols are low binder 

content ( less than 3 percent), the blue symbols are moderate binder content (4-6 

percent), and red symbols are high binder content ( more than 6 percent). In this case, 

there appears to be much less, or no, correlation between binder content and DSR 

function. 
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Figure II-7. DSR Function versus Service Life  

for Three Accessible Air Voids Intervals 
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Figure II-8. DSR Function versus Service Life for Three Binder Content Intervals 

 

Conclusions 

 

 Pavement core samples were collected from several locations throughout Texas, 

and their layer-by-layer air void contents from the top inch of the pavement were 

measured. After that asphalt binders from these core samples were extracted and 

recovered. Then the physical properties of these binders were compared with the air void 

contents from the corresponding slices. The results of this chapter support previous work 

that the aging rates of asphalt binders are affected by accessible air voids, especially at 

very low levels where there were thicker asphalt films. 



46 
 

 

CHAPTER III 

X-RAY CT ANALYSIS OF LABORATORY/FIELD CORE SAMPLES 

 

Introduction 

 

 A crucial element of the pavement aging models discussed previously is 

accessible air void influence on the pavement oxidation process. Cores obtained from 

field sections during the course of this research, in addition to core samples identified in 

Chapter II, were analyzed for total air voids (by the CoreLok®, the saturated surface dry 

methods-SSD, or X-ray computed tomography, CT), interconnected air voids (by X-ray 

CT), or accessible air voids (by CoreLok® or SSD). 

 Another important component in asphalt binder oxidation is the air voids 

characteristic of pavement samples. X-ray computed tomography and image analysis 

techniques were proposed to examine the internal microstructure of hot mix asphalt 

concrete (HMAC) mixtures, including air void (AV) distribution and interconnectivity 

and binder content and distribution in terms of film thickness. These factors are some of 

the HMAC mixture parameters to be identified in terms of the role they play in the aging 

mechanism. X-ray CT is a nondestructive technique used to visualize the interior 

characteristics of opaque objects.42  

In this chapter, the technique to determine key air void structure characteristics 

from asphalt core samples and average air void radius of permeable friction course 

samples was developed.55 Then the obtained technique was used to further determine 

average air void radius and minimum air void spacing for dense-graded mixture samples. 

Consequently, these two parameters were used as inputs for the binder oxidation model 

discussed in Chapter IV. 
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Research Objectives 

 

 The research work in this chapter aims to assess the air void characteristics in the 

pavement cores using the X-ray CT method, which is a nondestructive approach. The 

significant parameters that were investigated include the connectivity of air channels 

from top to bottom of the core, the average radius of air void channels, and the channel 

spacing within the pavement cores. These parameters were used as inputs in the binder 

oxidation model discussed subsequently in Chapter IV. 

 

Methodology  

 

The analysis in this chapter primarily involved X-ray CT scanning, which was 

performed on laboratory and field specimens to investigate the air void characteristics 

and structure. Table III-1 reports the details of laboratory mixed and laboratory 

compacted (LMLC) specimens. These specimens were fabricated using the mixture 

design from corresponding highway locations including asphalt type, optimum asphalt 

content (OAC), and aggregate type. For LMLC specimens, the cores that were fabricated 

using the mixture designs of US 281 and IH 35 in San Antonio, Texas, are porous 

friction course (PFC) mixtures that are usually placed on the top of dense-graded 

mixtures to reduce noise generated between tires and pavement surface. These high 

porosity PFC layers would also prevent water splash-spray and improve water drainage 

on the wet road surfaces. The last specimen from LMLC group was fabricated from the 

mixture design of US 59 in Yoakum, Texas. The specimen was a regular dense-graded 

mixture with an air void content much lower than the other two PFC mixtures. 
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Table III-1. Information of Laboratory Mixed-Laboratory Compacted  

(LMLC) Specimens 

Mixture Highway Location Asphalt Type OAC (%) Aggregate 
Type

Other 
Materials

Sandstone
Limestone
Sandstone Lime (1%)
Limestone Fibers (0.3%)

US 59 US 59 Yoakum, TX Eagle PG 76-22 5.3 N/A None

I-35-PG IH 35 San Antonio, TX PG 76-22S 6.1

US-281-AR US 281 San Antonio, TX AC-10 w/16% 
crumb rubber 8.1 None

 
 

 Table III-2 provides the information on plant mixture specimens. These cores 

were fabricated using the hot-mix samples from various construction sites in Texas and 

then compacted in the laboratory. All specimens in field mixed-laboratory compacted 

(FMLC) group were PFC mixtures. 

 

Table III-2. Information of Field Mixed-Laboratory Compacted  

(FMLC or Plant Mixes) Specimens 

Sandstone Lime (1%)
Limestone Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

US-290-AR US 290 Austin, TX AC-10 w/17 % 
crumb rubber 8.3 Sandstone None

None

US-288-AR US 288 Houston, TX AC-10 w/17% 
Type II rubber 8 None

Sandstone

Granite

Limestone

US-281-AR US 281 San Antonio, TX AC-10 w/16% 
crumb rubber 8.1

US-59-PG US 59 Lufkin, TX PG 76-22 5.9

US-59Y-PG US 59 Yoakum, TX PG 76-22S 5.8

Granite

IH-30-PG IH 30 Paris, TX PG 76-22 6.6 Sandstone

IH-20-PG IH 20 Abilene, TX PG 76-22 6.5 Limestone

US‑83‑PG US 83/84 Abilene, TX PG 76-22S 6.4 Limestone

Mixture Highway Asphalt Type OAC (%) Aggregate 
Type

Other 
MaterialsLocation

I-35-PG IH 35 San Antonio, TX PG 76-22S 6.1
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 The last group of core specimens was taken directly from the field locations 

across Texas. Table III-3 shows the information of field mixed-field compacted (FMFC) 

specimens obtained for this research work. Note that all core specimens were PFC 

samples except the one from US 259, which was a regular dense-graded mixture. 

 

Table III-3. Information of Field Mixed-Field Compacted  

(FMFC or Road Cores) Specimens 

Sandstone Lime (1%)
Limestone Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Granite Lime (1%)
Limestone Fibers (0.3%)

Lime (1%)
Fibers (0.3%)

Traprock,
Limestone
Limestone Lime (1%)

Igneous Fibers (0.4%)
Sandstone
Limestone

Granite
Limestone

US-290-AR US 290 Austin, TX AC-10 w/17 % 
Rubber 8.3 Sandstone None

Sandstone
Limestone
Limestone
Sandstone

4.3 Lime (1%)

I-35-AR I 35 San Antonio, TX AC-10 w/17 % 
Type II Rubber 8.4 None

US-288-AR US 288 Houston, TX AC-10 w/17% 
Type II Rubber 8 None

US-281-AR US 281 San Antonio, TX AC-10 w/16% 
crumb rubber 8.1 None

None

I-35-PG-W IH 35 Waco, TX PG 76-22 TR 6

Limestone

H-6-PG SH 6 Houston, TX PG 76-22 TR Unknown

US-259-PG US 259 Timpson, TX Lion PG 70-22S

US-59-PG US 59 Lufkin, TX PG 76-22 5.9

US-59Y-PG US 59 Yoakum, TX PG 76-22S 5.81

IH-30-PG IH 30 Paris, TX PG 76-22 6.6 Sandstone

IH-20-PG-TR IH 20 Abilene, TX PG 76-22TR 6.2 Limestone

IH-20-PG IH 20 Abilene, TX PG 76-22 6.5 Limestone

US‑83‑PG US 83/84 Abilene, TX PG 76-22S 6.4 Limestone

Other 
Materials

I-35-PG IH 35 San Antonio, TX PG 76-22S 6.1

LocationMixture Highway Asphalt Type OAC (%) Aggregate 
Type

 
 

 Core specimens that were identified in Table III-3 were tested in the CoreLok® 

machine to pre-calculate the air void content of the specimens as a necessary calibration 

of grayscale images for the X-ray CT method. As validation of the X-ray CT method, 
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CoreLok® was used to determine accessible air voids (AAV) (those that water can 

penetrate when the CoreLok® vacuum bag is opened underwater).  

 In order to pre-calculate the air void content of the specimens as discussed in 

Chapter II, bulk specific gravity and maximum specific gravity must be measured. The 

details of such measurements are described as follows. 

 

Determination of Bulk Specific Gravity of the Compacted Mixture 

 

 As recommended by previous research, the Corelok® vacuum seal method 

discussed briefly in Chapter II was used to determine the bulk specific gravity of the 

core specimens in this study.56 However, the procedure was adjusted due to the size and 

surface roughness of the specimens. Core specimens were tested in a double large bag49 

because sharp edges of the specimen frequently puncture the bag causing the seal to 

break if only one bag is used. The inner bag was 1.5 inch (38 mm) to 2 inch (51 mm) 

shorter than the external bag to best apply the seal. The bulk specific gravity of the 

compacted mixture was calculated as: 

 

Bulk Specific Gravity of Mixture 

CF
BASeWDABA

DA

−−+
=    (III-1) 

 

where DA is the mass of the specimen in air (g), BA is the mass of the bag in air (g), SeW 

is the mass of the sealed bag and the specimen in water (g), and CF represents the 

double bag correction factor supplied by the manufacturer49 In addition to bulk specific 

gravity, water accessible AV content can be calculated by determining the vacuum 

saturated sample mass in water (SaW) after completing all other measurements. 

Measuring SaW can be done by cutting the sealed bag under water and taking it out of 

the water and then allowing access to water until a stable mass is obtained. The 

minimum saturation time used to determine SaW was 4 minutes, but some mixes 

required up to 7 minutes before reaching stable saturated weights. This time is mix 
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dependent and requires evaluation for each particular mix. Water accessible AV is then 

calculated as follows: 
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AVAccessible vacuum   (III-2) 

 

Analysis of X-Ray CT Images 

 

An X-ray source emits a beam of known intensity through the specimen, and a 

detector on the opposite side of the specimen measures the attenuated beam intensity 

(Figure III-1). The specimen rotates 360° with respect to its center and moves at a 

specific fixed vertical interval to enable evaluation of the entire specimen volume.42,57  

 

 
Figure III-1. Specimen Set-Up during X-Ray CT Scanning 
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Air Void Content, Air Void Pore Radius, and Air Void Connectivity 

 

 Image analysis consists of two phases. The first phase is to determine the AV 

distribution based on the total AV content established using the Corelok®, while the 

second phase is to determine the interconnected AV content and distribution based on 

the results of the first analysis. Interconnected AV is defined as the air void channels that 

connected from the top to the bottom of specimens. The first image analysis phase was 

carried out using a macro previously developed by Masad et al.42 for Image-Pro® Plus 

software. The original images were converted into black and white by the assigned 

macro, where black areas represent the voids and white areas represent the aggregates 

and the mastic. An appropriate user-input threshold parameter was chosen between 0 and 

56,000. The areas of the original images were converted to black (voids phase) if the 

gray intensity of the areas were less than the indicated threshold, and the areas were 

converted to white if the intensities were higher than the threshold (aggregate and mastic 

phase). The threshold selection process was repeated until the total AV content (black 

areas) computed from the set of analyzed images matches the AV content measured 

from Corelok®.  

 The initial image analysis, which excluded the surface irregularities, produced 

black-and-white images with low AV contents (black areas) when compared to the AV 

obtained from Corelok® method. In this case, when attempting to match the AV content 

from Corelok®, the required threshold generated the black-and-white images of which 

voids contours did not match the voids geometry of the original grayscale images. From 

this discrepancy, the surface irregularities must be included in the analysis. After the 

surface irregularities were included, the resulting AV content computed from black-and-

white images matched with the AV geometry of the original grayscale images.  

 The total AV content of each image (AVi) and the total AV content of the 

specimen (AVs) were computed as follows using a macro previously developed by 

Masad et al.42 using Image-Pro® Plus: 
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where Avi is the area of AV in image i, AT is the cross-sectional area of the image i, and n 

is the total number of images. The average AV radius ( ir ) in image i is calculated as: 
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π
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where Mi corresponds to the number of AVs in each image. 

The second phase of image analysis determines the interconnected AV content 

and distribution using the threshold images obtained after the first analysis phase. These 

black-and-white images were converted to binary bit files using another set of macros 

developed by Masad et al.42 These binary files were then analyzed to determine the 

connected paths from top to bottom of the specimen by using a FORTRAN-built 

algorithm.42 As a result of this analysis, bit files containing the interconnected AV 

information were acquired as the output of the algorithm. Then the Image-Pro® Plus 

software was used to convert these bit files back to black-and-white images, and the 

interconnected AV content of these images was calculated. 

 

Air Void Spacing in X-Ray CT Image Layers 

 

 In addition to the air void radius in core samples, average air void spacing in the 

specimens is also considered to be an important parameter in a binder oxidation model 

for pavements. After air void content was calculated by imaging techniques discussed 
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previously, the coordinate of each air void (x, y)i in each image slice was also identified. 

The average distance between air voids (air void spacing) in each image slice can then 

be determined by calculating the average of the minimum distance between two air 

voids, which is the distance between the adjacent air voids. The mathematical correlation 

of average distance between two adjacent air voids in the image layer that has a total of 

N air void locations can be shown as follows: 
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jiji

NFB

∑
=

−+−
=⋅ 1

22

2     (III-6) 

 

where j is the location of the air void closet to the air void at location i and rNFB (radius 

distance of no-flux boundary) is the distance that an oxygen molecule can travel into the 

asphalt binder away from the air void surface. From the calculation, rNFB is simply half 

of the average distance between two adjacent air voids. The significance of rNFB is 

discussed in detail in Chapter IV.  

 

Results and Discussion 

 

Total Air Voids (AV) and Interconnected Air Voids 

 

Figure III-2 shows one grayscale image and the outputs obtained after total AV 

and interconnected AV analyses. Figure III-2b corresponds to the image obtained after 

applying the threshold required to reproduce the total AV content computed by the 

Corelok® method, and Figure III-2c corresponds to the black-and-white image obtained 

after the analysis of interconnected AV performed as described previously. In the 

interconnected AV analysis, the voids that were in contact with the surface were 

excluded.  
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(a) (b) (c) 
 

Figure III-2. X-ray CT Image Analysis. (a) Original Grayscale Image, 

(b) Black-and-White Image after Threshold and 

(c) Black-and-White Image after Interconnected AV Analysis55 

 

 The comparison of the total and accessible AV calculated based on the Corelok® 

method and the interconnected AV content calculated based on the analysis of X-ray CT 

images for the main mixtures (I-35-PG, US-59Y-PG, US-281-AR, and US-290-AR) that 

were used in this study is presented in Table III-4. The comparison shows that for most 

of the specimens, interconnected AV values were smaller compared to the water 

accessible AV values. While the accessible AV computation includes the AV that are 

accessible from all surfaces of the cylindrical specimen, the interconnected AV are 

computed including only the voids connected from the top to the bottom surface.  
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Table III-4. Comparison of Total, Water Accessible, and Interconnected Air Voids  

for FMLC Specimens55 

Mix Specimen 
Vacuum, 
Total AV 

(%)

Vacuum, 
Accessible 
AV (%)

Dimensional 
Total AV (%)

Dimensional 
Accessible AV 

(%)

Total AV (X-
Ray CT) 

(%)

Interconnected 
AV (X-Ray CT) 

(%)
I35-C1D1 15.7 15.4 18.9 14.9 19.0 13.1
I35-C2D1 16.0 16.1 19.1 15.5 19.0 14.2

59Y-50C1D1 15.0 14.1 18.0 13.7 15.9 10.3
59Y-50C2D1 15.8 15.2 18.6 14.5 17.1 11.1
59Y-15C1D1 23.1 22.9 26.3 22.9 26.5 17.3
59Y-15C2D1 22.6 22.0 25.7 22.1 25.7 16.8

281-C1D1 17.5 17.6 21.5 18.3 21.5 15.0
281-C2D1 17.8 18.5 21.7 18.9 21.8 15.2

290-50C2D1 15.8 11.8 19.6 13.7 20.1 15.1
290-50C1D2 15.3 11.0 20.0 15.3 19.4 15.1
290-12C1D2 19.8 16.5 23.3 15.3 23.0 18.1
290-12C1D1 19.4 14.2 23.0 23.3 17.1

I-35-PG

US-59Y-
PG

US-290-
AR

US-281-
AR

 
 

 In order to reproduce the road cores from FMLC for further pavement 

performance testing, the appropriate number of gyrations for compaction must be 

determined. Figure III-3 and Figure III-4 show the distribution of total and 

interconnected AV for FMLC specimens of the US-59Y-PG and US-290-AR mixtures. 

The set of FMLC specimens studied consists of samples that were compacted at 50, 12, 

and 10 gyrations using the SuperPave Gyratory Compactor (SGC) to reproduce the 

average total AV for corresponding road cores. As shown in Figures III-3 and III-4, the 

characteristic AV distribution resembles a “C” shape, which showed higher AV contents 

at the top and bottom portions of the specimen due to the restriction imposed by the top 

and bottom surfaces of the SGC during compaction. This characteristic AV distribution 

can be observed for both total and interconnected AV. 
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Figure III-3. Total and Interconnected Air Voids Distribution for FMLC  

Specimens and Road Cores of the US-59Y-PG Mixture55 
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Figure III-4. Total and Interconnected Air Voids Distribution for FMLC  

Specimens of the US-290-AR Mixture55 
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Figure III-5 shows the distribution of total and interconnected AV for the road 

cores of both the US-59Y-PG and US-290-AR mixtures. These distributions suggest that 

the field compaction causes decreasing AV content, but the maximum AV contents are 

still at the pavement surface. The comparison of road cores and FMLC specimens 

compacted at small compaction effort (12 gyrations) shown in Figure III-6 indicates that 

the distribution and total AV content of road cores can be reproduced at the top portions 

of the SGC compacted specimens. This ensures that the FMLC specimens compacted 

with 12 gyrations can be used to represent the road cores for further pavement 

performance evaluations. 
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Figure III-5. Total and Interconnected Air Voids Distribution for Road Cores.  

(a) US-59Y-PG and (b) US-290-AR Mixture55 
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Figure III-6. Comparison of Air Voids Distributions for FMLC Specimens  

and Road Cores. (a) US-59Y-PG and  

(b) US -290-AR Mixtures55 

 

Air Void Radius and Air Void Spacing 

 

 Despite the total and accessible air void analysis that were performed on both 

PFC and dense-graded mixtures discussed previously, the air void spacings were 

evaluated only on the dense-graded mixtures because subsequent study on asphalt binder 

oxidation models in pavements is focused specifically on using dense-graded mixtures as 

a representative mixture in model calculations. The air void spacing results are shown in 

Table III-5. The air void spacing study was performed on two mixtures from two 

locations – US 259 (FMFC) and US 59 (LMLC). Although from the actual X-ray CT 

scan analysis, air void spacing data were reported for each of the scanned layers, the data 

that were reported in this section were the average values from the whole depth of the 

core sample. These average values were used in the calculations later in Chapters IV, V, 

and VI to reduce the complication of the oxidation model computations. The data of 

each replicate shown in Table III-5 are average air void content, average air void radius, 

rNFB, and average distance between two adjacent air voids.  
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Table III-5. Air Void Radius and Air Void Spacing Summary for  

US 259 (FMFC) and US 59 (LMLC) Core Samples  
Avg. Air Void 

Content
Avg. Air Void 

Radius r NFB 
Avg. Distance Between 
Two Adjacent Air Voids

(%) (mm) (mm) (mm)
1-2 8.85 0.87 1.27 2.55

1-3 10.43 1.02 1.43 2.86

1-5 7.34 0.80 1.25 2.51

1-17 9.13 0.91 1.32 2.63

1-20 7.93 0.80 1.23 2.46

1-1 8.58 0.87 1.51 3.02

1-2 9.73 0.93 1.55 3.11

1-3 9.04 0.97 1.68 3.35

2-1 8.23 0.92 1.66 3.32

2-2 8.81 0.90 1.58 3.16

US 259 
(FMFC)

US 59 
(LMLC)

Location Replicate

 
 

 Figure III-7 shows the results of X-Ray CT image analysis of US 259 road core 

1-2. Additional parameters for the binder oxidation model that was introduced in this 

dissertation are the air void characteristics of asphalt mixtures, which are the average air 

void radius, rPS, and the average half-distance between two adjacent air voids (the 

average distance to the no-flux boundary), rNFB. The difference between rNFB and rPS 

determines the maximum distance oxygen molecules travel in the asphalt film, which 

directly affects oxygen diffusion. The air void spacing can be observed by X-ray CT 

scan, but the accuracy of the measurement depends on the scanning resolution of the 

equipment, which can be a time- and resource-consuming process for higher resolution. 

Figure III-7(a) shows X-ray CT image analysis results of air void radius, the rNFB, and 

the average distance between two adjacent air voids distribution (2rNFB) with depth of 

the core sample obtained from Highway US 259, Timpson, Texas. The average half-

distance between two adjacent air voids can be calculated from the air void location 

schematic as shown in Figure III-7(b) together with Equation III-6. 

From the data reported, rPS and rNFB through the depth of the core were estimated 

to be approximately 0.87 mm and 1.27 mm, respectively. 
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(a) (b) 

Figure III-7. Results from X-Ray CT Scan and Additional Calculations for US 259  

Core Sample (Road Core 1-2). (a) Average Air Void Radius, No-Flux Boundary  

Radius, and Average Distance between Two Adjacent Air Voids of Each X-Ray CT 

Scan Layer and (b) Air Void Locations in the Top Layer of the Core Sample 1-2 

 

 Figure III-8 shows results similar to that shown in Figure III-7. However the 

mixture design of the core sample was US 59 LMLC 1-1. Core samples that were 

fabricated in the laboratory were thicker than the road cores. The average air void radius, 

rNFB, and the average distance between two adjacent air voids, in this case, have a pattern 

of “C” shape unlike the road cores that have only a half “C” shape as discussed 

previously. 

From the data reported, rPS and rNFB through the depth of the core were estimated 

to be approximately 0.86 mm and 1.51 mm, respectively. 



62 
 

 

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4

D
ep

th
 B
el
ow

 S
ur
fa
ce
, m

m

Radius, mm

Avg. Radius rNFB Avg. Distance

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

m
m

mm
 

(a) (b) 

Figure III-8. Results from X-Ray CT Scan and Additional Calculations for US 59  

Core Sample (LMLC Core 1-1). (a) Average Air Void Radius, No-Flux Boundary  

Radius, and Average Distance between Two Adjacent Air Voids of Each X-Ray CT  

Scan Layer and (b) Air Void Locations in the Top Layer of the Core Sample 1-1 

 

 Additional X-ray CT results including the average air void radius, the rNFB, and 

the average distance between two adjacent air voids for US 259 FMLC and US 59 

LMLC specimens are reported in Appendix E.   

 

Conclusions 

 

The X-ray CT method is a nondestructive test that can be used to determine the 

total air void content as well as interconnected air voids in LMLC, FMLC, and FMFC 

samples. It was shown that the structure of air voids inside the core sample depends 

considerably on the compaction during construction or specimen fabrication process.  

With additional imaging analysis techniques, more information on air void 

structure in samples can be obtained. The important parameters that are the results of 

image analyzing process are air void radius, rPS, and the half-distance between two 
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adjacent pores, rNFB. The rNFB was calculated using the air void locations from the image 

analysis method. The difference of rNFB and rPS is the effective thickness that the oxygen 

molecule can diffuse into the asphalt-aggregate matrix. The detailed discussion of these 

air void characteristic parameters is included in Chapters IV and V. 
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CHAPTER IV 

ASPHALT BINDER OXIDATION TRANSPORT MODEL DEVELOPMENT 

AND CALCULATED ASPHALT OXIDATION RATE UNDER CONSTANT 

TEMPERATURE CONDITION 

 

Introduction 

 

Previously, the asphalt oxidation model proposed by Lunsford58  was based 

solely on asphalt binder kinetics that did not include the effects of air voids in pavements 

and pavement temperature, which are key factors in the binder oxidation process. The 

existing model, which was developed in Cartesian coordinates, also does not represent 

the geometry of the field pavement structure.  

In order to understand oxidation phenomena in pavements, an improved model to 

predict the oxidation rate with the input of binder kinetics data, temperature profile of 

the pavement, and mixture characteristics was developed in this study. To reflect the 

geometry of asphalt pavements and their air voids structure, the asphalt oxidation model 

in pavements introduced in this study was developed under the cylindrical coordinate 

system assuming that there are air channels connecting from the top to the bottom of 

pavements. 

An improved pavement oxidation transport model is also based on three 

interlinked processes: 1) diffusion of oxygen into the asphalt binder mastic in the 

pavement, 2) heat transfer into the pavement that results in temperature variations with 

depth and time, and 3) asphalt binder oxidation, which is a function of oxygen 

concentration and temperature in the binder. A fourth issue that affects the oxygen 

transport and concentration is the air voids distribution in the mixture because it affects 

the availability of oxygen to the binder. If the interconnected (or accessible) air voids are 

sufficiently low, then delivery of oxygen to the binder is hindered. The diffusion process 

is coupled to both temperature and the level of oxidation because both of these factors 

affect oxygen diffusivity. 
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The study in this chapter includes the development of asphalt binder oxidation 

model in pavements for a cylindrical coordinate system based on key the fundamentals: 

asphalt binder kinetics and oxygen transport in asphalt binder. The model was then used 

under the constant temperature condition to generate model outputs: oxygen pressure 

profile, carbonyl area, limiting viscosity, and oxygen diffusivity in asphalt binder.  

 

Research Objectives 

 

 The objective of the work presented in this chapter was to develop a more 

realistic and more effective binder oxidation model that represents aging in pavements. 

The model must capture the key elements of asphalt oxidation including asphalt 

oxidation kinetics, pavement air void characteristics, and oxygen diffusion into asphalt 

binders. 

 

Oxidation Model Development 

 

In order to understand the complex pavement asphalt oxidation process, 

researchers have analyzed asphalt samples and proposed empirical asphalt oxidation 

(aging) models.5,59,60 However, these proposed models do not include the effect of 

oxygen transport limitations (diffusion) into the asphalt binder. Lunsford58 proposed a 

preliminary oxidation model with the oxygen diffusion effect included. However, the 

study used approximate values for diffusivity and did not include the effect of fines and 

aggregate on diffusion. In addition, previous work has not implemented a pavement 

temperature model that provides temperature as a function of depth. Thus a thermal and 

oxygen transport model, necessary for accurate predictions of binder oxidation in 

pavements, has not yet been developed.  

The concept of approximating the binder film in the pavement as a thin film is 

probably reasonable for high air voids content where there are a large number of pores 

passing through the pavement so that the distance from any pore to the binder is not very 
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far. A more realistic model for a reduced number of air voids might be a cylindrical 

model that assumes that oxygen diffuses from the pore in a radial direction into a 

cylindrical shell of binder (Figure IV-1). The modeling concept was initiated from the 

X-ray CT study on air void connectivity in pavements (Chapter III). It was discovered 

that air void channels in pavements are positioned and connected from top to bottom.42 

In this case, the relevant parameter would be the thickness of this cylindrical shell, 

relative to the diameter of the pore containing the air. The smaller the air voids, the 

greater the ratio of this binder shell to the pore diameter and thus the more time required 

for oxygen to diffuse through the binder.  

The initial assumption of the model is that there are only two phases in the 

pavement layers; asphalt-aggregate matrix and air void phases. This assumption 

eliminated the complexity in the determination of the oxygen diffusion path in a uniform 

asphalt phase. By combining asphalt and aggregate phases, the concept of effective 

diffusivity can be introduced and is discussed in a later section of this chapter.  

Also from the figure, rPS (pore surface) refers to air void pore radius and rNFB (no-

flux boundary) refers to the radius at the half distance between two adjacent air voids 

where there is no mass flux transfer across this boundary. The difference between rNFB 

and rPS is the effective distance that oxygen molecules need to diffuse through the 

asphalt-aggregate matrix. 
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Figure IV-1. Initial Modeling Concept of Asphalt Binder  

Oxidation in Pavements 

 

A mathematical equation accounting for oxygen diffusion and reaction in a 

differential volume is shown in Equation IV-1:61 
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where, 
2OC is the oxygen concentration and 

2Or is the rate of oxygen consumption. 

In asphalt, the molar flux of oxygen,
2ON , can be expressed by Fick’s first law of 

diffusion as given in Equation IV-2: 

 

222 OOO CN ∇−= D        (IV-2) 

 



68 
 

 

where, 
2OD is the oxygen diffusivity in asphalt binder. 

Lunsford58 combined the mathematical model of asphalt oxygen diffusion and 

reaction described above and Fick’s law of diffusion to propose a one-dimensional 

diffusion and reaction model in a flat thin asphalt film. However, to obtain oxygen 

partial pressure profiles in the pavement oxidation model, the partial differential 

equation (PDE) system was solved for the oxygen partial pressure as a function of time 

and distance away the from air void-binder interface in a cylindrical coordinate system. 

In principle the oxygen partial pressure profile can be used to calculate carbonyl area 

(CA) and viscosity profiles and histories in the pavement, which then can be combined 

with an appropriate performance model to estimate pavement durability and 

performance, taking into account binder oxidative hardening. With this modeling 

concept, the PDE system and boundary conditions can be written as follows: 
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r
P   at r = rNFB No Flux Boundary 

 P = Pgas  at r = rPS  Air Void Surface 

 P = 0   at t = 0  Initial Condition  

 

where P is oxygen partial pressure, c is an experimental constant, rCA is a rate of 

carbonyl formation, and h is the Henry’s law constant. 

In Equation IV-3, 
2O

D is an unknown and needs to be estimated. Reid et al.62 

provides a model relating diffusivity to viscosity and temperature as given in Equation 

IV-4: 

 

( )B*
00 ηDD

2O
=       (IV-4) 
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In Lunsford’s study, 0D and B, estimated model constants, were estimated and 

reported. 

Lau et al.5 show that limiting viscosity, *
0η , and carbonyl content are related by 

Equation IV-5: 

 

{ }mCAHS +⋅= exp*
0η      (IV-5) 

 

where HS is asphalt hardening susceptibility and m is an experimental parameter. HS and 

m are functions of temperature. Carbonyl content, CA, represents the level of oxidation 

of the binder and increases at rate rCA so that the amount of oxidation can be represented 

by Equation IV-6: 

 

( ) 0
0

CAdrtCA
t

CA += ∫ θ      (IV-6) 

 

where CA0 is an integration constant and could be determined from experimental data. 

Work has proceeded toward developing a combined heat and mass transport 

model for reaction of binders in compacted mixtures and pavements. Issues are the 

relative importance of diffusion and reaction rates in the binder as well as the 

accessibility of oxygen to the binder from the porous structures of the mixtures. The 

model that is being developed is conceived to provide oxygen to the binder radially from 

pores that pass through the mixture. The oxygen diffusivity in this model can be referred 

to as an effective diffusivity, De, which is described as a function of the actual oxygen 

diffusivity in the asphalt binder, the asphalt volume fraction (ε), and the tortuosity (τ). In 

this discussion, the asphalt volume fraction is the volume fraction occupied by asphalt 

binder in the mixture and the tortuosity is the ratio of the oxygen diffusion path to the 

distance between two air voids. Complicating the model is the presence of aggregate that 

forces a tortuous path for the oxygen, thereby producing a reduced effective diffusivity. 

The extent to which diffusion resistance slows the oxidation process relates directly to 



70 
 

 

the ratio of the oxidation rate to the diffusion rate. The effective diffusivity can be 

expressed as follows:63 

 

⎟
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⎞
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τ
ε

2Oe DD       (IV-7) 

 

The model is essential to guiding the efficient and effective use of both 

laboratory and field mixture aging data for assessing the rate of binder hardening in 

pavements and its impact on pavement durability.  

 

Results and Discussion 

 

Outputs from Developed Binder Oxidation Model 

 

Typical results from model calculations are shown in Figures IV-2 through IV-5. 

The binder used for these calculations was an Ampet AC-20. The model cylindrical shell 

was 1 mm thick, spanning from a radius of 0.5 to 1.5 mm, and aging was simulated at a 

constant temperature of 333.3 K (60 °C) for 90 days to estimate the effect of aging on 

viscosity and diffusivity. As also discussed in the previous section, the pore surface (PS) 

refers to the air void-binder interface, whereas, the no-flux boundary (NFB) refers to the 

surface of the radius at the half-distance between two adjacent air voids.  

 Figure IV-2 shows oxygen partial pressure profiles calculated from the model. 

Oxygen partial pressure at the pore surface is assumed to be the oxygen partial pressure 

in air (approximately 0.2 atm) with no nitrogen film resistance. Another key assumption 

for the model calculation was that the oxygen in air channels throughout the pavement 

depth was replenished from the thermal cycle in the pavement which leads to excessive 

oxygen for the oxidation reaction. As the oxygen molecules diffuse through the asphalt 

matrix film, the oxygen concentration at the pore surface is assumed to be constant at 

approximately 0.2 atm and the concentration decreases across the film thickness toward 
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the no-flux boundary depending on reaction temperature and the thickness of the asphalt 

film. 

 Each solid line of the oxygen pressure profile in Figure IV-2 represents a radial 

increment of approximately 0.11 mm into the asphalt matrix film. The dotted horizontal 

line at 0.2 atm symbolizes the radial distance of 0.5 mm (at pore surface). The next solid 

line below represents the radial distance of 0.61 mm, 0.11 mm into the asphalt matrix 

film. The pattern continues until, eventually, the oxygen profile line reaches the no-flux 

boundary at the radial distance of 1.5 mm (the dotted line at the bottom of the oxygen 

profile). Note that a similar approach to that discussed above can be used to describe the 

carbonyl area, viscosity, and oxygen diffusivity profiles shown in Figures IV-3 through 

IV-5.  

 

0 10 20 30 40 50 60 70 80 90
-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (day)

Pr
es

su
re

 (a
tm

)

Pore Surface (PS)

No-Flux Boundary (NFB)

 
Figure IV-2. Calculated Oxygen Pressure Profile from Binder Oxidation Model 

 

 Oxygen molecules that diffuse into the asphalt-aggregate matrix are readily 

consumed to produce carbonyl compounds that create less soluble asphaltene materials, 
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which cause the hardening process in asphalt. Figure IV-3 presents the model 

calculations of carbonyl area that was simultaneously determined by using the resulting 

pressure profile obtained previously with Equations I-4, IV-4, IV-5, and IV-6.  

 The carbonyl growth rate follows the relationship given in Equation I-4. Due to 

higher oxygen concentration in the asphalt matrix, the carbonyl growth rate of the layer 

closer to the pore surface would be higher than the one closer to the no-flux boundary, 

where oxygen molecules experience more diffusion resistance in the asphalt-aggregate 

matrix. As shown in Figure IV-3, the carbonyl growth rate calculated at the pore surface 

was 0.096 CA/month, whereas the calculate rate at the no-flux boundary was 0.057 

CA/month. 
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Figure IV-3. Calculated Carbonyl Area from Binder Oxidation Model 

 

 The viscosity of asphalt binder calculated from the oxidation model is shown in 

Figure IV-4. Again, the model calculation for asphalt viscosity (at a reference 

temperature of 60 °C) follows the mathematical correlation described in Equation IV-5, 
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where limiting viscosity ( *
0η ) is a function of hardening susceptibility (HS), carbonyl 

area (CA), and model constant (m). Similar to calculated carbonyl area, the viscosity 

hardening rate at the pore surface was higher than the one at the no-flux boundary due to 

the higher level of carbonyl area. In this particular example, the viscosity hardening rate 

at the pore surface was 0.2915 ln(poise)/month, while the rate at the no-flux boundary 

was 0.1739 ln(poise)/month. 
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Figure IV-4. Calculated Viscosity from Binder Oxidation Model 

 

 The results for calculated oxygen diffusivity in the asphalt-aggregate matrix are 

presented in Figure IV-5. The oxygen diffusivity in asphalt is a function of limiting 

binder viscosity at 60 °C as discussed in Equation IV-4. Therefore, the oxygen 

diffusivity at the pore surface was lower than at the no-flux boundary forming a 

diffusion resistance region close to the pore surface. Also shown in Figures IV-4 and IV-

5, as the asphalt viscosity increases with time due to accumulative oxidation, the overall 
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oxygen diffusivity would be decreased across the asphalt-aggregate matrix film, which 

would slowly hinder the oxygen diffusion into the asphalt-aggregate matrix over time. 
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Figure IV-5. Calculated Oxygen Diffusivity from Binder Oxidation Model 

 

Effects of Asphalt Matrix Film Thickness on Oxygen Pressure Profile 

 

Figure IV-6 shows the results of calculated oxygen pressure profile for asphalt-

aggregate matrix film thicknesses (Ampet AC-20) from 2 mm to 5 mm, 4 mm, and 3 

mm, respectively. Therefore, the thicknesses of asphalt matrix films were 3 mm, 2 mm, 

and 1 mm, accordingly. In this calculation, the reaction temperature was held constant at 

333.3 K (60 °C). Also, the two circles located at the top right corner of the profiles 

represent the pore surface region and no-flux boundary region as indicated by the 

arrows. 

In this oxygen profile pattern, the asphalt matrix film was divided into 20 

equivalent intervals. The solid lines marked by the asterisk (*) on the profile for 3 mm, 2 
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mm, and 1 mm thickness represent the increments of 0.15 mm, 0.1 mm, and 0.05 mm, 

respectively. 

In these particular calculations, for a 3 mm asphalt matrix film thickness, it can 

be shown that at the radial distance of approximately 3.05 mm (1.05 mm into the asphalt 

matrix film, 35 percent of the film thickness), there was a small amount of oxygen 

molecule diffused past this radial distance. For a 2 mm asphalt matrix film thickness, the 

radial distance that the oxygen molecule diffused into the film was approximately 4 mm 

(1 mm into the asphalt film, 50 percent of the film thickness). Finally, for a 1 mm 

thickness, the oxygen molecule can diffuse through the thickness of asphalt matrix film 

and reach the no-flux boundary. 
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Figure IV-6. Effect of Asphalt Film Thickness on Calculated Oxygen Pressure  

Profile from Binder Oxidation Model 
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This effect of the asphalt matrix film thickness on oxidation model calculations 

shows that the thicker the asphalt matrix film, the harder it gets for the oxygen molecule 

to diffuse through. The similarity can be drawn that in pavements that have higher binder 

contents with thicker asphalt films, oxygen diffusion into the binder could be hindered, 

thus limiting the binder oxidation process. 

 

Effects of Reaction Temperature on Oxygen Pressure Profile 

 

 According to the correlation discussed in Equation I-4, it was shown that the rate 

of carbonyl formation is an exponential function of reaction temperature, T. Figure IV-7 

illustrates the oxygen pressure profiles at temperatures of 333 K, 320 K, 310 K, and 300 

K, respectively, for 90 days. Note that the asphalt matrix film thickness, in this case, 

spans from the radial distance of 2 mm to 3 mm with the thickness divided into 20 

equivalent intervals. At the higher reaction temperature, oxygen molecules were able to 

diffuse deeper into the asphalt matrix film. As discussed in Equation IV-4, the limiting 

viscosity of asphalt binder has a direct relationship with oxygen diffusivity in asphalt 

binder. The softer binder, which has lower viscosity, would result in higher oxygen 

diffusivity as shown in the early stage of each oxygen pressure profile where higher 

temperature caused the binder to soften. However, at the later stage of the model 

calculation, higher temperature leads to higher rate of oxidation that causes the viscosity 

of asphalt binder to increase continuously. Consequently, the oxygen diffusivity was 

quickly decreased and diminished the oxygen diffusion process in the asphalt-aggregate 

matrix film. 
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Figure IV-7. Effect of Reaction Temperature on Calculated Oxygen Pressure  

Profile from Binder Oxidation Model 

 

Model Calculations in Rectangular versus Cylindrical Coordinates 

 

 Figure IV-8 shows the model schematic of both models. The previously proposed 

binder oxidation model in rectangular coordinates58 was compared with the binder 

oxidation model developed in this study. The improved binder oxidation model was 

developed in cylindrical coordinates using a similar concept as in engineered cardiac 

tissue with parallel channel filled with oxygen carrier.64 The model provides a more 

realistic approach to capture the structure of air void channels in the pavement that the 

oxygen diffuses into the asphalt matrix in the radial direction. 
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Figure IV-8. Schematic of Improved Binder Oxidation Model  

Compared with Previously Proposed (Slab) Model 

 

 Figure IV-9 shows the comparison between average oxygen pressure inside the 

asphalt film thickness of both models. The averages were calculated follow the 

correlation in Equation IV-8: 

 

∑
=

=
n

i
iiav vPP

1
     (IV-8) 

 

where Pi is the oxygen pressure profile of the interval i, vi is the volumetric fraction of 

the interval i, and Pav is the average oxygen pressure of the asphalt matrix film. From 

Figure IV-9, the average pressure from the slab model was substantially higher than the 

average pressure from the cylindrical model probably because with the same air-asphalt 

surface area, the oxygen molecule in the cylindrical model had to diffuse into the larger 

asphalt volume, which would dilute the concentration of oxygen in the asphalt film. 

 This concept of average pressure profile was used to calculate the average binder 

properties throughout Chapters V and VI to estimate the overall binder properties in the 

pavement that can be compared with the extracted binder properties from core samples 

obtained from the field sections. 
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Figure IV-9. The Average Oxygen Pressure Profiles in Asphalt Film:  

Comparison between Cylindrical and Slab Model Calculation 

 
Conclusions 

 

 This chapter provides the description of the development of an improved asphalt 

binder oxidation model in pavements. The model development was based on three 

significant processes, which are asphalt binder kinetics, air void characteristics in 

pavements, and pavement temperature profile. The binder oxidation model was 

developed in a cylindrical coordinate system to enable the model to capture the air void 

channel structures in pavement, which, in this case, were pore surface radius (rPS) and 

no-flux boundary radius (rNFB). 

 Key outputs from the model calculations were oxygen pressure profile, carbonyl 

area, limiting viscosity at 60 °C, and oxygen diffusivity in asphalt. These results, 

especially carbonyl area and limiting viscosity at 60 °C, can be used as indicators to 

assess the level of oxidation occurring in pavements. 
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CHAPTER V 

A TRANSPORT MODEL OF ASPHALT BINDER OXIDATION  

IN PAVEMENTS* 

 

Introduction 

 

Field evidence is mounting that asphalt binder oxidization in pavements produces 

a binder that is more susceptible to thermal and fatigue cracking. While the 

fundamentals of this oxidation process are fairly well known, predicting quantitatively 

the rate of oxidation, and as a function of depth in the pavement, is not straightforward. 

A thermal and oxygen transport model, coupled with binder reaction kinetics, provides 

the basis for such calculations. A one-dimensional thermal transport model, coupled with 

site-specific model parameters and recent improvements in the availability of required 

input climate data, enables calculation of pavement temperatures throughout the year, 

which then is used in an asphalt binder oxidation and transport model to calculate binder 

properties in the pavement over time. Calculated binder properties change with depth 

and time are compared to measurements of binder oxidation in the field.  

 

Asphalt Aging in Pavement 

 

Several studies have been conducted to explore basic binder oxidation 

chemistry.5,13,14 From these reports, after an early, fast-rate period, the carbonyl 

compounds are formed at a rate that is a function of temperature and oxygen partial 

pressure. Liu et al.15 also found that the basic carbonyl (CA) reaction rate can generally 

be described using an Arrhenius expression for temperature variation and pressure 

dependence as given in Equation V-1. 

⎟
⎠
⎞

⎜
⎝
⎛ −

==
RT

EAPr
dt
CAd a

CA expα      (V-1) 
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where A is the frequency (pre-exponential) factor, P is the absolute oxygen pressure, α is 

the reaction order with respect to oxygen pressure, Ea is the activation energy, R is the 

gas constant, and T is the absolute temperature. Values of A, Ea, and α are very asphalt 

dependent, though A and Ea are generally correlated.15,17  

Asphalt binder oxidation in pavements has been proven to be an ongoing process 

throughout a pavement’s service life. Also, there is evidence that demonstrates that 

oxidation occurs through the depth of the pavement and has a significant effect on 

pavement performance.3,4 Understanding the nature of the oxidation process and being 

able to predict the level of oxidation that occurs in pavements as a function of time and 

depth are critical to pavement design improvement that will provide the greater 

pavement durability. 

The important consequence of asphalt binder oxidation in pavements is oxidative 

hardening. As non-asphaltene polar aromatic compounds in asphalt binders oxidize, they 

become asphaltenes, associated species that act like solid particles suspended in the 

asphalt, thereby producing an increase in asphalt elastic modulus and viscosity.5,7,9,12 

Consequently, the performance of pavements is affected directly by asphalt binder 

oxidative hardening. Several studies by Walubita et al.18-21 indicate that oxidation of 

asphalt binder in pavements leads to a decline in pavement fatigue resistance.  

Also, low levels of accessible air voids in pavements potentially relate to binder 

oxidation.22 As they report, when pavements have sufficiently high accessible air voids 

(4 percent or greater), the oxidation rate is largely determined by the temperature in the 

pavement. On the other hand, when the accessible air voids in the pavement is 

considerably lower (2 percent or less), the hardening rate of binders in pavements is 

reduced significantly.  

In order to understand the complex pavement asphalt oxidation process, 

researchers have analyzed asphalt samples and proposed empirical asphalt oxidation 

(aging) models.5,59,60 However, these proposed models do not include the effect of 

oxygen transport limitations (diffusion) into the asphalt binder. Lunsford58 proposed a 

preliminary oxidation model with the oxygen diffusion effect included. However, the 



82 
 

 

study used approximate values for diffusivity and did not include the effect of fines and 

aggregate on diffusion. In addition, previous work has not implemented a pavement 

temperature model that provides temperature as a function of depth. Thus a thermal and 

oxygen transport model, necessary for accurate predictions of binder oxidation in 

pavements, has not yet been developed. 

 

Pavement Temperature Prediction Model 

 

One key environmental factor that influences asphalt pavement design and 

performance is pavement temperature, which varies with pavement site, time (day and 

seasonal), and depth. Accurate representation of pavement temperature is extremely 

important, particularly in predicting pavement performance such as thermal cracking and 

oxidative aging, issues that are highly sensitive to pavement temperature. The reaction 

kinetics of asphalt oxidation follow an Arrhenius activation energy relation; oxidation 

rates decrease exponentially with increasing inverse absolute temperature.10 Thermal 

stress induced by rapid low-temperature changes has been widely accepted as the main 

cause of thermal cracking of asphalt pavement. 

Many measurements of pavement temperature variations over time and depth 

have been reported in the literature. Also, fundamental early models of heat transfer in 

pavements, involving shortwave solar radiation, down-welling and upwelling long-wave 

radiation, and convective heat transfer at pavement surfaces and heat conduction inside 

the pavement have been thoroughly discussed.65,66,67 Following these endeavors, a one-

dimensional coupled heat and moisture simulation model, the enhanced integrated 

climate model (EICM), was developed and later integrated into the current mechanistic 

empirical pavement design guide (MEPDG) to couple pavement design with modeled 

pavement temperature.68 

The model uses a finite difference approximation for calculating heat conduction 

within the pavement and underlying layers, subject to heat fluxes at the surface 

(shortwave solar radiation, long-wave radiation, and convective heat transfer) and a 
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constant-temperature boundary condition well below the pavement. Using required 

climatic input data including solar radiation, ambient temperature, and wind speed and 

constant model parameters such as albedo, emissivity, and thermal diffusivity, the model 

is solved numerically to obtain temperature as a function of time and depth. 

Although temperatures predicted with the EICM model satisfy pavement design 

needs in general, there have been some large errors when compared to measured 

pavement temperature.69 These errors are most likely caused by several factors: the 

assumption that heat fluxes at the pavement surface are exactly balanced by conduction 

into the ground well below the surface, and inaccuracy of climatic data (especially 

calculated solar radiation), plus the assumptions of the constant temperature boundary 

condition and site-independent model parameter values. 

Recently, significant improvement over the EICM model has been achieved by 

several groups using a similar one-dimensional heat transfer model, but with an 

unsteady-state surface heat flux boundary condition, measured model input data, and 

site-specific model parameters that were optimized based on measured pavement 

temperatures.70,71,72 

 

Research Objectives 

 

The objective of this study is to develop an improved model to predict the 

oxidation rate of binders in pavements with the input of binder kinetics data, temperature 

profile of the pavement, and mixture characteristics such as average distance between air 

void pores. The specific objectives of this study are 

‐ to analyze air void characteristics in pavements to categorize the mixture 

parameters used in this study; 

‐ to improve the existing oxidation model based on the knowledge of oxidation 

kinetics, air void characteristics in pavement, oxygen diffusion into asphalt 

binders, and improved pavement temperature models; 
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‐ to estimate important parameters of the proposed oxidation model by using field 

oxidative aging data; and 

‐ to develop a protocol and procedures for the proposed oxidation model to 

estimate real pavement oxidation rates using binder kinetics, oxygen diffusivity, 

pavement temperature profiles, and air void characteristics of the pavements.  

 

Methodology 

 

Analyzing Air Void Structure in the Pavement 

 

A crucial element of the binder oxidation model developed in this study is the 

influence of accessible air voids on the pavement oxidation process. Cores obtained from 

field sites were analyzed for air voids (either by the Corelok® or the saturated surface 

dry methods-SSD), interconnected air voids (by X-ray CT), or accessible air voids (by 

Corelok® or SSD). Corelok® operating procedures can be found in the Operator’s 

Guide49 Then the binder was extracted and recovered using methodologies developed by 

the researchers.28,50,51,52,53 The recovered binder was then analyzed for oxidation by 

infrared spectroscopy (FT-IR) and for physical properties by dynamic shear rheometry 

(DSR) to provide the binder aging and hardening rates corresponding to level of air 

voids in the pavements. 

Another important component to verify the oxidation model is the air voids 

characteristic of pavement samples. X-ray CT and image analysis techniques are used to 

examine the internal microstructure of HMAC mixtures, including air void (AV) 

distribution and interconnectivity and binder content and distribution in terms of film 

thickness. These factors are some of the HMAC mixture parameters to be identified in 

terms of the role they play in the aging mechanism. X-ray CT is a nondestructive 

technique used to visualize the interior characteristics of opaque objects. An X-ray 

source emits a beam of known intensity through the specimen, and a detector on the 

opposite side of the specimen measures the attenuated beam intensity. The specimen 
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rotates 360° with respect to its center and moves at a specific fixed vertical interval to 

enable evaluation of the entire specimen volume. Then, a macro developed using the 

IPBasic capabilities of Image-Pro® Plus software can be used to process and analyze the 

X-ray CT images41 in terms of air void size, number, and average overall percent. Based 

on a user-input grayscale threshold, the macro transforms the original images into black-

and-white compositions with black representing AV and white representing the solid 

materials (binder and aggregate). The appropriate threshold value is obtained by 

matching the measured average percent AV to that output by the macro.  

CoreLok® is used for determining total air voids of core specimens as a 

necessary calibration of grayscale for the X-ray CT method. As validation of the X-ray 

CT method, CoreLok® has been used to determine accessible air voids (AAV) (those 

that water can penetrate when the CoreLok® vacuum bag is opened underwater). 

 

Binder Oxidation Model Development 

 

The model proposed by Lunsford is a one-dimensional thin-film geometry in 

Cartesian coordinates. In addition, this model does not include the effect of air voids and 

mixture morphology on the oxidation rate determination. 

In order to understand oxidation phenomena in pavements, an improved model to 

predict the oxidation rate with the input of binder kinetics data, temperature profile of 

the pavement, and mixture characteristics was developed in this study. 

The oxygen transport limitations are also important in establishing binder 

hardening rates in pavements. If the interconnected (or accessible) air voids are 

sufficiently low, then delivery of oxygen to the binder is hindered.  

An improved pavement oxidation transport model was based on three interlinked 

processes: 1) diffusion of oxygen into the asphalt binder mastic in the pavement, 2) heat 

transfer into the pavement that results in temperature variations with depth and time, and 

3) asphalt binder oxidation, which is a function of oxygen concentration and temperature 

in the binder. A fourth issue that affects the oxygen transport and concentration is the air 
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voids distribution in the mixture because it affects the availability of oxygen to the 

binder. The diffusion process is coupled to both temperature and the level of oxidation 

because both of these factors affect oxygen diffusivity. 

The concept of approximating the binder film in the pavement as a thin film is 

probably reasonable for high air voids content where there are a large number of pores 

passing through the pavement so that the distance from any pore to the binder, even to 

the farthest binder away, is not very far. A more realistic model for a reduced number of 

air voids might be a cylindrical model that assumes that the oxygen diffuses from the 

pore in a radial direction into a cylindrical shell of binder (Figure V-1). In this case, the 

relevant parameter would be the thickness of this cylindrical shell, relative to the 

diameter of the pore containing the air. The smaller the air voids, the greater the ratio of 

this binder shell to the pore diameter and thus the more time required for oxygen to 

diffuse through the binder.  
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Figure V-1. Modeling Concept of Asphalt Binder Oxidation in Pavements 

 

A mathematical equation accounting for oxygen diffusion and reaction in a 

differential volume is shown in Equation V-2.61 
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In asphalt, the molar flux of oxygen,
2ON , can be expressed by Fick’s first law of 

diffusion as given in Equation V-3. 

 

222 OOO CN ∇−= D       (V-3) 

 

Lunsford58 combined the mathematical model of asphalt oxygen diffusion and 

reaction described above and Fick’s law of diffusion to propose a one-dimensional 
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diffusion and reaction model in a flat thin asphalt film. However, to obtain oxygen 

partial pressure profiles in the pavement oxidation model, the PDE system was solved 

for the oxygen partial pressure as a function of time and distance away the from air void-

binder interface in a cylindrical coordinate system. In principle the oxygen partial 

pressure profile can be used to calculate CA and viscosity profiles and histories in the 

pavement, which then can be combined with an appropriate performance model to 

estimate pavement durability and performance, taking into account binder oxidative 

hardening. With this modeling concept, the PDE system and boundary conditions can be 

written as follows; 
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P   at r = rNFB No Flux Boundary 

 P = Pgas  at r = rPS  Air Void Surface 

 P = 0   at t = 0  Initial Condition  

 

where c is an experimental constant and h is the Henry’s law constant. 

In Equation V-4, 
2O

D is an unknown and needs to be estimated. Reid et al.62 

provides a model relating diffusivity to viscosity and temperature as given in Equation 

V-5. 

 

( )B*
00 ηDD

2O
=        (V-5) 

 

In Lunsford’s study, 0D and B were estimated and reported. 

Lau et al.5 show that viscosity and carbonyl content are related by Equation V-6. 
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{ }mCAHS +⋅= exp*
0η       (V-6) 

 

where HS is asphalt hardening susceptibility and m is an experimental parameter. HS and 

m are functions of temperature. Carbonyl content, CA, represents the level of oxidation 

of the binder and increases at rate rCA so that the amount of oxidation can be represented 

by Equation V-7. 

 

( ) 0
0

CAdrtCA
t

CA += ∫ θ       (V-7) 

 

where CA0 is an integration constant and could be determined from experimental data. 

Work has proceeded toward developing a combined heat and mass transport 

model for reaction of binders in compacted mixtures and pavements. Issues are the 

relative importance of diffusion and reaction rates in the binder as well as the 

accessibility of oxygen to the binder from the porous structures of the mixtures. The 

model that is being developed is conceived to provide oxygen to the binder radially from 

pores that pass through the mixture. The oxygen diffusivity in this model can be referred 

to as an effective diffusivity, De, which is described as a function of the actual oxygen 

diffusivity in the asphalt binder, the asphalt volume fraction (ε), and the tortuosity (τ). In 

this discussion, the asphalt volume fraction is the volume fraction occupied by asphalt 

binder in the mixture and the tortuosity is the ratio of the oxygen diffusion path to the 

distance between two air voids. Complicating the model is the presence of aggregate that 

forces a tortuous path for the oxygen, thereby producing a reduced effective diffusivity. 

The extent to which diffusion resistance slows the oxidation process relates directly to 

the ratio of the oxidation rate to the diffusion rate. The effective diffusivity can be 

expressed as follows:63 
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The model is essential to guiding the efficient and effective use of both 

laboratory and field mixture aging data for assessing the rate of binder hardening in 

pavements and its impact on pavement durability.  

 

Results and Discussion 

 

Outputs from the Binder Oxidation Model 

 

 Typical results from model calculations are shown in Figure V-2. The binder 

used for these calculations is an Ampet AC-20. The model cylindrical shell was 1 mm 

thick, spanning from a radius of 0.5 to 1.5 mm, and aging was simulated at a constant 

temperature of 333.3 K for 90 days to estimate the size of the effect of aging on viscosity 

and diffusivity. The pore surface (PS) refers to the air void-binder interface, whereas the 

no-flux boundary (NFB) refers to the surface of the radius at the half-distance between 

two adjacent air voids.  

 Shown in the figure are carbonyl area and viscosity calculation, which were 

predicted to increase with aging time, and diffusivity, which is shown to decrease with 

aging time as the binder hardens. 
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Figure V-2. Results from Transport Model of Binder Oxidation in Pavements for 

Binder Thickness of 1 mm at 333.3 K 

 
Binder oxidation rates from field pavements in Texas (not shown) compare 

reasonably well to the calculated oxidation rates. However, additional field data and 

model calculation comparisons are required to adequately validate the oxidation model. 

 

Model Parameter Estimation 

 

This section discusses a parameter estimation process that may be used to 

determine unknown oxidation model parameters from known measured parameters 

together with measured environmental room (ER) mixture aging rates. However, due to 

the limited kinetics data and air void characteristics for the ER samples, ER aging rates 

were compared to mixture aging rates calculated using the oxidation kinetics parameters 

from previous research (and thus for a different binder) to demonstrate the model 

parameter estimation methodology and a potential important application of the model. 
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In the parameter estimation process, the results from oxidation model 

calculations were compared to asphalt mixture (PG 70-22) aging in the ER, at 60 °C and 

25 percent humidity. Three laboratory mixture replicates were aged in the ER for 9 

months and one core was sampled every 3 months. Then, carbonyl area of asphalt binder 

of each core, which was extracted and recovered by the method previously mentioned, 

was measured and the CA aging rate was calculated. The asphalt aging rate obtained 

from environmental room aging exhibits a linear relationship as shown in Figure V-3. 
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Figure V-3. Carbonyl Area Growth of Asphalt Mixture  

in Environmental Room (ER) Aging 

 

The aging rate obtained was then used to compare to the model calculations, in a 

least-squares optimization sense. In this study, parameter estimation is categorized into 

two cases. 
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Case 1: Known mixture air void characteristics, unknown asphalt kinetic parameters 

 

Additional parameters needed for the optimization process are the air void 

characteristics of asphalt mixtures, which are the average air void radius, rPS, and the 

average half-distance between two air voids (the average distance to the no-flux 

boundary), rNFB. The difference between rNFB and rPS determines the maximum distance 

oxygen molecules travel in the asphalt film, which directly affects the oxygen diffusion. 

The air void spacing can be observed by X-ray CT scan, but the accuracy of the 

measurement depends on the scanning resolution of the equipment, which can be a time- 

and resource-consuming process for higher resolution. Figure V-4 shows X-ray CT 

image analysis results of air void radius distribution with depth and the location of air 

voids at a single depth of the top layer of the core obtained from Highway US 59, 

Yoakum District, Texas. From the data, rPS and rNFB through the depth of the core were 

estimated to be approximately 0.87 mm and 1.27 mm, respectively. 
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Figure V-4. Air Void Radius Distribution and Air Void Coordinates 

 

From mixture design information, the asphalt volume fraction in the mixture of 

this study, which is the difference between voids in mineral aggregate (VMA) and air 

void content in the mixture, was reported to be 0.0735. In this case, the unknown 
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parameters in PDE, Equation V-4, were the binder oxidation kinetics pre-exponential 

factor (A), activation energy (Ea), and reaction order (α) and the mixture tortuosity (τ). 

The initial values used for parameter estimation were the Ampet AC-20 binder kinetics 

data reported by Lunsford (1994). After the least-squares parameter estimation process, 

the results for A, Ea, α, and τ were estimated to be 1.667 × 105 CA/s atmα, 81.1 kJ/mol, 

0.285, and 2.33, respectively, as shown in Figure V-5. With these estimated values, the 

least-squares difference between the aging rate of model calculation and ER aging was 

0.0057. In addition, these estimated kinetics parameters were within the range of kinetics 

data for asphalt binders reported by Lunsford.58 
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Figure V-5. Oxidation Model versus ER Aging Rate before and after Parameter 

Optimization Process: Case 1 

 

The initial values of A, Ea, α, and τ used in this estimation were 3.105 × 104 CA/s 

atmα, 74.8 kJ/mol, 0.285, and 1, respectively. In order to decrease the carbonyl growth 

rate of the model to match the ER aging rate, A, Ea, and τ were adjusted to higher values. 

However, α remained the same as the initial value. 

As demonstrated in this estimation process, researchers can use this approach to 

estimate kinetic information for an asphalt binder when the mixture information and the 

ER aging rate are known. Then, these estimated kinetics data together with mixture 
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characteristic can be used to calculate field aging rates using the pavement temperature 

profile. 

 

Case 2: Known asphalt kinetic parameters, unknown mixture air void characteristics 

 

In some cases, all asphalt kinetics data were known, but the mixture air void 

characteristics data were not available. Even though air void data can be determined with 

an X-ray CT scan, the machine might not be available for all laboratories or district 

locations. To be able to estimate the air void characteristics without X-ray CT scanning 

will enable subsequent asphalt binder oxidation rate calculations in a pavement, when 

used with the actual real pavement temperature profile and ER aging of field cores. 

Figure V-6 shows the comparison between oxidation rate from model calculation 

and ER aging. The missing data, in this case, were mixture characteristic data: namely, 

rPS, rNFB, ε, and τ. As for the binder kinetics data, Coastal AC-20 data reported from 

Lunsford (1994) were used in oxidation model calculation. After least-squares 

estimation process, which had an error of 0.0017, the estimated values of rPS, rNFB, ε, and 

τ were 0.1375 mm, 3.875 mm, 0.1667, and 2.5, respectively. 
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Figure V-6. Oxidation Model versus ER Aging Rate before and after Parameter 

Optimization Process: Case 2 
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The kinetics data of Coastal AC-20 used in this calculation had values of A, Ea, 

and α as 2.587 × 105 CA/s atmα, 8.05 kJ/mol, and 0.26658 On the other hand, the initial 

values of mixture characteristic data used in the estimation process were the data for 

typical dense-graded mixtures obtained from the X-ray CT image analysis process. The 

set of initial values were 0.87 mm, 1.27 mm, 1, and 1 for rPS, rNFB, ε, and τ, respectively. 

From the estimation process, as τ and the difference between rNFB and rPS increased, 

indicating a thicker asphalt film and a longer path for oxygen to travel, the oxidation rate 

calculated from the model decreased. Also, as ε decreased, the oxidation rate decreased 

accordingly.  

The parameter estimation process and results discussed in the above section were 

important examples of how to use the oxidation model at constant temperature to 

estimate the unknown model parameters. Although the asphalt kinetics data, mixture air 

void characteristics, and the ER mixture sample were not perfectly matched, the above 

cases demonstrate the capabilities of parameter estimation coupled with the binder 

oxidation model. Further analysis using complete and corresponding binder and mixture 

data will be used to more accurately assess and improve the transport model. 

 

Binder Oxidation Model Calculation Using Temperature Profile from Pavement 

Temperature Prediction Model 

 

An accurate model for pavement temperature prediction is critical to the study of 

pavement material properties as well as their changes over time. For example, for the 

prediction of both binder oxidation and thermal cracking in pavements, pavement 

temperature as a function of time and depth is crucial. A one-dimensional numerical 

model has been developed to predict pavement temperature based on heat transfer 

fundamentals.65,66,67 The model employs commonly available hourly solar radiation, 

daily average wind speed, and imputed hourly air temperature based on site-specific 

daily pattern derived using time series analysis as climate input data. Three key site-

specific model parameters were identified and the national distribution of their values 
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correlate with climatic patterns, suggesting possible interpolation strategies based on 

climate. The temperature model, proposed data sources, and methods provided 

calculations that agreed well with experimental measurements, suggesting a general 

approach to predicting pavement temperatures nationwide with acceptable accuracy. 

Figure V-7 shows the hourly pavement temperature profiles generated by the 

pavement temperature prediction model for State Highway 21 located in Bryan, Texas. 

Temperature histories for three depths, 20, 80, and 160 mm from the pavement surface, 

are shown for July 1994. Pavement temperatures were estimated for the entire one-year 

period of 1994 and used in the transport oxidation model to estimate binder oxidation 

throughout the year as a function of depth. 
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Figure V-7. Pavement Temperature Profile for SH-21 

in Bryan, Texas, during July 1994 

 

Table V-1 summarizes carbonyl area for each of the depths collected at various 

stations of State Highway 21 (SH-21 between Bryan and Caldwell) from 1989 to 1996.3 

Aging rates of binder from each depth also are shown in the table. Approximately, 

overall aging rates of top and bottom lifts for SH-21 can be estimated to be 0.05 

CA/year. Glover et al.3 also reported that asphalt binder used to construct SH-21 
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pavement was Exxon AC-20, whose binder kinetics data were reported by Domke et 

al.17 However, the information for mixture air void characteristics was not available for 

this SH-21 pavement. The best available data for mixture air void characteristics at this 

time was the data from X-ray CT analysis of a comparable dense-graded mixture from 

US 59 pavement in Yoakum, Texas. 

Each temperature profile as shown in Figure V-7 was used as reaction 

temperature in binder oxidation model calculation, Equation V-4. The carbonyl area 

growth of Exxon AC-20 for one-year period in pavement, from January to December, at 

various depths is shown in Figure V-8. According to the oxidation model calculation, 

asphalt binder aging rates in the pavement were rather slow during spring and winter. On 

the other hand, the rate increased significantly during the summer due to higher 

pavement temperatures, as would be expected.  

 

 

Table V-1. Carbonyl Area of the Recovered Binder (Exxon AC-20)  

from SH-21, Texas 

1989 1992 1996

1277 Top 0 ‐ 2 0.94 ‐ 1.31 0.053
  Bottom 4 ‐ 6 0.88 ‐  1.27 0.056

1394 Top 0 ‐ 2 0.88 1.04 ‐  0.053
  Bottom 4 ‐ 6 1.11 1.25 ‐  0.047

 Station  
 Depth Below 
Surface (in.)  

Carbonyl Area Aging rate 
(CA/Year)

Lifts
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Figure V-8. Calculated Carbonyl Area from Binder Oxidation Model 

at Various Depths 

 

Also from Figure V-8, after one year, the carbonyl area of binder in each depth 

increased from the initial carbonyl area of 0.633 to 0.681, 0.669, and 0.665 for the 

depths of 20, 80, and 160 mm, respectively. Thus the aging rates of Exxon AC-20 are 

0.048, 0.036, and 0.032 CA/year at the corresponding depths. By comparing these aging 

rates with the data reported in Table V-1, the aging rate from top lifts agreed quite well 

with the model calculation, whereas the bottom lifts showed higher aging rates than 

values calculated by the model. The reason why the bottom lift calculation did not match 

the field measurement might come from the fact that mixture air void characteristic 

through the depth of pavement used in the model could be slightly different from actual 

SH-21 pavement structure. X-ray CT analysis should be performed on the original SH-

21 pavement core to obtain a better match of mixture air void characteristics. However, 

with limited availability of air void characteristic data, the substituted values were able 

to produce reasonable aging rates to demonstrate the use of the binder oxidation model 

together with the pavement temperature prediction model to calculate the carbonyl area 
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growth of asphalt binder in selected pavement. Further mixture data would certainly 

improve the accuracy of the binder oxidation model prediction. 

 

Conclusions 

 

In this study, a binder oxidation model for pavements, which includes the effect 

of oxygen diffusion and pavement temperature as a function of time and depth, was 

developed in a cylindrical coordinate system. Input components for the oxidation model 

are pavement temperature profile, binder oxidation kinetics and diffusion parameters, 

and mixture air void characteristics. The one-dimensional thermal transport model, 

coupled with site-specific model parameters and recent improvements in the availability 

of required input climate data, enables calculation of pavement temperatures throughout 

the year to a surprisingly reliable extent. The asphalt binder kinetics data were gathered 

from existing literature and the mixture air void characteristics were obtained using X-

ray CT image analysis. However, when either binder kinetics or mixture parameters 

were missing, a least-squares parameter estimation procedure at constant temperature 

can be applied to obtain reasonable parameter values. Despite the necessity of acquiring 

additional binder and mixture data, the binder oxidation model with available input data 

to date was able to calculate average asphalt aging rate for a pavement reasonably close 

to the actual average oxidation rate observed in the field. 

The essential significance of this study is to introduce a mixture binder oxidation 

model as a cornerstone for subsequent research on asphalt oxidation in pavements and to 

demonstrate its applicability. Additional binder and mixture data are needed to assess the 

accuracy and validity of the model. Such a model is a critically important tool for 

pavement design and improvement and for maintenance scheduling. 
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CHAPTER VI 

ANALYSIS OF THE EFFECT OF CLIMATE ZONES ON  

ASPHALT OXIDATION RATE IN PAVEMENTS 

 

Introduction 

 

Weather climate patterns throughout the country, even climates within Texas, 

can differ significantly. These different climates cause significant differences in 

pavement temperature profiles, which are key factors that influence the behavior of 

asphalt binder and pavement performance. For different pavement temperature profiles, 

asphalt binders in pavements experience unequal amounts of binder oxidation over time. 

Pavement engineers must understand these differences in order to design pavements to 

better withstand the binder hardening that occurs during its service life. In general, 

different pavement temperature profiles may lead to different binder hardening rates in 

pavements. Therefore, in pavement design, in order to obtain the desired level of 

pavement performance, the asphalt binders with appropriate rheological properties must 

be selected to compensate for binder hardening due to the diversity of climate zones. 

Unfortunately, such a selection study is a time- and resource-consuming process. A 

simple change in pavement designs, for example a change in binder PG grade, might 

take years in the field in order to detect any significant change in asphalt binder 

properties in the pavements. To overcome this major problem, integration of the asphalt 

binder oxidation model with a pavement temperature prediction model is critical to the 

study of binder oxidation in pavements under various climate conditions and thus to 

pavement performance modeling and maintenance planning. 

 In this chapter, the calculated binder oxidation rates of pavements in various 

climate locations are presented. The calculations are based on the binder kinetics 

information previously collected, the estimated pavement parameters from Chapter V, 

and predicted pavement temperature profiles. The calculated results show that the 
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climate zones play an important role in asphalt binder oxidation in pavements and 

therefore directly impact pavement performance.  

 

Research Objectives 

 

 The purpose of the study presented in this chapter was to understand the effects 

of the climate zones on asphalt binder oxidation rates in the pavements. The temperature 

profiles throughout the United States and Texas were generated using a pavement 

temperature prediction model that has site-specific parameters in the binder oxidation 

model. The oxidation rates were calculated from the model as functions of time and 

pavement depth, keeping all pavement parameters constant (except climate) and then 

compared among themselves to determine the sole effect of the climate zone on binder 

oxidation rate. Then the calculated aging rates from the integrated model were compared 

to binder aging rates measured for actual pavements in Texas to verify that the 

calculated values were reasonable. 

 

Methodology 

  

 Two model calculations that were used in this chapter were the pavement binder 

oxidation model and pavement temperature prediction model. The process of the 

calculations is shown in Figure VI-1. There are three key groups of input parameters: 

pavement temperature, pavement physical information, and asphalt binder information. 

First, the pavement temperature profiles of the selected pavement sites were generated to 

be used in pavement oxidation model. Then, the important parameters of the oxidation 

model were determined according to the methods discussed previously in Chapters IV 

and V. Using these model parameters and pavement temperature information, the asphalt 

aging rates were calculated and then compared to determine the effect of different 

climate zones on pavement oxidation. The calculation procedures for both the pavement 
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temperature prediction model and the pavement oxidation model are described 

substantially. 
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Figure VI-1. Workflow Schematic of the Binder Oxidation Rate Calculations 

 

Binder Oxidation Model in Pavement 

 

 The pavement binder oxidation model was discussed in detail in Chapters IV and 

V. Key parameters of the pavement binder oxidation model are binder oxidation kinetics 

parameters and air voids characteristics of the pavement. Occasionally, these key 

parameters are estimated due to the limited availability of either binder kinetics or air 

voids data. The important parameters for the model were measured and estimated as 

discussed in Chapters III and V.  
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The asphalt binder that was used in the calculation in this chapter is an Exxon 

AC-20, of which the kinetics data were reported by Domke et al.17 This Exxon AC-20 

asphalt binder was used in the previously studied SH-21, which is located between 

Caldwell and Bryan, Texas. The reported values for the Exxon AC-20 of the frequency 

(pre-exponential) factor (A), activation energy (Ea), and oxygen reaction order (α) used 

for all calculations in this chapter were 1.696 × 106 CA/s atm2, 86.4 kJ/mol, and 0.255, 

respectively.  

For the air void related parameters that were obtained from X-ray CT image 

analysis results of the dense-graded mixture, the values of rPS and rNFB were 

approximately 0.87 mm and 1.27 mm, respectively. From mixture design information, 

the asphalt volume fraction (ε) for the mixture of this study, which is the difference 

between voids in mineral aggregate (VMA) and air voids content in the mixture, was 

reported to be 0.0735. Lastly, the mixture tortuosity (τ) was estimated in Chapter IV 

using least-squares parameter estimation method to be 2.33. 

 All the parameters mentioned above were for pavements using Exxon AC-20 in 

the same dense-graded mixture. These calculations use pavement temperature profiles 

generated for various locations throughout the country while holding every pavement 

structure-related parameter and binder kinetics parameter constant.  

 

Pavement Temperature Prediction Model 

 

 Typically, pavement temperature varies with pavement location (climate), time (day 

and seasonal), and depth. As part of a pavement oxidation model, a reliable pavement 

temperature prediction model is also crucial to determine the change in asphalt binder 

properties due to oxidation.  

The one-dimensional heat transfer model was developed and reported by Han et 

al.73 and employs an unsteady-state heat flux boundary condition at the pavement 

surface, a depth-independent heat flux 3 m below the surface, and the ability to estimate 

site-specific model parameters using known measured pavement temperatures. First, a 
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general method to obtain or impute (if needed) hourly climatic data (solar radiation, 

ambient temperature, and wind speed) was developed. Then, with those input data and 

model calculations, optimal model parameters at 29 pavement sites across the country 

were estimated.  

As shown in Figure VI-2a, the model employs commonly available hourly solar 

radiation, daily average wind speed, and imputed hourly air temperature based on site-

specific daily patterns derived using time series analysis as climate input data. Three key 

site-specific model parameters: the albedo, the difference between the emissivity and 

absorption coefficients, and the absorption coefficient, were identified and the national 

distribution of their values correlated with climatic patterns, suggesting possible 

interpolation strategies based on climate. The temperature model, proposed data sources, 

and methods provided calculations that agreed well with experimental measurements, 

suggesting a general approach to predicting pavement temperatures nationwide with 

acceptable accuracy. 

As shown in Figure VI-2b, the model uses a finite difference approximation for 

calculating heat conduction within the pavement and underlying layers, subject to heat 

fluxes at the surface (shortwave solar radiation, long-wave radiation, and convective heat 

transfer) and a constant-flux boundary condition well below the pavement. Using 

required climatic input data including solar radiation, ambient temperature, and wind 

speed and constant model parameters such as albedo, emissivity, and thermal diffusivity, 

the model calculates temperature as a function of time and depth. 
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Figure VI-2. Pavement Temperature Prediction Model Diagram.  

a) Modeling Input and Output, b) Finite Difference Approximation 

 

The reaction kinetics of asphalt oxidation follow an Arrhenius activation energy 

equation (Equation I-4); these oxidation rates decrease exponentially with increasing 

inverse absolute temperature. Therefore, accurate representation of pavement 

temperature is critically important for predicting pavement oxidation as well as other 

issues that are highly sensitive to pavement temperature. 

 

Results and Discussion 

 

 The pavement temperature prediction model with site-specific parameters and 

appropriate model inputs as discussed earlier was used to generate temperature profiles 

for various pavement locations over the course of one year. Then the profiles were used 

in the pavement binder oxidation model to calculate the asphalt oxidation rate, as it 

varies throughout the year, for each pavement location at several depths. In the 

calculations, although the pavement temperature profiles were changed to different 

locations, the model input data for pavement design were kept constant so as to isolate 

the effect of climate on binder oxidation rates in pavements. The calculated carbonyl 
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area growths of pavements in this study, both across the country and within Texas, are in 

Appendix F. 

 

Typical Output from Pavement Temperature Prediction Model 

 

Figures VI-3a and -3b show the yearly and monthly pavement temperature 

profiles generated by the pavement temperature prediction model for State Highway 21 

located in Bryan, Texas. Temperature histories for three depths, 20, 80, and 160 mm 

from the pavement surface, are shown for the year 1994. The pavement temperature at 

the near surface has greater temperature fluctuation and somewhat higher average 

pavement temperatures than deeper into the pavement. 

 Later in this chapter, similar pavement temperature profiles are shown for sites 

throughout the country and within Texas. Asphalt oxidation rates were calculated based 

upon the temperature in each pavement layer. 

 

10

20

30

40

50

60

70

80

0 10 20 30

Te
m
pe

ra
tu
re
, °
C

Time, Days

July‐1994

20 mm 80 mm 160 mm

b) Monthly Temperaturea) Yearly Temperature

20 mm
80 mm

160 mm

 
Figure VI-3. Typical Pavement Temperature Profile Output from the Model: 

a) Yearly Temperature and b) Monthly Temperature Profiles 
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Typical Output from Integrated Pavement Oxidation Model 

 

As an example of the oxidation model calculations, the carbonyl area growth 

rates for Exxon AC-20 at three depths in Texas SH-21, located between Caldwell and 

Bryan, Texas, for the one-year period from January to December in 1994 are shown in 

Figure VI-4. The pavement used in the calculation utilized the parameters for a dense-

graded mixture design, which has total air void content less than 10 percent, and used the 

model parameters as discussed previously. In this case, it is assumed that the initial 

carbonyl area values are the same throughout the pavement. The yearly carbonyl growth 

rates behave like a stair-step curve, corresponding to rather slow oxidation rates during 

spring and winter and then increasing significantly during the much warmer summer 

months. Also, the oxidation rate is higher at the surface, primarily because of the higher 

maximum temperature coupled with the exponential reaction activation energy effect, 

rather than because of a different average temperature.  

According to the assumptions and parameters of these calculations, even as deep 

as 160 mm into the pavement, the oxidation rate is closer to that at the surface than it is 

to zero, that rate assumed by the mechanistic-empirical pavement design guide 

(MEPDG). 

 
 

0 100 200 300 400
0.63

0.64

0.65

0.66

0.67

0.68

0.69
CA vs Time (SH-21, 1994)

Time (day)

C
A

 

 

 20 mm
 80 mm
160 mm

 
Figure VI-4. Calculated Carbonyl Area from Binder Oxidation Model  

at Various Depths 
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Predicted Temperature Profiles for Pavement Sites throughout the Country 

 

Annual pavement temperature profiles as a function of depth for locations across 

the country were generated using available climate data coupled with the pavement 

temperature prediction model. Pavement temperatures as a function of time and depth 

were generated for locations in Arizona, Minnesota, Montana, New York, and Texas as 

shown in Figure VI-5. With these temperature profiles, binder oxidation rates in 

pavements were estimated using binder kinetics and pavement air void characteristic 

parameters.  

 The calculations indicate that, over a one-year cycle, the oxidation rate is slow 

during the fall and winter months when the average temperatures are low and daily 

pavement temperature fluctuations also are relatively small. Binder oxidation rates are 

significantly higher during the summer months, when the average temperatures are 

higher and daily pavement temperature fluctuations are also high.  
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Figure VI-5. Selected Weather Station Sites throughout the Country 
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 Table VI-1 contains the selected site information from the Long Term Pavement 

Performance (LTPP) database. These sites represent the climate regions throughout the 

country: Texas is in wet-no-freeze zone, Arizona and Montana are in dry-freeze zone, 

and Minnesota and New York are in wet-freeze zone. It should be noted that Arizona 

and Montana sites are located in the valley region as the elevation is comparably higher 

than the other sites. Also, the average number of days that air temperature exceed 32 

°Cof each site , which indicates how hot the climate on that particular site, is reported. 

 

Table VI-1. Selected Site Information from the LTPP Database 

Site County
Elevation 

(ft)
Climatic 
Region

 Days         
Above 32 °C

Texas (48‐3835) Brazos 331 Wet No Freeze 96.22

Arizona (04‐1024) Yavapai 5,456 Dry Freeze 32.57

Montana (30‐8129)
Golden 
Valley

4,440 Dry Freeze 10.61

Minnesota (27‐6251) Beltrami 1,364 Wet Freeze 3.44

New York (36‐4018) Otsego 1,070 Wet Freeze 2.48
 

 

Figures VI-6 and VI-7 show the 15-day intervals of pavement surface 

temperature profiles (at a depth of 20 mm) calculated by the pavement temperature 

prediction model for each location for the year 1994. The surface temperature profiles in 

colder months (January 1st to January 15th) are shown in Figure VI-6. The daily 

temperature fluctuations are quite similar for all pavement temperature profiles, 

approximately 20 °C. The daily average temperatures, however, are quite different from 

site to site; for example, the average temperatures in Texas and Arizona are generally 

higher than in Montana, Minnesota, and New York, as would be expected. Figure VI-7 

shows the pavement temperature profiles of the pavements in the summer (July 16th to 

July 31st). The daily temperature fluctuations, approximately 30 °C, are significantly 

higher than for the colder month profiles. Also, during the warmer months, the daily 

average pavement temperatures are higher than during the colder months for all weather 
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stations. In addition, similar to the colder month profiles, Texas and Arizona generally 

have higher daily average temperatures than Montana, Minnesota, and New York. 

 

‐40

‐30

‐20

‐10

0

10

20

30

40

Pa
ve
m
en

t T
em

pe
ra
tu
re
, °
C

16‐Day Period for Each Site

January 1st ‐ January 15th (1994)

TX AZ MT MN NY

 
Figure VI-6. Pavement Surface Temperature Profiles of Colder Months 

(January 1st to January 15th) 
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Figure VI-7. Pavement Surface Temperature Profiles of Warmer Months 

(July 16th to July 31st) 
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Asphalt Oxidation Rates Comparison throughout the United States 

 

The study in this section used the asphalt oxidation model in pavements to study 

the effect of different climate zones on asphalt binder oxidation rates. Annual pavement 

temperature profiles as a function of depth for different locations across the country were 

generated using available climate data coupled with the pavement temperature prediction 

model. Then asphalt oxidation rates in pavements over 10 years were calculated. Due to 

the limitation of weather data to generate temperature profiles over 10 years, the 

assumption was made that each year each pavement has exactly the same temperature 

profile. 

Figure VI-8 shows the carbonyl area growths at the pavements’ top surface 

calculated for the five sites. The Texas site clearly has the highest oxidation rate, while 

Arizona’s is the second highest followed by the fairly close-ranked Montana, Minnesota, 

and New York sites, respectively. All calculated carbonyl area growths have S-shaped 

curves indicating that aging practically stops during the fall, spring, and winter 

compared to the summer. In this case, although the carbonyl growth rates in colder 

months are slow and comparable for all sites, the carbonyl growth rates in the summer 

for the Texas and Arizona sites are significantly higher than the rest of the sites. 

Therefore, it is important to emphasize that the oxidation that occurs during the summer 

is critical to the overall oxidation rate in pavements. 

An important assumption in these calculations is that the pavement structure and 

the reaction kinetic parameters of asphalt binder used in the calculations are the same 

throughout the study due to the limitation of binder and pavement structure data and in 

order to assess the effect of climate alone. In reality, different asphalt materials and 

different pavement designs are used to compensate for the effect of weather or climates 

on pavement performance in different parts of the country. For example, asphalt binders 

that are suitable for pavements in cold regions must a have high resistance to thermal 

cracking, while binders for pavements in warm regions must have good resistance to 

rutting at the higher pavement temperatures.  
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Figure VI-8. Calculated Asphalt Oxidation Rates at the Depth of 20 mm  

of the Pavements from Various Weather Stations throughout the Country 

 

 The results calculated by the asphalt oxidation model were compared to field 

binder aging rates. Table VI-2 summarizes carbonyl area (arbitrary units) growth rates 

measured for two depth ranges for binder recovered from Texas State Highway 21 (SH-

21) between Bryan and Caldwell during the years 1989 and 1992.3 These average aging 

rates for binder recovered from the top and bottom lifts were determined to be 0.053 and 

0.047 CA/year, respectively, versus the calculated values of 0.048 and 0.032. Aging 

rates calculated for the five climate zones, and for the binder used in SH-21 (Exxon AC-

20), are also reported. Because the same binder and mixture were assumed for the sake 

of comparison purposes, the rates vary from site to site only because of different 

temperature and solar radiation effects at the different locations. These rates are also 

shown as CA/year but a separate column also gives the oxidation rate relative to the rate 

for Texas. Note that the measured and calculated aging rates in Texas differ somewhat, 

perhaps because the air void characteristics used in the calculation were different from 

the air void characteristics of the actual pavement. In addition, due to the limitation of 
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weather parameter inputs for the pavement temperature prediction model, the generated 

pavement temperature profiles used in this study were for the year 1994. 

 

Table VI-2. Carbonyl Area Growth Rates Comparison and Relative Aging Rates  

of Weather Station Sites throughout the Country 

Top Layer* Bottom Layer**

TX SH‐21 0.053 0.047 N/A
Average measured aging 
rate , 1989 to 1992

NY 0.012 0.007 0.25

MT 0.015 0.008 0.31

MN 0.016 0.010 0.34

AZ 0.033 0.017 0.69

TX 0.048 0.032 1.00

** Bottom Layer. For TX SH‐21 this refers to  4‐6 inches below the pavement surface; for the calculations, it refers to 6 
inches below the pavement surface

Aging rate (CA/Year)

Average  aging rates 
calculated from pavement 
binder oxidation model 
and pavement 
temperature prediction 
model using the climate 
data from 1994

Site Remark

Aging rate relative 
to Texas pavement 
calculation at the 

top layer

* Top Layer.  For TX SH‐21 this refers to  0‐2 inches below the pavement surface; for the calculations, it refers to 1 inch 
below the pavement surface

 
 

Asphalt Oxidation Rates Comparison within Texas 

 

The effect of climate on oxidation rates in pavements is important enough that 

differences in pavement oxidation rates are calculated even within the state of Texas. 

With the integrated model developed in this study, carbonyl growth rates of Exxon AC-

20 were calculated for seven locations in five climate zones in Texas (Figure VI-9). The 

selected sites include Amarillo, Bryan, Dallas, El Paso, Hidalgo, Kingsville, and Lufkin. 

The pavement temperature prediction model was used together with site-specific 

parameters to calculate pavement temperature profiles and oxidation rates at three depths 

(20 mm, 80 mm, and 160 mm) for each site. For each pavement site, the calculated 
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binder oxidation rates for the top 20 mm is the highest and the rate decreases as the 

depth into the pavement increases. By comparing the binder oxidation rates from climate 

zones all across Texas, the results demonstrated that the regions where the climates were 

dry-warm and wet-warm have higher carbonyl growth rates than the dry-cold, wet-cold, 

and moderate weather regions. From Dallas to the lower Rio Grande Valley, these 

calculated rates varied by a factor of two, perhaps a surprisingly large difference. 
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Figure VI-9. Calculated Asphalt Oxidation Rate of Three Pavement Depths  

for Several Pavement Sites in Texas 
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Conclusions 

 

 Based on model calculations to explore the effect of climates and the resulting 

pavement temperature profiles on binder oxidation in pavements, the following 

conclusions are made: 

• The integrated binder oxidation model validation is still an issue. More measured 

pavement aging rates need to be compared to model calculations. Also, air void 

characteristic data of the corresponding pavements should be obtained or 

measured. In the case that these air void characteristic data are limited, parameter 

estimation methods were employed for necessary parameters. 

• Temperature varies throughout the depth of a pavement and that affects the rate 

of binder oxidation as a function of depth.  

• Diverse climates throughout different parts of the country greatly affect the 

pavement oxidation process. This effect should be taken into account in 

pavement design for improved durability.  

• Climate zones within Texas show similar effects on binder oxidation in 

pavements, although not as extreme as, of course, the differences across the 

country. However, adjustments in pavement design are still important for 

constructing pavements with improved durability. 

• With an adequate asphalt binder database, pavement air void characteristic data, 

and sufficient weather input data, the binder oxidation model integrated with the 

pavement temperature prediction model is an excellent combination of tools that 

enables pavement designers to be able to estimate binder oxidation and hardening 

rates in pavements.  
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CHAPTER VII 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

Summary of Findings 

 

 Beginning with the background of asphalt oxidation in pavements in Chapter I, 

the discussions of findings in this dissertation on important elements of the oxidation 

model, oxidation model development, and oxidation model application were included in 

Chapters II through VI. After conducting research work to accomplish the objectives 

stated in each chapter, the summary of findings of each chapter was specifically 

discussed in a conclusion section. 

The background information on binder oxidation in pavements provided in 

Chapter I provide the foundation of the research work necessary to develop the binder 

oxidation model in pavements. The important factors that influence the study of 

oxidation process of binder in pavements are asphalt binder kinetics, air void 

characteristics, pavement temperature, and the appropriate model that ties these factors 

together. In later chapters, the necessary model parameters was determined and 

estimated, and the desired oxidation model were carefully developed. 

 In Chapter II, the effects of accessible air void contents on asphalt binder 

properties were intensively studied. After the comparison between air void content and 

binder properties of pavement core samples, the general trend was discovered that the 

oxidation rates of asphalt binders are high when the accessible air void contents in 

pavement are high and the oxidation rates are low when there are low air void contents. 

The finding in this chapter supports the previous results that aging rates of asphalt 

binders are affected by accessible air voids. 

 Chapter III went further into the study to determine air void characteristics in 

pavements. The X-ray CT imaging technique, which is a nondestructive test, was used to 

obtain the information on total air void content as well as interconnected air voids in 

core samples. The results show that there are air void channels distributed in the 
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pavement core samples allowing the adequate availability of oxygen for the binder 

oxidation process. Also, with the additional image analysis process, key air void 

characteristic parameters, air void radius (rPS) and the half-distance between two 

adjacent pores (rNFB), were calculated and later used in the binder oxidation model 

developed in Chapter IV. 

 Once the fundamental elements of binder oxidation in pavements, binder 

kinetics, and air void characteristics were determined, these elements were used in 

Chapter IV together with the oxygen diffusion and reaction concepts to develop an 

improved binder oxidation model in pavements in a cylindrical coordinate system. Due 

to the unavailability of actual pavement temperature data, the preliminary outputs of the 

binder oxidation model were calculated using a constant temperature of 60 °C, which is 

the average temperature of pavements in Texas. The outputs, as a function of time, from 

the model include oxygen partial pressure profile, oxygen diffusivity in asphalt binder, 

binder viscosity, and carbonyl area of asphalt binder. 

 Chapter V includes extensive work on the binder oxidation model in pavements 

developed in Chapter IV. In addition to the detailed calculations of the oxidation model, 

least-squares parameter estimation methods were used to approximate the missing 

parameters such as binder kinetics information or air void characteristic parameters. The 

estimation was performed by comparing the calculated oxidation rate from the model 

with the oxidation rate obtained from the environmental room (ER) where the 

temperature of the room was held constant at 60 °C. Also, the pavement temperature 

prediction model was introduced and integrated with the binder oxidation model in 

pavements. The one-dimensional thermal transport model, coupled with site-specific 

model parameters and recent improvements in the availability of required input climate 

data, enables calculation of pavement temperatures throughout the year to a surprisingly 

reliable extent. With such an integrated model, the binder properties in pavements can be 

determined as a function of time and depth at the specific pavement locations where the 

required weather input data are available. 
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 Chapter VI consists of the study on the effect of climates and pavement 

temperature profiles on binder oxidation in pavements. The pavement temperature 

profiles as a function of time and depth were generated for selected pavement sites and 

then used in the pavement oxidation model. It was found that diverse climates 

throughout the country greatly affect the oxidation process in pavements. Also, the 

difference of climate zones in Texas itself was enough to cause a significant difference 

in binder oxidation rates. As a general trend, the regions that have warm climates usually 

have higher carbonyl growth rates than the ones that have cold or moderate climates. 

Also from the model calculations, in a one-year cycle, the oxidation rate in pavements 

was highest during the summer months and the rates decreased substantially in fall, 

spring, and winter.   

 

Conclusions 

 

 Asphalt binder oxidization in pavements is arguably one of the major causes for 

pavement thermal and fatigue cracking. Although binder oxidation fundamentals are 

well-documented, predicting binder oxidation rates in pavements is still a complicated 

matter. 

 The studies of the effects of air void content on binder oxidation and air void 

characteristics in pavements were the crucial steps toward the oxidation model 

development. Once the basic concept of binder oxidation in pavements was understood, 

the important elements of the model, including binder kinetics, air void characteristics, 

and pavement temperature profiles, were used in the development of an asphalt 

oxidation model in pavements. Occasionally, some input parameters were not available 

due to the limitation of the database and these parameters needed to be estimated by 

least-squares estimation methods. After obtaining all necessary input parameters, key 

outputs from the model, including carbonyl area of asphalt binder in pavements as a 

function of time and depth, can be predicted.  
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 Lastly, the mixture binder oxidation model can be established as a crucial 

cornerstone for successive research on asphalt oxidation in pavements. Improving the 

accuracy and validity of the model by increasing the data availability of binder kinetics 

and air void characteristic in pavements is crucially important in order to utilize the 

model as a resource for pavement design and maintenance scheduling. 

 

Recommendations 

 

 The research work completed in this dissertation was a proof of concept for 

binder oxidation in pavements. In addition to this work, which focused on the 

fundamental aspect of the model, there is much future research that could be studied in 

order to improve and/or extend the benefit of the binder oxidation model in pavements 

developed in this dissertation. 

 The calibration and validation of the asphalt oxidation model in pavements are 

still an ongoing process. Additional binder oxidation in pavements data from the field 

are required in order to validate the developed model. Therefore, field binder oxidation 

rates in pavements need to be monitored and reported.  

 As of now, the databases of model input parameters, asphalt kinetics and air void 

characteristics in pavements, are still very limited. In order to improve the accuracy of 

the model, the size of these input databases must be increased. It should be noted that the 

binder kinetics data measurement is a time-consuming process and needs to be done 

periodically as asphalt binder composition can be changed due to crude source. Also, the 

additional air void characteristic information of various types of mixture designs should 

be cataloged using either standard or high-resolution X-ray CT scans.  

 The additional development on oxygen diffusivity correlation could also be a 

crucial step toward the improvement of the binder oxidation model in pavements. 

Currently, the binder oxidation model uses oxygen diffusivity correlation that was 

developed as a general correlation for all asphalt binders. If the asphalt-specific oxygen 

diffusivity is developed, the accuracy of the model calculations can be improved. 
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 The goal of this research was to develop the basic transport model for use as a 

guide to designing field and laboratory experiments for the purpose of evaluating the 

impact of diffusion resistance on the oxidation rate of asphalt binders in pavements as a 

function of air voids, asphalt binder content, and other parameters. Ultimately, 

laboratory results and this proposed transport model could be integrated into a prototype 

of pavement design software to be used as a time- and cost-effective pavement design 

tool. 
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Table A-1. Recovered Binder Properties for the Abilene SH 36 L1 and L2 Cores a 

 η* η'/G' G' G'/(η'/G') Calculated Carbonyl
(poise) (s) (MPa) (MPa/s) Ductility Area

@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U3 1st - - - - - -
2nd - - - - - -

1st Set 3rd - - - - - -
Abilene L1 T3 1st 262550 148.0 0.66774 0.0045129 2.48 -

2nd 120880 206.8 0.35748 0.0017287 3.78 -
3rd 217080 148.7 0.73146 0.0049181 2.38 -

U1 1st 369380 119.4 0.74978 0.0062787 2.14 -
2nd 155150 177.9 0.52384 0.0029445 2.99 -
3rd 289250 120.8 0.84814 0.0070234 2.04 -

U2 1st 307120 120.9 0.69988 0.0057897 2.22 -
2nd 256120 131.9 0.65822 0.0049903 2.37 -

2nd Set 3rd 690860 71.5 1.30160 0.0182066 1.34 -
Alilene L1 T1 1st 370230 120.3 0.80918 0.0067258 2.08 -

2nd 192200 162.1 0.55548 0.0034261 2.80 -
3rd 547540 113.2 0.89858 0.0079386 1.93 -

T2 1st 345500 127.5 0.72838 0.0057126 2.23 -
2nd 244940 143.1 0.66484 0.0046461 2.44 -
3rd 514760 82.5 1.29540 0.0156998 1.43 -

U3 1st 488110 98.2 1.04100 0.0105994 1.70 1.555
2nd 146010 195.7 0.48314 0.0024694 3.23 1.275

1st Set 3rd 337410 114.3 0.90158 0.0078887 1.94 1.331
Abilene L2 T3 1st 221010 162.8 0.61846 0.0037980 2.67 1.533

2nd 91086 254.9 0.30442 0.0011941 4.44 1.104
3rd 415790 87.7 1.28680 0.0146650 1.47 1.394

U1 1st 260000 143.3 0.64532 0.0045028 2.48 -
2nd 207050 143.2 0.80072 0.0055914 2.25 -
3rd 145920 149.6 0.72414 0.0048421 2.40 -

U2 1st 384280 117.1 0.81104 0.0069232 2.05 -
2nd 200950 157.9 0.67396 0.0042671 2.54 -

2nd Set 3rd 86846 208.4 0.50010 0.0024003 3.27 -
Abilene L2 T1 1st 259220 149.6 0.67092 0.0044839 2.48 -

2nd 148870 188.3 0.45086 0.0023939 3.27 -
3rd 237560 123.2 0.95754 0.0077728 1.95 -

T2 1st 242590 149.4 0.67942 0.0045470 2.47 -
2nd 243990 139.7 0.72868 0.0052167 2.32 -
3rd 142750 155.0 0.70338 0.0045378 2.47 -

Replicate layer

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s  
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Table A-2. Recovered Binder Properties for the Abilene SH 36 R1 and R2 Cores a 

 η* η'/G' G' G'/(η'/G') Calculated Carbonyl
(poise) (s) (MPa) (MPa/s) Ductility Area

@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U3 1st 425090 99.1 0.91202 0.0092040 1.81 -
2nd 155620 162.7 0.73120 0.0044945 2.48 -

1st Set 3rd 213830 132.6 0.82550 0.0062235 2.15 -
Abilene R1 T3 1st 244960 137.9 0.61002 0.0044229 2.50 -

2nd 237160 138.8 0.68938 0.0049674 2.37 -
3rd 387680 97.8 1.10900 0.0113357 1.65 -

U1 1st 415790 103.3 0.99738 0.0096561 1.77 -
2nd 363730 103.0 0.89194 0.0086605 1.86 -
3rd 144280 162.7 0.76628 0.0047106 2.43 -

U2 1st 407320 101.4 0.91828 0.0090597 1.82 -
2nd 428810 95.0 1.12780 0.0118739 1.62 -

2nd Set 3rd 169100 140.7 0.84640 0.0060149 2.18 -
Abilene R1 T1 1st 376870 110.1 0.93800 0.0085190 1.87 -

2nd 318920 108.6 0.96608 0.0088951 1.84 -
3rd 120360 175.1 0.65842 0.0037595 2.68 -

T2 1st 369090 104.0 0.82460 0.0079324 1.93 -
2nd 399960 96.9 0.94728 0.0097805 1.76 -
3rd 105660 195.8 0.56900 0.0029058 3.01 -

U2 1st - - - - - -
2nd - - - - - -

1st Set 3rd - - - - - -
Abilene R2 T2 1st 672460 91.9 1.11280 0.0121091 1.60 -

2nd 292380 128.5 0.89180 0.0069428 2.05 -
3rd 403490 104.7 1.16860 0.0111574 1.66 -

U1 1st 625320 89.2 1.10620 0.0124080 1.59 -
2nd 183730 147.9 0.77932 0.0052682 2.31 -
3rd 48292 312.2 0.23772 0.0007614 5.42 -

U2 1st 615090 90.7 1.01606 0.0112054 1.66 -
2nd 142610 171.0 0.68296 0.0039943 2.61 -

2nd Set 3rd 45139 300.4 0.24168 0.0008046 5.29 -
Abilene R2 T1 1st 795480 79.3 1.15720 0.0145892 1.48 -

2nd 168710 150.1 0.69274 0.0046163 2.45 -
3rd 88568 212.5 0.48030 0.0022602 3.36 -

T2 1st 798450 81.6 1.06100 0.0129967 1.55 -
2nd 74877 241.4 0.38888 0.0016108 3.90 -
3rd 15901 607.5 0.04309 0.0000709 15.39 -

Replicate layer

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s  
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Table A-3. Recovered Binder Properties for the Atlanta IH 20 CM Cores a 

 η* η'/G' G' G'/(η'/G') Calculated Carbonyl
(poise) (s) (MPa) (MPa/s) Ductility Area

@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st 1886200 105.6 0.87602 0.0082974 1.89 -
2nd 837260 128.5 0.69968 0.0054433 2.28 -
3rd 748980 139.5 0.66972 0.0048020 2.41 -

U2 1st 1783500 101.6 0.85266 0.0083953 1.88 -
2nd 629330 148.7 0.48604 0.0032687 2.85 -

Atlanta 3rd 647580 151.8 0.56948 0.0037516 2.69 -
IH 20 CM T1 1st 745790 142.5 0.56650 0.0039765 2.62 -

2nd 738040 140.8 0.67632 0.0048043 2.41 -
3rd 1090000 112.7 0.79788 0.0070782 2.03 -

T2 1st 1504400 107.6 0.74070 0.0068814 2.06 -
2nd 1001500 120.3 0.81866 0.0068058 2.07 -
3rd 852270 128.3 0.71786 0.0055940 2.25 -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer

 
 

 

Table A-4. Recovered Binder Properties for the Atlanta IH 20 DG Cores a 

 η* η'/G' G' G'/(η'/G') Calculated Carbonyl
(poise) (s) (MPa) (MPa/s) Ductility Area

@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st 2373400 84.7 0.95704 0.0113055 1.65 -
2nd 1099000 120.2 0.73168 0.0060861 2.17 -
3rd 485730 178.9 0.43102 0.0024091 3.26 -

U2 1st 3060100 80.7 1.03380 0.0128104 1.56 -
2nd 1012900 129.2 0.73284 0.0056709 2.24 -

Atlanta 3rd 512220 88.3 0.39318 0.0044504 2.49 -
IH 20 DG T1 1st 2074700 89.7 0.96692 0.0107801 1.69 -

2nd 1752500 94.8 0.91668 0.0096729 1.77 -
3rd 959760 128.2 0.70002 0.0054615 2.28 -

T2 1st 2077800 96.4 1.04840 0.0108779 1.68 -
2nd 1693700 98.5 0.89534 0.0090855 1.82 -
3rd 1151200 120.1 0.64038 0.0053333 2.30 -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer
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Table A-5. Recovered Binder Properties for the Atlanta IH 20 SP Cores a 

 η* η'/G' G' G'/(η'/G') Calculated Carbonyl
(poise) (s) (MPa) (MPa/s) Ductility Area

@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st 1706300 105.5 0.69292 0.0065708 2.10 -
2nd 635160 157.1 0.50900 0.0032406 2.86 -
3rd 180200 226.2 0.15508 0.0006856 5.67 -

U2 1st 2131300 94.5 0.84744 0.0089666 1.83 -
2nd 672120 150.8 0.45770 0.0030354 2.95 -

Atlanta 3rd 358440 188.3 0.25116 0.0013336 4.23 -
IH 20 SP T1 1st 1507100 111.4 0.82980 0.0074469 1.99 -

2nd 1278900 117.4 0.76616 0.0065277 2.10 -
3rd 882580 136.7 0.60176 0.0044023 2.50 -

T2 1st 1324600 112.2 0.75448 0.0067267 2.08 -
2nd 1185300 119.5 0.73682 0.0061677 2.16 -
3rd 928920 136.7 0.53664 0.0039269 2.63 -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer

 
 

 

Table A-6. Recovered Binder Properties for the Atlanta US 67 Cores a 

 η* η'/G' G' G'/(η'/G') Calculated Carbonyl
(poise) (s) (MPa) (MPa/s) Ductility Area

@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st 62856 327.7 0.08516 0.0002599 8.69 -
2nd 58530 354.9 0.08859 0.0002496 8.85 -
3rd 51932 365.1 0.07132 0.0001953 9.86 -

U2 1st 70528 321.3 0.11212 0.0003489 7.64 -
2nd 53257 356.1 0.08763 0.0002461 8.91 -

Atlanta 3rd 65126 341.6 0.10168 0.0002976 8.19 -
US 67 T1 1st 31275 348.6 0.03191 0.0000915 13.76 -

2nd 58231 354.1 0.09313 0.0002630 8.65 -
3rd 57627 351.7 0.07638 0.0002172 9.41 -

T2 1st 198630 218.3 0.29114 0.0013335 4.23 -
2nd 107110 275.2 0.16914 0.0006145 5.95 -
3rd 109230 273.9 0.18948 0.0006918 5.65 -

Replicate layer

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s  
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Table A-7. Recovered Binder Properties for the Carrizo Springs Airport Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U3 1st 899570 111.7 0.61624 0.0055190 2.27 1.505
1st Set 2nd 216370 182.7 0.25916 0.0014183 4.12 1.298

Carrizo 3rd 180880 190.3 0.25316 0.0013303 4.24 1.234
Springs T3 1st 4042600 52.0 1.50060 0.0288352 1.09 1.999
Airport 2nd 303470 171.7 0.36346 0.0021169 3.45 0.930

3rd 236010 184.5 0.30800 0.0016691 3.84 1.182
U1 1st 780050 112.3 0.64966 0.0057838 2.22 -

2nd 317180 157.1 0.41498 0.0026409 3.13 -
3rd 323710 156.6 0.40464 0.0025839 3.16 -

U2 1st 1329400 91.1 0.78130 0.0085778 1.87 -
2nd Set 2nd 294550 167.5 0.33892 0.0020229 3.52 -
Carrizo 3rd 254890 177.4 0.31284 0.0017630 3.74 -
Springs T1 1st 920540 102.2 0.74354 0.0072721 2.01 -
Airport 2nd 308890 154.1 0.34830 0.0022599 3.36 -

3rd 380430 149.4 0.34174 0.0022881 3.34 -
T2 1st 1452400 82.3 0.81868 0.0099465 1.75 -

2nd 309000 153.5 0.46710 0.0030430 2.94 -
3rd 350370 149.5 0.39176 0.0026201 3.15 -

Replicate layer

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s  
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Table A-8. Recovered Binder Properties for the Fort Worth FM 4 (2000) Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st - - - - - -
2nd - - - - - -
3rd - - - - - -

U2 1st - - - - - -
2nd - - - - - -
3rd - - - - - -

U3 1st 381620 145.1 0.50398 0.0034727 2.78 -
1st Set 2nd 155690 202.8 0.29034 0.0014318 4.10 -

Fort Worth 3rd 59988 310.4 0.12024 0.0003874 7.29 -
FM 4 T1 1st - - - - - -
(2000) 2nd - - - - - -

3rd - - - - - -
T2 1st - - - - - -

2nd - - - - - -
3rd - - - - - -

T3 1st 1014500 92.5 0.86926 0.0093991 1.79 -
2nd 236220 178.5 0.38708 0.0021683 3.42 -
3rd 95660 229.1 0.19806 0.0008644 5.12 -

U1 1st 706550 125.6 0.66642 0.0053048 2.31 -
2nd 140390 210.9 0.30672 0.0014543 4.08 -
3rd 48833 285.9 0.10612 0.0003712 7.43 -

U2 1st 823710 106.6 0.80296 0.0075352 1.98 -
2nd 205190 183.1 0.33814 0.0018464 3.67 -
3rd 67656 261.9 0.13478 0.0005145 6.44 -

U3 1st - - - - - -
2nd Set 2nd - - - - - -

Fort Worth 3rd - - - - - -
FM 4 T1 1st 1052000 91.6 0.91402 0.0099746 1.75 -
(2000) 2nd 228760 186.5 0.39724 0.0021301 3.45 -

3rd 64421 262.3 0.13746 0.0005241 6.39 -
T2 1st 1050100 94.9 0.89972 0.0094851 1.79 -

2nd 185120 194.7 0.32154 0.0016518 3.85 -
3rd 58434 280.3 0.12622 0.0004503 6.83 -

T3 1st - - - - - -
2nd - - - - - -
3rd - - - - - -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer
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Table A-9. Recovered Binder Properties for the Fort Worth FM 4 (2003) Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st - - - - - -
2nd - - - - - -
3rd - - - - - -

U2 1st - - - - - -
2nd - - - - - -
3rd - - - - - -

U3 1st 464000 170.2 0.30868 0.0018140 3.70 -
1st Set 2nd 334330 170.8 0.32232 0.0018870 3.63 -

Fort Worth 3rd 58147 270.1 0.11410 0.0004225 7.02 -
FM 4 T1 1st - - - - - -
(2003) 2nd - - - - - -

3rd - - - - - -
T2 1st - - - - - -

2nd - - - - - -
3rd - - - - - -

T3 1st 347080 179.8 0.32270 0.0017949 3.71 -
2nd 289000 172.4 0.33770 0.0019584 3.58 -
3rd 12609 500.2 0.02825 0.0000565 17.02 -

U1 1st 477900 167.6 0.32066 0.0019138 3.61 -
2nd 245030 172.3 0.30052 0.0017444 3.76 -
3rd 22439 379.9 0.05860 0.0001542 10.94 -

U2 1st 601030 164.4 0.33266 0.0020238 3.52 -
2nd 223260 190.2 0.27232 0.0014321 4.10 -
3rd 21087 391.6 0.04774 0.0001219 12.13 -

U3 1st - - - - - -
2nd Set 2nd - - - - - -

Fort Worth 3rd - - - - - -
FM 4 T1 1st 492590 161.9 0.33664 0.0020789 3.48 -
(2003) 2nd 75378 264.3 0.12592 0.0004764 6.66 -

3rd 7147 601.8 0.01594 0.0000265 23.75 -
T2 1st 536880 157.5 0.38560 0.0024486 3.24 -

2nd 173220 199.5 0.24718 0.0012388 4.37 -
3rd 12834 406.6 0.02836 0.0000698 15.51 -

T3 1st - - - - - -
2nd - - - - - -
3rd - - - - - -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer
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Table A-10. Recovered Binder Properties for the  

Georgetown Airport (1989) Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U3 1st 790130 114.0 0.81358 0.0071358 2.02 1.507
1st Set 2nd 118480 221.9 0.29498 0.0013294 4.24 1.164

Georgetown 3rd 80630 259.8 0.15328 0.0005899 6.06 1.079
Airport T3 1st 1206800 76.2 1.13040 0.0148375 1.47 1.805
(1989) 2nd 214240 177.4 0.35942 0.0020263 3.52 1.329

3rd 121990 222.9 0.25286 0.0011342 4.55 1.192
U1 1st 1507900 88.3 1.01540 0.0114974 1.64 -

2nd 123010 221.9 0.25406 0.0011448 4.53 -
3rd 118470 223.4 0.23918 0.0010708 4.66 -

U2 1st 1690900 79.6 0.87482 0.0109914 1.67 -
2nd Set 2nd 104340 228.7 0.19442 0.0008503 5.16 -

Georgetown 3rd 62569 275.5 0.14244 0.0005170 6.42 -
Airport T1 1st 1542500 84.5 0.97814 0.0115763 1.64 -
(1989) 2nd 123770 221.4 0.20618 0.0009314 4.96 -

3rd 77549 258.7 0.16742 0.0006472 5.82 -
T2 1st 2173100 72.7 1.16880 0.0160762 1.42 -

2nd 144630 207.1 0.27072 0.0013070 4.27 -
3rd 122310 221.4 0.22234 0.0010045 4.80 -

Replicate layer

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s  
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Table A-11. Recovered Binder Properties for the  

Georgetown Airport (1995) Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U3 1st 965240 105.0 0.75512 0.0071934 2.02 1.498
1st Set 2nd 181930 190.8 0.30408 0.0015939 3.91 1.207

Georgetown 3rd 150970 201.7 0.24604 0.0012199 4.40 1.169
Airport T3 1st 1422100 64.9 0.99586 0.0153463 1.45 1.815
(1995) 2nd 256470 167.3 0.39716 0.0023734 3.29 1.289

3rd 243840 164.7 0.37316 0.0022661 3.35 1.234
U1 1st 371850 156.9 0.42576 0.0027143 3.10 -

2nd 80971 246.1 0.14460 0.0005876 6.07 -
3rd 60333 276.8 0.11452 0.0004138 7.09 -

U2 1st 500030 140.7 0.52998 0.0037672 2.68 -
2nd 89043 240.4 0.16408 0.0006824 5.69 -
3rd 88002 246.5 0.17084 0.0006929 5.65 -

T1 1st 1510400 81.0 0.95328 0.0117640 1.62 -
2nd Set 2nd 433840 145.9 0.48566 0.0033290 2.83 -

Georgetown 3rd 303210 163.2 0.37096 0.0022728 3.35 -
Airport T2 1st 2272900 74.5 1.05040 0.0141085 1.50 -
(1995) 2nd 398220 151.6 0.45634 0.0030109 2.96 -

3rd 242610 173.7 0.32246 0.0018560 3.66 -
T1* 1st 1334400 84.7 0.95346 0.0112511 1.66 -

2nd 281610 170.9 0.29530 0.0017275 3.78 -
3rd 189090 183.5 0.30020 0.0016364 3.87 -

T2* 1st 1426400 83.8 0.94650 0.0112948 1.65 -
2nd 235480 176.6 0.35208 0.0019938 3.55 -
3rd 206870 179.6 0.32116 0.0017886 3.72 -

Replicate layer

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s  
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Table A-12. Recovered Binder Properties for the Jacksonville Airport Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U3 1st 164390 184.3 0.38792 0.0021050 3.46 1.408
1st Set 2nd 58562 284.2 0.19324 0.0006799 5.69 1.134

Jacksonville 3rd 61745 278.0 0.21472 0.0007723 5.38 1.098
Airport T3 1st 436970 106.9 0.83726 0.0078325 1.94 1.702

2nd 28963 394.1 0.09951 0.0002525 8.80 0.929
3rd 20391 472.7 0.05347 0.0001131 12.54 0.800

U1 1st 114270 206.9 0.35354 0.0017087 3.80 -
2nd 55221 291.5 0.18108 0.0006211 5.93 -
3rd 45784 302.7 0.15494 0.0005118 6.45 -

U2 1st 113480 211.1 0.33018 0.0015640 3.95 -
2nd Set 2nd 57882 281.9 0.17314 0.0006142 5.95 -

Jacksonville 3rd 53273 293.8 0.18836 0.0006411 5.84 -
Airport T1 1st 275430 145.6 0.60354 0.0041454 2.57 -

2nd 69099 258.3 0.24572 0.0009513 4.91 -
3rd 71689 279.5 0.22194 0.0007940 5.32 -

T2 1st 352760 127.2 0.78138 0.0061419 2.16 -
2nd 71116 253.0 0.24968 0.0009869 4.83 -
3rd 71191 258.4 0.24542 0.0009496 4.92 -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer
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Table A-13. Recovered Binder Properties for the Lufkin BUS 59 Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U3 1st 159280 208.5 0.30096 0.0014437 4.09 -
1st Set 2nd 261990 178.9 0.47496 0.0026552 3.13 -
Lufkin 3rd - - - - - -
BUS 59 T3 1st 396920 119.5 0.83934 0.0070233 2.04 -

2nd 127470 233.9 0.24554 0.0010497 4.70 -
3rd 241870 187.2 0.40656 0.0021715 3.42 -

U1 1st 767840 112.6 0.87468 0.0077687 1.95 -
2nd 164000 200.1 0.36488 0.0018234 3.69 -
3rd 288760 161.3 0.46630 0.0028905 3.01 -

U2 1st 1089600 96.2 0.87620 0.0091053 1.82 -
2nd Set 2nd 310130 159.1 0.52024 0.0032708 2.85 -
Lufkin 3rd 541820 125.8 0.75250 0.0059817 2.19 -
BUS 59 T1 1st 204350 182.8 0.35196 0.0019252 3.60 -

2nd 210750 183.1 0.36366 0.0019856 3.55 -
3rd 597050 123.5 0.76314 0.0061814 2.16 -

T2 1st 296510 158.1 0.50882 0.0032176 2.87 -
2nd 241000 173.1 0.45370 0.0026211 3.14 -
3rd 396470 142.8 0.62634 0.0043876 2.51 -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer

 
 

 

Table A-14. Recovered Binder Properties for the Odessa SH 149 Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st 59280 282.9 0.18842 0.0006659 5.75 -
2nd 35333 337.8 0.13264 0.0003927 7.25 -
3rd 59228 256.3 0.26510 0.0010345 4.73 -

U2 1st 38470 344.2 0.11294 0.0003281 7.85 -
2nd 46071 295.9 0.17214 0.0005818 6.10 -

Odessa 3rd 52603 265.2 0.24654 0.0009297 4.96 -
SH 149 T1 1st 49228 310.9 0.15010 0.0004828 6.62 -

2nd 42024 316.5 0.14068 0.0004445 6.87 -
3rd 133420 174.8 0.47526 0.0027182 3.09 -

T2 1st 61504 284.4 0.18676 0.0006567 5.78 -
2nd 34323 340.9 0.10790 0.0003165 7.97 -
3rd 83301 220.7 0.31088 0.0014086 4.13 -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer
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Table A-15. Recovered Binder Properties for the Odessa SH 349 Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st 13634 517.8 0.02292 0.0000443 18.94 -
2nd 116640 198.7 0.44624 0.0022462 3.37 -
3rd 134760 179.8 0.48686 0.0027075 3.10 -

U2 1st 19724 445.6 0.03742 0.0000840 14.29 -
2nd 293770 124.7 0.86702 0.0069535 2.05 -

Odessa 3rd 184210 162.0 0.51488 0.0031785 2.89 -
SH 349 T1 1st 36527 361.9 0.10314 0.0002850 8.35 -

2nd 51192 285.4 0.22170 0.0007767 5.37 -
3rd 46099 304.5 0.16690 0.0005481 6.26 -

T2 1st 17991 476.7 0.03113 0.0000653 15.96 -
2nd 93448 218.0 0.35120 0.0016108 3.90 -
3rd 56594 278.1 0.23078 0.0008298 5.22 -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer

 
 

 

Table A-16. Recovered Binder Properties for the Pleasanton Airport Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U3 1st 321790 165.5 0.42332 0.0025577 3.18 1.203
1st Set 2nd 40917 329.7 0.07858 0.0002383 9.03 0.805

Pleasanton 3rd 18239 430.0 0.03333 0.0000775 14.81 0.645
Airport T3 1st 2051100 76.3 0.91082 0.0119345 1.61 1.366

2nd 155790 211.8 0.21972 0.0010374 4.73 0.990
3rd 124980 219.0 0.22292 0.0010180 4.77 0.957

U1 1st - - - - - -
2nd - - - - - -
3rd - - - - - -

U2 1st - - - - - -
2nd Set 2nd - - - - - -

Pleasanton 3rd - - - - - -
Airport T1 1st 1055800 108.8 0.73324 0.0067367 2.08 -

2nd 176090 200.3 0.26320 0.0013143 4.26 -
3rd 128100 215.1 0.21536 0.0010014 4.80 -

T2 1st 1356700 98.4 0.76246 0.0077513 1.95 -
2nd 156370 203.1 0.24982 0.0012302 4.39 -
3rd 135670 210.6 0.21524 0.0010218 4.76 -

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s

Replicate layer
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Table A-17. Recovered Binder Properties for the Tyler US 79 Cores a 
 η* η'/G' G' G'/(η'/G') Calculated Carbonyl

(poise) (s) (MPa) (MPa/s) Ductility Area
@ 60 °C @ 15 °C @ 15 °C @ 15 °C (cm) -
0.1 rad/s 0.005 rad/s 0.005 rad/s 0.005 rad/s - -

U1 1st 2008400 116.9 0.64078 0.0054820 2.27 -
2nd 492840 189.0 0.25632 0.0013563 4.20 -
3rd 440750 197.8 0.22548 0.0011398 4.54 -

U2 1st 2592600 103.2 0.85716 0.0083050 1.89 -
2nd 534150 188.2 0.27072 0.0014384 4.10 -

Tyler 3rd 428190 200.9 0.19908 0.0009908 4.82 -
US 79 T1 1st 2590800 99.6 0.81124 0.0081409 1.91 -

2nd 568700 181.5 0.28150 0.0015506 3.96 -
3rd 553310 181.7 0.28272 0.0015562 3.96 -

T2 1st 1981400 114.7 0.69816 0.0060855 2.17 -
2nd 529270 184.7 0.25966 0.0014061 4.14 -
3rd 461200 187.0 0.21538 0.0011517 4.52 -

Replicate layer

a η' and G' are measured at 44.7 °C, 10 rad/s and converted by TTSP to 15 °C, 0.005 rad/s  
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APPENDIX B 

VISCOSITY MASTER CURVES OF RECOVERED ASPHALT BINDERS  

FROM CHAPTER II 
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Figure B-1. Complex Viscosity Master Curves 

Abilene SH 36 L1 T3, Abilene SH 36 L2 U3 and T3 
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Figure B-2. Complex Viscosity Master Curves 2nd Set  

Abilene SH 36 L1 U1, U2, T1, and T2 
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Figure B-3. Complex Viscosity Master Curves 2nd Set  

Abilene SH 36 L2 U1, U2, T1, and T2 
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Figure B-4. Complex Viscosity Master Curves 

Abilene SH 36 R1 U3 and T3, Abilene SH 36 R2 T2 
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Figure B-5. Complex Viscosity Master Curves 2nd Set  

Abilene SH 36 R1 U1, U2, T1, and T2 
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Figure B-6. Complex Viscosity Master Curves 2nd Set  

Abilene SH 36 R2 U1, U2, T1, and T2 
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Figure B-7. Complex Viscosity Master Curves 

Atlanta IH 20 CM U1, U2, T1, and T2 
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Figure B-8. Complex Viscosity Master Curves 

Atlanta IH 20 DG U1, U2, T1, and T2 
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Figure B-9. Complex Viscosity Master Curves 

Atlanta IH 20 SP U1, U2, T1, and T2 
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Figure B-10. Complex Viscosity Master Curves 

Atlanta US 67 U1, U2, T1, and T2 
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Figure B-11. Complex Viscosity Master Curves 

Carrizo Springs Airport U3 and T3 
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Figure B-12. Complex Viscosity Master Curves 2nd Set  

Carrizo Springs Airport U1, U2, T1, and T2 
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Figure B-13. Complex Viscosity Master Curves 

Fort Worth FM 4 (2000) U3 and T3 
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Figure B-14. Complex Viscosity Master Curves 2nd Set  

Fort Worth FM 4 (2000) U1, U2, T1, and T2 
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Figure B-15. Complex Viscosity Master Curves 

Fort Worth FM 4 (2003) U3 and T3 
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Figure B-16. Complex Viscosity Master Curves 2nd Set  

Fort Worth FM 4 (2003) U1, U2, T1, and T2 
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Figure B-17. Complex Viscosity Master Curves 

Georgetown Airport (1989) U3 and T3 

 

104

105

106

107

10-2 10-1 100 101 102

2G89 U1 1st
2G89 U1 2nd
2G89 U1 3rd
2G89 U2 1st
2G89 U2 2nd
2G89 U2 3rd
2G89 T1 1st
2G89 T1 2nd
2G89 T1 3rd
2G89 T2 1st
2G89 T2 2nd
2G89 T2 3rd

η
* (

Po
is

e)
 

Reduced Angular Frequency (rad/s)

(Reference Temperature: 60 oC)

 
 

Figure B-18. Complex Viscosity Master Curves 2nd Set  

Georgetown Airport (1989) U1, U2, T1, and T2 
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Figure B-19. Complex Viscosity Master Curves 

Georgetown Airport (1995) U3 and T3 
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Figure B-20. Complex Viscosity Master Curves 2nd Set  

Georgetown Airport (1995) U1, U2, T1, T2, T1*, and T2* 
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Figure B-21. Complex Viscosity Master Curves 

Jacksonville Airport U3 and T3 
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Figure B-22. Complex Viscosity Master Curves 2nd Set  

Jacksonville Airport U1, U2, T1, and T2 
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Figure B-23. Complex Viscosity Master Curves 

Lufkin BUS 59 U3 and T3 
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Figure B-24. Complex Viscosity Master Curves 2nd Set  

Lufkin BUS 59 U1, U2, T1, and T2 
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Figure B-25. Complex Viscosity Master Curves 

Odessa SH 149 U1, U2, T1, and T2 
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Figure B-26. Complex Viscosity Master Curves 

Odessa SH 349 U1, U2, T1, and T2 
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Figure B-27. Complex Viscosity Master Curves 

Pleasanton Airport U3 and T3 
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Figure B-28. Complex Viscosity Master Curves 2nd Set  

Pleasanton Airport T1 and T2 
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Figure B-29. Complex Viscosity Master Curves 

Tyler US 79 U1, U2, T1, and T2 
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APPENDIX C 

ACCESSIBLE AIR VOIDS DATA COMPARISON BY LAYERS  

AND ACCESSIBLE/TOTAL AIR VOIDS DATA COMPARISON  

BY TEST SITES FROM CHAPTER II 
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Figure C-1. Abilene SH 36 L Series Accessible Air Void Comparison by Layers 
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Figure C-2. Abilene SH 36 R Series Accessible Air Void Comparison by Layers 
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Figure C-3. Atlanta IH 20 CM and DG Accessible Air Void Comparison by Layers 
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Figure C-4. Atlanta IH 20 SP and Atlanta US 67 Accessible Air Void  

Comparison by Layers 
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Figure C-5. Carrizo Springs Airport and Jacksonville Airport 

Accessible Air Void Comparison by Layers 
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Comparison by Layers 
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Figure C-10a. Accessible Air Void of 1st and 2nd Set Abilene SH 36 L1, % 

 

 

 
Figure C-10b. Total Air Void of 1st and 2nd Set Abilene SH 36 L1, % 
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Figure C-11a. Accessible Air Void of 2nd Set Abilene SH 36 L2, % 

 

 

 
Figure C-11b. Total Air Void of and 2nd Set Abilene SH 36 L2, % 
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Figure C-12a. Accessible Air Void of 1st and 2nd Set Abilene SH 36 R1, % 

 

 

 
Figure C-12b. Total Air Void of 1st and 2nd Set Abilene SH 36 R1, % 
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Figure C-13a. Accessible Air Void of 2nd Set Abilene SH 36 R2, % 

 

 

 
Figure C-13b. Total Air Void of 2nd Set Abilene SH 36 R2, % 
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Figure C-14a. Accessible Air Void of Atlanta IH 20 CM, % 

 

 

 
Figure C-14b Total Air Void of Atlanta IH 20 CM, % 
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Figure C-15a. Accessible Air Void of Atlanta IH 20 DG, % 

 

 

 
Figure C-15b. Total Air Void of Atlanta IH 20 DG, % 
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Figure C-16a. Accessible Air Void of Atlanta IH 20 SP, % 

 

 

 
Figure C-16b. Total Air Void of Atlanta IH 20 SP, % 

 

 

0

5

10

15

20

25

- - AT SP U1 AT SP U2 AT SP T1 AT SP T2 

SSD

Corelok 

N/A N/A

0

5

10

15

20

25

- - AT SP U1 AT SP U2 AT SP T1 AT SP T2 

SSD

Corelok 

N/A N/A



172 
 

 

 
Figure C-17a. Accessible Air Void of Atlanta US 67, % 

 

 

 
Figure C-17b. Total Air Void of Atlanta US 67, % 
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Figure C-18a. Accessible Air Void of 1st and 2nd Set Carrizo Springs Airport, % 

 

 

 
Figure C-18b. Total Air Void of 1st and 2nd Set Carrizo Springs Airport, % 
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Figure C-19a. Accessible Air Void of 1st and 2nd Set Fort Worth FM 4 (2000), % 

 

 

 
Figure C-19b. Total Air Void of 1st and 2nd Set Fort Worth FM 4 (2000), % 
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Figure C-20a. Accessible Air Void of 1st and 2nd Set Fort Worth FM 4 (2003), % 

 

 

 
Figure C-20b. Total Air Void of 1st and 2nd Set Fort Worth FM 4 (2003), % 
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Figure C-21a. Accessible Air Void of 1st and 2nd Set Georgetown Airport (1989), % 

 

 

 
Figure C-21b. Total Air Void of 1st and 2nd Set Georgetown Airport (1989), % 

 

 

 

0 

5 

10 

15 

20 

25 

GEO 89 U3 GEO 89 T3 2GEO 89 U1 2GEO 89 U2 2GEO 89 T1 2GEO 89 T2

SSD

Corelok 

0 

5 

10 

15 

20 

25 

GEO 89 U3 GEO 89 T3 2GEO 89 U1 2GEO 89 U2 2GEO 89 T1 2GEO 89 T2

SSD

Corelok 



177 
 

 

 
Figure C-22a. Accessible Air Void of 1st and 2nd Set Georgetown Airport (1995), % 

 

 

 
Figure C-22b. Total Air Void of 1st and 2nd Set Georgetown Airport (1995), % 
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Figure C-23a. Accessible Air Void of 1st and 2nd Set Jacksonville Airport, % 

 

 

 
Figure C-23b. Total Air Void of 1st and 2nd Set Jacksonville Airport, % 
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Figure C-24a. Accessible Air Void of 2nd Set Lufkin BUS 59, % 

 

 

 
Figure C-24b. Total Air Void of 2nd Set Lufkin BUS 59, % 
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Figure C-25a. Accessible Air Void of Odessa SH 149, % 

 

 

 
Figure C-25b. Total Air Void of Odessa SH 149, % 
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Figure C-26a. Accessible Air Void of Odessa SH 349, % 

 

 

 
Figure C-26b. Total Air Void of Odessa SH 349, % 
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Figure C-27a. Accessible Air Void of 1st and 2nd Set Pleasanton Airport, % 

 

 

 
Figure C-27b. Total Air Void of 1st and 2nd Set Pleasanton Airport, % 

 

 

0

2

4

6

8

10

12

14

16

PLE U3 PLE T3 2PLE U1 2PLE U2 2PLE T1 2PLE T2

SSD

Corelok 

N/A N/A

0

2

4

6

8

10

12

14

16

PLE U3 PLE T3 2PLE U1 2PLE U2 2PLE T1 2PLE T2

SSD

Corelok 

N/A N/A



183 
 

 

 
Figure C-28a. Accessible Air Void of Tyler US 79, % 

 

 

 
Figure C-28b. Total Air Void of Tyler US 79, % 
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APPENDIX D 

BINDER CONTENT OF CORE SAMPLES FROM CHAPTER II 
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Figure D-2. Binder Content of 1st and 2nd Set Abilene SH 36 L1, % 
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Figure D-3. Binder Content of 1st and 2nd Set Abilene SH 36 L2, % 
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Figure D-4. Binder Content of 1st and 2nd Set Abilene SH 36 R1, % 
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Figure D-5. Binder Content of 1st and 2nd Set Abilene SH 36 R2, % 
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Figure D-6. Binder Content of Atlanta IH 20 CM, % 
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Figure D-7. Binder Content of Atlanta IH 20 DG, % 
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Figure D-8. Binder Content of Atlanta IH 20 SP, % 
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Figure D-9. Binder Content of Atlanta IH 20 67, % 
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Figure D-10. Binder Content of 1st and 2nd Set Carrizo Springs Airport, % 
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Figure D-11. Binder Content of 1st and 2nd Set Fort Worth FM 4 (2000), % 
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Figure D-12. Binder Content of 1st and 2nd Set Fort Worth FM 4 (2003), % 
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Figure D-13. Binder Content of 1st and 2nd Set Georgetown Airport (1989), % 
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Figure D-14. Binder Content of 1st and 2nd Set Georgetown Airport (1995), % 
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Figure D-15. Binder Content of 1st and 2nd Set Jacksonville Airport, % 
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Figure D-16. Binder Content of 1st and 2nd Set Lufkin BUS 59, % 
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Figure D-17. Binder Content of Odessa SH 149, % 
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Figure D-18. Binder Content of Odessa SH 349, % 
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Figure D-19. Binder Content of 1st and 2nd Set Pleasanton Airport, % 
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Figure D-20. Binder Content of Tyler US 79, % 
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APPENDIX E 

RESULTS FROM X-RAY CT SCAN FROM CHAPTER III: 

AVERAGE AIR VOID RADIUS, NO-FLUX BOUNDARY RADIUS,  

AND AVERAGE DISTANCE BETWEEN TWO ADJACENT AIR VOIDS  

OF EACH X-RAY CT SCAN LAYER  
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Figure E-1. Results from X-Ray CT Scan for US 259 Core Sample  

(FMFC Core 1-3): Average Air Void Radius, No-Flux Boundary Radius, and  

Average Distance between Two Adjacent Air Voids of Each X-Ray CT Scan Layer 
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Figure E-2. Results from X-Ray CT Scan for US 259 Core Sample  

(FMFC Core 1-5): Average Air Void Radius, No-Flux Boundary Radius, and  

Average Distance between Two Adjacent Air Voids of Each X-Ray CT Scan Layer 
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Figure E-3. Results from X-Ray CT Scan for US 259 Core Sample  

(FMFC Core 1-17): Average Air Void Radius, No-Flux Boundary Radius, and  

Average Distance between Two Adjacent Air Voids of Each X-Ray CT Scan Layer 
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Figure E-4. Results from X-Ray CT Scan for US 259 Core Sample  

(FMFC Core 1-20): Average Air Void Radius, No-Flux Boundary Radius, and  

Average Distance between Two Adjacent Air Voids of Each X-Ray CT Scan Layer 
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Figure E-5. Results from X-Ray CT Scan for US 59 Core Sample  

(LMLC Core 1-2): Average Air Void Radius, No-Flux Boundary Radius, and  

Average Distance between Two Adjacent Air Voids of Each X-Ray CT Scan Layer 
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Figure E-6. Results from X-Ray CT Scan for US 59 Core Sample  

(LMLC Core 1-3): Average Air Void Radius, No-Flux Boundary Radius, and  

Average Distance between Two Adjacent Air Voids of Each X-Ray CT Scan Layer 
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Figure E-7. Results from X-Ray CT Scan for US 59 Core Sample  

(LMLC Core 2-1): Average Air Void Radius, No-Flux Boundary Radius, and  

Average Distance between Two Adjacent Air Voids of Each X-Ray CT Scan Layer 
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Figure E-8. Results from X-Ray CT Scan for US 59 Core Sample  

(LMLC Core 2-2): Average Air Void Radius, No-Flux Boundary Radius, and  

Average Distance between Two Adjacent Air Voids of Each X-Ray CT Scan Layer 
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APPENDIX F 

RESULTS FROM INTEGRATED ASPHALT OXIDATION MODEL  

IN PAVEMENT WITH THE PAVEMENT TEMPERATURE PREDICTION 

MODEL FROM CHAPTER VI: 

CALCULATED CARBONYL AREA GROWTH 

AT DEPTHS OF 20 MM, 80 MM, AND 160 MM OF PAVEMENTS IN THE 

STUDY FOR ONE-YEAR AND TEN-YEAR PERIOD 
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Figure F-1. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Arizona (1 Year Period) 
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Figure F-2. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Minnesota (1 Year Period) 
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Figure F-3. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Montana (1 Year Period) 
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Figure F-4. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in New York (1 Year Period) 
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Figure F-5. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Amarillo, TX (1 Year Period) 
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Figure F-6. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Amarillo, TX (10 Year Period) 
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Figure F-7. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Bryan, TX (1 Year Period) 
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Figure F-8. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Bryan, TX (10 Year Period) 
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Figure F-9. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Dallas, TX (1 Year Period) 
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Figure F-10. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Dallas, TX (10 Year Period) 
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Figure F-11. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in El Paso, TX (1 Year Period) 
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Figure F-12. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in El Paso, TX (10 Year Period) 
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Figure F-13. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Hidalgo, TX (1 Year Period) 
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Figure F-14. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Hidalgo, TX (10 Year Period) 
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Figure F-15. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Kingsville, TX (1 Year Period) 
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Figure F-16. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Kingsville, TX (10 Year Period) 
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Figure F-17. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Lufkin, TX (1 Year Period) 
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Figure F-18. Calculated Carbonyl Area from Integrated Binder Oxidation Model 

at Various Depths of Pavement in Lufkin, TX (10 Year Period) 
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