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ABSTRACT 

Testing the Effectiveness of Various Commonly Used Fit Indices for Detecting 

Misspecifications in Multilevel Structural Equation Models. (December 2009) 

Hsien-Yuan Hsu, B.B.A., Nan-Hua University; M.S., National Taiwan University of 

Science and Technology 

Co-Chairs of Advisory Committee: Dr. Oi-Man Kwok  

                               

 

 

Two Monte Carlo studies were conducted to investigate the sensitivity of fit indices 

in detecting model misspecification in multilevel structural equation models (MSEM) 

with normally distributed or dichotomous outcome variables separately under various 

conditions. Simulation results showed that RMSEA and CFI only reflected within-model 

fit. In addition, SRMR for within-model (SRMR-W) was more sensitive to within-model 

misspecifications in factor covariances than pattern coefficients regardless of the impact 

of other design factors. Researchers should use SRMR-W in combination with RMSEA 

and CFI to evaluate the within-mode. On the other hand, SRMR for between-model 

(SRMR-B) was less likely to detect between-model misspecifications when ICC 

decreased. Lastly, the performance of WRMR was dominated by the misfit of 

within-model. In addition, WRMR was less likely to detect the misspecified 

between-models when ICC was relative low. Therefore, WRMR can be used to evaluate 

the between-model fit when the within-models were correctly specified and the ICC was 

not too small. 

Dr. Victor Willson 
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CHAPTER I 

INTRODUCTION 

 

The methodological issue of analyzing hierarchical (or multilevel) structure data 

have prompted the growing development of multilevel modeling techniques over the 

past two decades (Heck, 2001). In educational and psychological research, two 

multilevel modeling techniques, namely hierarchical linear modeling (HLM) and 

multilevel structural equation modeling (MSEM), are widely adopted to analyze 

hierarchical structure data. HLM is referred to as an approach which facilitates the 

specification of univariate models (i.e., models with one outcome variable), while 

MSEM can be used to investigate “a wide range of multilevel, multivariate models” 

(Heck & Thomas, 2008, p. 100). 

HLM primarily concerns the decomposition of variance in an univariate outcome 

variable into its within-group (e.g., student) and between-group (e.g., school) 

components and investigates the explained variances with sets of predictor variables 

existing in within-group or between-group levels (Heck & Thomas, 2008; Raudenbush 

& Bryk, 2002). However, HLM is restricted by its intrinsic inflexibility. First, HLM does 

not allow multivariate outcome variables at two or more levels to be explained by 

predictor variables. Second, HLM does not allow any latent variable underling the  
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observed variables to be included in the analysis (Heck & Thomas, 2008). In other 

words, the variables of interest in HLM are assumed to have no measurement errors (i.e., 

all variables are perfectly reliable). Such limitations put bounds to the application of 

HLM in educational and psychological research. 

In comparison to HLM, MSEM refers to a more flexible approach in a general 

latent variable framework (Muthén & Asparouhov, 2009). The superiority of MSEM 

over HLM is showed as follows. First, MSEM incorporates measurement error in 

defining constructs through their observed indicators. More accurate estimates of the 

structural relationship between variables can be obtained after we correct for 

unreliability (Rowe, 2003). Second, a wide variety of theoretical multivariate models 

including latent and measured variables can be specified, tested, and compared (Heck & 

Thomas, 2008). Third, it is possible to evaluate the direct, indirect, and total effects 

operating among outcome variable(s) and predictor variable(s) simultaneously (Rowe, 

2003). Because of the advantages of MSEM, it has been widely applied by many 

researchers across educational and psychological disciplines (e.g., Branum-Martin, et al., 

2006; Cheung & Au, 2005; Duncan, Alpert, & Duncan, 1998; Dyer, Hanges, & Hall, 

2005; Everson & Millsap, 2004; Gottfredson, Panter, Daye, Allen, & Wightman, 2009; 

Heck, 2001).  

Unlike HLM, MSEM requires researchers to address how well the hypothesized 

model can reproduce the relations found in the sample data. MSEM is a confirmatory 

method that requires one to hypothesize a within-model and a between-model (i.e., 

model specification), and most importantly, the model fit needs to be justified (i.e., 
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model evaluation). In MSEM, besides the overall model chi-square test (𝒳2), RMSEA, 

CFI, SRMR, and WRMR are commonly reported in studies and are available in many 

standard statistical programs. RMSEA, CFI, and WRMR are global fit indices to reflect 

the degree of misfit for both within-model and between-model jointly (i.e., entire model). 

On the other hand, SRMR can be computed separately for the within-model (SRMR-W) 

and the between-model (SRMR-B). Up to now, SRMR-W and SRMR-B are the only fit 

indices that can be used to assess the within-model and between-model, respectively. In 

MSEM, most researchers rely mainly on traditional fit indices (e.g., RMSEA, CFI, 

SRMR, and WRMR), along with commonly used cutoff values proposed by Hu and 

Bentler (1999) or Yu (2002) as guidelines to justify the adequacy of hypothesized 

models. 

Several potential problems associated with the application of RMSEA, CFI, 

SRMR-W, SRMR-B and WRMR in MSEM arise. First, as global fit indices, RMSEA 

and CFI might be more sensitive to misspecified within-models rather than misspecified 

between-models. Both RMSEA and CFI are a function of 𝒳2. However, the value of 

𝒳2 is weighted differentially depending on the sample size at within-model and 

between-model. Generally, the sample size of the within-model (i.e., total sample size 

minus the number of groups) is a lot larger than the sample size of the between-model 

(i.e., the number of groups). Thus, the value of 𝒳2 as well as RMSEA and CFI are 

expected to be dominated by the within-model (Hox, 2002; Ryu & West, in press). Very 

few empirical studies have been conducted to evaluate whether RMSEA and CFI are 

sensitive to the entire model or the within-model only. This problem is in urgent need of 
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investigation because researchers have treated RMSEA and CFI as global fit indices and 

believed these fit indices can indicate the degree of entire model fit in MSEM. 

Second, the findings and cutoff values suggested in the previous studies regarding 

SRMR were based on simulated single-level data (i.e., data with independent 

observations) in conventional SEM and may not be generalized directly to MSEM (i.e., 

data with non-independent observations). Previous studies have shown that SRMR is 

more sensitive to misspecifications in the factor covariances and less sensitive to 

misspecifications in the pattern coefficients (e.g., Fan & Sivo, 2005; Hu & Bentler, 1998, 

1999). However, in MSEM, SRMR is not a global fit index but can be computed 

separately for the within-model (SRMR-W) and the between-model (SRMR-B). No 

empirical study has been conducted to investigate the previous findings and 

recommended cutoff values are still applicable for SRMR-W and SRMR-B. Therefore, 

one cannot assume that SRMR-W and SRMR-B perform in a manner consistent with 

SRMR in conventional SEM. The performances of SRMR-W and SRMR-B need to be 

examined using simulated hierarchical structure data. 

Third, the WRMR has been used in MSEM without a clear understanding of how it 

performs. WRMR is suitable to evaluate models with non-normally distributed outcomes 

(Muthén & Muthén, 1998-2007). There appears to be only one study (Yu, 2002) which 

evaluated the effectiveness of WRMR. However, in Yu’s (2002) study, the WRMR was 

assessed based on simulated single-level data with independent observations. It seems 

that the WRMR has not been extensively investigated in MSEM. Even though, some 

researchers have applied the WRMR cutoff values proposed by Yu (2002) to evaluate 
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their hypothesized multilevel structural models with non-normally distributed outcome 

variables (e.g., Gottfredson, et al., 2009). To my knowledge, no study has 

comprehensively examined the effectiveness of WRMR in detecting misspecification in 

MSEM. The investigation of WRMR in MSEM is urgent to provide empirical 

implications when MSEM with non-normally distributed outcome variables is used. 

Clearly, limited effort has been made to evaluate the effectiveness of various 

commonly used model fit indices for detecting misspecification in MSEM. Whether 

these fit indices and the corresponding cutoff values are still applicable for evaluating 

multilevel models is questionable. The purpose of my dissertation is to investigate the 

sensitivity of commonly used fit indices (i.e., RMSEA, CFI, SRMR-W, SRMR-B and 

WRMR) in detecting model misspecifications in two-level models with normally 

distributed or dichotomous (non-normally distributed) outcome variables separately 

under different conditions, including: number of groups in between-models, group size, 

and Intra-class Correlation (ICC), and model misspecification. 

The dissertation is organized as followed. In Chapter II, the rationale of MSEM 

with normally distributed and dichotomous outcome variables, and some commonly 

used fit indices (i.e., RMSEA, CFI, SRMR and WRMR) were reviewed. Chapter III 

introduces two studies (i.e., Study 1 and 2) as investigations of some commonly used fit 

indices’ sensitivity to model misspecifications in MSEM. Chapter IV and Chapter V 

containe the method, analysis, results and discussion of Study 1 and Study 2, 

respectively. Finally the conclusion was made in Chapter VI. 
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CHAPTER II 

LITERATURE REVIEW 

 

Multilevel structural equation modeling (MSEM) has been widely adopted for 

analyzing hierarchical structure data (i.e., data with non-independent observations) 

(Muthén & Asparouhov, 2009). Muthén (1994) discussed a disaggregated multilevel 

covariance structure approach, which is a common way to analyze hierarchical structure 

data by specifying a between-group model (or between-model) and a within-group 

model (or within-model) simultaneously (Muthén, 1994; Rabe-Hesketh, Skrondal, & 

Zheng, 2007). Many standard SEM programs such as LISREL (Jöreskog & Sörbom, 

1996) and MPLUS (Muthén & Muthén, 1998-2007) have specific routines that use this 

approach to analyze hierarchical structure data. In this chapter, the rationale of 

multilevel structural equation modeling with normally distributed and dichotomous 

outcome variables will be presented, followed by the review of some commonly used fit 

indices (i.e., RMSEA, CFI, SRMR, and WRMR).  

 

MSEM WITH NORMALLY DISTRIBUTED OUTCOME VARIABLES 

For simplicity, we consider a single-factor model for the two-level data with a total 

of N individuals (i) nested within G groups (g) (i = 1…N individuals, and g = 1…G 

groups): 

 

𝑌𝑖𝑔  = 𝜐 + 𝜆 𝜂𝑖𝑔  + 𝜖𝑖𝑔 , 
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where 𝜐 is a measurement intercept vector, 𝜆 is a pattern coefficient vector, 𝜂 is the 

factor score, and 𝜖 is the residual vector (Muthén, 1994). Notice that in MSEM, the 

factor means of 𝜂𝑖𝑔  should be viewed as a random effect and can be specified as 

following: 

 

𝜂𝑖𝑔  = 𝛼 + 𝜂𝐵𝑔  + 𝜂𝑊𝑔𝑖 , 

 

where 𝛼 is the overall expected value for 𝜂𝑖𝑔 , 𝜂𝐵𝑔  is a random factor component 

capturing the variation across groups, and 𝜂𝑊𝑔𝑖  is a random factor presenting the 

variation over individuals within their respective groups. The expectation of both 𝜂𝐵𝑔  

and 𝜂𝑊𝑔𝑖  equal to zero (Muthén, 1994). The total factor variance can be decomposed 

into a between-group variance and a within-group variance: 

 

V(𝜂𝑖𝑔 ) = 𝛹𝑇  = 𝛹𝐵  + 𝛹𝑊 . 

 

The proportion of total variance that lies between groups can be described by an 

“intra-class correlation” (ICC): 

 

𝛹𝐵  / (𝛹𝐵 + 𝛹𝑊). 

 

ICC is the degree of similarity of the observations within the same group (Muthén & 

Satorra, 1995). If the ICC is close to zero, the groups are slightly different from each 
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other and a simple regression analysis conducted at the micro level (e.g., student) would 

be adequate. On the other hand, if the ICC is away from zero, it suggests that students 

within groups are more homogeneous and groups are more different from each other. In 

this case, multilevel modeling approaches are needed to analyze the data (Heck & 

Thomas, 2008). Muthén and Satorra (1995) proposed using design effect which is also a 

function of ICC as a guideline of whether using MSEM to analyze multilevel data: 

 

Design effect = 1+ (averaged cluster size-1)*ICC  

 

If the ICC was 0 and/or averaged cluster size was 1, then the design effect would be 1. In 

this case, no variance appears in the between-school level. Design effects larger than 2 

implied that the variance in between-group level accounts for a significant amount of the 

total variance. Thus the standard errors would be underestimated if multilevel modeling 

approaches are not used (Muthén & Satorra, 1995). However, Roberts (2007) argued that 

the inclusion of predictor variables into the null model could “create” noticeable sample 

dependence even though the ICC is small in the null model, and the use multilevel 

modeling depends on the sample dependence introduced by certain predictor variables 

rather than solely on the magnitudes of the ICC. 

In this manner, the residual variance of 𝜖𝑖𝑔  can be also decomposed into a 

between-group component and a within-group component, 

 

V(𝜖𝑖𝑔) = 𝛩𝐵 + 𝛩𝑊 . 
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Thus, the multilevel covariance structure can be produced (Hox, 2002; Muthén, 1994; 

Muthén & Satorra, 1995),  

 

V(𝑌𝑖𝑔 ) = 𝛴𝑇  = 𝛴𝐵 + 𝛴𝑊 ,  

 

where 𝛴𝐵 is the corresponding population between-group covariance matrix, 

 

𝛴𝐵 = 𝛬𝐵𝛹𝐵𝛬𝐵′ + 𝛩𝐵,  

 

and 𝛴𝑤  is the population within-group covariance matrix, 

 

𝛴𝑊  = 𝛬𝑊𝛹𝑊𝛬𝑊′ + 𝛩𝑊 . 

 

Similarly, the same decomposition can be applied to sample data directly by 

dividing the sample covariance matrix (𝑆𝑇) into a sample between-group covariance 

matrix (𝑆𝐵) and a sample within-group covariance matrix (𝑆𝑊) (Heck & Thomas, 2000; 

Hox & Maas, 2004; Muthén, 1994): 

 

𝑆𝑇  = 𝑆𝐵 + 𝑆𝑊 . 
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Muthén (1989, 1994) proposed a slightly different version of equation: 

 

𝑆𝑇  = 𝑆𝐵 + 𝑆𝑃𝑊 , 

 

where 𝑆𝑇  is the sample total covariance matrix, 𝑆𝐵 is the sample between-group 

covariance matrix, and 𝑆𝑃𝑊  is the sample pooled within-group covariance matrix. The 

equations for the three sample covariance matrices are: 

 

𝑆𝑇  = (N-1)-1


G

g 1




Ng

i 1

( y
gi

- y ) ( y
gi

- y ) , 

𝑆𝐵  = (G-1)-1


G

g 1
N g

 ( y
g

- y ) ( y
g

- y ) , 

𝑆𝑃𝑊  = (N-G)-1


G

g 1




Ng

i 1

( y
gi

- y
g

) ( y
gi

- y
g

) , 

 

where G is the number of groups, Ng is the corresponding group size for the g-th group, 

and N is the total sample size.  

Muthén (1994) indicated that the sample total covariance matrix (𝑆𝑇) is an unbiased 

maximum likelihood (ML) estimator of the population total covariance matrix (𝛴𝑇). The 

sample pooled-within covariance matrix (𝑆𝑃𝑊) is also an unbiased ML estimator of the 

population 𝛴𝑊  with sample size N-G (Hox & Maas, 2004; Muthén & Satorra, 1995), 

while the sample between-group matrix (𝑆𝐵) is an unbiased ML estimator of (𝛴𝑊  + c𝛴𝐵) 
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with sample size G, and c is the average-like group size under the unbalanced design 

condition: 

 

c = 











G

g
gNN

1

22 [N (G-1)]
-1

. 

 

 

Estimation for MSEM with Normally Distributed Outcome Variables 

Full information maximum Likelihood (FIML) estimation “maximizes a likelihood 

fitting function that is the sum of n casewise likelihood functions” (Enders, 2001, p. 714). 

In MSEM, FIML estimation via expectation-maximization (EM) algorithm (Dempster, 

Laird, & Rubin, 1977) facilitates the analysis of multilevel structure data including both 

continuous and categorical outcome variables (Heck & Thomas, 2008; Raudenbush & 

Bryk, 2002). Moreover, random slopes and intercepts in structural equation models can 

be estimated (Kaplan, 2008). Recently, several EM algorithm-based FIML estimators 

have been adopted in some statistical packages such as MPLUS (Muthén & Muthén, 

1998-2007). 

Maximum likelihood (ML) fitting function under normality for two-level covariance 

structural analysis (Muthén & Satorra, 1995): 

 

𝐺 𝑙𝑜𝑔 |𝛴𝑊 + 𝑐𝛴𝐵  | + 𝑡𝑟𝑎𝑐𝑒  𝛴𝑊 + 𝑐𝛴𝐵 
−1𝑆𝐵 − 𝑙𝑜𝑔 𝑆𝐵 − 𝑝 +  𝑁 − 𝐺 {𝑙𝑜𝑔 𝛴𝑊 +

𝑡𝑟𝑎𝑐𝑒 𝛴𝑊
−1 − 𝑙𝑜𝑔 𝑆𝑃𝑊  − 𝑝}, 
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where “| |” indicates the determinant of a matrix. “p” is the total number of observed 

variables in the model.  

Since the sample total covariance matrix can be partitioned into a sample 

between-group covariance matrix (𝑆𝐵) and a sample within-group covariance matrix 

(𝑆𝑊), multilevel structure data can be analyzed by estimating both the between-group 

model and the within-group model simultaneously. However, we cannot construct and 

test a model with only 𝛴𝐵 because the sample between-group covariance matrix 𝑆𝐵 is 

not the unbiased ML estimator of the population 𝛴𝐵 but the combination of both 𝛴𝑊  

and c𝛴𝐵 (Muthén, 1994). Thus, both within-group and between-group models must be 

fitted jointly and simultaneously (Hox & Maas, 2004; Rabe-Hesketh, et al., 2007). 

 

MSEM WITH DICHOTOMOUS OUTCOME VARIABLES 

In MSEM with dichotomous outcome variables, the sample matrix for analysis is 

not a conventional covariance or correlation matrix but a tetrachoric correlation matrix 

(Muthén, 1993; West, Finch, & Curran, 1995). Thus, only the correlations between 

variables are considered and the degrees of freedom for p measured variables are the 

number of parameters in the unrestricted model (p (p-1) /2) minus the number of free 

parameters (Muthén, 1993).  

For simplicity, we consider a two-level single-factor model. Let ypig denote p
th

 

dichotomous measured variable (i.e., latent variable indicator) for individual i nested 

within in g group (p = 1…P dichotomous variables, i = 1…N individuals, and g = 1…G 

groups), 
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          1, if 𝜏 < 𝑦𝑝𝑖𝑔
∗  

𝑦𝑝𝑖𝑔  = 

          0, if 𝑦𝑝𝑖𝑔
∗   𝜏. 

 

The equation expresses a threshold model which assumes that underlying the measured 

dichotomous variable 𝑦𝑝𝑖𝑔  is a normally-distributed continuous latent variable 𝑦𝑝𝑖𝑔
∗ , 

which can determine the category of the measured dichotomous variable by the 

threshold (𝜏) (Asparouhov & Muthén, 2007; Bollen, 2002). In other words, “the 

variables of interest are conceptualized as continuous, but the response format 

administrated allows respondents to answer only in a restrictive, dichotomous scale” 

(Bollen, 2002, p. 620). For example, if the i
th

 individual falls short of the threshold, the 

response of this individual would be “0”. On the other hand, if the i
th

 individual passes 

this threshold, the response of this individual would be “1”.  

Thus, similar to the MSEM with normally distributed indicators, a two-level model 

with dichotomous indicators can be expressed, 

 

𝑦𝑝𝑖𝑔
∗ = 𝜈 + 𝜆 𝜂𝑖𝑔  + 𝜖𝑖𝑔 , 

 

Where 𝑦𝑝𝑖𝑔
∗  contains now the continuous outcome latent factors, 𝜈 is a measurement 

intercept vector, 𝜆 is a pattern coefficient vector, 𝜂 is the factor score, and 𝜖 is the 

residual vector (Muthén, 1994). Notice that in MSEM, the factor means of 𝜂𝑖𝑔  should 
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be viewed as a random effect and can be specified as following: 

 

𝜂𝑖𝑔  = 𝛼 + 𝜂𝐵𝑔  + 𝜂𝑊𝑔𝑖 , 

 

where 𝛼 is the overall expected value for 𝜂𝑖𝑔 , 𝜂𝐵𝑔  is a random factor component 

capturing the variation across groups, and 𝜂𝑊𝑔𝑖  is a random factor presenting the 

variation over individuals within their respective groups. The expectation for both 𝜂𝐵𝑔  

and 𝜂𝑊𝑔𝑖  still equal to zero (Muthén, 1994). The total factor variance can then be 

decomposed into a between-group variance and a within-group variance: 

 

V(𝜂𝑖𝑔 ) = 𝛹𝑇  = 𝛹𝐵  + 𝛹𝑊 . 

In the same manner, the residual variation of 𝜖𝑖𝑔  can be also decomposed into a 

between-group component and a within-group component, 

 

V(𝜖𝑖𝑔) = 𝛩𝐵 + 𝛩𝑊 . 

 

Thus, the multilevel covariance structure can be produced as same as in the MSEM with 

continuous indicators (Hox, 2002; Muthén, 1994; Muthén & Satorra, 1995),  

 

V(𝑦𝑝𝑖𝑔
∗ ) = 𝛴𝑇  = 𝛴𝐵 + 𝛴𝑊 ,  

 

where 𝛴𝐵 is the corresponding population between-group covariance matrix, 
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𝛴𝐵 = 𝛬𝐵𝛹𝐵𝛬𝐵′ + 𝛩𝐵,  

 

and 𝛴𝑤  is the population within-group covariance matrix, 

 

𝛴𝑊  = 𝛬𝑊𝛹𝑊𝛬𝑊′ + 𝛩𝑊 . 

 

Residual variances of the latent response variables (𝑦𝑝𝑖𝑔
∗ ) underling the dichotomous 

indicators are fixed at one for identification purpose in line with the Theta 

parameterization (Asparouhov & Muthén, 2007; Muthén & Muthén, 1998-2007). 
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Estimation for MSEM with Dichotomous Outcome Variables 

The estimation of multilevel models with dichotomous outcome variables via the 

EM algorithm is computationally demanding because all random effects have to be 

numerically integrated (Asparouhov & Muthén, 2007). Asparouhov and Muthén (2007) 

extended Muthén’s (1984) weighted least squares (WLS) estimation and proposed a 

limited- information weighted least squares estimation method (WLSM) that can be used 

to estimate two-level structural equation models with dichotomous, ordered polytomous, 

censored, and continuous outcome variables as well as combinations of such variables. 

The WLSM method uses high dimensional integration by multiple simple models with 

one and two dimensional integration (Asparouhov & Muthén, 2007). 

The WLSM estimator consists of three stages (Asparouhov & Muthén, 2007; 

Muthén, 1984). In the first stage, all the parameters of the p
th

 univariate model are 

estimated using the two-level maximum likelihood (ML) method except for the off 

diagonal estimates of 𝛴𝑊  and 𝛴𝐵. In the second stage, parameters for every pair of 

bivariate models given first stage estimates are estimated. Lastly, the model parameters 

are estimated by minimization of the weighted least squares fitting function with p 

measured variables: 

 

FWLS = (𝑠 − 𝑠∗) W (𝑠 − 𝑠∗)′ ,  

 

where s is the p* x 1vector of all parameter estimates of the unrestricted model, s* is the 

corresponding p* x 1 vector of all standardized model-implied estimates, and W is the 
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p*x p* weighted matrix. Here p* is defined as p (p+1)/2. Note that matrix W is G
-1

 

where G is the asymptotic covariance of s (Asparouhov & Muthén, 2007; West, et al., 

1995).  

Asparouhov and Muthén (2007) conducted a Monte Carlo study to compare the 

effectiveness of ML and WLSM estimators. Asparouhov and Muthén found that (a) the 

parameter estimates of WLSM estimator were more efficient and less biased, (b) model 

estimation with WLSM estimator is more likely to be converged, and (c) the Type I error 

rate of chi-square statistics equals to 6% which is reasonable. In other words, the WLSM 

estimator outperforms the ML estimator. The WLSM estimator should be used when 

non-normally distributed outcome variables are included in the multilevel models. The 

WLSM estimator is implemented in the MPLUS 5.2 (Muthén & Muthén, 1998-2007). 

 

COMMONLY USED FIT INDICES IN MSEM 

The goodness of model fit is one of the primary questions in MSEM. The 

chi-square test (𝒳2) and fit indices (e.g., RMSEA, CFI, SRMR, and WRMR) are used to 

evaluate whether empirical data supports a theoretical model. Many studies on fit indices 

for evaluating structure equation models have been conducted since 1980’s in order to 

create clear guidelines
1
 for SEM analyses (e.g., Chen, Curran, Bollen, Kirby, & Paxton, 

2008; Fan & Sivo, 2005, 2007; Fan, Thompson, & Wang, 1999; Hu & Bentler, 1998, 

1999; Marsh, Balla, & Hau, 1996; Sivo, Fan, Witta, & Willse, 2006). Up to the present,  

____________ 
1
 Although model fit indices in conventional SEM has been an object of study for a long 

time, there is still some disagreement as to the cutoff values for fit indices (Marsh, Hau, 

& Grayson, 2005; Marsh, Hau, & Wen, 2004). 
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besides the overall model 𝒳2, two types of goodness of fit indices for evaluating 

structure equation models are commonly reported in studies and are available in many 

standard statistical programs: absolute fit indices (e.g., RMSEA and SRMR), and 

relative fit indices (e.g., CFI).  

According to the survey by McDonald and Ho (2002), both RMSEA and SRMR are 

among the most reported absolute fit indices, while CFI is the most reported relative fit 

index. A similar trend of reporting fit indices was also found in studies using 

confirmatory factor analysis. Jackson, Gillaspy, and Purc-Stephenson (2009) found that 

other than the overall model chi-square test, both RMSEA and CFI are the most reported 

fit indices in their literature review.  

Another fit index, namely WRMR, was proposed by Muthén & Muthén 

(1998-2007). The advantage of WRMR is that it can be used to assess models with 

non-normal continuous outcome variables or dichotomous outcome variables. Yu (2002) 

has investigated the effectiveness of WRMR with various single-level models. In the 

PsycINFO database through May 2009, we found that 22 journal articles analyzing 

single-level data and 1 journal article analyzing multilevel-level data had cited Yu’ study 

and applied the WRMR cutoff values proposed by Yu (2002) to evaluate their 

hypothesized models with non-normal continuous outcome variables or dichotomous 

outcome variables.  
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Brief Review of Chi-Square Test, RMSEA, CFI, SRMR and WRMR 

Chi-Square Test 

The chi-square test (𝒳2) is probably the most commonly used statistical model fit 

index (Heck & Thomas, 2008). The 𝒳2 in SEM is used to test the null hypothesis that 

the unrestricted population covariance matrix of the observed variables 𝛴 is equal to the 

model implied covariance matrix 𝛴 𝜃  (i.e., 𝐻0: 𝛴 = 𝛴 𝜃 ) (Mueller, 1996). However, 

we do not know the elements of 𝛴 but can estimate them by elements in sample 

covariance matrix 𝑆. Similarly, we do not know the model parameters in the vector 𝜃 

and must estimate these coefficients (i.e., 𝜃 ) (Mueller, 1996). Thus, we can test the null 

hypothesis H0: 𝛴=𝛴 𝜃  given the 𝒳2 value and df of the specified model. If we fall to 

reject the null hypothesis, we can conclude that the specified model leads to a precise 

reproduction of the population covariance matrix of the observed variables (Bollen & 

Long, 1993; Steiger, 2007).  

However, several deficiencies of 𝒳2 have been noted. First, 𝒳2 test relied on 

many assumptions (e.g., multivariate normality of observed data, large sample size), 

nevertheless, not all can be met completely in practical applications (Mueller, 1996). 

Second, the value of 𝒳2 is affected by sample size. Large samples resulted in a 

rejection of the null hypothesis even trivial deviations between the covariance matrix 

implied by a specific model and the population covariance matrix of the observed 

variables (Bollen & Long, 1993). Due to the limitations of 𝒳2 test, other fit indices 

have been developed to evaluate model fit. 
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Root Mean Square Error of Approximation (RMSEA) 

RMSEA (Steiger & Lind, 1980, May) is a fit index based on the population 

noncentrality parameter: 

 

RMSEA =  𝑚𝑎𝑥(
 𝒳2  𝑓𝑜𝑟  𝑡𝑒  𝑡𝑎𝑟𝑔𝑒𝑡  𝑚𝑜𝑑𝑒𝑙 /𝑑𝑓  𝑓𝑜𝑟  𝑡𝑒  𝑡𝑎𝑟𝑔𝑒𝑡  𝑚𝑜𝑑𝑒𝑙 −1 

𝑡𝑒  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  – 1
 , 0), 

 

where 𝒳2 for the target model is related to the discrepancy between the observed 

variance-covariance matrix and the model-implied variance-covariance matrix (Kline, 

2005). Hence, RMSEA can be viewed as a measure of the average discrepancy between 

the observed and model-implied variance-covariance matrices per degree of freedom 

with the model complexity taken into account (Browne & Cudeck, 1993; Steiger, 2007). 

RMSEA is bounded by zero and the smaller the RMSEA indicates a better fit of the 

model to the data. A RMSEA equal to zero indicates that the target model fits the data 

perfectly. RMSEA is a global fit index that reflects the degree of fit (or misfit) for the 

entire model. If RMSEA performs in a similar way to the single level SEM, any 

misspecification in either within-model or between-model should be reflected by the 

RMSEA (with a large value).  
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Comparative Fit Index (CFI) 

Bentler (1990) proposed CFI which is strictly bounded by 0 and 1. CFI shows the 

relative goodness of fit of a particular hypothesized model compared with a baseline 

model in which all covariances/correlations between any pair of variables are set to zero 

(Bentler, 1990; Tanaka, 1993). By using the baseline model’s chi-square test statistic 

(T0), the corresponding model’s degree of freedom (df0), the tested model’s chi-square 

test statistic (T1), and the tested model’s degree of freedom (df1), we can obtain 𝜆 𝑖  (i.e., 

T0 – df0) for the baseline model and 𝜆 𝑘  (i.e., T1 – df1) for the tested model. Then, CFI 

can be computed as: 

 

CFI = 1- 
𝜆 𝑘

𝜆 𝑖
, 

 

with λ 𝑖= max(𝜆 𝑖 , 𝜆 𝑘 , 0) and λ 𝑘= max (𝜆 𝑘 , 0). Because λ 𝑖 ≥ λ 𝑘 ≥ 0, CFI ranges 

between .00 and 1.00 (Bentler, 1990; Tanaka, 1993). Larger value of CFI (e.g., larger 

than .95) indicates a good fit of the model. Similar to RMSEA, CFI is expected to reflect 

the misfit for the entire multilevel model. 
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Standardized Root Mean Square Residual (SRMR) 

SRMR can be obtained using the following formula: 

 

SRMR =   2   
 𝑠𝑖𝑗−𝜎 𝑖𝑗  

𝑠𝑖𝑖 𝑠𝑗𝑗
 

2
𝑖
𝑗=1

𝑝
𝑖=1  / 𝑝(𝑝 + 1), 

 

where 𝑠𝑖𝑗  is a sample covariance between variables i and j; 𝜎 𝑖𝑗  is the corresponding 

model-implied covariance between variables i and j; 𝑠𝑖𝑖  and 𝑠𝑗𝑗  are the sample 

standard deviations for the variables i and j, respectively; and p is the total number of 

variables in the model for analysis (Bentler, 1995). The discrepancy between the sample 

covariance and the corresponding model-implied covariance  𝑠𝑖𝑗 − 𝜎 𝑖𝑗   indicates the 

degree of fit (or misfit). In MSEMs, the covariance matrices for the within-model and 

the between-model are computed separately. Unlike RMSEA and CFI, which are global 

fit index measures, SRMR can be computed separately for the within-model (SRMR-W) 

and the between-model (SRMR-B) in MSEM and can be used for evaluating the 

plausible misspecification at each level. Generally, smaller SRMR (e.g., less than .08) 

indicates a good fit of the model. 
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Weighted Root Mean Square Residual (WRMR) 

WRMR is defined as 

 

WRMR =   
(𝑠𝑟−𝜎 𝑟)2

𝜐𝑟
𝑒 𝑒

𝑟 , 

 

where e is the number of sample statistics, 𝑠𝑟  and 𝜎 𝑟  are elements of the sample 

statistics vector and model-implied vector, respectively and 𝜐𝑟  is an estimate of the 

asymptotic variance of 𝑠𝑟 . “WRMR is suitable for models where sample statistics have 

widely varying variances, and when sample statistics are on different scales such as in 

models with mean and/or threshold structures. WRMR is also suitable with non-normal 

continuous outcomes” (Muthén, 1998-2004, p. 24). WRMR is expected to reflect the 

misfit for the entire multilevel model. Smaller value of WRMR (e.g., smaller than .90) 

indicates a good fit of the model. 

 

The Traditionally Recommended Cutoff Values 

Cutoff values have been suggested for the four commonly reported fit indices, 

RMSEA, CFI, SRMR, and WRMR. For example, Browne and Cudeck (1993) 

recommended that RMSEA equal to or less than 0.05 indicates a model with adequate fit, 

while Hu and Bentler (1999) suggest that RMSEA equal to or less than 0.06 is needed to 

conclude a well-fitting model. Chen and her colleagues (2008) evaluated the 

performance of RMSEA alone versus that of using it jointly with its related confidence 

interval given a fixed cutoff point 0.05. Little evidence was found that the use of 0.05 or 



24 

any other value as universal cutoff values can determine the fitness of a model. From 

their results, a cutoff value 0.10 is too liberal to be used. 

Hu and Bentler (1999) also recommend that CFI equal to or larger than 0.95 is an 

indication of a good fit model. On the other hand, the recommended SRMR cutoff value 

for a good fit model by Hu and Bentler (1999) is equal or less than 0.08. Cutoff values 

for WRMR were only studied by Yu (2002). Yu suggested a cutoff value of 1.00 for 

models with normal and non-normal continuous outcomes. Furthermore, WRMR cutoff 

values close to 0.95 or 1.00 was suggested for models with dichotomous outcomes. In 

Muthén’s (1998-2004) technical report, Muthén indicated a WRMR smaller than 0.90 

was recommended for good models with continuous as well as with categorical 

outcomes.  

All these cutoff values are based on simulation studies with independent 

observations (i.e., single-level data). Whether these cutoff values are still applicable to 

assessing the model goodness of fit in multilevel structural equation models with 

non-independent observations is questionable, however. 
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CHAPTER III 

INVESTIGATION OF FIT INDICES’ SENSITIVITY IN MSEM 

 

The current investigations (i.e., Study 1 and 2) were motivated by the limited 

effort has been made to evaluate the effectiveness of various commonly used model fit 

indices for detecting misspecification in MSEM. In Study 1, fit indices (i.e., RMSEA, 

CFI, SRMR-W and SRMR-B) were examined under multilevel confirmatory factor 

analysis (MCFA) models with normally distributed outcome variables (i.e., indicators). 

The design factors included (a) number of groups in between-models (150, 200, and 

250), (b) group size (15 and 30), (c) Intra-class Correlation (high and low), and (d) 

misspecification type (true, misspecifications in factor covariance and in pattern 

coefficient). 

Study 2 primarily investigated the sensitivity of a commonly used fit index, 

namely WRMR, in MSEM. WRMR was widely used to evaluate the degree of model fit 

when non-normal outcome variables were included in the models. In Study 2, WRMR as 

well as RMSEA, CFI, SRMR-W and SRMR-B were examined under MCFA models 

with dichotomous outcome variables (a type of non-normal outcome variables). The 

design factors included (a) number of groups in between-models (150, 200, and 250), (b) 

group size (15 and 30), (c) Intra-class Correlation (high and low), (d) threshold (0 and 1), 

and (e) model misspecification (true, misspecifications in factor structure).  
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CHAPTER IV 

STUDY 1: THE SENSITIVITY OF FIT INDICES IN MSEM WITH NORMALLY 

DISTRIBUTED OUTCOME VARIABLES 

 

As presented before, the goal of Study 1 was to examine the sensitivity of fit 

indices (i.e., RMSEA, CFI, SRMR-W and SRMR-B) under multilevel confirmatory 

factor analysis models with normally distributed outcome variables (i.e., indicators). The 

method used in Study 1 was introduced first, followed by the results and discussion. 

 

METHOD 

A Monte Carlo study was conducted using Mplus 5.1 (Muthén & Muthén, 

1998-2007) to investigate the sensitivity of four commonly used fit indices (i.e., 

RMSEA, CFI, SRMR-W and SRMR-B) for detecting different types of model 

misspecifications in multilevel SEMs under various conditions. Confirmatory factor 

analysis (CFA) models, or measurement models, are commonly used in SEM related 

simulation studies (e.g., Hu & Bentler, 1998, 1999; Muthén & Muthén, 2002; Yuan & 

Bentler, 2002). Therefore, a multilevel confirmatory factor analysis (MCFA) model was 

employed for data generation in my study. As presented in Figures 4.1 and 4.2, both 

within- and between-models were specified as having the same factor structure with ten 

observed indicators loaded on two latent factors. 
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Within-model 

 

Between-model 

 

Figure 4.1 Multilevel CFA Model for Data Generation (Low ICC) in Study 1 

 

Note. The dashed paths in the figures are omitted in the analysis to create the 

misspecified models. 
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Within-model 

 

Between-model 

 

Figure 4.2 Multilevel CFA Model for Data Generation (High ICC) in Study 1 

 

Note. The dashed paths in the figures are omitted in the analysis to create the 

misspecified models. 
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In DiStefano and Hess’ (2005) empirical review of psychological assessment 

literature, the minimum number of indicators per latent variable was 4.2 and the 

maximum number was 6.9, so five indicators per latent variable were used here. Four 

design factors were considered in this study: number of groups (NG) at the between 

level, group size (GS), intra-class correlation (ICC), and the misspecification type (MT). 

Number of Groups (NG). Number of groups relates to the estimation of the 

between-model. Hox and Maas (2001) concluded that large NGs (i.e., larger than 50 

groups) were needed for acceptable estimates for a between-model with low ICC 

conditions. On the other hand, in SEM literature, two hundred observations seem to be 

the minimum required sample size for obtaining unbiased and consistent estimates when 

using the maximum likelihood estimation method (Boomsma, 1987; Loehlin, 2004). In 

the present study, three different NGs were adopted (i.e., 150, 200, and 250 groups) to 

evaluate whether NG level would affect fit indices performance in detecting model 

misspecification.  

Group size (GS). Whereas size was problematic with NG, Hox and Maas (2001) 

concluded that small group size (GS) (i.e., 10 observations per group) could produce 

admissible within-model estimates . Thus, we used two levels of GS (i.e., 15 and 30 

observations per group).  

Intra-Class Correlation (ICC). The low ICC condition was created by giving lower 

values (0.3) for the pattern coefficients in the between-model (see Figure 4.1) while the 

high ICC condition was created by substituting higher values (0.8) for pattern 

coefficients in the between-model (see Figure 4.2). The pattern coefficients of the 
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between-model considered in this study lead to two levels of ICC: 0.18 (low) and 0.40 

(high).  

Misspecification Types (MT). Two types of misspecification, the same employed by 

Hu and Bentler (1998, 1999), were adopted to examine fit index sensitivity to varying 

forms of model misspecification. The two MTs were under-parameterized factor 

covariance (i.e., simple misspecification) and under-parameterized pattern coefficient 

(i.e., complex misspecification). In simple misspecification, the covariance between two 

latent factors was constrained to 0 when the true covariance parameter was not equal to 0. 

Figure 4.1 demonstrates how the covariance parameter (i.e., a) in the within-model 

would be constrained to 0 in the simple misspecification condition. For complex 

misspecification, a pattern coefficient was constrained to 0 when the true pattern 

coefficient was not equal to 0. Pattern coefficient c in the within-model would be 

constrained to 0 for the complex misspecification.  

As suggested by Fan and Sivo (2005, 2007) and Marsh, Hau, and Wen (2004), the 

severity of all the misspecification conditions was also taken into account. Fan and Sivo 

(2005, 2007) proposed that the statistical power for rejecting a misspecified model could 

be used as an indicator of the severity of the corresponding model misspecification. The 

magnitudes of different misspecification conditions (i.e., paths a to h in Figures 4.1 and 

4.2) in the present study were adjusted based on Fan and Sivo’s (2005, 2007) approach. 

The statistical powers of all the misspecification conditions were controlled to be close 

to 0.70. 

Four different sets of simulation for misspecified models were conducted to 
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evaluate the sensitivity of RMSEA, CFI, SRMR-W and SRMR-B: (a) no model 

misspecification (true model, MT; see Figure 4.1 and 4.2), (b) model misspecification in 

the within-model only (MW), (c) model misspecification in the between-model only (MB), 

and (d) model misspecification in both within- and between-models (MWB). The 

maximum likelihood estimation method with robustness to non-normality and 

non-independence of observations (MLR) was employed for all the analyses (Muthén & 

Muthén, 1998-2007). 

 

ANALYSIS 

Four design factors were included in Study 1: numbers of groups in between levels 

(NG; 150, 200 and 250), group size (GS; 15 and 30), intra-class correlation (ICC; low 

and high), and misspecification types (MT; simple, and complex). For the MT model, 

factors integrated into 12 conditions (3 NG x 2 GS x 2 ICC) whereas for the MW, MB, 

and MWB models, factors were integrated into 24 conditions (3 NG x 2 GS x 2 ICC x 2 

MT). For each condition, 1,000 replications were generated and analyzed. 

Replications with convergence problems or improper solutions (e.g., negative 

unique variances) were first excluded. Then, means and standard deviations (SDs) of 

each fit index were reported for the MT model replications. A series of ANOVAs were 

conducted to determine the impact of the design factors on the effectiveness of the four 

targeted fit indices (i.e., RMSEA, CFI, SRMR-W, and SRMR-B) in identifying the true 

model. Similarly, for the MW, MB, and MWB model replications, means and SDs of each 

fit index were reported for evaluation of the sensitivity of the four fit indices for 

detecting misspecifications. A series of ANOVAs were then conducted to examine 
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whether the target fit indices were equally sensitive to different types of misspecification 

regardless of other design factors. Finally, the statistical powers based on the 

traditionally recommended cutoff values (i.e., RMSEA < 0.06, CFI > 0.95, SRMR < 

0.08) were computed from the simulated data.  

 

RESULTS 

The purpose of this study was to evaluate the effectiveness of fit indices in 

detecting misspecified multilevel SEMs. Under MT condition, theoretically, all the fit 

indices were expected to show that the specified models perfectly fitted the data 

regardless of the design factors (i.e., NG, GS or ICC). Under MW, MB and MWB 

conditions, it was expected that all the fit indices should be sensitive to the model 

misspecifications regardless the design factors. In the end, the statistical power in 

detecting the misspecified models was examined using the traditionally recommended 

cutoff values of the four fit indices. 

 

Convergence Failure and Improper Solutions 

Table 4.1 presents the percentage of replications with convergence problems or 

improper solutions (e.g., negative unique variances) across all (six) sample size 

conditions. Results show that the number of problematic replications was generally 

small (less than 1%) in the simulation studies. All the problematic replications were not 

included in the analyses presented below.  
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Table 4.1 Percentage of Replications with Nonconvergence and Improper Solutions in 

Study 1 

 Number of Groups x Group Size 

Misspecification 150X15 150X30 200X15 200X30 250X15 250X30 

Simple       

Nonconvergence 0.016 0.000 0.010 0.000 0.005 0.000 

Improper 

Solutions 0.019 0.000 0.011 0.000 0.006 0.000 

Complex       

Nonconvergence 0.000 0.000 0.000 0.000 0.000 0.000 

Improper 

Solutions 0.027 0.002 0.021 0.000 0.009 0.000 
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Performance of the Target Fit Indices on the Correctly Specified Models 

Table 4.2 presents the means and SDs of the chi-square statistics (𝒳2), RMSEA, 

CFI, SRMR-W and SRMR-B when fitting the correctly specified (or true) model (MT). 

When the model was correctly specified, the mean of 𝒳2 would be close to the degrees 

of freedom of the model (df = 66). The mean (67.724) of 𝒳2 shown in Table 4.2 

indicated that the simulation study was correctly conducted.  

If the specified model fits the data perfectly, RMSEA, SRMR-W and SRMR-B are 

equal to 0 while CFI is equal to 1. The means of RMSEA and SRMR-W were close to 0 

with trivial SDs, which indicated that both RMSEA and SRMR-W perform well under 

MT condition. Similarly, CFI (with mean and SD equal to 1.000 and 0.000, respectively) 

performed extremely well under MT condition. On the other hand, the performance of 

SRMR-B under MT condition was not as good as other fit indices with a relatively large 

mean value and standard deviation (i.e., mean = 0.032; SD = 0.014). 

 

 

Table 4.2 Descriptive Statistics of the Fit Indices of the True Models (MT) in Study 1 

Fit Index Mean SD 

Chi-square 67.724 11.823  

RMSEA  0.003  0.004  

CFI  1.000  0.000 

SRMR-W  0.007   0.002  

SRMR-B  0.032   0.014  

Note. n=12,000. Degrees of freedom of the hypothesized model were 66. RMSEA = root-mean-square 

error of approximation. CFI = comparative fit index. SRMR-W = standardized root mean square residual 

for within-model. SRMR-B = standardized root mean square residual for between-model. 
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Also examined was the possible impact of the three design factors (i.e., NG, GS, 

and ICC) on the performance of the four target fit indices separately under MT condition 

using ANOVA. The results are presented in Table 4.3. The total sum of square (SOS) of 

each fit index showed the variability of the corresponding fit index across all true model 

replications, while eta-squared (η2) demonstrated the proportion of the variance 

accounted for by a particular design factor or the interaction effect term. Note that η2 

was obtained by dividing the Type III sum of squares of a particular predictor or the 

interaction effect by the corrected total sum of squares.  

As shown in Table 4.3, all the design factors (e.g., NG, GS, & ICC) only accounted 

for a trivial proportion of the total SOS of the model 𝒳2. Moreover, the total SOS’s of 

RMSEA, CFI and SRMR-W were very small and the corresponding η2 of the design 

factors was negligible for all three. On the other hand, compared with the other fit 

indices, the total SOS of SRMR-B was relatively large (2.352) and the ICC accounted 

for 70.25% of the total SOS of SRMR-B. The means of SRMR-B under low and high 

ICC conditions were 0.044 and 0.021, respectively. 
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Table 4.3 Eta-Squares (η2) for the Fit Indices of the True Models (MT) in Study 1 

Sources 

 Fit Index 

 Chi-square RMSEA CFI SRMR-W SRMR-B 

Total SOS  1677332.821 0.153 0.002 0.042 2.352 

Overall η2  0.22% 4.19% 7.32% 55.79% 79.02% 

NG  0.14% 1.46% 2.40% 13.98% 6.00% 

GS  0.03% 2.68% 4.61% 41.34% 1.77% 

ICC  0.00% 0.00% 0.06% 0.00% 70.25% 

NG*GS  0.01% 0.03% 0.25% 0.47% 0.03% 

NG*ICC  0.01% 0.01% 0.00% 0.00% 0.87% 

GS*ICC  0.00% 0.00% 0.00% 0.00% 0.09% 

NG*GS*ICC  0.03% 0.01% 0.00% 0.00% 0.01% 

Note. n=12,000. Degrees of freedom of the hypothesized model were 66. RMSEA = root-mean-square 

error of approximation. CFI = comparative fit index. SRMR-W = standardized root mean square residual 

for within-model. SRMR-B = standardized root mean square residual for between-model. SOS = sum of 

squares. NG = number of group. GS = group size. ICC = intra-class correlation. 
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Performance of the Target Fit Indices on the Misspecified Models 

Table 4.4 presents the means and SDs of the 𝒳2 and the four target fit indices 

under models with different misspecification types across various simulation conditions. 

𝒳2 had substantially large means and SDs under MW or MWB conditions. For example, 

under MW condition, means and SDs of 𝒳2 under models with simple (mean=1022.868; 

SD=393.811) and complex (mean=989.711; SD=381.208) misspecifications were found 

to be considerably larger. RMSEA deviated from 0 with trivial SDs under MW or MWB 

conditions. For example, under MW condition, means of RMSEA in simple and complex 

misspecifications were 0.056 and 0.055, respectively. CFI shrank from 1 with small SDs 

under MW or MWB conditions. For example, under MW condition, means of CFI in 

simple and complex misspecifications were 0.967 and 0.968, respectively. 

SRMR-W also inflated from 0 with small SDs under MW or MWB conditions. Note 

that, the means of SRMR-W were noticeably different between simple and complex 

misspecifications. For example, under MW condition, means of SRMR-W in simple and 

complex misspecifications were 0.203 and 0.052, respectively. On the contrary, under 

MB condition, only SRMR-B showed a relatively large value (or differed from 0) to 

indicate a potential model misspecification, especially under simple misspecification 

(0.216) where the covariance between the latent factors was omitted from the model.
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Sensitivity of the Target Fit Indices for Various Types of Misspecification 

In this section, whether the target fit indices are equally sensitive to various types of 

misspecification were evaluated by controlling for other design factors. The 

misspecification type (MT) contained two levels of misspecification: simple and 

complex misspecifications. Tables 4.5, 4.6, and 4.7 present the total SOS’s for fit indices, 

and the η2 of each factor and interaction term under MW, MB, and MWB conditions, 

respectively. Note that the total SOS’s of RMSEA and CFI were very small (ranging 

from 0.110 to 0.363) across MW, MB, and MWB conditions. Hence the corresponding η2s 

of the design factors were negligible.  

On the other hand, the total SOS’s for SRMR-W and SRMR-B were in general 

larger than CFI and RMSEA. SRMR-W had large total SOS’s under MW (135.236) and 

MWB (134.983) conditions, but a relatively small total SOS under MB (0.089) condition, 

while SRMR-B had large total SOS’s under MB (192.262) and MWB (188.827) 

conditions, but a relatively small total SOS under MW (11.291) condition.   

Moreover, SRMR-W was found to be sensitive to the various types of 

misspecification (MT) under MW (η2 = 99.57%) and MWB (η2 = 99.56%) conditions. 

On the other hand, SRMR-B was found to be sensitive to the various types of 

misspecification under MB (η2 = 80.41%) and MWB (η2 = 79.01%) conditions. As 

Table 4.4 shows, both SRMR-W and SRMR-B were in general more sensitive to simple 

misspecification (with larger mean values) than complex misspecification. 

Additionally, total SOS’s of SRMR-B were accounted for by the interaction effect 

ICC*MT under MB and MWB conditions (η2 = 8.42% and 9.38%, respectively). The 
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results showed that the effects of MT on the performance of SRMR-B were substantially 

moderated by ICC. 

Table 4.5 Eta-Squares (η2) for the Fit Indices of the Model Misspecification in the 

Within-model Only (MW) in Study 1 

Sources 

 Fit Index 

 Chi-square RMSEA CFI SRMR-W SRMR-B 

Total SOS  3604237807.173 0.110 0.172 135.236 11.291 

Overall η2  97.35% 9.93% 31.47% 99.57% 92.66% 

NG  23.53% 0.23% 0.07% 0.00% 1.80% 

GS  70.73% 4.71% 6.44% 0.00% 7.56% 

ICC  0.00% 0.17% 19.23% 0.00% 63.50% 

MT  0.16% 4.71% 4.10% 99.57% 8.98% 

NG*GS  2.90% 0.01% 0.00% 0.00% 0.00% 

NG*ICC  0.00% 0.04% 0.03% 0.00% 0.19% 

NG*MT  0.01% 0.01% 0.01% 0.00% 0.06% 

GS*ICC  0.00% 0.03% 1.58% 0.00% 3.17% 

GS*MT  0.02% 0.00% 0.00% 0.00% 2.29% 

ICC*MT  0.00% 0.01% 0.00% 0.00% 4.11% 

NG*GS*ICC  0.00% 0.01% 0.01% 0.00% 0.00% 

NG*GS*MT  0.00% 0.00% 0.00% 0.00% 0.00% 

NG*ICC*MT  0.00% 0.00% 0.00% 0.00% 0.03% 

GS*ICC*MT  0.00% 0.00% 0.00% 0.00% 0.96% 

NG*GS*ICC*

MT 
 0.00% 0.00% 0.00% 0.00% 0.01% 

Note. SOS = sum of square. RMSEA = root-mean-square error of approximation. CFI = comparative fit index. 

SRMR-W = standardized root mean square residual for within-model. SRMR-B = standardized root mean 

square residual for between-model. SOS = sum of squares. NG = number of group. GS = group size. ICC = 

intra-class correlation. MT = misspecification type (simple or complex misspecifications). 
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Table 4.6 Eta-Squares (η2) for the Fit Indices of the Model Misspecification in the 

Between-model Only (MB) in Study 1 

Sources 

 Fit Index 

 Chi-square RMSEA CFI SRMR-W SRMR-B 

Total SOS  9136317.101 0.363 0.016 0.089 192.262 

Overall η2  28.04% 26.19% 27.52% 59.31% 92.21% 

NG  9.21% 0.01% 0.21% 11.96% 0.03% 

GS  2.21% 9.54% 14.50% 45.77% 0.02% 

ICC  14.00% 13.32% 9.45% 0.43% 3.31% 

MT  1.48% 1.40% 1.27% 0.25% 80.41% 

NG*GS  0.09% 0.01% 0.03% 0.31% 0.00% 

NG*ICC  0.54% 0.01% 0.01% 0.00% 0.01% 

NG*MT  0.05% 0.00% 0.00% 0.00% 0.00% 

GS*ICC  0.30% 1.73% 1.79% 0.18% 0.01% 

GS*MT  0.00% 0.06% 0.14% 0.12% 0.00% 

ICC*MT  0.01% 0.04% 0.00% 0.20% 8.42% 

NG*GS*ICC  0.01% 0.01% 0.01% 0.01% 0.00% 

NG*GS*MT  0.01% 0.01% 0.01% 0.00% 0.00% 

NG*ICC*MT  0.00% 0.00% 0.01% 0.00% 0.00% 

GS*ICC*MT  0.12% 0.05% 0.09% 0.07% 0.00% 

NG*GS*ICC*

MT 
 0.01% 0.00% 0.00% 0.01% 0.00% 

Note. SOS = sum of square. RMSEA = root-mean-square error of approximation. CFI = comparative fit index. 

SRMR-W = standardized root mean square residual for within-model. SRMR-B = standardized root mean 

square residual for between-model. SOS = sum of squares. NG = number of group. GS = group size. ICC = 

intra-class correlation. MT = misspecification type (simple or complex misspecifications). 
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Table 4.7 Eta-Squares (η2) for the Fit Indices of the Model Misspecification in Both 

Within- and Between-models (MWB) in Study 1 

Sources 

 Fit Index 

 Chi-square RMSEA CFI SRMR-W SRMR-B 

Total SOS  3599634980.729 0.111 0.190 134.983 188.827 

Overall η2  97.05% 3.93% 26.17% 99.56% 92.05% 

NG  25.58% 0.05% 0.01% 0.00% 0.03% 

GS  68.49% 0.05% 0.08% 0.00% 0.03% 

ICC  0.01% 0.38% 21.43% 0.00% 3.56% 

MT  0.12% 3.18% 2.59% 99.56% 79.01% 

NG*GS  2.82% 0.00% 0.00% 0.00% 0.00% 

NG*ICC  0.00% 0.01% 0.01% 0.00% 0.00% 

NG*MT  0.01% 0.02% 0.02% 0.00% 0.01% 

GS*ICC  0.00% 0.05% 1.90% 0.00% 0.02% 

GS*MT  0.02% 0.01% 0.02% 0.00% 0.01% 

ICC*MT  0.00% 0.16% 0.10% 0.00% 9.38% 

NG*GS*ICC  0.00% 0.01% 0.01% 0.00% 0.00% 

NG*GS*MT  0.00% 0.00% 0.00% 0.00% 0.00% 

NG*ICC*MT  0.00% 0.00% 0.00% 0.00% 0.00% 

GS*ICC*MT  0.00% 0.00% 0.00% 0.00% 0.00% 

NG*GS*ICC*

MT 
 0.00% 0.01% 0.00% 0.00% 0.00% 

Note. SOS = sum of square. RMSEA = root-mean-square error of approximation. CFI = comparative fit index. 

SRMR-W = standardized root mean square residual for within-model. SRMR-B = standardized root mean 

square residual for between-model. SOS = sum of squares. NG = number of group. GS = group size. ICC = 

intra-class correlation. MT = misspecification type (simple or complex misspecifications). 
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Empirical Type I Error Rate and Statistical Power 

The Type I error (α) of the fit indices was evaluated based on the rejection rates 

obtained for the true models (Hu & Bentler, 1999). In this section, the empirical Type I 

error rate of RMSEA, CFI, SRMR-W and SRMR-B given the true model (i.e., MT) was 

examined. Because SRMR-B was found to be sensitive to ICC under MT condition, it 

was decided to evaluate SRMR-B by high ICC (0.40) and low ICC (0.18). On the other 

hand, the statistical power of the fit indices was evaluated based on the rejection rates 

obtained for the misspecified models (i.e., MW, MB, and MWB) (Hu & Bentler, 1999). 

Table 4.8 presents the magnitudes of RMSEA, CFI, SRMR-W and SRMR-B for 

three different Type I error rates: 10%, 5% and 1%. Note that the smaller the magnitudes 

of RMSEA, SRMR-W and SRMR-B are, the better the models fit the sample data. On 

the other hand, larger CFI indicated a better model fit. In order to obtain reasonable Type 

I error rates (i.e., no larger than 5%), RMSEA and SRMR-W were at least 0.010, while 

the upper bound of CFI was 0.999. SRMR-B was at least 0.030 and 0.061 for high ICC 

and low ICC models, respectively. 

Table 4.9 presents the corresponding values of RMSEA, CFI, SRMR-W and 

SRMR-B in terms of different levels of statistical power. To obtain a statistical power 

equal or larger than 0.80, the upper bounds of RMSEA and SRMR-W were 0.054, and 

0.052, while CFI needed to be at least 0.970. The upper bounds of SRMR-B were 0.044 

and 0.060 for high ICC and low ICC models, respectively. 
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Table 4.8 Cutoff Values of RMSEA, CFI, SRMR-W and SRMR-B in Terms of Empirical 

Type I Error Rates in Study 1 

  Type I Error ( ) Rates 

Fit Index  10% 5% 1% 

RMSEA  0.008 0.010 0.013 

CFI  0.999 0.999 0.998 

SRMR-W  0.009 0.010 0.012 

SRMR-B with 

High ICC 

 
0.028 0.030 0.036 

SRMR-B with 

Low ICC 

 
0.057 0.061 0.071 

Note. RMSEA = root-mean-square error of approximation. CFI = comparative fit index. SRMR-W = 

standardized root mean square residual for within-model. SRMR-B = standardized root mean square 

residual for between-model. ICC = intra-class correlation. 
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The performance of the traditionally recommended cutoff values for the four 

target fit indices were also compared with the simulated data and the results are 

presented in Table 4.10. The statistical power of these fit indices was generally low 

(ranging from 0.00% to 54.33%) when the traditional cutoff values of RMSEA (0.06), 

CFI (0.95), and SRMR (0.08) were applied to evaluate the misspecifications in MSEM. 

 

 

Table 4.10 Statistical Power when Traditional Cutoff Values of RMSEA (0.06), CFI 

(0.95), and SRMR (0.08) are Used for Evaluating Misspecified Models in Study 1 

Fit Index 

 Statistical Power 

 MW  MB 

RMSEA  1.77%  - 

CFI  0.00%  - 

SRMR-W  49.85%  - 

SRMR-B  -  53.22% 
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DISCUSSION 

In the present study, the effectiveness of four commonly used fit indices (i.e., 

RMSEA, CFI, SRMR-W and SRMR-B) on detecting the misspecifications in multilevel 

SEMs were evaluated using Fan and Sivo’s (2005, 2007) approach to control the 

severity of the model misspecification.  

 

RMSEA and CFI 

RMSEA and CFI can effectively detect the model misspecifications in a 

within-model without being confounded by other design factors (i.e., NG, GS, and ICC). 

However, these two fit indices are not sensitive to the misspecifications occurring in a 

between-model. A possible explanation of this finding is that both RMSEA and CFI are 

a function of the overall model chi-square test statistics (𝒳2), which is asymptotically 

distributed as a noncentral 𝒳2 distribution with the noncentrality parameter equal to λ. 

Indeed, λ is a function of the sample size and the severity of the model misspecification 

(Saris & Satorra, 1993). In multilevel SEMs, the sample size of the within-model was 

the total sample size minus the number of groups (i.e., N-G), while the sample size of 

the between-model was the number of groups (i.e., G). Generally, N-G is a lot larger 

than G. Therefore, compared with the between-model (with a relatively smaller sample 

size), the within-model contributed/weighed in with much more information to the 

overall model 𝒳2 value (Hox, 2002). This is also reflected in the simulation Study 1n 

which was found substantially larger model 𝒳2 values in the misspecified 

within-models than the misspecified between-models as presented in Table 4.4.  
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In addition, the 𝒳2 values for the misspecified within-models were close to the 

𝒳2 values for the misspecified both within- and between-models (see Table 4.4). This 

result provided another support concerning the fact that misspecifications in the 

between-model cannot be fully reflected in the overall model 𝒳2 given that the 

between-model misspecifications only contribute a relatively small amount of 

information to the overall model 𝒳2 value. As indicated previously, both RMSEA and 

CFI are a function of the overall model 𝒳2 value and the within-model contributes 

most of the information for the overall model 𝒳2 value. Thus, RMSEA and CFI are far 

more sensitive to the within-model misspecifications and these two fit indices can be 

effectively used for evaluating plausible within-model misspecifications but not 

between-model misspecifications. Hox (2002) also drew a similar conclusion where both 

RMSEA and CFI are not equally weighted by the within- and between-models and these 

two fit indices may be more sensitive to misspecification in the within-model than the 

between-model. 

 

SRMR-W and SRMR-B 

SRMR-W is a designated fit index for detecting within-model misspecifications 

and this simulation study has shown that SRMR-W can be used for identifying 

misspecifications in a within-model regardless of the impact of other design factors (i.e., 

NG, GS, and ICC). Nevertheless, SRMR-W is more sensitive to simple misspecification 

(i.e., misspecification in the factor covariances) than complex misspecification (i.e., 

misspecification in the pattern coefficients), which is consistent with previous studies 
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(e.g., Fan & Sivo, 2005; Hu & Bentler, 1998; Hu & Bentler, 1999). An explanation for 

this finding is that SRMR-W reflects the average discrepancy between the observed 

within-covariance matrix and the model-implied within-covariance matrix, with 

misspecifications in the factor covariances resulting in more covariances being 

constrained to zero in the model-implied covariance matrix. This in turn increases the 

discrepancy between the observed and model-implied covariance matrices and results in 

a large SRMR-W (Fan & Sivo, 2005). Similar to SRMR-W, SRMR-B is a designated fit 

index for detecting misspecifications in a between-model. A similar pattern of results 

was also found for SRMR-B; that is, SRMR-B is more sensitive to simple 

misspecification than complex misspecification. However, SRMR-B is more sensitive to 

misspecification in high ICC models than low ICC models.  

 

Statistical Power of the Traditionally Recommended Cutoff Values 

We also examined the statistical power of the traditionally recommended cutoff 

values of the four target fit indices based on the simulated data. These cutoff values in 

general resulted in very low statistical powers (below 0.55) for rejecting misspecified 

models. To maintain a reasonably high statistical power (i.e., statistical power equal to 

0.80 or higher), lower cutoff values for RMSEA (0.054), SRMR-W (0.052), and 

SRMR-B (0.044 for high ICC models and 0.060 for low ICC models), are required while 

a higher cutoff value for CFI (0.970) is needed.  
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Implications and Recommendations 

In this study, the effectiveness of four commonly used fit indices (RMSEA, CFI, 

SRMR-W and SRMR-B) in detecting model misspecifications in multilevel SEMs was 

evaluated. The simulation results showed that the RMSEA, CFI, and SRMR-W are 

generally only sensitive to within-model misspecifications but not to between-model 

misspecifications. Thus, a model with low RMSEA and SRMR-W and high CFI does 

imply that a within-model fits the data adequately, but not necessarily implies that a 

between-model also fits the data well. Researchers should interpret the goodness-of-fit 

with caution because low RMSEA, SRMR-W and high CFI may simply be the result of 

the insensitivity of these fit indices to between-model misspecifications.  

On the other hand, SRMR-B was the only commonly used fit index that was 

sensitive to misspecified between-models. Although SRMR-B can be used for detecting 

between-model misspecifications, the sensitivity of this fit index is a function of the 

misspecification type and the ICC of the model. That is, SRMR-B is more sensitive to 

simple misspecifications and a high ICC model. Further development on more sensitive 

fit indices, especially for between-model misspecifications, is needed.   

In addition, both SRMR-W and SRMR-B are more sensitive to simple 

misspecification than complex misspecification. For example, SRMR-W and SRMR-B 

are more sensitive to misspecifications in covariances, and the high value of these 

indices can be viewed as a signal of possible misspecifications in the covariance part of a 

model. Following the general recommendation by Hu and Bentler (1999), researchers 

should use these fit indices in combination rather than just relying on a single fit index to 
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evaluate a model.  

Finally, the traditionally recommended cutoff values did not perform well in our 

simulation study (i.e., resulted in low statistical power for rejecting the misspecified 

models). Thus, these cutoff values should only be used with caution when evaluating 

multilevel SEMs. According to the simulation results, more strict cutoff values for these 

fit indices are required for maintaining a reasonable statistical power. 
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CHAPTER V 

STUDY 2: THE SENSITIVITY OF FIT INDICES IN MSEM WITH DICHOTOMOUS 

OUTCOME VARIABLES 

 

The goal of Study 2 was to examine the sensitivity of fit indices (i.e., WRMR, 

RMSEA, CFI, SRMR-W and SRMR-B) in multilevel confirmatory factor analysis 

models with dichotomous outcome variables (i.e., indicators). This chapter introduces 

the method employed in my second study. It includes analysis, results, and discussion. 

 

METHOD 

A Monte Carlo study was conducted using Mplus 5.2 (Muthén & Muthén, 

1998-2007) to investigate the sensitivity of the five commonly used fit indices (i.e., 

WRMR, RMSEA, CFI, SRMR-W and SRMR-B) for detecting model misspecifications 

in two-level models under various conditions. A multilevel confirmatory factor analysis 

(MCFA) model was used for data generation. Figures 5.1 and 5.2 present both within- 

and between-models, which were specified as having the same factor structure with ten 

dichotomous indicators loaded on two latent factors. Five design factors were considered 

in the present study: number of groups (NG) at the between level, group size (GS), 

intra-class correlation (ICC), threshold (TH), and the model misspecification (MM). The 

descriptions for design factors are presented as follows. 
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Within-model 

 

Between-model 

 

Figure 5.1 Multilevel CFA Model for Data Generation (Low ICC) in Study 2 
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Within-model 

 

Between-model 

 

Figure 5.2 Multilevel CFA Model for Data Generation (High ICC) in Study 2 
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Number of Groups (NG). Number of groups relates to the estimation of the 

between-model. Hox and Maas (2001) concluded that large NGs (i.e., larger than 50 

groups) were needed for acceptable estimates for a between-model with low ICC 

conditions. On the other hand, in SEM literature, two hundred observations seem to be 

the minimum required sample size for obtaining unbiased and consistent estimates when 

using the maximum likelihood estimation method (Boomsma, 1987; Loehlin, 2004). In 

the present study, three different NGs were adopted (i.e., 150, 200, and 250 groups) to 

evaluate whether NG level would affect fit indices performance in detecting model 

misspecification. 

Group size (GS). Whereas size was problematic with NG, Hox and Maas (2001) 

concluded that small group size (GS) (i.e., 10 observations per group) could produce 

admissible within-model estimates . Thus, we used two levels of GS (i.e., 15 and 30 

observations per group).  

Intra-Class Correlation (ICC). The low ICC condition was created by giving lower 

values (0.4) for the pattern coefficients in the between-model (see Figure 5.1) while the 

high ICC condition was created by substituting higher values (0.8) for pattern 

coefficients in the between-model (see Figure 5.2). The pattern coefficients of the 

between-model considered in this study lead to two levels of ICC: .16 (low) and .29 

(high). 

Threshold (TH). Two levels of TH were adopted: 0 and 1. Threshold can determine 

the category of the measured dichotomous variable (Asparouhov & Muthén, 2007; 

Bollen, 2002). For example, falling short of the threshold, would result in a response of 
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"0". Conversely, passing this threshold, would result in a reponse of “1”. Thresholds of 

the dichotomous outcome variables were set to be 0 or 1 in the present study. When 

thresholds were equalto 0, the proportion of response “0” to “1” was 50% : 50% 

(balanced condition), whereas when thresholds equaled 1, the proportion of response “0” 

to “1” was 75% : 25% (skewed condition). 

Model Misspecification (MM). For examining fit index sensitivity to model 

misspecification, the same model misspecification condition employed by Ryu and West 

(in press) was adopted. This model, misspecification in factor structure, consists of a 

two-factor model misspecified as a single-factor model. For example, a correctly 

specified (or true) model with low ICC is shown in Figure 5.1. Both within- and 

between-models were specified as having a two-factor structure with ten dichotomous 

indicators loaded on two latent factors. Within-model misspecification (MW) indicated 

that the within-model was misspecified as a single-factor model, while the 

between-model was correctly specified as a two-factor model. Between-model 

misspecification (MB) indicated that the between-model was misspecified as a 

single-factor model, while the within-model was correctly specified as a two-factor 

model. Conversely, within- and between-models misspecification (MWB) indicated that 

the within- and between-models were misspecified as a single-factor model 

simultaneously. 

In the current study, four models with different model misspecifications were 

specified to evaluate the sensitivity of WRMR, RMSEA, CFI, SRMR-W, and SRMR-B. 

These models were the following: (a) no model misspecification (true model, MT; see 
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Figure 5.1 and 5.2), (b) model misspecification in the within-model only (MW), (c) 

model misspecification in the between-model only (MB), and (d) model misspecification 

in both within- and between-models (MWB). The weighted least squares estimation 

method (WLSM) was used for all the analyses (Muthén & Muthén, 1998-2007). 

 

ANALYSIS 

Four design factors within each of the four models (MT, MW, MB, and MWB) were 

employed: (a) numbers of groups in between levels (NG; 150, 200 and 250), (b) group 

size (GS; 15 and 30), (c) intra-class correlation (ICC; low and high), and (d) threshold 

(TH; balanced and skewed). These factors were integrated into 96 conditions (4 models 

x 3 NG x 2 GS x 2 ICC x 2 TH). For each condition, 200 replications were generated 

and analyzed. 

Convergence rates were first reported. Then, new replications were generated to 

replace replications with convergence problems or improper solutions (e.g., negative 

unique variances) in order to make 200 convergent solutions for each condition. For the 

MT model replications, means and standard deviations (SDs) of each fit index were 

reported. A series of ANOVAs were conducted to determine the impact of the design 

factors on the effectiveness of the five targeted fit indices (i.e., WRMR, RMSEA, CFI, 

SRMR-W, and SRMR-B) in identifying the correctly specified models. Similarly, for the 

MW, MB, and MWB model replications, means and SDs of each fit index were first 

reported for evaluating the sensitivity of the five fit indices for detecting model 

misspecifications. A series of ANOVAs were then conducted to examine whether the 
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target fit indices were sensitive to model misspecification regardless of other design 

factors. Finally, the statistical powers based on the traditionally recommended cutoff 

values (i.e., RMSEA < 0.06, CFI > 0.95, SRMR < 0.08, WRMR < 0.90) were computed 

from the simulated data.  

RESULTS 

The purpose of this study was to evaluate the effectiveness of fit indices in 

detecting model misspecification in multilevel SEM with dichotomous outcome 

variables. First, the convergence failure and improper solution of our Monte Carlo study 

are reported. Also investigated are the performances of the five fit indices (i.e., WRMR, 

RMSEA, CFI, SRMR-W, and SRMR-B) in the correctly specified (or true) models (MT). 

Theoretically, all the fit indices were expected to show that the specified models 

perfectly fitted the data regardless of the NG, GS, ICC and TH. The effectiveness of the 

fit indices in detecting the misspecified models (MW, MB, and MWB) was examined to 

determine the impact of the design factors on the performance of fit indices. It was 

expected that all the fit indices should be sensitive to the model misspecifications 

regardless the design factors. In the end, the statistical power in detecting the 

misspecified models was examined using the traditionally recommended cutoff values of 

the five fit indices. 

 

Convergence Failure and Improper Solutions 

The percentage of replications with convergence problems or improper solutions (e.g., 

negative unique variances) across all combinations of sample size conditions ranged 
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from 0.227% to 0.341%. Results show that the number of problematic replications was 

generally small (less than 1%) in the simulation studies. All the problematic replications 

were not included and replaced with new replications in the analyses presented below.  

 

Performance of the Target Fit Indices on the Correctly Specified Models 

If the specified model fits the data perfectly, RMSEA, SRMR-W and SRMR-B are 

equal to 0.00 while CFI is equal to 1.00. Conversely, the magnitude of WRMR varies 

from model to model. Table 5.1 presents the means and SDs of the chi-square values 

(𝒳2), WRMR, RMSEA, CFI, SRMR-W and SRMR-B when fitting the correctly 

specified (or true) model (MT). When the model was correctly specified, the mean of 

𝒳2 would be close to the degrees of freedom of the model (df = 68). The mean (67.671) 

of 𝒳2 shown in Table 5.1 indicated that the simulation study was correctly conducted.  

The mean of WRMR was 0.559 with SD equal to 0.070. Even though the SD of 

WRMR was relatively large compared with other fit indices, WRMR’s mean was 

considerably smaller than the recommended cutoff value 0.90. The results showed 

WRMR accurately indicated the model was correctly specified. Similarly, the mean of 

RMSEA was close to 0 with trivial SD, which indicated that RMSEA performed well 

under MT. Also, CFI (with mean and SD equal to 0.999 and 0.002, respectively) 

performed extremely well when models were correctly specified. Conversely, the 

performance of SRMR-W and SRMR-B on correctly specified models were not as good 

as RMSEA and CFI, which had relatively large means (SRMR-W = 0.020 and SRMR-B 

= 0.045) and SDs (SRMR-W = 0.005 and SRMR-B = 0.020). 
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Table 5.1 Descriptive Statistics of the Fit Indices of the True Models (MT) in Study 2 

Fit Index Mean SD 

Chi-square 67.671 14.467  

WRMR  0.559  0.070 

RMSEA  0.003  0.004  

CFI  0.999  0.002 

SRMR-W  0.020   0.005  

SRMR-B  0.045   0.020  

Note. n=4,800. Degrees of freedom of the hypothesized model were 68. WRMR = weighted root mean 

square residual. RMSEA = root-mean-square error of approximation. CFI = comparative fit index. 

SRMR-W = standardized root mean square residual for within-model. SRMR-B = standardized root mean 

square residual for between-model. 
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The possible impact of the four design factors (i.e., NG, GS, ICC, and TH) on the 

performance of the five target fit indices separately on the correctly specified models 

using ANOVA was examined also. Table 5.2 presents the results. The total sum of 

squares (SOS) of each fit index showed the variability of the corresponding fit index 

across all true model replications, while eta-squared (η2) demonstrated the proportion of 

the variance accounted for by a particular design factor or the interaction effect term. 

Note that η2 was obtained by dividing the Type III sum of squares of a particular 

predictor or interaction effect by the corrected total sum of squares.  

As shown in Table 5.2, all the design factors (e.g., NG, GS, ICC, and TH) only 

accounted for a trivial proportion of the total SOS of the model 𝒳2. Moreover, the total 

SOS’s of RMSEA, CFI and SRMR-W were very small (ranged from 0.01 to 0.13). The 

corresponding η2 of the design factors was negligible for all three fit indices. Compared 

with the other fit indices, the total SOS of WRMR was quite large (23.53) with the ICC 

accounting for 24.52% of the total SOS. In contrast, the total SOS of SRMR-B was 

relatively large (1.95) with the ICC accounting for 57.33% of the total SOS, followed by 

GS (12.78%), and NG (6.38%). 
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Table 5.2 Eta-Squares (η2) for the Fit Indices of the True Models (MT) in Study 2 

Sources 

 Fit Index 

 Chi-square WRMR RMSEA CFI SRMR-W SRMR-B 

Total SOS  1004396.954 23.525 0.065 0.013 0.131 1.947 

Overall η2  0.77% 26.68% 3.29% 6.12% 75.03% 82.34% 

NG  0.02% 0.02% 0.61% 1.09% 15.56% 6.38% 

GS  0.03% 1.13% 2.07% 3.33% 46.37% 12.78% 

ICC  0.09% 24.52% 0.00% 0.01% 1.44% 57.33% 

TH  0.04% 0.57% 0.06% 1.02% 10.43% 1.60% 

NG*GS  0.04% 0.03% 0.04% 0.10% 0.46% 0.27% 

NG*ICC  0.09% 0.08% 0.04% 0.01% 0.01% 0.60% 

NG*TH  0.13% 0.10% 0.12% 0.06% 0.08% 0.03% 

GS*ICC  0.04% 0.00% 0.04% 0.00% 0.08% 2.55% 

GS*TH  0.04% 0.05% 0.06% 0.28% 0.46% 0.19% 

ICC*TH  0.01% 0.06% 0.00% 0.04% 0.10% 0.40% 

NG*GS*ICC  0.03% 0.01% 0.05% 0.02% 0.00% 0.06% 

NG*GS*TH  0.01% 0.00% 0.01% 0.02% 0.01% 0.00% 

NG*ICC*TH  0.08% 0.02% 0.07% 0.08% 0.01% 0.03% 

GS*ICC*TH  0.00% 0.00% 0.02% 0.03% 0.00% 0.11% 

NG*GS*ICC*

TH 
 0.12% 0.09% 0.10% 0.03% 0.02% 0.01% 

Note. n=4,800. Degrees of freedom of the hypothesized model were 68. WRMR = weighted root mean 

square residual. RMSEA = root-mean-square error of approximation. CFI = comparative fit index. 

SRMR-W = standardized root mean square residual for within-model. SRMR-B = standardized root mean 

square residual for between-model. SOS = sum of squares. NG = number of group. GS = group size. ICC 

= intra-class correlation. TH= threshold.  
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Performance of the Target Fit Indices on the Misspecified Models 

Table 5.3 presents the means and SDs of the 𝒳2 and the five target fit indices 

under models with different misspecification types across various simulation conditions. 

Generally speaking, four global model fit indices, namely 𝒳2, WRMR, RMSEA, and 

CFI, showed more sensitivity under MW and MWB conditions than under MB condition. 

𝒳2 had substantially large means and SDs in either MW or MWB conditions. In contrast 

with mean and SD of 𝒳2 under MB (mean=321.452; SD=165.976), means and SDs 

under MW (mean=1284.166; SD=587.723) and MWB (mean=1515.964; SD=661.123) 

were found to be considerably larger. WRMR showed large deviation from 0.90 with 

relatively large SDs in MW (mean=2.382; SD=0.525) and MWB (mean=2.613; SD=0.532) 

conditions. In MB condition, mean and SD of WRMR were 1.183 and 0.267, 

respectively. RMSEA deviated from 0 with trivial SDs in either the MW or the MWB 

conditions. Means of RMSEA under MW and MWB conditions were 0.061 and 0.067, 

respectively. CFI shrank from 1.0 with small SDs under MW and MWB conditions. Means 

of CFI in MW and MWB conditions were 0.838 and 0.804, respectively.  

SRMR-W and SRMR-B were sensitive to within-models and between-models, 

respectively. SRMR-W inflated from 0 with small SDs under MW (mean=0.090; 

SD=0.005) and MWB (mean=0.090; SD=0.005) conditions and closed to 0 under MB 

(mean=0.020; SD=0.005) condition. In contrast, SRMR-B showed relatively large 

values (or differed from zero) under MB (mean=0.176; SD=0.035) and MWB 

(mean=0.177; SD=0.035) conditions but also deviated from 0 under MW (mean=0.046; 

SD=0.020) condition.  
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Sensitivity of the Target Fit Indices for Various Types of Misspecification 

In this section, the target fit indices were evaluated to determine whether they are 

equally sensitive to model misspecifications by taking into account other design factors. 

Tables 5.4, 5.5, and 5.6 present the total SOS for fit indices, and the η2 of each factor 

and interaction term under MW, MB, and MWB conditions, respectively. Note that the 

total SOS’s of RMSEA, CFI, and SRMR-W were small (ranging from 0.131 to 4.459) 

across MW, MB, and MWB conditions. Hence the corresponding η2s of the design factors 

were negligible. These results indicated the magnitudes of RMSEA, SRMR-W, and CFI 

were less sensitive to the design factors (NG, GS, ICC, and TH) included in our 

simulation. 

The total SOS for WRMR was in general larger than the total SOS’s for other fit 

indices. WRMR had large total SOS’s under MW condition (1323.965, see Table 5.4) and 

MWB (1355.716, see Table 5.6), but a relatively small total SOS under MB condition 

(341.674, see Table 5.5). For the MW condition, the design factors GS, NG, TH, and ICC 

accounted for 58.59%, 19.82%, 11.06%, and 2.39% of total SOS, respectively, while the  
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interaction effects only accounted for a total of 1.76% of total SOS. For the MB 

condition, the design factors ICC, NG, and GS accounted for 52.54%, 12.26%, and 

6.30% of total SOS, respectively. Also, the interaction effects only accounted for a total  

of 1.62% of total SOS. For the MWB condition, the design factors GS, NG, and TH 

accounted for 56.70%, 23.71%, and 10.97% of total SOS, respectively. ICC and the 

interaction effects only accounted for a total of 1.76% of total SOS. 

SRMR-B had a relatively large total SOS under MB (5.835, see Table 5.5) and MWB 

(5.898, see Table 5.6) conditions. For the MB condition, the design factors ICC 

accounted for 49.24% of total SOS, while other design factors and the interaction effects 

only accounted for a total of 1.87% of total SOS. Similarly, for the MWB condition, the 

design factors ICC dominated most of the total SOS (49.29%). The design factor ICC 

showed substantial influence on the performance of SRMR-B under MB and MWB 

conditions. 
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Table 5.4 Eta-Squares (η2) for the Fit Indices of the Model Misspecification in the 

Within-model Only (MW) in Study 2 

Sources 

 Fit Index 

 Chi-square WRMR RMSEA CFI SRMR-W SRMR-B 

Total SOS  1657664919.686 1323.965 0.234 2.665 0.142 1.938 

Overall η2  93.53% 93.62% 65.57% 25.77% 3.77% 82.31% 

NG  18.40% 19.82% 0.03% 0.05% 0.68% 6.34% 

GS  57.49% 58.59% 3.01% 14.87% 1.96% 12.83% 

ICC  0.86% 2.39% 4.62% 3.24% 0.13% 57.31% 

TH  11.89% 11.06% 56.93% 5.97% 0.46% 1.64% 

NG*GS  2.59% 0.82% 0.01% 0.08% 0.18% 0.31% 

NG*ICC  0.06% 0.01% 0.02% 0.01% 0.02% 0.61% 

NG*TH  0.48% 0.13% 0.00% 0.01% 0.00% 0.02% 

GS*ICC  0.05% 0.08% 0.07% 1.37% 0.03% 2.47% 

GS*TH  1.49% 0.38% 0.00% 0.00% 0.06% 0.19% 

ICC*TH  0.11% 0.30% 0.79% 0.00% 0.05% 0.40% 

NG*GS*ICC  0.01% 0.00% 0.01% 0.01% 0.00% 0.06% 

NG*GS*TH  0.07% 0.01% 0.01% 0.03% 0.02% 0.00% 

NG*ICC*TH  0.01% 0.01% 0.04% 0.08% 0.08% 0.01% 

GS*ICC*TH  0.02% 0.01% 0.00% 0.00% 0.01% 0.11% 

NG*GS*ICC*

TH 
 0.00% 0.01% 0.03% 0.05% 0.09% 0.01% 

Note. n=4,800. WRMR = weighted root mean square residual. RMSEA = root-mean-square error of 

approximation. CFI = comparative fit index. SRMR-W = standardized root mean square residual for 

within-model. SRMR-B = standardized root mean square residual for between-model. SOS = sum of 

squares. NG = number of group. GS = group size. ICC = intra-class correlation. TH= threshold. 
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Table 5.5 Eta-Squares (η2) for the Fit Indices of the Model Misspecification in the 

Between-model Only (MB) in Study 2 

Sources 

 Fit Index 

 Chi-square WRMR RMSEA CFI SRMR-W SRMR-B 

Total SOS  132202782.677 341.674 0.437 2.499 0.131 5.835 

Overall η2  82.85% 73.92% 81.76% 75.53% 75.69% 51.11% 

NG  10.24% 12.26% 0.02% 0.01% 15.72% 0.44% 

GS  6.04% 6.30% 5.72% 5.97% 47.06% 0.73% 

ICC  61.17% 52.54% 71.59% 65.81% 1.46% 49.24% 

TH  1.44% 1.20% 1.56% 0.46% 10.19% 0.03% 

NG*GS  0.34% 0.19% 0.00% 0.00% 0.47% 0.09% 

NG*ICC  2.93% 1.29% 0.01% 0.00% 0.01% 0.13% 

NG*TH  0.08% 0.04% 0.00% 0.00% 0.10% 0.02% 

GS*ICC  0.29% 0.01% 2.74% 3.19% 0.11% 0.27% 

GS*TH  0.01% 0.00% 0.06% 0.00% 0.46% 0.03% 

ICC*TH  0.22% 0.05% 0.02% 0.06% 0.06% 0.03% 

NG*GS*ICC  0.06% 0.02% 0.02% 0.01% 0.00% 0.04% 

NG*GS*TH  0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 

NG*ICC*TH  0.02% 0.01% 0.01% 0.01% 0.01% 0.02% 

GS*ICC*TH  0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 

NG*GS*ICC*

TH 
 0.01% 0.01% 0.01% 0.01% 0.02% 0.03% 

Note. n=4,800. WRMR = weighted root mean square residual. RMSEA = root-mean-square error of 

approximation. CFI = comparative fit index. SRMR-W = standardized root mean square residual for 

within-model. SRMR-B = standardized root mean square residual for between-model. SOS = sum of 

squares. NG = number of group. GS = group size. ICC = intra-class correlation. TH= threshold. 
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Table 5.6 Eta-Squares (η2) for the Fit Indices of the Model Misspecification in Both 

Within- and Between-models (MWB) in Study 2 

Sources 

 Fit Index 

 Chi-square WRMR RMSEA CFI SRMR-W SRMR-B 

Total SOS  2097563316.083 1355.716 0.291 4.459 0.143 5.898 

Overall η2  95.04% 93.42% 77.59% 48.01% 3.68% 51.20% 

NG  20.71% 23.71% 0.02% 0.05% 0.61% 0.51% 

GS  52.45% 56.70% 0.00% 1.20% 1.87% 0.69% 

ICC  6.25% 0.20% 29.98% 44.57% 0.14% 49.29% 

TH  11.00% 10.97% 44.97% 1.80% 0.45% 0.04% 

NG*GS  2.42% 0.81% 0.01% 0.04% 0.21% 0.07% 

NG*ICC  0.33% 0.01% 0.01% 0.00% 0.03% 0.18% 

NG*TH  0.46% 0.13% 0.00% 0.00% 0.00% 0.01% 

GS*ICC  0.06% 0.24% 1.87% 0.22% 0.03% 0.26% 

GS*TH  1.20% 0.32% 0.00% 0.00% 0.07% 0.03% 

ICC*TH  0.05% 0.29% 0.68% 0.04% 0.05% 0.04% 

NG*GS*ICC  0.02% 0.00% 0.01% 0.02% 0.03% 0.05% 

NG*GS*TH  0.06% 0.01% 0.00% 0.01% 0.01% 0.00% 

NG*ICC*TH  0.00% 0.01% 0.02% 0.02% 0.08% 0.01% 

GS*ICC*TH  0.02% 0.01% 0.00% 0.01% 0.02% 0.01% 

NG*GS*ICC*

TH 
 0.01% 0.01% 0.02% 0.03% 0.08% 0.01% 

Note. n=4,800. WRMR = weighted root mean square residual. RMSEA = root-mean-square error of 

approximation. CFI = comparative fit index. SRMR-W = standardized root mean square residual for 

within-model. SRMR-B = standardized root mean square residual for between-model. SOS = sum of 

squares. NG = number of group. GS = group size. ICC = intra-class correlation. TH= threshold.
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Empirical Type I Error Rate and Statistical Power 

The empirical Type I error (α) of the fit indices was evaluated based on the 

rejection rates obtained for the true models (Hu & Bentler, 1999). In this section, the 

empirical Type I error rate of WRMR, RMSEA, CFI, SRMR-W and SRMR-B given the 

true model (i.e., MT) was examined. On the other hand, the statistical power of the fit 

indices was evaluated based on the rejection rates obtained for the misspecified models 

(i.e., MW, MB, and MWB) (Hu & Bentler, 1999). 

Table 5.7 presents the magnitudes of WRMR, RMSEA, CFI, SRMR-W and 

SRMR-B for three different Type I error rates: 10%, 5% and 1%. Note that the smaller 

the magnitudes of WRMR, RMSEA, SRMR-W and SRMR-B are, the better the models 

fit the sample data. On the other hand, larger CFI indicated a better model fit. In order to 

obtain reasonable Type I error rates (i.e., no larger than 5%), WRMR, RMSEA, 

SRMR-W and SRMR-B were at least 0.677, 0.010, 0.029, and 0.083, while the upper 

bound of CFI was 0.996.  

Table 5.8 presents the corresponding values of WRMR, RMSEA, CFI, SRMR-W 

and SRMR-B in terms of different levels of statistical power. To obtain a statistical 

power equal or larger than 0.80, the upper bounds of WRMR, RMSEA, SRMR-W, and 

SRMR-B were1.898, 0.055, 0.086, and 0.114, while CFI needed to be at least 0.858. 
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Table 5.7 Cutoff Values of WRMR (0.90), RMSEA (0.06), CFI (0.95), SRMR (0.08) in 

Terms of Empirical Type I Error Rates in Study 2 

  Type I Error (α) Rates 

Fit Index  1% 5% 10% 

WRMR  0.725 0.677 0.653 

RMSEA  0.013 0.010 0.008 

CFI  0.993 0.996 0.997 

SRMR-W  0.033 0.029 0.027 

SRMR-B  0.101 0.083 0.075 

Note. n=4,800 for each misspecified model. WRMR = weighted root mean square residual. RMSEA = 

root-mean-square error of approximation. CFI = comparative fit index. SRMR-W = standardized root 

mean square residual for within-model. SRMR-B = standardized root mean square residual for 

between-model. 
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Most researchers have relied on traditional fit indices (e.g., RMSEA, CFI, SRMR, 

and WRMR), along with commonly used cutoff values proposed by Hu and Bentler 

(1999) or Yu (2002) as guidelines to justify the adequacy of hypothesized models. In this 

section, the performance of the traditionally recommended cutoff values for the five 

target fit indices were also compared with the simulated data and the results are 

presented in Table 5.9. WRMR showed reasonable statistical power (equal or larger than 

80%) under MW (100.00%) and MB (84.83%) conditions. Moreover, RMSEA showed 

low statistical power under MW (56.71%) condition and 0.00% statistical power under 

MB condition given a cutoff value equal to 0.06. The statistical power of CFI was 

satisfied under MW (100.00%) condition but not acceptable disappointed under MB 

(28.52%) condition. Lastly, SRMR-W showed reasonable statistical power under MW 

(97.23%) condition and SRMR-B perform well under MB (100.00%) condition when the 

traditional cutoff values of SRMR (0.08) were applied. 
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Table 5.9 Statistical Power when Traditional Cutoff Values of WRMR (0.90), RMSEA 

(0.06), CFI (0.95), and SRMR (0.08) are Used for Evaluating Misspecified Models in 

Study 2 

Fit Index 

 Statistical Power 

 MW  MB 

WRMR  100.00%  84.83% 

RMSEA  56.71%  0.00% 

CFI  100.00%  28.52% 

SRMR-W  97.23%  - 

SRMR-B  -  100.00% 

Note. n=4,800 for each misspecified model. WRMR = weighted root mean square residual. RMSEA = 

root-mean-square error of approximation. CFI = comparative fit index. SRMR-W = standardized root 

mean square residual for within-model. SRMR-B = standardized root mean square residual for 

between-model. 

 

DISCUSSION 

In this study evaluated the effectiveness of five commonly used fit indices (i.e., 

WRMR, RMSEA, CFI, SRMR-W and SRMR-B) to detect model misspecifications in 

MSEM with dichotomous outcome variables. The performance of WRMR under 

different model misspecification conditions was first presented. Following the section on 

WRMR, the other fit indices are discussed. 

 

WRMR 

In this section, I compared the differential performances of WRMR under three 

conditions: (a) MT condition, (b) MW and MWB conditions and (c) MB condition. First of 

all, WRMR was found to be sensitive to different degrees of ICC (η2=24.52%) under MT 
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condition, however, WRMR did not overreject the correctly specified models based on 

simulation results. Figure 5.3 shows the box plot for WRMR by ICC under MT condition. 

The means of WRMR for high and low ICC were 0.525 and 0.594, respectively. In other 

words, WRMR tended to be higher (i.e., more likely to reject correctly specified models) 

when ICC increased. This finding was not a concern because the magnitudes of WRMR 

for all replications under MT condition (n=4,800) did not exceed the recommended 

cutoff value of 0.90.  

 

 

 

Figure 5.3 Box Plot for Weighted Root Mean Square Residual (WRMR) under MT 

Condition 
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Second, WRMR performed similarly under MW and MWB conditions. WRMR 

reacted in the same pattern to misspecified within-models regardless of the accuracy of 

the corresponding between-models specified in the MSEM. For example, total SOS’s 

were substantially large (ranged from 1323.96 to 1355.72) under MW and MWB 

conditions, compared to total SOS under MB condition (341.67). Additionally, the design 

factor GS dominated more than 52% of total SOS, followed by NG (about 20%) and TH 

(about 10%). Thus, almost 80% of total SOS’s were accounted for by GS and NG. As 

demonstrated by the boxplots in Figure 5.4, WRMR was more sensitive to within-model 

misspecifications when the total sample size (NG x GS) increased. This result was 

expected because the finding that larger sample size was associated with higher 

statistical power of fit index was also found in other related SEM simulation studies (e.g., 

Hancock & Freeman, 2001).  

In addition, WRMR was sensitive to the design factor TH (i.e., misspecified 

within-models with either balanced or skewed outcome variables). Results showed that 

the magnitudes of WRMR tended to be a little lower (i.e., less likely to detect the model 

misspecifications) when outcome variables were balanced; however, generally the 

sensitivity of WRMR was acceptable under balanced and skewed outcome variables 

conditions.  
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MW Condition 

  

 

 

MWB Condition 

  

Figure 5.4 Box Plots for Weighted Root Mean Square Residual (WRMR) under MW and 

MWB Conditions 

  

TH=Balanced TH=Skewed 

Group Size 

15 

30 

TH=Skewed TH=Balanced 
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Lastly, under MB condition, one concern was whether WRMR could detect model 

misspecifications in between-models. WRMR was found to be sensitive to different 

degrees of ICC (η2 = 52.54%), followed by NG (12.26%) and GS (6.30%). Figure 5.5 

showed box plots for WRMR under MB condition by ICC, NG, and GS. Overall, the 

design factor ICC showed extreme influence on the performance of WRMR. Figure 5.5 

indicated that WRMR was less likely to detect the between-model misspecifications (i.e., 

low statistical power) when ICC was relatively lower. Lower ICC implied that the 

between-model accounted for less proportion of the total variance (Hox, 2002). Thus, the 

less variance misspecified between-models carried, the fewer model misspecifications 

contributed to the WRMR. In other words, the information of model misspecification 

would be “weighted” by the proportion of total variance accounted for by the 

between-model. 

In addition, WRMR was more sensitive to model misspecification when the total 

sample size increased. This finding was consistent with the findings under MW and MWB 

conditions. Note that such findings could be applied only when the within-model was 

correctly specified. Once the within-model was misspecified, the performance of 

WRMR would be dominated by the misfit of within-model (i.e., not sensitive to 

misspecified between-models anymore). Put simply, WRMR can be used to evaluate the 

model fit of between-models only when the within-models are correctly specified and 

the ICC is not too small. 
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Figure 5.5 Box Plot for Weighted Root Mean Square Residual (WRMR) under MB 

Condition 
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RMSEA and CFI 

RMSEA and CFI can effectively detect the model misspecifications in a 

within-model without being confounded by other design factors (i.e., NG, GS, ICC, and 

TH). However, these two fit indices were not sensitive to the misspecifications occurring 

in a between-model. A possible explanation for this finding was that both RMSEA and 

CFI were a function of the overall model chi-square statistics (𝒳2). Chi-square statistics 

was asymptotically distributed as an noncentral 𝒳2 distribution with the noncentrality 

parameter equal to λ. Indeed, λ was a function of the sample size and the severity of 

the model misspecification (Saris & Satorra, 1993). In multilevel SEMs, within-model 

sample size was the total sample size minus the number of groups (i.e., N-G), while 

between-model sample size was the number of groups (i.e., G). Generally, N-G was 

much larger than G. Therefore, compared with the between-model (with a relatively 

smaller sample size), the within-model contributed/weighed in with much more 

information to the overall model 𝒳2 value (Hox, 2002). This finding was also reflected 

in the simulation Study 1n which substantially larger model 𝒳2 values were found in 

the misspecified within-models than in the misspecified between-models as presented in 

Table 5.3. Hox (2002) also drew a similar conclusion where both RMSEA and CFI were 

not equally weighted by the within- and between-models. The author concluded that 

these two fit indices may be more sensitive to misspecification in the within-model than 

the between-model. 
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SRMR-W and SRMR-B 

SRMR-W was a designated fit index for detecting within-model misspecifications. 

This simulation showed that SRMR-W can be used for identifying misspecifications in a 

within-model regardless of the impact of other design factors (i.e., NG, GS, ICC, and 

TH). Similar to SRMR-W, SRMR-B was a designated fit index for detecting 

misspecifications in a between-model. However, a different pattern of results was found 

for SRMR-B. Findings indicated that SRMR-B was more sensitive to model 

misspecification in high ICC models than low ICC models. Figure 5.6 showed a box plot 

for SRMR-B under MB condition. SRMR-B tended to be less likely to detect the 

between-model misspecifications when ICC was relatively lower. This finding was 

consistent with WRMR performance findings.  
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Figure 5.6 Box Plot for Standardized Root Mean Square Residual for Between-model 

(SRMR-B) under MB Condition 
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Statistical Power of the Traditionally Recommended Cutoff Values 

The statistical power of traditionally recommended cutoff values of the five target 

fit indices were also examined using simulated data. The WRMR cutoff worked well to 

obtain reasonably high statistical power (i.e., statistical power equal to 80% or higher). 

In contrast RMSEA was only sensitive under MW condition, and the RMSEA cutoff 

value did result in reasonably high statistical power. Thus a lower cutoff value for 

RMSEA (0.055) is required. Like RMSEA, CFI was only sensitive under MW condition. 

However, unlike RMSEA, the CFI cutoff value maintained reasonably high statistical 

power. Lastly, the cutoff values of SRMR-W and SRMR-B resulted in reasonably high 

statistical power. 

 

Implications and Recommendations 

The effectiveness of five commonly used fit indices (WRMR, RMSEA, CFI, 

SRMR-W and SRMR-B) in detecting MSEM model misspecifications with dichotomous 

outcome variables was evaluated in this study. First, simulation results showed that the 

RMSEA, CFI, and SRMR-W were generally only sensitive to within-model 

misspecifications, but they were not sensitive to between-model misspecifications. Thus, 

model fit for a model with low RMSEA and SRMR-W and high CFI implies adequate 

within-model fit but does not necessarily imply adequate between-model fit. Researchers 

should interpret the goodness-of-fit with caution because low RMSEA, SRMR-W and 

high CFI may simply be the result of the insensitivity of these fit indices to 

between-model misspecifications.  
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Second, SRMR-B, a commonly used fit index, was sensitive to misspecified 

between-models. Although SRMR-B can be used for detecting between-model 

misspecifications, the sensitivity of this fit index is a function of model ICC. Thus, 

SRMR-B is more sensitive to high ICC models. Even though SRMR-B performed well 

with both high and low ICC models in my study, results for SRMR-B showed a pattern 

of statistical power loss in detecting model misspecification when ICC decreased.  

Third, WRMR was the fit index which was sensitive to misspecified within- and 

between-models. Researchers should first use RMSEA, CFI, and SRMR-W in 

combination to evaluate the within-model. Given a correctly specified within-model, 

researchers can apply WRMR to assess the accuracy of a between-model. However, 

researchers must take into account the impact of statistical power loss in detecting model 

misspecifications with decreasing ICC. 

Finally, traditionally recommended cutoff values performed well in our simulation 

study (i.e., resulted in reasonably statistical power for rejecting the misspecified models) 

except for RMSEA. Thus, these cutoff values could be used as guidelines when 

evaluating models in MSEM. 
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CHAPTER VI 

CONCLUSIONS 

 

MSEM is a multivariate analytic approach for analyzing hierarchically structured 

data by specifying a within-model and a between-model separately and simultaneously. 

However, practices associated with model evaluation are problematic due to the lack of 

empirical research. Two Monte Carlo studies were conducted to investigate the 

sensitivity of fit indices in detecting model misspecification under different conditions. 

In Study 1, fit indices (i.e., RMSEA, CFI, SRMR-W and SRMR-B) were examined 

employing multilevel confirmatory factor analysis (MCFA) models with normally 

distributed outcome variables (i.e., indicators). In Study 2, WRMR as well as RMSEA, 

CFI, SRMR-W and SRMR-B were examined employing MCFA models with 

dichotomous outcome variables (a type of non-normal outcome variables). 

Simulation results showed that the two global fit indices, RMSEA and CFI, only 

reflected within-model fit in MSEM with either normally distributed or dichotomous 

outcome variables. As shown in Table 4.4, RMSEA and CFI deviated from 0 and 1 (i.e., 

sensitive to model misspecifications), respectively under MW condition but were very 

close to 0 and 1 (i.e., not sensitive to model misspecifications), respectively under MB 

condition when the outcome variables were normally distributed. Similarly, RMSEA and 

CFI performed in a consistent manner when the outcome variables were dichotomous as 

shown in Table 5.3. Hence, researchers cannot treat RMSEA and CFI as global fit 

indices and believe that these fit indices can indicate the degree of entire model fit in 
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MSEM. A model with satisfactory RMSEA and CFI does imply that the within-model 

fits the data adequately but does not necessarily imply that the between-model fits the 

data well. 

SRMR-W is another commonly reported fit index that is sensitive to misspecified 

within-models rather than misspecified between-models in MSEM with either normally 

distributed or dichotomous outcome variables. For this reason, researchers should use 

SRMR-W in combination with RMSEA and CFI to evaluate the within-model. As 

reflected in Table 4.4, SRMR-W deviated from 0 (i.e., sensitive to model 

misspecifications) under MW condition but was very close to 0 (i.e., not sensitive to 

model misspecifications) under MB condition when the outcome variables were normally 

distributed. Additionally, SRMR-W performed in the same pattern when the outcome 

variables were dichotomous as reflected in Table 5.3. Furthermore, simulation results 

also showed that SRMR-W was sensitive to different types of model misspecification 

(MT). As showed in Table 4.5, SRMR-W was differentially sensitive to simple and 

complex misspecifications in the within-model (η2=99.57%) under MW condition. 

Therefore, researchers could use SRMR-W, RMSEA, and CFI in combination to 

evaluate the within-models in MSEM. By using these fit indices, researchers should 

have no difficulty in determining the model fit of within-models. 

On the other hand, simulation results showed that SRMR-B can be used 

conditionally to detect model misspecifications in the between-models in MSEM with 

either normally distributed or dichotomous outcome variables. Overall, the design factor 

ICC showed influence on the performance of SRMR-B. As shown in Table 4.6 and 5.5, 
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the design factor ICC accounted for 3.31% and 49.24% of SRMR-B total SOS’s under 

MB conditions when the outcome variables were normally distributed and dichotomous, 

respectively. SRMR-B can show reasonable statistical power (i.e., statistical power equal 

to 80% or higher) in high ICC models. In other words, SRMR-B is less likely to detect 

between-model misspecifications when ICC decreases. Future studies should investigate 

the impact of statistical power loss in detecting between-model misspecifications with 

decreasing ICC. 

The performance of WRMR was examined in MSEM with dichotomous outcome 

variables. The findings of WRMR were more complicated. First, once the within-model 

was misspecified, the performance of WRMR was dominated by the misfit of 

within-model (i.e., not sensitive to misspecified between-models anymore). WRMR was 

expected to have a significantly larger mean under MWB condition than MW condition. 

However, as shown in Table 5.3, WRMR had similar means (and SDs) across MW 

(mean=2.382, SD=0.525) and MWB (mean=2.613, SD=0.532) conditions. Tables 5.4 and 

5.6 also showed that the effects of design factors on the performance of WRMR were 

quite close. Hence, WRMR failed to reflect misfit of the between-model if the 

within-model was misspecified.  

Secondly, WRMR can be used to evaluate the model fit of between-models when 

the within-models are correctly specified and the ICC is not too small. As shown in 

Figure 5.5, WRMR performed well when ICC was relatively high (upper box plot). 

However, WRMR was less likely to detect the misspecified between-models when ICC 

was relative low (lower box plot). 



88 

 

Based on the findings of WRMR, the procedure for applying WRMR in MSEM 

with dichotomous outcome variables was presented as follows: (a) researchers should 

use WRMR, RMSEA, CFI, and SRMR-W in combination to evaluate a within-model; 

and (b) researchers should apply WRMR to evaluate the accuracy of a between-model 

only after achieving a correctly specified within-model. Note that, researchers must take 

into account the impact of ICC because WRMR might lose statistical power to detect 

between-model misspecifications when ICC decreases. 

Only a limited number of design factors and parameter values have been considered 

in this simulation study. As Marsh et al. (2004) pointed out, researchers should not 

overly generalize from the results of Monte Carlo studies and should apply their results 

with caution. For a more complete picture of the effectiveness of commonly used fit 

indices in detecting model misspecifications in multilevel SEMs, further studies 

covering a broader range of conditions and parameter values are needed. My study only 

focused on misspecification in the covariance structure of a model. Future studies could 

examine the effectiveness of these fit indices in detecting misspecification in the mean 

structure of a model. 
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