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ABSTRACT

Discretization and Approximation Methods for

Reinforcement Learning of Highly Reconfigurable Systems. (December 2009)

Amanda Kathryn Lampton, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. John Valasek

There are a number of techniques that are used to solve reinforcement learning

problems, but very few that have been developed for and tested on highly recon-

figurable systems cast as reinforcement learning problems. Reconfigurable systems

refers to a vehicle (air, ground, or water) or collection of vehicles that can change its

geometrical features, i.e. shape or formation, to perform tasks that the vehicle could

not otherwise accomplish. These systems tend to be optimized for several operating

conditions, and then controllers are designed to reconfigure the system from one oper-

ating condition to another. Q-learning, an unsupervised episodic learning technique

that solves the reinforcement learning problem, is an attractive control methodology

for reconfigurable systems. It has been successfully applied to a myriad of control

problems, and there are a number of variations that were developed to avoid or allevi-

ate some limitations in earlier version of this approach. This dissertation describes the

development of three modular enhancements to the Q-learning algorithm that solve

some of the unique problems that arise when working with this class of systems, such

as the complex interaction of reconfigurable parameters and computationally intensive

models of the systems. A multi-resolution state-space discretization method is devel-

oped that adaptively rediscretizes the state-space by progressively finer grids around

one or more distinct Regions Of Interest within the state or learning space. A genetic

algorithm that autonomously selects the basis functions to be used in the approxi-
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mation of the action-value function is applied periodically throughout the learning

process. Policy comparison is added to monitor the state of the policy encoded in the

action-value function to prevent unnecessary episodes at each level of discretization.

This approach is validated on several problems including an inverted pendulum, re-

configurable airfoil, and reconfigurable wing. Results show that the multi-resolution

state-space discretization method reduces the number of state-action pairs, often by

an order of magnitude, required to achieve a specific goal and the policy comparison

prevents unnecessary episodes once the policy has converged to a usable policy. Re-

sults also show that the genetic algorithm is a promising candidate for the selection

of basis functions for function approximation of the action-value function.
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CHAPTER I

INTRODUCTION

A. Introduction to the Class of Systems

A number of definitions can be applied to the term “highly reconfigurable systems”.

This term could refer to how a computer processes information or how a machine

such as a copier processes a print job. It could also refer to a system of coordinated

ground, air, and water vehicles that work together to achieve a mutual goal. The

all encompassing theme of these examples is that a highly reconfigurable system is

one that can efficiently perform a variety of tasks that it could not achieve without

reconfiguration.

A particular subclass, and the class of particular interest in this research, is

highly reconfigurable systems that are geometrically reconfigurable. This refers to a

vehicle (air, ground, or water) or collection of vehicles that can change its geometrical

features, i.e. shape or formation, to perform tasks that the vehicle could not otherwise

accomplish. In aerospace terms a morphing aircraft or a formation of aircraft is an

example of a highly reconfigurable system that can fly efficiently and well in any and

all flight phases by changing shape parameters. At present there are only a relatively

small number of physical realizations of this idea. This dissertation is addressed

to establishing needed learning and control methodologies that are a fundamental

enabler for reconfigurable systems.

Morphing aircraft have been of intense interest for engineers for many years.

Aircraft are usually designed for optimal performance at only a few flight conditions.

Thus, aircraft have particular purposes: fighter, bomber, general aviation, reconnais-

The journal model is IEEE Transactions on Automatic Control.
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sance, etc. Optimizing over an entire range of flight conditions would allow a single

aircraft to fill several of these rolls. A definition adopted here: morphing entails a

> 50% change in geometry and parameters. Early examples of “morphing” or vari-

able geometry aircraft include the Grumman F-14 Tomcat and the B-1 Lancer. Both

have swing wings that are designed to have good performance at both cruise and

supersonic flight when they are unswept and swept, respectively. Generally, previous

physical realizations of morphing designs only considered changing one parameter to

facilitate the aircraft flying in a particular condition.[1]

B. Literature Review

This research focuses on two main areas: reconfigurable air vehicles and discretization

methods for reinforcement learning.

1. Reconfigurable Air Vehicle Literature Review

The focus has shifted in recent years to morphing aircraft with large-scale (i.e. 50%

change in important geometric parameters) continuous shape changing rather than

the purely mechanical or swing joints as seen before. Such reconfigurable systems

provide a wealth of issues for researchers to investigate. Many of the broad areas

of concern are overviewed in References [1, 2, 3]. Reference [1] qualitatively de-

scribes how each individual wing geometric parameter affects aircraft performance

and presents challenges in each aspect of morphing: optimal design configurations,

structures, actuation, aerodynamics, controls, propulsion, and the integration of sub-

systems. Jha et al. conclude that for a true multi-mission morphing aircraft, several

wing parameters need to be changed simultaneously. Reference [2] takes a slightly

different perspective and describes the need to outline mission requirements and ve-
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hicle capability assessments. Then morphing is brought in to determine how to meet

these requirements. A more pragmatic approach is to consider an affordability com-

parison between morphing and non-morphing aircraft.[3] Such a comparison shows

that the adaptive and multifunctional technologies a morphing aircraft would employ

has better affordability.

Developing mission requirements and effectiveness measures for this class of sys-

tem takes on new facets as compared to fixed geometry vehicles. The flexibility and

variability of the these systems means in effect that many different types of missions

can be accomplished by one type of vehicle. Identifying what kinds of missions would

mesh well and how to coordinate them is of interest. A scenario based evaluation

model can be used to compare a fleet of morphing aircraft with a fleet that has many

different aircraft to determine optimal missions for such systems.[4, 5] Other design

methods have been used to develop missions for this class of systems, such as the

affinity method, brainstorming, weight objectives, and quality function deployment,

and has been shown to be effective.[6] Evaluating such missions is of interest to the

authors of References [7, 8, 9]. Methods ranging from probability measures of mission

success[7], creating “surrogate models” to compare efficiency, cost, and capability of

a single aircraft or a fleet[8], or just direct comparison between morphing and non-

morphing vehicles for a particular mission[9].

a. Design of Highly Reconfigurable Systems

Designing a highly reconfigurable system to accomplish many disparate mission re-

quirements becomes a difficult task in that no longer is the designer attempting to

optimize one phase of flight and perform only adequately during other phases. The

geometric parameters that the designer wishes to change during operation must be

determined, and the vehicle must essentially be redesigned for every flight phase that
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must be optimized. This problem becomes a multiobjective optimization problem

with the added challenge of introducing reconfigurable shape parameters. Several

different methods have been developed to address these design challenges, a few of

which are described in References [10, 11, 12, 13]. Of course, it is one thing to have

optimal geometry for a range of flight conditions and another to have an aircraft

design capable of achieving the desired geometry changes. Thus the ultimate design

challenge is much more complicated. We must invent mechanisms of reconfiguration,

including actuation, that can achieve the geometry changes and satisfy other re-

quirements on bearing associated loads, maintain stability, etc. Obviously, achieving

geometric reconfigurability almost always comes with a mass penalty. It is important

to recognize the united role that mechanism design plays in geometrically morphing

systems.

Integral to the design of this class of systems is sizing. Morphing is treated as

an independent variable that must be optimized during aircraft sizing in References

[14, 15]. These references cast the performance, size, and weight of the aircraft as

functions of morphing and attempt to answer the question of what geometric fea-

tures should be changed and by how much. One study developed a sizing approach

through the use of continuous optimization (i.e. using calculus-of-variations-based

optimization methods).[16] To be physically meaningful, conceptual sizing optimiza-

tion should consider the dependence of size and weight of the wing on the range of

reconfigurability. References [17, 18] develop wing weight equations to aid in aircraft

sizing by using response surface methods and emphasizing the actuating mechanism,

respectively. The authors use finite element-based optimization methods for morphing

wings to predict wing weight.

There are many recent examples of vehicles in this class of systems and how they

will effect the aircraft industry. Described are only a handful that should give an idea
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of how far reaching these can be. Hong et al. develop an unmanned combat aerial

vehicle that use shape changing to meet the requirements of a low-speed, high-altitude

loiter and a supersonic strike capable aircraft.[19] The designed aircraft changes wing

area by 200%, sweep angle from 20◦ to 70◦, and aspect ratio from 3 to 7. The

Daedalon, a design baselined for Mars, transforms itself from a blunt-body entry

spacecraft into an airplane through a form of wing morphing to allow for a flexible

architecture for unmanned planetary exploration.[20] References [21, 22] consider the

impact of incorporating this class of systems into current commercial aircraft service.

b. Wing Reconfiguration

References [23, 24, 25, 26, 27, 28] focus specifically on the design and optimization of

morphing wings, the component to most likely be changed in aircraft that are highly

reconfigurable. Nangia and Palmer develop a wing design method that can design

throughout the flight envelope and incorporate such parameters as wing sweep, area,

and aspect ratio.[23] Range and endurance performance is also addressed. Vale et

al. use simple aerodynamics and a sequential quadratic programming optimization

algorithm to optimize the aerodynamics of a morphing wing.[24] References [25, 26]

describe the design, development, and testing of a pneumatic telescopic wing to change

aspect ratio. The wing is tested for lift, drag, and lift-to-drag ratio at various con-

figurations. Cadogan et al. describe the design of an inflatable wing and actuation

schemes to aid in developing compact package unmanned aerial vehicles (UAVs).

In addition to the time and parameter varying forces and inertias, reconfiguring

the wing presents the added complication of changing aeroelastic characteristics. Ref-

erence [29] investigates the migration of the wing flutter boundary for a cantilevered

wing undergoing changes in span. Bae et al. also consider a variable span wing.[30]

They determine that deformation due to bending is much more significant than defor-
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mation due to twist and recommend that bending stiffness in morphable wings must

be carefully considered. Reference [31] seeks to develop a structural and aeroelastic

model suitable for investigating actuation concepts for a reconfigurable vehicle, and

Reference [32] investigates the applicability of existing aeroelastic simulation tech-

niques in the analysis of morphing aircraft design.

c. Structure of Reconfigurable Systems

The underlying structure of this class of systems is of particular interest. The question

of how one is to achieve reconfiguration often arises. Love et al. address this broad

concept in Reference [33] by highlighting that new actuator systems must be designed

to achieve reconfiguration and handle aircraft flight speed, maneuver load factor,

and actuator response. These provide sensitivities in structural weight, aeroelastic

load factor, and actuator flight load distributions. Reference [34] takes a similar

broad approach and seeks to develop an evaluation matrix that highlights structural

morphing concepts. The authors discuss several concepts, such as sliding plates,

articulated sections, etc.

Several previous studies have considered specific structures and mechanisms de-

signed to achieve reconfiguration. Reference [35] describes the mechanism to morph

a hyper-elliptic camber span wing. The mechanism is essentially a scissor linkage in

which an input is applied to the first segment and the rest of the segments move in

reaction. Reference [36] uses a series of cables, rather than a scissor linkage, to form

a tendon-actuated compliant truss to achieve desired shapes. Obviously, in addition

to enabling the range of geometric variability, this mechanism and the overall struc-

ture must remain capable of withstanding structural stability over the entirety of the

configuration space. Another method seeks to minimize energy input by creating an

airfoil-like active bistable twisting structure that changes shapes by a snap-through
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action.[37] Reference [38] focuses on means to morph, and specifically considers the

materials that should be used. The authors investigate such materials as shape mem-

ory alloys and polymers, piezoelectric materials, and electro- and magneto-rheological

materials. References [39, 40] created a genetic algorithm that uses load path rep-

resentation to design the optimal internal structure of a reconfigurable vehicle. The

algorithm seeks to minimize the shape deviation between the deformed shape and the

desired target shape.

References [41, 42, 43] consider the issues of the effects of stiffness on control

power, the minimization of actuator and structural loads, and actuation power re-

quirements for morphing wings, respectively. Wing structural stiffness obviously af-

fects the energy required to deform the wing. Care must be taken to account for

avoiding flutter and still retaining the ability to deform the structure.[41] Changing

from one configuration to another is a delicate matter as the forces on the surface

change in response. Minimizing these forces and the subsequent loads on the actuators

and internal structure is the focus of Reference [42].

Two successful applications of shape memory alloys used to achieve structural

morphing are Boeing’s variable geometry chevron and a rotor blade twist control

system by Bushnell et al. The chevron change shape at takeoff, approach, and cruise

to meet acoustic test requirements.[44] The rotor blades change twist to achieve better

lift characteristics during flight.[45]

d. Performance, Simulation, Control, and Testing of Highly Reconfigurable Systems

Introducing reconfiguration can greatly impact the performance of the vehicle in ques-

tion. Understanding and evaluating this impact can lead to better vehicle and mission

designs. Bowman et al. conduct a mathematical evaluation of bird morphing mech-

anisms. They consider how variable lift-to-drag ratios and specific fuel consumption
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can affect performance on maneuvers such as turn radius. Reference [46] describes

how performance can be minimized or maximized by varying the planform variables

of a wing. Reference [47] poses the design of a wing as a multilevel, multiobjective

optimization problem with the competing performance objectives of maneuverability

and long range/endurance.

Simulation of this class of vehicles also presents new challenges. Changing the

geometry of a vehicle introduces terms not seen in rigid body equations of motions.

Additional terms may include parameter and/or time varying aerodynamic forces and

inertias. References [48, 49, 50, 51, 52, 53] describes various research investigating

simulation techniques for reconfigurable vehicle dynamics. Each tool considers chang-

ing such parameters as wing sweep, span, area, etc., and their effect on the dynamics

of the vehicle. Some even consider the challenge of using a combination of morphing

parameters for pitch, roll, and yaw control.[51, 52]

Controlling this class of vehicles on the macro scale was investigated in References

[54, 55, 56, 57]. Reich and Bowman mention using dynamic inversion and classical

proportional-integral-derivative (PID) controls in their simulations.[48, 50] Baldelli et

al. describe the modeling and control of an aeroelastic morphing vehicle in which the

controller uses a set of inner-loop gains, designed via classical techniques, to provide

stability and a linear parameter-varying outer-loop controller for robust stability and

performance for the time-varying dynamics. Whitmer and Kelkar design an H∞ con-

troller to achieve robustness with respect to multiplicative and parametric uncertainty

for a morphing wing, commanded to track lift and roll moments.[55] Ataei-Esfahani

and Wang design a probabilistic robust explicit-model-following controller to assure

the stability of a morphing aircraft model subject to uncertain actuator failure.[56]

Tao et al. also consider the case of uncertain actuator failures in morphing aircraft.

Their approach uses an adaptive compensation scheme to achieve desired closed-loop
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stability and tracking.

Implicit in the approach of many researching this class of vehicles is using morph-

ing to achieve effective actuation that accomplishes what control effectors do in rigid

body vehicles. For example, Sanders et al. compare the roll performance between

a conventionally controlled wing and a wing with morphing or conformal control

surfaces.[58] By using twist and deforming trailing-edge control surfaces with the aid

of smart materials, conformal surfaces can be used for aerodynamic control.[58] Ref-

erence [59] investigates the energy required to use morphing for aerodynamic control

as compared to conventionally controlled wings. The authors’ results indicate that

morphing aircraft can outperform conventional aircraft in terms of required flight

control energy.[59]

The next step in the development of any new vehicle technology is to test the

vehicle in a controlled environment. In the case of aircraft, this means wind tunnel

testing of part or all of the designed morphing aircraft. References [60, 61, 62, 63]

describe the development of their respective wind tunnel models and the results of the

testing. Reference [60] continues the development of the pneumatic telescopic spar

concept of Blondeau et al. Guiler et al. seek to show that morphing can be used to

improve the flight characteristics of an aircraft with unusual configuration; a tailless

aircraft in this case.[62] Of particular interest is the work by Boria et al. The authors

set up a hardware-in-the-loop optimization scheme that uses a genetic algorithm to

optimize the airfoil of the wing as it sweeps through angle-of-attack.[63]

e. Morphing Airfoil

The problem of a morphing airfoil in particular was investigated by Hubbard in Ref-

erence [64]. Hubbard focuses on the physical shape change of an airfoil modeled by a

space/time transform parameterization. The space/time parameterization results in
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a spatially decoupled system with Fourier coefficients as inputs and orthogonal basis

shapes as outputs.[64] Reference [65], however, use postbuckled spinal structures for

manipulating the shape of the airfoil with the goal of achieving certain aerodynamic

performances with only a minimal amount applied load needed to change airfoil shape.

References [66, 67, 68, 69] all seek to optimize a reconfigurable airfoil by either op-

timizing the static aerodynamic shape for various flight phases or by optimizing the

shape change itself with respect to actuation energy and/or aerodynamic drag.

f. Biologically Inspired Morphing Aircraft

Biologically inspired morphing is of great interest in the realm of a particular sub-

class of this class of systems: micro air vehicles (MAVs). Due to their small size and

membrane lifting surfaces, they often do not have conventional control surfaces, es-

pecially on the wing. Thus other means of control must be investigated. Roll control

is of particular interest. In lieu of ailerons, torque rods attached to the membrane

of the MAV wing as well as possible other aeroservoelastics controls cause the wing

to either twist, curl, or both. Flight tests show that wing twist and/or curl provide

an excellent strategy to command roll maneuvers.[70, 71] The torque rods used to

achieve wing twist are further optimized in Reference [72] using genetic algorithms in

which a vortex lattice method is used to determine fitness. The flight dynamics of the

test vehicle show that turns and spins can also be repeatedly performed and that sig-

nificant control authority is also provided for lateral dynamics.[71, 73] An additional

degree of morphing in the form of wing sweep is added to the wing dihedral morphing

parameter in Reference [74]. This extra degree is shown to have considerable effect

on the handling qualities and stability of the vehicle.[74] Morphing just the dihedral

angles is also shown to have an effect on flight performance metrics such as climb

rate, glide angle, and stall characteristics.[75] The effect of dihedral morphing on per-
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formance metrics and dynamics is further investigated using a vortex lattice method

to computationally determine the aerodynamics of the MAV.[76] The optimal wing

geometries are found to converge to biological solutions in several instances.[76] The

dynamics are also examined further using a vortex lattice method for the case of wing

sweep morphing. The MAV is shown to have enhanced turning capabilities with this

morphing parameter as well as enhanced crosswind rejection.[77]

Other concerns for biologically inspired morphing in micro air vehicles are the

structural effects of deformation and the control of the vehicle. The structural ef-

fects for the vehicle discussed in the previous paragraph are outlined in Reference

[78]. The authors examine the relationship between wing flexibility and performance

and demonstrate the wing under loading in a wind tunnel in association with lift

and drag characteristics.[78] Controllers for MAVs, on the other hand, are discussed

in References [79] and [80]. Reference [79] considers the inherent nonlinearity in

the closed-loop equations of motion of a morphing vehicle. Focusing on disturbance

rejection, the authors develop a proportional feedback controller and a nonlinear Lya-

punov controller and apply them to several types of morphing.[79] A controller for

the MAV discussed above is developed in Reference [80]. The authors consider the

case of variable wing dihedral in which they use a vortex lattice method to calculate

the aerodynamics.[80] Desired dynamics for each mission phase are chosen and H∞

model-following controllers are developed for each.[80] Simulations show favorable

results in maintaining the control and stability of the vehicle.[80]

2. Reinforcement Learning Literature Review

The majority of the references listed above only address two of the three essential

functionalities of this class of systems: when to reconfigure and how to reconfigure.

Learning to reconfigure, however, is only occasionally discussed. Learning to reconfig-
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ure entails the actual physical change from one shape to another. Optimization and

cost functions have been used to determine how to accomplish reconfiguration, but

these actuation schemes are still in the early stages of understanding. A candidate ap-

proach for learning to reconfigure is just that...learning, more specifically to use some

algorithm for machine learning. For this class of systems, reinforcement learning in

particular can be used to learn both good combinations of the geometric parameters

and to change from one set to another. Reinforcement learning is a form of machine

learning that gathers information and learns by interacting with an environment.[81]

This eliminates the need to find a single or a handful of vehicle configurations and

designing control laws to change from one to another.

Reinforcement learning and related techniques have been topics of interest as well.

New algorithms, additions to existing algorithms, and modifications to algorithms

are constantly being developed. To understand the contribution of the algorithm

developed in this dissertation, I will first overview the current state of knowledge.

a. Dynamic Programming

Closely related to reinforcement learning is dynamic programming, which in this

context is a method of solving problems with an overlapping structure or as a set

of subproblems. This approach involves a first step of splitting the problem into

the simplest possible subproblems, and then solving them step by step. The central

equation for this method is the dynamic programming equation or Bellman equation.

An incarnation of this equation is shown below in Eq. 1.1

max
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1) = V (x0) (1.1)

where V is the optimal value that can be obtained by maximizing this function subject

to the constraints, x0 is the initial situation, xt is the state at time t, xt+1 is the state
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at time t + 1, and β is the discount factor. This method of solving optimization

problems writes the value of a decision problem at a given point in time in terms

of a payoff from the initial situation and constraints and the value of the remaining

decision problem that results.

Bertsekas has done much work with dynamic programming over the years. Bert-

sekas has integrated dynamic programming with suboptimal control in the form of

rollout and model predictive control.[82] Distributed dynamic programming is an off-

shoot in which several processors participate in solving dynamic programming prob-

lems that Bertsekas has investigated.[83] Also, he developed separable dynamic pro-

gramming that solves problems in separate subsystems that are tied together by a

common constraint.[84] Differential dynamic programming and its discrete counter-

part, on the other hand, is used to determine the optimal control problem function

of a nonlinear system.[85, 86] These methods have been applied to such problems as

bang-bang control[85] and optimal orbit transfer[86].

Neuro-dynamic programming is yet another class of dynamic programming, but

this method is meant for control and sequential decision making under uncertainty.[87]

Bertsekas and Tsitsiklis describe the method in Reference [87] as a method that

“combines ideas from the fields of neural networks, artificial intelligence, cognitive

science, and approximation theory.” Similarly, References [88, 89] use approximate

dynamic programming to design neural network-based feedback controllers. Reference

[90] describes a method of shifting the approximate dynamic programming control

problem to a higher level such that the algorithm does not design controllers but

rather selects design from a cache of existing controllers.

Other areas in dynamic programming include developing value iteration and

Q-learning methods for the average cost dynamic programming problem.[91] Atke-

son et al. seek to find steady-state policies for control problems in Reference [92].
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The authors consider various research topics on approximate dynamic programming.

Reference [93] describes a particular application of direct heuristic dynamic program-

ming: a large power system stability control problem. This method is used to address

nonlinear coordinated control under uncertainty.

Another form of learning is locally weighted learning. This type of learning

remembers experiences explicitly. Predictions and generalizations are then performed

in real time by building a local model to answer any particular query. Reference [94]

describes how the authors use this form of learning on control tasks.

b. Iterative Learning Control

Iterative learning control (ILC) is an iterative approach to tracking control for repet-

itive processes. Reference [95] reports a complete analysis of the learning control

problem for linear, time-invariant (LTI) plants and controllers. The authors apply

ILC to several examples. Hatonen et al. consider the discrete-time case from the

algebraic point of view.[96] They also present a general convergence theory of ILC

systems. Reference [97] also considers the discrete-time case. The authors present a

stability analysis of ILC problems with interval uncertainty. Chien in Reference [98]

considers the challenge of applying ILC to nonlinear systems. This reference intro-

duces a new adaptive fuzzy iterative learning controller to deal with disparate control

tasks of nonlinear systems, state errors, and input disturbances. The fuzzy compo-

nent acts as an approximator to compensate for plant nonlinearity, while the robust

learning component acts on the input gain, input disturbance, and fuzzy approxima-

tion error. This method is a good example of useful additions and modifications to

an existing learning algorithm.
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c. Fuzzy Q-Learning

Another example of modifying or adding to a pre-existing learning algorithm is fuzzy

Q-learning. Q-learning is a reinforcement learning method that forms the core of

this dissertation and will be explained in more detail in subsequent sections. Fuzzy

Q-learning can be thought of in two ways. First, the goal can be to find the best set of

fuzzy rules and change the weights associate with those rules. This method essentially

develops a fuzzy inference system.[99, 100] The second method is to represent the

learning parameters associated with Q-learning and/or the states themselves as fuzzy

rules.[101, 102] This method better approximates continuous state-spaces as compared

to traditional Q-learning.

There are several successful applications of fuzzy Q-learning. Reference [103]

describes an agent learning to play soccer using fuzzy Q-learning. The authors show

that the agent learns good offensive behavior in the game. References [104, 105] use

an adaptation of fuzzy Q-learning aid performance when large disturbances and envi-

ronment variations are present. The authors apply this method to robot manipulators

and state that this controller outperformed other controllers.

d. Methods Related to Q-Learning

There are many related reinforcement learning topics and areas of research that do

not lend themselves to easy categorization. These references will be discussed in the

following several paragraphs. The first is Reference [106], which addresses the problem

of learning a policy in simulation that does not work in real-life. This phenomenon

is often due to inaccurate models of complex tasks on which the agent learns. This

reference presents a reinforcement learning algorithm that only needs an approximate

model that is then locally modified using real-life trials. Empirical results show good
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performance in the real system.

Reference [107] describes a method to stabilize or regulate a system using Lya-

punov design methods. The agent learns to control the system by switching between

basic controllers and learning what does and does not work for the given situation.

This reference is a good example of how reinforcement learning can be successfully

applied to higher level problems rather than learning the low level controller itself.

Tan et al. constructed a new method that learns a value function similar to

reinforcement learning, but it estimates it using a combined architecture of several

different methods, such as Sarsa and Q-learning.[108] Reference [109] also develops

such an ensemble method. The author seek to enhance performance by combining

action selection (the policy) of several different reinforcement learning algorithms.

The algorithms used are Q-learning, Sarsa, actor-critic, WV-learning, and actor-

critic learning automation. The policies are derived using several different ensemble

methods. Results show the ensemble methods outperform the single reinforcement

learning algorithms.

References [110, 111] are concerned with quantum Q-learning and quantum rein-

forcement learning, respectively. These methods use principles of quantum computing

to aid the learning process. Probabilistic methods are used in this approach to the

learning process. The states, actions, and success all have associated probabilities.

Results show that these methods perform well while maintaining a good balance of

exploration vs. exploitation (which will be discussed in more detail in later chapters).

e. Multiagent and Hierarchical Reinforcement Learning

Multiagent reinforcement learning is another topic of intense interest, and actually

of particular importance to this class of systems as eventually there will be a call

for coordinating a fleet of intelligent agents. Reference [112] surveys the state of the
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art in multiagent reinforcement learning. The authors outline concerns such as how

to formally define the goal, stability of agents’ learning dynamics, and adaptation to

behavior of other agents as they too learn. Reference [113] addresses some of these

issues by developing new algorithms that learn a parameterized representation of a

policy or value function. The agents can use this representation to determine “jointly

optimal actions” without the need to explicitly consider every possible action. In

contrast, Reference [114] presents a method in which one agent predicts the probabil-

ity of the other agents’ actions under a certain state and combines this with its own

Q-value (the agents learn via Q-learning) to choose its action policy.

Hierarchical reinforcement learning (HRL) is somewhat similar to dynamic pro-

gramming in that HRL seeks to split a complex learning problem into a hierarchy of

subtasks or subgoals that can be learned individually. Determining those subgoals

can prove to be a challenge. Reference [115] discusses an algorithm that combines

Q-learning and a locally weighted learning method to select behavioral primitives and

generate subgoals for the agent. Reference [116] identifies subgoals by partitioning

local state transition graphs. Reference [117] develops the theory of quad-Q-learning.

This method follows the “divide and conquer” mentality. Not strictly HRL, but the

general thought behind the method is similar. The algorithm treats state transi-

tions slightly differently than in traditional Q-learning. Rather than being in a state,

choosing an action, and transitioning to some new state, when an action is chosen in

quad-Q-learning either there is a reward and no transition or there is no reward and

four new states result. Each new state is treated as a new environment, and learning

commences in a similar fashion. Hierarchical partially observable Markov Decision

Processes (MDPs) are described by Theocharous and Mahadevan.[118]

MAXQ is a popular HRL method that decomposes a learning problem into a hier-

archy of subtasks to be learned using Q-learning. Thus it is a hierarchical Q-learning
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algorithm. The method is first developed by Dietterich in Reference [119]. This paper

defines the algorithm, proves convergence, and empirically shows that it learns faster

the Q-learning alone. This algorithm is further developed into a model-free learning

algorithm MAXQ-Q, which is also shown to learn faster than Q-learning.[120] Mehta

et al. develop an algorithm that works in conjunction with MAXQ. This algorithm

discovers MAXQ task hierarchies and subtasks by analyzing the relationships among

actions. References [121, 122, 123] also contain MAXQ in their frameworks. Ref-

erence [122] integrates MAXQ with genetic programming, which explores possible

hierarchies. Multiagent reinforcement learning and HRL are combined by Makar et

al. with promising results.[123]

There are, of course, many other forms of HRL. Kirchner applies a hierarchical

form of Q-learning to a six-legged walking machine.[124] Movement is split into the el-

ementary swing and stance movements of individual legs and the overall coordination

scheme to achieve forward movement. The highest layer uses these learned movements

to achieve goals in the environment. Even the elementary swing and stance movement

of the leg is split into four separate parts to reduce problem complexity. Reference

[125] uses hierarchical Q-learning for local robot navigation. Reference [126] describes

a different application of HRL in which Ghavamzadeh and Mahadevan develop a mul-

tiagent HRL algorithm that learns how to optimize necessary communication between

agents such that they coordinate movements to achieve goals. Reference [127] uses

HRL to represent behavior for efficient creative searches to mimic the evolution of

human creative behavior in intelligent systems.

f. Learning on a Continuous Domain

A common factor to many forms of reinforcement learning, whether base algorithm,

multiagent, or hierarchical, is that the state- or state-action space must often be
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discretized into a finite number of states or state-action pairs. Discretizing a con-

tinuous state problem can lead to its own set of issues, and as a result there is a

good amount of research focusing on developing methods to learn on a continuous

domain. Often some sort of function approximation occurs during learning. Badde-

ley addresses one of the issues that arises with using function approximation during

learning. The author states that often function approximation can disrupt what has

been learned previously through negative interference.[128] He proposes learning the

value function using a multilayer perceptron network, which is shown to improve

the speed of learning. Other authors apply such solutions as piecewise linear func-

tion approximation[129], linear function approximation of factored MDPs[130], and

advantage updating[131], which is use for reinforcement learning in continuous time.

Continuous learning methods have also been developed specifically for Q-learning

as well. Reference [132] develops a region-based reward assignment with convex clus-

tering of the region for Q-learning. The authors show that this allows robots to move

smoothly from any arbitrary state. Reference [133] approximates the action-value

function of Q-learning using regularization theory and radial basis functions to create

continuous valued states and actions. Szepesvari and Smart use the total expected

discounted cost and local function approximation to learn in continuous state spaces.

Examples of continuous state Q-learning applied to robot systems include learning a

biped gait using a spline based estimation algorithm with Q-learning[134], the region-

based reward structure for robot navigation[135], and calculated contribution values

to estimate a continuous action for a vision-guided robot[136].

A more general form of continuous learning method first emerged less than 15

years ago. This type of method bases a learning algorithm on the theory of linear

least-squares function approximation. Bradtke and Barto introduced two new tem-

poral difference (TD) algorithms based on this theory. These two are Least-Squares
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TD (LSTD) and Recursive Least-Squares TD (RLSTD).[137] Nedic extends upon

LSTD by showing convergence of LSTD(λ) with probability 1.[138] Bertsekas further

explores the LSTD algorithm and similar algorithms in Reference [139] Lagoudakis

and Parr take these methods a step forward by developing least-squares method for

Q-learning.[140] This method is called LSTD Q-learning (LSTDQ of LSQ). This uses

least-squares theory to approximate the action-value function Q (s, a), rather than

just the value function V (s), which allows for action selection without a model.

They also add policy iteration to LSTDQ to incrementally improve the policy. This

method is called Least-Squares Policy Iteration (LSPI). The authors successfully ap-

ply this algorithm to an inverted pendulum, balancing and riding a bicycle, two-player

zero-sum Markov games, and Tetris.[140, 141]

g. Applications of Machine Learning Algorithms

Q-learning and algorithms that solve reinforcement learning problems in general have

been applied to numerous problems and systems. Reddy uses Q-learning to detect

the presence of primary signals and for spectrum utilization.[142] Reference [143]

describes the use of Q-learning for traffic signal control to minimize delays. Vari-

ous reinforcement learning methods are also used to learn biped walking[144], robot

juggling[145], air hockey and a marble maze[146], control of power systems[147], and

engine torque and air-fuel ratio control[148], etc.

Machine learning has also been applied to several aerospace applications, though

not strictly a part of the class of systems discussed above. Reference [149] applies

reinforcement learning to the problem of control of an autonomous soaring aircraft.

Kampen et al. have success using forms of Adaptive Critic Designs to control a model

of the Lockheed Martin F-16 Fighting Falcon with changing plant dynamics.[150] Ref-

erence [151] describes the use of reinforcement learning to control Micro-Trailing Edge
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Effectors to suppress flutter. References [152, 153] apply forms of reinforcement learn-

ing to autonomous helicopter control with impressive success while Reference [154]

applies neural dynamic programming to a similar problem. Bertsekas et al. apply

Neuro-dynamic programming to missile defense and interceptor allocation. Rather

than control, Goel and Hajela use reinforcement learning for the complex aerody-

namic optimization problem of turbine airfoil design.[155] One application that could

nominally be considered a member of the class of systems in question is a flapping

MAV. Reinforcement learning is used for lift generation and shown to converge to a

flapping motion both in simulation[156] and in experiment[157].

h. Learning Applied to Morphing

The melding of morphing and learning, i.e. using machine learning to learn how to

change the shape of a reconfigurable vehicle, has been investigated several times in

the past in the form of Adaptive-Reinforcement Learning Control (A-RLC). Reference

[158] describes a methodology that combines Structured Adaptive Model Inversion

(SAMI) with Reinforcement Learning to address the optimal shape change of an entire

vehicle. The method learns the commands for two independent morphing parameters

that produce the optimal shape. The authors show that the methodology is capable

of learning the required shape and changing into it and accurately tracking some ref-

erence trajectory.[158] This methodology is further developed in Reference [159]. It

is extended to an “air vehicle” using Q-learning to learn the optimal shape change

policy. The authors show that the methodology is able to handle a hypothetical 3-D

smart aircraft that has two independent morphing parameters, tracking a specified

trajectory, and autonomously morphing over a set of shapes corresponding to flight

conditions along the trajectory.[159] Finally, the methodology is further improved

upon by applying Sequential Function Approximation to generalize the learning from
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previously experienced quantized states and actions to the continuous state-action

space.[160] The authors showed that the approximation scheme resulted in marked

improvements in the learning as opposed to the previously employed K-Nearest Neigh-

bor approach. All of these examples, however, only have two independent degrees-of-

freedom that must be learned. Even a small “real world” morphing problem will have

several interdependent degrees-of-freedom. Learning to manipulate more morphing

parameters creates a more complex learning problem.

C. Research Objectives/Motivation

Currently, reconfigurable systems are designed to perform well at a handful of operat-

ing conditions. For reconfigurable aircraft, these operating conditions are flight phases

or specific flight conditions. Controllers are then designed to change the shape from

one configuration to another while avoiding constraints such as geometric limitations,

extreme structural loading, and vehicle stability. These controllers can be designed

using optimal control techniques, classical control techniques, modern control tech-

niques, etc, and are often sensitive to initial and final conditions. Due to noise in the

system and other problems that could occur, it is likely that the configuration will

not always change from one specific design point to another. The designed controllers

could still successfully guide the reconfiguration, but to ensure a successful change,

multiple controllers may be necessary to cover all of the possible configurations of the

vehicle. An alternative is to use machine learning. Not only could machine learning,

and more specifically reinforcement learning, learn the appropriate configurations for

a wide range of operating conditions, it could also learn the policy to control the

vehicle change from any configuration to the target configuration while taking into

account the aforementioned constraints.
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Therefore, this dissertation focuses on the learning of deterministic, highly non-

linear, complex, high dimensional reconfigurable systems that can be cast as rein-

forcement learning problems. It seeks to investigate and understand the problem of

efficiently learning complex state-spaces with particular attention to “Regions Of In-

terest” containing high concentrations of information, and the problem of efficiently

storing and using the learned information.

The objectives of this research are the following:

1. Investigate methods to reduce the total number of states the agent must visit

while maintaining the uniqueness of the goal.

2. Explores methods that maintain a high rate of convergence of the action-value

function while maintaining the uniqueness of the goal. Reducing the number

of states reduces the computation time as well as keeps the rate of convergence

high, which is shown in simulation. This ability becomes important should the

method be applied to more time intensive models.

3. Develop ways to aid in the approximation of the action-value function during

learning to track the evolution of both the tabular action-value function and its

approximation such that learning is terminated only when both the action-value

function and its approximation have converged and a good policy learned.

4. Autonomously adjudicate between wide area exploration and Region Of Interest

exploitation. The algorithm should recognize Regions Of Interest, learn that

region, recognize when adequate learning has taken place, and recognize the

need when learning in that region must continue.
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D. Scope

The scope of this research investigates some unusual problems, such as the morphing

airfoil, morphing wing, and thermal location for autonomous soaring as reinforcement

learning problems. The morphing airfoil is investigated in particular detail such that

the effects of various learning parameters on the learning itself is analyzed. Learning

focuses on Regions Of Interest of the state-space containing higher concentrations of

relevant information than elsewhere. This focus is extensible to a state-space with

multiple Regions Of Interest. Approximation of the learned action-value function is

incorporated into the learning algorithm. By periodically computing the function

approximation and monitoring the convergence of the policy represented by the ap-

proximated action-value function, not only can an approximation that preserves the

policy be found, so too can the number of learning episodes needed for convergence

be kept to a minimum.

E. Contribution to Body of Knowledge

This research is novel and represents a fundamental advance for several reasons. Only

recently has the shape changing aspect of the reconfigurable aircraft problem been

posed as a reinforcement learning problem. Often several configurations of a recon-

figurable system is designed, and then some control technique that determines how

the system or vehicle changes from one configuration to another. Casting the recon-

figuration as a reinforcement learning problem melds these two problems into one.

By carefully defining the state-space, action space, constraints, and reward function,

both the configurations for desired operating conditions and the control to change

from one to another is learned. This dissertation presents several reconfigurable sys-

tem applications of the learning techniques developed here that achieves such learned
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reconfiguration.

A multi-resolution discretization method is a novel approach to improving Q-

learning by gathering the most detailed information in and around Regions Of Inter-

est, namely the goal. Q-learning on a continuous domain quickly becomes intractable

when one considers that convergence of the algorithm to the optimal action-value

function is only guaranteed if the agent visits every possible state an infinite number

of times.[161] An agent would therefore visit an infinite number of states using an

infinite number of actions an infinite number of times. Add in the fact that the states

can be defined by anywhere from 1 to N continuous variables and the dimensionality

of the problem becomes a significant issue. This multi-resolution method provides a

means of learning the action-value function, Qπ (s, a), for a fixed policy, π, in progres-

sively finer detail. It seeks a compromise between the high rate of convergence of a

coarse discretization, with the high level of detail of a fine discretization. It is desired

that the method be extensible from 1- to N-Dimensions and be easily extended to

other reinforcement learning problems similar to those presented in this dissertation.

Generally, the purpose of the multi-resolution methods in machine learning is

to refine the value function, V (s), where needed, such as when the agent finds it-

self in a difficult situation and the current resolution of the value function does not

offer an escape. Finer resolutions could yield a path out of the situation. This is

not the case with the method presented in this dissertation. The multi-resolution

state-space discretization method is driven instead by identified Regions Of Interest.

Once identified the method refines its search criteria and the state-space discretization

iteratively until the agent can find a very specific goal and the path to it. Thus, en-

hancing Q-Learning with the multi-resolution technique developed in this dissertation

is a powerful addition to the Q-Learning algorithm.

Conceptually, this method can be described by a simple example. Consider a
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scout that is sent out initially to locate any enemy encampments. When the scout

encounters an encampment, the scout maps out the perimeter and determines the best

approach and retreat. The scout then has orders to penetrate the encampment, find

the area housing the officers, and map the route to that area. The final refinement

of the scout’s orders is to locate and map a route to a particular tent. The scout

has a series of progressively more specific orders that are carried out sequentially in

a manner similar to this method.

This dissertation also develops a novel function approximation tool to aid in

the approximation of the Q-Learning action-value function. This tool is a genetic

algorithm that will select the basis functions and degree of the functions to be used

for a simple global application of least-squares function approximation. Incorpora-

tion of this genetic algorithm also offers a fundamental advance. Previously, genetic

algorithms used for function approximation optimized the weights or coefficients as-

sociated with a set of basis functions for a set of data. The basis functions themselves

are selected a priori. The basis functions are often selected on a trial and error

basis or as an educated decision given knowledge of the function. The genetic algo-

rithm developed here sidesteps the guesswork involved by selecting the basis functions

themselves as well as the degree of the basis functions. For example, say the following

algebraic framework is the function approximation of some set of data:

ỹ = c1p1 + c2p2 + c3p3 + . . . (1.2)

where ci are the coefficients, and pi are the basis functions. The genetic algorithm

will test sets of basis functions, pi, and use least-squares to solve for the coefficients,

ci. The genetic algorithm determines “fitness” of the selected basis functions by

comparing the data set, y, with the approximation, ỹ, using mean squared error (Eq.
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1.3.

1

n

n∑
i=1

(yi − ỹi)
2 (1.3)

Integrating the genetic algorithm into the learning algorithm, rather than focusing

solely on post-processing of the data, allows the action-value function to be approx-

imated on the side as the function evolves. This requires that the approximation

maintains the relationship, though not necessarily the exact magnitude, between the

numerical preferences for each action at a given state as encoded in the action-value

function. The relationship between the preferences refers to the following: Given a

state, s ∈ S, that has 5 actions associated with it, (a1, a2, a3, a4, a5) ∈ A, and the

following relationship between preferences

Q (s, a3) > Q (s, a1) > Q (s, a4) > Q (s, a2) > Q (s, a5) , (1.4)

the approximation of the action-value function must at least preserve Q (s, a3) as the

maximum preference for state s and preferably the full relationship of Eq. 1.4.

Other approximators, such as Global Local Orthogonal Polynomial Mapping

(GLOMAP)[162], could be used in lieu of least-squares alone. GLOMAP allows for

the blending or averaging of overlapping local approximations to yield a piecewise

continuous model. These local approximations can be least-squares approximations

with preselected basis functions, least-squares approximations with basis functions or-

thogonal to the GLOMAP weight functions, or any other local approximation. These

characteristics make it a likely candidate as function approximator as the genetic

algorithm presented here continues to be developed.

This genetic algorithm can be used separately as a standalone tool to approxi-

mate a given set of data, but for this dissertation it will be embedded in the learning

algorithm such that the action-value function is approximated periodically as the
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function evolves, thus reducing or eliminating post-processing and negating approxi-

mation issues of the often jagged final action-value function.

The approach is validated using computationally intensive models of a morphing

airfoil and morphing wing representing the class of systems of interest, the simple

classic dynamical system of the inverted pendulum, and thermal location for au-

tonomous soaring. The dimensionality of the problems as quantified by the number

of state-action pairs with and without the multi-resolution state-space discretization

method is analyzed. This means comparing the number of state-action pairs using

the multi-resolution method with the number that would result should the entire

state-space be discretized at the finest level. Convergence to a useful policy is shown

through Monte Carlo simulations, which refers to initializing the agent randomly in

the state-space and letting it use the information contained in the policy to attempt

to reach the goal as defined in that particular problem. A policy is considered “good”

if the policy has converged to the point that the Monte Carlo simulations show the

agent reaches the specified goal in at least 95% of the attempts. Convergence of the

policy is also monitored by a direct policy comparison, where the policy is periodi-

cally extracted from the action-value function and compared to the most penultimate

extracted policy. A stopping criterion is partially based on changes in the policy

detected by this comparison method and partially on the Monte Carlo simulations,

since the former just shows convergence to a policy and the latter shows whether or

not the policy performs well. This is all conducted using both the policy extracted

from the tabular action-value function and the approximated action-value function

for comparison. The results using the approximated action-value function should be

comparable to the tabular action-value function.



29

F. Organization

This dissertation is organized as follows. Chapter II gives an introduction to the re-

inforcement learning problem. It then describes the Q-learning algorithm, its deriva-

tion, proof of convergence, and considerations and issues. The next several chapters

describe the various new components developed for the Q-learning algorithm. Chap-

ter III details the general discretization method used as well as the development of

the multi-resolution state-space discretization method. Next genetic algorithms are

introduced in Chapter IV before describing in detail the genetic algorithm used for

function approximation. A few simple examples are included to demonstrate the use

of this genetic algorithm. Chapter V describes the final component, the policy com-

parison and performance evaluation method and its use as a stopping criterion. The

full algorithm that includes the multi-resolution state-space discretization method,

the function approximation genetic algorithm, and the policy comparison method is

described in detail in Chapter VI. Flowcharts are included to illustrate and clarify

how the components interact and form a single algorithm. In addition the algorithm

developed is also compared to LSPI in this chapter to demonstrate how the new al-

gorithm differs from the various least squares approaches. The algorithm is validated

in a number of examples in the next four chapters. Chapter VII describes the de-

velopment of the inverted pendulum model, its casting as a reinforcement learning

problem, and results using the new algorithm. Chapters VIII, IX, and X do the same

for the morphing airfoil, morphing wing, and autonomous soaring thermal location

problems, respectively. Conclusions from the various examples are drawn in Chapter

XI followed by recommendations for future work in Chapter XII.
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CHAPTER II

REINFORCEMENT LEARNING

Interacting with our environment is one of the fundamental ways in which we learn.

With no explicit teacher and only sensory inputs, we can learn much information

about cause and effect. We seek to learn and understand how the environment re-

sponds to our actions. Reinforcement learning, a machine learning method, is a

computational approach to learning from interaction. The reinforcement learning

problem seeks to learn what to do so as to maximize numerical reward. Reinforce-

ment learning, in effect, learns how to map situations, or states, to actions. The

learner does this by exploring its environment and discovering which actions yield

the most reward.

We also, in effect, learn many actions in a series of stages. The painter does not

automatically try to create a masterpiece when first learning the art. The musician

must learn scales before tackling a concerto. The aerospace engineer must first learn

the basics of lift and drag before designing an aircraft. Much learning can be thought

of as a process of learning the broader more general goal, and then learning and

mastering the details by progressively finer degrees.

A. Introduction to Reinforcement Learning

Reinforcement learning is learning through interaction with the environment to achieve

a goal. More specifically it is learning to map situations to actions to maximize some

numerical reward. The learner or decision-maker is the agent and does not know what

actions to take a priori as is common in most forms of machine learning. Everything

outside of the agent comprises the environment. The agent’s task is to learn a policy

or control strategy for choosing actions that achieves its goals. To learn the correct
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policy, which is a state to action mapping, π : S → A, the agent receives a reward,

or reinforcement, from the environment.[81]

The agent and environment interact continually is a series of discrete time steps,

t = 0, 1, 2, 3, . . .. At each time step t, a series of events occur. The agent first receives

some representation of the environment’s state, st ∈ S, where S is the set of all

possible states. Based on the state, the agent chooses an action, at ∈ A (s), where

A (s) is the set of actions available to the agent in state st. At the next time step,

the agent receives a numerical reward, rt+1 ∈ <, and is in a new state, st+1.

As the agent moves from state to state selecting actions and receiving rewards,

it generates a mapping, as stated earlier, of states to probabilities of selecting each

possible action. This policy, πt (s, a), is the probability that at = a at st = s.[81]

The agent seeks to maximize the reward it receives, or more formally, its expected

return, Rt. The simplest form of Rt is the sum of the rewards received after time t

as shown in Eq. 2.1.

Rt = rt+1 + rt+2 + rt+3 + . . . + rT (2.1)

where T is the final time step, assuming there is a final step. This breakdown of a

sequence into a finite number of steps is called an episode. Discounted return denotes

the sum of discounted rewards the agent tries to maximize, Eq. 2.2

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑

k=0

γkrt+k+1 (2.2)

where γ is the discount rate and is 0 ≤ γ ≤ 1. The discount rate effectively modulates

the importance of future expected rewards. If γ = 0, the agent seeks only to maximize

immediate rewards. As γ approaches 1, the agent takes future rewards into account

more strongly.[81]

In this research, and for many reinforcement learning problems, it is assumed
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that the problems can be modeled as Markov Decision Processes (MDPs) and cast

in the reinforcment learning problem framework. An MDP satisfies the following

conditional probability distribution function:

Pr {st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, rt−1, . . . , s0, a0} =

= Pr {st+1 = s′, rt+1 = r|st, at} (2.3)

for all s1, . . . , s + t + 1 and for all integers t > 0.[163] This means that rather than

the transition to state s′ and receiving reward r depending on all past states, actions,

and rewards, the transition to state s′ and receiving reward r is only dependent on

st and at. A problem is considered an MDP if all the information necessary for the

agent to make a decision is incorporated in the current state. The decision is not

based on any past states visited, and is therefore path independent.

An underlying theme of almost all algorithms used to solve reinforcement learning

problems is estimating value functions. A value function is a function of the state or

of state-action pairs that estimates how good it is, in terms of future rewards, for the

agent to be in a given state.[81] The value of a state s under some policy π is denoted

V π (s) and is the expected return of starting in s and following π for all subsequent

steps. This expectation is formalized in Eq. 2.4.

V π (s) = Eπ {Rt|st = s} = Eπ

{
∞∑

k=0

γkrt+k+1|st = s

}
(2.4)

A similar relationship exists for action-value functions, Qπ (s, a), which is defined

as the value of taking action a in state s under policy π. This relationship is shown

in Eq. 2.5.

Qπ (s, a) = Eπ {Rt|st = s, at = a} = Eπ

{
∞∑

k=0

γkrt+k+1|st = s, at = a

}
(2.5)
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These can be estimated from experience and usually satisfies some recursive

relationship. This relationship for the value function is derived in Eq. 2.6 and holds

for any policy π and any state s.

V π (s) = Eπ {Rt|st = s}

= Eπ

{
∞∑

k=0

γkrt+k+1|st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s

}

=
∑

a

π (s, a)
∑

s′

Pa
ss′

[
Ra

ss′ + γEπ

{
∞∑

k=0

γkrt+k+2|st+1 = s′

}]
=

∑
a

π (s, a)
∑

s′

Pa
ss′ [Ra

ss′ + γV π (s′)] (2.6)

where Pa
ss′ is the probability of transition from state s to state s′ under action a, and

Ra
ss′ is the expected immediate reward on transition from s to s′ under action a. Eq.

2.6 is referred to as the Bellman Equation for V π. The Bellman Equation for Qπ is

Qπ (s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{
∞∑

k=0

γkrt+k+1|st = s, at = a

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s, at = a

}

=
∑

s′

Pa
ss′

[
Ra

ss′ + γ
∑

a

π (s′, a′)Eπ

{
∞∑

k=0

γkrt+k+2|st+1 = s′, at+1 = a′

}]

=
∑

s′

Pa
ss′

[
Ra

ss′ + γ
∑

a

π (s′, a′)Qπ (s′, a′)

]
(2.7)

The next logical step is to define the optimal value function and optimal action-

value function. This starts with the assumption that there is an optimal policy, π∗,

better than all the others. One policy is better than another if its expected return is
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greater.[81] The optimal value function, V ∗, is thus defined as

V ∗ (s) = max
π

V π (s) (2.8)

for all s ∈ S. Similarly, the optimal action-value function is defined as

Q∗ (s, a) = max
π

Qπ (s, a) (2.9)

for all s ∈ S and a ∈ A (s). Q∗ can be written in terms of V ∗ because Eq. 2.9 is the

expected return of taking action a in state s and following an optimal policy for all

subsequent steps, see Eq. 2.10.

Q∗ (s, a) = Eπ {rt+1 + γV ∗ (st+1) |st = s, at = a} (2.10)

The related Bellman optimality equations are listed in Eq. 2.11 and 2.12.

V ∗ (s) = max
a

∑
s′

Pa
ss′ [Ra

ss′ + γV ∗ (s′)] (2.11)

Q∗ (s, a) =
∑

s′

Pa
ss′

[
Ra

ss′ + γ max
a′

Q∗ (s′, a′)
]

(2.12)

Ideally one would simply solve the set of linear Bellman optimality equations to

acquire an optimal value function or optimal action-value function. However, that

requires that the transition probabilities, Pa
ss′ , and expected immediate rewards, Ra

ss′ ,

be known.[81] That is often not the case, unfortunately, so other methods are often

employed.

There are a number of ways to solve for the value or action-value functions. Three

basic solution methods are Dynamic Programming (DP), Monte Carlo methods, and

Temporal-Difference (TD) learning.[81]

DP refers to algorithms that computes optimal policies given a perfect model

of the environment. These are often computationally expensive and depend on a
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perfect model. DP algorithms include policy evaluation, policy improvement, policy

iteration, value iteration, etc.[81]

Monte Carlo methods estimate value functions and try to find optimal policies.

One advantage of these methods over basic DP is that they require only experience

and not perfect knowledge of the environment. Learning can be conducted on-line

or in simulation with no prior knowledge of environment dynamics. These methods

learn based on an episode by episode averaging of sample returns. Monte Carlo

methods include Monte Carlo policy evaluation, Monte Carlo estimation of action

values, Monte Carlo control (both on-policy and off-policy), etc.[81]

TD learning can be thought of as a combination of ideas from both DP and

Monte Carlo.[81] These methods learn from raw experience without the need for a

model of the environment’s dynamics. They bootstrap in the sense that estimates are

updated during an episode based on other learned estimates. TD learning methods

include TD prediction, Sarsa, Q-learning, actor-critic methods, etc.

B. Derivation of Q-Learning Algorithm

Q-learning, the central learning method of this research, is an off-policy TD control

algorithm developed and popularized by Watkins in 1989.[161] Off-policy refers to

the fact that this method estimates the value of a policy while using a separate policy

for control whilst learning.

To derive the one-step Q-learning update equation used in this research, recall
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Eq. 2.10, take its expectation, and expand.[164]

Q (s, a) = E {rt+1 + γV ∗ (st+1)}

= E {rt+1}+ γE {V ∗ (st+1)}

= E {rt+1}+ γ
∑

s′

Pa
ss′V

∗ (st+1) (2.13)

Exploiting the close relationship between Q and V ∗,

V ∗ (s) = max
at+1

Q (s, at+1) , (2.14)

Q can be expressed as

Q (s, a) = E {rt+1}+ γ
∑

s′

Pa
ss′ max

at+1

Q∗ (st+1, at+1) (2.15)

A decaying weighted average can now be taken of Q (s, a) to ensure convergence as

the function is updated. This training rule is the equation for one-step Q-learning:

Q (st, at)← Q (st, at) + α
[
rt+1 + γ max

a
Q (st+1, a)−Q (st, at)

]
(2.16)

where r is the reward or reinforcement received by the agent from the environment.

The learning rate, α, moderates the degree to which an action-value is changed at

each step. The discount factor, γ, determines the present value of future rewards, as

stated previously. At each step the agent has a tuple, (st, at, rt+1, st+1), with which

to update the action-value function, Q (s, a). The learned action value function,

Q, directly approximates the optimal action-value function, Q∗, independent of the

policy the agent follows. In procedural form the Q-Learning algorithm is as follows:

Q-Learning()

• Initialize Q(s, a) arbitrarily

• Repeat (for each episode)
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– Initialize s

– Repeat (for each step of the episode)

∗ Choose a from s using policy derived from Q(s, a) (e.g. ε-Greedy

Policy)

∗ Take action a, observe r, s′

∗ Q (st, at)← Q (st, at) + α
[
rt+1 + γ max

a
Q (st+1, a)−Q (st, at)

]
∗ s← s′

– until s is terminal

• return Q(s, a)

An episode consists of the agent beginning in state s, choosing action a, observing

r and s′ produced by the environment, and updating the action-value function. This

process continues until the episode ends either by reaching a goal or after a predefined

number of actions have been taken by the agent.

C. Exploration vs. Exploitation

A policy, π is the mapping of states to actions, π : S → A, which means that

the agent selects its next action at based on the current state st, or π (st) = at.

When selecting the next action, one typical problem the agent has to face is the

exploration-exploitation dilemma.[81] If the agent selects a greedy action that has

the highest value, then it is exploiting its knowledge obtained so far about the values

of the actions. If instead it selects one of the non-greedy actions, then it is exploring

to improve its estimate of the non-greedy actions’ values. Exploiting knowledge from

the outset usually results in the agent finding and preferring local optima rather than

the global goal.[81] Exploring from the outset and continuing throughout the learning
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process, however, avoids this problem, though the agent is more likely to continue

to randomly explore areas that are not of interest.[81] Given that Q-Learning is an

off-policy reinforcement method, the policy followed while learning must be chosen to

balance these concerns, promote efficient convergence, and tailored for the application

of interest. Possible policies include greedy, non-greedy, ε-greedy (Eq. 2.17), and

softmax action selections.

ε− greedy policy

if(probability > 1−ε)

a = arg max
a

Q (s, a)

else

a = rand(ai)

(2.17)

Many unique solutions exist to handle the exploration-exploitation policy dilemma

of both discrete and continuous reinforcement learning problems. One such solution

is to integrate the Metropolis Criterion into Q-learning, which eliminates some ex-

ploration blindness.[165, 166] A greedy exploration policy based on the state balance

criterion can also be used.[167] Exploration and exploitation can also be decoupled

to cope with any instabilities in the Q-learning algorithm.[168] An exploration algo-

rithm that considers “prediction accuracy requirements” during exploration has been

applied to a robot juggling Q-learning problem.[145] A Q-learning agent can also

be restricted to explore only those options that are likely to avoid any unnecessary

risk, which allows the algorithm to balance competing objectives and find satisfic-

ing solutions.[169] Similar to Goodrich’s Satisficing Q-Learning is Park and Kim’s

two mode Q-learning, which also separates success and failure experiences to learn

more quickly. Simsek and Barto propose a method efficient exploration aided by a

principled heuristic.[170] Reference [171] describes a fairly extensive job of proving

convergence for single-step on-policy reinforcement learning algorithms for control
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with both decaying exploration and persistent exploration.

D. Proof of Convergence for Q-Learning

A proof that the Q-learning algorithm converges to the optimal action value function

is described in detail by Watkins in Reference [161] and is summarized in this section.

From the Q-learning update in equation in Eq. 2.16, it can be seen that a

set of tuples are used in each update. These tuples are the state, action taken,

immediate reward received, and the next state, or (st, at, rt+1, st+1), respectively. For

the purposes of this section, these tuples will be denoted in the following manner,

(s, a, r, s′). Each observation of a tuple is numbered 1, 2, 3, . . . and are used to update

Q. Therefore, let the nth observation be (sn, an, rn, s
′
n).

There are a number of observations that must now be made to aid in showing

convergence. First, assume that the data available to the agent consists of an infinite

sequence of observations. These observations are assumed to be independent obser-

vations of state transitions and rewards. It is also assumed that this is a fully Markov

process. The observations do not need to be connected, so disconnected episodes of

finite length can be used to collect the tuples.

Q is usually initialized to some finite values and is denoted Q0 (s, a) before any

updates are made. After the nth observation is used to update Q, the action-value

function is denoted Qn (s, a). The update equation using this notation is

Qn (s, a) =


Qn−1 (s, a) + αn

(
rn + γ max

a
Qn−1 (s, a)−Qn−1 (s, a)

)
if s = sn and a = an

Qn−1 (s, a) otherwise

(2.18)
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1. The Action-Replay Process

As did Watkins, now introduce the action-replay process (ARP), which is a hypo-

thetical Markov decision process, to be used as a proof device.[161] The real process

is abbreviated as RP. The ARP is constructed from the observations and consists of

layers of states. In each layer, k, there is a state < s, k > in the ARP corresponding

to each state in the RP. The difference between the state s in the RP and the ARP

is that the state s in the ARP has the same actions available to it, but the effects of

those actions are different.

The effect of a selected action in the ARP is that the action is a “replay” of

an observation. Performing an action a in state s is thus simulated by finding an

observation of performing a in s, and the using the associated observed r and s′ as

the simulated reward and new state, respectively. The eligible observations for the

simulation must occur before the current, or kth observation. These observations are

numbered n1, n2,. . ., ni, where

n1 < n2 < . . . < ni ≤ k. (2.19)

Recall that α is the learning rate associated with how much Q is adjusted with each

observation. With this in mind, the probability of replaying observation ni is αi, for

ni−1 is (1− αi) αi−1, etc. The ARP terminates with a final payoff of Q0 (s, a) if no

eligible action is selected for replay. The following is the pseudocode for this process:

• Perform a in < s, 0 >

– Terminate the ARP with an immediate reward of Q0 (s, a)

– Halt

• Perform a in < s, k >, for k > 0
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– If s = sk and a = ak

∗ Begin

· Either (with probability αk

- Go to < s′, k − 1 > with an immediate reward of rk

- Halt

· Or (with probability 1− αk

- Perform a in < s, k − 1 >

∗ End

– Else

∗ Perform a in < s, k − 1 >

– End

Note that it is not possible to perform an infinite sequence of actions in the ARP.

Eventually the process will reach level 0 and terminate.

Now it can easily be shown that Qn defines the optimal action-value function for

the ARP at stage n.[161] Let Q∗
ARP (< s, n >, a) be the optimal action-value function

for the ARP for action a at state < s, n >. Let V ∗
ARP be the optimal value function

for the ARP.

Theorem D.1. The ’Action-Replay’ Theorem For all s, a, Qn (s, a) is the optimal

action value at stage n of the ARP. That is

Qn (s, a) = Q∗
ARP (< s, n >, a) (2.20)

for all s, a, and for all n ≥ 0.

Proof. From the construction of the ARP, Q0 (s, a) is the optimal and only possible
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action value of < a, 0 >, a. Therefore,

Q0 (s, a) = Q∗
ARP (< s, 0 >, a) (2.21)

By induction, the theorem holds for n = 0.

Suppose that the values of Qn−1 produced by the update rule in Eq. 2.16 are

the optimal action-values for the ARP at stage n− 1,

Qn−1 (s, a) = Q∗
ARP (< s, n− 1 >, a) , (2.22)

for all s, a.

From Eq. 2.18, recall that Qn (s, a) = Qn−1 (s, a) for all s, a not equal to sn, an,

and

Qn (sn, an) = Qn−1 (sn, an) + αn

(
rn + γ max

a
Qn−1 (s,n , a)−Qn−1 (sn, an)

)
(2.23)

As a result, for all s, a not equal to sn, an, performing a in < s, a > in the ARP gives

the same result as performing a in < s, n− 1 >. Thus,

Q∗
ARP (< s, n >, a) = Q∗

ARP (< s, n− 1 >, a) (2.24)

for s, a not equal to sn, an. Therefore,

Q∗
ARP (< s, n >, a) = Qn (s, a) (2.25)

for all s, a not equal to sn, an.

Next, consider the optimal action-value of < sn, n >, an in the ARP. Performing

a in < sn, n > has two possible effects:

1. With probability αn

• Yield immediate reward rn and new state < s′n, n− 1 >, or
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2. With probability 1− αn

• The same effect as performing an in < s, n− 1 >.

The optimal action-value in the ARP of < sn, an > is therefore

Q∗
ARP (< sn, n >, an) = (1− αn) Q∗

ARP (< sn, n− 1 >, an) +

+ αn

(
rn + γ max

a
Q∗

ARP (< s′n, n− 1 >, a)
)

= Qn−1 (sn, an) +

+ αn

(
rn + γ max

a
Qn−1 (s′n, a)−Qn−1 (sn, an)

)
= Qn (sn, an) (2.26)

Therefore, by induction

Qn (sn, an) = Q∗
ARP (< sn, n >, an) (2.27)

for all s, a, which was to be proved.

2. Convergence of Q∗
ARP to Q∗

The sufficient conditions under which the optimal action-values for the ARP at the

nth stage will converge to the optimal action values for the real process as n → ∞

are the following.[161]

• There are an infinite number of observations in the form of tuples, (s, a, rn, s
′
n).

• The learning rate αn for the observations are positive, decrease monotonically

as n increases, and tend to 0 as n→∞.

• The sum of the learning rates for the observations is infinite.

To demonstrate the sufficiency of these conditions, first let the sum of the learning

rates for all of the observations, (s, a, rl, s
′
l) with l ≤ k be the depth of a state-action
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pair, d (< s, k >, a) in the replay process. Following the replay process procedure

outlined above for performing action a in < s, k >, the probability of reaching < s, 0 >

becomes arbitrarily small as the depth, d (< s, k >, a), becomes large.

Recall that there are a finite number of state-action pairs. According to the third

condition above, d (< s, k >, a) → ∞ as n → ∞. For any given D or ε, n can be

chosen such that

max
m>n

(αm) < ε. (2.28)

Given such an n, n′ can then be chosen such that

min
s,a

(d (< s, n′ >, a)− d (< s, n >, a)) > D (2.29)

It is then possible to choose a sequence of values n1, n2, n3, n4, . . . for any D and

any ε such that the depths of all state-action pairs increase by D between each value

of the sequence. As a result n can be chosen so large that the possible number of

replayed observations is larger than any chosen k with probability as close to 1 as

needed or desired. This also means that the largest learning rate α is so small that

the transition probabilities and average rewards of the ARP are uniformly as close to

those of the RP as desired. Thus, if n is sufficiently large, then

Q∗
ARP (< s, n >, a)→ Q∗ (s, a) (2.30)

with probability as close to 1 as desired.



45

CHAPTER III

STATE-SPACE DISCRETIZATION OF A CONTINUOUS DOMAIN FOR

Q-LEARNING

A. Problem Definition

Q-learning on a continuous domain quickly becomes intractable when one considers

that convergence of the algorithm to the optimal action-value function is only guar-

anteed if the agent visits every possible state an infinite number of times.[161] An

agent would therefore visit an infinite number of states using an infinite number of

actions an infinite number of times. Add in the fact that the states can be defined

by anywhere from 1 to N continuous variables and the dimensionality of the problem

becomes a significant issue.

B. Learning on a 2-, 4-, and N-Dimensional Domain

One way to cope with the inherent complexity of a continuous domain learning prob-

lem is to discretize the state-space by overlaying a pseudo-grid. The essential ideas

of this concept can be best introduced in terms of a 1-dimensional problem. The

notation can then be generalized for the 2-, 4-, and N-dimensional problems.

For the 1-dimensional problem the state-space can be represented by a line as

seen in Figure 1. An arbitrary set of vertices
{

1X, 2X, . . . , kX, . . .
}

are introduced at

a uniform distance h apart. Ideally, h is chosen such that a vertex lies on both end

points of the state-space. In the learning algorithm the agent is either only allowed to

visit the overlaying vertices and their corresponding states or the states are quantized

such that information from surrounding states are stored in the nearest vertex. This

technique effectively reduces the state-space from infinity to a finite number of states,
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thus rendering the problem more manageable.

I X1I X− 1I X+

hh h h

Fig. 1. 1-Dimensional State-Space with Overlaying Pseudogrid

To further simplify the problem, we restrict what actions the agent may take.

When the agent is at the I th vertex X = IX, it may only move to I−1X or I+1X.

Now the problem only has two possible actions rather than an infinite number, which

further reduces the problem complexity.

Let L denote the length of the continuous domain. As per our formulation there

are

NV1 =
L

h
+ 1 (3.1)

vertices, where NV is the number of vertices, and 2 actions. Therefore, there are only

N1 = 2

(
L

h
+ 1

)
(3.2)

state-action pairs, where N is the number of state-action pairs.

The 2-dimensional problem can be represented in a similar manner. In this case

the state-space is represented by Figure 2. An arbitrary set of vertices {11X, 12X, . . . , ijX, . . .}

are again introduced at uniform distances hx1 or hx2 apart. The actions available to

the agent are again restricted as in the 1-dimensional case. For the 2-dimensional

case, when the agent is at the IJ th vertex X = IJX, it may only move to vertices

(I−1)JX, (I+1)JX, I(J−1)X, and I(J+1)X, a total of 4, or 2 ∗ 2, actions.

This problem is more complex than the previous one, yet it is still simpler than a

2-dimensional continuous state-space problem. For this 2-dimensional discrete case,
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IJ X ( )1I J X+( )1I J X−

( )1I J X+

( )1I J X−

1x

2x

1x
h

1x
h

1x
h

1x
h

2xh

2xh

2xh

2xh

Fig. 2. 2-Dimensional State-Space with Overlaying Pseudogrid

let Lx1 and Lx2 denote the length in the x1- and x2-direction, respectively, of the

continuous domain. This results in

NV2 =

(
Lx1

hx1

+ 1

)(
Lx2

hx2

+ 1

)
=

2∏
i=1

(
Lxi

hxi

+ 1

)
(3.3)

vertices. Therefore, there are

N2 = 2 ∗ 2
2∏

i=1

(
Lxi

hxi

+ 1

)
(3.4)

state-action pairs.

The 4-dimensional problem is a simple extension of the 1- and 2-dimensional

problems. In the 4-dimensional case the state-space is represented by Figure 3. An

arbitrary set of vertices
{

1111X, 1112X, . . . , ijklX, . . .
}

are again introduced at uniform

distances hx1 , hx2 , hx3 , or hx4 apart. The actions available to the agent are again
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restricted as in the 1- and 2-dimensional case. For the 4-dimensional case, when the

agent is at the IJKLth vertex X = IJKLX, it may only move to vertices (I−1)JKLX,

(I+1)JKLX, I(J−1)KLX, I(J+1)KLX, IJ(K−1)LX, IJ(K+1)LX, IJK(L−1)X, and IJK(L+1)X,

a total of 8, or 2 ∗ 4, actions.

IJKL X ( )1I JKL X+( )1I JKL X−

( )1I J KL X+

( )1I J KL X−

1x

2x

1x
h

1x
h

1x
h

1x
h

2xh

2xh

2xh

2xh

Fig. 3. 4-Dimensional State-Space with Overlaying Pseudogrid

Similar to the simpler cases, for the 4-dimensional discrete case, let Lx1 , Lx2 ,

Lx3 , and Lx4 denote the length in the x1-, x2-, x3-, and x4-direction, respectively, of

the continuous domain. This results in

NV4 =

(
Lx1

hx1

+ 1

)(
Lx2

hx2

+ 1

)(
Lx3

hx3

+ 1

)(
Lx4

hx4

+ 1

)
=

4∏
i=1

(
Lxi

hxi

+ 1

)
(3.5)

vertices, which means there are

N4 = 2 ∗ 4
4∏

i=1

(
Lxi

hxi

+ 1

)
(3.6)
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state-action pairs.

From here the formulation can be generalized to the N-dimensional case. For an

N-dimensional continuous state-space, an arbitrary set of vertices
{

11...1X, 11...2X, . . . , NN...NX
}

are introduced at uniform distances hx1 , hx2 , . . ., hxN
apart. The actions are restricted

to the two nearest vertices in any direction from the current vertex X = IJ...X, yield-

ing a total of 2N actions available to the agent from any given vertex.

Now let Lx1 , Lx2 , . . ., LxN
denote the length in the x1-, x2-, . . ., and xN -directions,

respectively. This formulation leads to

NVN
=

N∏
i=1

(
Lxi

hxi

+ 1

)
(3.7)

vertices and

NN = 2N
N∏

i=1

(
Lxi

hxi

+ 1

)
(3.8)

state-action pairs.

Intuitively, the larger hxi
is, the fewer the number of vertices, resulting in fewer

visits by the agent necessary to learn the policy correctly. Special care must be

taken, however, in the choice of hxi
and the definition of the goal the agent attempts

to attain. If the only goal state lies between vertices or is so specific the agent is

unlikely to find it and store that learned information in a quantized state, then the

agent will be unable to learn the actions necessary to reach the goal state.

Discretizing the domain in this way can greatly simplify a learning problem,

though limiting the action in this way is a significant assumption. In many applica-

tions, such as a robotics application, an action can change multiple state variables.

Limiting the actions simplifies the reinforcement learning problem so that focus dur-

ing the early development and validation of this algorithm is on the algorithm itself

rather than the complexity of the application. Future development of the algorithm,
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however, should eliminate this assumption.

C. Multi-Resolution State-Space Discretization (AAG) for N-Dimensions

Discretizing a state-space for learning is beneficial in that it creates a finite number of

state-action pairs the agent must visit. Generally, as the number of state-action pairs

decreases, the rate of convergence increases.[172] However, fewer state-action pairs

capture less detail of the environment. Also, using the method described in Section

B limits the agent to storing information only at the vertices. It is entirely possible

that the goal the agent is seeking, or any other area of interest, does not lie on a

vertex. This necessitates adding a range to the goal that encompasses one or more

of the vertices in the state-space. These vertices within the goal range are defined as

pseudo-goals. (Figure 4)

1x

2x

Goal

Goal Region

Pseudo Goal

Fig. 4. Multi-Resolution State-Space Discretization – Phase 1: Coarse Grid, Large

Goal Range

As the agent explores the coarsely discretized state-space and garners rewards,
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it also notes the location of the pseudo-goals. Once learning on the current dis-

cretization has converged, the area surrounding and encompassing the psuedo-goals

is rediscretized to a finer resolution such that hxi2
< hxi1

, where the subscript 1 de-

notes the initial discretization, and subscript 2 denotes the second discretization. A

new, smaller range is defined for the goal and learning begins anew in the smaller

state-space. The agent retains the information already stored in the action-value

function and simply continues to add to it as it learns the smaller region in more de-

tail. If no pseudo-goals are found at the current level of discretization, then learning

does not continue at a finer level of discretization. It is is known that a goal exists

in the state-space and is not found when learning on the coarsest discretization, then

parameters such as the initial discretization and goal range must be adjusted.

Figure 5 shows the re-discretization of the state-space.

1x

2x

Goal

Goal Region

Pseudo Goal

Sub Grid

Fig. 5. Multi-Resolution State-Space Discretization – Phase 2: Finer Grid, Smaller

Goal Range

This method can then be generalized for the N-dimensional case. Let Lj
x1

, Lj
x2

,

. . ., Lj
xN

denote the length in the x1-, x2-, . . ., and xN -directions, respectively, and
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the superscript j denote the resolution of the discretization in which 1 is the coarsest

and M is the finest. The vertices for each resolution are then set at distances hj
x1

,

hj
x2

, . . ., hj
xN

apart. These terms effectively define the fineness of resolution level j.

Eqs. 3.7 and 3.8 can then be modified to calculate the number of vertices and state

action pairs for this method, as shown in Eqs. 3.9 and 3.10.

When the multi-resolution learning is complete, there are

NVN
=

M∑
j=1

(
N∏

i=1

(
Lj

xi

hj
xi

+ 1

))
−

M−1∑
j=1

(
N∏

i=1

(
Lj+1

xi

hj
xi

+ 1

))
(3.9)

vertices. Therefore, there are

NN = 2N

(
M∑

j=1

(
N∏

i=1

(
Lj

xi

hj
xi

+ 1

))
−

M−1∑
j=1

(
N∏

i=1

(
Lj+1

xi

hj
xi

+ 1

)))
(3.10)

state-action pairs. Notice the second term of each equation excises the duplicate

vertices from one level of discretization to the next. Also note that if the full state-

space were simply discretized by the finest level of hM
xi

, there would be

NVNfine
=

N∏
i=1

(
L1

xi

hM
xi

+ 1

)
(3.11)

vertices and

NNfine
= 2N

(
N∏

i=1

(
L1

xi

hM
xi

+ 1

))
(3.12)

state-action pairs. It can be shown that NVN
< NVNfine

and NN < NNfine
by a

significant amount, the magnitude of which is determined by the factor by which

each subsequent discretization is reduced from the previous.

It is known that the time to convergence for Q-learning increases exponentially

as the complexity of the problem, e.g. the quantity of state-action pairs, increases.

This method reduces a learning problem to a series of smaller learning problems with

relatively few state-action pairs, on the order of several orders of magnitude less.
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Rather than one large problem that could take a great deal of time to converge, there

are several quickly converging smaller problems.

D. Multiple Goal Regions

In many problems it is entirely possible that more than one distinct area of the state-

space contains pseudo-goals. When rediscretizing the state-space from level j to j +1

using the multi-resolution discretization method described above, one option is simply

to have the algorithm define Lj+1
x1

, Lj+1
x2

, . . ., Lj+1
xN

such that the region encompasses

all of the pseudo-goals. The drawback of this approach is that if there are distinct

groupings of pseudo-goals, then this approach discretizes to a finer degree regions

that contain nothing of interest to the agent. Continuing to learn in these regions is

essentially wasted effort.

Another approach is to separate and discretize each grouping of pseudo-goals

individually. Using the previous notation, this approach would essentially yield Lj1+1
x1

,

Lj1+1
x2

, . . ., Lj1+1
xN

for one group of pseudo-goals as denoted by the j1, Lj2+1
x1

, Lj2+1
x2

, . . .,

Lj2+1
xN

for the second group, and Ljn+1
x1

, Ljn+1
x2

, . . ., Ljn+1
xN

for the nth distinct group of

pseudo-goals.

The set of pseudo-goals recorded by the agent are separated into their groups us-

ing a general clustering technique from the statistical analysis toolbox in MATLABTM.

Let R denote the recorded pseudo-goals to be clustered. R is an m× n matrix with

m observations of n variables, or m pseudo-goals defined by n state variables in the

context of machine learning. The first step in the clustering process is to determine

the pairwise distance of all of the observations using the following equation for the

Euclidean distance:

d2
rt = (xr − xt) (xr − xt)

′ (3.13)
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When arranged into a row vector, y, this yields a vector length of m (m− 1) /2

arranged in the order [(2, 1) , (2, 1) , . . . , (n, 1) , (3, 2) , . . . , (n, 2) , . . . , (n, n− 1)].

A hierarchical cluster tree, Z, where Z is an (m− 1)× 3 matrix, is then created

from the Euclidean distances encoded in y. Cluster indices linked in pairs are denoted

in columns 1 and 2 of Z to form a binary tree. Leaf nodes, or the singleton clusters

from which all higher clusters are built, are numbered from 1 to m and are the

original observations. Column 3 contains the linkage distance, as calculated by Eq.

3.14, between two merged clusters. When a new cluster is formed, a row is added

to Z and is assigned the index m + I, where Z (I, 1 : 2) contains the clusters indices

that form cluster m + I and Z (I, 3) contains the linkage distance between the two.

d (r, t) = min
((

xri
− xtj

) (
xri
− xtj

)′)
, i ∈ (1, . . . , nr) , j ∈ (1, . . . , nt) (3.14)

Clusters are then formed and assigned cluster numbers from these linkages by com-

paring the length of each link in Z with the average length at the same level in the

hierarchy.

Each cluster represents a distinct set of pseudo-goals contained in R. Using

these clusters, the multi-resolution discretization method can now be applied to each

individual cluster in turn, allowing the agent to learn each region in finer detail and

neglect the uninteresting regions in between.
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CHAPTER IV

FUNCTION APPROXIMATION

Practical reinforcement learning problems often have continuous state and action

spaces. Many reinforcement learning methods, however, assume finite state and ac-

tion spaces. In terms of Q-Learning, learning on continuous state and action spaces

translates into an infinite number of possible state-action pairs. A solution is to dis-

cretize the state and action spaces and approximate the action-value function for the

entire space after learning has occurred. Approximation is in itself an issue to be

addressed. Generally, function approximation is performed on the final function with

methods such as GLOMAP[162], SFA[173, 174], linear least-squares, etc. The user

must often choose the set of basis functions and make a decision as to the degree

of the functions. These choices are often made on a trial and error basis or as an

educated decision given knowledge of the function. Indeed, there tends to be some

guesswork involved.

Learning based approaches to value and action-value function approximation

include Parr et al.’s Bellman-error-based approach to generating orthogonal basis

functions[175], Lee’s fuzzy model with a genetic algorithm and particle swarm opti-

mization to tune model precision[176], and Hauser’s genetic algorithm that determines

a piece-wise polynomial approximation with integer coefficients[177].

A. Introduction to Genetic Algorithms

A genetic algorithm (GA) is considered an evolutionary method because it mimics

or is analogous to the way biological organisms develop and evolve skilled behavior

that they do not actually learn during their lifetime.[81] GAs use operators similar to

those found in nature to create successive generations of hypotheses for the problem
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at hand from an initial set of hypotheses by mutating and recombining parts of the

best currently known hypotheses. According to Mitchell the popularity of GAs is

motivated by the following three factors, though there are many others:[164]

• “Evolution is known to be a successful, robust method for adaptation within

biological systems.”

• “GAs can search spaces of hypotheses containing complex interacting parts,

where the impact of each part on overall hypothesis fitness may be difficult to

model.”

• “Genetic algorithms are easily parallelized and can take advantage of the de-

creasing costs of powerful computer hardware.”

GAs begin with an initial set of hypotheses called a population. Each hypothesis

is represented by a string of numbers. This string can be a row vector of real numbers,

such as for the problem of finding the minimum of the function z = ax + by in which

[x y] is a hypothesis, or a bit string of the form 011010010111. Designing a bit string

to represent a hypothesis often requires creativity and finesse.

The fitness of each hypothesis in the current population is them evaluated. Fit-

ness is a measure of “how good” the hypothesis is. Fitness can be the accuracy of a

hypothesis with respect to some training data, the number of games won in checkers

or chess when playing against other hypotheses in the current population, etc.

The successor population is created next. A portion of the hypotheses of the

successor population are selected for inclusion as is from the current population.

These are called “elite children”. The one or two that have the best fitness are

usually selected automatically. The rest to be included can be selected in a number

of ways including:[164]
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• probabilistically - the probability of selecting hi given by

Pr (hi)
Fitness (hi)

p∑
j=1

Fitness (hj)

(4.1)

where p is the number of hypotheses in the population,

• tournament selection - two hypotheses are chosen at random from the current

population, and the more fit of the two is selected with probability p while the

less fit is selected with probability (1− p), and

• rank selection - the hypotheses are sorted by fitness, and the probability a

hypothesis is selected is based on its rank in this list.

The rest of the successor population is generated using two operators: crossover

and mutation. The crossover fraction is the fraction of the next generation that

are produced by crossover, other than the elite children. The rest are created by

mutation. The crossover operator produces two new offspring or children from two

parents. The children are created by copying bits from each of the parents. Figure

6 illustrates the mutation operator and the three types of crossover: single-point,

two-point, and uniform. The mutation operator creates a child from a single parent

by randomly choosing a single bit and changing its value.[164]

The parent strings on which the two operators are applied are selected in a

manner similar to those selected as elite children. There are five predefined methods

in MATLABTM for choosing these parents:

• Stochastic uniform - creates a line in which each possible parent corresponds

to a section of the line proportional to its fitness. Randomly sized steps are

taken along the line and the parent from the section of the line at each step is

selected.
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OffspringInitial Strings

Single-point Crossover:

11101001000 11101011101

00001011101 00001001000

Two-point Crossover:

11101001000 00101011101

00001011101 11001001000

Uniform Crossover:

1000100110011101001000

00001011101 01101011001

Mutation:

11101001000 11101101000

Fig. 6. Common Genetic Algorithm Operators

• Remainder - based on the scaled value of the fitness for each parent.

• Uniform - based on the fitness of the parent and the total number of possible

parents.

• Roulette - creates a “roulette wheel” in which the area allocated to each parent

is based on the fitness of the parent. A random number is used to select one of

the sections with a probability equal to its area.

• Tournament - two or more parents are chosen at random, and the parent with

the highest fitness is selected.
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This process of creating a new generation and evaluating fitness continues until

either the user specified total number of generations is reached, optimization stalls

in the sense that there is no longer any significant change in the population, or a

time limits is reached. It is possible that an optimal or near optimal solution is not

achieved. Occasionally, a GA can get “stuck” at a local extrema. This problem and

many others can be avoided by modifying the many variables of the GA, such as

the population size, the range of hypotheses in the initial population, the crossover

fraction, the various selection functions, etc. These must usually be tailored or tuned

to each particular optimization problem.

B. Genetic Algorithm for Function Approximation

The GA used in this research is applied to the problem of function approximation,

more specifically, approximation of the action-value function, though it can be used

for function approximation of any data set. Usually, when one thinks of optimizing

or solving an approximation of the form

ỹ = φ (x) ω (4.2)

where ỹ is the approximated y-values and is an m×1 vector, φ (x) are basis functions

that are a function of x and is an m×n matrix, and ω are the weights applied to each

basis function and is an n×1 vector, then the hypotheses of the GA represent the sets

of weights. The basis functions are therefore selected a priori. A possible drawback

with this approach is that the success of the GA is dependent on the selected basis

functions. Some knowledge of the data to be approximated is often necessary to

choose good basis functions initially, otherwise trial and error of basis functions sets

becomes necessary.
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The GA developed here takes just the opposite approach. Rather than searching

over the set of weights, this GA searches over the set of basis functions and uses least-

squares to calculate weights. Instead of the user essentially guessing basis functions

and the GA choosing weights, only the basis functions are manipulated. The major

responsibility of the user reduces to providing an adequate number of basis functions

sets for the GA to search over and to choose a method to calculate the weights.

The population of this GA is comprised of bit strings that designate a numeric

value that is assigned to each set of basis functions and a numeric value corresponding

to the degree of functions, or the number of nodes when appropriate. This is shown

in Eq. 4.3.

0000010 (4.3)

where the first three bits comprise the gene representing the basis function set and

the last four bits comprise the gene representing the degree or number of nodes or

centers. Let the two genes be numbers of base 2 and let 000 = 0 be assigned to

basic polynomials, then the bit string in Eq. 4.3 denotes 2nd degree polynomial basis

functions. Other parameters for the GA developed for this research are listed in Table

I.

The chosen method of calculating the weights is linear least-squares. Linear

least-squares calculates the optimal estimate for the function approximation using

the following equation.

ω =
(
φT (x) φ (x)

)−1
φT (x)y (4.4)

where y are the measured y-values. This formulation requires that there are at least

n independent observation equations, so there must be a linearly independent basis

function for every weight, and φT (x) φ (x) is strictly positive and invertible. For a

full derivation and discussion, please consult Reference [178].
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Table I. GA for Function Approximation Parameters Settings

GA Parameter Value

Population Type Bit String

Population Size 40

Elite Count 2

Crossover Fraction 0.8

Generations Limit 100

Time Limit ∞

Initial Population –

Initial Fitness Scores –

Creation Function Uniform

Fitness Scaling Function Rank

Selection Function Stochastic Uniform

Crossover Selection Function Scattered

Mutation Rate 0.01
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Linear least-squares is used instead of more sophisticated approximators such as

GLOMAP or SFA for a number of reasons. The first is ease of use. Eq. 4.4 is all that

is needed to calculate the weights given that φ (x) and φT (x) φ (x) meet requirements.

Selecting and interchanging basis functions is a simple matter of modifying φ and can

be easily manipulated by the GA. Linear least-squares can handle scattered data with

ease as well. Early incarnations of GLOMAP require careful node location selection

and a uniform distribution of data throughout the space to be approximated, which

might not be available for an action-value function. Other methods tend to require

tuning of their parameters. Tuning of parameters is not possible while the GA is

churning through generations of hypotheses. A drawback to linear least-squares is

that it is a global approximation of the data set. Small localized features tend to be

smoothed over. GLOMAP and others are much more adept at capturing local detail.

This problem can be slightly alleviated by providing more observations in the area

with local phenomena, which is exactly what the multi-resolution method developed

in Chapter III does, to “encourage” weights that will more accurately represent those

areas.

1. Basis Function Selection

As stated previously, the first gene of the bit string searched by the GA describes the

set of basis functions to be used for function approximation. The selection of basis

functions available to the GA are preset by the user. This is the only instance in

which the user has any direct effect on the basis functions. The basis functions and

their associated bit string gene used in this research are listed in Table II.

The second gene for those bit strings encoding for polynomials or trigonometric

polynomials describe the degree of the polynomial. The degree ranges from 0 to 15.

This range results in 3 coefficients for a 2nd degree polynomial with one independent
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Table II. GA for Function Approximation Basis Function Sets

Basis Function 1st Gene Basis Equation

Polynomials 000 y = ω0 +
N∑

n=1

ωnx
n

Trigonometric 001 y = a0 +
N∑

n=1

an cos (nx) +
N∑

n=1

bn sin (nx)

Polynomials

Linear Interpolation 010 y = mx + b

Spline Interpolation 011 S (x) =



S0 (s) , x ∈ [x0, x1]

S1 (s) , x ∈ [x1, x2]

· · ·

Sn−1 (s) , x ∈ [xn−1, xn]

where

S (xi) = y (xi)

Si−1 (xi) = Si (xi) , i = 1, . . . , n− 1

S ′
i−1 (xi) = S ′

i (xi) , i = 1, . . . , n− 1

S ′′
i−1 (xi) = S ′′

i (xi) , i = 1, . . . , n− 1

Linear Radial Basis 100 φ = − (wr)

Functions (RBFs)

Cubic RBFs 101 φ = (wr)3

Gaussian RBFs 110 φ = exp
(

(wr)2

σ2

)
, σ = 0.5

Multiquadratic RBFs 111 φ =
√

(wr)2 + σ2, σ = 0.5
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variable, 6 coefficients for a 2nd degree polynomial with two independent variables,

etc. A similar relationship holds for the trigonometric polynomials.

The interpretation of the second gene is slightly different for the linear interpola-

tion and spline interpolation. These two sets use the MATLABTM function “interpn”.

The second gene defines the number of knots to be created as input to the m-file. Let

bn be the base 10 number encoded by the second gene, and let sn be the number of

state or independent variables. The number of knots, nn, is calculated by

nn = (bn + 2)sn (4.5)

and are set uniformly throughout the space, including the edges of the space. The

ỹ-values for each knot are taken from the data set to be approximated. If there is no

data entry corresponding to the knot, then the y-value for the data entry nearest to

the knot is used. It is these knots and y-values that are used as the approximation

rather than using linear least-squares to calculate weights.

The radial basis functions are distributed through the space in a similar manner,

but instead of knots, it is their centers, c, that are distributed such that r = ‖x− c‖.

The w in each RBF equation is a simple scaling factor dependent on the dimensions

of the space defined by the data set. Let 1x and 2x define the limits of the space.

The w is defined by the following equation.

w = 2
/∥∥2x−1 x

∥∥ (4.6)

The RBFs can then be set up as a set of equations in the form

y =
N∑

i=1

ωiφ (r) (4.7)

and the weights of coefficients solved for using linear least squares.

The choice of the eight sets of basis functions is fairly arbitrary and dependent



65

on the user. The polynomials and trigonometric polynomials are included because

they are basic basis functions. The linear and spline interpolations are included with

the thought that they may better approximate the function in the presence of the

inherent raggedness of much of the learning data stored in the action-value function.

In essence, they may have a smoothing effect. The RBFs are included because they

are a well known and popular set of functions among the neural network community

and the function approximation community. It is also possible that data in this

research is better suited to approximation by RBFs. Essentially, the wide array of

basis function sets allows the GA ample opportunity to find a suitable approximation.

Note that it is possible to easily increase or decrease the number of basis function

sets by modifying the bit strings of the GA such that the first gene has more or fewer

bits, respectively.

2. Fitness Calculation

As stated above, the fitness of a given hypothesis in the GA is a measure of how good

it is. The GA in this research is searching for a set of basis functions that best fits

the data when using linear least-squares to calculate the weight. The logical fitness

choice should therefore be related to how well the true data, y, matches with the

approximation of the data, ỹ. There are a number of equations that can be used for

this comparison, but for simplicity, the equation used in this GA is the mean squared

error between the true and approximated data shown in Eq. 4.8.

Fitness (hi) =
1

m

m∑
j=1

(yj − ỹj)
2 (4.8)

where m is the number of y-values. Obviously, the GA is trying to minimize the fitness

and thus the difference between the true y-values and the approximated ỹ-values.
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3. Integration in Q-learning Algorithm

As will be discussed in the next chapter, the learning of the action-value function is

paused periodically to do an assessment of the current state of the function. This

assessment can include either the application of the GA to approximate the action-

value function and an analysis of that approximation or a policy comparison method

that will be introduced in Chapter V or both.

The Q-learning algorithm stores tabular values the action-value function in ta-

bles. There is a table for each action available to the agent. The first several columns

contain the state variables, and each row describes the full state. The final column

contains the preference or action-value for each state for the action the table repre-

sents. These table are what the GA targets to be approximated. Since the table for

each state can be markedly different from the others, it was decided by the author

that each table of the action-value function should be approximated separately. This

means that if there are four action, then there are four tables to represent those ac-

tions, and thus there will be four sets of basis functions and associated weights to

represent the approximation.

Let the table for the action-value function for a1 ∈ A be Q (s, a1). The approxi-

mation of the action-value function for a1 is

Q̃ (s, a1) = φ (s, a1) ωa1 (4.9)

where φ (s, a1) and ωa1 denote the basis functions and weights, respectively, associated

with the approximation of the action-value function table for action a1. There are

similar approximations for all of the tables.

When the learning is paused and the GA used to make an approximation the

bit strings representing the basis functions are recorded. The approximated action-
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value functions is not used in lieu of the tabular action-value function when learning

recommences. However, any changes in the bit strings recorded each time the function

is approximated is tracked. It is noted when the bit string for each table no longer

changes. If the user chooses, this can be used as a stopping criterion for the algorithm,

meaning that when the sets of basis functions no longer change, then learning is

terminated. The problem that occurs with this choice is that there is not guarantee

that the action-value function and policy it represents has converged to a good and

usable level. Therefore, another option is to run the policy comparison method, to be

discussed in Chapter V, using the approximations instead of the tabular action-value

function and use that as the stopping criterion. As will be discussed shortly, this will

provide more assurance that the approximated action-value function has converged

to an acceptable policy.

C. Illustrative Examples

The use of this GA is illustrated in two simple examples. The purpose of the examples

is to show how the GA is applied to a data set and the output thereof. Each example

is a simple data set from some simple arbitrary function. The GA is then applied to

this data set and determines a bit string encoding the basis function set and degree

or number of knots or centers that best approximates the data set. The first example

is a 2nd degree polynomial with one independent variable, and the second example is

a 4th degree polynomial with two independent variables.

1. Simple Polynomial

This example is a 2nd degree polynomial of the following form:

y = 2x2 + x− 3 (4.10)
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The data set is generated by taking 101 evenly distributed points over the interval

0 ≤ x ≤ 10 and evaluating them using Eq. 4.10. Using the GA parameters listed

in Table I, the GA is applied to this data set with “perfect measurements” and this

data set with normally distributed noise added.

a. Without “Noise”

For the basic set of data for Eq. 4.10, the GA took 51 generations to sift through

the basis function sets to determine the best approximation given the fitness measure

of the GA. Figure 7 shows the best and mean fitness for each generation of the

population of the GA for this case and the average distance between the members

of the population for each generation. The average distance is a measure of the

diversity of a population. If the population has high diversity, then its members are

quite different from each other and average distance is large. If the population has low

diversity, then its members are similar to each other and average distance is small.

Fig. 7. 2nd Degree Polynomial - (a) Fitness and (b) Average Distance

The mean fitness for the initial population is above 500 for the first several

generations. It decreases rapidly and is near 0 within 10 generations. The mean and
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best fitness remain near 0 for the remainder of the generations. The reason for the the

best fitness never deviating from near 0 and only getting better as the generations

progress is that there are elite children that are carried over unchanged from one

generation to the next. This ensures that the best can only get better. There are

several instances in which the mean fitness jumps away from 0 to about 100. This

occurs when one or more bit strings in the new generation has an “unusual” mutation

or crossover. There is more variation in the average distance between individuals. The

sharply decreasing distance in the first 10 generations reflects the behavior of the mean

fitness. The remainder of the generations shows more activity than the mean fitness,

however. This activity is due to there being many bit strings in the population that

have good fitness but are quite different from each other. This suggests that there

are still many possibilities that could produce good approximations of the data set in

question.

The final output from the GA for this data set is the bit string

0111001 (4.11)

which translates to a spline interpolation with 11 knots. The x- and y- values for

these 11 knots are listed in Table III. This approximation has a fitness value of

6.48 × 10−29. True, this is not an exact reproduction of the polynomial, but the

fitness value indicates that it is an extremely good approximation. Mathematical

error within the GA is likely the reason why this approximation became the final

output of the GA rather than the original polynomial.

b. With “Noise”

Noise with a mean of 0 and standard deviation of 0.001 is added to the set of data

for Eq. 4.10. The GA for this case searched over the sets of the basis functions for
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Table III. Knot Locations for Spline Interpolation Approximation of y = 2x2 + x− 3

x y

0 -3

1 0

2 7

3 18

4 33

5 52

6 75

7 102

8 133

9 168

10 207
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51 generations. Figure 8 shows the best and mean fitness for each generation of the

population of the GA for this case and the average distance between the members of

the population for each generation.

Fig. 8. 2nd Degree Polynomial with Noise - (a) Fitness and (b) Average Distance

The mean fitness for the initial population is much larger for this data set, start-

ing at almost 1500 for the first generations. It decreases rapidly and is near 0 within

15 generations. The mean fitness is more active for this data set than that without

noise, but it does remain less than 250 for the remainder of the generations and near

0 for about half of the remainder. The best fitness remains near 0 for the majority of

the generations. The average distance again mirrors the activity in the mean fitness.

The average distance decreases sharply from a starting value of 2 to near 0 within 15

generations.

The final output from the GA for this data set is the bit string

0000010 (4.12)

which translates to a 2nd degree polynomial. The approximation determined by the
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GA is

ỹ = 2.00x2 + 0.99999999999996x− 3.00043256481146

= 2x2 + x− 3 (4.13)

This approximation has a fitness value of 1.34 × 10−26. In this case, the original

polynomial is reproduced by the GA to within mathematical precision.

Figure 9 illustrates the true data with and without noise and their approxima-

tions. As is readily apparent, there is no discernible visual difference between the true

data and the approximation. Indeed, this is to be expected since the fitness values for

both approximations are essentially 0, so there would only be concern if there were a

visual difference when the mathematics indicate that there should not be any.

Fig. 9. Comparison of the True and Approximated Data for y = 2x2 + x− 3
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2. Rosenbrock’s Function

This example Rosenbrock’s function, which is of the following form:

f (x1, x2) = 100
(
x2 − x2

1

)2
+ (1− x1)

2 (4.14)

= 100x4
1 − 200x2

1x2 + 100x2 + x2
1 − 2x1 + 1

The data set is generated by taking 1681 evenly distributed points over the space

−2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2 and evaluating them using Eq. 4.14. Using the GA

parameters listed in Table I, the GA is applied to this data set as is and this data set

with normally distributed noise added.

a. Without “Noise”

For the set of data for Eq. 4.14, the GA again took 51 generations to sift through the

basis function sets to determine the best approximation. Figure 10 shows the best

and mean fitness for each generation of the population of the GA for this case and

the average distance between the members of the population for each generation.

Fig. 10. Rosenbrock’s Function - (a) Fitness and (b) Average Distance
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The general trend of the mean fitness, best fitness, and average distance is the

same as for the previous example. There is a sharp decrease in the mean fitness

and average distance from 60000 and 2, respectively, to near 0 within 20 episodes.

Both take longer to approach 0 than before because there are more data points to

fit the approximation to. This leads to an increase in error between the true and

approximated values and a subsequent increase in fitness. This phenomenon is also

evident in the average distance. There is more activity in the later episodes than

seen before. The reason is that there are fewer approximations that give what could

be considered a “good” approximation since there is more data to fit. However, that

does not mean that there are no good approximations. The best fitness is close to 0

for the entirety of the GA’s search. This indicates that there is at least one child in

each generation that has a small fitness value.

The final output from the GA for this data set is the bit string

0000100 (4.15)

which translates to a 4th degree polynomial. The approximation determined by the

GA is

f (x1, x2) = 100x4
1 − 200x2

1x2 + 99.9̄x2 + 0.9̄x2
1 − 1.9̄x1 + 1.00 (4.16)

= 100x4
1 − 200x2x

2
1 + 100x2 + x2

1 − 2x1 + 1

= 100
(
x2 − x2

1

)2
+ (1− x1)

2

where the weights for the missing pieces of the polynomial in Eq. 4.16 are 0. This

approximation is a near exact reproduction of Rosenbrock’s function and has a fitness

value of 2.23× 10−23.
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b. With “Noise”

Noise with a mean of 0 and standard deviation of 0.001 is added to the set of data for

Eq. 4.14. The GA once again took 51 generations to sift through the basis function

sets to determine the best approximation. Figure 11 shows the best and mean fitness

for each generation of the population of the GA for this case and the average distance

between the members of the population for each generation.

Fig. 11. Rosenbrock’s Function with Noise - (a) Fitness and (b) Average Distance

The general trend of the mean fitness, best fitness, and average distance is the

same as for data without noise. There is a sharp decrease in the mean fitness and

average distance from 20000 and 2, respectively, to near 0 within 10 episodes. Inter-

estingly, both tend toward 0 more quickly than the data without noise, though there

is more activity evident in the average distance for the remainder of the generations.

The best fitness is again close to 0 for the entirety of the GA’s search, though it is

on the order of 1× 10−7 rather than 1× 10−23.

The final output from the GA for this data set is the bit string

0001111 (4.17)
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which translates to a 15th degree polynomial. The approximation determined by the

GA is

f (x1, x2) = 100.0017x4
1 − 200.0009x2

1x2 + 100.0021x2 + (4.18)

+ 0.9993x2
1 − 2.0008x1 + 0.9998 (4.19)

= 100x4
1 − 200x2x

2
1 + 100x2 + x2

1 − 2x1 + 1

= 100
(
x2 − x2

1

)2
+ (1− x1)

2

where the weights for the missing pieces of the polynomial in Eq. 4.18 are |ωi| < 0.014.

This approximation is a near exact reproduction of Rosenbrock’s function and has a

fitness value of 9.03× 10−7.

Figure 12 illustrates the true data with and without noise and their approxima-

tions. There is again no discernible visual difference between the true data and the

approximation. This shows that the GA is able to determine a set of basis functions

that adequately approximates the data. The presence of noise leads to approxima-

tions that are less accurate in terms of fitness and thus mean square error, but that

error is still so small that it does not present a problem.
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Fig. 12. Comparison of the True and Approximated Data for Rosenbrock’s Function
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CHAPTER V

POLICY COMPARISON (PC)

A. Problem Definition

The multi-resolution discretization method provides a means of learning the action-

value function, Qπ (s, a), for a fixed policy, π, in progressively finer detail. Rather

than blindly allowing the agent to learn for the entire number of user defined episodes,

stopping criteria based on the learned policy are introduced.

In Q-learning all of the information is stored in the form of the action-value

matrix, often in the form of a table. The learned greedy policy itself is not represented

explicitly or with any sort of model. However, the policy and associated value function

can be easily extracted from the action-value function in a few simple steps. Recall

the relationship between a value function and an action-value function introduced in

Chapter II Eq. 2.14. A similar relationship exists for the greedy policy, namely

π (s) = arg max
a

Q (s, a) (5.1)

where π (s) is the action associated with the maximum preference over the set of

actions for the state. In terms of the approximated action-value function determined

by the genetic algorithm that was introduced in the previous chapter, the same rela-

tionship holds for the approximated policy:

π̃ (s) = arg max
a

Q̃ (s, a). (5.2)

As a side note, a representation of the value function can then be easily calcu-

lated:

V (s) = max
a

Q (s, a). (5.3)
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for the tabular action-value function and

Ṽ (s) = max
a

Q̃ (s, a). (5.4)

for the approximated action-value function. This relationship will be used for visual

analysis in later chapters.

Two stopping criteria are added to the Q-learning algorithm and form the third

and final addition that makes up the new overall algorithm developed here. These

two criteria are a direct policy comparison and a performance based policy compari-

son, which are periodically applied to the learned action-value function to determine

if the action-value function has converged to a usable data set. Both criteria use

the relationships in Eq. 5.1 and 5.2 for the tabular and approximated action-value

function, respectively. Both of the stopping criteria introduced in this chapter must

be met for learning at the current level of discretization to be terminated, otherwise

learning continues. These criteria are described in the following sections.

B. Policy Comparison vs. Policy Iteration

The direct policy comparison stopping criteria is a simple and expedient way to track

the change in the policy extracted from an action-value function as that function

evolves during learning. This policy comparison is carried out in a short series of

steps:

1. Pause learning after n episodes

2. Extract current greedy policy, πi (s), from action-value function, where i is the

number of elapsed episodes divided by n

3. Directly compare πi (s) and πi−1 (s)
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Table IV. Policy Comparison Example - Part 1

State π1 (s) π2 (s)

s1 3 3

s2 1 3

s3 2 1

s4 2 2

s5 3 1

s6 3 2

s7 2 2

s8 1 1

s9 3 3

s10 2 2

4. If change in policy, ∆π, is < ε, then stopping criteria #1 is achieved.

Here ε is a small number and is usually set as 5% for this research. This same series

of steps holds for the approximated action-value function. Also, after learning is

initialized and the first set of n episodes elapse, the policy, π1 (s), is extracted and

stored only as there is no π0 (s). This comparison method is fully utilized starting

after the second set of n elapsed episodes.

To better understand this methodology, consider a simple example. A prob-

lem is learned and has 10 states and 3 actions, where (s1, s2, . . . , s10) ∈ S and

(a1, a2, a3) ∈ A, respectively. The action-value function associated with this prob-

lem is not important. Simply consider the extracted policy after n and 2n episodes

shown in Table IV. There is agreement between the two policies for 6 out of the 10

states, so ∆π = 0.4 or 4%. After another n episodes, the policy is again extracted
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Table V. Policy Comparison Example - Part 2

State π2 (s) π3 (s)

s1 3 3

s2 3 3

s3 1 1

s4 2 2

s5 1 1

s6 2 2

s7 2 2

s8 1 1

s9 3 3

s10 2 2

and compared. This new policy is shown in Table V. Now there is perfect agreement

between the two policies, so ∆π = 0 or 0%. If ε was set as 5%, or even 0%, then this

problem has now satisfied the first stopping criteron.

It is entirely possible that a lack of change in the extracted policy is not an

indication that the action-value function has converged to a usable function. It could

simply be a momentary aberration and would begin to change again if another n

episodes is allowed. To prevent this from occurring a second stopping criterion is

introduced. First, however, I’ll briefly describe policy iteration, a well known and

basic learning method, to show that the simple method introduced here is quite

different and to avoid any future confusion.

Policy iteration is defined by Sutton and Barto as the process of finding an

optimal policy by using policy π that has been improved using V π to produce a better
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policy, π′. V π′ can then be computed and improved to produce a better policy, π′′.[81]

This generates a sequence of monotonically improving policies and value functions:

π0
E→V π0

I→ π1
E→V π1

I→ π2
E→ . . .

I→ π∗
E→V ∗. (5.5)

This denotes a series of policy evaluations,
E→, followed by policy improvements,

I→.

The policy evaluation step calculates the value, Vi = V πi, of each state given a policy

πi if πi were to be executed (see Eq. 5.6).

V (s)←
∑

s′

Pπ(s)
ss′

(
Rπ(s)

ss′ + γV (s′)
)

(5.6)

The policy improvement step calculates a new policy πi+1 using a one-step look-ahead

based on Vi as in Eq. 5.7.[81, 179]

V (s)←
∑

s′

Pπ(s)
ss′

(
Rπ(s)

ss′ + γV (s′)
)

(5.7)

A finite MDP has only a finite number of policies, so this process must converge

to an optimal policy and optimal value function in a finite number iterations. The

policy iteration algorithm terminates when the there is no further change.[179] A

modification to the policy iteration algorithm called asynchronous policy iteration

picks a subset of states and applies either policy improvement or value iteration

rather than updating the policy for all states at once. Policy iteration does have a

drawback in that each time the algorithm calls for policy evaluation, it could require

an iterative computation requiring multiple sweeps through the state-space, which

adds complexity to the process.

The difference between this and the policy comparison method described above

is that policy iteration continually updates and uses the policy and value function

it is learning. The policy comparison method is strictly that, a comparison of the

current greedy policy to the previous greedy policy. Since Q-learning is an off-policy
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method, it can use any preset policy as it learns the greedy policy as discussed in

Chapter II. Hence, the Q-learning continues to use that predefined policy regardless

of the state to action mapping defined by the most recently extracted greedy policy.

C. Performance Based Policy Comparison - Monte Carlo Simulation

The second stopping criterion implemented is based on the performance of the current

policy. During the pause in learning after every n episodes, the policy comparison

is conducted and then this performance based policy comparison. The performance

based policy comparison measures performance by conducting a set of Monte Carlo

simulations. It is referred to as Monte Carlo in the sense that initial conditions are

taken from a uniform distribution and a large number of simulations are conducted

and recorded. In each simulation the agent is initialized in a random non-goal state

within the region of the current level of discretization. It then uses the current learned

greedy policy, meaning it exploits its current knowledge of the state-space, to navigate

through the state-space to find the goal. A success occurs when the agent navigates

from the random initial state to a goal state without encountering a boundary. A

failure occurs when the agent either encounters the outer most boundary of the state-

space, the boundary of the current level of discretization, or gets “lost” and wanders

around the state-space. This simulation is conducted a predefined number of times,

usually 500 simulations in this research, and each success is recorded. The success

percentage is then calculated using Eq. 5.8.

% Success =
# of Successes

Total # of Simulations
(5.8)

When this success percentage is above some threshold, usually 98% in this research,

the second stopping criterion is satisfied. Both the first and the second stopping
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criterion must be met for the learning at the current level of discretization to be

terminated and learning continued at a finer level of discretization as necessary.
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CHAPTER VI

MULTI-RESOLUTION STATE-SPACE DISCRETIZATION WITH A GENETIC

ALGORITHM FOR FUNCTION APPROXIMATION AND POLICY

COMPARISON PERFORMANCE ANALYSIS (MGAP)

There are several features that make up this new modified version of Q-learning.

To help illustrate both the setup and the novel aspects, consider the flowcharts in

Figures 13, 14, and 15. These flowcharts represent the basic Q-learning algorithm,

the LSPI algorithm, which has several similar components as compared to Q-learning

with MGAP, and Q-learning with MGAP, respectively.

The Q-learning algorithm was described in Chapter II, but the flowchart shows

the episodic nature of the algorithm described by the pseudocode in that chapter.

Learning in the form of updating the action value function (Eq. 2.16) continues until

some form of stopping criterion is reached, namely the user selected total number of

episodes. To reiterate, the output of Q-learning is the action-value function, Q (s, a),

that enumerates the preference or value of an action, a, for every state, s. For Q-

learning on a discrete state-space, the action-value function can be used as a (often)

large table lookup to choose the action with the highest preference for a given state.

However, it is not always feasible to carry large tables in many applications, such

as an autonomous reconfigurable MAV, which has limited computational capacity.

Therefore, post-processing of the data often includes approximating the action-value

function using some form of function approximation (see Eq. 6.7), e.g. K-Nearest

Neighbors (KNN), Sequential Function Approximation (SFA)[173, 174], GLO-MAP,

least-squares, etc. The final output shown in Figure 13 is thus the approximated

action-value function, Q̃ (s, a).
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A. Full Algorithm Description

The flowchart in Figure 14 represents the Q-learning with MGAP algorithm. The

four core elements are the basic Q-learning algorithm (described in Chapter II), the

multi-resolution state-space discretization method (described in Chapter III), the

genetic algorithm for function approximation (described in Chapter IV), and the

policy comparison and performance measure (described in Chapter V). Succinctly,

Q-learning with MGAP uses the basic Q-learning algorithm to learn the action-value

function of the given problem for an initial state-space discretization. After a preset

number of episodes, such as after 50 episodes, the learning is paused. At this point

the genetic algorithm is launched to approximate the current action-value function.

Using the approximation of the form

Q̃ (s, ai) = φ (s, ai) ωai
, (6.1)

the policy is extracted using the relationship in Eq. 6.2.

π̃i (s) = arg max
a

Q̃ (s, a) (6.2)

Also, at this juncture, a performance test is conducted. This performance test consists

of a set of simulations in which the agent starts at a random initial state and is told

to exploit its knowledge, i.e. use a greedy policy, to find the goal. A percentage of

success is recorded. These steps are repeated periodically until the change in policy

is small, ∆π, is < ε, and the percentage of performance success is high. Once the

action-value function has converged for this level of discretization, the state-space

around the region(s) of interest is rediscretized to a finer degree according to Eq. 6.3

and learning commences in this smaller area.

r(fine)

(
s, a(fine)

)
= r(fine+1)

(
s, a(fine+1)

)
(6.3)
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This process continues until the preset finest level of discretization is reached. The

final output is an approximation of the action-value function that learned the area of

interest in fine detail and that is empirically shown to perform the task well via the

policy comparison and policy performance measure.

B. Summary of Least-Squares Policy Iteration

As stated in Chapter I, LSPI is a least-squares method for learning an action-value

function based on least-squares approximation theory. The flowchart in Figure 15

is based on the derivation and pseudocode of the algorithm provided in Ref. [140].

This algorithm conducts learning by generating a set of samples, or tuples, of the

form (s, a, r, s′) for the problem at hand and incorporating a set of user selected basis

functions stored in φ. Note that the basis functions are selected a priori. The policy,

π (s), a state to action mapping, is initialized (often as all zeros) at the beginning.

During the initial iteration through the algorithm, the update equations for the A

matrix and b vector are updated according to the update Eqs. 6.4 and 6.5 using the

previously generated tuples.

Ã← Ã + ϕ (s, a) (ϕ (s, a)− γϕ (s′, π (s)))
T

(6.4)

b̃← b̃ + ϕ (s, a) r (6.5)

When the set of tuples is exhausted, the weights for the basis functions are calculated

by Eq. 6.6.

b̃ = Ãω′

ω′ ← Ã−1b̃ (6.6)
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This yields the initial approximation of the action-value function of the form:

Q̃ (s, a) = φ (s, a)T ω (6.7)

From this approximation, the policy can be extracted. These steps repeat (update

A and b, calculate weights, extract policy) until the change in the policy from one

iteration to the next is very small. Lagoudakis and Parr report that, for the problems

they applied the algorithm to, only a small number of iterations are necessary.[140]

The authors also report that the selection of basis functions is important and can

affect the convergence of A, b, and, subsequently, π (s). Basically, the basis functions

are selected first and the user hopes that they yield a good solution. If not, new

functions are selected, and the algorithm is rerun.

C. Comparison of MGAP vs. LSPI

The greatest benefit of LSPI, in the opinion of this author, is that all that needs to

be stored for implementation after learning is φ (s, a) and ω, each of which are k× 1,

where k is the number of basis functions multiplied by the number of actions. Also,

rather than updating a possibly large tabular action-value function with the tuples,

only A and b need updating and are k × k and k × 1, respectively, regardless of the

number of tuples.

By comparison, Q-learning with MGAP autonomously selects and tests many

sets of basis functions online to determine what best approximates the action-value

function, thus avoiding this often time consuming process. In addition, the deriva-

tion of LSPI limits the function approximation to a global least-squares approximation

dependent on the pre-selected basis functions. To use a more sophisticated function

approximation technique would require that the entire algorithm be re-derived. The
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modular format of MGAP, however, allows for the easy integration of approxima-

tion techniques. Currently, the GA employs a global least-squares approximation

as well, but replacing the approximation with a more sophisticated method, such as

GLOMAP, is a simple matter of communication between Q-learning and the enhance-

ments.

Unlike the policy iteration of LSPI, the policy comparison method not only de-

termines when the policy converges, it also determines when the policy has converged

to a policy that can successfully guide the agent to the goal for both the tabulated

and the approximated action-value function. Finally, the multi-resolution state-space

discretization enhancement guides the agent to focus on Regions Of Interest where

additional and more detailed learning is determined necessary. Due to the global

approximation nature of LSPI and similar learning algorithms, focusing learning in

specific areas will not necessarily be reflected in the final output of the algorithm. The

approximation may not reflect the details learned in these regions. By discretizing

the state-space, the detailed learning in specific regions is more readily reflected and

the approximation can be tailored accordingly.
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CHAPTER VII

BENCHMARK DYNAMIC SYSTEM EXAMPLE - INVERTED PENDULUM

The inverted pendulum is a classic system on which to test new control algorithms. It

is a simple unstable system that requires a certain amount of finesse to control. The

simple inverted pendulum system shown in Figure 16 has four degrees of freedom:

cart position, x, cart velocity, ẋ, pole angular position, θ, and pole angular velocity,

θ̇. This system has one equilibrium point, which is unstable, at θ = 0 deg.

Fig. 16. Inverted Pendulum System

As stated above, this simple system, and derivatives thereof, is often used to test

new controllers. For example, the system in which two pendulums are to be balanced

was addressed using a double CMAC network.[180] The authors effectively learned

to balance the system by first splitting it up into two single pendulum problems and

then combining them with some extra learning to balance the double system. There

are also many who have controlled this system with fuzzy logic controllers in one form

or another. One such reference used the Takagi-Sugeno model to do the full swing
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up and balance maneuver of the single inverted pendulum with friction.[181] Another

used a fuzzy controller to do the swing up maneuver and the balancing after a certain

threshold using a linear quadratic regulator.

Q-learning has been used a number of times as well. A hierarchical reinforcement

learning controller for the double inverted pendulum was designed by Zheng, et al.,

that uses a similar setup as the CMAC method, but with standard Q-learning as the

algorithm of choice. The system is again split into two single pendulum problems and

combined into the double pendulum.[182]

There are many more references regarding control via linear quadratic regulators,

fault tolerant adaptive control, all manner of reinforcement learning methods, modern

control, and classical control. In general, this type of system is a benchmark control

problem on which controllers ought to be tested. It is versatile in the sense that it

can be made more difficult by using the full nonlinear equations of motion and/or by

adding friction or damping effects. It can be made simpler by linearizing about the

equilibrium point and/or negating damping effects.

A. Inverted Pendulum Model

The inverted pendulum is simulated as a simple, nonlinear dynamic system. Friction

is assumed negligible. The derived equations of motion for this system are

ẍ = −mg cos θ sin θ−mθ̇2l sin θ+F
M+m−m cos2 θ

θ̈ = F−(M+m)g tan θ+mθ̇2l sin θ

−(Ml+ml
cos θ )+ml cos θ

(7.1)

The constants for the system are listed in Table VI.

The Q-learning controller determines the sign and magnitude of the force to be

applied to the system in intervals of ∆t = 0.05 sec. In essence the controllers act as
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Table VI. Constants of the Inverted Pendulum System

Parameter Value

M (kg) 5

m (kg) 1

l (m) 5

g ( m
sec2

) 9.81

Sampled Data Regulators as they attempt to balance the pole around the equilibrium

point θ = 0 deg.

B. Inverted Pendulum Cast as a Reinforcement Learning Problem

Casting a dynamic system as a reinforcement learning problem takes careful consid-

eration. The degrees-of-freedom chosen to be the state variables, such that s ∈ S,

to be used by the learning algorithm must adequately capture the dynamics of the

system and the goal to be achieved. The dynamic system, and subsequently the state

variables, constitute the environment with which the agent interacts. This system has

four possible degrees-of-freedom, the interdependence of which are captured in the

two equations of motion. If one were to rush into casting the system as a reinforce-

ment learning problem, one would include all degrees-of-freedom as state variables,(
x, ẋ, θ, θ̇

)
∈ S. This would be necessary if the goal was to balance the pole around

θ = 0 deg and restrict the cart to a finite track. Since this is not case for this formu-

lation of the problem and only balancing the pole around θ = 0 deg is of interest with

no restrictions on the cart, only the angle and angular velocity of the pendulum mass

are considered to be state variables,
(
θ, θ̇
)
∈ S. Note that both equations of motion

must be retained and simulated as they are interdependent and the state variables of
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Table VII. Inverted Pendulum Q-Learning Example Reward Structure

Bounds Reward

|θ| ≤ 2 deg 1

2 deg < |θ| ≤ 12 deg 0

|θ| > 12 deg -1

interest show up in both equations.

The only input into the system is a horizontal force applied to the cart. Thus, the

action available to the agent is the force to be applied to the system, i.e. (+F,−F ) ∈

A. The forces are set at the user’s discretion. The action space can be restricted

to 2 actions only or have 10 or more. The main effect of action selection is on the

complexity of the problem since the more actions available to the agent, the more

trials necessary to learn which actions are appropriate for the given state.

The reward, r, received by the agent from the environment is based on the current

state of the system. Since this is a simple system, the reward structure is kept simple

(see Table VII). The reward is set up such that if the agent manages to propel the

pendulum near the goal, it receives a positive reward. Additional positive rewards are

received if the pendulum is maintained near the goal for multiple time steps. This

encourages the agent to learn to balance the pendulum for as many time steps as

possible. A negative reward is received if the pendulum falls beyond some angle, and

no reward or a neutral reward is received if the angle of the pendulum lies between

the two bounds.

For this problem the state-space is quantized rather than discretized. Quantized

means that the dynamic system is simulated in continuous time and at predefined

intervals the state is noted, and the update to the action-value function determined
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Table VIII. Inverted Pendulum Q-Learning Parameters

Parameter Value

Episodes 5000

∆t 0.05 sec

tf 50 sec

α 0.01

γ 0.7

by the learning algorithm is applied to the nearest learning storage state in the action-

value function.

C. Numerical Results

The agent is given the task of learning to balance an unstable system for as many

time steps as possible. By setting up the system as a reinforcement learning problem

described above, the agent is set to learn how to control the system. Additional

parameters for the learning problem are listed in Table VIII. The agent is allowed

5000 episodes over which to learn the controller for the current goal. The initial state

for each episode is random and within the neutral or positive bounds of the state-

space. Each episode is simulated for a total of 50 sec, and every 0.05 sec the state

is noted and the action-value function updated. If the pendulum falls beyond the

negative bounds, the episode is terminated and a new episode begun.

For this example, the agent learns using only two algorithms. The agent first

uses Q-learning to establish a baseline controller. In the second part, the agent uses

Q-learning with AAG in an attempt to learn a better controller. The two controllers

are evaluated in a number of ways. First, it is helpful to consider a value function
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Table IX. Inverted Pendulum Q-Learning Simulation Initial Conditions

State Value

x 0m

ẋ 0m/ sec

θ 0.5 deg

θ̇ 0 deg / sec

approximated from the learned action-value function. The value function can show

how the learning differs when learning parameters or discretization is modified. The

policy can be extracted from the action-value function as described in Chapter V

using Eq. 5.1. This equation represents the action associated with the maximum

preference or action-value for each state. An approximation of the value function

based on both the action-value function and the extracted policy can then be found

with Eq. 5.3 from Chapter V.

Since this is a dynamic system, it is also informative to simulate the system with

the learned controller in action. Both controllers are evaluated for simulations of

10 sec and 300 sec. The initial conditions for the simulations are listed in Table IX.

Control is applied in the same way that it is learned. Every ∆t = 0.05 sec an action

or force is selected based on the highest preference in the action-value function given

the current state, see Eq. 5.1. That force is applied for 0.05 sec, and then a new

action is selected. The 10 sec simulation is intended to show an up close view of the

workings of the controller, whereas the 300 sec simulation is intended to prove that

controller can balance the pendulum for an extended period of time, in this case for

6000 time steps.
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Table X. Inverted Pendulum Policy Color Scheme

Action Color

−F Blue

F Red

1. Case 1: Q-Learning

The controller learned using the Q-learning algorithm is restricted to only a couple

possible actions. These action are the following forces

(−15N, 15N) ∈ A. (7.2)

The reward structure for this case is that listed above in Table VII. The states were

quantized to every 1 deg and 1 deg / sec for angular position and velocity, respectively.

The value function and policy for this case are shown in Figure 17. The actions

for the policy are color coded and are listed in Table X The value function shows a

marked peak crest in the goal region where the agent received positive rewards. This

encourages the agent to attempt to remain in this area. There is a sharp drop off in

value beyond the goal region. There is also negative regions near the outer bounds

of the state-space. The visual representation of the policy shows that the agent

probably needs more learning time. One would expect more continuous regions of a

given action. The figure and intuition of the system suggests that for a fully converged

policy, the upper right half of the state-space should be red and the lower left half

blue. Due to the dynamic nature of the system, however, there is no coordinated way

to have the agent focus on these regions aside from initializing the many episodes in

these regions. For more complex problems, there is no guarantee that there would be
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large regions in which one particular action is ideal. Therefore, artificially forcing the

agent to initialize in these regions for this simple problem is counterproductive since

the method is unlikely to scale up to a more complex problem.

Fig. 17. Basic Inverted Pendulum Controller: Value Function (a) and Policy Repre-

sentation (b)

Either way, the true test for this kind of learned controller is to actually test

the controller. Figures 18 and 19 show the time history and phase diagram for the

10 sec and 300 sec simulations, respectively. The time history in Figure 18 illustrates

the jagged nature of this controller resulting from the restricted number of control

inputs. Despite this the learned controller balances the pendulum within the goal

region of |θ| ≤ 2 deg as evidenced by both the time history and the phase diagram.

The angular velocity does spike close to 8 deg / sec about 9 sec into the simulation,

but the controller is able to recover the system and maintain balance.

The time history in Figure 19 shows a similar response as the controller continues

to balance the pendulum. The pendulum is balanced for the full 300 seconds and

appears to be stable, but does not get much closer than the oscillation between

about θ = −1 deg and θ = 2 deg with the angular velocity approaching 8 deg / sec
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Fig. 18. Basic Inverted Pendulum Controller, 10 Seconds: Time History (a) and Phase

Diagram (b)

Table XI. Inverted Pendulum Action Sets and State Quantizations

Discretization Level Action Set State Quantization
(
θ, θ̇
)

1 (−15N, 15N) ∈ A (1 deg, 1 deg / sec)

2 (−5N, 5N) ∈ A (0.2 deg, 0.2 deg / sec)

3 (−1N, 1N) ∈ A (0.04 deg, 0.04 deg / sec)

many times. The agent achieved its goal of learning a controller that balances around

θ = 0 deg and within |θ| ≤ 2 deg, but the response leaves much room for improvement.

2. Case 2: Q-Learning with AAG

The controller learned using Q-learning with AAG is a little more complicated. There

are three levels of discretization or quantization on which the agent is allowed 5000

episodes for learning in each. The action sets and state quantizations for each level

are listed in Table XI.
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Fig. 19. Basic Inverted Pendulum Controller, 300 Seconds: Time History (a) and

Phase Diagram (b)

Initial attempts at integrating AAG into this problem had the goal regions de-

pendent solely on θ as is used in Case 1. Simulations using the learned controller

were not satisfactory, so a more complex scheme was implemented. This scheme is

shown in Figure 20. For this case the goal regions are dependent on both θ and θ̇.

The equations that describe the bounds shown in Figure 20 are listed in Table XII.

Figure 20 also shows all of the quantized states where information was stored by

the agent. When learning, these bounds also act as the outer bounds at finer levels

of discretization. For example, the first level of quantization uses the outer bounds

listed in Table VII and the goal bounds listed in Table XII. For the second level

of quantization, the linear equations describing the goal region for the first level of

quantization now act as the outer bounds for the second level, and the goal region

for the second level of quantization is in effect.

The value function and policy for this case are shown in Figure 21. The actions

for the policy are the same as the previous case and are listed in Table X. The value

function for this case shows a more extreme peak at
(
θ, θ̇
)

= (0, 0) and a similar crest
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Fig. 20. AAG Inverted Pendulum Controller: Quantized States (a) and Goal Regions

(b)

Table XII. Inverted Pendulum AAG Goal Region Equations

Discretization Level Lower Bound Equation Upper Bound Equation

1 θ̇ = −23.3θ − 20 θ̇ = −23.3θ + 20

2 θ̇ = −20θ − 8.6 θ̇ = −20θ + 8.6

3 θ̇ = −20.7θ − 2.9 θ̇ = −20.7θ + 2.9
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in the goal region. The levels of quantization are also evident in the value function

in the blocky regions on the outer edges of the crest slope and beyond and the fine

details near the center of the crest and the peak. The visual representation of the

policy again shows that the agent probably needs more learning time. However, the

regions of a given action are more contiguous than the previous case. The patterning

of the policy suggests that good control of the pendulum when exploiting learned

knowledge is sensitive to initial conditions.

Fig. 21. AAG Inverted Pendulum Controller: Value Function (a) and Policy Repre-

sentation (b)

This controller is also tested for a short time period and an extended time period

as shown in Figures 22 and 23, respectively. The controller is implemented such that

the actions available to the controller is dependent on the state, as it was during

learning. This means that if the state of the pendulum is outside the level 1 goal

region bounds, then the agent may only use the level 1 actions. When the state of

the pendulum is within the level 1 or level 2 goal region bounds, the controller may

use the level 2 or level 3 actions, respectively. If the state is within the level 3 goal

region bounds, then the controller may use the level 3 actions. The time history in
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Figure 22 shows that this controller is able to balance the pendulum much closer to the

equilibrium point than the previous controller. The agent balances to within an angle

of ±0.3 deg within 5 seconds of the simulation. The angular velocity shows clearly the

effects of the controller. In the previous case the angular velocity time history was

very jagged as the controller sought to balance the pendulum by alternating between

two large opposing forces. The angular velocity shown in Figure 22 shows evidence of

the controller using the smaller forces, which results in a smoother time history and

better control of the pendulum. The angular velocity does not get as large as in the

previous case. The largest spike in angular velocity is 3.3 deg / sec and quickly reduces

to within ±0.5 deg / sec. All of these details are also shown in the phase diagram. The

small red dot indicates the ideal goal of a perfectly balanced pendulum. The phase

diagram shows that the pendulum oscillates briefly before good balance is achieved

near this point.

Fig. 22. AAG Inverted Pendulum Controller, 10 Seconds: Time History (a) and Phase

Diagram (b)

The time history in Figure 23 shows that the same trend continues as time

elapses. The controller maintains balance of the pendulum to within an angle of



106

±0.3 deg for the duration of the 300 sec. The angular velocity also remains low, within

±0.5 deg / sec, after the initial balancing for the duration of the simulation. On closer

inspection of the time history and phase diagram, it is evident that the pendulum

is near the equilibrium, but tends unbalance to a positive angle, though it quickly

recovers. This trend is due to the velocity of the cart, which is not considered in this

formulation. The cart velocity stabilizes around x = 5m/ sec, which in turn causes

the pendulum to drift to a positive angle. The current controller is able to balance

the pendulum despite this fact, but it could be avoided by putting constraints on x

and ẋ and including them in the learning problem, thereby creating a more complex

problem.

Fig. 23. AAG Inverted Pendulum Controller, 300 Seconds: Time History (a) and

Phase Diagram (b)

D. Summary

In this chapter it was cast a reinforcement learning problem so that both Q-learning

and the multi-resolution state-space discretization method could be tested. The value
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function and greedy policy were visually analyzed and then tested in simulation.

Results show that controller learned just using Q-learning was able to balance the

pendulum within the specified range of |θ| ≤ 2 deg, but could not damp out the

oscillations. The angular position never got closer than θ = −1 deg and θ = 2 deg

with the angular velocity approaching 8 deg / sec many times. The controller learned

using Q-learning and multi-resolution state-space discretization was able to balance

the pendulum much nearer to the equilibrium point without the extremes in angular

velocity. The agent balanced the pendulum to within an angle of ±0.3 deg within 5

seconds, and the angular velocity remained < 0.5 deg / sec for most of the simulation.

This balance was maintained for the 6000 time steps of the 300 sec simulation.
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CHAPTER VIII

SIMPLE RECONFIGURABLE SYSTEM EXAMPLE - MORPHING AIRFOIL

When considering a reconfigurable air vehicle, the complexity of the reconfiguration

can range from changing a few parameters, such as wing dihedral, wing sweep, wing

span, the airfoil itself, etc., to a fully articulated wing, body, and tail much like a

bird’s. Aircraft are usually designed for very specific purposes. As my advisor likes

to say, “Form follows function.” A typical fighter aircraft (Figure 24) has a highly

swept, low aspect ratio wing and is designed for speed and maneuverability in flight.

A bomber aircraft is designed for efficiency in cruise and to carry a large ordinance

Fig. 24. Representative Fighter Aircraft - F-16 Fighting Falcon

payload. Thus they tend to be large with a slightly swept, high aspect ratio wing

(Figure 25). A general aviation (GA) aircraft is designed for stability and to fly at

slower speed, < 150kts (Figure 26).

The benefit of a reconfigurable aircraft lies in the ability to harness the capabili-

ties of many types of aircraft. Conceptually, such a vehicle would be able to perform

the duties of a fighter, bomber, GA, etc. as well as or better than those aircraft



109

Fig. 25. Representative Bomber Aircraft - B-1B Lancer

Fig. 26. Representative General Aviation Aircraft - Cessna 172
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designed specifically for those purposes. Thus, as described in the Chapter I, this is

an active research area.

Many current approaches involve optimizing the vehicle shape for several flight

phases, applying an optimal control technique of one form or another, and determining

an actuation scheme to enable the shape change. Some of the problems that arise

with this approach are that there are only a handful optimal shapes and the optimized

controller is specific to the initial and final shapes. Should the optimal configuration

be redesigned, that would require that the shape change controller be redesigned as

well. Machine learning and in particular the algorithm developed in Chapters III-VI

of this dissertation is a candidate approach to avoid these problems.

The first application of this algorithm to a reconfigurable system is a simple

airfoil as seen in Figure 27. Rather than finding a couple optimal shapes that meet

some criteria and a separate optimal controller to maneuver from one shape to the

other, the airfoil is cast as a reinforcement learning problem in which the full spectrum

of shapes that meet the flight phase criteria are learned as well as the local transitions

that guide the shape from any initial shape to a shape that meets the requirements.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Airfoil
Camber Line
Chord Line

V

Thickness

α

Location of
Maximum Camber

Fig. 27. Representative Airfoil

Section A discusses the airfoil model to be cast as the environment of the rein-

forcement learning problem. Then the full reconfigurable airfoil reinforcement learn-
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ing problem is described followed by an extensive series of examples that exercise

the many aspects of the problem. Several developmental stages are shown in Sec-

tion C. The numerical results for this application are much more extensive than the

other applications because the various components of MGAP were developed with

the reconfigurable airfoil as the primary testbed.

A. Airfoil Model

The airfoil is modeled by a CFD code using a constant strength doublet panel method.

This model calculates the aerodynamic properties of an airfoil given a set of four

inputs:

• Airfoil thickness

• Airfoil camber

• Location of maximum camber

• Airfoil angle-of-attack

Setting these four parameters as inputs to the model allow for quick calculation of the

aerodynamic properties of many different airfoils or as a single airfoil changes shape.

A number of assumptions are made during the development of the model. These

assumptions are

1. Flow is incompressible.

2. Flow is inviscid.

3. Upper and lower surfaces of the airfoil are pinned at the leading and trailing

edge.
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These assumptions allow for a simple model that is valid for the linear range of

angle-of-attack and sufficient for the purposes of this research.

Calculating the aerodynamic properties of the airfoil in question begins with

considering the horizontal, up, and vertical, wp, velocities of each panel in the local

panel coordinate system.

up =
µ

2π

[
z

(x− x1)2 + z2
− z

(x− x2)2 + z2

]
(8.1)

wp =
µ

2π

[
x− x1

(x− x1)2 + z2
− x− x2

(x− x2)2 + z2

]
(8.2)

which requires a transformation of the global coordinate system to the local panel

coordinate system using the following relationship: x

z


p

=

 cos(θi) − sin(θi)

sin(θi) cos(θi)


 x− x0

z − z0

 (8.3)

Assuming that there is no penetration of the boundary, which means that the

flow cannot cross the boundary of the airfoil, the velocity of the flow normal to the

surface is 0 in the global coordinate system. Transforming the velocities into the

global coordinate system is thus achieved with Eq. 8.4. u

w

 =

 cos(θi) sin(θi)

− sin(θi) cos(θi)


 up

wp

 (8.4)

The doublet strengths, µ, and resulting tangential velocities can then be solved

for from a system of equations for every panel constructed from Eqs. 8.1-8.4. These

tangential velocities are then used to calculate the pressure coefficient using a modified

form of the Bernoulli equation:

Cp = 1− u2 + w2

V 2
∞

(8.5)
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The pressure coefficient can be broken up into normal and axial forces using

simple integration. These forces can also be further broken up into lift and drag

using simple trigonometry.

Cn =
1

c

c∫
0

(
Cplower

− Cpupper

)
dx (8.6)

Ca =
1

c

c∫
0

(
Cpupper

dyupper

dx
− Cplower

dylower

dx

)
dx (8.7)

Cl = Cn cos(α)− Ca sin(α) (8.8)

Cd = Cn sin(α) + Ca cos(α) (8.9)

Validation and verification of this model can be found in Ref. [183].

B. Airfoil Cast as a Reinforcement Learning Problem

Casting the morphing airfoil as a reinforcement learning problem is a slightly different

challenge than the inverted pendulum in Chapter VII. In the case of the airfoil, there

are no dynamics involved in the shape change. For the purposes of this research, each

commanded change in airfoil shape yields an immediate response. This formulation

effectively removes a potentially complicated aspect of the morphing airfoil problem

from this reinforcement problem and allows for better focus on the actual choice in

shape.

The state variables must be chosen just as carefully, though, so that the aero-

dynamic properties of the airfoil are adequately exploited. The CFD model itself

constitutes the environment with which the agent interacts. Thus there are four

possible interdependent parameters, the four inputs to the CFD model, that can con-

stitute the state of the agent within the environment. The reinforcement learning
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problem can be set up such that any combination of the four parameters form the

state while the others are just held constant in the background.

The agent interacts with its environment by choosing actions from a set of ad-

missible actions. The state-space is discretized in the manner described in Chapter

III, so these actions include incremental changes in the shape parameters of the air-

foil. Thus the agent is effectively restricted to movement between adjacent vertices.

An example of admissible action in this context is the following. The agent chooses

to move in the x1-direction from vertex IJX in the 2-dimensional problem. For the

initial discretization, the two possible actions in the x1-direction are defined as follows

A1
11 ≡ (I+1)JX − IJX = h1

x1

(8.10)

A1
12 ≡ (I−1)JX − IJX = −h1

x1

Eq. 8.10 can be summarized by saying the initial admissible actions in the x1-direction

are A1 = ±h1
x1

. Similar relationships can be found for the x2-direction. Admissible

actions in the other direction is A2 = ±h1
x2

. The definitions of the xi axes for all of the

examples are defined in Table XIII. To read these tables consider the x1-direction,

for example. The agent changes ±0.50% of the chord in thickness in this direction

when hx1 = 0.50%.

The goal, g, of the agent for this problem is defined by the aerodynamics of the

airfoil. Every goal has a range, gr, associated with it. The majority of the numerical

examples have goals defined by the airfoil lift coefficient, cl. A couple examples have

goals based on airfoil drag, cd, and moment, cm, coefficients. Those vertices whose

state yield aerodynamic coefficients, c, from the CFD model that lie in the goal range

defined by g − gr ≤ c ≤ g + gr form the pseudogoals of the problem.
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Table XIII. Morphing Airfoil Axis Definitions

xi Definition

x1 Thickness (%)

x2 Camber (%)

x3 Location of Maximum Camber

x4 Angle-of-Attack (deg)

Table XIV. Morphing Airfoil Q-Learning Example Reward Structure

Bounds Reward

g − gr ≤ c ≤ g + gr 20

s < limitsmin or s > limitsmax -20

Otherwise 0

There are two reward structures used by the various examples. The first is

a traditional negative, neutral, and positive reinforcement scheme and was used in

the early stages of this research. This scheme is summarized in Table XIV. The

s < limitsmin or s > limitsmax refers to when the state, s is beyond the bounds or

limits of the of the state-space. These limits are listed in Table XV. The second is

a form of reward shaping that is essentially a gradient based reward function. The

function is defined by Eq. 8.11.

r = |g − cn−1| − |g − cn| (8.11)

where r is the reward, g is the goal, and c is the metric or aerodynamic coefficient.
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Table XV. Morphing Airfoil Parameter Limits

Limit Lower Upper

Thickness (% chord) 10 18

Camber (% chord) 0 5

Location of Max Camber 0.2 0.8

Airfoil Angle-of-Attack (deg) −5 5

C. Numerical Results

In each numerical example the agent is given the task of learning to maneuver through

the state-space to a goal state that satisfies some aerodynamic requirement. The agent

is usually allowed 5000 episodes over which to learn unless otherwise specified. The

initial state for each episode is random.

For this example, the agent learns using various combinations of the components

described in previous chapters. Section 1 describes the results of learning using just Q-

learning. Shape changing of both two and four shape parameters is explored. Section

2 is the first instance in which AAG was originally tested. Several developmental

stages were involved before the final form of that part of the algorithm was realized.

Section 3 has the agent learn using both AAG and the policy comparison stopping

criteria based on the policy as developed in Chapter V. Finally, Section 4 is the full

MGAP algorithm as applied to the morphing airfoil problem. All of these examples

show the difference the various components make when they are incorporated into

the basic Q-learning algorithm.
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1. Case 1: Q-Learning

There were several developmental stages using just Q-learning during the early stages

of casting the morphing airfoil problem as a reinforcement learning problem. The first

stage has the agent learn several goals based on combinations of the aerodynamic

coefficients with two state variables. The second stage tests several of the parameters

in the Q-learning algorithm itself, such as learning rate, discount factor, and policy

followed, also with two state variables. The final stage gives the agent full rein of the

four shape parameters as the state variables. These three stages serve to show the

versatility of basic Q-learning as it is applied to the morphing airfoil reinforcement

learning problem.

a. Developmental Stage 1: Initial Testing

The morphing airfoil reinforcement learning problem is first tested by evaluating sev-

eral reward schemes. The purpose of these examples is to show that the Q-learning

agent can explore, learn, and use its knowledge of the state-space defined by the

aerodynamic model. The agent explores over the state-space defined by the state

variables of airfoil thickness and airfoil camber. Three cases with different aerody-

namic requirements are learned. The first case has the goal defined by only the lift

coefficient. The agent is looking for a configuration that meets a minimum lift coef-

ficient requirement. The second case adds complexity by having the agent also try

to meet a maximum drag requirement. This additional requirement effectively nar-

rows the goal region previously defined by the minimum lift coefficient requirement.

The third case adds one more requirement in the form of a maximum moment co-

efficient about the leading edge of the airfoil, further reducing the goal region. The

requirements for each case are enumerated in Table XVI.
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Table XVI. Reward Region for Morphing Airfoil Cases 1-3

Case #1 Case #2 Case #3

cl ≥ 0.4 ≥ 0.4 ≥ 0.4

cd N/A ≤ 0.003 ≤ 0.003

cmle
N/A N/A ≤ 0.87

Table XVII. Learning Parameter Constants for Morphing Airfoil Developmental Stage

1

Parameter Value

Chord 1m

Angle-of-attack 2.0◦

Episodes 5000

α 0.01

γ 0.7

For the purpose of direct comparison, the chord, angle-of-attack, and number of

episodes are kept constant and are listed in Table XVII. The reward scheme is that

defined above by Table XIV. For each of the 5000 episodes, the agent begins in a

random initial state that is not classified as a goal state. It explores the state-space

of thickness-camber combinations until it hits the predefined limit of total number of

actions or finds a goal state. Should the agent run into a boundary, that boundary

location is noted, and the agent chooses another action. The actions for all three

cases are defined by the hxi listed in Table XVIII.
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Table XVIII. Distance Between Adjacent Vertices for Morphing Airfoil Developmental

Stage 1

hxi
Value

hx1 0.10

hx2 0.10

Case #1: Lift Coefficient Goal: This case tests the learning algorithm in which

the goal is defined by a minimum lift coefficient the agent must find based on the

aerodynamic calculations given the current state’s thickness-camber pair. The goal

region is therefore all of the pairs that meet the minimum lift coefficient requirement

of 0.4.

Fig. 28. Q(s, a) Evolution for an Increase in Camber for Case #1
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Figure 28 shows the evolution of Q(s, a). Given the 4-dimensional nature of

Q(s, a) (thickness, camber, action, action-value) only one action can be displayed

at a time. Figure 28 illustrates the action-value for each thickness-camber pair for

the action of an +0.10% increase in camber as the number of episodes increases.

Very early on the agent learns that the goal region encompasses higher values of

camber as indicated by the positive values of the action-value function. These positive

values indicate a positive preference for this action illustrated. If this preference is

greater than the preferences for the other three actions, then the agent will choose

this action given that it is acting in a greedy manner. This preference becomes

more pronounced as the number of episodes increases. It is also apparent that as

the number of episodes increases the surface suggested by the values becomes more

fleshed out. The action-value for pairs of somewhat lower thickness becomes more

positive. This trend indicates that agent is learning that at these lower camber values

if it chooses to increases camber it will get closer to the goal region. Finally, Figure

28 shows that at any given thickness, there is at least one value of camber that is in

the goal region.
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Fig. 29. Monte Carlo Simulation for Q-learning of Case #1
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The Monte Carlo simulation for performance is conducted on this learning case,

though it was not used as a stopping criterion. The learning is paused every 200

episodes and the performance of the policy measured as described in Chapter V. Fig-

ure 29 shows the trend of success as the number of episodes increases. The percent

success increases rapidly and approaches 100% success, meaning that the agent nav-

igated to a goal state in the goal region every episode. Figure 29 indicates that by

using this learning algorithm, the agent is successful 90% of the time by 1600 episodes

and approximately 100% of the time by 2600 episodes given the definition of the goal

for this example. There is a slight decrease in success from 1000 to 1200 episodes.

This occurrence is most likely due to the occasionaly random actions taken by agent

resulting in the agent encountering boundaries more often than in the preceding and

succeeding cases.

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

xbar

y ba
r

Beginning Configuration

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

xbar

y ba
r

Ending Configuration

Fig. 30. Initial and Final Airfoil Configuration for Case #1

Figures 30 and 31 illustrate one successful episode using the final learned action-

value function. The agent’s initial state is 11% thickness and 0% camber. It uses

the learned function to navigate from this initial state to a state in the goal region.
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The agent chooses an action every 0.5 sec based on its current state defined by its

thickness and camber using the action-value function it learned offline; either the

thickness or camber changes according to arbitrarily chosen simple nonlinear shape

changing dynamics. Thus the airfoil changes from one static shape to another by a

series of small steps in an effort to reach the defined goal. Figure 30 shows the airfoil

configuration for the initial and final state. Figure 31 shows how the thickness and

camber change with time. The resulting lift coefficient in Figure 31 shows that the

agent chooses actions that takes it steadily toward the lift coefficient goal of 0.4 until

it reaches a thickness and camber combination that corresponds to a calculated lift

coefficient greater than 0.4.
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Fig. 31. State Progression Using Greedy Policy for Case #1
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Case #2: Lift and Drag Coefficient Goal: This case tests the learning algorithm in

which the goal is defined by a minimum lift coefficient and a maximum drag coefficient

the agent must find based on the aerodynamic calculations. The goal region is all of

the pairs that meet the minimum lift coefficient requirement 0.4 and the maximum

drag coefficient requirement of 0.003 as defined in Table XVI.

Fig. 32. Q(s, a) Evolution for an Increase in Camber for Case #2

Figure 32 shows the evolution of Q(s, a) for the action of a +0.1% increase in

camber for this goal definition. Again the agent learns that the goal region encom-

passes higher values of camber. When compared to Figure 28, it can be seen that for

this goal definition the goal region is much narrower than previously. The addition of

the drag coefficient requirement restricts even further the possible thickness-camber

pairs that satisfy the goal requirements. Also, as the number of episodes increases,
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the surface for this action becomes more pronounced, though not as rapidly as the

previous example. Like the previous example, however, Figure 32 shows that at any

value of thickness, there is at least one value of camber such that the pair meets the

goal requirement.
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Fig. 33. Monte Carlo Simulation Q-Learning of Case #2

Figure 33 displays the results of the Monte Carlo simulation for this example.

The success rate approaches 100% more rapidly than in the previous example. Figure

33 indicates that using this learning algorithm with the more restricting goal require-

ment, the agent is successful 90% of the time by 600 episodes approximately 100%

successful by 2000 episodes. The small oscillations in success rate as the number

episodes increases and the marked decrease in success from 800 to 1000 episodes is

most likely due to the occasional random actions taken by the agent that resulted in

a cessation of the current episode.

Figures 34 and 35 illustrate one successful episode using the final learned action-

value function given the goal requirements for this example. The initial state is 11%

thickness and 0% camber. It uses the learned function for this example to navigate
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Fig. 34. Initial and Final Airfoil Configuration for Case #2

to the goal region without encountering a boundary. Figure 34 shows the initial and

final configuration of the airfoil, and Figure 35 shows how the agent navigates from

one to the other. The agent chooses actions that takes it directly toward a state

that has a lift coefficient greater than 0.4 and a drag coefficient less than 0.003. In

this case the agent does not choose to change thickness at all. It instead prefers to

increase camber steadily until the goal region is reached. The lift coefficient and drag

coefficient calculated by the aerodynamic module reflect this as they approach their

respective goals as a result of the actions the agent chooses.

Case #3: Lift, Drag, and Moment Coefficient Goal: This case further tests the

learning algorithm by restricting the goal region even more by adding a maximum

moment coefficient about the leading edge the agent may not exceed in addition to the

minimum lift coefficient and a maximum drag coefficient the agent must adhere to.

The goal region is thus all the pairs that meet the minimum lift coefficient requirement

0.4, the maximum drag coefficient requirement of 0.003, and the maximum moment

coefficient about the leading edge as defined in Table XVI.
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Fig. 35. State Progression Using Greedy Policy for Case #2

Figure 36 depicts the evolution of Q(s, a) for the action of an +0.1% increase in

camber for this goal definition. The contour of the surface for this goal definition is

much different than in the previous two examples. There are two small regions that

meet all the requirements defined in Table XVI. The locations of the two become

more apparent as the positive preferences become more pronounced as the number

of episodes increases. The smaller region is centered near 12% thickness and 4.7%

camber. The larger region is in the corner of large percent thickness and large percent

camber. This figure also shows the result of the agent encountering a boundary -

negative action-values. These negative preferences tell the agent that a boundary is

near and it should choose some other action.

Despite this smaller goal region, the success rate shown in the Monte Carlo simu-

lation results in Figure 37 approaches 100% slowly as the number of episodes increases,

similar to the previous examples. The learning algorithm is able to cope with the more

restricting goal requirement reaching 90% success rate by 1400 episodes. The agent is

almost 100% successful by 1600 episodes. Similar to the previous examples, there are
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Fig. 36. Q(s, a) Evolution for an Increase in Camber for Case #3

small oscillations just below 100% success as the number of episodes increases. These

oscillations are possibly due to the occasional random action the agent takes. Given

the smaller goal region there is more exposed boundary, and therefore the agent is

more likely to take a random action and encounter that boundary. Figure 37, however,

shows that this adverse effect on performance is within acceptable bounds.

Figures 38 and 39 illustrate one successful episode using the final learned action-

value function given the goal requirements for this example. The initial state is 11%

thickness and 0% camber as in the previous two exmples. It uses the learned function

for this example to navigate to the much smaller goal region without encountering a

boundary. Figure 38 shows the initial and final configuration of the airfoil, and Figure

39 shows how the agent navigates from one to the other. It takes a longer period of
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Fig. 37. Monte Carlo Simulation for Q-Learning of Case #3

time for the agent to reach the larger of the two goal regions, almost twice that of the

previous two examples. The reason is that it must choose to change both thickness

and camber many times to traverse the distance from the initial state to a goal state.

These choices are shown in Figure 39 as the agent alternates between choosing to

change thickness and choosing to change camber. This figure also shows the changes

in lift, drag, and moment coefficient as the agent navigates to a configuration that

meets all of the defined requirements.

b. Developmental Stage 2: Q-Learning Parameter Testing

The morphing airfoil reinforcement learning problem using just Q-learning is now

tested by investigating the effects of the various learning parameters, namely the

discretization of the state-space that define the action sets, the discount factor, and

policy followed. The learning performance is analyzed in several ways. First the

dimensionality of the action-value functions are compared between the action sets.

Next the Monte Carlo simulation results for different policies are compared for each set
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Fig. 38. Initial and Final Airfoil Configuration for Case #3

Table XIX. Distance Between Adjacent Vertices for Morphing Airfoil Developmental

Stage 2

Cases hx1 hx2

Case 1 0.10 0.10

Case 2 0.25 0.25

Case 3 0.50 0.50

Case 4 1.00 1.00

of hxi
to examine both the learning performance for a particular set of hxi

. The Monte

Carlo simulation results are then recast such that comparisons between sets of hxi

for each policy can be more easily made to again examine the learning performance.

The final value functions are then compared and analyzed.

Dimensionality: The dimensionality of the problem to be learned is an ever present

concern for learning algorithms. A problem with a high number of states, or in

the case of Q-learning, a high number of state-action pairs, is that it necessitates



130

0 10 20 30 40 50
10
12
14
16
18
20

Time (sec)

%
 T

hi
ck

ne
ss

0 10 20 30 40 50
0
1
2
3
4
5

Time (sec)

%
 C

am
be

r

0 10 20 30 40 50
0

0.1
0.2
0.3
0.4
0.5

Time (sec)

c l

0 10 20 30 40 50
0

0.0025

0.005

0.0075

0.01

Time (sec)

c d

0 10 20 30 40 50
0

0.025

0.05

0.075

0.1

Time (sec)

c m
le

Fig. 39. State Progression Using Greedy Policy for Case #3

a greater number of learning episodes, and thus more computational time, to learn

the required action-value function. Conversely, fewer states means faster learning,

especially given that computational aerodynamic models are usually computationally

intensive. However, there must be enough states to fully capture the details of the

action-value function for the problem at hand. The hxi
for each case are defined in

Table XIX. The associated number of states and state-action pairs for each value of

hxi
are listed in Table XX.

Policy Comparison and Analysis: This section considers a direct comparison for

each hxi
between action-value functions when the agent follows one of the following:

• 100% exploration policy
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Table XX. Non-Goal States and State-Action Pairs for Morphing Airfoil Developmen-

tal Stage 2

hxi
States State-Action Pairs

0.10 3379 13516

0.25 530 2120

0.50 153 612

1.00 45 180

• ε-greedy policy with annealing

• ε-greedy annealing policy and annealing of the discount factor, γ

The results of the simulations described above are shown in Figure 40. All four sub-

figures show that the action-value function in which the agent followed an annealing

policy converges to a good solution the fastest. A 96%−100% success rate is achieved

in as little as 200 episodes for the coarsest discretization and 800 episodes for the finest

discretization. The results of the learning in which the discount factor also anneals

shows a much lower success rate early in the learning then rapid convergence after

a couple hundred episodes. In this case, convergence to a 95% − 100% success rate

is achieved in 200 − 3000 episodes. The most distinct differences between policies

are seen in Figure 40.a. Rate of convergence is expected to be lower given the larger

number of states the agent must visit, but Figure 40.d suggests that when the agent

must only visit a small number of states, annealing the discount factor and/or the

policy makes little difference in the rate of convergence. The “kink” evident in Figure

40.b is most likely a result of the small probability that the agent chooses a random

action and encounters a boundary.
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Fig. 40. Policy Comparison for Each hxi
: a) hxi

= 0.10%, b) hxi
= 0.25%, c)

hxi
= 0.50%, and d) hxi

= 1.00%

hxi
Comparison and Analysis: This section takes a different approach than the

previous section and considers a direct comparison between the action-value functions

for each hxi
. The results presented in this manner are shown in Figure 41. This figure

shows that there is the most difference in convergence between hxi
values when the

policy is fully explorative and when both the policy and discount factor changes

as learning progresses. 5000 and 3000 episodes, respectively, are required for all

four action-value functions to converge to at least a 95% success rate. Generally,

convergence for these cases increases as hxi
increases. This result is again due to

the decreasing number of states that the agent must visit and update. Figure 41.b
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shows the highest rate of convergence for all values of hxi
. All four action-value

functions converge to nearly a 100% success rate within 800 episodes. This result

suggests that for this problem annealing the policy from fully explorative to almost

fully exploitative yields the best results.

Fig. 41. hxi
Comparison: a) 100% Exploration, b) Anneal ε, c) Anneal ε and γ

Value Function Analysis: It is helpful to consider a value function approximated

from the learned action-value function. The value function can show how the learning

differs when learning parameters or discretization is modified. The value function is

calculated using Eq. 5.3 introduced in Chapter V.

Figure 42 shows the value functions when the agent follows a fully explorative
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policy. The general shapes of each of the value functions are similar. The main

difference shown is that the maximum value in the value functions range from 10 to

almost 60 as hxi
increases. The reason is that with fewer states to visit, the agent is

able to visit and reinforce every state more often than if there are a larger number

of states. Also, when there are a larger number of states it takes more visits to each

state for the rewards to propagate back into neutral or non-goal states. This results

in the sharp decline in value from the area near the goal to the small values for non-

goal states farther from the goal. Notice the sharpness of the decline lessens as hxi

increases. The smoothness of the functions is a result of the policy allowing the agent

the chance to visit each state an equal number of times. Note that in Figures 42, 43,

and 44, C is an abbreviation for Camber, and T is an abbreviation for Thickness.

Figure 43 shows the value functions for a policy annealing from fully explorative

to mostly exploitative. Notice the shapes of the value functions now differ between

each hxi
. Figure 43.a shows two prominent peaks in the value function. This results

from an unequal distribution of state visits early on in the learning. At the outset

the agent explores randomly, but given the number of state-action pairs, the agent

does not necessarily have time to evenly propagate rewards through the action-value

function. For this example of learning, the agent visited the states near the peaks of

Figure 43.a early. As the policy changed to require the agent to exploit its knowledge

more often, the agent favored the two areas it had already explored the most. This

effect resulted in the two peaks. A similar phenomenon occurred for hxi
= 0.25% and

is shown in Figure 43.b. There are a couple small peaks that are not as extreme as

those seen in Figure 43.a. This result means that the agent was able to more evenly

explore all the states before the policy changed. Given the fewer number of states,

this is to be expected. The trend continues as hxi
increases. Figure 42.d is very similar

to Figure 43.d. From this figure it is evident that as the number of states decrease,
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Fig. 42. Value Functions for 100% Exploration: a) hxi
= 0.10%, b) hxi

= 0.25%, c)

hxi
= 0.50%, and d) hxi

= 1.00%

the policy the agent follows while learning affects the final action-value function less

and less.

Figure 44 shows the value functions resulting from both an annealing policy as

well as the discount factor, γ, increasing from 0.0 to 0.7 as learning progresses. Figure

44.a shows a similar prominent peak in the value function as that seen in Figure 43.a.

This peak is again a result of the policy followed and the total number of states. A

peak is not evident in Figure 44.b as it was in Figure 43.b. One reason is that the

discount factor early in the learning is equal to or near zero. When the discount factor
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Fig. 43. Value Functions for Annealing of ε: a) hxi
= 0.10%, b) hxi

= 0.25%, c)

hxi
= 0.50%, and d) hxi

= 1.00%

is equal to zero, the agent updates the action-value based only on whatever reward

it receives. No update in the form of γ max
a′

Q (s′, a′) is added to the value function.

Another reason is the policy followed as noted previously. Once again as the number

of states reduces to that shown in Figure 44.d, the value function is not appreciably

different from the value functions in Figures 42.d and 43.d.
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Fig. 44. Value Functions for Annealing of ε and γ: a) hxi
= 0.10%, b) hxi

= 0.25%, c)

hxi
= 0.50%, and d) hxi

= 1.00%

c. Developmental Stage 3: Four Morphing Parameter Testing

The purpose of this final developmental stage of the basic morphing airfoil reinforce-

ment learning problem is to demonstrate learning performance of the reinforcement

learning agent when integrated with the full four morphing parameter airfoil. The

purpose is also to demonstrate the agent commanding smooth transitions from one

shape to another through a series of commanded goals. The agent learns the action-

value function for four different goals using the hxi
listed in Table XXI. The goals

are listed in Table XXII. The range associated with the goal is necessary given the
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Table XXI. Distance Between Adjacent Vertices for Morphing Airfoil Developmental

Stage 3

hxi
Value

hx1 1.00

hx2 1.00

hx3 0.10

hx4 1.00

Table XXII. Learning Goals for Morphing Airfoil Developmental Stage 3

cl Goal Range

−0.2 ±0.05

0.0 ±0.05

0.2 ±0.05

≥ 0.4 —

discretization of the state space. A smaller range would constitute a finer discretiza-

tion of the state space, more learning episodes, and longer computational time. The

opposite is true for a coarser discretization. For the morphing airfoil problem, either a

balance between state space discretization and goal refinement must be made, a more

creative discretization method must be employed, or fully continuous state and/or ac-

tion space learning must be employed. For the purposes of this developmental stage,

the former is used.

For the purpose of direct comparison between the discretized state-space effected

by the different hxi
sets, the chord, angle-of-attack, number of episodes, and aerody-
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Table XXIII. Learning Parameter Constants for Morphing Airfoil Developmental

Stage 3

Parameter Value

Chord 1m

Episodes 10000

α 0.01

γ 0.7

namic goal are the same for each round of learning. The values of these constants are

listed in Table XXIII. The reward scheme for each round a learning is defined above

by Table XIV.

As before, for each of the 5000 learning episodes, the agent begins in a random

initial state that is not classified as a goal state. The agent then explores the state

space according to a random policy, ε = 0, until it either hits the predefined limit of

total number of actions or finds a goal state. Should the agent encounter a boundary,

that boundary location is noted by negative reinforcement, and the agent chooses

another action.

Monte Carlo Simulation and Results: The action-value function resulting from each

learned goal is analyzed by the Monte Carlo simulation for policy performance every

200 episodes. The simulation is run 1000 times instead of 500 each time the learning

is paused to get an accurate measure of the success or failure of the agent and the

learning algorithm as the learning is refined. The results for the four learned goals

are shown in Figure 45.

These results show about a 92% − 96% success rate for all the goals the agent
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Fig. 45. Agent Learning Success Results: a) cl ≥ 0.4, b) cl = 0.0 ± 0.05, c)

cl = −0.2± 0.05, and d) cl = 0.2± 0.05

learned. The convergence rate, defined here as change in success percentage divided

by the change in number of episodes, is high early in the learning and decreases

to slowly approach 100% success. The exception is Figure 45.a, which appears to

be linearly approaching 100% success. After a couple hundred more episodes, this

action-value function would also level off to a slow approach to 100%. Also, note that

the agent was allowed a 5% probability of choosing a random action. This fact means

that some of the failures of the agent to reach the goal can be attributed to the agent

choosing a random action and encountering a boundary. Taking these results into

consideration, the final action-value functions are deemed sufficiently converged and

usable by the agent.

Series of Commanded Goals: This subsection presents examples of the agent’s abil-

ity to smoothly transition from one shape to another to meet different goals. The

environment the agent inhabits is set up such that four goals are commanded in a

series. The agent has 200 decision/action steps with which to control and change the
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Table XXIV. Goal Series for Morphing Airfoil Developmental Stage 3

Decision Steps Goal

0− 50 cl = 0.0

51− 100 cl = 0.2

101− 150 cl = −0.2

151− 200 cl ≥ 0.4

Table XXV. Initial State of Agent for Examples 1-3 for Morphing Airfoil Developmen-

tal Stage 3

State Example 1 Example 2 Example 3

Thickness (%) 10.0 12.0 15.0

Camber (%) 0.0 3.0 1.0

Max Camber Location 0.4 0.4 0.2

Angle-of-Attack (deg) 0.0 -4.0 -4.0

shape of the airfoil to meet each goal. Each goal is allotted 50 decision steps. This

series of goals is analogous to the agent “flying” through a series of flight conditions,

such as climb, cruise, dash, or dive. The agent then must quickly change its shape to

“fly” well in each flight condition. The goal series the agent must navigate is listed

in Table XXIV.

Three representative examples are shown in the following figures. Each example

must meet the goals listed in Table XXIV. Each example has the agent start from a

different initial state. These initial states are listed in Table XXV.

Figures 46 and 47 illustrate the results of the these three examples. Figure 46
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shows the upper and lower bounds of the lift coefficient goals the agent must strive

to meet. The examples show that the changes in lift coefficient resulting from agent

commanded changes in shape fall within the bounds of all four goals after only a few

decision steps. The agent marches directly toward its goal in each example. This

directness is desired given the simplicity of the reward structure employed in the

learning presented in this paper. The rewards can be replaced by a more complex

cost function or by reward shaping, which could result in a less direct, though still

good, path toward each goal. The fact that the agent commands shape changes that

drives the lift coefficient directly toward the goals means that the agent achieved good

convergence of the action-value function for this problem.

Fig. 46. Airfoil Lift Coefficient Results for Morphing Airfoil Developmental Stage 3

Figure 47 depicts the airfoil states at each decision step. All three examples show

that the agent mainly utilizes commanded changes in camber and angle-of-attack

to manipulate airfoil lift coefficient. The agent only sparingly commands changes

in thickness and max camber location. Changes in angle-of-attack are commanded

at the beginning of transitions between goals. These changes result in relatively
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large changes in lift coefficient. As the agent approaches the proximity of the goal,

commanded changes in camber are favored. The reason is that a change in camber

results in a smaller change in lift coefficient. This flexibility allows the agent to

approach and achieve the goal without overshooting it.

Fig. 47. Airfoil Morphing Parameter Results for Morphing Airfoil Developmental

Stage 3

2. Case 2: Q-Learning with AAG

AAG is now added to Q-learning to test on the morphing airfoil. The general setup

of the problem is much the same as before except that a few extra parameters must

be defined for AAG. Each finer discretization is determined using a preset factor, gf ,

applied to the coarser discretization, such that hj+1
xi

= gfh
j
xi

. The number of levels of

discretization or resolution as defined earlier is M . The parameters for this problem

are listed in Table XXVI.

As for the initial application of Q-learning described above, there were several

stages during the initial development and application of AAG. They entail how the

action-value matrix is carried over from one level of discretization to the next as well
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Table XXVI. Airfoil AAG Parameters

Parameter Value

h1
x1

0.50

h1
x2

0.50

gf 0.20

M 3

Goal, g cl = 0.3

Initial Range, gr1 0.025

as the reward scheme for the problem and are described in more detail in the next 3

subsections.

a. Developmental Stage 1

The first stage is designated as the “brute force” method. The original motivation for

AAG was to separate a problem into a series of smaller problems with successively

more refined discretization and goal range focused in the Region Of Interest. In

line with this mentality, the action-value function is reinitialized for each level of

discretization, essentially beginning each with a blank slate and thus making each

level of discretization a truly separate reinforcement learning problem and patching

the action-value functions together after learning is complete. Initial tests allowed the

agent to explore the state-space over 5000 episodes for each level of discretization, but

did not yield good results. Therefore, in this brute force stage, the agent is allowed

30000 episodes for each level of discretization. The reward scheme is that shown in

Table XIV. The reasoning behind this is to determine if convergence can be achieved

in a reasonable number of episodes using this approach, or if some other approach
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Table XXVII. Morphing Airfoil Policy Color Scheme

Action Color

−hx1 Blue

+hx1 Cyan

−hx2 Yellow

+hx2 Red

is need. Figure 48 shows the value function and greedy policy calculated using Eqs.

5.1 and 5.3 from the final action-value function. The actions for the policy are color

coded and are listed in Table XXVII.

Fig. 48. AAG Airfoil Developmental Stage 1: Value Function (a) and Policy Repre-

sentation (b)

Both images show that the Region Of Interest for this case is a line that bisects

the state at a nearly constant value of camber, ˜2.4%. The three levels of discretiza-

tion are easy to see in value function. The contours near the camber bounds of the
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state-space are blocky in nature whereas the contours near the center of camber axis,

and thus near the lift coefficient goal, are more refined. The sharp descent to 0 of

the value function along the camber axis markedly illustrates the reinitialization of

the action-value function for each level of discretization. Also, the peaks in each finer

discretization are not as large as for the initial discretization. This is due to the larger

number of states at these finer resolutions. The action-values have not had as much

opportunity to propagate back.

The policy representation indicates that despite the 90000 total episodes, the

areas of finer discretization in the Region Of Interest around the goal did not converge

to an acceptable policy. The splotches of abutting colors indicating opposing actions

are areas in which the agent, when fully exploiting this policy, will simply move

back and forth between a couple states and never make progress toward the goal.

In essence, the agent is stuck. This fact means that this brute force method with a

traditional reward structure is not a good approach for the application of AAG.

b. Developmental Stage 2

This stage takes a different approach in how the action-value function is handled from

one level of discretization to the next. Since each new discretization is in a Region

Of Interest that is a part of the original problem and not totally separate, it seems

logical that knowledge stored in action-value function should be retained and refined.

This means that the learning is refined in the Region Of Interest rather than starting

with nothing. The agent is allowed 5000 episodes for each level of discretization, and

the reward structure in Table XIV is used. Figure 49 shows the value function and

policy for this developmental stage.

The value function shows a different structure than that for the first develop-

mental stage. There is an evident increasing step structure from the camber bounds
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Fig. 49. AAG Airfoil Developmental Stage 2: Value Function (a) and Policy Repre-

sentation (b)

to a center peak that runs lengthwise to the thickness axis. The lack of drops in

the value function back to 0 illustrates the retention of knowledge in the action-value

function. The central peak, at a near constant camber of ˜2.4%, is where the agent

received the most reinforcement and is where the goal is located. The blocky nature

of the initial discretization and the more refined, though still blocky, nature of the

2nd and 3rd discretizations is more evident in this value-function. The jagged edge of

the peak has finer detail than the outer edges of the contour near the outer camber

bounds.

The policy for this stage is more promising than for the first stage. For the

majority of the state-space, the policy has the agent move to states that meet the

lift coefficient goal. There are only a few small areas and one large area in which the

color coded actions show that the agent would get stuck and be unable to progress

to a goal state. This is a promising step and signifies that retaining knowledge in the

action-value function from one level to the next should be incorporated.



148

Table XXVIII. States and State-Action Pairs for Morphing Airfoil AAG Developmen-

tal Stage 3

States State-Action Pairs

Multi-Resolution 8881 35524

Single-Resolution 100651 402604

c. Developmental Stage 3

The successful and final stage retains knowledge of the action-value function as the

previous stage, but uses a different reward scheme. For this stage the reward is

changed to that described the Eq. 8.11. The agent is again allowed 5000 episodes

with which to explore the state-space for each level of discretization. Since this

approach is the first truly successful application of AAG, the learning performance is

analyzed in several ways. First the dimensionality of the multi-resolution action-value

function is compared with that of the full state-space discretized at the finest level.

Next Monte Carlo simulation performance results, as described in Chapter V, are

analyzed. Finally, the final value function and policy are considered.

Dimensionality: The number of states and state-action pairs for both the actual

learned multi-resolution problem and the hypothetical single-resolution problem de-

scribed by Eqs. 3.11 and 3.12 are shown in Table XXVIII. The multi-resolution

method reduces the number of state-action pairs the agent must visit by an entire or-

der of magnitude. This greatly simplifies the learning problem and encourages faster

convergence because the agent has the opportunity to visit each state more often in

the allowed number of episodes.
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Monte Carlo Simulation: Figure 50 shows the results of the Monte Carlo simulation

performance analysis. Each set of 5000 episodes is for a different level of discretization,

from coarsest to finest. The final star at 15000 episodes is for the simulation using

the full power of the AAG method. The final range for the goal in this problem is

0.001. This figure shows that the first and second levels of discretization converge

quickly, within 400 episodes. The third level takes about 1200 episodes to converge

above a 98% success rate and continues to improve as learning continues. The final

simulation shows that the agent can use its final set of information to reach the goal

with over a 99% success rate.

Fig. 50. AAG Airfoil Developmental Stage 3: Monte Carlo Simulation Results

Value Function and Policy Analysis: Figure 51 shows the final value function and

greedy policy. Toward the upper and lower extremes of the camber axis, the function

is very blocky as shown in the earlier stages. The sudden increase in value function as

the camber approaches 2.4% is a result of learning on the second level of discretization.

Notice the function is less blocky in this region. The minimal ridge in the middle of the

function is effectively the goal of cl = 0.3 and where the reward function approaches 0.

This minimal ridge is reflected in the graphic of the greedy policy. This figure shows
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that change in camber has the greatest influence in affecting airfoil lift coefficient,

enough such that thickness may not be a necessary morphing parameter in future

iterations of this problem. There are also no areas in the policy representation that

prevents that agent from progressing smoothly to a goal state. This figure and the

other analyses show that this approach is successful and should be the starting point

for all subsequent applications of AAG.

Fig. 51. AAG Airfoil Developmental Stage 3: Value Function (a) and Policy Repre-

sentation (b)

3. Case 3: Q-Learning with AAG and PC

Now that AAG has been applied and tested with success, the policy comparison and

policy performance stopping criteria are added to the Q-learning with AAG algorithm

and tested on the morphing airfoil reinforcement learning problem. The problem for

this example is set up similarly to that of Case 2. The axes and AAG parameters

are listed above in Table XXVI. Knowledge of the action-value function is carried

over between discretizations and the reward structure defined by Eq. 8.11 is used.
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Table XXIX. States and State-Action Pairs for Morphing Airfoil with AAG and PC

States State-Action Pairs

Multi-Resolution 8129 32516

Single-Resolution 100651 402604

The learning is analyzed in the same manner as was the third developmental stage

above. The dimensionality of the multi-resolution action-value function is compared

with that of the full state-space discretized at the finest level, the Monte Carlo sim-

ulation performance results are analyzed, and the final value function and policy are

considered.

a. Dimensionality

The dimensionality for this problem is listed in Table XXIX. The multi-resolution

method reduces the number of state-action pairs the agent must visit by an entire

order of magnitude. Though this problem is essentially the same as the previous

case, there are about 800 fewer states in the action-value function. This is due to a

more refined method of tracking the edge of the Region Of Interest than the block

structure first described in Eq. 3.11. This method simply records the outer bounds

more accurately. The difference in total states, however, is small, so Eq. 3.11 still

applies to the general understanding of the problem.

b. Monte Carlo Simulation

Figure 52 shows the results of the Monte Carlo simulation performance analysis for

this problem. Each level of discretization is allowed a possible 5000 episodes. The

final range for the goal in this problem is 0.001. Recall that learning on each level of
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discretization is terminated when there is less than 5% change in the policy extracted

from the action-value function and the policy performance analysis yields greater than

98% success.

Fig. 52. Airfoil with AAG and PC: Monte Carlo Simulation Results

The figure shows that the first discretization reaches 100% within 200 episodes,

yet the learning is not terminated until the 5000 allowed episodes is exhausted. This

indicates that the policy itself is changing enough such that there is not at least 95%

similarity between one extracted policy and the next. There are 187 states in the

coarsest discretization. If just 10 of these change every 200 episodes, then the policy

comparison criterion is not met. The high performance measure indicates that the

policy is “good”, so we can conclude that the changing states are within the Region

Of Interest itself.

The second discretization converges and reaches 100% success within 1000 episodes.

The third discretization reaches > 98% success within 4800 episodes. The learning

thus only ran for 10800 episodes, 4200 episodes less than the total allowed number

of 15000. The policy comparison and performance criteria reduced the total episodes
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by 28% with respect to the total allowed number of episodes. This number must be

taken in context. The 15000 is based on the prior tests using 5000 episodes for a given

discretization level. Obviously, if 7500 episodes per discretization level is chosen, then

the reduction in total episodes is larger.

c. Value Function and Policy Analysis

Figure 53 shows the final value function and greedy policy for this problem. The

general topography of the value function is similar to both shown in Figures 49 and

51. The most activity is again near a camber of 2.4%, but the valleys of the surface

are less extreme than that seen in Figure 51. This is due to fewer number of episodes

in the second and third discretizations. The learning had less time to mature, in a

sense. It is hoped that this “less extreme” action-value function will be more easily

approximated. The greedy policy again shows similarities to Figure 51. However,

there are more small patches of blue and cyan that are not evident in Figure 51.

These are areas that were not learned quite as well as in the previous example. From

the figures shown in this case, though, this approach is considered successful.

4. Case 4: Q-Learning with MGAP

The final step is to add the genetic algorithm for function approximation to the Q-

learning algorithm with AAG and PC and demonstrate it with the morphing airfoil

reinforcement learning problem. This final component completes the Q-learning with

MGAP algorithm. The problem for this example is set up similarly to Case 2 and

Case 3. The axes and AAG parameters are again listed in Table XXVI. Knowledge

of the action-value function is carried over between discretizations and the reward

structure defined by Eq. 8.11 is used. When learning is paused, the action-value

function is approximated using the genetic algorithm developed in Chapter IV. The
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Fig. 53. Airfoil with AAG and PC: Value Function (a) and Policy Representation (b)

PC stopping criteria developed in Chapter V are applied to this approximation. The

learning with the full algorithm is analyzed in a similar manner as before. The

final set of basis functions for each level of discretization are presented, the Monte

Carlo simulation performance results are analyzed, and the final approximated value

function and associated policy are considered.

a. Approximation

The GA determines the set of basis functions and degree or number of knots for those

basis functions each time the learning is paused, in this case every 200 episodes. It is

this approximation that is used for the policy comparison and performance analysis.

In a sense the selections made by the GA evolves as the action-value function in

tabular form evolves. As mentioned in previous chapters, each Q (s, ai) has a table

of the learned action-values for that action, ai. The GA is applied to each of these

separately to yield Q̃ (s, ai). Since there are four actions for this problem, there

are four approximations that must be made to fully approximate the action-value
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Table XXX. Approximation Bit Strings for Each Level of Discretization for Morphing

Airfoil

Level 1 Level 2 Level 3

Q̃ (s, a1) 1001111 1001111 1011110

Q̃ (s, a2) 1001111 1001111 1011111

Q̃ (s, a3) 1001111 1011111 1011110

Q̃ (s, a4) 1001111 1011111 1011111

function for this problem. Listed in Table XXX are the bit strings encoding the

approximations after the final episode of each level of discretization.

The basis functions for the end of the first level of discretization show consistency

between of each of the actions. Each Q̃ (s, ai) for this level is best approximated,

according to the GA, by linear RBFs with (15 + 2) (15 + 2) = 172 = 289 evenly

distributed knots or centers. The approximations for the end of the second level of

discretization is similar to the first. The first two actions are again approximated by

linear RBFs with 289 centers, while the other two actions are best approximated by

cubic RBFs with 289 centers. This continuity indicates that the major features of

the action-value function changed only slightly from one level of discretization to the

next. The approximations for the final action-value function are again very similar

to the first two. The GA states that all four Q̃ (s, ai) are best approximated by cubic

RBFs, though Q̃ (s, a1) and Q̃ (s, a3) only need 256 centers as opposed to 289 centers

for Q̃ (s, a2) and Q̃ (s, a4). These numbers are summarized in Table XXXI.

Consider the final approximations as compared to the tabulated action-value

function. There are 8129 states and thus 32516 state-action pairs with associated

preferences or action-values in the discretized action-value function. Implementing a
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Table XXXI. Comparison of Data for Tabulated and Approximated Action-Value

Function for Morphing Airfoil

Level 1 Level 2 Level 3

Discretization Discretization Discretization

Centers Weights Centers Weights Centers Weights States

Q (s, a1) 289 289 289 289 256 256 8129

Q (s, a2) 289 289 289 289 289 289 8129

Q (s, a3) 289 289 289 289 256 256 8129

Q (s, a4) 289 289 289 289 289 289 8129

Totals 289 1156 289 1156 545 1090 32516

working controller using this learned discretized data entails carrying around large

tables and conducting table look-ups and interpolation whenever the data is needed.

The approximations are much more compact. If only the final approximation is

needed, then only the locations of the centers and their associated weights for each

Q̃ (s, a1) for that approximation must be stored. This means 256 + 289 = 545 center

locations (do not need duplicates) and 256 + 289 + 256 + 289 = 1090 weights are

needed. That is a total of 1635 numbers that must be stored and used, which is

almost 95% less than that for the discretized action-value function.

It is also possible that the approximations made at the end of learning of the

first and second levels of discretization are needed to implement a working controller.

This might be necessary should the final approximation only accurately capture the

function in and around the final area of interest. With the higher concentration of

states in that area, the approximation may be forced to accurately capture that local

behavior and lose accuracy in the global behavior that was accurately captured during
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learning and approximation of the coarser discretizations. If that is the case the agent

decides to use the approximation from the first and second levels of discretization

when it is far away from the goal and only moderately close to the goal. It then uses

the final approximation when in close proximity to the goal, namely in the region

learned using the finest discretization. Therefore, the agent retains information for

all three approximations. This means that 256 + 289 = 545 center locations are

needed, and 1156 + 1156 + 1090 = 3402 weights are needed. That is a total of 3947

numbers maximum that must be stored and used, which is still 87% less than that

for the discretized action-value function.

b. Monte Carlo Simulation

Figure 54 shows the results of the Monte Carlo simulation performance analysis for

this problem using the approximated action-value function every 200 episodes. Each

level of discretization is again allowed a possible 5000 episodes. The final range for

the goal in this problem is 0.001. Learning on each level of discretization for this

case is terminated when there is less than 5% change in the policy extracted from the

approximated action-value function in Eq. 5.2 and the policy performance analysis

yields greater than 98% success.

The figure shows that the first discretization reaches 100% within 200 episodes,

and the learning is terminated after 2400 episodes. Each approximated action-value

function in the first discretization has 100% success. The explanation for this oc-

currence is the same as for the previous case. The second discretization converges

and reaches 100% success within 1200 episodes. The third discretization reaches 96%

success by the end of the 5000 episodes. The trend indicates that if learning were

allowed to continue, then > 98% success would be reached in another 200 to 600

episodes. Based on the learned data here, though, only 8600 episodes were needed of
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Fig. 54. Airfoil with MGAP: Monte Carlo Simulation Results

the 15000 allowed episodes, which is a 42.6% reduction.

c. Value Function and Policy Analysis

The following figures show the value functions and greedy policies based on the ap-

proximated action-value functions for each level of discretization. These are deter-

mined using Eqs. 5.2 and 5.4. It is informative to consider each one individually to

see how well the approximation captures or does not capture the global and local (i.e.

in and around the Region Of Interest) behavior of the action-value function.

Figure 55 illustrates the value function and greedy policy based on the approxi-

mated action-value function after the final episode learned on the coarsest discretiza-

tion, episode 2400. The value function suggests that the action-value function is a

fairly simple function to approximate. The easy rise to the crest at a camber of 2.5%

is a large global feature that the least-squares approximation easily approximates.

This is reflected in the Monte Carlo simulation as well as the greedy policy. The

policy is consistent with the previous cases and is exactly what is expected for the
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coarsest discretization. The policy guides the agent to the region containing the goal

of cl = 0.3±0.025, which is 10.0% ≤ x1 ≤ 18.0% and 2.0% ≤ x2 ≤ 3.0%. Within that

region the color coded actions guide the agent to the those states that are closest to

cl = 0.3.

Fig. 55. Airfoil with MGAP, Episode 2400: Approximate Value Function (a) and Pol-

icy Representation (b)

Figure 56 shows the value function and greedy policy based on the approximated

action-value function after the final episode learned on the second discretization,

episode 3600. The value function is consistent with what is expected after the second

discretization based on the previous examples. There are some oscillations along the

crest that have not been seen before that are a result of the approximation. The

visualization of the policy, however, indicates that these oscillations do not overly

affect it, as is supported by the policy performance analysis above. The policy after

3600 episodes is consistent with the policy after 2200 episodes, and it shows that the

additional learning filled in the detail around the more specific Region Of Interest,

namely cl = 0.3± 0.005, which is 10.0% ≤ x1 ≤ 18.0% and 2.1% ≤ x2 ≤ 2.5%.
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Fig. 56. Airfoil with MGAP, Episode 3600: Approximate Value Function (a) and Pol-

icy Representation (b)

Figure 57 shows the final value function and greedy policy based on the approx-

imated action-value function for this problem. The general topography of the value

function is similar to the previous case using AAG and PC only. The most activity is

again near a camber of 2.4%, but it has a smooth and oscillatory characteristic. This

is evidence of the approximation. The greedy policy shows some marked differences

from previous cases and inconsistency with the policies after 2200 and 3600 episodes in

the form of the large blue and cyan patches. According to the Monte Carlo simulation

the policy for the finest discretization in the region defined by 10.0% ≤ x1 ≤ 18.0%

and 2.1% ≤ x2 ≤ 2.5% does successfully guide the agent to the final Region Of

Interest defined by cl = 0.3 ± 0.001. However, some of the global behavior is lost

beyond this region of fine discretization. Since the approximation after 3600 episodes

captures the “good” behavior beyond these bounds, it can be used by the agent in

those regions and the approximation after 8600 episodes can be used in the region

close to the goal.
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Fig. 57. Airfoil with MGAP, Episode 8600: Approximate Value Function (a) and Pol-

icy Representation (b)

For comparison, Figure 58 shows the final value function and greedy policy de-

termined by Eqs. 5.3 and 5.1 based on the tabular action-value function. The approx-

imations after 2200 and 3600 episodes are consistent with the raw data in this figure.

The final approximation shows good agreement with the region around a camber of

2.4%, but is not consistent with the raw data beyond that region.

D. Summary

In this chapter the airfoil was cast as a reinforcement learning problem and run

through the gamut of various components of the algorithm developed in this re-

search. Results show that the agent learned a variety of goals for an airfoil with both

two and four state variables using Q-learning. The agent then used the learned data

autonomously to meet a series of goals in simulation to within ±0.05 of the aerody-

namic goal. Results also successfully demonstrate Q-learning with multi-resolution

state-space discretization. Initial attempts in which the agent had 90000 episodes
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Fig. 58. Airfoil with MGAP, Episode 8600: Value Function (a) and Policy Represen-

tation (b)

to explore the state-space proved unsuccessful. Introducing a gradient based reward

function allowed the agent to learn the goal of cl = 0.3 ± 0.001 in 15000 episodes.

Incorporating multi-resolution state-space discretization and policy comparison into

the same problem enabled the agent to learn the same goal, cl = 0.3 ± 0.001, in

only 10800 episodes, which is a 28% reduction. The final set of results demonstrate

Q-learning with MGAP in which the policy extracted from the approximated action-

value function converged to achieve a goal of cl = 0.3± 0.001 in 8600 episodes, which

is a 42.6% reduction from the possible 15000 episodes. The final approximation did

not accurately capture the global behavior of the action-value function, so it can not

be used when the agent is far from the goal. Instead the agent uses the approxima-

tions at the end of the first or second level of discretiation with far from the final

region of interest and final approximation when near the region.
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CHAPTER IX

RECONFIGURABLE SYSTEM EXAMPLE - MORPHING WING

The second application of this algorithm to a reconfigurable system is a morphing

wing (Figure 59). Like the airfoil, rather than finding a couple optimal shapes that

meet some criteria and a separate optimal controller to maneuver from one shape

to the other, the wing is cast as a reinforcement learning problem in which the full

spectrum of shapes that meet the flight phase criteria are learned as well as the local

transitions that guide the shape from any initial shape to a shape that meets the

requirements.

Fig. 59. Representative Wing

Section IX.A discusses the wing model to be cast as the environment of the

reinforcement learning problem. Then the full reconfigurable wing reinforcement

learning problem is described followed by a series of examples that exercise the many

aspects of the problem. The numerical results are relatively brief as compared to

airfoil because the major troubleshooting has already been accomplished, and we

simply need to apply the algorithm to the reinforcement learning problem.
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A. Wing Model

The airfoil is modeled by a CFD code using a constant strength doublet-source panel

method. This model calculates the aerodynamic properties of a wing given a set of

13 inputs:

• Wing root airfoil thickness

• Wing tip airfoil thickness

• Wing root airfoil camber

• Wing tip airfoil camber

• Wing root location of maximum camber

• Wing tip location of maximum camber

• Taper ratio

• Aspect ratio

• Leading edge sweep angle

• Dihedral angle

• Wing span

• Wing twist

• Wing angle-of-attack

Setting these 13 parameters as inputs to the model allow for rapid and efficient

calculation of the aerodynamic properties of many different wing configurations or as

a single wing changes shape.
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A number of assumptions were made during the development of the model. These

assumptions are

1. Flow is incompressible.

2. Flow is inviscid.

These assumptions allow for a model that is valid for the linear range of angle-of-

attack and sufficient for the purposes of this research.

Calculating the aerodynamic properties of the wing in question begins with con-

sidering the basic equation of potential flow theory.

∆2Φ = 0 (9.1)

From here commences an involved derivation to calculate the doublet strengths for

the panels that lie along the wing, which is beyond the scope of this research. With

these strengths the local velocities is calculated, and from there the total velocity, Qk

for each panel is calculated.

Using these total velocities, the pressure coefficient at each panel is calculated

using a modified form of Bernoulli’s Equation:

Cpk
= 1− Q2

k

Q2
∞

(9.2)

With these pressure coefficients, the non-dimensional aerodynamic forces are found

for each panel. This calculation leads to the total aerodynamic forces, which can be

determined by summing the contributions from each panel.

∆CFk
= −Cpk

∆S

S
· nk (9.3)

A complete development of the wing model used for this research can be found

in Reference [184].
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B. Wing Cast as a Reinforcement Learning Problem

Casting the morphing wing as a reinforcement learning problem is much the same as

it was for the airfoil in Chapter VIII. In the case of the wing, there are no dynamics

involved in the shape change. Just as for the airfoil, each commanded change in

wing shape yields an immediate response. This formulation effectively removes a

potentially complicated aspect of the morphing wing problem from this reinforcement

problem and allows for better focus on the actual choice in shape.

The choice of state variables is dependent on two concerns. The state variables

must be chosen such that the aerodynamic properties of the airfoil are adequately

exploited and the CFD model, which constitutes the environment, does not take overly

long to calculate the aerodynamic properties of the current wing configuration. There

are 13 possible interdependent parameters, and the runtime for the CFD model to

calculate one set of forces is on the order of 100 seconds. Running a learning algorithm

with this as the environment is not practical, therefore a table of the aerodynamic

forces for a subset of the morphing parameters is generated from the CFD model and

used as the environment instead. This subset includes leading edge sweep angle, wing

span, root chord, and tip chord. The others are held constant.

The agent interacts with its environment in the same manner as the airfoil. The

definitions of the xi axes for all of the examples are defined in Table XXXII.

The goal, g, of the agent for this problem is defined by the aerodynamics of the

wing. As for the airfoil reinforcement learning problem, every goal has a range, gr,

associated with it. Those vertices whose state yield aerodynamic coefficients, c, from

the CFD model that lie in the goal range defined by g − gr ≤ c ≤ g + gr form the

pseudogoals of the problem.

The reward for this problem is the gradient based reward function that is shown
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Table XXXII. Morphing Wing Axis Definitions

xi Definition

x1 Wing Span

x2 Root Chord

x3 Tip Chord

x4 Leading Edge (LE) Sweep Angle

Table XXXIII. Morphing Wing Parameter Limits

Limit Lower Upper

Wing Span (m) 5 12

Root Chord (m) 2 4

Tip Chord (m) 0.5 2

LE Sweep Angle (deg) 0 25

again in Eq. 9.4 for ease of reference. The limits for the state variables that define

the perimeter of the environment are listed in Table XXXIII.

r = |g − cn−1| − |g − cn| (9.4)

C. Numerical Results

The purpose of this numerical example is to demonstrate the learning performance of

the reinforcement learning agent utilizing the multi-resolution state-space discretiza-

tion method, policy comparison and performance stopping criteria, and MGAP on
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Table XXXIV. Wing Learning Parameters

Parameter Value

Episodes 5000

α 0.01

γ 0.7

g
(

CL

CD

)
max

gr1 6

gf 0.5

M 3(
h1

x1
, h1

x2
, h1

x3
, h1

x4

)
(1.0m, 0.5m, 0.5m, 5 deg)

a more complex reconfigurable system. It is the next step in developing how the

algorithm is applied to the class of highly reconfigurable systems. In each of the two

cases presented here, the agent is given the task of learning to maneuver through the

state-space to a goal state that satisfies some aerodynamic requirement. The agent is

allowed a possible 5000 episodes with which to learn the shape parameter state-space

for each level of discretization. Section 1 has the agent learn using both AAG and

PC. A section for the agent learning using just PC was not included because it did

not add or enhance the presentation of the algorithm in any way. Section 2 presents

the second case in which the GA and PC are applied to the morphing wing problem.

Both cases have the same admissible actions, discretization factor gf , and number

of levels of discretization M . These parameters are listed in Table XXXIV. The goal,

g, and initial range, gr1 , are the same for both cases as well.

A case describing the results for the full MGAP algorithm applied to this problem

is not included for one reason: the computational demands of the genetic algorithm
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for this larger problem were such that the supporting computer runs out of memory

during the calculation of ω. Therefore, the case with the GA and PC is shown to

illustrate show the success of these components. Recommendations are made in the

final chapters to alleviate this computational issue in the future.

1. Case 1: Q-Learning with AAG and PC

The first morphing wing case tests Q-learning with AAG and PC. Since there are

three levels of discretization, the final range for the goal in this problem is gr3 = 1.5.

The learning is paused and PC applied every 200 episodes. Analysis of the learning is

conducted in a similar manner to many of the airfoil examples. The dimensionality of

the multi-resolution action-value function is compared with that of the full state-space

discretized at the finest level, and the Monte Carlo simulation performance results

are analyzed. The value function and policy are not presented in image form as was

the case for the airfoil because of the 5-dimensional nature of those surfaces for this

problem.

a. Dimensionality

The dimensionality for this problem is listed in Table XXXV. The multi-resolution

method reduces the number of state-action pairs the agent must visit by two orders of

magnitude. The number of states is relatively small due to the large initial discretiza-

tion of the state-space. As such, AAG allows the agent to focus its attention on the

small area around the goal rather than the area outside of the Region Of Interest.

b. Monte Carlo Simulation

Figure 60 shows the results of the Monte Carlo simulation performance analysis for

this problem. Each level of discretization is allowed a possible 5000 episodes. Recall
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Table XXXV. States and State-Action Pairs for Morphing Wing Case 1

States State-Action Pairs

Multi-Resolution 927 7416

Single-Resolution 69615 556920

that learning on each level of discretization is terminated when there is less than

5% change in the policy extracted from the action-value function and the policy

performance analysis yields greater than 98% success.

Fig. 60. Wing with AAG and PC: Monte Carlo Simulation Results

The figure shows that the first discretization reaches 100% within 200 episodes,

and the learning is terminated after 800 episodes. The second and third levels of dis-

cretization both reach 100% success within 400 episodes, and the learning terminates

for each level after 600 and 800 episodes, respectively. The agent only needed a total

of 2200 episodes of the possible 15000 to fully converge on a usable policy. This is an

85% reduction in number of episodes.
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2. Case 2: Q-Learning with GA and PC

The second case adds the genetic algorithm for function approximation to the Q-

learning algorithm with PC and applies it to the morphing wing reinforcement learn-

ing problem. The problem for this example is set up similarly to that of Case 1.

The learning is again paused and PC applied every 200 episodes. When learning is

paused, the action-value function is approximated and PC applied to that approxima-

tion. Analysis of the learning is conducted in a similar manner as the previous case.

Since only one level of discretization is learned, the final set of basis functions that

level are presented, and the Monte Carlo simulation performance results are analyzed.

The value function and policy are not presented.

a. Approximation

As described in the previous chapter, the GA determines the set of basis functions

and degree or number of knots for those basis functions each time the learning is

paused, in this case every 200 episodes. It is this approximation that is used for

the policy comparison and performance analysis. In a sense the selections made by

the GA evolves as the action-value function in tabular form evolves. As mentioned

in previous chapters, each Q (s, ai) has a table of the learned action-values for that

action, ai. The GA is applied to each of these separately to yield Q̃ (s, ai). Since

there are eight actions for this problem, there are eight approximations that must

be made to fully approximate the action-value function. Due to the computational

limitation mentioned above, the gene representing the degree or number of nodes

or centers is limited to a value of 6 or 0110. Listed in Table XXXVI are the bit

strings encoding the approximations after the final episode. The basis functions for

the end of the first and only level of discretization show consistency between many of
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Table XXXVI. Approximation Bit Strings for Only Level of Discretization for Morph-

ing Wing

Level 1

Q̃ (s, a1) 1000110

Q̃ (s, a2) 1000100

Q̃ (s, a3) 1000110

Q̃ (s, a4) 1000110

Q̃ (s, a5) 1000100

Q̃ (s, a6) 1000110

Q̃ (s, a7) 1000110

Q̃ (s, a8) 1000110

the actions. Q̃ (s, a2) and Q̃ (s, a5) are both best approximated by linear RBFs with

(4 + 2)4 = 64 = 1296 evenly distributed centers. The rest of the Q̃ (s, ai) are best

approximated by linear RBFs with 84 = 4096 evenly distributed knots or centers.

These approximations are larger than those for the airfoil due to the larger number of

state variables. This suggests that the concept of the GA for function approximation

is significant, but some changes may be necessary when it is applied to larger problems

in future research.

b. Monte Carlo Simulation

Figure 61 shows the results of the Monte Carlo simulation performance analysis for

this problem using the approximated action-value function every 200 episodes. Learn-

ing is terminated when there is less than 5% change in the policy extracted from the

approximated action-value function in Eq. 5.2 and the policy performance analysis
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yields greater than 98% success.

Fig. 61. Wing with GA and PC: Monte Carlo Simulation Results

The figure shows learning at this discretization reaches 100% within 200 episodes,

and the learning is terminated after 800 episodes. Each approximated action-value

function has 100% success. Based on the learned data here only 800 episodes are

needed of the 5000 allowed episodes, which is an 84% reduction. Recall, that the GA

is restricted for this problem do to computational concerns. The second gene can only

go as high as 6 rather than the full 15 as originally designed. Despite this restriction

the action-value function is approximated well enough to yield 100% success within

200 episodes. This suggests that allowing the GA to search for approximations with

higher values encoded in the second gene may not be necessary for some problems.

Restricting or modifying the GA in this manner may help keep the approximation

itself a manageable size.
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D. Summary

In this chapter the wing was cast as a reinforcement learning problem and run through

various components of the algorithm developed in this research. Results show that

the agent learned over a larger state-space than that presented in the previous chap-

ter. The wing model has 13 possible shape changing parameters, and the agent

learned using 4. Q-learning with multi-resolution state-space discretization and pol-

icy comparison was successfully demonstrated. The number of state-action pairs was

reduced by two orders of magnitude from the state-space discretized at the finest

level, and only 2200 episodes of the possible 15000 were needed to converge to a goal

of
(

CL

CD

)
max
± 6, which is an 85.3% reduction. Results also successfully demonstrate

Q-learning with policy comparison and the genetic algorithm for function approxima-

tion. The action-value function was successfully approximated such that the extracted

policy showed fully converged behavior within 800 episodes.
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CHAPTER X

UNUSUAL APPLICATION EXAMPLE - THERMAL LOCATION FOR

AUTONOMOUS SOARING

Large birds and glider pilots extend flight duration, increase cross-country speed,

improve range, and conserve energy by thermals caused by convection in the lower

atmosphere. The problem of learning an updraft field by an autonomous soaring UAV

is cast as a reinforcement learning problem and tasked with learning the commands

that produce the actions to move from some position to the middle of an updraft based

on the vertical velocity of the surrounding air. The unique aspect of this chapter is the

modification of AAG to allow the multi-resolution learning around multiple Regions

Of Interest.

Section A discusses the thermal model to be cast as the environment of the

reinforcement learning problem. Then the full thermal location reinforcement learning

problem is described followed by a series of examples that exercise the many aspects

of the problem. The numerical results for this application are fairly extensive. Results

for learning an updraft field with a single thermal in 2-dimensions, multiple thermals

in 2-dimensions, and multiple thermals in 3-dimensions are all presented.

A. Thermal Model

The application in question is an updraft model developed by NASA Dryden Flight

Research Center for use in developing autonomous soaring UAVs.[185] Autonomous

soaring is when a UAV uses updrafts to extend flight duration, increase speed, improve

range, or conserve energy. The model was created using data collected at the National

Oceanic and Atmospheric Administration Surface Radiation station. The model is

a statistical representation of the convective velocity scale, w∗, and the convective
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mixing-layer thickness, zi, which were used to determine updraft size, vertical velocity

profile, spacing, and maximum height.[185] The full development of the model can be

found in Reference [185].

B. Thermal Location Cast as a Reinforcement Learning Problem

The updraft model is cast as a reinforcement learning problem by defining the model

itself as the environment. The model uses Cartesian coordinate inputs, x and y (and

z if desired), supplied by the reinforcement learning agent as its current state, to

calculate the distance to each of the randomly spaced updraft centers, wci
, using

simple Euclidean distance:

di =

√(
wcix
− x
)2

+
(
wciy
− y
)2

(10.1)

The minimum distance is extracted, and the vertical velocity at the current location

is calculated and output to the agent. Figure 62 shows a representative updraft field.

It is assumed the the agent is able to move throughout this updraft field and store

learned information as to the location and path to updrafts.

The updraft model and the reinforcement learning agent interact significantly

during both the learning stage, when the location and path to updrafts are learned,

and the operational stage, when the agent is asked to move through the updraft

field to the nearest updraft by transferring from state to state. The purpose of the

reinforcement learning agent is to learn the series of actions necessary to command

both the x- and y-positions of the agent to the nearest updraft. The two parts of the

system interact as follows.

The agent interacts with this environment in a similar manner to the agents

interacting with the airfoil and wing environments in the preceding chapters. For
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Fig. 62. Representative Updraft Field

Table XXXVII. Thermal Location Axis Definitions

xi Definition

x1 X Position (m)

x2 Y Position (m)

x3 Z Position (m)

this problem, the state variables are the Cartesian coordinates and the actions are

incremental changes in these coordinates. These state variables are listed in Table

XXXVII.

It is noted that learning in this manner, moving from vertex to adjacent vertex,

produces an action-value matrix specifying preferences for local transitions that could

be used to create a path by specifying a series of actions from some state to a goal

state. Specifying the actions in this way allows for the agent to learn to avoid hazards

in the updraft field, such as downdrafts (negative vertical velocity of the air) or
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ground obstacles (should they be included in the model). If actions were specified

by transitions from one specific position or state to another, e.g. from (x, y)1 =

(0m, 100m) to (x, y)2 = (800m, 750m) and thus hoping to encounter an updraft at

point 2, the agent would then have a beginning and an end, but would need some

form of path planning algorithm to chart a path from point 1 to point 2. The problem

with doing so in this reinforcement learning problem is that the agent does not have a

priori knowledge of where updrafts and hazards are located between the two points,

which would make planning a path to avoid hazards or utilize updrafts difficult.

The goal, wg, of the agent for this problem is defined by the vertical velocity of

the thermals. The agent is essentially asked to find the center of any and all thermals

in the updraft field. Position changes of the agent in the updraft field necessitates

evaluation of the local vertical velocity of the surrounding air. Changes in vertical

velocity and proximity to updrafts located during learning define the reward, which

leads to the reward being based on two equations depending on where in the state-

space the agent is located. Due to the nature of the updraft field, there is a uniform

velocity, or sink velocity, outside of the actual updrafts as indicated by the dark blue

field in Figure 62. Therefore a gradient based reward function dependent on vertical

velocity is not feasible. In this region, the reward is instead based on proximity to the

updrafts. The multi-resolution discretization method records the states encountered

by the agent that are categorized as “goal” states. Once at least one goal state is

found, the reward function in the sink region is

ru =
0.001

gm
f

√√√√ n∑
i=1

(sgi
− si)

2 −

√√√√ n∑
i=1

(sgi
− s′i)

2

 (10.2)

where ru is the reward in the sink velocity region, sg is the nearest goal state to the

current state, s, s′ is the next state according to the Q-learning algorithm, gm
f is
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Table XXXVIII. Initial Updraft Field Limits

Initial Limit Lower Upper

X Position 0 1000

Y Position 0 1000

Z Position 100 1000

the discretization factor to the power of the current level of fineness, m, and 0.001

is a scaling factor. Prior to finding that first goal state, rewards in this sink region

are simply 0. As the learning progresses and more goal states are found, it is likely

that the sg used for a given state will change. The action-value function will update

accordingly and will still converge in this area.

When the agent encounters and maneuvers within an updraft, the reward func-

tion is based on a vertical velocity gradient defined by the following equation:

rw = |wg − ws| − |wg − w′
s| (10.3)

where rw is the reward in the updraft, wg is the goal vertical velocity, ws is the

vertical velocity in the current state, and w′
s is the vertical velocity in the next state

determined by the Q-learning algorithm. The area of interest is the goal (of which

there can be multiple) of w = 4m/s and the associated initial range is ±4m/s. The

initial boundary limits of the state-space are listed in Table XXXVIII.

1. Single Thermal

Updraft fields with only one thermal are tested first to perfect the application of

AAG, PC, and MGAP to this problem. This is a simple problem and similar to the

two state variable morphing airfoil from Chapter VIII. For this simple case, only the
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two state variable problem is tested.

2. Multiple Thermals

Updraft fields with multiple thermals are then tested. Having multiple thermals in

an updraft field means that there are multiple Regions Of Interest the agent must

explore and learn. The method for learning in this manner is discussed in Chapter

III, Section D. Using this method constitutes a more complex problem on which to

demonstrate AAG, PC, and MGAP. As such both the two state variable and three

state variable reinforcement learning problems are tested.

C. Numerical Results

The purpose of the numerical examples are to demonstrate the learning performance

of the reinforcement learning agent utilizing the multi-resolution state-space dis-

cretization method, policy comparison and performance stopping criteria, and MGAP

with single and multiple goal region(s). The updraft field to be learned is unique to

each case. The location of the thermals(s) and their individual strengths are ran-

domly generated by the updraft model. Not all of the updrafts will have the same

maximum strength, and therefore may not have any states in the stricter goal ranges

as the discretization becomes finer. This detail does not present a problem as the

overall goal is to learn the location of and the path to any and all of the updraft

centers and not just the strongest. The agent is allowed a possible 5000 episodes with

which to explore the state-space of (x, y) or (x, y, z) combinations for each level of

discretization in each Region Of Interest.
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1. Single Thermal in 2-Dimensions Numerical Results

The simplest form of the thermal location for autonomous soaring reinforcement

learning problem is single thermal in 2-dimensions, which means there are two state

variables: X position and Y position. Three cases are shown in the following sections

for this problem. First, the agent learns using the policy comparison and performance

stopping criteria. The second case has the agent use AAG and PC to learn the updraft

field. The final case has the agent use MGAP while learning. The three cases serve to

show how the various components are applied to this problem as well as the benefit

resulting from their application.

All three cases have the same admissible actions, discretization factor gf , and

number of level of discretization M . One additional factor is introduced for this

problem that is not in the airfoil or wing reinforcement learning problems. This

factor, gw, is applied to the goal range, and subsequently the Region Of Interest,

rather than gf . After initial testing of this problem, this modification was added

to aid learning. These parameters are listed in Table XXXIX. The goal, wg, and

initial range, gr1 , are dependent on the maximum vertical velocity in the center of

the thermal.

a. Case 1: Q-Learning with PC

PC is the first component added to Q-learning and applied to this problem. The

updraft field to be learned is shown in Figure 63. The goal, as determined from the

updraft field, is wg = 3m/s, and the range is gr = 3m/s. The learning performance is

analyzed in much the same way as the learning on the airfoil and wing were analyzed,

namely the Monte Carlo simulation results are considered as well as the final value

function and extracted greedy policy.
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Table XXXIX. Thermal Learning Parameters for Thermals in 2-Dimensions

Parameter Value

Episodes 5000

α 0.01

γ 0.7

gf 0.2

gw 0.5

M 3(
h1

x1
, h1

x2

)
(50m, 50m)

Fig. 63. Updraft Field for Single Thermal in 2-Dimensions Case 1
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Monte Carlo Simulation: Figure 64 shows the results of the Monte Carlo simulation

performance analysis for this problem. The one level of discretization is allowed a

possible 5000 episodes. Recall that learning on each level of discretization is termi-

nated when there is less than 5% change in the policy extracted from the action-value

function and the policy performance analysis yields greater than 98% success.

Fig. 64. Single Thermal in 2-Dimensions with PC: Monte Carlo Simulation Results

The figure shows that the policy reaches 100% success within 400 episodes, but

does not terminate until 800 episodes have elapsed. This indicates that the policy

still has at least 5% change every 200 episodes until the 800th episode. However, 800

is still a small fraction from the user defined 5000 total episodes allowed the agent.

The agent only needs 16% of the allowed episodes to find a converged and usable

policy. This translates to an 84% reduction in number of episodes.

Value Function and Policy Analysis: Figure 65 shows the value function and greedy

policy for this problem. There is a marked increase and crest in the value function

that directly corresponds to the location of the thermal in the updraft field. Within
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Table XL. Thermal Policy Color Scheme

Action Color

−hx1 Blue

+hx1 Cyan

−hx2 Yellow

+hx2 Red

the circular crest in the value function there is a marked decrease in value toward

the center of the thermal. This phenomenon is similar to what was seen in the

airfoil learning cases and is a product of the reward functions used. The policy

representation is color coded by action just as for learning on the airfoil. The color

coding is repeated in Table XL for reference in this chapter. The greedy policy shown

in Figure 65 shows definitively that the agent will move directly to the center of the

thermal almost exclusively. There are a few areas that the agent will take a slight

detour before proceeding to the center, and one spot within the thermal itself that

the agent will get “stuck” within the thermal but not quite at the center, as shown

by the yellow patch at (x, y) = (100, 500). It is likely that this patch would change

if learning were allowed to continue, but within the scope of this research and the

capability of PC, these are good results for this problem and this component.

b. Case 2: Q-Learning with AAG and PC

Now that PC has been applied and tested with success, AAG is added to the Q-

learning with PC algorithm and tested on the single thermal reinforcement learning

problem. The problem for this example is set up similarly to that of Case 1. The pa-

rameters listed in Table XXXIX are used. The updraft field to be learned in this case
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Fig. 65. Single Thermal in 2-Dimensions with PC: Value Function (a) and Policy Rep-

resentation (b)

is shown in Figure 66. The goal, as determined from the updraft field, is wg = 4m/s,

and the initial range is gr1 = 4m/s. The final range for the goal in this problem is

gr3 = 1m/s. The learning is paused and PC applied every 200 episodes. Analysis

of the learning is conducted in the same manner as before with one addition: the

dimensionality of the multi-resolution action-value function is compared with that of

the full state-space discretized at the finest level, the Monte Carlo simulation perfor-

mance results are analyzed, and the final value function and policy are considered.

Dimensionality: The dimensionality for this problem is analyzed in two ways. The

first is visually considering the distribution of states in the state-space visited by

the agent. The second is considering the number of states and state-action pairs as

was done in previous chapters. Figure 67 shows the distribution of visited states for

this problem. There are more states in and around the thermal as a result of the
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Fig. 66. Updraft Field for Single Thermal in 2-Dimensions Case 1

multi-resolution method with the densest packing of states around the center of the

thermal. This change in state density shows how the Region Of Interest contracts for

each subsequent finer discretization.

The numerical dimensionality is listed in Table XLI. The multi-resolution method

reduces the number of state-action pairs the agent must visit by two orders of mag-

nitude, which is a much larger reduction than what was seen in Chapter VIII with

the airfoil. The reason is that the Region Of Interest in this problem is much smaller.

AAG allows the agent to focus most of its attention on this one small Region Of

Interest rather than wasting time in the rest of the state-space that contains nothing

of interest, attempting to update over one million states to attain the same level of

refinement.

Monte Carlo Simulation: Figure 68 shows the results of the Monte Carlo simulation

performance analysis for this problem. Each level of discretization is allowed a possible

5000 episodes.
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Fig. 67. Single Thermal in 2-Dimensions with AAG and PC: Visited States in the

Updraft Field

Table XLI. States and State-Action Pairs

States State-Action Pairs

Multi-Resolution 2539 10156

Single-Resolution 251001 1004004
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Fig. 68. Single Thermal in 2-Dimensions with AAG and PC: Monte Carlo Simulation

Results

The figure shows that all three levels of discretization converge quickly. The first

discretization reaches 100% within 200 episodes, and the learning is terminated after

600 episodes, 4400 fewer episodes than the total allowed 5000 episodes. The agent

only needs 400 episodes to learn the second discretization to the point that there is

< 5% change in the policy, and fewer than 200 episodes to reach 100% success. The

third and final discretization reaches a performance measure of 100% success in 400

episodes as the learning is terminated. It is unusual that the learning is terminated

just as the performance measure reaches 100%. In this case there a small number

of states in the final discretization as compared to the total number of states in

the entire state-space. It is possible that many of these are changing during each

episode, but only account for 3% or 4% of the total number of states. That is why

the performance analysis is included as a stopping criterion, for those cases when

the policy has converged > 95% but has not yet converged to a usable policy. As a

result only 1600 of the possible 15000 episodes were needed for the agent to learn a
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policy with a small goal range of gr3 = 1m/s, which is an 89% reduction in number

of episodes.

Value Function and Policy Analysis: Figure 69 shows the value function and greedy

policy for this problem. Again, there is a marked increase and crest in the value

function that directly corresponds to the location of the thermal in the updraft field.

The detail in the crest is more refined as a result of the finer discretizations in this

region with the tell-tale blocky features further away from the crest resulting from the

coarsest discretization. This same refinement is reflected in the policy representation.

In the coarsely discretized region the policy shows the block nature of the policy,

while near and in the thermal where the color coded actions meet the detail is more

refined. Also, notice that there are no areas where the agent will get stuck as was

evident in the previous case.

Fig. 69. Single Thermal in 2-Dimensions with AAG and PC: Value Function (a) and

Policy Representation (b)
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c. Case 3: Q-Learning with MGAP

The final case adds the genetic algorithm for function approximation to the Q-learning

algorithm with AAG and PC and applies it to the two state variable reinforcement

learning problem. The problem for this example is set up similarly to that of Case

2. The parameters listed in Table XXXIX are used. The updraft field to be learned

in this case is shown in Figure 70. The goal, as determined from the updraft field,

is wg = 3m/s, and the initial range is gr1 = 3m/s. The final range for the goal in

this problem is gr3 = 0.75m/s. The learning is paused and PC applied every 200

episodes using the GA developed in Chapter IV. Analysis of Q-learning with MGAP

is conducted in a similar manner as before: the final set of basis functions for each

level of discretization are presented, the Monte Carlo simulation performance results

are analyzed, and the final approximated value function and associated policy are

considered.

Fig. 70. Updraft Field for Single Thermal in 2-Dimensions Case 3

Figure 71 shows the distribution of visited states for this problem. There are

more states in and around the thermal as a result of the multi-resolution method
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with the densest packing of states around the center of the thermal. This change in

state density shows how the Region Of Interest contracts for each subsequent finer

discretization.

Fig. 71. Single Thermal in 2-Dimensions with MGAP: Visited State in the Updraft

Field

Approximation: The GA determines the set of basis functions and degree or number

of knots for those basis functions each time the learning is paused, in this case every

200 episodes. It is this approximation that is used for the policy comparison and

performance analysis. As mentioned in previous chapters, each Q (s, ai) has a table

of the learned action-values for that action, ai. The GA is applied to each of these

separately to yield Q̃ (s, ai). Since there are four actions for this problem, there are

four approximations that must be made to fully approximate the action-value function

for this problem. Listed in Table XLII are the bit strings encoding the approximations

after the final episode of each level of discretization.

The basis functions for the end of the first level of discretization show consistency

between of each of the actions. Q̃ (s, a1), Q̃ (s, a2), and Q̃ (s, a3) for this level are best
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Table XLII. Approximation Bit Strings for Each Level of Discretization for Single

Thermal in 2-Dimensions

Level 1 Level 2 Level 3

Q̃ (s, a1) 1001110 1011110 1011011

Q̃ (s, a2) 1001011 1011111 1011110

Q̃ (s, a3) 1001110 1011101 1011110

Q̃ (s, a4) 1011110 1011110 1011110

approximated, according to the GA, by linear RBFs with 256, 169, and 256 evenly

distributed centers, respectively. The approximation output by the GA for Q̃ (s, a4)

is cubic RBFs with 256 centers. The approximations for the end of the second level

of discretization are more consistent. Each Q̃ (s, ai) for this level is approximated

by cubic RBFs, though each Q̃ (s, ai) requires a different number of centers for the

approximation, namely 256, 289, 225, and 256 centers for i = 1, 2, 3, 4, respectively.

The approximation for the final action-value function is very similar to the second.

The GA states that all four Q̃ (s, ai) are best approximated by cubic RBFs with

Q̃ (s, a1) requiring 169 centers and the rest requiring 256 centers. These numbers are

summarized in Table XLIII.

As was done for the airfoil example, consider the final approximations as com-

pared to the tabulated action-value function. There are 2783 states and thus 11132

state-action pairs with associated preferences or action-values in the discretized action-

value function. If only the final approximation is needed, then only the locations of

only 425 centers and 937 weights must be stored for the approximation. That is a

total of 1362 numbers that must be stored and used, which is 87% less than that for

the discretized action-value function. If the approximations from the end of learning
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Table XLIII. Comparison of Data for Tabulated and Approximated Action-Value

Function for Single Thermal in 2-Dimensions

Level 1 Level 2 Level 3

Discretization Discretization Discretization

Centers Weights Centers Weights Centers Weights States

Q (s, a1) 256 256 256 256 169 169 2783

Q (s, a2) 169 169 289 289 256 256 2783

Q (s, a3) 256 256 225 225 256 256 2783

Q (s, a4) 256 256 256 256 256 256 2783

Totals 425 937 770 1026 425 937 11132

on all three discretizations are needed, then 939 center locations and 2900 weights are

required. This is a maximum of 3839 numbers that must be stored and used when

appropriate, which is still 65% less than that for the discretized action-value function.

Monte Carlo Simulation: Figure 72 shows the results of the Monte Carlo simulation

performance analysis for this problem using the approximated action-value function

every 200 episodes. Each level of discretization is again allowed a possible 5000

episodes.

The figure shows that all three levels of discretization converge quickly as for

the case with AAG and PC only. The first discretization reaches 100% within 400

episodes, and the learning is terminated after 600 episodes. The agent only needs

600 episodes to learn the second discretization and fewer than 200 episodes to reach

> 98% success. The third and final discretization reaches a performance measure of
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Fig. 72. Single Thermal in 2-Dimensions with MGAP: Monte Carlo Simulation Results

100% success in 200 episodes. The learning is not terminated until a full 1200 episodes

ellapse at this level of discretization. This indicates that the approximate action-value

is changing sufficiently to yield a > 5% change in policy every 200 episodes. It does

settle, however, and learning is terminated with a total of only 2400 episodes needed,

which is an 84% reduction with respect to the 15000 allowed episodes.

Value Function and Policy Analysis: The following figures show the value functions

and greedy policies based on the approximated action-value functions for each level

of discretization. These are determined using Eqs. 5.4 and 5.2. It is informative to

consider each one individually to see how well the approximation captures or does

not capture the global and local (i.e. in and around the Region Of Interest) behavior

of the action-value function.

Figure 73 illustrates the value function and greedy policy based on the approxi-

mated action-value function after the final episode learned on the coarsest discretiza-

tion, episode 600. The value function suggests that the action-value function is a

fairly simple function to approximate. There is a smooth increase in value near the



195

thermal. The greedy policy shows this good approximation and supports the results

from the Monte Carlo simulation. The color coded actions direct the agent to the

center of the thermal within wg = 3± 3m/s without hesitation.

Fig. 73. Single Thermal in 2-Dimensions with MGAP, Episode 600: Approximate

Value Function (a) and Policy Representation (b)

Figure 74 shows the value function and greedy policy based on the approximated

action-value function after the final episode learned on the second discretization,

episode 1200. The value function shows signs of the effects of the approximation.

The peak around the thermal is consistent with that seen in Figure 73, but away

from the location of the thermal there is evidence of oscillations in the value function.

These oscillations are mirrored in the policy, which shows marked inconsistencies from

the policy after episode 600 on the global scale. However, within the initial Region

Of Interest that was rediscretized for the second level of learning, roughly defined by

0 ≤ x1 ≤ 200 and 500 ≤ x2 ≤ 700, the policy is consistent and shows refinement of

the actions, evidence of the finer discretization.

Figure 75 shows the final value function and greedy policy based on the approx-
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Fig. 74. Single Thermal in 2-Dimensions with MGAP, Episode 1200: Approximate

Value Function (a) and Policy Representation (b)

imated action-value function for this problem. The region defined by 40 ≤ x1 ≤ 140

and 540 ≤ x2 ≤ 640 is discretized to the finest level. As was the case with the

approximation after 1200 episodes, the area around the thermal is consistent with

the previous two approximation examined, but not so away from the thermal. The

oscillations in the outer regions are more pronounced. Again, the policy mirrors these

oscillations. The final policy based on the approximated action-value function can

only be used in and around the thermal itself, so in the region defined by 0 ≤ x1 ≤ 200

and 500 ≤ x2 ≤ 700. It does capture this small region in fine detail. Therefore, the

agent can use the approximation after 600 episodes for global behavior away from the

Region Of Interest and the final approximation in and around the Region Of Interest.

For comparison, Figure 76 shows the final value function and greedy policy de-

termined by Eqs. 5.3 and 5.1 based on the tabular action-value function. The ap-

proximations after 600 episodes is consistent with the raw data in this figure. The
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Fig. 75. Single Thermal in 2-Dimensions with MGAP, Episode 2400: Approximate

Value Function (a) and Policy Representation (b)

approximation after 1200 episodes and the final approximation show good agreement

with the region around the location of the thermal, but are not consistent with the

raw data beyond that region.

2. Multiple Thermals in 2-Dimensions Numerical Results

The next step in the thermal location for autonomous soaring reinforcement learning

problem is an updraft field with multiple thermals in 2-dimensions. Again, three

cases are shown in the following sections for this problem. The agent learns using the

policy comparison and performance stopping criteria. The second case has the agent

use AAG and PC to learn the updraft field. The final case has the agent use MGAP

while learning. The three cases serve to show the versatility of these components as

applied to a state-space with multiple Regions Of Interest. The parameters for these

cases are those listed above in Table XXXIX. The goal, wg, and initial range, gr1 , for

this incarnation of the problem are dependent on the maximum vertical velocity in
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Fig. 76. Single Thermal in 2-Dimensions with MGAP, Episode 8600: Value Function

(a) and Policy Representation (b)

the center of the thermal with the largest maximum vertical velocity.

a. Case 1: Q-Learning with PC

First consider the problem of learning multiple thermals with two state variables using

Q-learning with PC. The updraft field to be learned is shown in Figure 77. The goal

is determined from the strongest thermal in the updraft field and is wg = 4m/s. Thus

the range is gr = 4m/s. The learning performance is analyzed from the Monte Carlo

simulation results as well as the final value function and extracted greedy policy.

Monte Carlo Simulation: Figure 78 shows the results of the Monte Carlo simulation

performance analysis for this problem. The one level of discretization is allowed a

possible 5000 episodes. The figure shows that the policy reaches 100% success within

200 episodes, but does not terminate until 1200 episodes have elapsed. This indicates

that the policy still has at least 5% change every 200 episodes, which is to be expected

as there is likely activity and change around each thermal, as seen in the previous



199

Fig. 77. Updraft Field for Multiple Thermals in 2-Dimensions Case 1

example. Nevertheless, the agent only needs 24% of the allowed episodes to find a

converged and usable policy, which is a 74% reduction in number of episodes.

Value Function and Policy Analysis: Figure 79 shows the value function and greedy

policy for this problem. There are crests around each thermal showing that the agent

received positive reinforcement around each thermal. The relative magnitude of each

crest reflects the relative strength of each thermal when compared to the updraft

field in Figure 77. The two strongest thermals are located at (x, y) = (250, 900) and

(x, y) = (575, 825). The corresponding crests in the value function in Figure 79 are

of greater magnitude than the rest standing at about V (s) = 4.

The policy representation for this case is harder to read than the case with the

single thermal. The various actions converge around each thermal. The learned policy

tells the agent how to move to the nearest thermal from its current location. As for

the single thermal case, there are a couple areas in the thermals that the policy will

cause the agent to get “stuck” near the center and not allow it to move to the center
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Fig. 78. Multiple Thermals in 2-Dimensions with PC: Monte Carlo Simulation Results

Fig. 79. Multiple Thermals in 2-Dimensions with PC: Value Function (a) and Policy

Representation (b)
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of the thermal. However, the agent did achieve the objective of learning the multiple

thermal updraft field with one coarse level of discretization.

b. Case 2: Q-Learning with AAG and PC

Now that PC has been applied and tested with success for the multiple thermal case,

AAG is added to the Q-learning with PC algorithm and tested. The parameters listed

in Table XXXIX are used. The updraft field to be learned in this case is shown in

Figure 80. The goal, as determined from the updraft field, is wg = 4m/s, and the

initial range is gr1 = 4m/s. The final range for the goal in this problem is gr3 = 1m/s.

The learning is paused and PC applied every 200 episodes. Analysis of the learning

is conducted in the same manner as for the second case with a single thermal: the

dimensionality of the multi-resolution action-value function is compared with that of

the full state-space discretized at the finest level, the Monte Carlo simulation perfor-

mance results are analyzed, and the final value function and policy are considered.

Fig. 80. Updraft Field for Multiple Thermals in 2-Dimensions Case 2
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Dimensionality: The dimensionality for this problem is analyzed in the same two

ways as before in the single thermal case. The first is visually considering the dis-

tribution of states in the state-space visited by the agent. The second is considering

the number of states and state-action pairs. Figure 81 shows the distribution of vis-

ited states for this problem. There are more states in and around each thermal as a

result of the multi-resolution method with the densest packing of states around the

center of each thermal. Notice that the two thermals located at (x, y) = (80, 590) and

(x, y) = (255, 920) do not have areas with states from the third level of discretization.

The reason is that these two thermals are fairly weak (maximum velocities < 1m/s)

compared to the strongest thermal, so at the higher levels of discretization with the

more restricted goal regions, there are no goal states and thus no Region Of Interest

to explore at the next level of discretization.

Fig. 81. Multiple Thermals in 2-Dimensions with AAG and PC: Visited State in the

Updraft Field

The numerical dimensionality is listed in Table XLIV. The multi-resolution

method again reduces the number of state-action pairs the agent must visit by two
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Table XLIV. Multiple Thermals in 2-Dimensions with AAG and PC: States and

State-Action Pairs

States State-Action Pairs

Multi-Resolution 7845 31380

Single-Resolution 251001 1004004

orders of magnitude. Even though there are now five Regions Of Interest, the com-

bined area is still smaller than that seen with the airfoil. AAG allows the agent to

focus most of its attention on these smaller Regions Of Interest individually rather

than wasting time in areas of the state-space between these regions.

Monte Carlo Simulation: Figure 82 shows the results of the Monte Carlo simulation

performance analysis for this problem. Each level of discretization is allowed a possible

5000 episodes, which means that the agent is allowed 5000 episodes for each Region Of

Interest at each level of discretization. The thermal locations and their corresponding

designation in Figure 82 are listed in Table XLV. Each Region Of Interest is tested

separately for the second and third discretization. PC registers a success for the initial

discretization if the agent moves from its initial state to any Region Of Interest.

The figures show that learning on the first level of discretization converges

quickly, within 400 episodes. The first level is not terminated, however, until af-

ter 1400 episodes. The reasoning for this delay is the same as before. The policy is

still changing by at least 5% every 200 episodes. It is not until the 1400th episode

that the policy has converged and has a performance of 100% success. The policy

converges even more quickly for the second level of discretization for each thermal.

The policy for each reaches 100% success almost immediately, and learning termi-
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Fig. 82. Multiple Thermals in 2-Dimensions with AAG and PC: Monte Carlo Simula-

tion Results
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Table XLV. Multiple Thermals in 2-Dimensions with AAG and PC: Thermal Loca-

tions

Designation X Position (m) Y Position (m)

(a) 430 530

(b) 770 405

(c) 80 595

(d) 595 110

(e) 255 920

nates in 600 episodes. Only three of the thermals, (a), (b), and (d), needed further

discretization and learning based on the final goal range of gr3 = 1m/s. The figures

show that the policy again converges almost immediately, in 200 episodes, and learn-

ing is terminated after 400 episodes. Table XLVI summarizes how the total possible

number of episodes is determined. According to the table, only 5600 were needed of

the total 90000 episodes possible, which is a 93.7% reduction.

Value Function and Policy Analysis: In both images in Figure 83, the various levels

of discretization are evident in the blocky nature of the surfaces. The large squares

in the policy representation and the large block structures in the value function rep-

resentation indicate areas that the largest discretization was applied. The areas with

finer discretization, especially around the bottom left region, are evident in the more

refined surface gradation and color separation in the value function and policy, respec-

tively. As in the previous case, each crest in the value function mirrors the strength

of the thermal in that location. With the additional episodes at the finer levels of

discretization, there are no obvious areas that would cause the agent to get stuck and
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Table XLVI. Multiple Thermals in 2-Dimensions with AAG and PC: Number of

Episodes Used

Discretization Regions Episodes Total Episodes Total Episodes

Explored per Region per Level Allowed per Level

Level 1 1 1400 1400 5000

Level 2 5 600 3000 25000

Level 3 3 400 1200 15000

Total Episodes – – 5600 90000

be unable to proceed to the nearest thermal.

c. Case 3: Q-Learning with MGAP

The final step for this problem as for the last is to add the genetic algorithm for

function approximation to the Q-learning algorithm with AAG and PC and demon-

strate it with the two state variable multiple thermal reinforcement learning problem.

The problem for this example is set up similarly to that of Case 2. The parame-

ters listed in Table XXXIX are used. The updraft field to be learned in this case is

shown in Figure 84. The goal, as determined from the updraft field, is wg = 5m/s,

and the initial range is gr1 = 5m/s. The final range for the goal in this problem is

gr3 = 1.25m/s. The learning is paused and PC applied every 200 episodes using the

GA developed in Chapter IV. Analysis of Q-learning with MGAP is conducted in a

similar manner as before: the final set of basis functions for each level of discretization

are presented, the Monte Carlo simulation performance results are analyzed, and the

final approximated value function and associated policy are considered.

Figure 85 shows the distribution of visited states for this problem. There are
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Fig. 83. Multiple Thermals in 2-Dimensions with AAG and PC: Value Function (a)

and Policy Representation (b)

Fig. 84. Updraft Field for Multiple Thermals in 2-Dimensions Case 3
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more states in and around the thermal as a result of the multi-resolution method

with the densest packing of states around the center of the thermal. This change in

state density shows how the Region Of Interest contracts for each subsequent finer

discretization.

Fig. 85. Multiple Thermals in 2-Dimensions with MGAP: Visited State in the Updraft

Field

Approximation: The GA determines the set of basis functions and degree or number

of knots for those basis functions each time the learning is paused, in this case every

200 episodes. It is this approximation that is used for the policy comparison and

performance analysis. As mentioned in previous chapters, each Q (s, ai) has a table

of the learned action-values for that action, ai. The GA is applied to each of these

separately to yield Q̃ (s, ai). Since there are four actions for this problem, there

are four approximations that must be made to fully approximate the action-value

function for this problem. Listed in Table XLVII are the bit strings encoding the

approximations after the final episode of each level of discretization.

The basis functions for the end of the first level of discretization show consistency
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Table XLVII. Approximation Bit Strings for Each Level of Discretization for Multiple

Thermals in 2-Dimensions

Level 1 Level 2 Level 3

Q̃ (s, a1) 1011110 1011110 1011110

Q̃ (s, a2) 1011110 1011111 1011110

Q̃ (s, a3) 1011110 1011110 1011110

Q̃ (s, a4) 1001110 1011111 1011110

between of each of the actions. Q̃ (s, a1), Q̃ (s, a2), and Q̃ (s, a3) for this level are

best approximated, according to the GA, by cubic RBFs with 256 evenly distributed

centers. The approximation output by the GA for Q̃ (s, a4) is linar RBFs with 256

centers. The approximations for the end of the second level of discretization are even

more consistent. Each Q̃ (s, ai) for this level is approximated by cubic RBFs with

Q̃ (s, a1) and Q̃ (s, a3) requiring 256 centers and Q̃ (s, a2) and Q̃ (s, a4) requiring 289

centers. The approximation for the final action-value function is very similar to the

second. The GA states that all four Q̃ (s, ai) are best approximated by cubic RBFs

with all of the Q̃ (s, ai) requiring 256 centers. These numbers are summarized in Table

XLVIII.

As was done for the single thermal example, consider the final approximations

as compared to the tabulated action-value function. There are 10796 states and thus

43184 state-action pairs with associated preferences or action-values in the discretized

action-value function. If only the final approximation is needed, then the locations of

only 256 centers and 1024 weights must be stored for the approximation. That is a

total of 1280 numbers that must be stored and used, which is 97% less than that for

the discretized action-value function. If the approximations from the end of learning
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Table XLVIII. Comparison of Data for Tabulated and Approximated Action-Value

Function for Multiple Thermals in 2-Dimensions

Level 1 Level 2 Level 3

Discretization Discretization Discretization

Centers Weights Centers Weights Centers Weights States

Q (s, a1) 256 256 256 256 256 256 10796

Q (s, a2) 256 256 289 289 256 256 10796

Q (s, a3) 256 256 256 256 256 256 10796

Q (s, a4) 256 256 289 289 256 256 10796

Totals 256 1024 545 1090 256 1024 43184

on all three discretizations are needed, then 545 center locations and 3138 weights are

required. This is a maximum of 3683 numbers that must be stored and used when

appropriate, which is still 91% less than that for the discretized action-value function.

Monte Carlo Simulation: Figure 86 shows the results of the Monte Carlo simulation

performance analysis for this problem. Each level of discretization is allowed a possible

5000 episodes, which means that agent is allowed 5000 episodes for each Region Of

Interest at each level of discretization. The thermal locations and their corresponding

designation in Figure 86 are listed in Table XLIX. Each Region Of Interest is tested

separately for the second and third discretization. PC registers a success for the initial

discretization if the agent moves from its initial state to any Region Of Interest.

The figures show that learning on the first level of discretization converges

quickly, within 600 episodes. The first level is not terminated, however, until after
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Table XLIX. Multiple Thermals in 2-Dimensions with MGAP: Thermal Locations

Designation X Position (m) Y Position (m)

(a) 80 395

(b) 410 545

(c) 575 220

755 335

(d) 235 885

Fig. 86. Multiple Thermals in 2-Dimensions with MGAP: Monte Carlo Simulation

Results
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Table L. Multiple Thermals in 2-Dimensions with MGAP: Number of Episodes Used

Discretization Regions Episodes Total Episodes Total Episodes

Explored per Region per Level Allowed per Level

Level 1 1 1400 1400 5000

Level 2 4 600 2400 20000

Level 3 3 400 1200 15000

Total Episodes – – 5000 85000

1400 episodes, as was the case for the algorithm with AAG and PC only. The rea-

soning for this delayis the policy is still changing by at least 5% every 200 episodes.

It is not until the 1400th episode that the policy has converged and has a perfor-

mance of 100% success. The policy converges even more quickly for the second level

of discretization for each thermal. The policy for each reaches > 98% success almost

immediately, and learning terminates in 600 episodes. Only three of the thermals,

(a), (b), and (c), needed further discretization and learning based on the final goal

range of gr3 = 1.25m/s. The figures show that the policy again converges almost

immediately, in 200 episodes, and learning is terminated after 400 episodes. Table L

summarizes how the total possible number of episodes is determined. According to

the table, only 5000 were needed of the total 85000 episodes possible, which is a 94%

reduction.

Value Function and Policy Analysis: The following figures show the value functions

and greedy policies based on the approximated action-value functions for each level

of discretization. These are determined using Eqs. 5.4 and 5.2. It is informative to

consider each one individually to see how well the approximation captures or does



213

not capture the global and local (i.e. in and around the Region Of Interest) behavior

of the action-value function.

Figure 87 illustrates the value function and greedy policy based on the approxi-

mated action-value function after the final episode learned on the coarsest discretiza-

tion, episode 1400. The value function suggests that the action-value function is

a fairly simple function to approximate despite the multiple thermals. There is a

smooth increase in value around each thermal location. The greedy policy shows

this good approximation and supports the results from the Monte Carlo simulation.

The color coded actions direct the agent to the center of the nearest thermal within

wg = 5± 5m/s without hesitation.

Fig. 87. Multiple Thermals in 2-Dimensions with MGAP, Episode 1400: Approximate

Value Function (a) and Policy Representation (b)

Figure 88 shows the value function and greedy policy based on the approximated

action-value function after the final episode learned on the second discretization,

episode 2000. The value function shows evidence of the effects of the approximation.

The peak around each thermal is consistent with that seen in Figure 87, but away from
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the locations of the thermals and between each, there is evidence of oscillations in

the value function. These oscillations are mirrored in the policy, which shows marked

inconsistencies from the policy after episode 1400 on the global scale. However,

within the initial Regions Of Interest around the locations of each thermal that were

rediscretized for the second level of learning the policy is again consistent and shows

refinement of the actions, evidence of the finer discretization.

Fig. 88. Multiple Thermals in 2-Dimensions with MGAP, Episode 2000: Approximate

Value Function (a) and Policy Representation (b)

Figure 89 shows the final value function and greedy policy based on the approx-

imated action-value function for this problem. The interior regions of the thermals

that require further learning are discretized to the finest level. As was the case with

the approximation after 2000 episodes, the area around the center of each thermal is

consistent with the previous two approximations examined, but not between the ther-

mals. The oscillations in the these regions are more pronounced. Again, the policy

mirrors these oscillations. The final policy based on the approximated action-value

function can only be used in and around each thermal. It does capture each of these
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small regions in fine detail. Therefore, the agent can use the approximation after

1400 episodes for global behavior away from the Regions Of Interest and the final

approximation in and around the Regions Of Interest.

Fig. 89. Multiple Thermals in 2-Dimensions with MGAP, Episode 2400: Approximate

Value Function (a) and Policy Representation (b)

For comparison, Figure 90 shows the final value function and greedy policy de-

termined by Eqs. 5.3 and 5.1 based on the tabular action-value function. The ap-

proximations after 1400 episodes is consistent with the raw data in this figure. The

approximation after 2000 episodes and the final approximation show good agreement

with the regions around the locations of the thermals, but are not consistent with the

raw data beyond those regions.

3. Multiple Thermals in 3-Dimensions Numerical Results

The final step in the thermal location for autonomous soaring reinforcement learning

problem is an updraft field with multiple thermals in 3-dimensions. Only two cases

are shown for this problem to avoid too much repitition. The first case has the agent
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Fig. 90. Multiple Thermals in 2-Dimensions with MGAP, Episode 8600: Value Func-

tion (a) and Policy Representation (b)

use AAG and PC to learn the updraft field with 3 state variables. The second case has

the agent use MGAP while learning. The three cases serve to show the versatility of

these components as applied to a state-space with multiple Regions Of Interest. The

parameters for these cases are listed in Table LI. As for the 2-dimensional case, the

goal, wg, and initial range, gr1 , for this incarnation of the problem are dependent on

the maximum vertical velocity in the center of the thermal with the largest maximum

vertical velocity at z = 300m.

As for the morphing wing example, a case describing the results for the full

MGAP algorithm applied to this problem is not included for one reason: the compu-

tational demands of the genetic algorithm for this larger problem were such that the

supporting computer runs out of memory during the calculation of ω. Again, the case

with the GA and PC is shown to illustrate show the success of these components.
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Table LI. Thermal Learning Parameters for Thermals in 3-Dimensions

Parameter Value

Episodes 5000

α 0.01

γ 0.7

gf 0.5

gw 0.5

M 3(
h1

x1
, h1

x2
, h1

x3

)
(100m, 100m, 100m)

a. Case 1: Q-Learning with AAG and PC

The first multiple thermal with three state variables case tests Q-learning with AAG

and PC. The parameters listed in Table LI are used. The updraft field to be learned

in this case is shown in Figure 91. This figure shows a cross-section of the full 3-

dimensional updraft field at z = 300m. The goal, as determined from the updraft

field, is wg = 5m/s, and the initial range is gr1 = 5m/s. The final range for the

goal in this problem is gr3 = 1.25m/s. The learning is paused and PC applied every

200 episodes. Analysis of the learning is conducted in a similar manner to the 2-

dimensional field. As before, the dimensionality of the multi-resolution action-value

function is compared with that of the full state-space discretized at the finest level,

and the Monte Carlo simulation performance results are analyzed. The value function

and policy are 4-dimensional surfaces and are difficult to visualize, so those results

are not included in this analysis.



218

Fig. 91. Updraft Field for Multiple Thermals in 3-Dimensions Case 1

Dimensionality: The dimensionality for this problem is analyzed by visually consid-

ering the distribution of states in the state-space visited by the agent and considering

the number of states and state-action pairs. Figure 92 shows the distribution of vis-

ited states for this problem. The figure shows the distribution in a 3-dimensional

field and from a top down perspective. There are more states in and around each

thermal as a result of the multi-resolution method with the densest packing of states

around the center of each thermal. There is a noticeable flair in the distribution of

states as z increases. This flair is a result of the bell shape of thermals created by

the updraft model. Notice that the two thermals located at (x, y) = (80, 745) and

(x, y) = (585, 850) are the only two with states from the third level of discretization.

Also, the distribution of states around the two thermals located at (x, y) = (100, 415)

and (x, y) = (735, 170) show no separation between the two. The two thermals are

so close to each other that the method described in Chapter III, Section D could not

distinguish between them and clustered them together.

The numerical dimensionality is listed in Table LII. The multi-resolution method
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Fig. 92. Multiple Thermals in 3-Dimensions with AAG and PC: Visited State in the

Updraft Field

Table LII. Multiple Thermals in 3-Dimensions with AAG and PC: States and

State-Action Pairs

States State-Action Pairs

Multi-Resolution 4679 28074

Single-Resolution 62197 373182

reduces the number of state-action pairs the agent must visit by only one order of

magnitude for this problem. This results from the larger initial discretization as well

as the larger value for gf . Regardless, AAG allows the agent to focus most of its

attention on these four smaller Regions Of Interest individually rather than wasting

time in areas of the state-space between these regions.

Monte Carlo Simulation: Figure 93 shows the results of the Monte Carlo simulation

performance analysis for this problem. Each level of discretization is allowed a possible
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Table LIII. Multiple Thermals in 3-Dimensions with AAG and PC: Thermal Locations

Designation X Position (m) Y Position (m)

(a) 255 380

(b) 100 415

735 170

(c) 80 745

(d) 585 850

5000 episodes, which means that the agent is allowed 5000 episodes for each Region Of

Interest at each level of discretization. The thermal locations and their corresponding

designation in Figure 93 are listed in Table LIII. Note that (c) has two thermal centers

listed. This means that when the goal states were clustered at the end of learning

on the first level of discretization, the goal states around these two thermals not far

enough away from each other to be recognized as separate thermals and are treated

as one during learning on subsequent levels of discretization. Each Region Of Interest

is tested separately for the second and third discretization. PC registers a success for

the initial discretization if the agent moves from its initial state to any Region Of

Interest.

The figures show that learning on the first level of discretization converges to

100% quickly, within 400 episodes. The first level is not terminated, however, until

after 2200 episodes. The percent success varies between 98.4% and 100% for those

final 1800 episodes of the first discretization. This variation is a consequence of the

more complex field that must be learned. The policy converges to > 98% in 200 to

800 episodes for the second level of discretization. The thermals represented by (b)

took the longest at 800 episodes to reach > 98% success. The reason is that with
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Fig. 93. Multiple Thermals in 3-Dimensions with AAG and PC: Monte Carlo Simula-

tion Results
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Table LIV. Multiple Thermals in 3-Dimensions with AAG and PC: Number of

Episodes Used

Discretization Regions Episodes Total Episodes Total Episodes

Explored per Region per Level Allowed per Level

Level 1 1 2200 2200 5000

Level 2 4 800 3200 20000

Level 3 2 600 1200 10000

Total Episodes – – 6600 80000

the two thermals in that Region Of Interest, there is a more complex updraft field to

analyze than the other regions that contain only one thermal each. Only two of the

thermals, (c) and (d), needed further discretization and learning based on the final

goal range of gr3 = 1.25m/s. The figures show that the policy converges in 400 to

600 episodes, and learning is terminated after 600 episodes. Table LIV summarizes

how the total possible number of episodes is determined. According to the table, only

6600 were needed of the total 80000 episodes possible, which is a 91.8% reduction.

b. Case 2: Q-Learning with GA and PC

The final case adds the genetic algorithm for function approximation to the Q-learning

algorithm with PC and applies it to the three state variable reinforcement learning

problem. The problem for this example is set up similarly to that of Case 1. The

parameters listed in Table XXXIX are used. The updraft field to be learned in

this case is shown in Figure 94. The goal, as determined from the updraft field, is

wg = 4m/s, and the range is gr1 = 4m/s. The learning is paused and PC applied

every 200 episodes using the GA developed in Chapter IV. Analysis of Q-learning
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with the GA and PC is conducted in a similar manner as before: the final set of

basis functions are presented and the Monte Carlo simulation performance results are

analyzed.

Fig. 94. Updraft Field for Multiple Thermals in 3-Dimensions Case 2

Approximation: As described in previous chapters, the GA determines the set of

basis functions and degree or number of knots for those basis functions each time the

learning is paused, in this case every 200 episodes. These approximations are used

for the policy comparison and performance analysis. Since there are six actions for

this problem, there are six approximations that must be made to fully approximate

the action-value function. Due to the computational limitation mentioned earlier, the

agent is restricted to learning on only one level of discretization. Listed in Table LV

are the bit strings encoding the approximations after the final episode.

The basis functions for the end of the first and only level of discretization show

gene combinations representing several basis function sets for the approximations.

Q̃ (s, a1) calls for linear RBFs with (12 + 2)3 = 143 = 2744 evenly distributed centers.



224

Table LV. Approximation Bit Strings for Only Level of Discretization for Multiple

Thermals in 3-Dimensions

Level 1

Q̃ (s, a1) 1001100

Q̃ (s, a2) 0101110

Q̃ (s, a3) 0101110

Q̃ (s, a4) 1001101

Q̃ (s, a5) 0101110

Q̃ (s, a6) 0101110

Q̃ (s, a2), Q̃ (s, a3), Q̃ (s, a5), and Q̃ (s, a6) are all best approximated, according to the

GA, by simple linear interpolation between 163 = 4096 evenly distributed nodes.

Q̃ (s, a4) calls for linear RBFs with 153 = 3375 evenly distributed centers. These

approximations are larger than those for the two state variable problem in this chapter

due to the extra of state variable.

Monte Carlo Simulation: Figure 95 shows the results of the Monte Carlo simulation

performance analysis for this problem using the approximated action-value function

every 200 episodes. Learning is terminated when there is less than 5% change in

the policy extracted from the approximated action-value function in Eq. 5.2 and the

policy performance analysis yields greater than 98% success.

The figure shows that learning at this discretization converges to 100% quickly,

within 600 episodes. Learning is not terminated, however, until after 1600 episodes.

The percent success remains 100% for those final 1000 episodes. Based on the learned

data here only 600 episodes are needed of the 5000 allowed, which is an 88% reduction.
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Fig. 95. Multiple Thermals in 3-Dimensions with GA and PC: Monte Carlo Simulation

Results

D. Summary

In this chapter the thermal location problem with one or more Regions Of Interest

was cast as a reinforcement learning problem and run through various components

of the algorithm developed in this research with both two and three state variables.

Results show that the agent autonomously determines where the multiple Regions

Of Interest are located and continues learning within those regions. Q-learning with

multi-resolution discretization and policy comparison was successfully demonstrated

for the 2-dimensional single thermal case, the 2-dimensional multiple thermal case,

and the 3-dimensional multiple thermal case. The agent was able to learn the goals

of wg = 4 ± 1m/s, wg = 4 ± 1m/s, and wg = 5 ± 1.25m/s for these three prob-

lems. Each showed significant reductions in the number of episodes required (89%,

93.7%, and 91.8%, respectively) and at least an order of magnitude reduction in the

number of state-action pairs needed to learn these specific goals. It was also shown

that the agetn autonomously decided which Regions Of Interest required additional

learning and which regions held no additional information. Results also successfully
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demonstrate Q-learning with MGAP for the 2-dimensional single thermal case and

2-dimensional multiple thermal case. The final Regions Of Interest for these two prob-

lems are wg = 3 ± 0.75m/s and wg = 5 ± 1.25m/s, respectively. The actiona-value

functions were successfully approximated and the extracted greedy policy converged

to a usable policy within 2400 episodes and 5000 episodes, both of which is a 94%

reduction for their respective problems. The global behavior of the action-value func-

tion was lost during learning at finer levels of discretization. As such, the agent

autonomously uses the approximations at the end of each level of discretization when

appropriate. Finally, Q-learning with policy comparison and the genetic algorithm

for function approximation was demonstrated with the 3-dimensional multiple ther-

mal case. Results here show that the action-value function is approximated and only

600 episodes are needed, which is an 88% reduction, to converge to a usable policy

extracted from the approximated action-value function.
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CHAPTER XI

CONCLUSIONS

This dissertation describes the development and application of a Q-learning based

algorithm intended to more efficiently learn complex state-spaces with particular at-

tention paid to regions of interest containing high concentrations of information. The

algorithm consists of three novel components in addition to the Q-learning algorithm.

These three components are the multi-resolution state-space discretization method

(AAG), policy comparison and performance stopping criteria (PC), and the genetic

algorithm for function approximation. All three components working together form

the MGAP algorithm.

To analyze the performance and usefulness of the algorithm, several problems are

cast as reinforcement learning problems and learning conducted using the algorithm.

The algorithm is applied to the inverted pendulum, which is a simple benchmark

dynamic system. To represent the class of systems of particular interest in this dis-

sertation, the morphing airfoil and morphing wing are both cast as reinforcement

learning problems with the shape parameters as the state variables. Also, a thermal

location for autonomous soaring problem is cast as a reinforcement learning problem

to test the algorithm’s ability to efficiently handle multiple regions of interest.

A series of simulations are performed for each problem to test the learning per-

formance of the various components individually and in conjunction with each other.

The results are analyzed in a variety of ways including a dimensionality analysis,

Monte Carlo simulations, value function and policy analysis, and action-value ap-

proximation analysis when appropriate.

The following conclusions are made based on the results presented in this disser-

tation:
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1. The multi-resolution state-space discretization method offered a good solution

to the integration of the learning on a coarse discretization for fast convergence

over the whole state-space with learning on a fine discretization for the captur-

ing of fine detail in regions of interest. Conceptually, a problem with the full

state-space discretized at the finest level would take many thousands or tens of

thousands of episodes more to reach this level of convergence. This method is

successful in greatly reducing the time for convergence, increasing the rate of

convergence, and achieving a goal with a very small range. This method essen-

tially reduced the larger problems by at least an order of magnitude, making

each a much more tractable learning problem.

2. Convergence is sensitive to state-space discretization. If the discretization is

very fine, then rate of convergence is slower, taking upwards of thousands of

episodes to achieve > 98% success in the case of the morphing airfoil. When

the discretization is coarse, only hundreds of episodes are needed to achieve

> 98% success. Often, only 200 to 400 episodes were necessary for the action-

value function of a coarse discretization to converge to a policy that has > 98%

success. However, a fine discretization is desired for a refined goal or cost

function.

3. The policy comparison, when integrated into Q-learning with AAG, showed a

significant reduction in the number of episodes necessary. Based on the user

defined allowed episodes per level of discretization, this reduction ranged from

28% to 93.7% for the various problems.

4. Integrating the genetic algorithm into the algorithm allows for the approxima-

tion of the action-value function to evolve with the function itself. In many of

the cases, the total number of weights, knots, and/or centers is a fraction of the



229

total number of state-action pairs. The exceptions are the wing and last ther-

mal location problems in which the approximations are also large and available

computational ability becomes an issue.
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CHAPTER XII

RECOMMENDATIONS

Several recommendations are made here based on the research presented in this dis-

sertation:

1. Investigate the effect of uncertainty on the state of the environment as sensed

by the agent. All of the reinforcement learning problems in this dissertation

assume perfect knowledge of the current state of the environment, which is

not representative of the true environment. This may be done by adding noise

to the state, s ∈ S. The Q-learning update law can then be applied to the

quantized state and stored in the action-value function, similar in essence to

how Q-learning was applied to the inverted pendulum reinforcement learning

problem.

2. Explore the effect of incorporating transition probabilities or conditional prob-

abilities. It is assumed that given a state and action, the next occurs with a

probability of 1. This is not the case in many applications. Instead, the proba-

bility of transitioning from one state to another can be governed by a Gaussian

probability density function, an exponential density function, etc.

3. Extend the multi-resolution state-space discretization method to discretizing

the state-space by randomly distributing the states. This randomization will

necessitate changes in the action definitions, but it will further reduce the effects

of dimensionality.

4. Integrate a more sophisticated function approximator, such as GLOMAP, into

the genetic algorithm in place of the fitness function. GLOMAP should be able
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to capture the global behavior of the action-value function as well as the local

behavior in the areas that are rediscretized, which the simple application of

linear least-squares could not do necessitating the need for approximations of

the action-value function after learning for each level of discretization. This

could also alleviate the computation memory issues encountered in the larger

problems when the genetic algorithm is applied.

5. Investigate reducing the range of the second gene of the genetic algorithm. The

morphing wing example shows that good approximations are achieved when this

gene is limited to 6 or less. Additionally, investigate the effects of modifying

the genetic algorithm in such a way that members of the population with lower

values for the second gene that are good approximations are favored over mem-

bers with higher values for the second gene that are as good or only marginally

better.

6. Investigating penalizing higher order terms of the basis functions using noise

characteristics.

7. Investigate randomizing or intelligently distributing the nodes, centers, and

knots in the genetic algorithm. Uniform distribution encounters similar dimen-

sionality problems as rigidly discretized state-spaces. Randomizing the distri-

bution should alleviate this problem in the genetic algorithm.

8. The current incarnation of the thermal location problem identifies the center

and path to the nearest thermal from any point in the state-space. It would

be beneficial to identify the center of the thermals at the coarsest discretization

and then learn the path to each thermal separately while avoiding the rest of

the thermals.
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9. Extend the multi-resolution state-space discretization method to note Regions

Of Interest that are “bad” or are difficult regions or boundaries. Rediscretizing

the area and continuing learning in that region will refine the path around the

region to avoid it, escape it, or locate a safe path through the region.

10. Further develop the algorithm to apply to problems in which a single action can

change one or more state variables. The problems presented in this dissertation

limited the number of admissible actions and assumed that taking an action

changes only one state. This is not the case for many applications. This algo-

rithm could benefit these applications in a similar manner as those presented

in this dissertation.

11. Explore methods for choosing what order to evaluate multiple Regions Of Inter-

est. Currently the order in which subsequent learning is conducted on multiple

Regions Of Interest is random. Conducting subsequent learning by order of

which region has the most information or some other measure would better

direct the agent.

12. Develop performance guarantees for the approach. As other methods have done,

bounds can be set at the boundary with linear point designs to guarantee this

approach with a traditional and well understood approach.

13. Investigate alternative reinforcement learning problem definitions for the ap-

plications presented in this dissertation. There will be issues in the future in

getting this kind of configuration controller certified on a reconfigurable air-

craft. Therefore, it may be beneficial applying a more traditional controller and

having the approach developed here learn how to tune or change gains to meet

performance requirements throughout the flight envelope.
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