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ABSTRACT 

 

Ultrafast Laser Induced Thermo-Elasto-Visco-Plastodynamics in Single Crystalline 

Silicon. (December 2009) 

Xuele Qi, B.S., Tsinghua University, Beijing, China; 

M.S., Tsinghua University, Beijing, China 

Chair of Advisory Committee: Dr. Chii-Der S. Suh 

 

A comprehensive model for describing the fundamental mechanism dictating the 

interaction of ultrafast laser pulse with single crystalline silicon wafer is formulated.  

The need for establishing the feasibility of employing lasers of subpicosecond pulse 

width in Laser Induced Stress Waves Thermometry (LISWT) for single crystalline 

silicon processing motivated the work.  The model formulation developed is of a 

hyperbolic type capable of characterizing non-thermal melting and thermo-elasto-

viscoplastic deformation as functions of laser input parameters and ambient temperature.  

A plastic constitutive law is followed to describe the complex elasto-viscoplastic 

responses in silicon undergoing Rapid Thermal Processing (RTP) annealing at elevated 

temperatures.  A system of nine first-order hyperbolic equations applicable to describing 

3-D elasto-viscoplastic wave motions in silicon is developed.  The group velocities of 

certain selected frequency components are shown to be viable thermal indicators, thus 

establishing the feasibility of exploiting nanosecond laser induced propagating stress 

waves for the high-resolution thermal profiling of silicon wafers.   
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Femtosecond laser induced transport dynamics in silicon is formulated based on 

the relaxation-time approximation of the Boltzmann equation.    Temperature-dependent 

multi-phonons, free-carrier absorptions, and the recombination and impact ionization 

processes governing the laser model and carrier numbers are considered using a set of 

balance equations.  The balance equation of lattice energy and equations of motion of 

both parabolic and hyperbolic types are derived to describe the complex thermo-elasto-

plastodynamic behaviors of the material in response to ultrafast laser pulsing.  The 

solution strategy implemented includes a multi-time scale axisymmetric model of finite 

geometry and a staggered-grid finite difference scheme that allows both velocity and 

stress be simultaneously determined without having to solve for displacements.  

Transport phenomena initiated by femtosecond pulses including the spatial and temporal 

evolutions of electron and lattice temperatures, along with electron-hole carrier density, 

are found to be functions of laser fluence and pulse width.  The femtosecond laser 

heating model that admits hyperbolic energy transport is shown to remedy the dilemma 

that thermal disturbances propagate with infinite speed.  Non-thermal melting fluence is 

examined favorably against published experimental data.  That it is feasible to explore 

femtosecond laser induced displacement and stress components for 1K resolution 

thermal profiling is one of the conclusions reached.  
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NOMENCLATURE 

 

e hC −  Electron-hole pairs specific heat 

l
C  Lattice specific heat 

0D  Ambipolar diffusion coefficient 

E  Young's modulus 

dE  Dember field 

gE  Band-gap energy 

cE  Energy of conduction-band 

vE  Energy of valence-band 

F  Fermi-Dirac integral 

f  Dislocation density related coefficient 

G  Pair generation rate 

sG  Shear modulus 

hv  Photon energy 

I  Laser intensity 

J  Carrier current 

Bk  Boltzmann constant 

UL  Energy loss term due to energy exchange  

ML  Energy loss term due to mechanical wave 
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n  Carrier density 

mN  Dislocation density 

cQ  Seebeck coefficient 

q  Charge 

R  Pair recombination rate 

r  Radius in cylindrical coordinates 

sr  Laser spot size 

US  Energy source term 

ijS  Deviatoric stress tensor 

eT  Electron temperature 

lT  Lattice temperature 

0T  Ambient temperature 

t  Time variable 

eqt  Thermal equilibrium time 

pt  Pulse duration 

1t  Thermal-mechanical relaxation time 

2t  Thermal relaxation time 

U  Total energy of electron-hole pairs 

u  Displacement in r-direction 

0V  Dislocation velocity coefficient 
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W  Energy current 

w  Displacement in z-direction 

z  Depth in cylindrical coordinates 

α  One-photon absorption coefficient 

α′  Thermal expansion coefficient 

β  Two- photon absorption coefficient 

dβ  Dislocation interaction parameter 

Γ  Reflectivity 

γ  Auger recombination coefficient 

ε  Strain 

cη  Reduced Fermi level 

Θ  Free carrier absorption area 

θ  Angle in cylindrical coordinates 

iθ  Impact ionization coefficient 

lθ  Lattice temperature increase 

κ  Thermal conductivity 

λ  Lamé constants 

μ  Lamé constants 

0
cμ  Mobility of electrons 

ν  Poisson’s ratio 
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cπ  Peltier coefficient 

ρ  Mass density 

σ  Stress 

cσ  Electron conductivity 

eτ  Relaxation time 

Φ  Laser fluence 

cψ  Fermi level 
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CHAPTER I 

INTRODUCTION 

 

1.1 Overview 

Laser technology began moving into the sub-picoseconds time regime in the 

early 70s.  Ultrashort laser micromachining of materials has been the focus of scientific 

research for many years because of a large number of advantages in comparison with 

long pulses [1-3].  The benefit provided by the brief heating time on the order of 

femtoseconds also enables precision control over the spread of the heat affected zone.   

Laser melting of single crystalline semiconductors, silicon in particular, has 

become the subject of many recent investigations [4-6].  Laser micromachining 

including microdrilling, microcutting and micromilling, and optical lithography are 

accomplished by employing high fluence laser pulses [7, 8].  The use of low fluence 

ultrafast pulses on the other hand is secure enough to initiate high frequency propagating 

stress waves that could potentially be explored to characterize the elastic and thermal 

properties of thin films deposited in the material without inducing any physical damage.  

These waves are usually dispersive and broad band in frequency, and thus contain plenty 

of variables which are sensitive enough to resolve defects [9] and to profile thermal 

distribution with high resolution [10].  The Laser Induced Stress Waves Thermometry 

(LISWT) [11, 12] employed the nanosecond laser induced stress waves in real-time as 

thermometric probes for the precision profiling of the thermal state of silicon substrates 

____________ 
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as they undergo rapid annealing processing.  This technique was experimentally 

demonstrated for feasibility for measuring temperatures up to 600°C with ±1°C thermal 

resolution.  Due to the aforementioned advantages of ultrafast lasers over nanosecond 

lasers, utilizing femtosecond laser in LISWT was considered.  However, the 

fundamentals addressing the thermomechanical responses of silicon subject to ultrafast 

laser interrogation were not completely understood or established.   

The research is aimed to formulate a comprehensive model for describing the 

fundamental mechanism of interaction between ultrafast laser pulse and single 

crystalline silicon. The model considers multi-dimensionality, generalized 

thermoelasticity, thermo-mechanical coupling and elasto-viscoplastic deformation.  The 

various thermomechanical responses of a silicon wafer excited by a femtosecond pulsed 

laser are investigated in this dissertation.  A literature review of relevancy and interest to 

this research including LISWT and ultrafast laser-induced transport dynamics in silicon 

is presented, followed by a statement of the research objective. 

 

1.2 Laser Induced Stress Wave Thermometry 

During the thermal annealing of silicon wafers, proper thermal control in real-

time is required to ensure fabrication quality.  It is therefore essential to knowing the 

thermal state of the substrate being processed at all time.  As feature size smaller than 

90nm is becoming dominant, non-contact, in-situ thermometry capable of ±1°C thermal 

resolution over the range from room temperature to 1,000°C is called for [13].  Of the 

handful of temperature diagnostics explored, Degertekin et al. [14, 15] employed contact 
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transducers along with a tomographic reconstruction technique to profile wafer 

temperature distribution, while Schietinger et al. [16] developed a non-contact ripple 

technology based on the stray radiation and emissivity effect.  The lightpipe radiation 

thermometers (LPRTs) and cable-less LPRTs (CLRTs) studied by Tsai et al. [17, 18] 

offered better emissivity control whose thermal uncertainty was as low as ±2°C.  

However, these methods all fall short of meeting the needed thermal resolution as the 

emissivity of silicon wafer subject to rapid annealing is not sensitive enough to 

differentiate slightly differing surface condition and dopant content.  An alternative non-

contact, emissivity-independent technique of desired temperature resolution is therefore 

needed.    

Recognizing the dependency of wave dispersion on simultaneous temperature-

thickness variation, Suh and co-workers [11, 12] exploited laser-generated ultrasonic 

guided waves [19] to the successful interrogation of silicon wafers for thermal 

information.  Applicable to silicon wafers undergoing RTP, their methodology of 

thermal diagnostics, named Laser-Induced Stress Wave Thermometry (LISWT), was 

experimentally demonstrated for feasibility for temperatures up to 600°C.  As silicon 

wafers no longer behave elastically, but rather elasto-viscoplastically, subject to 

temperature higher than 600°C, to cover the whole temperature range required by RTP, 

the physics behind elasto-viscoplastic wave propagation in single crystalline silicon thin 

structures at elevated temperature has to be understood. 

While extensive theoretical and experimental works can be found in the field of 

elasticity [20, 21], works on plastic wave propagation in silicon were rare.  There are 
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two key issues need be resolved before an elasto-viscoplastic wave propagation model 

can be developed.  The first one concerns the kinematics of elastic-plastic deformation.  

It is common that the total strain is determined as the sum of the elastic strain and plastic 

strain.  Valid assumptions must be made to justify the simple summation operation so as 

to clarify the associated kinematical implications.  The framework on elasto-plastic 

deformation as presented in [20] assumed a fictitious elastically deformed state between 

the undeformed state and the elasto-plastic state in order to calculate the displacement 

gradients and strains.  A mathematically rigorous procedure was then followed for 

obtaining the elasto-plastic kinematics.  The second one is the constitutive law of silicon 

materials.  All reviewed papers on plastic wave propagation adopted a fairly simple 

linear-elastic-perfect-plastic (LEPP) material model, which is not a true representation of 

the silicon material property at elevated temperature.  Alexander and Haasen [22] were 

among the few who first proposed a constitutive law of single crystalline structure that 

was later refined by Suezava et al [23] and subsequently named as the Haasen-Sumino 

model.  Tsai et al [24-26] generalized the model and developed a 3D formulation that 

was supported by experimental results.  Tsai’s model, which was derived from uniaxial 

tensile data, is modified and adopted for the investigation reported herein.   

Mathematically, classic wave equations are second-order hyperbolic equations of 

displacement or stress.  In this investigation, due to the complexity of the constitutive 

law, it is impossible to derive a second-order hyperbolic equation in terms of either 

displacement or stress component.  Instead a first-order hyperbolic equation system is 

followed in which three velocity components and six stress components are the 
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dependent variables.  Given its inherent complexity, it is difficult to obtain the analytical 

solutions to the first-order hyperbolic system.  Finite difference is a typical method 

commonly used for investigating wave motions [27-29].  As a strong form solution, 

finite difference is a straightforward approach to time-integrating differential equations.  

The major drawback of finite difference, however, is its numerical dispersion [30].  This 

disadvantage prevents it from accurately predicting long distance wave propagation.  In 

this dissertation, the staggered grid finite difference method [31, 32] is employed to 

numerically determine the velocity and stress fields in response to various temperature 

input.  In this investigation, stresses are located at the center of the finite-deference 

elements, while velocities are positioned at the midpoints on the surface.  There are two 

major advantages.  First, initial and boundary conditions are specified in terms of the 

dependent variables alone.  No derivatives of the dependent variables are involved.   

Second, stresses and velocities are the direct solution output.  Note that in the 

displacement formulation, further calculations are needed to approximate stress 

components and in the stress formulation, numerical integrations are required to obtain 

displacements.  Reducing the number of numerical differentiation or integration can 

minimize errors.  This is also a welcome feature in applications where stress or stress 

gradient is the primary variable of interest.   

In LISWT where dispersive, elasto-viscoplastic waves of broad bandwidth are 

employed for thermal profiling, there are two key practical issues in implementation.  

One is data acquisition and the other is extraction of thermal information.  Fast Fourier 

Transform (FFT) is the popular tool in signal processing.  However, it is not effective for 
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this investigation because it only provides spectral information.  FFT is usually applied 

to time-invariant signals whose spectral structure does not change with time.  As an 

alternative to FFT, Gabor Wavelet Transform (GWT) has been shown to provide 

simultaneous time-frequency resolution optimal for processing dispersive waves in 

beams and silicon wafers [10, 33].  This doctoral research adopts GWT as the feature 

extraction tool for the determination of temperature dependence of group velocity and 

wave attenuation for selected frequency components.   

 

1.3 Ultrafast Laser Induced Transport Dynamics in Silicon 

Micro-machining and -fabrication of materials using sub-picoseconds or 

femtosenconds ultrafast lasers have several prominent advantages over coherent optical 

source of long pulses [7-8, 34-35].  Given their low input energy, high power output and 

limited spread of the heat affected zone, pulsed lasers of ultra-short rise time allows 

precise control over the generation of extremely small features.  Laser melting of single 

crystalline semiconductors, silicon in particular, has become the subject of many recent 

investigations [4-6].  Silicon processing using low fluence, ultra-short pulses generates 

no plasma and inflicts no damage to the material [9, 36].  The use of ultrafast pulsed 

lasers with such non-damaging fluence is sufficient to generate high frequency 

propagating stress waves that can be explored for many types of applications including 

non-destructive evaluation (NDE).  Moreover, defects, material properties such as 

density and elastic constants, substrate thickness, residual stresses, bonding integrity, 

and surface roughness may all be measured using laser induced stress waves.  The stress 
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waves can also be employed in real-time as thermometric probes for the precision 

thermal profiling of silicon substrates as they undergo rapid annealing process [10, 11].  

In order to effectively apply ultrafast lasers to the fabrication and processing of 

semiconductor, it is necessary to establish the knowledge base essential for correlating 

ultrafast laser pulsing with the irradiated response of semiconductor materials.   

 Although experiments with ultrashort laser pulses of various fluences are plenty 

[1-3, 37-38], publications of the fundamentals addressing the thermomechanical 

responses of silicon subject to ultrafast laser interrogation are rare.  Unlike traditional 

thermal melting, the mechanism dictating non-thermal melting must be explained in the 

views of quantum mechanics.  When a semiconductor is irradiated by ultrafast lasers, a 

large number of electrons are excited with high temperature and jump from the valence 

band into the conduction band.  The energy absorbed by electrons is a function of the 

difference between the photon energy ( hv ) and band-gap energy ( gE ).  When ghv E> , 

electrons jump from the valence band into the conduction band and electron-hole pairs 

are subsequently created through either the one-photon or two-photon absorption 

mechanism.  As a result, the initial kinetic energy of the electron-hole pairs is either 

( )ghv E−  or (2 )ghv E− .  As time elapses, a portion of the carriers (electrons and 

holes) would recombine and more new pairs would be generated through impact 

ionization.  Recombination and impact ionization are the two opposite processes 

competing to balance the total number of carriers.  As soon as the carrier density reaches 

a threshold, the silicon material begins undergoing non-thermal melting [39].  H.M. van 

Driel [40] was among the few who first proposed a self-consistent model based on the 
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relaxation-time approximation of the Boltzmann equation.  The model, which included 

plasma degeneracy effects, was used to obtain the spatial and temporal evolution of the 

lattice temperature along with the carrier density and temperature.  The laser duration 

utilized in the model was 20ps.  Chen et al. [41] extended van Driel’s model by reducing 

a rate equation that modeled the carrier density and introduced a laser model for 

expressing the laser intensity.  They also developed a one-dimensional numerical model 

with finite difference method applicable to problems involving subpicoseconds or 

femtosecond lasers.  However, there are few drawbacks pertaining to van Driel’s and 

Chen’s models as follows, 

(1) Ultrafast laser heating is one of multiphysics involving both electron-lattice 

interaction and thermal-mechanical coupling.  With the governing equations 

describing only the total energy transfer in the form of heat and completely 

void of thermal-mechanical coupling and the equation of lattice motion, van 

Driel and Chen’s do not take into account the mechanical response.  If the 

objective is to explore the various dynamical behaviors initiated by rapid 

laser heating, the evolution of the induced mechanical field in space needs be 

considered.   

(2) The one-dimensional models formulated by van Driel and Chen are not 

applicable to describing temperature distributions in time and space, nor 

particle velocity or thermal stress, in both the thickness and radial directions.  

Considering multi-dimensionality is critical to the understanding of heating 

mechanisms. 
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(3) Constrained by the extremely small time steps as required for properly time-

integrating ultrashort laser pulses, the response time frame considered by van 

Driel and Chen using their models covers only up to a few picoseconds.  To 

investigate the implications of ultrafast laser heating of single crystalline 

silicon, whose thermal-mechanical relaxation time is on the order of 10-13 

seconds [42], it is necessary that the integration time window be wider than a 

few hundreds or even thousands picoseconds to be considered sufficient. 

(4) For a heat-conducting deformable body, the classical theory of 

thermoelasticity as van Driel and Chen used in their papers views heat 

propagation as a diffusion phenomenon because it incorporates a parabolic-

type heat transport equation.  The thermal distribution therefore travels with 

infinite speed and the thermoelastic responses are able to be observed 

instantaneously at any location in the entire model domain no matter how far 

it is away from the heat source.   However, this prediction is physically 

unrealistic although it works well for problems where the duration of thermal 

shocks is as short as 1µs [43].  For modeling near-field, sub-nanosecond, 

especially sub-picosecond responses induced by laser pulses, generalized 

thermoelasticity has to be introduced. 

The dissertation addresses the above comments with the formulation of a multi-

time scale, multi-dimensional model that governs the transport dynamics in silicon 

wafer.  The model introduces a term of energy loss to the generation of thermal-

mechanical disturbances in the total energy balance equation.  Mechanical responses, 
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such as lattice motions, are governed by the momentum equations.  Assuming an 

axisymmetric volumetric laser heat source and neglecting material anisotropy, the model 

is reduced to a geometrically thin axisymmetric model in the cylindrical coordinates.  

Once the thermal equilibrium of electron and lattice is reached in the form of identical 

temperature, a multi-time scale scheme is then followed to rationally simplify the 

governing equations to allow for evolution time history as long as 10ns. 

Due to the complexity of the model formulation, which is described by 17 

coupled, time-dependent partial differential governing equations, closed-form solutions 

are beyond any tangible effort.  A finite difference scheme with staggered grids is 

adopted as an alternative to attempting analytical solutions.  Unlike the conventional 

finite difference method in which primary variables are evaluated at grid points, the 

staggered finite difference scheme defines velocities and the first order spatial derivative 

terms at locations midway between two consecutive grid points, and defines the shear 

stress at the center of each element.  Compared with established methods of common, 

the staggered grid finite difference method can effectively suppress numerical 

oscillations [44, 45].    

Non-thermal melting threshold is determined mainly by pulse duration and laser 

fluence.  It is an important parameter for gauging the physical damage induced by 

ultrafast laser irradiation.  When a semiconductor is irradiated by ultrafast laser pulses, a 

large number of electrons are excited from the valence band into the conduction band.  

As more and more covalent bonds are severed, lattices experience a dramatic reduction 

in shear strength and begin undergoing non-thermal melting [39] – a process unlike 
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regular thermal melting which usually is characterized by elevated temperature.  Non-

thermal melting generally occurs as immediate crystal disordering or material ablation.  

However, as ultrafast lasers also generate short-time scale shock waves of extremely 

high frequency, damages in the form of microcracking are probable.  As detrimental as 

they are to the fabrication quality, damages of this kind nevertheless cannot be estimated 

by the non-thermal threshold.  To address the need for being able to characterize this 

type of damage mode associated with the propagating stress waves, the accumulated 

damage evaluation algorithm introduced in Refs. 46 and 47 is adopted.  The algorithm 

correlates in the qualitative sense short-time scale thermal stress waves excited by rapid 

thermal transient with various damage modes in a microelectronic packaging 

configuration.  Such a correlation is possible through considering the oscillation of 

thermal stresses in time, which has the unit of power per unit volume, thus properly 

termed as power density.  The concept of power density and its relation with low 

stress/high cycle fatigue is applied to investigate if ultrafast lasers induced thermal-

mechanical wave motions are likely to initiate dynamic fatigue cracking in thin silicon 

section. 

 

1.4 Research Objective 

To explore the feasibility of Laser Induced Stress Waves Thermometry (LISWT) 

using ultrafast lasers, the mechanism dictating the interactions of ultrafast laser pulses 

with single crystalline silicon has to be established.  The objective of this dissertation is 

to address the need for understanding the thermomechanical responses of single 
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crystalline silicon when irradiated by ultrafast lasers through developing a 

comprehensive physical model that incorporates hyperbolic thermal transport and 

considers the characteristics of non-thermal melting.  Moreover, the model has to be 

extended for describing wave behaviors from being elastic to elasto-viscoplastic subject 

to the annealing temperature ranging from room temperature to exceeding 1,000K.  To 

this end, several tasks are identified as follows: 

(1) Establish an axisymmetric model for describing complex laser-induced 

coupled thermal-mechanical responses; 

(2) Generate numerical results by building a staggered-grid finite difference 

model effective in solving boundary-value problems involving coupled 

PDEs; 

(3) Revise the mathematical and numerical model to consider hyperbolic heat 

transport and remedy the physically inadmissible infinite thermal speed 

resulted from the classical Fourier’s Conduction Law; 

(4) Investigate the thermal equilibrium process of electrons and lattices; 

(5) Study non-thermal melting characteristics, and compare the melting 

threshold with the available experimental data in literature; 

(6) Finalize the model in (3) by considering the elasto-viscoplastic response of 

silicon at high temperature based on the kinematics of elasto-viscoplastic 

deformation; 

(7) Apply a viable multi-time scale integral algorithm to obtain numerical results 

up to at least several nanoseconds; 
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(8) Investigate the distribution and propagation of laser induced mechanical 

waves, such as stresses and displacements; 

(9) Analyze the dispersive characteristics of laser induced mechanical waves by 

using wavelet time-frequency transformation; 

(10) Determine laser induced power density and heat flux to evaluate potential 

damages; 

(11) Compare thermomechanical responses 1) calculated by the elasto-

viscoplastic and elastic models; 2) subject to different laser fluencies; and 3) 

at different ambient temperatures;  

(12) Identify parameters that are sensitive to temperature variation that can be 

used as thermal indicators. 
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1.5 Dissertation Outline 

LISWT and ultrafast laser induced transport dynamics in silicon material along 

with the research objectives were discussed.  In the remaining chapters, the dissertation 

is organized as follows. The constitutive law and elasto-viscoplastic wave formulation 

which govern the elasto-visco-plastodynamics of single crystalline silicon is reviewed in 

Chapter II.  The feasibility study for LISWT by using nanosecond lasers are presented in 

Chapter III.  Chapter IV derives the model formulation of the femtosecond laser induced 

transport dynamics in semiconductor materials.  The near field thermal-mechanical 

responses and corresponding results calculated by classical thermo-elastodynamics, 

generalized thermo-elastodynamics, and generalized thermo-elasto-plastodynamics for 

silicon materials are discussed in Chapter V, Chapter VI and Chapter VII, respectively.  

Finally, some relevant remarks are made in the last chapter, Chapter VIII. 
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CHAPTER II 

SOLUTION STRATEGY FOR STUDYING ELASTO-VISCO-

PLASTODYNAMICAL RESPONSES OF SINGLE CRYSTALLINE SILICON 

 

2.1 Constitutive Law 

 According to the kinematics of elasto-plastic deformation eligible for 

considering small elastic deformation, the total strain rate of a body undergoing elasto-

plastic deformation can be defined as the summation of the elastic strain rate and the 

plastic strain rate [25, 48] as  

( ) ( )ε ε ε= +� � �e p
ij ij ij         (2-1) 

where ( )e
ijε�  is the elastic strain rate, ( )p

ijε� is the plastic strain rate, and ijε�  is the total strain 

rate which can be expressed alternatively as 

 

1 ( )
2

ε
∂∂

= +
∂ ∂

� ji
ij

j i

vv
x x        (2-2) 

with iv  (or jv ) being the components of the total deformation rate and ix  (or jx ) being 

the components of the Cartesian coordinates. 

Experiments have shown that single crystalline silicon behaves plastically at 

temperatures exceeding 600°C.  As the governing constitutive law is rate dependent, 

plastic flow would become more prominent at even higher temperatures [49], at which 

silicon would behave like a viscoplastic material.  The empirical constitutive law for 

silicon at elevated temperatures as described by the Haasen-Sumino model was derived 



 16

from studying the relation between plastic flow and dislocation density using uniaxial 

tension specimens.  Dislocation density, which is the most important parameter 

dominating plastic deformation, was defined as the length of dislocations per unit 

volume in the crystal silicon.  In the revised model by Tsai [24] that considers three-

dimensional loading, the plastic strain rate can be expressed as a function of the 

deviatoric stress tensor as 

( )ε =� p
ij ijfS         (2-3) 

where ijS  denotes the deviatoric stress tensor, and f is the dislocation density related 

coefficient defined as  

0 2

2

( ) p
m m dbV N J D N

f
J

τ− −
=      (2-4) 

Here mN  is the dislocation density, b is the magnitude of the Burgers vector, 2J  is the 

second invariant of the deviatoric stress tensor, dτ  is the back-stress due to the impurity 

concentration in the crystal, 0V  is the dislocated velocity coefficient  

0
0

0 0

( ) exp( )p
B

B QV
k Tτ

= −                                                                    (2-5) 

and s

d

G bD
β

= , with 0B  being the dislocation mobility, 0τ  a material constant, Q  the 

Peierls potential, 0T  the temperature, Bk  the Boltzmann constant, sG  the shear modulus, 

and dβ a parameter characterizing the interaction between dislocations.  The rate of the 

dislocation density is 
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0 2( ) p
m m mN KV N J D N ξ+= −�                                                             (2-6) 

where K , p  and ξ   are material constants.  Table 2.1 [26] tabulates the numeric values 

along with their units for the various material constants listed in Eqs. (2-4)-(2-6) that are 

used in the investigation.   

 

 

Table 2.1 Material constants in Haasen-Sumino model 

Parameters Values 

b  3.8×10-10m 

0B  4.3×104m/sec 

0τ  107N/m2 

Q  2.17eV 

Bk  8.617×10-5eV/K 

p  1.1 

ξ  1.0 

K  3.1×10-4m/N 

dβ  3.3 
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2.2 Elasto-Viscoplastic Wave Formulation 

 The equation of motion can be derived by applying the principle of conservation 

of linear momentum,  

,ρ σ= +� j ij i jv q         (2-7) 

where ijσ  is the stress tensor, jq is the body force and ρ is the mass density. (Note that 

in this investigation 0jq =  and 2330ρ = kg/m3.)  Thus, its component form can be 

expressed as 

311 11 21

1 2 3

v
t x x x

σσ σρ ∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂        (2-8) 

322 12 22

1 2 3

v
t x x x

σσ σρ ∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂       (2-9) 

3 13 23 33

1 2 3

v
t x x x

σ σ σρ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂       (2-10) 

Typically of 0.5mm in thickness or less, single crystalline silicon wafers can be 

considered as orthotropic with the following constitutive Hooke’s Law 
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σε
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  (2-11) 
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with i jM  being the compliance matrix.  Substituting Eqs. (2-2), (2-3) and (2-11) into 

Eq. (2-1), the following component forms are resulted 

33 11 22 331 11 22
11 12 13 11

1

( )
3

v M M M f
x t t t

σ σ σ σσ σ σ∂ + +∂ ∂ ∂
= + + + −

∂ ∂ ∂ ∂  (2-12) 

33 11 22 332 11 22
21 22 23 22

2

( )
3

v M M M f
x t t t

σ σ σ σσ σ σ∂ + +∂ ∂ ∂
= + + + −

∂ ∂ ∂ ∂  (2-13) 

3 33 11 22 3311 22
31 32 33 33

3

( )
3

v M M M f
x t t t

σ σ σ σσ σ σ∂ ∂ + +∂ ∂
= + + + −

∂ ∂ ∂ ∂  (2-14) 

1 2 12
66 12

2 1

2 2v v M f
x x t

σ σ∂ ∂ ∂
+ = +

∂ ∂ ∂      (2-15) 

3 131
55 13

3 1

2 2vv M f
x x t

σ σ∂ ∂∂
+ = +

∂ ∂ ∂      (2-16) 

3 232
44 23

3 2

2 2vv M f
x x t

σ σ∂ ∂∂
+ = +

∂ ∂ ∂      (2-17) 

With straightforward manipulations, it can be shown that Eqs. (2-8)-(2-17) together 

constitute a first-order hyperbolic equation system having the following matrix form,  

1 2 3t x x x
∂ ∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂
U U U UA B C D E 0

    (2-18) 

where U is the variable vector having three velocity components and six stress 

components as its entries 

{ }1 2 3 11 22 33 23 13 12, , , , , , , , Tv v v σ σ σ σ σ σ=U     (2-19) 

For thin orthotropic silicon sections, the associated matrices A, B, C, D and 

vector E are 
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11 12 13

21 22 23

31 32 33

44

55

66

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2 0
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⎢ ⎥
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A  (2-20) 

 

0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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0 1 0 0 0 0 0 0 0
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⎢ ⎥−⎣ ⎦

B      (2-21) 

 

0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

C     (2-22) 
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0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎣ ⎦

D     (2-23) 

 

11 22 33 11 22 33
11 22

11 22 33
33 23 13 12

[0 0 0 ( ) ( )
3 3

( ) 2 2 2 ]
3

T

f f

f f f f

σ σ σ σ σ σ
σ σ

σ σ σ
σ σ σ σ

+ + + +
= − −

+ +
−

E
(2-24) 

 

Thus considering the kinematics of plastic deformation and the viscoplastic 

constitutive law of single crystalline silicon at elevated temperature, the first-order 

hyperbolic system of equations of stress and velocity is obtained.  In addition to small 

deformation, it is assumed that the total strain rate is the sum of elastic strain rate and 

plastic strain rate, thus defining the kinematics of plastic deformation subject to the 

temperature range considered.   
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2.3 Computational Model 

Due to the complexity of the constitutive law, it is difficult to find closed-form 

solutions to the system of equations that describe elasto-viscoplastic wave motions in 

silicon wafers.  A finite difference scheme is introduced in the following for solving the 

equations numerically to obtain waveforms at selected locations in a 3-D model domain.  

Figure 2.1 shows the configuration of the 3-D model.  The model is a square plate of 

30mm×30mm×0.5mm in dimensions.  Since the influence of wafer thickness on wave 

dispersion is significant, thus necessary to be investigated, the model thickness is 

considered as an important input parameter that needs be specified in all model runs.  A 

point excitation is exerted at the center of the plate model.  Two waveforms are obtained 

as output at the two sampling locations, A and B, that are 5mm and 7mm away from the 

excitation point, respectively.  

In the model shown in Figure 2.1, a point source with a simultaneous temporal-

spatial profile is introduced as the forcing function.  The function is a stress rate term 

having a two-dimensional Gaussian function and an impulse function in time that 
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Figure 2.1 Configuration of 3-D model domain for solving wave equation  
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describes, respectively, the spatial and temporal distributions of the function as 

1 2 1 2( , , ) ( ) ( , )g x x t F t G x x= , with ( )F t  and 1 2( , )G x x  being defined explicitly as follows: 

2

2
( 3 )exp[ ] (0 )

2( )
0 ( )

σ
σ

⎧ −
− ≤ ≤⎪= ⎨

⎪ >⎩

i
m i

i

i

tA t T
F t

t T    (2-25) 

and  

2 2
1 1 2 2

1 2 2
( ) ( )( , ) exp[ ]

2β
− + −

= −
s

x X x XG x x
    (2-26) 

where mA  is the amplitude of the impulse, iT  is the duration of the impulse (which is 20 

nsec for the LISWT configuration reported in [10] and [50]), / 6i iTσ =  is a temporal 

parameter, 1 2( , )X X  is the coordinates of the excitation located on the top surface, 

/ 6s sdβ =  is a spatial parameter that depends on the spot size, sd .  It should be noted 

that, because stress wave generation by laser impulse is a complex, coupled thermal-

mechanical process that is beyond the scope of the dissertation, 

1 2 1 2( , , ) ( ) ( , )g x x t F t G x x=  defined above is employed as an approximation to laser 

excitation.  Figures 2.2 and 2.3 plot the two distribution functions that are incorporated 

into the computational model for the generation of Lamb guided waves in silicon thin 

plates.   
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Figure 2.2 Temporal distribution Gaussian function ( )F t of stress wave input function 
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Figure 2.3 Spatial distribution Gaussian function 1 2( , )G x x  of stress wave input function 



 27

2.3.1 Finite Difference Model 

The staggered-grid finite difference scheme is followed to define the unknown 

variables, stress and velocity components, at each grid point.  Since the unknown 

variables in the governing equations are not defined at the same grid point, but instead 

they are halfway off according to their positions in the equation.  Figure 2.4 shows the 

arrangement of unknown variables in one control volume in the finite difference mesh 

where the three normal stresses are defined at the center and the three shear stresses are 

at the midpoint of each side.  The three velocity components ( 1, 2,3)iv i =  are defined at 

the center of the six sides and aligned with the ix - axis.  With stress components being 

surrounded by velocity components, and vice versa, the scheme is thus called 

“staggered.” 

As a type of orthotropic material, crystalline silicon has three orthogonal planes 

of symmetry.  When the three coordinate axes are aligned with the three planes of 

symmetry, the stress components in the material can be expressed in terms of the strains 

following the Hook’s Law as  
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   (2-27) 
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Figure 2.4 Finite difference model with staggered grids 
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Here ijC  is the stiffness matrix.  Using the arrangement defined in Figure 2.4 and 

assuming a time step, tΔ , along with 3 spatial discretizations, 1xΔ , 2xΔ , 3xΔ , the first-

order hyperbolic equation system in Eq. (2-18) can be discretized into the following 

finite difference equations: 
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The above contains 9 discretized equations, with the superscripts denoting the 

index for time step, the “1/2” index indicating the “staggered” arrangement, and ijξ  

representing the plastic strain rate, ( )p
ijε� , which can be calculated using Eq. (2-3), 

( ) ( ) ( )n n n
ij ijf Sξ = . 

For cubic single crystalline silicon, only three independent elastic constants exit.  

These elastic constants in the stiffness matrix in Eq. (2-27) are found to be temperature-

dependent as follows [50]: 

 



 32

11 5

11 5

11 5

1.6564 10 exp[ 9.4 10 ( 298.15)] (Pa) ( 1,2,3)
0.6394 10 exp[ 9.8 10 ( 298.15)] (Pa) ( )
0.7915 10 exp[ 8.3 10 ( 298.15)] (Pa) ( 4,5,6)

ij

T i j
C T i j

T i j

−

−

−

⎧ × − × − = =
⎪= × − × − ≠⎨
⎪ × − × − = =⎩

(2-35)                                 

Since the elastic constants in Eq. (2-35) and the plastic coefficient f in 

( ) ( ) ( )n n n
ij ijf Sξ =  are all functions of temperature from 23°C up to 1000°C, the stress and 

velocity variables in the discretized equations system are therefore temperature 

dependent.  It should be noted that only wave motions along the [1 0 0] crystal lattice 

direction are acquired from the plate model.  Extraction of thermal information from 

waves propagating along the particular crystal direction is discussed in the section that 

follows.    

 

2.3.2 Boundary Conditions, Temporal and Spatial Discretization  

The boundary conditions of the 3-D finite difference plate model are so defined 

that all four sides of the model are clamped, thus displacements along 

1 0x = , 1x a= , 2 0x =  and 2x a=  are restrained.  Moreover, at time t = 0, all initial 

values of the stress and velocity component are set to be zero.  The explicit time 

integration method is followed for solving the 9 discretized nonlinear equations in Eqs. 

(2-28)-(2-34).  The implicit method is not chosen for its costly overhead and the large 

number of iterations needed for solving the equations.  However, the explicit method 

may become computationally unstable if the integration time step were not properly 

chosen.  A proper time step is determined using the Courant condition to ensure solution 

convergence 
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      (2-36) 

with maxc  being the maximum wave velocity that is equal to the longitudinal wave 

velocity in the silicon material as  max
2

lc c λ μ
ρ
+

= = , where λ  and μ are Lamé 

constants and ρ is the mass density.  The longitudinal wave velocity is approximately 

max 8000c = m/sec in single crystalline silicon.  Spatial discretizations, 1xΔ , 2xΔ  and 

3xΔ , mainly depend on the mesh size.  When element numbers in the 3-D plate domain 

are greater than 100×100×5, results obtained in response to the range of temperature 

considered are seen to show negligible differences.  Thus, no further mesh refinement is 

needed.  With the particular mesh size, the maximum allowed time step according to Eq. 

(2-36) is found to be -81.1 10tΔ ≤ × sec.  A much smaller time step, tΔ = 2nsec, is chosen 

to improve accuracy.  

 

2.4 Summary 

In this chapter, a unified plastic constitutive law, which accurately embodies the 

elasto-viscoplastic characteristics of silicon material at temperatures ranging from 23°C 

to exceeding 1000°C, along with the kinematics of elasto-plastic deformation were 

reviewed.  A system of nine first-order hyperbolic equations applicable to describing 3-

D elasto-viscoplastic wave motion in silicon wafer was developed.   The advantage 

provided by the first-order hyperbolic system was of many folds.  First it rendered 
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possible the incorporation of a complex constitutive law – one which conventional 

displacement or stress formulations cannot handle because elimination of unknowns is 

impossible with the complex constitutive law present.  Secondly, it enabled velocity and 

stress as the dependent variables.  In other words, unlike the conventional formulations 

where displacement was the unknown to be solved for, it provided a straightforward way 

to obtain information on both motion and force simultaneously.  Finally this first-order 

system was readily discretized following the staggered grid method, so that solutions to 

the equation system as numerical waveforms could be obtained.  Using the model it is 

possible to correlate temperature with the group velocity and attenuation of certain 

selected spectral components (thus temperature-dependent dispersion) over the targeted 

range of temperatures.  In addition to understanding temperature influence on wave 

propagation in silicon, the influence of other parameters such as wafer thickness can also 

be studied.  In Chapter III, numerical results will be presented and discussed to establish 

the feasibility of exploiting nanosecond laser induced propagating stress waves to the 

high resolution thermal profiling of silicon wafers undergoing rapid annealing.   
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CHAPTER III 

NANOSECOND LASER INDUCED STRESS WAVE 

THERMOMETRY FOR SILICON PROCESSING 

 

3.1 Waveforms and Gabor Wavelet Transform 

Disturbances propagating in silicon wafer of finite thickness are bound by two 

traction-free surfaces.  Such dynamic modes are called Lamb guided waves, which are 

dispersive with time-varying spectra.  Figure 3.1 shows the Lamb waveforms acquired at 

locations A and B at 200°C (see Figure 2.1) using the 3-D finite difference 

computational model elaborated in Chapter II.  The numerical waveforms agree well 

with the experimental observations made with 4”-diameter silicon wafers subject to 

thermal annealing reported in [10, 12, 51], thus validating the elasto-viscoplastic wave 

model along with the numerical procedures.  The 7μs time window is adequate for 

thermal information to be fully resolved without being confounded by reflections from 

the boundary.  For Lamb waveguide modes, only a finite number of symmetric and anti-

symmetric modes are admissible for any selected frequency.  S0 and A0 modes represent 

the lowest symmetric and anti-symmetric modes, respectively.  It is evident from the 

waveforms that the Lamb guided waves are dispersive and broadband in frequency, 

making it difficult to determine the phase velocities of the different modes.  In the 

followings, the group velocities of selected frequency components are calculated instead 

for the extraction of thermal information.   
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(a) 

 

(b) 

Figure 3.1 (a) Numerical waveforms acquired at sampling points A (5mm) and B (7mm) 

at 200°C in 0.5mm thick wafer; (b) Experimental waveform acquired in 4” wafer of 

0.5mm thickness at a 10mm sampling point [12] 
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An appropriate signal processing tool must be adopted to identify the frequency 

characteristics of the waveforms.  Fourier Transform (FT) has long been a widely used 

tool.  But it cannot be applied to signals whose structure changes with time.  This is due 

to the fact that FT uses a set of sinusoidal functions as the bases and assumes time-

invariant spectral components of the signal.  The transformed result contains only the 

frequency information.  Unlike the Fourier Transform (FT), the Short-Time Fourier 

Transform (STFT) is a typical method used for time-frequency analysis of the dispersive 

waves. However, one of the major disadvantages of the STFT is the fixed time-

frequency resolution [52], because its window function is fixed for all times and 

frequencies.  Wavelet Transform (WT) is considered a preferred alternative signal 

processing tool for dispersive waves [33, 53].  In WT, a scaling parameter controls the 

frequency characteristics of the basis wavelet, and scaled wavelets are translated along 

the time dimension to calculate each wavelet coefficient corresponding to each particular 

time.  The continuous WT is defined as follows: 

1( , ) ( ) ( )f
t bW a b f t dt

aa
ψ

∞

−∞

−
= ∫      (3-1) 

where ( )tψ  is the basic wavelet function, a is the scaling parameter, and b is the shifting 

parameter.  Assume that the basic wavelet function ( )tψ  is centered at 0t =  with a 

width W  and its Fourier Transform ˆ ( )ψ ω  is centered at 0ω ω=  with a width W� .  Then 

( ) /t b aψ −  is centered at t b=  and its Fourier transform ˆexp( ) ( )a ib aω ψ ω−  is centered 

at 0 / aω ω= .  Therefore a particular pair of ( , )b a  in the wavelet transform corresponds 



 38

to an area with a width aW  along the time axis and a width /W a�  along the frequency 

axis.  The area is centered at 0( , / )b aω  on the time-frequency plane [48].   

Gabor Wavelet Transform (GWT) uses the Gabor function as the mother 

wavelet.  Chui proved that according to the uncertainty principle, the Gabor function 

offers the smallest area of time-frequency window than any other function, and has high-

resolution capabilities of both frequency and time [54]. The Gabor function can be 

expressed as a complex sinusoid modulated by a Gaussian function, 

2
20 0

04

( / )1( ) exp
2g t t i t

ω ω γ
ψ ω

γπ
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

    (3-2) 

The Fourier Transform of the Gabor function is 

2^
20

04
0

( / )2( ) exp ( )
2g

ω γπ γψ ω ω ω
ωπ

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
   (3-3) 

From Eq. (2-2), the Gabor function is a sinusoidal function modulated by an exponential 

function.  Since it controls the width of the Gabor function, γ  has an impact on the time-

frequency resolution.  Figures 3.2 and 3.3 show the GWT of the waveforms obtained at 

points A and B at 1000°C, respectively.  It is seen that both waves are broadband up to 

several MHz’s in spectrum, with the most energy carried by the 0-700 kHz components.   
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Figure 3.2 GWT of waveforms obtained at sampling point A at 1000°C (wafer 

thickness: 0.5mm)  
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Figure 3.3 GWT of waveforms obtained at sampling point B at 1000°C (wafer 

thickness: 0.5mm)  
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3.2 Thermal Effect on Group Velocity 

Though both are functions of frequency, phase velocity and group velocity are 

different for dispersive waves such as those seen in Figures 3.1, 3.2 and 3.3.  This 

characteristic has a pronounced effect on the interpretation of the broadband waveforms 

observed in silicon wafers and, thus, the extraction of phase velocity.  In the following a 

viable alternative is followed for the determination of dispersion information.  By using 

GWT, the group velocity of individual frequency component, which is both frequency- 

and temperature-dependent, can be calculated as follows.  Figures 3.4 and 3.5 show the 

top views of the two GWT found in Figures 3.2 and 3.3.  For a particular frequency 

component, the time location corresponding to the maximum GWT magnitude indicates 

the arrival time of the frequency [33].  Designate Ta and Tb seen in Figures 3.4 and 3.5 

as the arrival times of the particular frequency component f (600 kHz in this case) at 

points A and B, respectively.  The travel time for this frequency component to reach 

point B from A is therefore 

( ) ( ) ( )Δ = −b at f T f T f       (3-4) 

The group velocity of component f can then be defined from the time-of-flight 

calculation as follow 

( )
( )

=
Δg

dv f
t f        (3-5) 

where d  is the distance between point A and B, which is 2mm in this investigation. 
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Figure 3.4 Top view of GWT of waveforms obtained at sampling point A at 1000°C 

(wafer thickness: 0.5mm)  
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Figure 3.5 Top view of GWT of waveforms obtained at sampling point B at 1000°C 

(wafer thickness: 0.5mm)  



 44

The GWT results in Figures 3.2 and 3.3 show that frequency components 

between 0-700 kHz are dominant within the time window considered.  In the followings, 

two specific frequency ranges, namely, 0-100 kHz and 400-700kHz, are considered.  It is 

noted that the two ranges of frequency correspond to the low frequency A0 mode and 

high frequency S0 mode, respectively, that are induced in a silicon wafer measured 

0.5mm in thickness.  Figure 3.6 shows the dispersion (group velocity as a function of 

frequency) in response to 5 different temperatures.  It is seen that the group velocity of 

all the spectral components considered increases as frequency increases.  For frequency 

components fall in the 30-to-70 kHz range, the group velocity drops almost linearly with 

the increasing temperature, indicating similar thermal resolution can be achieved using 

any frequency from within the range.  

Figure 3.7 plots the dependency of group velocity on temperature ranging from 

200ºC to 1000ºC for 3 selected frequencies: 30 kHz, 60 kHz and 90 kHz.  All three lines 

in the figure are curve-fitted using third-order polynomials.  The relationship between 

the group velocity and temperature, though nonlinear, is relatively well-defined for the 

two lower frequency components.  Two observations can be made with regards to the 

figure: that it is in excellent agreement with the experimental results in References [10], 

[11] and [12] (which correspond to temperatures up to 600°C) and that the group 

velocity behaves almost linearly with respect to high temperatures that define the elasto-

viscoplastic response of the silicon wafer. 
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Figure 3.6 Group velocities vs. frequency (low frequency components) at five selected 

temperatures (wafer thickness: 0.5mm) 
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Figure 3.7 Group velocities vs. temperature of three selected low frequencies (wafer 

thickness: 0.5mm) 
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As in Figure 3.7, the spatial resolution provided by the 30 kHz and 60 kHz 

components for differentiating temperature variation with a ±1°C resolution is 0.12 m/s 

in group velocity.  Such differentiating resolutions can be readily achieved using the 

established LISWT technique [10-12].  This well defined correlation between group 

velocity and temperature provides a straightforward approach for the extraction of 

desired thermal information.  The group velocity-temperature curve for the 90 kHz 

frequency component is nonlinear, and the spatial and thermal resolution provided by the 

component is 75% less than the other two components for the 200-600ºC temperature 

range.  The 90 kHz component is therefore not preferred as an operating frequency for 

thermal measurement. 

Similarly, Figure 3.8 shows the changes of group velocity with higher frequency 

components at various temperatures.  It is seen that the frequencies between 450 to 650 

kHz provide relatively better thermal resolution. The temperature dependence of group 

velocity for three selected frequency components is plotted in Figure 3.9.  With the 

group velocity decreases by 0.16 m/s per degree Celsius (ºC), the figure shows a better 

thermal resolution than was seen in Figure 3.7.  It is also seen that both spatial and 

thermal resolutions become better with increasing frequency.  However, though 

providing a little better temperature resolution, the high frequency S0 mode is less 

attractive than the low frequency A0 mode [10] for the reasons that the symmetric S0 

mode is more difficult to generate and that it has a much smaller signal-to-noise ratio. 
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Figure 3.8 Group velocities vs. frequency (high frequency components) at five selected 

temperatures (wafer thickness: 0.5mm) 
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Figure 3.9 Group velocities vs. temperature of three selected high frequencies (wafer 

thickness: 0.5mm) 
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3.3 Thermal Effect on Wave Attenuation 

Attenuation of elasto-viscoplastic waves in silicon wafer at annealing 

temperature is mainly caused by the viscous damping and plastic deformation in the 

material.  As energy dissipates, wave amplitudes decrease.  Attenuation in dispersive 

waves can be calculated as follows.  Assume that ( , )a ay x t  and ( , )b by x t  are the two 

waveforms acquired at two different locations in space, and ( )aA f  and ( )bA f  are the 

GWT projection of the two waveforms.  An attenuation factor Q  can be defined as 

follow to quantify the attenuation of a particular frequency component f,  

( )( ) 20 log[ ]
( )

a

b

A fQ f
A f

= − ×
      (3-6)  

The unit of the logarithmic operation Q  is dB.  Obviously Q  is a function of frequency.  

Implicitly, since ( )aA f  and ( )bA f  are functions of locations ax  and bx , respectively, 

Q  is also a function of the distance between the two locations.  Since temperature has an 

immediate impact on plastic constitutive law, wave attenuation is an indicative function 

for temperature variation.   

Frequency- and temperature-dependent wave attenuation can also be exploited to 

establish thermal information.  However, a relevant question to ask is if exploiting 

attenuation would provide the desired ±1°C resolution?   Figure 3.10 shows the changes 

of attenuation factor with low frequency components at various temperatures.  Unlike 

the case with group velocity, the differentiations between the five curves (which 

correspond to the 5 temperatures considered) decrease with increasing frequency,  
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Figure 3.10 Attenuation factor vs. frequency (low frequency components) at five 

selected temperatures (wafer thickness: 0.5mm) 
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Figure 3.11 Attenuation factor vs. temperature of three selected low frequencies (wafer 

thickness: 0.5mm) 
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meaning that thermal resolution becomes worse as frequency increases.  This can be 

observed further in Figure 3.11, where wave attenuation is plotted against temperature 

for three different frequency components.  To differentiate temperature with a ±1°C 

resolution, the required changes in attenuation factor are roughly 3.1×10-4 dB, 1.5×10-4 

dB and 0 dB for the 30 kHz, 60 kHz and 90 kHz components, respectively.  These 

magnitudes are relatively difficult for LISWT to make out.  However, the magnitude of 

the attenuation factor will increase when the distance d between sampling points A and 

B increases.  Further analyses (not shown) indicate that the magnitude could increase as 

much as five times subject to an increase of d from 2 mm to 5 mm.  Since such a spatial 

separation can be readily achieved in a 12”-diameter silicon wafer, it would be feasible 

to achieve the desired ±1°C thermal resolution should the 30 kHz frequency be selected. 

Figure 3.12 shows the changes of attenuation factor with high frequency 

components in response to the same temperature range.  All attenuation factors are seen 

to increase with increasing frequency, which is opposite to what was observed for the 

low frequency components in Figure 3.10.  As seen in Figure 3.13, the magnitudes of 

these factors vary negligibly in the temperature range considered.  It therefore can be 

concluded that the attenuation of frequency components that are in the range of 400-700 

kHz is not a feasible temperature indicator. 
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Figure 3.12 Attenuation factor vs. frequency (high frequency components) at five 

selected temperatures (wafer thickness: 0.5mm) 



 55

 

 

 

 

 

Figure 3.13 Attenuation factor vs. temperature of three selected high frequencies (wafer 

thickness: 0.5mm) 
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3.4 Thermal and Geometric Effects on Wave Dispersion 

The group velocities for three selected high frequency components and low 

frequency components are plotted against wafer thickness in Figures 3.14 and 3.15 at 

600˚C processing temperature.  The propagation path between sampling points A and B 

are set to be d=5mm.  At the particular temperature, the dispersion curves of the three 

selected high frequency components in Figure 3.14 are all highly nonlinear with respect 

to thickness.  The nonlinearity is seen to be significantly more prominent for thin wafers 

-- a typical property of the Lamb guided mode.  As thickness increases to exceeding 

0.5mm, the dispersions become well-behaved with increasing group velocity for all three 

components.  Such an observation is also made with the three selected low frequency 

components in Figure 3.15, in which the group velocity associated with each component 

is seen to be increasing nonlinearly as the thickness is stepped up linearly from 0.5mm to 

0.7mm.  The impact of thickness on dispersion is evidently non-negligible.  Further 

calculation shows that for any thermometry considered viable for discerning thickness 

changes as small as 0.1mm using high frequency components, it must be able to 

differentiate group velocity changes up to several hundreds meters per second.  With the 

FTI (fiber-tip interferometer) broadband sensing configuration [10], LISWT meets the 

demanding requirement for spatial resolution.  Given the non-negligible effect of wafer 

thickness on wave dispersion, wafer thickness needs be calibrated before thermal 

profiling is performed.  
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Figure 3.14 Group velocities vs. wafer thickness at 600˚C wafer temperature for three 

selected high frequencies 
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Figure 3.15 Group velocities vs. wafer thickness at 600˚C wafer temperature for three 

selected low frequencies  
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From the results presented it can be concluded that temperature and wafer 

thickness both have a significant effect on wave dispersion.  The impact of thermal 

variations is nonlinear.  The nonlinearity becomes prominent at higher temperatures for 

high frequency components.  And both the high and low frequencies considered for the 

study were relatively insensitive to the variations of attenuation factor subject to thermal 

increment.  For every degree Celsius change of temperature, the corresponding change 

in attenuation factor is of the order of 10-4dB or less using the low frequency 

components.  However, attenuation factor can possibly be used as a thermal indicator if 

the propagation path between sampling points is properly set to allow for significant 

attenuation to be detected.  The effect of thickness on dispersion is much more 

significant.  Using the high frequency components, for every 0.1mm change in 

thickness, the orders of changes in group velocity are readily discernible by LISWT.  

The current LISWT setup is able to achieve such a spatial resolution through exploring 

wave attenuation and dispersion without the need for further enhancement. 

 

3.5 Summary 

The numerical results presented in the chapter were generated using the model 

formulated in Chapter II.  The waveforms obtained at the two sampling points showed a 

good agreement with physical data reported in [11, 12].  The method for extracting 

thermal information, including the Gabor wavelet transform (GWT) and its application 

to calculate the frequency- and temperature-dependent group velocities and wave 

attenuations, was demonstrated.  
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The results showed that the group velocities for both of the frequency ranges, 30 

kHz~70 kHz and 450 kHz~650 kHz, are both nonlinear functions of temperature and 

wafer thickness, and theoretically good enough to be used to achieve the temperature 

resolution of ±1°C.  It showed that the low frequency A0 mode is easier to be generated 

and more accurate.  The 30 kHz~70 kHz frequency region was thus recommended.  The 

well defined correlation between group velocity and temperature provides a 

straightforward extraction of the desired thermal information for the temperature range 

considered.  Also, once silicon wafer started behaving elasto-viscoplastically, the 

nonlinearity was more prominent at higher temperatures for high frequencies.  Unlike 

the group velocity, the wave attenuation factor was found feasible only for achieving the 

desired temperature resolution in a relatively narrow frequency range around 30 kHz, 

which also requires an adequate distance between the two sampling points.  For spectral 

components within the high frequency S0 mode, the associated attenuation factors were 

too minuscule to be considered viable temperature indicators. 
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CHAPTER IV 

FEMTOSECOND LASER INDUCED TRANSPORT DYNAMICS IN 

SEMICONDUCTORS 

 

4.1 Relaxation-Time Approximation of Boltzmann Equation 

The Boltzmann equation describes the time evolution of the distribution function 

( , , )f x p tG G  of particles in a phase-space volume dxdpG G , where xG  and pG  are position and 

momentum, respectively.  The number of particles in the volume is thus ( , , )f x p t dx dpG G G G .  

Since collisions between particles do occur, the particle density in the phase-space 

volume, dxdpG G , varies, i.e. 

( , , ) ( , , )

( , , )

coll

pf x dt p Fdt t dt dxdp f x p t dxdp
m

f x p t dxdpdt
t

+ + + −

∂
=

∂

G GG G G G G G G G

G G G G
   (4-1) 

where m  is the mass of the particles and F
G

 is the external force field acting on the 

particles.  Dividing Eq. (4-1) by dxdpdtG G  and taking the limit, the initial Boltzmann 

equation can be obtained as [55] 

coll

f f p f fF
t x m p t

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂

G G
i iG G       (4-2)  

With the relaxation-time approximation, the Boltzmann equation for carriers (electrons 

and holes) has the following form [56] 

0( )c
f ff ff v q E

t p τ
−∂ ∂

+∇ + =
∂ ∂

GGi iG
     (4-3) 
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where cq  equals to charge q , τ  is the relaxation time, E
G

 denotes electric field, and 0f  

is the equilibrium distribution function.  For steady-state scenarios, the temporal 

variation of the distribution function is negligible compared with the spatial variation 

and the deviation from the equilibrium distribution function 0f  is small.  Thus 0f
t

∂
≈

∂
 

and 0f f∇ ≈∇  can be assumed.  Using the velocity vector Ev
p

∂
=
∂

G
G  where E  is the energy 

of the carrier, one has 

 0 0 0f f ff dE v
p p E dp E

∂ ∂ ∂∂
≈ = =

∂ ∂ ∂ ∂
G

G G G
      (4-4)

 

Substituting Eq. (4-4) and above relations into Eq. (4-3), the relaxation time 

approximation of the Boltzmann equation for carriers can be rewritten as 

 0 0
0( )c

f f ff q E v
E τ
∂ −

∇ + =
∂

G Gi
      (4-5)

 

The corresponding Fermi-Dirac distribution function, shown in Eq. (4-6) [57], is 

a classical microscopic distribution function for the carriers in semiconductors   

 
0

1
exp( ) 1c

f
η

=
+        (4-6) 

The reduced Fermi level cη  and its corresponding forms for electrons and holes are 

given by 

 c
c

B e

E
k T
ψη −

=         (4-7) 

 e c
e

B e

E
k T

ψη −
=         (4-8) 
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 v h
h

B e

E
k T

ψη −
=         (4-9) 

where cψ  is the Fermi level, eT  is the electron temperature, cE and vE are the energies 

of the conduction- and valence-band, respectively, and Bk  is the Boltzmann constant. 

From Eq. (4-7), we have 

 0 0 0 1c

c c B e

f df df
E d E d k T

η
η η

∂ ∂
= =

∂ ∂       (4-10) 

 0 0
0 c B e c

c

df ff k T
d E

η η
η

∂
∇ = ∇ = ∇

∂      (4-11) 

 
2

2

1

c c
c e

B e B e

c
c e

B e B e

E E T
k T k T

E T
k T k T

ψ ψη

ψψ

∇ −∇ −
∇ = − ∇

−
= − ∇ − ∇      (4-12) 

Combining Eqs. (4-11) and (4-12), 

0
0 ( )c

c e
e

f Ef T
E T

ψψ∂ −
∇ = − ∇ + ∇

∂      (4-13)
 

and substituting Eq. (4-13) into Eq. (4-5), we have 

 0 0[ ]c
c e c

e

f E f fT q E v
E T

ψψ
τ

∂ − −
−∇ − ∇ + =

∂

G Gi
    (4-14) 

Since there is no external electric field, i.e.  0E =
G

, considered in this investigation, Eq. 

(4-14) can be expressed as 

 0
0 [ ]c

c e
e

f Ef f T v
E T

ψψ τ∂ −
= − −∇ − ∇

∂
Gi      (4-15) 
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 It should be noted that the distribution function, Eq. (4-15), is a microscopic 

description.  To generalize the microscopic description to be applicable to description at 

the macroscopic scale so that the distribution function can be properly integrated and the 

macroscopic electrical current flow (of carriers) can be obtained, certain assumptions 

need be made [57-58]:  

(1) The size of the volumetric domain within macroscopic transport phenomena is to be 

considered is large enough so that the statistical fluctuations of the dominant 

variables in the volume can be neglected.   

(2) The material is spatially homogeneous, thus the actual local distribution functions 

are not far off from the local equilibrium distribution functions.  The local electron 

temperature and local Fermi levels of carriers can be defined in a small but 

macroscopic volume.   

(3) The particles of this volume are considered to be independent in the sense of the 

statistical and quantum mechanics, so that the overall distribution function of the 

volume can be expressed as a product of single particle distribution functions.  The 

particles do not have to be bare particles, but may be quasi-particles whose total 

energy may include a self-energy component related to the interaction between bare 

particles in this volume.  Thus, the energy of carriers which includes a band-gap 

component can vary with the carrier density and lattice temperature.   

Based on the assumptions, the distribution function in Eq. (4-15) can be integrated 

over the entire control volume.  The macroscopic electrical current which flows in and 

out of the volume can then be determined.  
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4.1.1 Macroscopic Electrical Current of the Carriers 

 The macroscopic electrical current of carriers is derived in a typical spherical 

coordinates system, shown in Figure 4.1.  The electrons are located within an 

infinitesimal volume in the immediate proximity of the origin of the spherical 

coordinates with a distribution function f defined in Eq. (4-15).  Therefore, the number 

of electrons with an energy between E  and E dE+  is ( )fg E dE , with ( )g E being the 

density-of-states function [56] 

 
3/2

1/2
2 2

1 2( )
2

mg E E
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠=

      (4-16) 

Since there is no electric field, these electrons are considered to have the same 

probability of moving toward any ( , )θ φ  direction in the spherical coordinates.  The 

surface area of the sphere is 24 rπ .  The probability for an electron moving through a 

finite area 2 sind r d dθ θ φΩ =  is hence 2

sin
4 4
d d d

r
θ θ φ

π π
Ω

= .  For simplicity, the three 

electrical current components ( , , )x y zj j j  are individually considered.  As zj  is the 

electrons-generated electrical current along the Z-axis, the charge flux in the Z-direction 

produced by a charge moving through dΩ  is cosqv θ , and the total electrical current 

produced by all electrons moving toward the entire sphere surrounding the infinitesimal 

volume can be determined as 
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Figure 4.1 Electrical current in spherical coordinates 
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0
2

0 0 0

sin ( )( cos )
4

1 sin cos ( )
4

Z
S E

E

d dj fg E qv dE

d d fg E qvdE
π π

φ θ

θ θ φ θ
π

φ θ θ θ
π

∞

=

∞

= = =

=

=

∫∫ ∫

∫ ∫ ∫    (4-17)
 

In the Z direction, the distribution function, Eq. (4-15), can be rewritten as 

0
0 [ ] cosc c e

e

f d E dTf f v
E dZ T dZ

ψ ψ τ θ∂ −
= − − −

∂
    (4-18) 

Substitute Eq. (4-18) into Eq. (4-17), the electrical current can be obtained as 

2

0
0 0 0

2
2 20

0 0 0

1 sin cos ( )
4

1 sin cos ( ) ( )
4

Z c
E

c c e
c

eE

j d d f g E q vdE

f d E dTd d g E q v dE
E dZ T dZ

π π

φ θ

π π

φ θ

φ θ θ θ
π

ψ ψφ θ θ θ τ
π

∞

= = =

∞

= = =

=

∂ −
+ +

∂

∫ ∫ ∫

∫ ∫ ∫
(4-19) 

Since the first term on the right hand side is zero, the second term yields 

20

0

( )( )
3Z

c c c e

eE

q f d E dTj g E v dE
E dZ T dZ

ψ ψ τ
∞

=

∂ −
= +

∂∫    (4-20) 

Because 2
2
1 mvE = , replacing 2v  in the above equation one has 

0

0

2 ( )( )
3Z

c c c e

eE

q f d E dTj g E EdE
m E dZ T dZ

ψ ψ τ
∞

=

∂ −
= +

∂∫    (4-21) 

Consequently, one can obtain the electrical current equation as follows 

11 12
1( ) ( )

Z

c e

c

d dTj L L
q dZ dZ

ψ
= +       (4-22) 

where 

 
2

0
11

0

2 ( )
3

c

E

q fL g E EdE
m E

τ
∞

=

∂
=

∂∫       (4-23) 
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0
12

0

2 ( )( )
3

c
c

e E

q fL g E E EdE
mT E

ψ τ
∞

=

∂
= −

∂∫     (4-24) 

 Introducing electron conductivity cσ and Seebeck coefficient cQ , 

2
0

11
0

2 ( )
3

c
c

E

q fL g E EdE
m E

σ τ
∞

=

∂
= =

∂∫      (4-25) 

0

012

11 0

0

20

0

0

0

( )( )
1

( )

( )
1

( )

c
E

c
c e

E

E
c

c e

E

f g E E EdE
ELQ

L q T f g E EdE
E

f g E E dE
E

q T f g E EdE
E

ψ τ

τ

τ
ψ

τ

∞

=
∞

=

∞

=
∞

=

∂
−

∂
= − = −

∂
∂

⎛ ⎞∂
⎜ ⎟∂⎜ ⎟= − −
⎜ ⎟∂
⎜ ⎟

∂⎝ ⎠

∫

∫

∫

∫

   (4-26) 

As a result, the electrical current equation in the Z direction is 

1( ) ( )
Z

c e
c c c

c

d dTj Q
q dZ dZ

ψσ σ= −      (4-27) 

Combining all three current components, the final form of the electrical current of the 

carriers is expressed as 

c
c c c c e

c

j Q T
q
σ ψ σ= ∇ − ∇       (4-28)  

which is the same formula given in References [40] and [41].  

 In the case of ultrafast laser irradiation, both electrons and holes move together in 

the absence of external electric field.  However, due to the difference in the mobility of 

electron and hole, the Dember field, dE , has to be included in Eq. (4-28) for both the 

electron and hole currents.  Therefore, Eq. (4-28) becomes 



 69

e
e e e e e e dj Q T E

q
σ

ψ σ σ= ∇ − ∇ +      (4-29) 

h
h h h h e h dj Q T E

q
σ

ψ σ σ= ∇ − ∇ +      (4-30) 

Because the two currents are approximately equal in magnitude and opposite in sign, i.e. 

e hj j= − , the particle current for the electron and hole pairs is found from Eqs. (4-29) 

and (4-30) to be 

 2

1 [ ( ) ( ) ]e h e h
h e e h e

e h

j j
J q Q Q T

q q q
σ σ

ψ ψ
σ σ

= − = = ∇ − + + ∇
+

  (4-31) 

According to the equality of electron and hole densities, e hn n n= = , the definition of 

local carrier density is [59] 

 3/2
1/222( ) ( )

2
B e

c c
mk Tn F η
π

=
=

      (4-32) 

where iF  is the Fermi-Dirac integral of order i , defined as follow 

0

1( )
( 1) exp( ) 1

i

i c
c

EF dE
i E

η
η

∞

=
Γ + − +∫      (4-33) 

Moreover, the relaxation time depends on the energy, and we can assume 
rE0ττ =          (4-34) 

where τ0  is a constant independent of E, and r = 0.5 in this investigation [40].  Substitute 

Eqs. (4-8), (4-9), (4-16), (4-25), (4-26), (4-32)-(4-34) into Eq. (4-31), one has 
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11/2 1/2

1/2 1/2

1 1
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1/2 1/2

1/2 1/2

( ) ( ){ [ ]
( ) ( )

( ) ( )2[ ]
( ) ( ) 3{ } }( ) ( ) 2[ ]

( ) ( )

e h
g

B e e h

e h

e h
e

e he

e h

F FnJ D n E
k T F F
F F
F Fn TF FT

F F

η η
η η

η η
η η
η η
η η

−

− −

− −

= − ∇ + + ∇

+
+ − ∇

+

   (4-35) 

where g c vE E E= − is the band gap energy and coefficient D  is defined as 

1/2 1/2

1/2 1/2

( ) ( ) ( )1 [ ]
( ) ( )

B e e h e h

e h e h

k T F FD
q F F

σ σ η η
σ σ η η− −

= +
+     (4-36) 

For a highly non-degenerate carrier distribution, the Fermi level ( )e hψ ψ  is 

considerably lower than cE (higher than vE ), the reduced Fermi level ( )e hη η is, 

therefore, large and negative.  The ratio of the Fermi-Dirac integral, ( ) / ( )j c i cF Fη η , 

approaches 1 for all i  and j [40].  Thus, D  approaches 0D , which is the ambipolar 

diffusivity, and Eq. (4-35) can be simplified further as 

0 ( )
2 2g e

B e e

n nJ D n E T
k T T

= − ∇ + ∇ + ∇     (4-37) 

 

4.1.2 Macroscopic Energy Current of the Carriers 

 The derivation of macroscopic energy current of carriers basically follows a 

similar procedure as deriving the electrical current.  The energy flux in the Z direction 

produced by a charge moving through dΩ  is cosEv θ , thus the total energy current 

produced by all electrons moving toward the entire sphere surrounding the infinitesimal 

volume can be determined as 
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0
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4
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S E

E

d dw fg E Ev dE

d d fg E EvdE
π π

φ θ

θ θ φ θ
π

φ θ θ θ
π

∞

=

∞

= = =

=

=

∫∫ ∫

∫ ∫ ∫    (4-38)
 

In the Z direction, substituting the distribution function in Eq. (4-18), Eq. (4-38) 

becomes 

2

0
0 0 0

2
2 20

0 0 0

1 sin cos ( )
4

1 sin cos ( ) ( )
4

Z
E

c c e

eE

w d d f g E EvdE

f d E dTd d g E E v dE
E dZ T dZ

π π
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π π
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φ θ θ θ
π

ψ ψφ θ θ θ τ
π

∞

= = =

∞

= = =

=

∂ −
+ +

∂

∫ ∫ ∫
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(4-39)  

Drop the first term which equals zero, the second term yields 

20

0

1 ( ) ( )
3Z

c c e

eE

f d E dTw g E E v dE
E dZ T dZ

ψ ψ τ
∞

=

∂ −
= +

∂∫    (4-40) 

Again substitute 2v  with 2 /E m  in the above equation 
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3Z

c c e

eE

f d E dTw g E E dE
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ψ ψ τ
∞

=
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∂∫    (4-41) 

Thus, 
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 (4-42) 
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It is seen that the macroscopic energy current equation is a function of the 

electrical current cj .  The equation can be rewritten in the following form 

21 22
1( ) ( )

Z

c e c z

c c

d dT jw L L
q dZ dZ q

ψ ψ
= + +      (4-43) 

where 

 0
21 12

0

2 ( ) ( )
3

c
c e

E

q fL g E E E dE L T
m E

τ ψ
∞

=

∂
= − =

∂∫     (4-44) 

20
22

0

2 ( )( )
3 c

e E

fL g E E EdE
mT E

ψ τ
∞

=

∂
= −

∂∫     (4-45) 

From Eq. (4-22) 

12

11 11

1 ( )Zc e

c

jd dTL
q dZ L L dZ

ψ
= −       (4-46) 

Substitute into Eq. (4-43), we have 

21 21 12
22

11 11

( )( )
Z

c z e
z

c

j dTL L Lw j L
L q L dZ

ψ
= + + −     (4-47) 

Introducing the Peltier coefficient, cπ , and thermal conductivity cκ  

12 21

11 11

( )c e c e
L LT Q T
L L

π = = − = −       (4-48) 

2
2 2 0 121 12

22 2 2
11 0

6 ( ) ( ) 4 ( )[ ]
( )

e c c c
c B c

c

T F F FL LL k
L q F

η η ηκ σ
η

−
= − =   (4-49) 

Thus, the energy current in the Z direction can be expressed as 

( ) ( )
Z

c e
c z c

c

dTw j
q dZ
ψπ κ= − − +       (4-50)
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Combining all three energy current components, the final form of the energy 

current that flows into the control volume is therefore 

( )c
c c c c e

c

w j T
q
ψ

π κ= − − ∇       (4-51) 

which is the same equation found in Reference [41].  Therefore, the total energy current 

is equal to the summation of the energy currents of the electrons and holes.  Combining 

Eqs. (4-8), (4-9), (4-16), (4-25), (4-26), (4-32)-(4-34), (4-48), (4-49) and (4-51), the total 

energy current can be determined as follow 

 ( 4 ) ( )e h g B e e h eW w w E k T J Tκ κ= + = + − + ∇     (4-52) 

 

4.2 Carrier Number Balance Equation and Laser Model 

The balance equation for the laser generated electron-hole pairs is 

n J G R
t

∂
+∇ ⋅ = −

∂
       (4-53) 

where G  indicates the pair generation rate and R  is the pair recombination rate.  The 

recombination rate has taken into account the Auger recombination and impact 

ionization,  

3
iR n nγ θ= −         (4-54) 

where γ  is the Auger recombination coefficient and iθ is the impact ionization 

coefficient.   

The generation rate is obtained from the one-photon and two-photon absorption 

as 
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2( , , ) ( , , )
2

I z r t I z r tG
hv hv

α β
= +       (4-55) 

with I  being the laser intensity, hv  the photon energy, α  and β  the one-photon and 

two-photon absorption coefficients, respectively.  Substitute Eqs. (4-54) and (4-55) into 

(4-53) 

2
3( , , ) ( , , ) ( )

2 i
n I z r t I z r t n n J
t hv hv

α β γ θ∂
= + − − −∇ ⋅

∂
   (4-56) 

Assume that the ultrafast laser beam is Gaussian in both time and space, then the laser 

intensity on the irradiated top surface of the silicon wafer is formulated as 

2 2[ ( / ) 4 log(2)(( 3 )/ ) ]
0

4 log(2) (1 )( , ) s p pr r t t t

p

I r t e
tπ

− − −− Γ Φ
=    (4-57) 

where pt is the laser pulse duration, Γ is the reflectivity, Φ is the laser fluence, and sr is 

the spot size. 

The attenuation of the laser beam along the depth of the wafer is given as 

2/I z I I nIα β∂ ∂ = − − −Θ  by the Beer-Lambert law, with Θ  being the area of the free-

carrier absorption.  By integrating this equation, the laser intensity I  in Eq. (4-57) can 

be determined as 

( )
0

1 ( )
0

( )
( , , )

( ) [1 ]

n z

n z

n I e
I z r t

n I e

α

α

α
α β

− +Θ

− +Θ

+ Θ
=

+ Θ + −
    (4-58) 

The time evolution and spatial distribution of the laser intensity are given in Figures 4.2 

and 4.3, respectively.
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Figure 4.2 Time evolution of laser intensity on top surface of silicon 
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Figure 4.3 Spatial distribution of laser intensity along thickness direction of silicon 
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4.3 Carrier Energy Balance Equation 

The total energy balance equation of the carrier is expressed as 

U U
U W S L
t

∂
+∇ ⋅ = −

∂
      (4-59) 

where 3/2 1/2 3/2 1/2(3 / 2) [ ( ) / ( ) ( ) / ( )] 3g B e e e h h g B eU nE nk T F F F F nE nk Tη η η η= + + = +  is 

the total energy of the electron-hole pairs that equals to the summation of the kinetic 

energy and band-gap energy per unit volume.  2( )US n I Iα β= + Θ +  is the source term 

and ( ) /U e h e l eL C T T τ−= −  defines the loss term due to the energy exchange from 

carriers to lattice.  Note that 3e h BC nk− =  is the specific heat of carriers, lT  is the lattice 

temperature, and eτ  is the thermal relaxation time between the carriers and lattice.  Eq. 

(4-59) can then be rewritten as 
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e e h
e h e l
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g B e
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E ETn nE k T n
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α β
τ
−

−

∂
= + Θ + −∇ ⋅ − −

∂
∂ ∂∂∂ ∂

− + − +
∂ ∂ ∂ ∂ ∂

  (4-60) 

 

4.4 Summary 

The transport dynamics in silicon was presented based on the relaxation-time 

approximation of the Boltzmann equation.  The governing equations, including the 

macroscopic electrical current equation (Eq. 4-37), macroscopic energy current equation 

(Eq. 4-52), balance equation of carrier number (Eq. 4-56), and balance equation of 

carrier energy (Eq. 4-60), are summarized as follows 
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 ( 4 ) ( )e h g B e e h eW w w E k T J Tκ κ= + = + − + ∇    (4-52) 
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  (4-60) 

The details as to how the governing equations were derived from the relaxation-

time approximation of the Boltzmann equation were given.  The key assumptions 

associated with generalizing the microscopic description to macroscopic description 

were also reviewed.  Temperature-dependent multi-phonons, free-carrier absorptions, 

and the recombination and impact ionization processes were considered in the 

formulation.  These equations constituted the fundamentals of femtosecond laser induced 

transport dynamics in semiconductor materials.  The balance equation of lattice energy 

and equations of motion applicable to describing diffusion-type, parabolic thermo-

elastodynamics, hyperbolic thermo-elastodynamics, and hyperbolic thermo-elasto-

plastodynamics for silicon materials are meticulously treated in Chapters V, VI and VII, 

respectively. 
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CHAPTER V 

PARABOLIC THERMO-ELASTODYNAMICS FOR SILICON MATERIALS 

SUBJECTED TO ULTRAFAST LASER HEATING 

 

5.1 Classical Thermoelasticity 

The thermoelastic theory formulated by M. C. Biot [60] describes the behavior of 

elastic bodies under the influence of nonuniform temperature fields.  The constitutive 

equations, i.e. the equations characterizing the particular material, are temperature 

dependent and include a relation connecting the heat flux in the body with the local 

temperature gradient.  The relation is known as the Fourier’s Law in its simplest form, 

which determines the temperature distribution in the body [61].  In the absence of body 

force and heat source, the classical thermoelasticity comprises coupled equations of 

energy and motion [62] 

2(3 2 )vc T T Tρ λ μ α κ′+ + ∇ = ∇U� �      (5-1) 

2 ( ) (3 2 ) Tμ λ μ λ μ α ρ′∇ + + ∇∇⋅ − + ∇ =U U U��    (5-2) 

where U represents the displacement fields,  T  is the temperature field, 0T  is the 

ambient temperature, κ  is the lattice thermal conductivity, vc  denotes the specific heat, 

λ  and μ  are the Lamé constants, α′ is the thermal expansion coefficient, and the 

overdot “.” denotes the derivative with respect to time.   

With the introduction of the strain-rate term, it is seen from Eqs. (5-1) and (5-2) 

that the heat conduction equation is one of parabolic type, called the diffusion equation. 
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This theory predicts that if an elastic continuum is subjected to a thermal disturbance, the 

effect of the disturbance will be felt instantaneously at distances infinitely far away from 

the source [63]. 

 

5.2 Lattice Energy Balance Equation and Equations of Motion 

According to Eq. (5-1), the energy balance equation of the lattice has the 

following expression 

( )l
l l l U M

T
C T L L

t
κ

∂
= ∇ ⋅ ∇ + −

∂
     (5-3) 

where lT  is the lattice temperature field, lκ  is the lattice thermal conductivity, and lC  is 

the lattice specific heat.  ( ) /U e h e l eL C T T τ−= − , defined in Eq. (4-59), is the energy 

transfer from the carriers to lattices.  To account for thermomechanical responses, the 

two-step laser heating models found in Refs. [40-41] needs be extended to consider the 

coupling of thermal and mechanical fields.  Since the energy transferred into the lattices 

induces steep thermal gradients, which then in turn initiate propagating stress waves, an 

energy term, ML , is included into the lattice energy balance equation 

(3 2 )M l kkL Tλ μ α ε′= + �        (5-4) 

Since silicon wafer is of a thin disk, thus it is intuitive to establish the governing 

equations in the cylindrical coordinates.  This is further explained in the section on 

Geometric Model.  In cylindrical coordinates the volumetric strain is kk zz rr θθε ε ε ε= + + .  

Thus Eq. (5-3) becomes 



 81

( ) ( ) (3 2 )l e h
l l l e l l kk

e

T C
C T T T T

t
κ λ μ α ε

τ
−∂ ′= ∇ ⋅ ∇ + − − +

∂
�   (5-5) 

The corresponding equations of motion are therefore 

, ,
rr

rr r rz zu
r

θθσ σ
ρ σ σ

−
= + +��       (5-6) 

, ,
rz

rz r zz zw
r
σ

ρ σ σ= + +��       (5-7) 

where u and w are the displacement variables in the thickness and radial directions, 

respectively, and the three normal stresses, ( , , )ii i r zσ θ= , and  the shear stress, rzσ , are 

defined as 

2 (3 2 ) ( ) ( , , )ii ii kk l oT T i z rσ με λε λ μ α θ′= + − + − =   (5-8) 

2rz rzσ με=         (5-9) 

Thus, the equations of motion are of the same forms as those of classical 

thermoelasticity in Eq. (5-2).  Lattice deformation of the silicon material can be elastic 

or plastic depending on the lattice and ambient temperatures [24].  At low ambient 

temperature, the absolute lattice temperatures induced by ultrafast laser pulse of the 

order of subpicoseconds or femtoseconds are effectively low in magnitude.  Thus, elastic 

deformations are assumed for the lattices.  The strain-displacement relations in the 

cylindrical coordinates are 

rr
u
r

ε ∂
=
∂

        (5-10) 

zz
w
z

ε ∂
=
∂

        (5-11) 
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u
rθθε =         (5-12) 

1 ( )
2rz

u w
z r

ε ∂ ∂
= +

∂ ∂
       (5-13) 

All of the governing equations for describing classical thermo-elastodynamics in silicon 

materials have been introduced.  They include the macroscopic electrical current 

equation (Eq. 4-37), macroscopic energy current equation (Eq. 4-52), balance equation 

of carrier number (Eq. 4-56), balance equation of carrier energy (Eq. 4-60), balance 

equation of lattice energy (Eq. 5-5) and equations of motion (Eqs. 5-6 and 5-7). 

 

5.3 Computational Model 

5.3.1 Geometric Model 

An axisymmetric model is developed for establishing the mechanisms governing 

the coupled thermal-mechanical behaviors in silicon subject to the exertion of 

femtosecond laser pulses along the thickness and radial directions.  Since the heat 

affected zone and the thermal waves are not expected to go beyond a finite domain of 

20μm in thickness and 20μm in radius in the first 10nsec, the axisymmetric thin section 

defined in the cylindrical coordinates and shown in Figure 5.1 is employed as the micro-

scale geometric model for the present study.  Assume axisymmetry for the volumetric 

laser heat source.  Given the small wafer thickness and the brief time window within 

which laser heating is considered, the anisotropy of the single crystalline silicon material 

is also neglected.  Thus the governing equations have no θ-dependent terms, and the 

model is fully defined by the 20μm×20μm micron-scale section as seen in Figure 5.1.   
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Figure 5.1  Axisymmetric model in cylindrical coordinates 
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The followings summarize all the relevant governing equations, Eqs. (4-37), (4-

52), (4-56), (4-60) and (5-5), in the cylindrical corrdinates 

0[ ( ) ]
2 2

g gl e
r

B e l e

E ET Tn n n nJ D
r k T T r n r T r

∂ ∂∂ ∂∂ ∂
= − + + +

∂ ∂ ∂ ∂ ∂ ∂
  (5-14) 
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∂ ∂ ∂ ∂ ∂ ∂
  (5-15) 
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 (5-20) 

Eqs. (5-14) – (5-20) together with the equations of motion found in Eqs. (5-6) – (5-13) 

constitute the computational model governing the thermo-elastodynamical behaviors of 

silicon wafer in response to femtosecond laser heating.  There are 17 partial differential 

equations in the system, with Eq. 5-6 containing three components.  Due to the 
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complexity of the equation system, it is difficult, if impossible, to obtain analytical 

solutions.  Hence a numerical scheme has to be established.  

 

5.3.2 Multi-Time Scale Time Integration Scheme 

The interactions of materials with ultrafast laser pulses are typically 

characterized by motions on many time scales [64].  In the 10-15~10-13sec pulse duration, 

for example, there is a fast time scale arising from the internal motion of the molecules 

and the heat transfer between electrons and photons (lattice).  However, the time scale 

on which stress wave propagation is observed as one of the induced physical phenomena 

is several orders of magnitude greater at the nanoseconds range.  To generate the time 

history of ultrafast laser heating in silicon, the time step used for numerical integration 

must stay below the shortest time scale present.  Such a requirement necessarily takes a 

huge computational overhead to meet.  An effective alternative to the Euler algorithm 

that is commonly utilized in multi-time scale problems [65, 66], the modified velocity-

Verlet algorithm [67] is employed, 

21( ) ( ) ( ) ( ) ( )
2

a t t a t ta t t a t+ Δ = + Δ + Δ� ��      (5-21) 

( ) ( ) ( )ia t t a t ta tλ+ Δ = + Δ�� � ��       (5-22) 

( ) ( ( ), ( ))a t t a a t t a t t+ Δ = + Δ + Δ��� �� �      (5-23) 

1( ) ( ) ( ( ) ( ))
2

a t t a t t a t a t t+ Δ = + Δ + + Δ� � �� ��     (5-24) 

with a  being an arbitrary variable (such as the displacements in this study), 1 / 2iλ = , a��  

a predicted velocity in the integration process, and a�  and a��  the velocity and 
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acceleration, respectively.  Employment of the algorithm in Eqs. (5-21)-(5-24) allows for 

a gradually increasing time step that inflicts no unwanted numerical oscillations for 

integration time windows as wide as hundreds of picoseconds.  It should be noted that 

the specific window width rendered by the algorithm is long enough for electrons and 

lattice to reach thermal equilibrium subject to a laser fluence, Φ , that is 0.15J/cm2 or 

lower.   

Figure 5.2 shows the time evolutions of both the electrons and lattice subject to 

the excitation of a 500fs laser pulse that is low in fluence and small in irradiated spot 

size.  It is seen that the electrons and lattice reach a state of identical temperature early 

on at the first few picoseconds after laser irradiation.  The particular state remains its 

constancy throughout the time window considered.  Such a thermal equilibrium is 

observed for all fluence input considered in the course of the investigation.  At the 

equilibrium state where e lT T= , the source term dictating the diffusion of lattice heat, 

( ) /e h e l eC T T τ− −  in Eq. (5-20), becomes negligible.  Consequently, Eq. (5-20) along with 

Eqs. (5-6)-(5-13) governs the physical process subsequent to the reaching of the state of 

thermal equilibrium.  A larger integration time step can then afterwards be followed to 

model the generation and propagation of thermally induced stress waves at the 

nanoseconds scale.   
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Figure 5.2 Time evolutions of electron (Te) and lattice (Tl) temperature 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 



 88

5.3.3 Staggered Grid Finite Difference Model 

The inherent complexity of the governing equations renders it difficult to obtain 

closed-form solutions to Eqs. (5-6)-(5-20).  A finite difference scheme with staggered 

grids is introduced in the following for solving the equations numerically in the 

20μm×20μm model domain.  Unlike the conventional finite difference method in which 

primary variables are evaluated at grid points, the staggered finite difference scheme 

depicted in Figure 5.3 allows velocity variables ( u� and w� ) and the first order spatial 

derivative terms ( / r∂ ∂ and / z∂ ∂ ) to be calculated at locations midway between two 

consecutive grid points, and shear stress ( rzσ ) to be evaluated at the center of each 

element.  By defining other variables, such as temperatures ( eT  and lT ), normal stresses 

( iiσ ) and carrier density ( n ), at the grid points, a “staggered” grids model can be 

established with stress components being surrounded by velocity components, and vice 

versa.  The staggered grid finite difference method has been found to be effective in 

suppressing numerical oscillations [31, 32].  
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Figure 5.3 Finite difference model with staggered grids  
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Using the arrangement defined in Figure 5.3 and assuming a time step, tΔ , 

temperatures, stresses and velocities are calculated by applying the forward difference 

scheme.  As an illustration, Eqs. (5-6)-(5-13) and (5-20) without the ( ) /e h e l eC T T τ− −  

term can be discretized into the following finite difference equations: 
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 (5-25) 
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 (5-26) 
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where i and p are the grid indices in the z- and r-directions, respectively, j denotes the 

index for time step, the “1/2” index indicates the “staggered” arrangement.  Numerical 

integration is allowed to move to the next time step only when all the variables, such as 
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temperature, stresses and velocities, at every grid location satisfy a predefined 

convergence tolerance of ±0.1%. 

 

5.3.4 Initial and Boundary Conditions 

A 0.775-μm wavelength laser pulse with a 10μm spot size is investigated.  

Unless otherwise mentioned, the pulse duration is 500pt = fs and the laser fluence 

ranges from 0.005J/cm2 to 0.15J/cm2.  All relevant optical properties of the laser are 

provided in Table 5.1; while Table 5.2 tabulates the various properties of the silicon 

materials considered in this study [40, 41, 59, 68, 69].  

 

 

Table 5.1  Laser optical properties 

Parameter Value 

α  5.02×103
/430lTe  (/cm) 

β  2.0 (cm/GW) 

Γ  0.37+5×10-5( 0lT T− ) 

Θ  5.1×10-18( 0/lT T ) (cm2) 
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Table 5.2  Material properties for silicon 

Parameter Value 

ρ  2330 (kg/m3) 

E 150 (GPa) 

ν  0.17 

α′  2.6×10-6 (/K) 

gE  1.16-7.02×10-2 2
lT /( lT +1108)-1.5×10-8 1/3n (eV) 

0D  18( 0 / lT T ) (cm2/sec) 

lκ  1585 1.23
lT −  (W/cmK) 

lC  1.978+3.54×10-4
lT -3.68 2

lT −  (J/cm3K) 

e hC −  3 Bnk  (eV/ cm3K) 

eτ  240(1+ n /6.0×1020) (fsec) 

γ  3.8×10-31 (cm6/sec) 

iθ  3.6×1010 1.5 /g B eE k Te−  (/sec) 
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The ambient temperature 0T  is set to be 300K.  The initial conditions are defined as 

follows, 

0

12 3

( , ,0) ( , ,0)

( , ,0) 10 cm
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Thus, at 0t = , the stress, velocity and displacement components are initially zeros; the 

electron and lattice temperatures are equal to the ambient temperature; and the initial 

carrier density is set to be 1012cm-3.  The followings specify the boundary conditions, 
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∂ ∂ ∂      

so that the top  ( 0z = ) and bottom ( maxz z= ) faces are stress-free; the circumference at 

maxr r=  is constrained in the r-direction; displacement u  and normal stress θθσ  are zero 

along the centre line ( 0r = ) of both the silicon wafer and laser beam.  Given the brief 

action time of the laser, the heat fluxes on all open faces including the circumference are 

negligible.  The carrier current J  and energy current W  are also neglected on these 

faces for the same reason, thus resulting in zero gradients for the carrier density, n , 

according to Eqs. (5-14)-(5-17). 
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All terms in the governing equations that involve the reciprocal of r, i.e., 1/ r , is 

numerically undefined at 0r = .  However, using the L’Hopital’s rule, these terms can 

be expressed as differentials in the forms of / r∂ ∂ .  For example, 00
lim( / ) / rr

u r u r =→
= ∂ ∂ . 

Finally, a total number of 50 equally-spaced grid points in the z-direction and 20 

in the r-direction are found to be refined enough to ensure solution convergence.  When 

the total elements in the model domain exceed 50×20, results obtained are seen to show 

negligible differences in the time period considered.  Thus, no further mesh refinement is 

needed.  Time steps varying from 5fsec to 60fsec are used to integrate pre-thermal-

equilibrium time history.  A much larger time step tΔ = 5psec is followed to integrate 

post equilibrium evolution.   

 

5.4 Results 

Using the axisymmetric finite difference model elaborated above, a laser of 

0.775-μm in wavelength and 10μm in spot size is considered.  The laser pulse duration is 

500pt = fs with its peak located at t =1.5ps.  Results presented in the section correspond 

to a fluence input ranging from 0.005 to 0.15 J/cm2.   

 

5.4.1 Carrier and Lattice Temperatures 

Figures 5.4 and 5.5 show, respectively, the electron and lattice temperature 

distributions in the model domain at four different time instances t  = 1, 1.5, 2.5 and 5ps.  

Irradiation of the silicon is initially dominated by a rigorous energy transferring from the 

pulse to electrons as marked by a rapid elevation of the electron temperature.
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Figure 5.4 Electron temperature distribution in silicon wafer irradiated by ultrafast laser 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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The energy is seen to subsequently transfer to cooler lattices and diffuse further into 

regions that are low in temperature.  Though the laser pulse does not reach its peak value 

till t =1.5ps, the electron temperature registered at t =1ps in the volume bound by 

r ≤ 10μm and z ≤ 10μm is hundreds of Kelvins higher than that registered at t =1.5ps.  

In other words, maximum electron temperature comes ahead of the peak laser intensity.  

This interesting observation will be explained later.  Lattice temperature keeps 

increasing in the model domain until it reaches thermal equilibrium with the electrons at 

approximately t = 5ps.  At the center of the laser-impinged spot at 0r z= = , a 

maximum lattice temperature of 305.2K is registered in response to the 0.005J/cm2 

fluence input.   

The time histories of both the electron and lattice temperatures at 

0r z= = corresponding to 0.005 J/cm2 laser fluences are plotted in Figure 5.6.  It is seen 

that the time taken for the electron and lattice temperatures to reach the thermal 

equilibrium is approximately 5ps.   
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Figure 5.5 Lattice temperature distribution of silicon wafer irradiated by ultrafast laser 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 5.6 Time evolution of electron and lattice temperatures  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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As stated earlier, the peak of the electron temperature occurs before the laser 

reaches its maximum intensity at t =1.5ps, which can be visualized in Figure 5.6 where 

0.005J/cm2 laser fluence is used.  This can be explained using Eq. (5-19) and the 

definition of electron specific heat,  3e h BC nk− = , as follows.  Although initially the laser 

is yet to reach its full intensity, the carrier density n =1012cm-3 is much smaller at this 

early stage in time compared with its value when laser peak intensity is reached, which 

is of the order of 1019cm-3 (see Figure 5.9).  As the electron specific heat e hC −  

corresponding to the initial carrier density is of seven order-of-magnitudes lower, 

electron temperature is therefore seeing exponential increase.  After the peak 

temperature, electron temperature eT  begins falling down to approximately 1400K as 

time increases to t=1.5ps.  This is mainly attributable to the high carrier density and the 

pronounced increasing rate of the carriers, /n t∂ ∂ , which is a dominant term in Eq. (5-

19) in decreasing electron temperature.  Consequently, even though laser intensity is still 

rising, the increasing energy absorbed from the laser pulse cannot elevate eT  any higher.  

Since laser intensity starts to drop off after t=1.5ps,  eT  therefore decreases with noted 

rate.  However, there still remains a significant thermal difference between eT  and lT  for 

an extended amount of time before thermal balancing is eventually attained. 

Figure 5.7 shows the electron and lattice temperatures obtained for a fluence 

input that is 3 times higher at 0.015J/cm2.  It is seen that although the fluence is higher, 

the first peak of the electron temperature reaches the same level of magnitude at the 

same time as the lower fluence case.   Nevertheless, a second eT  peak occurs right after 
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t=1.5ps as seen in Figure 5.7.  The magnitude of the second peak is around 1700K, 

which is slightly higher than the first one.  The presence of the second peak indicates 

that in the competition between increasing laser intensity and high rate of change of 

carrier density, the former dominates the higher fluence case.  Time evolutions of the 

electron and lattice temperatures in response to a higher laser fluence at 0.15J/cm2 is 

shown in Figure 5.8.  It illustrates that for this particular laser fluence the magnitude of 

the second peak arises 8 times higher than the first peak.  The high laser intensity is one 

reason behind the result.  The other is the rapid reduction of the carrier density (see 

Figure 5.11), thus resulting in a relatively large negative value for the rate of change of 

the carrier density, /n t∂ ∂ , that contributes to the rapid increasing eT .  As the effect of 

the thermal relaxation term, eτ , defined in Eq. (4-60), becomes prominent subject to 

such a large carrier density gradient in time, the reaching of the maximum eT  is delayed 

as compared with Figures 5.6 and 5.7.  As a result, eT  and lT  would eventually reach a 

significantly higher equilibrium temperature at a much later time than the two previous 

cases.  Careful extractions place the reaching of thermal equilibrium at t = 70ps for the 

0.015 J/cm2 fluence and t = 1ns for the 0.15 J/cm2 case.    
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Figure 5.7 Time evolution of electron and lattice temperatures 

 (pulse duration 500fs, spot size 10μm, laser fluence 0.015J/cm2) 
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Figure 5.8 Time evolution of electron and lattice temperatures 

 (pulse duration 500fs, spot size 10μm, laser fluence 0.15J/cm2) 
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5.4.2 Carrier Density 

Figures 5.9 to 5.11 show the variations of the carrier density n  with respect to 

three laser fluences at three different depths at z = 0, 2, and 4µm.  It is seen that the 

maximum carrier densities (1.26×1020cm-3 and 3.74×1020cm-3) that correspond to the 

two lower fluences at 0.005J/cm2 and 0.015J/cm2 are basically proportional to the input 

fluence.  However, as the carrier density approaches the critical value at 2.74×1021cm-3 

for the silicon material [41], non-thermal melting would immediately ensue.  At this 

state, n  is no longer proportional to fluence input and damage to the material is eminent.  

Furthermore, the level of carrier density attenuates very fast at increasing depth.  For 

example, at z = 2µm, n  is 20% of that at z = 0µm in Figure 5.11.  At location z = 4µm 

the drop is a steeper and miniscule 4%.  Thus the carrier densities at these shallow 

depths are far below the critical melting threshold even though the top face at z = 0µm is 

very close to being damaged.  In other words, material damage inflicted by the particular 

laser pulse is highly localized and confined to an extremely small volume beneath the 

irradiated surface.   By using this model, it is therefore feasible to follow the distribution 

of the carrier density in both time and space and track the regions experiencing non-

thermal melting in silicon wafers when processed by ultrafast laser pulses. 
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Figure 5.9 Time evolution of carrier density 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 5.10 Time evolution of carrier density 

(pulse duration 500fs, spot size 10μm, laser fluence 0.015J/cm2) 
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Figure 5.11 Time evolution of carrier density 

(pulse duration 500fs, spot size 10μm, laser fluence 0.15J/cm2) 
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5.4.3 Displacement and Velocity Fields 

The displacement response of the model domain impinged by a 0.005J/cm2 laser 

pulse is presented in Figure 5.12, where w  and u  are displacement variables in the z- 

and r-direction, respectively.  It is seen that the magnitudes of these mechanical 

responses are of the order of 10-12m at time t = 10ns.  As a fully developed wave, w  

wavefront covers 10µm in the z-direction and 17µm in the r-direction within the first 

5ns.  It then travels an additional 8µm in z-direction and another 1µm in r-direction in 

the next 5ns.  It is clear from looking at the changing w  waveforms at the two time 

instants that the wave is dispersive.  The displacement in the other direction, u , on the 

other hand, does not display any feature indicative of a full-fledged wave.  Since u  

carries a relatively large negative amplitude in the proximity of 0z = , all the 

neighboring nodes on the surface therefore are in compression.  This compression state 

is seen to progress from t = 5ns to 10ns towards the center line of the laser beam with 

increasing magnitudes.  Though of small magnitudes, the zone affected by u , however, 

is seen to keep trailing and propagating in the z-direction. 
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Figure 5.12 Displacement profiles of silicon wafer irradiated by ultrafast laser at two 

different times (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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To visualize laser-induced motions in the silicon wafer, the positions of the grid 

nodes of the axisymmetric model are plotted in Figure 5.13 for two consecutive times at 

t = 5ns and t = 10ns.  It should be noted that (1) all empty circles in the figure are 

initially at where the corresponding grid nodes are located; (2) the resultant displacement 

is calculated for each node using its w  and u  displacement components; (3) as the 

induced motion is highly localized in space, only displacement responses within the disk 

bound by z ≤10µm and r ≤15µm are considered; (4) the resultant displacements shown 

in the figure are magnified by a factor of  3×105 for clarity.  It can be seen by following 

the two snap shots taken at t = 5ns and t = 10ns that as if the nodes along r = 0 are being 

plucked towards the positive z-direction, and all others are rubber-banded together and 

move accordingly.   This figure along with Figure 5.12 conveys an image not unlike 

dropping a pebble onto a body of water to initiate a trough and an accompanying wave 

crust propagating radially outwards.  As the silicon considered for the study is one of 

thin disk that supports guided stress waves, the snap shots capture a Lamb waveguide 

mode in its initial burgeoning stage.  The presented model therefore enables not just the 

generation and propagation of Lamb waves to be studied as time functions of laser input 

parameters and material geometry.  It also allows thermal-mechanical responses induced 

by femtoseconds heating to be established at near-field.   
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Figure 5.13 Laser induced nodal motion of silicon wafer 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 5.14 shows the time evolutions of nodal velocity over the entire model 

domain at t = 5 and 10ns.  Given the relatively non-oscillating displacements in Figure 

5.12, nodal velocities are seen to progress in the z-direction with high-frequency 

oscillations; while no such oscillating features are observed in the radial direction.  As 

energy transport in the form of particle kinetics is indicated by the spatial gradients of 

the velocity shown, it can be seen in Figure 5.14 that the transport of mechanical energy 

is both finite and localized.  It takes 10ns to cover approximately 20µm into the depth.  It 

would have to transverse the entire thickness and reach the backside of the wafer to 

bring about a Lamb wave. 

 

5.4.4 Thermal Stress Waves 

Figure 5.15 shows the spatial distributions of three normal stress components 

(namely, zzσ , rrσ and θθσ ) along with one shear stress component ( rzσ ) at times t = 5 

and 10ns.  The magnitudes of all the stress components are of the order of several MPa 

or less within the time window considered.  The zzσ  component is in contrast to all 

others in that it exhibits definitive features indicative of a propagating wave.  As none 

fulfills a complete oscillation cycle within the first 10ns window, what components rrσ ,  

θθσ  and rzσ  each demonstrated in the figure are near-field elastodynamic responses that 

precede the forming of a full-fledging wave in their respective directions.  Although the 

near-field responses are largely localized in the 10μm×10μm volume revolved about the 

axisymmetric axis, however, they do see their magnitudes doubled within 5ns.   
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Figure 5.14 Velocity profiles of silicon wafer irradiated by ultrafast laser at two 

different times (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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 The zzσ  thermal stress wave generated by the 500fs ultrafast laser pulse is 

dispersive and characteristically of broadband, low amplitude and extremely high 

frequency.  To resolve wave dispersion along with the associated frequency components, 

a propagation path is defined in Figure 5.16.  Two sampling points, A and B, are placed 

along the path from which waveforms are extracted.  A and B are each 2µm and 6µm 

from the top face, respectively, thus defining a 4µm propagation length.  The two 

dissimilar time waveforms obtained at A and B suggest the zzσ  wave is dispersive with a 

time-varying spectrum.  The Gabor Wavelet Transform (GWT) is then employed to 

resolve the waveforms of their respective dispersion.  As an alternative to Fourier 

Transform, GWT has been shown to provide simultaneous time-frequency resolution 

optimal for resolving dispersive waves found propagating in beams and silicon wafers 

[10, 33].  Figure 5.17 shows the GWTs of the waveforms acquired at A and B.  The zzσ  

wave is characteristically broadband with a 0-500MHz bandwidth.  It is calculated using 

the GWT result that the group velocity of the 50MHz frequency component is 

approximately 5.7km/s, and 1.6km/s for the 200MHz component.  The two frequency 

components progressing in space with different velocities is essential to signify that the 

zzσ  wave is indeed dispersive.   
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Figure 5.15 Stress distributions of silicon wafer irradiated by ultrafast laser at two 

different times (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 5.16 Waveforms obtained at sampling locations A and B 

 (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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(a) 

 

(b) 

Figure 5.17 GWT of waveforms acquired at sampling locations (a) A and (b) B  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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5.4.5 Power Density and Effect of Laser Fluence 

The temporal gradient of an oscillating stress has an equivalent unit that can be 

obtained through using the SI notations as 2 3/ /N m s W m⎡ ⎤ ⎡ ⎤≡⎣ ⎦ ⎣ ⎦ .  With this equivalent 

unit, all stress variations in time can be interpreted alternatively as power per cubic 

volume, thus properly termed as power density.  The notion of power density has been 

successfully applied to correlate dispersive stress waves with the development of 

mechanical faults and defects in microelectronic packages [46, 47].  Since thermal stress 

waves are dispersive with broad, time-varying spectra, the number of loading cycles 

exerted by each constituent frequency within any given time span is therefore difficult to 

be determined.  The Accumulated Damage Evaluation Method developed in [46] are 

followed to predict if fatigue cracking is likely at a particular location for a given amount 

of time subject to the actions of power density. 

Figures 5.18 and 5.19 plot the power densities associated with the normal stress 

wave zzσ  and the shear stress wave rzσ  at time t = 5ns.  In spite of low stress 

magnitudes, the corresponding power densities are of the order of 1014 W/m3 and 1013 

W/m3 for the zzσ  and rzσ  components, respectively.  Maximum power densities are 

observed at a depth of 7μm along the axisymmetric axis.  The power densities of the rrσ  

component at times t=5ns and t=10ns also show similar order-of-magnitudes in Figures 

5.20 and 5.21.  Contrast to Figure 5.15 where rrσ  responses are strictly near-field and 

local, the rrσ  power density behaves like a wave and propagates both radially and 

axially.  To evaluate if these power density waves could potentially inflict havoc, the 
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high cycle fatigue data found in [70] is utilized.  Single crystalline silicon thin films 

were cycled with 40kHz and 50kHz frequencies at 6.5GPa (4.5GPa) and achieved 106 

(1011), the lowest (highest) fatigue life cycles.  The corresponding power densities can 

then be calculated as, respectively, 3.8 × 1014 and 3.5 × 1014 W/m3.  As the power 

densities presented in Figs. 16-17 all have a magnitude that is below the 3.5-3.8×1014 

W/m3 threshold, one may be deceived into thinking that stress waves of such power 

density level are benign and raise no concerns over the initiation of fatigue cracking.   

Figures 5.22 and 5.23 show the results associated with a higher 0.015J/cm2 laser 

fluence input at t = 10ns.  Compared with the results shown in Figures 5.12 and 5.15, it 

is seen that the waves share very similar spatial configurations and identical time-of-

arrivals with their counterparts generated using 1/3 of the fluence input at 0.005 J/cm2.  

The magnitudes of these mechanical responses, on the other hand, are approximately 10 

times larger.  The few observations made to the spatial profiles of the w displacement 

and zzσ  stress component shown in Figures 5.22 and 5.23 indicate that wave 

propagation characteristics are in general independent of the fluence input.  By 

nonlinearly related to laser fluence, wave amplitude is an exception.   
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Figure 5.18 Power density of zzσ  at t = 5ns 

 (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 5.19 Power density of rzσ  at t = 5ns 

 (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 5.20 Power density of rrσ  at t = 5ns 

 (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 5.21 Power density of rrσ  at t = 10ns 

 (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 5.22 w displacement profile at t = 10ns for higher laser fluence 

 (pulse duration 500fs, spot size 10μm, laser fluence 0.015J/cm2) 
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Figure 5.23  zzσ   stress profile at t = 10ns for higher laser fluence 

(pulse duration 500fs, spot size 10μm, laser fluence 0.015J/cm2) 
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5.5 Summary 

The femtosecond laser pulse heating formulations presented in the chapter coupled 

transport dynamics and classical thermoelasticity with the momentum equations in 

describing lattice motions in silicon material.  The computational scheme developed for 

modeling laser-induced mechanical responses was shown to describe the evolutions of 

electron-lattice temperatures and electron-hole carrier density as a localized transport 

phenomenon both in time and space.  It also allowed responses including transverse 

stress waves and precursors to the initiation of waveguide modes to be modeled and 

investigated in a window as wide as 10ns in time span.   

Results presented in this chapter indicated that the path and time scale with which 

electrons and lattices reached thermal equilibrium varied with the laser fluence input.  In 

addition, it was found feasible to explore the evolution of carrier density in time and 

determine if a given fluence and pulse duration input would induce non-thermal 

damages.  The time scale associated with the generation of transverse stress waves along 

the thickness direction was on the order of nanoseconds; while it was sub-picoseconds 

for electron-lattice interaction and microseconds for plate wave propagation.  These 

ultrashort laser pulse induced waves were found to be highly dispersive and 

characteristically of broadband, low amplitude, and extremely high frequency and power 

density contents.  Near-field responses preceding the development of a full-blown plate 

wave were also found to be localized in space with a power density magnitude on the 

order of 1013~1014W/m3.    
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CHAPTER VI 

GENERALIZED THERMO-ELASTODYNAMICS FOR SILICON MATERIALS 

SUBJECTED TO ULTRAFAST LASER HEATING 

 

6.1 Generalized Thermoelasticity 

The classical theory of thermoelasticity views heat propagation in a heat-

conducting elastic body as a diffusion phenomenon dictated by a parabolic heat transport 

equation.  As thermal disturbances diffuse with infinite speed, the corresponding 

thermoelastic responses therefore are to be observed instantaneously anywhere in the 

entire model domain regardless of how far it is from where the heat source is applied.   

Although it works well for problems where the duration of thermal shock is as short as 

1µs [43], the classical thermoelastic theory presents a paradox nonetheless.  Such a 

physical dilemma presents negative implications in the characterization and 

interpretation of near-field, sub-picoseconds responses induced by ultrafast laser pulses. 

The generalized theory of thermoelasticity proposed by Green and Lindsay [72] 

is one based on a generalized entropy production inequality [73].  The model 

incorporates hyperbolic energy transport equations and was found to be satisfactory in 

describing laser heating problems of short pulses and high thermal gradient input.  The 

theory retains the classical form of the entropy flux and entropy source even though it is 

founded on very different assumptions including two relaxation time constants that 

completely redefine the fundamental physics of thermoelastic process.  For 

homogeneous isotropic materials and in the absence of body force, the theory is 
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constituted by four coupled partial differential equations, namely, one energy equation 

and three equations of motion [62]  

2
2 0(3 2 )v l v l l lc t c Tρ θ ρ θ λ μ α κ θ′+ + + ∇ = ∇U�� � �     (6-1) 

2
1( ) (3 2 ) ( )l ltμ λ μ λ μ α θ θ ρ′∇ + + ∇∇ ⋅ − + ∇ + ∇ =U U U� ��   (6-2) 

where 0l lT Tθ = −  is the field of thermal difference, 1t  and 2t  are the thermal-mechanical 

and thermal relaxation time constants, respectively.  It is seen that the Green-Lindsay 

model is characterized by a system of partial differential equations in which, in 

comparison to the classical system, the constitutive relations for the stress tensor and the 

entropy are generalized by introducing two different relaxation times into considerations 

[74].  

 

6.2 Lattice Energy Balance Equation and Equations of Motion 

According to Eq. (6-1), for homogenous isotropic materials such as the micron-

scale silicon thin structure considered for the study, the energy balance equation for 

lattices is therefore of the form 

2

2 02 ( ) ( ) (3 2 )l l e h
l l l l e l kk

e

C
C t C T T T

tt
θ θ

κ θ λ μ α ε
τ
−∂ ∂ ′+ = ∇ ⋅ ∇ + − − +

∂∂
�  (6-3) 

where 0l lT Tθ = −  is the temperature increment between lattice temperature and ambient 

temperature.  The other parameters are defined following the classical model in Eq. (5-

3).  The last term on the right hand side is due to the energy transferred into the lattices.  

This amount of energy induces steep thermal gradient, which then in turn initiates 
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propagating thermal stress waves.  Eq. (6-3) can be cast into the cylindrical coordinates 

as 

2
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2 2
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    (6-4) 

The corresponding equations of motion expressed in the cylindrical coordinates are  

, ,
rr

rr r rz zu
r

θθσ σ
ρ σ σ

−
= + +��       (6-5) 

, ,
rz

rz r zz zw
r
σ

ρ σ σ= + +��       (6-6) 

where u  and w  are the displacement variables in the r- and z-directions, respectively.  

Following Eqs. (6-2), (6-5) and (6-6), the three normal stresses, ( , , )ii i r zσ θ= , and  the 

shear stress, rzσ , are defined as 

12 (3 2 ) ( ) ( , , )l
ii ii kk l t i r z

t
θσ με λε λ μ α θ θ∂′= + − + + =
∂   (6-7) 

2rz rzσ με=         (6-8) 

As the lattice temperature induced by ultrafast laser pulses of the order of subpico- or 

femto-seconds is effectively low in magnitude, and provided that material phase 

transition temperature is not violated, silicon wafer can be assumed to undergo elastic 

deformation only at low ambient temperature.  The corresponding strain-displacement 

relations in the cylindrical coordinates are the same as Eqs. (5-10)-(5-13). 
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The governing equations for describing generalized thermo-elastodynamics of 

silicon materials in response to ultrafast laser heating include the macroscopic electrical 

current equation (Eq. 4-37), macroscopic energy current equation (Eq. 4-52), balance 

equation of carrier number (Eq. 4-56), balance equation of carrier energy (Eq. 4-60), 

balance equation of lattice energy (Eq. 6-4) and equations of motion (Eqs. 6-5 and 6-8). 

 

6.3 Computational Model 

The geometric model and finite difference scheme with staggered-grids presented 

in Chapter V are again considered in the generalized thermo-elastodynamic model for 

numerical solutions.  For specifics regarding the derivation and arrangement of the 

staggered scheme along with the modified velocity-Verlet algorithm adopted for time-

integrating various responses, Chapter V is referred.  Using the arrangement defined and 

assuming a time step, temperatures, stresses and velocities are calculated by applying the 

forward difference scheme.  The thermal-mechanical relaxation time 1t  and thermal 

relaxation time 2t  are defined in Table 6.1 [42].  The remaining parameters have the 

same values as Tables 5.1 and 5.2. 
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Table 6.1  Relaxation times [42] 

Parameter Value 

1t  2.8×10-13(sec) 

2t  2.8×10-14(sec) 

 

The numerical model subsequent to the reaching of the thermal equilibrium of 

electrons and lattice can be discretized into the following finite difference equations: 

 

0( , , ) ( , , )l li p j T i p j Tθ = −       (6-9) 
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It should be noted that the initial conditions and boundary conditions applied in 

this model are the same as those specified in Chapter V.  A time step of 5fsec is applied, 

and the selected time step has to be lower than the thermal relaxation time 2t of the 

silicon in order to resolve thermal waves properly.   

 

6.4 Results 

6.4.1 Carrier Density and Model Validation 

Figure 6.1 shows the time evolution of the carrier density n  at the center of the 

top surface at z = r = 0 corresponding to four different laser fluences; namely, 0.005, 

0.015, 0.15 and 0.20 J/cm2.  It is seen that the peak of the carrier density occurs after the 

laser reaches its maximum intensity at t  = 1.5ps for a particular fluence.  As the carrier 

density is governed by the carrier generation term and the recombination term in Eq. (5-

19), the recombination process becomes more and more dominant after the maximum 

laser intensity is reached.  By comparing the carrier density curves corresponding to 

different laser fluences, one can observe that the maximum value rises faster and is met 

earlier with increasing laser fluence.  There is a critical carrier density value, 

2.74×1021cm-3 (indicated by the horizontal line in Figure 6.1) for the silicon material 

[41] above which non-thermal melting would immediately ensue and damage in the 

form of immediate crystal disordering or ultimate material removal through ablation is 

imminent.  For instance, the figure shows that the peak carrier density values is below 

the non-thermal melting threshold for the three lower fluences (0.005, 0.015 and 

0.15J/cm2), thus there is no damage inflicted to the silicon wafer by using these laser 
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energy input.  However, when irradiated by the 500fs laser with 0.2J/cm2 fluence, the 

material will undergo non-thermal melting process since the maximum carrier density 

exceeds the threshold at a certain time instance.  Further calculation confirms that carrier 

density levels off rapidly into the thickness direction, thus the material damage inflicted 

by the ultrafast laser pulse is highly localized and confined to an extremely small volume 

beneath the irradiated surface.  It is therefore probable to follow the distribution of 

carrier density in both time and space to subsequently identify the regions experiencing 

thermal melting in silicon wafer when processed by ultrafast laser pulses. 

Figure 6.2 compares the computed melting thresholds with the experimental data 

available in [75].  The results are determined by first selecting specific pulse durations 

and then followed by establishing their corresponding laser fluence level at which the 

maximum carrier density at z = 0 exceeds the critical threshold level.  It is found that the 

computational results agree well with the physical data, thus validating the modeling 

formulations along with the numerical procedures.  Another observation with Figure 6.2 

is that the discrete results roughly divide this fluence-duration plane into two parts 

shown as the shaded and un-shaded regions.  For certain pulse duration, the silicon wafer 

will more or less be damaged if the laser fluence lands within the shaded region.  The 

farther the fluence stays within the boundary of the un-shaded region, the safer the 

material is subject to the pulsing of the ultrafast laser.   
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Figure 6.1 Time evolution of carrier density subject to four laser fluences  

(laser pulse duration 500fs, spot size 10μm) 



 139

 

 

 

 

 

Figure 6.2 Comparison of computed non-thermal melting thresholds with  

experimental data 
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6.4.2 Lattice Temperature and Heat Flux 

Figure 6.3 shows the spatial distribution of 0l lT Tθ = −  at t = 10ns, which is the 

variation of the lattice temperature, lT , with respect to the ambient temperature, 0T .  The 

generalized thermo-elastodynamic formulation incorporating lθ  is explicated in Eqs. (6-

1)-(6-4).  The lθ  wave is seen within the 10ns time window to have propagated 10µm in 

the thickness (z-) direction and over 15µm in the radial (r-) direction.   With the 

remaining model domain staying thermally undisturbed, it is observed that the heat 

affected zone is finite and highly localized.  This is in contrast to the observation made 

in Chapter V where the parabolic energy equations admit thermal diffusion and permit 

thermal disturbances to be registered instantaneously everywhere in the model domain.  

The generalized formulation presented in this chapter remedies such a counter-intuitive 

paradox by considering energy transport as thermal waves of finite propagation speed.  

Another observation made with the oscillating thermal wave in Figure 6.3 is that it 

attenuates much faster with significantly lower amplitude than its parabolic counterpart 

studied in the last chapter. 

Figure 6.4 presents the heat flux components along the axial ( zq ) and radial ( rq ) 

directions.  It is seen that the order of magnitudes of the heat flux in both directions are 

low at t = 10ns.  Generally, a high level of heat flux will cause damage to the material.  

Apparently this is not the case with the ultrafast laser induced heat fluxes.  This is one of 

the prominent advantages of ultrafast lasers over lasers of nanosecond pulses or longer.  
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Figure 6.3 Distribution of lattice temperature oscillation lθ  at 10ns  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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(a)                                                                (b) 

Figure 6.4 Distribution of heat flux components (a) zq  and (b) rq  at t = 10ns  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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The extremely small heat affected zone along with the small resulted heat flux is what 

enables precise control for laser micro-machining.  Damages to silicon material by 

ultrafast laser pulses, if any, are therefore not the result of the induced thermal field, but 

rather the violation of the carrier density threshold and the exertion of the induced stress 

waves.  

 

6.4.3 Displacement and Velocity Fields 

Figure 6.5 shows the displacement response of the model domain impinged by 

the ultrafast laser pulse, where w  and u  are displacement variables in the z- and r-

direction, respectively.  It illustrates that the order of magnitude of these mechanical 

responses are of the order of 10-9cm within 10ns, and such amplitudes increase as time 

elapses.  The w  wave covers a 5µm×10µm volume in the initial 5ns and propagates 

further and deeper in the next 5ns.  It is clear from looking at the changing w  

waveforms at the two time instants that the wave is dispersive.  The displacement in the 

other direction, u , does not have prominent oscillation features indicative of a full-

blown wave.  But rather all the affected nodes move toward the symmetry axis r = 0 in 

compression.  This compression state is seen to progress from t = 5ns to 10ns with 

increasing magnitudes.  Compared with the displacement field obtained by the parabolic 

thermoelasticity (Figure 5.12) in which the infinite thermal speed is felt in both the 

temperature and displacement fields since the governing equations are coupled, the 

displacement waves affected zone associated with generalized thermoelasticity is very 

localized. 



 144

 

 

 

 

 

Figure 6.5 Displacement components w  and u  at two different times 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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The initial undisturbed positions of the grid nodes of the axisymmetric model at t 

= 0 (blue circles) is laid over their corresponding positions at t = 10ns (red circles) in 

Figure 6.6 to help visualize laser-induced deformations.  Resultant displacement is 

calculated for each node using its w  and u  displacement components.  It should be 

noted that as the induced motion is highly localized in space, only displacement 

responses within the disk bound by z ≤10µm and r ≤15µm are considered, and the 

resultant displacements shown in the figure are magnified by a factor of 5×104 for 

clarity.  Compared with Figure 5.13 in which the nodal motion is plotted according to 

the parabolic type energy equation, the nodal motion in Figure 6.6 shows the same 

tendency as being plucked towards the positive z-direction, and all other nodes are 

rubber-banded together and move accordingly.  However, it is obvious that the nodes in 

the last column (z=10µm) is not affected by the ultrafast laser induced displacement at 

10ns, which is different from the last column in Figure 5.13.  The unrealistic infinite 

disturbance speed governed by the parabolic type energy equation indeed has a great 

impact on thermal-mechanical coupled field.   

The developed velocity components, w�  and u� , are shown in Figure 6.7.  Given 

the relatively non-oscillating displacements in Figure 6.5, nodal velocities are seen to 

progress in the z-direction with high-frequency oscillations.  As energy transport in the 

form of nodal kinetics is indicated by the spatial gradients of the velocity, it is seen that 

the transport of mechanical energy is both finite and localized.  The remaining model 

domain stays undisturbed by the velocity field.   
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Figure 6.6  Laser induced nodal motions at 10ns  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 6.7 Profiles of velocity components at two different times 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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6.4.4 Thermal Stress Waves 

The distributions of the three normal stress components ( zzσ , rrσ  and θθσ ) along 

with the one shear stress component ( rzσ ) at t = 5ns and 10ns are shown in Figure 6.8.  

The zzσ  and rzσ  components are in contrast to the other two in that they exhibit 

definitive features typical of a propagating wave, i.e.  zzσ  primarily propagates in the z-

direction, and the shear stress propagates in both directions.  On the other hand, the rrσ  

and θθσ  components are seen to be more localized and preceding the developing of a 

full-fledging wave in their respective direction.  The magnitudes of all the stress 

components are of the order of several MPa or less within the time window considered, 

and increase slightly as time elapses from t = 5ns to t = 10ns.  By resolving the induced 

thermal stress waves  zzσ  and rzσ  in the simultaneous time-frequency domain using the 

Gabor Wavelet Transform (GWT), it becomes clear that they are highly dispersive and 

characteristically of broadband, low amplitude and extremely high frequency.  Compare 

with the corresponding stress waves described by the parabolic transport equations in 

Figure 5.15, the stress waves depicted in Figure 6.8 are more localized in both time and 

space, and also of higher oscillation amplitude. 
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Figure 6.8 Distributions of stress component at 10ns 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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6.5 Damage Evaluation 

As previously mentioned, non-thermal melting threshold is determined mainly by 

pulse duration and laser fluence.  Non-thermal damage is generally in the form of 

immediate crystal disordering or ablation.  However, as ultrafast lasers also generate 

short-time scale shock waves, micro-cracking is another potential damage mode that 

could compromise fabrication quality.  In this section, the concept of power density is 

employed along with high cycle fatigue and joint time-frequency analysis to 

qualitatively evaluate the likelihood for laser induced short-time wave motions to inflict 

the particular damage mode. 

 

6.5.1 Power Density 

As presented in Chapter V, the temporal gradient of an oscillating stress, /dS dt , 

has an equivalent unit that can be obtained through using the SI notations as 

2 3/ /N m s W m⎡ ⎤ ⎡ ⎤≡⎣ ⎦ ⎣ ⎦ .  Here S  represents a stress component, which could be zzσ , rrσ , 

θθσ  or rzσ  in the study.  Figure 6.9 plots the power densities associated with all stress 

components at t = 10ns.  In spite of low stress magnitudes, all the corresponding power 

densities are of the order of 1013 -1014 W/m3, oscillate and propagate like waves both 

radially and axially.  Of the components plotted, the power density of the zzσ wave has 

the largest oscillation magnitude, thus indicating a higher probability for the stress wave 

to initiate micro-cracking.  Consequently, the zzσ  power density wave is selected to be 

investigated further below. 
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Figure 6.9 Distributions of power density components at 10ns  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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6.5.2 Accumulated Damage Evaluation 

The notion of power density in conjunction with the algorithm of accumulated 

damage evaluation has been applied as a viable methodology to successfully correlate 

high-frequency dispersive stress waves with the development of mechanical faults and 

defects in microelectronic packages [46, 47].  The methodology is applicable to 

investigating dynamic phenomena of brief presence that involve low loading stress but 

high loading frequency (thus high power density).  It allows one to qualitatively evaluate 

the impact of power density waves on material reliability using the accumulated damage 

evaluation algorithm.  In this section the evaluation algorithm is followed to determine if 

fatigue cracking is likely in response to the action of power density wave within the 10ns 

time window.   

S-N curves are important tools for design against fatigue failure, with S being the 

reversed stress and N being the number of cycles to fatigue failure under S.  There are 

low cycle failure and high cycle failure from which materials could be loaded to fail.  In 

low cycle fatigue, a very high loading stress is usually applied that generates not only 

elastic strains but also plastic strains.  The number of cycles to failure N is usually less 

than 103.  However, for the high cycle fatigue mode, much higher number of cycles (N 

>105) is expected since the stress level is low enough to only produce elastic strains.  As 

seen in Figure 6.9 that the oscillating stress waves are of relatively small amplitude, 

broad bandwidth and extremely high frequency, there is a concern over such waves 

initiating high cycle fatigue cracking in the silicon material.   
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  To relate the ultrafast laser induced power density waves to fatigue cycles, the 

high cycle S-N curve for single crystalline silicon materials available in [70] is utilized.  

It should be noted that the silicon specimens considered in [70] did not follow the 

standard ASTM specifications or were subject to the standard fatigue test procedure.  

Ref. [70] should be consulted for specifics as to how the S-N curve was compiled.  The 

fatigue life cycles of the single crystalline silicon specimens of 20µm in thickness are 

reported to be ranging from 106 to 1011 over a range of loading stresses between 4 and 

10GPa.  The S-N curve can be approximated using: 

9(13.4-0.875logN )10 PafS =      (6-23) 

where fN  is the number of cycles to fatigue failure under the f = 40 kHz loading 

frequency.  The corresponding power density as a function of the fatigue life fN  can 

then be expressed as 

4 9 34(10 )(13.4-0.875logN )10 W/mf
dS
dt

=     (6-24) 

Thus the following equation can be used to estimate how many cycles to failure are 

expected under a certain power density: 

 
14[15.31 2.857(10 ) ]

10
dS
dt

fN
−−

=       (6-25) 

Next is to determine how many cycles have been accumulated with respect to the 

total fatigue life fN  within the 10ns time window.  To predict how much damage has 

been accumulated at a particular location of the silicon thin structure due to the cyclic 

power density waves, 8 sampling locations in the axisymmetric finite difference model 
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are selected to study their corresponding accumulated damage.  The coordinates of the 8 

locations are (z, r) = (0.4µm, 0µm), (4.8µm, 0µm), (9.6µm, 0µm), (14.4µm, 0µm), 

(0.4µm, 1µm), (4.8µm, 1µm), (9.6µm, 1µm) and (14.4µm, 1µm), as numbered in Figure 

6.10. 

To estimate the accumulated damage due to the exertion of the power density 

waves, it is necessary to examine the time evolution of the power density at every 

sampling location.  Figure 6.11 shows the power density time history acquired at the 8 

selected locations.  The order of magnitudes of the power density at locations 1 and 5 are 

much higher in the first 5ns.  Located closest to the top face, the power density waves 

corresponding to locations 1 and 5 are also fast-attenuating.    Furthermore, one sees that 

the power density at location 5, which is 1µm away from the center line of the laser 

beam, displays lower oscillation amplitude.  With its relatively larger power density 

magnitude, location 1 is most susceptible to accumulated damage.  Should location 1 be 

determined to be damage-free, the material could then be considered intact subject to the 

rapid heating of short laser pulses.   
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Figure 6.10 Sampling locations from which power density waves are acquired 
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Figure 6.11 Time histories of power density at 8 sampling locations 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 



 157

Figure 6.12 exhibits the time-frequency distribution of the power density wave 

acquired at location 1.  It shows that the frequency ranges from 0 to 1GHz which is 

extremely broadband within the first 5ns.  Also, the dominant frequencies constantly 

vary with time, thus indicating a characteristic dispersive wave.  The normalized 

amplitude in the time-frequency plot indicates the dominant frequency components.  For 

example, the 500-600MHz frequencies have higher magnitude than all other components 

in the first 2ns, thus this range of frequencies dominates.  This can be better visualized 

by the accompanying 3D plot.  By selecting a particular time instant, one can obtain a 

corresponding frequency spectrum along with its associated dominant frequencies.   

The next step is to determine the number of cycles corresponding to each 

dominant frequency component.  Since power density wave is dispersive with broad, 

time-varying spectra, the number of loading cycles exerted by each constituent 

frequency within any given time span therefore also vary with time.  At any given time t 

= t0, it is straightforward to first read off the corresponding power density ( )
0

/ t tdS dt
=

from 

Figure 6.11 and then extract the corresponding frequency spectrum by slicing the time-

frequency plane in Figure 6.12 at t = t0.  Using the sliced-off spectrum, one can obtain 

the amplitude iA  corresponding to a particular frequency harmonics, iF .  Accordingly, 

the relation between the power density at t = t0 and frequency components can be 

expressed as 

0

cos( )i i
it t

dS A A F t
dt =

⎛ ⎞ = Δ⎜ ⎟
⎝ ⎠

∑       (6-26) 
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Figure 6.12 Time-frequency distribution of power density wave acquired at location 1  

(a) 2D view (b) 3D view 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 6.13 Power density vs. time-frequency at sampling location 1 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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In Eq. (6-26) tΔ  is the time interval between t0 and the subsequent time instant of 

interest, and A is a coefficient whose value can be uniquely determined.  Each term on 

the right hand side of Eq. (6-26), cos( )i iAA F tΔ , computes the contribution of power 

density made by frequency iF  to the total power density at t = t0.  Apply similar 

calculations to all time instants of interest, the power density can be plotted as a function 

of frequency components and time, as shown in Figure 6.13 which corresponds to 

location 1.  It should be noted that integrating Figure 6.12 along the frequency axis 

would faithfully restore the power density time history associated with location 1 as 

found in Figure 6.11. 

Using Figure 6.13 and substituting the power density ( ) ,/ i jdS dt  calculated at each 

time jt and frequency iF  into Eq. (6-25), the total number of cycles until fatigue failure 

,( )f i jN can be determined.  Meanwhile, the number of cycles each frequency undergone 

,i jN  within the time interval tΔ  can be determined through the following relation 

,i j iN t F= Δ         (6-27) 

For example, the tΔ  selected for this study is 0.1ns, thus the 500MHz component 

completes 0.05 cycles within this tΔ .  The estimated accumulated damage in the time 

interval between t = tj and t = tj+1 for frequency iF  is determined as , ,/ ( )i j f i jN N .  For 

instance, as the ,( )f i jN  calculated for the 500MHz component between t = 1.9ns and t = 

2.0ns is 1.5×1015, the accumulated damage for the frequency in this time interval is 

therefore 0.05/(1.5×1015) = 3.3×10-17.  Consequently, the total accumulated damage in 

the 10ns time interval/window for all frequencies can be expressed as 
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,

,

. . .
( )

i j

j i f i j

N
T A D

N
= ∑∑       (6-28) 

When . . . 1T A D ≥  (i.e. exceeding 100% probability), an ultimate fatigue failure 

would occur.  Therefore, using the notion of “accumulated damage by fatigue cycle” that 

relates power density waves with fatigue failure, one can estimate how much damage 

has been accumulated at a particular location over a specific time period.  The algorithm 

provides a qualitative estimate for locations that could probabilistically initiate micro-

cracking.  In this investigation, the total accumulated damage in the silicon within the 

first 10ns subject to the ultrafast laser irradiation is 13. . . 2.6 10T A D −= × as shown in 

Figure 6.14.   Given the fact that the power density wave at location 1 is both dispersive 

and fast-attenuating, the increasing of . . .T A D  in time beyond 10ns is expected to be 

slow and negligible.  As the laser fluence considered in this study (0.005J/cm2) is 

extremely low for a 500fs laser, the total accumulated damage is thus significantly below 

the critical threshold at which micro-cracking could be initiated.  In summary, this 

fluence level can neither induce non-thermal melting (Figure 6.2 shows that the non-

thermal melting threshold for a 500fs laser is 0.19J/cm2) nor initiate micron flaws.   
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Figure 6.14 Total accumulated damage at sampling location 1 within 10ns 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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6.6 Summary 

The generalized ultra-short laser pulse heating formulations coupled transport 

dynamics and hyperbolic-type energy transport equations along with the momentum 

equations in describing thermo-elastodynamic response in silicon thin structure.  By 

introducing the thermal-mechanical relaxation time and thermal relaxation time to the 

heat equations, the model formulation imparted a finite nature to the propagation of 

thermal disturbance.  The computational scheme developed for modeling laser-induced 

mechanical responses was shown to produce carrier density and non-thermal melting 

threshold that were in excellent agreement with real-world data. 

Near-field responses and wave dispersion described by the presented model 

formulation were found to be characteristically different from those investigated in 

Chapter V where parabolic governing equations were considered for the same laser input 

parameters.  Results presented in this chapter indicated the thermal and mechanical 

waves propagate with finite speed.  These ultrashort laser pulse induced waves were 

highly dispersive and characteristically of broadband, low magnitude, and extremely 

high frequency.  Near-field responses preceding the development of stress waves were 

also found to be localized in space with a power density magnitude on the order of 1014 

W/m3.  The algorithm of accumulated damage evaluation was applied to qualitatively 

estimate the potential for the induced stress waves to initiate fatigue cracking.  It was 

shown that the high power density waves generated by the 500fs ultrafast laser of 

0.005J/cm2 in fluence and 10µm in spot size were insufficient to inflict non-thermal 

damage or mechanical flaws. 
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CHAPTER VII 

GENERALIZED THERMO-ELASTO-VISCO-PLASTODYNAMICS FOR 

SILICON MATERIALS SUBJECTED TO ULTRAFAST LASER HEATING 

 

In Chapters V and VI, the parabolic and generalized thermo-elastodynamics for 

silicon material subject to the irradiation of femtosecond lasers were considered for 

elastic deformations only.  The reasons that the silicon was not considered for elasto-

visco-plastodynamical responses was that the lattice temperature induced by the ultrafast 

laser pulses of the order of subpico- or femto-seconds was too low in magnitude to allow 

for material phase transition.  Additionally the 300K ambient temperature modeled in 

Chapters IV and V was low enough to only induce elastic deformations.  However, as 

ambient temperature increases, the silicon wafer will no longer behave elastically, but 

rather elasto-viscoplastically.  In order to study the feasibility of employing femtosecond 

laser in LISWT, the thermo-elasto-visco-plastodynamic behaviors of the silicon wafer at 

elevated temperature need be investigated.  This chapter aims at combining the 

constitutive law described by the Haasen-Sumino model in Chapter II with the 

generalized model of Chapters IV and VI to establish the knowledge base needed for 

modeling femtosecond laser induced thermo-elasto-visco-plastodynamics in silicon 

wafer. 
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7.1 Lattice Energy Balance Equation and Equations of Motion 

The balance equation of lattice energy and equations of motion derived in the 

section follow from Eqs. (6-1) and (6-2) in which a generalized thermoelasticity was 

formulated by Green and Lindsay.  The lattice energy balance equation retains the same 

form as Eq. (6-4) in the cylindrical coordinates 
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According to the constitutive law described in Chapter II, the total strain rate of a body 

undergoing elasto-plastic deformation can be defined as the summation of the elastic 

strain rate and the plastic strain rate as  

( ) ( )ε ε ε= +� � �e p
ij ij ij         (7-2) 

with u  and w  being the total displacement variables, including both the elastic and 

plastic displacements, in the r- and z-directions, respectively.  The total strain rate ijε�  

can be expressed alternatively using the followings in the cylindrical coordinates 

 rr
u
r

ε ∂
=
∂
��         (7-3) 

 zz
w
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=
∂
��         (7-4) 

 u
rθθε =
��         (7-5) 
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The plastic strain rate in Eq. (7-2) can be expressed the same as Eq. (2-3),  

( )ε =� p
ij ijfS         (7-7) 

where ijS  is the deviatoric stress tensor.  The dislocation density related coefficient f  

are defined in Eqs. (2-4)-(2-6).  

The corresponding equations of motion in the r- and z-directions expressed in the 

cylindrical coordinates are  

, ,
rr
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      (7-8) 
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      (7-9) 

Substituting Eq. (7-2) into the Hooke’s law with [C] being the stiffness matrix, we have 

[ ] ( )p
ij ij ijCσ ε ε⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦� ��       (7-10) 

Following Eqs. (6-2), and (7-3)-(7-10), one can obtain the rates of three normal stress 

components, ( , , )ii i r zσ θ=� , and the shear stress component, rzσ� , as 

1
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 2 ( )rz rz rzfSσ μ ε= −��        (7-12) 

Therefore, the governing equations for describing generalized thermo-elasto-visco-

plastodynamics in silicon material include macroscopic electrical current equation (Eq. 
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4-37), macroscopic energy current equation (Eq. 4-52), balance equation of carrier 

number (Eq. 4-56), balance equation of carrier energy (Eq. 4-60), balance equation of 

lattice energy (Eq. 7-1) and equations of motion (Eqs. 7-8, 7-9, 7-11 and 7-12). 

  

7.2 Computational Model 

The computational model still utilizes the axisymmetric model and the staggered-

grid finite difference scheme presented in Chapter V for solving the generalized thermo-

elasto-viscopalstic model numerically.  For specifics regarding the derivation and 

arrangement of the staggered scheme, Chapter V is again referred.  Parameter values 

used in the model are provided in Tables 1.1, 5.1, 5.2 and 6.1.  The initial and boundary 

conditions specified for the model are the same as those used in Chapter V except that 

the ambient temperature 0T  is no longer constant at 300K, but rather ranging from 300K 

to 1100K as needed.  The initial value of the dislocation density is set at 

42 10mN = × (/cm2) [48] (See Eq. 2-4). 

The numerical model subsequent to the reaching of the thermal equilibrium of 

electrons and lattice can be discretized into the following finite difference equations: 
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7.3 Results 

7.3.1 Temperature Increment of Lattice Temperature 

The increment of the lattice temperature is defined as the variation of the lattice 

temperature lT  with respect to the ambient temperature 0T , i.e. 0l lT Tθ = − .  The spatial 

distributions of the temperature increment corresponding to four different ambient 

temperatures, 300K, 600K, 800K and 1100K, within a 10ns time window are shown in 

Figure 7.1.  It is seen that the thermal disturbance travels in the form of a wave with 

finite speed.  In contrast to the observations made in Chapter V where the parabolic 

energy equations admitted thermal diffusion and permitted thermal disturbances to be 

registered instantaneously everywhere in the model domain, the lθ  wave is seen to have 

propagated less than 10µm in the thickness (z-) direction and approximately 15µm in the 

radial (r-) direction.  Since the thermo-elasto-viscoplastic model is also based on the 

generalized thermoelasticity, the thermal wave has the same characteristics described in 

Chapter VI.   

As the ambient temperature increases from room temperature to over 1000K, the 

dynamic behavior of the silicon wafer is no longer elastic but rather dominantly elasto-

viscoplastic.  The propagation speed of the thermal wave at 1100K decreases 

approximately 10% compared with the wave speed at 300K at t=10ns.  Furthermore, the 

augment of such an elasto-viscoplastic behavior modifies the thermal waveform, 

especially in the thickness direction.  Instead of oscillating along the thickness direction 

and propagating deeper into the region, as the wave corresponding to 300K ambient  
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Figure 7.1 Temperature increment of lattice temperature at t=10ns corresponding to four 

different ambient temperatures: 300K, 600K, 800K and 1100K 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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temperature, the thermal wave is seen to oscillate less as the ambient temperature 

increases. 

 

7.3.2 Displacement Fields as Temperature Indicators 

The ultra-short laser pulse induced displacement fields corresponding to 300K 

and 1100K ambient temperatures are presented in Figure 7.2.  As aforementioned, w  

and u  are displacement variables in the z- and r-direction, respectively.  By comparing 

the elasto-viscoplastic displacement at 1100K with the elastic response at 300K, it is 

seen that the amplitudes of these displacements in both directions increase nearly one 

order of magnitude within the time window considered.  Similar to the thermal field, the 

waveforms of these mechanical responses are smoothed when the silicon material goes 

into the elasto-viscoplastic range.  For instance, as highlighted in the figure, the elasto-

viscoplastic behavior of the silicon wafer at high ambient temperature eliminates the 

high frequency components that are seen appearing at 300K.  In addition, the 

displacement waves are seen to travel 10% slower for the 1100K case.  The 

displacement in the radial (r-) direction, u , has a negative and relatively large amplitude 

near the top surface, all laser affected nodes enclosed in this region move toward the 

symmetry axis r = 0 in compression.   
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Figure 7.2 Displacement fields at 10ns corresponding to two different ambient 

temperatures: 300K and 1100K  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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The nodal motion can be further studied by determining the resultant 

displacement of w  and u  at each node.  Deformations induced by the ultra-short laser 

pulse at two different ambient temperatures, 300K and 1100K, are shown in Figure 7.3.  

It should be noted that as the induced motion is highly localized in space, only the results 

within the disk bound by z ≤6µm and r ≤12.5µm are considered, and the resultant 

displacements shown in the figure are magnified by a factor of 104 for clarity.  The 

positions of the grid nodes are taken at t=10ns.   It can be seen by comparing the results 

corresponding to 300K and 1100K that the nodal motion becomes more prominent as the 

ambient temperature increases.  Given the relatively small amplitude of motion 

compared with the atomic and lattice dimensions, the nodal motions can be interpreted 

as atomic or lattice vibrations.  Due to the increasing dislocation density generated by 

plastic flow, silicon atoms will vibrate with much larger amplitudes when ambient 

temperature rises.  It is thus probable that the femtosecond laser induced lattice 

displacements could be a viable thermal indicator. 

Figure 7.4 exhibits the displacement w at t=10ns as a function of ambient 

temperature ranging from 300K to 1100K.  The displacement is taken at a sampling 

location on the top face of the silicon wafer where z=0, r=4μm.  It is seen that the 

amplitude of the nodal motion at the sampling location considered increases with 

temperature.  The relationship between the displacement w and temperature, though 

nonlinear, is obviously well-defined.  The data in the figure is perfectly curve-fitted 

using third-order polynomials as   
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Figure 7.3 Comparison of nodal motions at t=10ns corresponding to two different 

ambient temperatures: 300K and 1100K 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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8 3 5 27.2 10 7.6 10 0.034 2.2w T T T− −= × − × + +    (7-29) 

It should be noted that the unit of displacement w in Eq. (7-29) is pico-meters, and 

temperature T is in Kelvin.  Therefore, as can be seen in Figure 7.4, as long as the out-

of-plane displacement w at the selected sampling location is measured at the particular 

time instance (t=10ns in this example), the temperature of the silicon wafer can be 

determined within the investigated temperature range.  However, a relevant question to 

ask is if such a small displacement (atomic vibration) could be observed by any means? 

Harb, Miller and co-workers [76-78] have demonstrated the feasibility for using 

femtosecond electron diffraction (FED) to resolve laser induced atomic motions in single 

crystalline silicon wafer.  The time resolution of FED is found to be as small as 300fs.  

In other words, the FED method is capable of monitoring the atomic positions every 

300fs.  As the coherent atomic vibrations modulate the optical properties of the silicon 

film (e.g. reflectivity), the electron diffraction changes correspondingly can be probed by 

a CCD camera.  There are also a few other techniques, such as X-ray diffraction [79-81], 

that provide a direct mapping of the lattice structure.  Consequently, the measurement of 

femtosecond laser induced displacements at t=10ns is theoretically and practically 

feasible.  
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Figure 7.4 Displacement w vs. temperature at t=10ns with fitting error; sampling 

location at z=0, r=4μm 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 7.5 shows the changes of displacement u at t=10ns at various temperatures.  

The displacement is taken at the same sampling location as w.  The negative magnitude 

of u is subject to the compressive nodal motion towards the center of the laser beam.  

Similar to the transverse displacement w, the longitudinal displacement u also has larger 

amplitudes at higher temperatures.  The well-defined relationship between the 

displacement u and temperature is nonlinear, and the nonlinearity is seen to be 

significantly more prominent for elasto-viscoplastic behavior.  The third-order 

polynomials used to fit the u-T relation can be expressed as   

7 3 4 21.7 10 1.8 10 0.092 2.4u T T T− −= − × + × − +    (7-30) 

Even though the longitudinal displacement u associates with comparatively poor 

signal-to-noise ratios, the FED method was proved to be able to gauge both the 

transverse and longitudinal acoustic waves [76], indicating that the displacement u could 

be temperature indicator as well.  Compared with w, displacement u is seen to be 

relatively more sensitive to temperature increment.  This is more evident in Figure 7.6. 

To differentiate 301K from 300K, one would need to differentiate approximately 0.01pm 

in w-displacement.  Figure 7.6 shows the differentiating w-displacements needed to 

discern 401K from 400K, 501K from 500K, …, and 1101K from 1100K.  It is seen that 

the corresponding ±1K resolution using u-displacement is approximately twice that of 

the w’s, implying that transverse atomic motions could provide better differentiation 

resolution.  Another observation is that thermal resolution becomes better with 

increasing temperature.  For instance, to tell 1100K apart from 1101K, one would only 

need to be able to differentiate approximately 0.13pm in the w displacement.   
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Figure 7.5 Displacement u vs. temperature at t=10ns with fitting error; sampling 

location at z=0, r=4μm 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 7.6 Using displacements w and u to differentiate 1K temperature  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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7.3.3 Stress Fields as Temperature Indicators 

The distributions of the three normal stress components ( zzσ , rrσ  and θθσ ) along 

with the one shear stress component ( rzσ ) at 300K and 1100K are shown in Figure 7.7.  

Compared the elasto-viscoplastic thermal stresses at 1100K with the corresponding 

elastic response at 300K, it is observed that the amplitudes of these stress components 

increase nearly one order of magnitude within 10ns.  The normal component zzσ  

displays similar traits as do the displacement w and thermal field in that the waves are 

modified in response to the elasto-viscoplastic constitutive law.  Other than this, the 

distributions of the four stress components do not exhibit much difference in wave 

profiles.   

To investigate the impact of temperature on the dispersion of the stress wave, a 

propagation path needs be defined first.  The center line of the laser beam, r=0, is 

selected as the path.  Two sampling locations, 1 and 2 shown in Figure 6.10, are placed 

along the path.  The coordinates of these locations are (z, r) = (0.4µm, 0µm) and (4.8µm, 

0µm).  The propagating length between them is therefore 4.4µm.  The zzσ  waveforms 

acquired at locations 1 and 2 corresponding to 300K and 1100K are plotted in Figure 

7.8.  It is seen that the influence of temperature on the waveforms is significant.  The 

oscillating elastic thermal stress wave is completely modulated due to the elasto-

viscoplastic behavior.  The amplitude of the propagating zzσ  stress wave does not vary 

too much at 300K.  However, it increases approximately one order of magnitude 

traveling from location 1 to location 2 at 1100K.    
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Figure 7.7 Stress fields at t=10ns corresponding to two different ambient temperatures: 

300K and 1100K (pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 7.8 Waveforms obtained at sampling locations 1 and 2 corresponding to two 

different ambient temperatures: (a) 300K and (b) 1100K  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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To investigate the two dissimilar waveforms of time-varying spectra obtained at 

locations 1 and 2, the Gabor Wavelet Transform (GWT) is employed to resolve the time-

frequency information.  As mentioned in Chapter III, GWT has been shown to provide 

simultaneous time-frequency resolution optimal for resolving dispersive waves found 

propagating in silicon wafers.  Figure 7.9 shows the GWTs of the waveforms acquired at 

locations 1 and 2 corresponding to 300K and 1100K.  For the 300K case, where the 

silicon wafer undergoes only elastic deformations, the majority frequency components at 

location 1 are approximately 400-800MHz.  As the wave propagates to location 2, the 

high frequencies can barely be observed.  Instead the lower frequency components at 

100-200MHz become dominant.  The high frequency components, on the other hand, do 

not exist at both locations for the 1100K case, thus indicating the same observation made 

previously that the plastic flow greatly dampens high frequencies in the elasto-

viscoplastic response.   
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Figure 7.9 GWT of waveforms obtained at sampling locations 1 and 2 corresponding to 

two different ambient temperatures: 300K and 1100K  

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Stress variations as a function of ambient temperatures is discussed in the 

followings.  The stress-free boundary condition specified in Chapter V where 0zzσ =  on 

the top surface of the silicon wafer at z=0, renders zzσ  infeasible for resolving 

temperature variation.  Instead the stress component, rrσ , is explored.  Figure 7.10 

displays the change of rrσ  at t=10ns at various temperatures.  The data is taken at the 

same finite different grid as displacements w and u.  The amplitude of rrσ  is seen to 

increase as temperature increases.  The well-defined relationship between rrσ  and 

temperature can also be well fitted using a third-order polynomials as   

8 3 5 22.4 10 2.7 10 0.014 0.73rr T T Tσ − −= × − × + −    (7-31) 

It should be noted that the unit of rrσ  in Eq. (7-31) is MPa.  Therefore, as can be seen in 

Figure 7.10, the stress generated by femtosecond laser is extremely sensitive to 

temperature variations.  This can be better concluded by studying Figure 7.11 in which a 

1K thermal variation results in at least a 5,000Pa changes in stress amplitude.  This 1K 

temperature resolution becomes even better when the silicon undergoes elasto-

viscoplastic response.  For instance, the thermal resolution of rrσ  is over 40KPa at 

1100K.  Harb has demonstrated that the atomic strain waves can be measured by FED 

[76], indicating that the determination of stresses in such a nano-scale region is practical.  

Consequently, it is probable to explore the femtosecond laser induced stresses using 

LISWT to achieve the desired ±1K thermal resolution. 
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Figure 7.10 Stress rrσ  vs. temperature at t=10ns with fitting error; sampling location at 

z=0, r=4μm 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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Figure 7.11 Using stress component rrσ  to differentiate 1K temperature 

(pulse duration 500fs, spot size 10μm, laser fluence 0.005J/cm2) 
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7.4 Summary 

The femtosecond laser induced thermo-elasto-visco-plastodynamics in silicon 

wafer was investigated in this chapter.  The governing formulation incorporated the 

generalized thermodynamic model and the Haasen-Sumino constitutive law for single 

crystalline silicon.  The presented computational algorithm allowed the thermo-elasto-

viscoplastic responses to be investigated at elevated ambient temperatures ranging from 

300K to 1100K.  Results presented in this chapter admitted thermomechanical near-field 

responses that were inherently elasto-visco-plastodynamic subject to the wide thermal 

ranges considered.  The propagation speeds of the thermal and mechanical waves at 

1100K reduced approximately 10% compared with the corresponding wave speeds at 

300K within 10ns time window.  The high frequency components seen to associate with 

the elastic response at low temperature were found to be eliminated, and waveforms 

modified, as the silicon wafer underwent elasto-viscoplastic deformations.  The 

amplitudes of the mechanical responses, including displacements and thermal stresses, 

were observed to increase with elevating temperature, indicating that they could be 

employed as viable temperature indicators.  Transverse displacement w, longitudinal 

displacement u and normal stress rrσ  all established well-defined relations with 

temperatures.  Employing electron diffraction and X-ray diffraction, it is probable to 

explore femtosecond laser induced w, u and rrσ  fields for the thermal profiling of silicon 

wafer undergoing RTP with the desired ±1K thermal resolution.   
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CHAPTER VIII 

CONCLUSIONS 

 

The primary goal of this research was to formulate a comprehensive model for 

describing the fundamental mechanism dictating the interaction of ultrafast laser pulses 

with single crystalline silicon thin structure.  The need for establishing the feasibility of 

employing femtosecond laser for silicon wafer processing using Laser Induced Stress 

Waves Thermometry (LISWT) motivated the work.  The dissertation addressed the need 

for understanding and interpreting the thermomechanical responses in single crystalline 

silicon when irradiated by lasers of subpico- and nano-seconds pulse width.  The 

comprehensive physical model developed for the study was of hyperbolic type capable 

of characterizing non-thermal melting and elasto-viscoplastic deformation as functions 

of laser input parameters and ambient temperature.   

The plastic constitutive law described by the Haasen-Sumino model was 

followed to consider the kinematics of elasto-plastic deformation of the silicon material 

subject to nanosecond laser pulses, which resulted in the formulation of a system of nine 

first-order hyperbolic equations applicable to describing 3-D elasto-viscoplastic wave 

motions in silicon wafer.  The formulation allowed both velocities and stresses be 

simultaneously determined without having to solve for displacements.  Numerical results 

showed that the elasto-viscoplastic characteristics of the single crystalline silicon were 

accurately realized at temperatures ranging from room temperature to exceeding 1000°C.  

A staggered finite difference model was developed to execute the solution strategy for 
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obtaining converged solutions without unwanted numerical oscillations.  Compared with 

conventional finite difference methods in which primary variables were evaluated at grid 

points, the staggered finite difference scheme defined primary variables at spatial 

locations midway between two consecutive grid points and the center of each element.  

The group velocity and attenuation factor of certain selected frequency components were 

correlated with temperature to study the feasibility of exploiting nanosecond laser 

induced propagating stress waves to the high resolution thermal profiling of silicon 

wafers undergoing rapid annealing.  Frequency- and temperature-dependent group 

velocity and wave attenuation were calculated using the time-frequency Gabor Wavelet 

Transform (GWT).  Extensive numerical simulations demonstrated good agreements 

with published physical data.  The group velocities of the 30~70kHz frequency 

components were recommended for the extraction of thermal information with the 

desired ±1°C resolution.  Wave attenuation factor was found to have unsatisfactory 

thermal resolution, thus not recommended for performing thermometric functions in 

nanosecond laser induced stress wave thermometry. 

Femtosecond laser induced transport dynamics in semiconductor material was 

formulated based on the relaxation-time approximation of the Boltzmann equation.  The 

underlying governing equations that included the macroscopic electrical current 

equation, macroscopic energy current equation, balance equation of carrier number and 

balance equation of carrier energy were comprehensively reviewed along with the key 

assumptions made for the legitimate application of the Boltzmann equation to describing 

physical domains that are of macroscopic scale.  Temperature-dependent multi-phonons, 
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free-carrier absorptions, and the recombination and impact ionization processes 

governing the laser model and carrier numbers were considered.  The balance equation 

of lattice energy and the equations of motion that are of both parabolic and hyperbolic 

types were derived to describe the complex thermo-elasto-plastodynamic behaviors of 

the silicon material in response to ultrafast laser pulsing.   

The parabolic femtosecond laser heating formulation allowed responses 

including the evolutions of electron-lattice temperatures, electron-hole carrier density, 

displacement and stress fields and precursors to the initiation of waveguide modes to be 

modeled and investigated.  Unlike the many one-dimensional models reported in the 

literature that considered semi-infinite half-space, an axisymmetric model of finite 

geometry was employed to better understand the effects of multi-dimensionality on 

thermal and mechanical wave generations.  A novel scheme incorporating varying time 

steps ranging from 5fs to 5ps was implemented with the velocity-Verlet multi-time scale 

algorithm to allow for time-integrating various thermal-mechanical responses up to 10ns.  

The time evolution and spatial distribution of electron-lattice temperatures varied with 

the laser fluence input.  The femtosecond laser generated non-thermal damages were 

also found to be functions of laser fluence and pulse duration.  The induced mechanical 

responses including displacement and stress waves were highly dispersive and 

characteristically of broadband, low amplitude, and extremely high frequency.  The 

near-field responses preceding the development of stress waves were seen to generate 

propagating power densities with high magnitudes on the order of 1013~1014W/m3.   
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The dilemma that thermal disturbances propagate with infinite speed was 

properly remedied by considering energy transport as finite and local.    The hyperbolic 

femtosecond laser heating formulation incorporated hyperbolic-type energy transport 

equations derived following the Green-Lindsay’s generalized theory of thermoelasticity, 

in which the finite nature of both the thermal and mechanical responses was facilitated 

through considering thermal-mechanical relaxation and thermal relaxation.  It also 

permitted the variations of temperature, displacement and thermal stress in both time and 

space to be established as functions of the non-melting laser input parameters.  The time 

evolution of the carrier density in conjunction with the non-thermal melting fluence at 

which no physical damage was inflicted subject to a given pulse duration was favorably 

examined against published experimental data, thus validating the model formulation.  

Femtosecond pulse induced waves described by the hyperbolic formulation were also 

dispersive and broadband in frequency.  The algorithm of accumulated damage 

evaluation was applied to qualitatively estimate the potential for the induced stress 

waves to initiate fatigue cracking.  It was seen that the high power density waves 

generated by the 500fs ultrafast laser of 0.005J/cm2 in fluence and 10µm in spot size, 

although on the order of 1014W/m3, was insufficient to inflict mechanical flaws. 

Lastly the Haasen-Sumino constitutive model was incorporated into the 

hyperbolic femtosecond laser heating formulation to describe the thermo-elasto-

viscoplastic behaviors of the silicon wafer at elevated ambient temperature ranging from 

300K to 1100K.  The elasto-visco-plastodynamic responses of the material at 1100K 

were characterized by thermal-mechanical waves devoid of high frequency components 
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that were observed propagating in the corresponding elastic responses at 300K.  The 

propagation speed of the thermo-elasto-visco-plastodynamic responses was found to be 

approximately 10% slower than their elastic counterparts.  Displacement responses 

including the transverse (w) and longitudinal (u) components showed well-defined 

relations with various wafer temperatures.  The relations could be fitted by third-order 

polynomials with negligible errors.  The normal stress component, rrσ , also established 

a similar affection on temperature.  Thermal resolution improved as silicon became 

elasto-viscoplastic in response.  With proven atomic motion tracing technologies such as 

electron diffraction and X-ray diffraction, performing femtosecond laser induced 

thermal-mechanical responses in thermometry technique of silicon wafer annealing 

would be feasible with desired thermal resolution.  
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