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ABSTRACT 

 

Photocurable Inorganic-Organic Hydrogels for Biomedical Applications.  

(December 2009) 

Yaping Hou, B.E. Beijing University of Aeronautics and Astronautics 

Chair of Advisory Committee: Dr. Melissa A. Grunlan 

 

There are two primary objectives of this dissertation research. The first objective 

was to prepare a library of inorganic-organic hydrogels from methacrylated star 

polydimethylsiloxane (PDMSstar-MA) and diacrylated poly(ethylene oxide) (PEO-DA) 

with tunable chemical and physical properties for use as tissue engineering scaffolds. 

These inorganic-organic hydrogels provide a useful platform to study the effect of 

scaffold properties on cell behavior in tissue culture. 

Twenty compositionally unique hydrogels were prepared by photo-crosslinking 

varing molecular weights (Mn) of PEO-DA (Mn = 3.4k and 6k g/mol) and PDMSstar-MA 

(Mn = 1.8k, 5k and 7k g/mol) at varying weight ratios (up to 20 wt% PDMSstar-MA). 

Introduction of PDMSstar-MA caused formation of discrete PDMS-enriched “micro-

particles” dispersed within the PEO hydrogel matrix. The swelling ratio, mechanical 

properties in tension and compression, non-specific protein adhesion and cytotoxicity of 

hydrogels were studied.  

The second objective was to prepare thermoresponsive nanocomposite hydrogels, 

which are mechanically robust and can remove adhered cells via thermal modulation. 
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Such hydrogels may be useful as “self-cleaning” membranes for implanted biosensors to 

extend their lifetime and efficiency. These hydrogels are comprised of a poly(N-

isopropylacrylamide) (PNIPAAm) hydrogel matrix and polysiloxane colloidal 

nanoparticles (~220 nm and 50 nm ave. diameter). Due to the low preparation 

temperature, the nanocomposite hydrogels exhibited a homogeneous morphology by 

SEM analysis. The volume phase transition temperature (VPTT, ~33 ºC) of the 

nanocomposite hydrogels was not altered versus the pure PNIPAAm hydrogel, which is 

near body temperature. Generally, nanoparticles led to improve mechanical properties 

versus pure PNIPAAm hydrogels. When these nanocomposite hydrogels are heated 

above the VPTT, they become more hydrophobic. When they are reversibly switched 

from a water-swollen to a deswollen state, the change in surface properties, as well as 

swelling-deswelling, was effective upon the removal of adhered cells.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Overview 

A hydrogel is a three-dimensional (3D) polymer network in which a large amount 

of water is present [1-3]. In general, the amount of water is 20 to 99% of the total 

weight. Hydrogels are typically formed from hydrophilic polymers such as those which 

contain hydrophilic moieties (e.g. sulfonic (-SO3H), carboxyl (-COOH), amidic (-

CONH-), hydroxyl (-OH), and amino (-NH2) groups). Hydrophobic polymers may be 

incorporated into hydrogels at low level by blending, co-polymerizing or by producing 

interpenetrating or semi-interpenetrating polymer networks with hydrophilic polymers. 

The stability (i.e. insolubility) of the hydrogel in water is due to the presence of covalent 

or physical crosslinks which maintain the 3D network. Hydrogels can be classified in 

several ways (Table 1.1). 

 

Table 1.1 Classifications of hydrogels 

Classification Contents 

Source (1) Natural; (2) Synthetic 

Component (1) Homopolymer; (2) Copolymer; (3) Multipolymer,  

Crosslink (1) Covalent bond; (2) Intermolecular force 

Preparation method (1) From macromer; (2) From macromer 

Stimuli-responsive (1) Thermoresponsive; (2) pH-responsive; (3) Glucose-responsive 

 
____________ 
This dissertation follows the style of Biomaterials. 
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Hydrogels may be formed from either natural or synthetic polymers.[4] Such 

natural polymers include proteins (e.g. collagen, gelatin and fibrin) and carbohydrates 

(e.g. agarose, alginate, hyaluronic acid and heparin)[5]. Synthetic polymers used to form 

hydrogels include poly(ethylene glycol) (PEG), poly(hydroxyethyl methacrylate) 

(PHEMA), poly(vinyl alcohol) (PVA), poly(acrylamide) (PAAm), poly(acrylic acid) 

(PAA), and poly(lactic acid) (PLA). Depending on the number of unique polymer 

components, hydrogels may be classified as homopolymer, copolymer, or multipolymer 

hydrogels. Homopolymer, copolymer, and multipolymer hydrogels are composed of 

polymers with one, two or three (or more) unique monomer repeat units, respectively. 

To maintain the 3D network structures, polymer chains of hydrogels are 

connected via chemical or physical crosslinks. Chemical crosslinks are primary covalent 

bonds formed by reaction of various terminal or pendant functional groups. Physical 

crosslinks are secondary molecular interaction, such as van der Waals interactions, ionic 

interactions, hydrogen bonding, or hydrophobic interactions. Hydrogels may be prepared 

from a reactive monomer and multifunctional crosslinker or a macromer with pendant or 

terminal group and optionally a multifunctional crosslinker. Crosslinking may be 

catalyzed by heat or UV-irradiation in the presence of a catalyst. Crosslinking may be 

accomplished with aqueous solution or networks soaked in H2O following crosslinking. 

Certain hydrogels are stimuli- or environmentally-responsive such that swelling 

behavior is dependent on the external environment. Environmentally responsive 

hydrogels show drastic changes in their swelling ratio due to modulation of various 

external stimuli, including temperature, pH, and glucose concentration. 
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 Hydrogels are a widely studied class of biomaterials due to their unique 

properties including: biocompatibility, porosity, hemocompatibility and mechanical 

properties similar to some soft tissues. The biocompatibility of hydrogels limits the host 

response. Because they are porous, hydrogels provide sufficient diffusion of oxygen, 

nutrients, waste and permits cellular ingrowth in tissue engineering. The similar 

mechanical properties of hydrogels and soft tissues limit local mechanical irritation of 

the tissue. 

One of the earliest applications of hydrogels was for contact lenses. The original 

material for hydrogel contact lens was poly(2-hydroxyethyl methacrylate) (PHEMA). 

Other hydrogel materials include methacrylic acid (MAA), 1-vinyl-2-pyrrolidone 

(NVP), dimethylacrylamide (DMA), poly(ethylene glycol) (PEG) and poly(N-isopropyl 

acrylamide) (PNIPAAm). Hydrogels responsive to specific molecules, such as glucose 

or antigens, can be used in vitro in drug delivery (e.g. drug delivery patch) or in vivo 

(drug delivery system). Alginate is one of the most popular natural hydrogel matrices for 

drug release. Hyaluronic acid derivatives are a good example of naturally occurring 

polymers that have been modified to control the degradation and release rates of insulin 

and nerve growth factor. Poly(vinyl alcohol) (PVA) is used for releasing bovine serum 

albumin in vitro. Poloxamer gels have also been used as delivery system. The 

poloxamers (Pluronic®) are ABA-type triblock copolymers composed of poly(ethylene 

oxide) (PEO)(A) and poly(propylene oxide) (PPO) (B) units. In the work, hydrogels 

were utilized as tissue engineering scaffolds and membranes for biosensors.  
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1.2 Hydrogels as Tissue Engineering 

Every year, millions of Americans suffer tissue loss or organ failure[6]. Surgeons 

have several options to treat organ or tissue loss including: (1) Allotransplantation: 

organs or tissues are transplanted from a cadaveric or living-related donor into the 

patient. (2) Autotransplantation: organs or tissues are moved from their original location 

in the same patient, (3) Xenotransplantation: organs or tissues are moved from one 

species to a human patient, and (4) Transplantation: artificial, nonbiological materials 

are used to replace tissues or organs. However, there are drawbacks to each of these 

approaches, including lack of available healthy tissue from patient or donor, rejection of 

tissue or organ from donor, and host-response to artificial transplants.  

Tissue engineering is an interdisciplinary field that combines the knowledge of the 

life sciences with engineering design principles to create novel methods to restore, 

maintain, or improve tissue function[7, 8]. Although the field of tissue engineering is 

less than 20 years old, a significant amount of progress has been made in a relatively 

short period of time. Nearly every tissue in the body is being investigated, including 

skin[9, 10], cartilage[11-13], bone[14, 15], nerves[16, 17], blood vessels[18], heart 

valves and heart muscle [19, 20]. Engineered skin is the first tissue engineered product 

to be commercially available.  

Two general tissue engineering strategies have emerged: the use of acellular 

matrices and the use of matrices with cells. Both strategies requires a 3D porous scaffold 

is often used to create an environment in which living cells can attach, differentiate, 

proliferate and produce new extracellular matrix (ECM) (Fig. 1.1). The materials used 
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for scaffold are biocompatible, easily fabricated, sterilized and ideally biodegradable. 

The ideal scaffolds should have an extensive network of interconnecting pores so that 

cells can migrate, multiply and attach deep within the scaffolds.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  General process of tissue engineering. Adapted from [21] . 

 

Both natural and synthetic polymers have been used to create tissue engineering 

scaffolds. Natural polymers used in tissue engineering are usually composed of 

extracellular matrix components (e.g., collagen, fibrin, glycosaminoglycans, and 

chitosan) or complete decellularized matrices (e.g., heart valves, small intestinal 

submucosa). A broad array of synthetic polymers have been used as scaffolds in tissue 
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engineering including: poly(glycolic acid) (PGA), poly(lactic acid) (PLA), copolymers 

of glycolic and lactic acids, polyurethanes, poly(hydroxyl alkanoate) (PHA), 

polyanhydrides and polyortho esters. 

Hydrogels are of interest as scaffolds for engineering many due to their distinct 

advantages (Table 1.2). These advantages include: high tissue-like water content, high 

biocompatibility, mechanical properties that parallel the properties of soft tissues, 

efficient transport of nutrients and waste, powerful ability to uniformly encapsulate cells, 

and ability to be injected as a liquid that gels in situ.  

 

Table 1.2. Advantages and disadvantages of hydrogels as tissue engineering scaffolds 

Advantages 

Aqueous environment can protect cells and fragile drugs 

Good transport of nutrient to cells and products from cells 

May be easily modified with cell adhesion ligands 

Can be injected in vivo as a liquid that gels at body temperature 

Usually biocompatible 

 
Disadvantages 

Usually mechanically weak 

May be difficult to load drugs and cells and then crosslink in vitro as a prefabricated 

May be difficult to sterilize 

 

1.3 Hydrogels as Sensor Membranes 

Biosensors are functional analogs based on the direct coupling of an immobilized 

biologically active compound with a signal transducer and an electronic amplifier. When 
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biomedical implants such as biosensors come in contact with physiological 

environments, negative interactions lead to reduced efficiency or complete failure. 

Biosensor failure modes may be divided into two main categories: (1) component-based 

failures such as lead detachment, electrical shorts, and mcembrane delamination; and (2) 

biocompatibility-based failures such as membrane biofouling, electrode passivation, and 

fibrous encapsulation. Some researchers advocate that biofouling of the membrane is the 

main problem. Membrane biofouling is the accumulation of proteins, cells, and other 

biological materials on the sensor surface.  

Figure 1.2 shows an example of sequence of events which leads to formation of 

fibrous capsules around biosensors implanted subcutaneously. First, subcutaneous 

implantation causes a local injury followed by an acute inflammatory response that 

involves the release of fluid and plasma proteins. Leukocytes (mainly neutrophils and 

monocytes) migrate to the implanted device and adhere to the surface in an attempt to 

begin the process of phagocytosis. After the initial acute inflammatory response, chronic 

inflammation involves a sustained localized biological response at the implant site, 

including the recruitment of macrophages, monocytes, and lymphocytes. Finally, a 

fibrous capsule composed mainly of macrophages and collagen forms around the 

implanted device. For an implanted glucose sensor to work, glucose diffusion must not 

be interrupted. Unfortunately, the adhered proteins and cells from the physiological 

environment on the surface of an implanted glucose sensor or any biosensor limit 

glucose diffusion. This reduces the lifetime and efficiency of the biosensor and it must 

be removed. With membrane biofouling playing a significant role in sensor instability, 
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biosensors have over the years proved to be inadequate for long term in vivo 

applications. 

 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 1.2. Sequence of events that leads to formation of fibrous capsules around 
implanted biosensors[22]. 
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CHAPTER II 

PHOTO-CROSSLINKED PDMSstar-PEG HYDROGELS: 

SYNTHESIS, CHARACTERIZATION, AND POTENTIAL APPLICATION FOR 

TISSUE ENGINEERING SCAFFOLDS 

 

2.1 Overview  

Inorganic-organic hydrogels with tunable chemical and physical properties were 

prepared from methacrylated star polydimethylsiloxane (PDMSstar-MA) and diacrylated 

poly(ethylene glycol) (PEG-DA) for use as tissue engineering scaffolds. Twenty 

compositionally unique hydrogels were prepared by photo-crosslinking varying weight 

ratios of PEO-DA and PDMSstar-MA of different molecular weights (Mn): PEG-DA (Mn 

= 3.4k and 6k g/mol) and PDMSstar-MA (Mn = 1.8k, 5k and 7k g/mol). Introduction of 

PDMSstar-MA caused formation of discrete PDMS-enriched microparticles dispersed 

within the PEG matrix. The swelling ratio, mechanical properties in tension and 

compression, non-specific protein adhesion and cytotoxicity of hydrogels were also 

studied. This library of inorganic-organic hydrogels with tunable properties provides a 

useful platform to study the effect of scaffold properties on cell behavior. 

 

2.2 Introduction 

Tissue engineering (TE) seeks to repair or replace damaged or diseased tissues 

and organs.[23] A three-dimensional polymeric scaffold is often used to create an 

environment in which living cells can attach, proliferate, differentiate, and ultimately 
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produce a new extracellular matrix (ECM).[5, 21, 23-30] Synthetic polymers generally 

provide greater control and range of chemical and physical properties compared to 

natural polymers.[21, 28, 31] Synthetic hydrogels have been widely studied as tissue 

engineering scaffolds.[4, 31, 32] Hydrogels are hydrated polymer networks comprised of 

hydrophilic polymers which are crosslinked via chemical bonds or physical 

interactions.[3, 33, 34] The utility of hydrogels as scaffolds is attributed to several 

factors, including superior biocompatibility which minimizes inflammation, thrombosis, 

and tissue damage, as well as high diffusivity and elasticity which parallels many 

tissues.[4, 31, 32] Compared to thermal or redox initiated crosslink mechanisms, photo-

induced free radical hydrogel crosslinking produces less heat while allowing for 

improved spatial and temporal control. As a result, geometrically complex scaffolds may 

be rapidly formed in situ from cells suspended in aqueous solutions of monomers or 

macromers and may be done so in vivo.[30, 35-38]    

Photopolymerizable poly(ethylene glycol) diacrylate (PEG-DA) based hydrogels 

have been extensively utilized as scaffolds for the regeneration of tissues including 

bone,[39, 40] cartilage,[37, 41, 42] nerve,[43] and vascular tissue.[44-48] PEG 

hydrogels are particularly useful for controlled studies of cell-material interactions 

because of their intrinsic resistance to protein absorption and cell adhesion.[49] Thus, 

PEG hydrogels are “biological blank slates” in which cell-material interactions may be 

limited to the adhesive ligands introduced.[40, 44, 50]  To permit eventual replacement 

by the growing tissue, biodegradable PEG hydrogels have been formed by incorporation 

of enzymatically labile peptides[51, 52] or hydrolytically labile linear esters.[53-57]  
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In natural tissues, the ECM mediates critical cell function, including 

regeneration, via signaling cascades involving specific binding events as well as non-

specific chemical and physical features.[58, 59] Thus, development of scaffolds having 

specific properties which guide cell behavior is critical for tissue regeneration.[60] 

Certain scaffold material properties have been shown to impact cell behavior.[61, 62] 

For instance, the chemical nature of the scaffold, in terms of bioactivity, chemical 

functionality, and hydrophilicity has been shown to influence cell behavior.[63-73] 

Physical properties such as scaffold morphology[74-80] and modulus[81-87] also affect 

cell behavior. 

In order to guide cell behavior through cell-material interactions, scaffolds with 

precisely tunable chemical and physical properties are crucial. For such studies, 

synthetic hydrogel scaffolds with chemical and physical properties which can be finely 

and easily controlled are required. For PEG-DA hydrogels, crosslink density and 

mechanical properties may be tailored by simply varying the molecular weight and/or 

the concentration of PEGDA.[88] However, since PEG-DA hydrogels are single-

component systems, the ability to uncouple various material properties, such as modulus 

and swelling, is limited.[89] Thus, hydrogels that maintain the benefits of PEG-DA 

while extending the ability to tune and uncouple material properties would further 

enhance the ability to establish relationships between cell behavior and scaffold 

properties. 

In this study, both the chemical and physical properties of PEG-DA hydrogels 

were tuned by introduction of a methacrylated star polydimethylsiloxane (PDMSstar-MA) 
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macromer. PDMS is an inorganic polymer which is biocompatible, hydrophobic, 

exhibits excellent gas permeability, low glass transition temperature (Tg,-127 °C), and 

exceptional elasticity when lightly crosslinked.[90] Silicon-containing materials have 

been shown to specifically affect cell behavior. For instance, silica-calcium phosphate 

composite scaffolds have been shown to induce osteoblast alkaline phosphatase activity 

with increasing silica content.[73] Also, for siloxane-gelatin scaffolds, enhanced 

osteoblast alkaline phosphatase activity was observed with increasing siloxane 

content.[71, 72] The hydrogels reported herein are two component systems and so the 

average number molecular weight (Mn) and concentration of both macromers (i.e. PEG-

DA and PDMSstar-MA) were used to tailor hydrogel properties. The chemical properties 

of the hydrogels were switched from purely organic, PEG to inorganic-organic 

PDMSstar-PEG by introducing increased levels of PDMSstar-MA, an inorganic polymer. 

In addition, the effect of hydrogel composition on physical properties, including 

morphology, equilibrium swelling (i.e. hydration), mechanical properties, non-specific 

protein adsorption, and cytoxicity were examined. 

 

2.3 Experimental Section 

Polymer Characterization 

 NMR. 1H spectra were obtained on a Mercury 300 300-MHz spectrometer 

operating in the Fourier transform mode. Five percent (w/v) CDCl3 solutions were used.  

 IR Spectroscopy. IR spectra of neat liquids on NaCl plates were recorded using a 

Bruker TENSOR 27 Fourier transform infrared spectrometer.   
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Gel Permeation Chromatography. Gel permeation chromatography (GPC) 

analysis was performed on a Viscotek GPC system equipped with three detectors in 

series: refractive index (RI), right angle laser light scattering (RALLS), and viscometer 

(VP). The ViscoGEL HR-Series (7.8mm x 30 cm) column packed with divinylbenzene 

crosslinked polystyrene was maintained at 25°C in a column oven. The eluting solvent 

was HPLC grade toluene at a flow rate of 1.0 mL/min. The detectors were calibrated 

with a polystyrene narrow standard with the following parameters: Mw (115,000 g/mol), 

polydispersity (1.01), intrinsic viscosity (0.519 dL/g), and dn/dc (0.185 mL/g). Data 

analysis was performed with Viscotek OmniSec software (Version 4.0).  

 
Hydrogel Characterization 

Morphological Characterization. For a given hydrogel, a disc (8 mm diameter, 

1.5 mm thickness) was punched from a hydrogel sheet with a die. A Nile Red solution 

was prepared as follows: 75 μL of a Nile Red solution (20 mg per mL of methanol) was 

dissolved in 8 mL of double distilled water (DDW) and combined with 120 mL of PBS. 

Each hydrogel disc was sequentially soaked for 24 hr each in 60 mL of the 

aforementioned Nile Red solution and 60 mL of PBS. With each disc placed on a glass 

microscope slide and DDW dropped onto the disc to maintain hydration, images were 

captured with confocal laser scanning microscopy (CLSM) using a Leica TCS SP5 

confocal microscope (Leica Microsystems, Bannockburn, IL). Images were acquired in 

3-μm steps from the top to the bottom of the hydrogel and the 100 middle stack 

reconstructed to create a 3D images using Osirix software.   

Energy Dispersive X-Ray Spectrometry (EDS). Identification of elemental 
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compositions of specific regions of a hydrogel was performed with a field emission 

scanning electron microscope and energy dispersive X-ray spectrometer (FE-SEM/EDS) 

(FEI Quanta 600). The hydrogel was crosslinked with ruthenium vapor, plunged into 

liquid nitrogen and sequentially soaked in HMDS and ethanol. The samples were sputter 

coated with Pt/Pd at the surface with 4 nm thickness.  

Equilibrium Swelling Behavior. For a given hydrogel, three hydrogel discs (13 

mm diameter, 1.5 mm thickness) were punched from a single hydrogel sheet with a die. 

Hydrogel equilibrium swelling ratio is defined as: swelling ratio = (Ws - Wd)/Wd, where 

Ws is the weight of the water-swollen hydrogel at a certain temperature and Wd is the 

weight of the vacuum dried hydrogel (30 in. Hg, 60 ºC, 24 h). Each disc was sealed 

inside a vial containing 20 mL PBS, immersed in a temperature controlled water bath for 

24 h at 25 °C, removed, blotted with filter paper to remove surface water, and weighed 

(Ws).  

Dynamic Mechanical Analysis (DMA). DMA of hydrogels were measured in the 

compression mode with a dynamic mechanical analyzer (TA Instruments Q800) 

equipped with parallel-plate compression clamp with a diameter of 40 mm (bottom) and 

15 mm (top). Swollen hydrogel discs of constant dimension (13 mm diameter, 1.5 mm 

thickness) were punched from a hydrogel sheet and clamped between the parallel plates. 

Silicone oil was then placed around the exposed edges of the hydrogel to prevent 

dehydration. The samples were tested in a multi-frequency-strain mode (1 to 18 Hz). 

Results reported are based on the average of five individual specimens. 
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Tensile Tests. Tensile tests of hydrogels ring specimens were measured on a TA 

Instruments DMA Q800 operating in the tension mode. Specimens with a ring geometry 

were prepared by cutting a portion from a hydrogel tube produced from the double wall 

tubular mold (ID = 3 mm, OD = 7.5 mm). Individual rings (~3 mm width) were cut from 

the central portion of the appropriate hydrogel tube using a clean razor blade and sample 

dimensions measured with an electronic caliper. Each hydrogel ring was blotted with 

filter paper and loaded onto custom aluminum bars gripped directly into DMA tension 

clamps so that the upper and lower bars were located inside the ring. Samples were 

subjected to a constant strain (1 mm/min) until they broke at the center of one side of the 

ring. Stress was calculated from the measured force divided by the cross-sectional area 

of two rectangles with sides equal to the width and wall thickness of the ring. The gauge 

length corresponded to the outer diameter of the ring less the wall thickness. The 

following parameters were determined: (1) tensile modulus, (2) ultimate tensile strength 

(UTS), and (3) % strain at break. The tensile modulus was obtained from the slope of the 

linear part of the stress-strain curve. The UTS represents the maximum stress prior to 

failure. Strain was calculated from the measured displacement divided by the gauge 

length. Results reported are the average result of three specimens cut from central 

portion of the same hydrogel tube. 

Protein Adhesion. The adhesion of Alexa Fluor 555 dye conjugate of bovine 

serum albumin (AF-555 BSA; MW = 66 kDa; Molecular Probes, Inc.) onto hydrogels 

was studied by fluorescence microscopy. For a given hydrogel, three hydrogel discs 

(14.5 mm diameter, 1.5 mm thickness) were punched from a single hydrogel sheet and 
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placed in PBS (15 min) to ensure hydration. Immediately prior to transferring to a 24 

well plate, discs were gently blotted with filter paper to remove surface water. Of the 

three discs, two discs were each placed in wells containing 1.5 mL BSA (0.1 mg/mL) 

and the third disc placed in a well containing 1.5 mL of PBS. Hydrogel discs were 

maintained in the dark at RT for 3 h. Next, from both the top and bottom surfaces of the 

discs, the BSA solution was carefully removed via aspiration and both sides of the disc 

rinsed with fresh PBS 3 times. Each of these discs was returned to a well containing 1.5 

mL of fresh PBS.  

A Zeiss Axiovert 200 optical microscope equipped with a A-Plan 5x objective, 

Axiocam HRC Rev. 2), and filter cube (excitation filter of 546 ± 12 nm [band pass] and 

emission filter 575-640 nm [band pass]) was used to obtain fluorescent images on 3 

randomly selected regions each hydrogel surface. The fluorescent light source was 

permitted to warm up for 30 min prior to image capture. Linear operation of the camera 

was ensured and constant exposure time used during the image collection to permit 

quantitative analyses of the observed fluorescent signals. The fluorescence microscopy 

images were analyzed using the histogram function of PhotoShop, which yielded the 

mean and standard deviation of the fluorescence intensity within a given image. For a 

given hydrogel composition, the average fluorescence intensity of the two discs exposed 

to AF-555 BSA was subtracted from that of the disc maintained only in PBS to ensure 

correction for of any fluorescence signal from the material itself. The background-

corrected fluorescence intensities for each hydrogel were then used to quantify AF-555 

BSA levels adsorbed by comparison against a calibration curve constructed from the 
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measured fluorescence intensities of AF-555 BSA standard solutions. Standard solutions 

were prepared at 0, 0.005, 0.01, 0.02, and 0.04 mg/mL AF-555 BSA in PBS and each 

placed into an individual well containing a pure PEG hydrogel discs (H control).  

Cytotoxicity. The cytotoxicity of hydrogels was assessed by measuring lactate 

dehydrogenase (LDH) levels released by 10T½ SM progenitor cells at 24 and 72 h post-

photoencapsulation. Cells were suspended (2 x 106 cells/mL) in sterile-filtered hydrogel 

precursor solutions prepared with HEPES buffered saline (HBS; 10 mM HEPES, 150 

mM NaCl, pH = 7.4) to which was added acryloyl-PEG-RGDS (1 μmol/mL). Acryoyl-

PEG-RGDS was prepared by reacting acryoyl PEG- N-hydroxysuccinimide (acryloyl-

PEG-NHS, 3.4 kDa) with RGDS.[91] Hydrogel discs (8 per composition) were formed 

in the wells of a 48 well plate by the addition of 110 μL precursor solution per well and 

exposure to longwave UV light (UV-Transilluminator, 6 mW/cm2, 365 nm) for 2 min. 

The resulting cell-containing hydrogels discs were maintained for 1 hr at 37 °C with 5% 

CO2 in DMEM supplemented with 10% v/v heat-inactivated FBS and 1% v/v PSA 

solution. After transferring to a well of a 24 well plate, each disc was maintained in 500 

μL of supplemented DMEM. The media changed every 24 h. For each composition, the 

LDH activity was measured on four different discs at 24 h and 72 h using a LDH 

cytotoxicity detection kit (Roche). After measurement of the LDH activity, the gels were 

digested in 0.1 N NaOH for 72 h at 37 °C and DNA levels were measured at 24 and 72 

hr using a PicoGreen assay (Invitrogen). Calf thymus DNA (Sigma) was used as a 

standard. The average LDH activity was normalized by DNA amount in the sample. 
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2.4 Materials 

Pt-divinyltetramethyldisiloxane complex (Karstedt’s catalyst, 2 wt% in xylene), 

tetrakis(dimethylsiloxy)silane (tetra-SiH), and octamethylcyclotetrasiloxane (D4) were 

obtained from Gelest. Allyl methacrylate, acryloyl chloride, triflic acid, 2,2-dimethyl-2-

phenyl-acetophenone (DMAP), 1-vinyl-2-pyrrolidinone (NVP), triethylamine (Et3N), 

MgSO4, K2CO3, hexamethyldisilazane (HMDS), N3013 Nile Red (Nile Blue A 

Oxazone) and solvents were obtained from Sigma Aldrich. HPLC grade toluene and 

CH2Cl2 and NMR grade CDCl3 were dried over 4Å molecular sieves. Poly(ethylene 

glycol) (PEG) [PEG-6000; MW = 5000-7000 g/mol and PEG-3400; MW = 3000-3700 

g/mol per manufacturer’s specifications] were obtained from BioChemika. The Mn of 

PEO-3400 (3274 g/mol) and PEO-6000 (5881 g/mol) were back-calculated from 1H 

NMR end-group analysis of the corresponding diacrylated products (L and H, 

respectively). Phosphate buffered solution (PBS, pH = 7.4, without calcium and 

magnesium), HEPES, Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum 

(FBS), and PSA solution (10 U/mL penicillin, 10 g/L streptomycin, and 10 g/L 

amphotericin) were obtained from Mediatech. Peptide RGDS was obtained from 

American Peptide. Acryoyl PEG-N-hydroxysuccinimide (acryloyl-PEG-NHS, 3.4 kDa) 

was obtained from Nextar. Mouse smooth muscle precursor cells (10T1/2) were 

obtained from American Type Culture Collection (ATCC).  
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2.5 Synthetic Approach 

Synthesis of Photo-crosslinkable Macromers 

All reactions were run under a N2 atmosphere with a Teflon-covered stir bar to 

agitate the reaction mixture. PDMSstar-MA (A-C) were prepared in two synthetic steps 

(Figure 2.1). First, silane-terminated star polydimethylsiloxanes (PDMSstarSiH) (a-c) 

were prepared by the acid-catalyzed equilibration of octamethylcyclotetrasiloxane (D4) 

with tetrakis(dimethylsiloxy)silane (tetra-SiH).[92, 93] These reagents were combined in 

a 200 mL round bottom (rb) flask equipped with a rubber septum and triflic acid added 

via syringe. The mixture was allowed to stir for 16 h at room temperature (RT) and 

excess HMDS added to neutralize the mixture. The polymer mixture was precipitated 

three times in toluene/MeOH and the isolated polymer dried under reduced pressure. In 

the second step, Pt-catalyzed hydrosilylation of a-c each with allyl methacrylate yielded 

A-C, respectively.[94] In a 250 mL 3-neck rb flask equipped with an addition funnel and 

rubber septum, a-c were each combined with ~30 mL toluene and the mixture heated 45 

°C. After dropwise addition of allyl methacrylate, the mixture was heated to 90 °C and 

Karstedt’s catalyst added via syringe. The progress of the reaction was monitored with 

IR spectroscopy by the disappearance of the Si-H (~2125 cm-1) absorbance. After ~12 h, 

an aliquot of the reaction solution was evaporated on a NaCl plate and the IR spectrum 

obtained. In case of an incomplete reaction, additional Karstedt’s catalyst (50% of 

original volume) was added and the reaction continued for another ~6 h before checking 

the IR spectrum. This cycle was repeated until no Si-H absorbance was observed in the 

IR spectrum. Typically, no additional Kartstedt’s catalyst was required to complete the 
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reaction. After removal of volatiles under reduced pressure, the catalyst was removed 

from the residue via flash column chromatography on silica gel with hexanes:ethyl 

acetate (2:1 vol:vol) and volatiles removed under reduced pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.1.  Synthesis of: (top) inorganic PDMSstar-MA (A-C) macromers and (bottom) 
organic PEG-DA (L, H) macromers.  
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PEG-DA (L, H) were prepared by acrylating the terminal hydroxyl groups of 

linear PEG [3.4k g/mol (“low” Mn) and 6k g/mol (“high” Mn), respectively].[95] Dry 

PEG was dissolved in CH2Cl2 in a 300 mL rb flask equipped with a rubber septum. Et3N 

and acryloyl chloride were sequentially added slowly via syringe. The reaction mixture 

was allowed to stir at RT overnight. The mixture was transferred to a separatory funnel 

and washed with 2M K2CO3. After allowing the layers to separate overnight, the organic 

layer was isolated, dried with MgSO4 and gravity filtered. The filtrate was precipitated in 

diethyl ether, vacuum filtered, washed with diethyl ether and dried under vacuum (30 in. 

Hg). 

 

Synthesis of PDMSstar-SiH (a) 

D4 (30 g, 101.4 mmol), tetra-SiH (7.8 g, 23.8 mmol), triflic acid (60 μL), and 

HMDS (0.15 g, 0.93 mmol) were reacted as above. In this way, a (23.3 g, 62% yield) 

was obtained as a colorless liquid, Mn/Mw= 1,700/2,700 g/mol, PDI = 1.6. 1H NMR (δ, 

ppm): 0.025-0.19 (bm, 231H, SiCH3), 4.7 (m, 4H, SiH). IR (ν): 2130 cm-1 (Si-H). 

 

Synthesis of PDMSstar-SiH (b)  

D4 (29.9 g, 101.0 mmol), tetra-SiH (1.7 g, 5.2 mmol), triflic acid (60 μL), and 

HMDS (0.15 g, 0.93 mmol) were reacted as above. In this way, b (23.7 g, 75% yield) 

was obtained as a colorless liquid, Mn/Mw= 4,800/11,200 g/mol, PDI = 2.3. 1H NMR (δ, 

ppm): 0.010-0.175 (bm, 1038H, SiCH3), 4.7 (m, 4H, SiH). IR (ν): 2130 cm-1 (Si-H).  
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Synthesis of PDMSstar-SiH (c)  

D4 (29.9 g, 101.0 mmol), tetra-SiH (1.1 g, 3.4 mmol), triflic acid (60 μL), and 

HMDS (0.15 g, 0.93 mmol) were reacted as above. In this way, c (24.4 g, 79% yield) 

was obtained as a colorless liquid, Mn/Mw= 6,800/17,700 g/mol, PDI= 2.6. 1H NMR (δ, 

ppm): 0.064-0.113 (bm, 1114H, SiCH3), 4.7 (m, 4H, SiH). IR (ν): 2130 cm-1 (Si-H).  

 

Synthesis of PDMSstar-MA (A) 

a (1.5 g, 0.88 mmol), allyl methacrylate (0.42 g, 3.33 mmol), toluene (3 mL), and 

Karstedt’s catalyst (20 μL) were reacted as above. In this way, A (1.1 g, 57% yield) was 

obtained as a colorless liquid, Mn/Mw= 2,050/4,800 g/mol, PDI = 2.3. 1H NMR (δ, ppm): 

0.045-0.127 (bm, 282H, SiCH3), 0.306 (m, 9H, SiCH3), 0.563 (m, 8H, -SiCH2CH2CH2, 

1.69 (m, 8H, -SiCH2CH2CH2), 1.93 (s, 12H, C(CH2)CH3), 4.10 (m, 8H, -SiCH2CH-

2CH2), 5.58 (m, 4H, -C(CH2)CH3), 6.11 (m, 4H, -C(CH2)CH3). IR (ν): no Si-H peak.  

 

Synthesis of PDMSstar-MA (B) 

b (20.0 g, 4.2 mmol), allyl methacrylate (1.3 g, 10.3 mmol), toluene (35 mL), and 

Karstedt’s catalyst (100 μL) were reacted as above. In this way, B (20.7 g, 97% yield) 

was obtained as a colorless liquid, Mn/Mw = 5,000/14,450 g/mol, PDI = 2.9. 1H NMR (δ, 

ppm): 0.007-0.204 (bm, 1670H, SiCH3), 0.293 (m, 9H, SiCH3), 0.587 (m, 8H, -SiCH2-

CH2CH2), 1.70 (m, 8H, -SiCH2CH2CH2), 1.95 (s, 12H, -C(CH2)CH3), 4.11 (m, 8H, -

SiCH2CH2CH2), 5.60 (s, 4H, -C(CH2)CH3), 6.13 (s, 4H, -C(CH2)CH3). IR (ν): no Si-H 

peak.  
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Synthesis of PDMSstar-MA (C) 

c (20.0 g, 2.9 mmol), allyl methacrylate (1.6 g, 12.7 mmol), toluene (35 mL), and 

Karstedt’s catalyst (100 μL) were reacted as above. In this way, C (10.4 g, 48% yield) 

was obtained as a colorless liquid, Mn/Mw= 7,000/23,400 g/mol, PDI = 3.3. 1H NMR (δ, 

ppm): 0.004-0.266 (bm, 1746H, SiCH3), 0.571 (m, 8H, -SiCH2CH2CH2), 1.69 (m, 8H, -

SiCH2CH2CH2), 1.95 (s, 12H, -C(CH2)CH3), 4.10 (m, 8H, -SiCH2CH2CH2), 5.58 (s, 4H, 

-C(CH2)CH3), 6.15 (s, 4H, -C(CH2)CH3). IR (ν): no Si-H peak.  

 

Synthesis of PEG-DA (L) 

PEG-3350 (23.5 g, 7.0 mmol), Et3N (1.95 mL, 14.0 mmol) and acryloyl chloride 

(2.27 mL, 28.0 mmol) were reacted as above. In this way, L (18.3 g, 76% yield) was 

obtained. 1H NMR (δ, ppm): 3.62 (s, 296H, -OCH2CH2), 5.81 (dd, 2H, J = 10.2 and 1.5 

Hz, -CH=CH2), 6.12 (dd, 2H, J = 17.3 and 10.5 Hz, -CH=CH2), 6.40 (dd, 2H, J = 17.3 

and 1.5 Hz, -CH=CH2). By 1H NMR end-group analysis, Mn of L was determined to be 

3382 g/mol (~3400 g/mol).  

  

Synthesis of PEG-DA (H) 

 PEG-6000 (24.0 g, 4.0 mmol), Et3N (1.12 mL, 8.0 mmol) and acryloyl chloride 

(1.3 mL, 16.0 mmol) were reacted as above. In this way, H (17.9 g, 75% yield) was 

obtained. 1H NMR (δ, ppm): 3.61 (s, 533H, -OCH2CH2), 5.81 (dd, 2H, J = 10.2 and 1.5 

Hz, -CH=CH2), 6.12 (dd, 2H, J = 17.1 and 10.5 Hz, -CH=CH2), 6.39 (dd, 2H, J = 17.3 
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and 1.5 Hz, -CH=CH2). By 1H NMR end-group analysis, Mn of H was determined to be 

5989 g/mol (~6000 g/mol). 

 
2.6 Hydrogel Preparation 

Hydrogels were prepared by the photopolymerization of aqueous mixtures of 

PDMSstar-MA (A-C) and PEG-DA (L, H) macromers. Aqueous precursor solutions were 

prepared at concentrations of 10 mg/mL (10 wt %). 10 μL of photoinitiator solution (30 

wt% solution of DMAP in NVP) was added per one mL of the aqueous solution. The 

PDMSstar-MA and photoinitiator solution were sequentially added to an aqueous solution 

of PEG-DA and vortexed for 1 min after each component was added. Solutions prepared 

with A-C were hazy but did not separate into layers. Hydrogels were prepared with the 

following wt% ratios of A, B, or C to L or H: 0:100, 1:99, 10:90 and 20:80 (Table 2.1). 

Planar hydrogel sheets (1.5 mm thick) were prepared by pipetting the precursor 

solution between two clamped microscope slides (75 x 50 mm) separated by 

polycarbonate spacers and exposing the mold to longwave UV light (UV-

Transilluminator, 6 mW/cm2, 365 nm) for 80 sec. After removal from the mold, the 

hydrogel sheet was rinsed with DI water and then soaked in PBS for 2 days with daily 

PBS changes to remove impurities. Hydrogel sheets prepared in this way were used for 

morphological, swelling, compression, protein adhesion, and cytotoxicity tests. 
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Table 2.1. Hydrogel Composition and Notation 
 PDMSstar-MA 
 

PEG-DA 
Wt% ratio 

of  
A-C to L 

A  
(Mn = 2k 
g/mol) 

B  
(Mn = 5k 
g/mol) 

C 
(Mn = 7k 
g/mol) 

  0:100 L control 
 1:99 A1 L99 B1 L 99 C1 L 99 
10:90 A10 L 90 B10 L 90 C10 L 90 

 
L  

(Mn = 3.4k 
g/mol) 20:80 A20 L 80 B20 L 80 C20 L 80 

 
 PDMSstar-MA 
 

PEG-DA 
Wt% ratio 

of  
A-C to H 

A  
(Mn = 2k 
g/mol) 

B 
(Mn = 5k 
g/mol)  

C  
(Mn = 7k 
g/mol) 

  0:100 H control 
 1:99 A1 H99 B1 H 99 C1 H 99 
10:90 A10 H 90 B10 H 90 C10 H 90 

 
H  

(Mn = 6k 
g/mol) 20:80 A20 H 80 B20 H 80 C20 H 80 

  

  For tensile tests, hydrogels were prepared with a “ring” geometry. First, 

hydrogels were prepared in a hollow tube geometry with a double walled tubular mold 

composed of an inner glass mandrel (diameter = 3 mm) and an outer glass cylinder 

(diameter = 7.5 mm). The tubular mold was filled with a precursor solution and cured as 

above but with constant rotation such that each surface point of the mold received equal 

UV intensity and exposure time. The hydrogel tube was removed from the mold and 

similarly purified as above by rinsing and soaking in PBS. Ring specimens were 

obtained but cutting ~3 mm wide pieces from the central portion of the hydrogel tube.   
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2.7 Results and Discussion   

Synthesis of PDMSstar-MA (A-C)  

Acid-catalyzed equilibration is useful to convert cyclosiloxanes and a suitable 

disiloxane to linear polymer.[96] Here, Si-H-terminated star polydimethylsiloxanes 

(PDMSstarSiH, a-c) were prepared by acid-catalyzed equilibration of D4 with tetra-

SiH.[92, 93] The molecular weight was controlled by the ratio of D4 and tetra-SiH. 

Because equilibration reactions generate a mixture of linear and cyclic species, the 

resulting mixture was precipitated to isolate the higher molecular weight materials. The 

lack of cyclic materials is confirmed by GPC of a-c. Si-H terminal groups of a-c were 

subsequently converted to photo-sensitive methacrylate groups by Pt-catalyzed 

hydrosilylation of each with allyl methacrylate to yield A-C, respectively.[94] The 

chemical reaction was confirmed by the disappearance of the Si-H peak (~ 4.5 ppm) in 

the 1H NMR spectra and Si-H absorbance (~2125 cm-1) in the FT- IR spectra of A-C.  

 
Hydrogel Morphology and Chemical Composition 

It is known that hydrogel morphology impacts cell behavior by changing cell 

alignment, proximity, and cell-cell interactions.[74-80] The morphology of PEG-DA 

hydrogels cannot be visualized using techniques such as scanning electron microscopy 

(SEM).[97] Instead, CLSM was used herein to image hydrogels which were treated with 

a hydrophobic dye (Nile Red) to stain PDMS-enriched regions and while maintaining 

hydrogel hydration. Because of the water-insolubility of PDMS, aqueous precursor 

solutions prepared with A-C were visibly hazy but did not separate into layers. Thus, 

photochemical cure effectively trapped the liquid microphase separation in the resulting 
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hydrogel. The CLSM images revealed that the morphology of the resulting PDMSstar-

PEG hydrogels was heterogeneous and consisted of stained PDMS-enriched 

microparticles surrounded by a PEG-enriched matrix (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some staining occurred for the L control and H control due to the hydrophobic 

photoinitiator. FE-SEM/EDS confirmed the presence of silicon (Si) in the microparticles 
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Figure 2.2.  CLSM images of hydrated hydrogels stained with Nile Red. Cross-sectional 
view (top rows) and top view (bottom rows). The hydrophobic dye stained hydrophobic 
PDMS-enriched microparticles.
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and its absence in the surrounding matrix (Appendix A). The chemical nature of the 

hydrogels was systematically changed from a purely organic to increasingly inorganic 

with higher levels of PDMSstar-MA (A-C). However, for all hydrogels, the general 

morphological features were maintained. These discrete PDMS-enriched microparticles 

are expected to have an impact on cell behavior.[71-73] Thus, these hydrogels provide 

controlled alteration of hydrogel morphology and chemical composition. 

 

Hydrogel Hydration and Mechanical Properties 

Both hydration and mechanical properties of hydrogel scaffolds influence cell 

behavior.[81-85] These properties are coupled in PEG-DA and other hydrogels in that 

the degree of hydrogel swelling is directly related to its mechanical properties and 

hydrogels become more rigid and stronger with decreased water content.[98] It is 

therefore critical to maintain hydrogel hydration during mechanical tests to achieve 

accurate results.[99] Tensile testing of flat, rectangular hydrogel specimens with ends 

secured in tension grips is often complicated by sample slippage from or breakage at the 

grip. Thus, specimens with a ring geometry were employed to minimize 

slippage/breakage for improved accuracy.[48] Ring specimens also allowed their rapid 

mounting on tensile bars so that testing was completed before significant water loss. 

During dynamic compression tests, silicone oil was placed around the hydrogel disc 

specimen sandwiched between two compression clamps to inhibit water loss. 

Hydrogel swelling and mechanical properties are summarized in Table 2.2 and 

Figures 2.3-2.5. Hydrogels based on H (PEG-DA, 6k g/mol) exhibited higher swelling 
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than that of hydrogels based on L (PEG-DA, 3.4k g/mol) because of the formers lower 

crosslink density. However, for a given hydrogel series based on L or H, the swelling 

ratio of PDMSstar-PEG hydrogels were not substantially different from one another or the 

corresponding pure PEG-DA hydrogel (L and H controls), particularly for those based 

on H. The lack of change in hydration with hydrophobic A-C may be explained by the 

fact that it formed PDMS-enriched particles which does not perturb the surrounding 

PEG matrix (Figure 2.2). The tensile strength and elongation at break of PDMSstar-PEG 

hydrogels were not considerably changed versus the pure PEG hydrogels.  

 

Table 2.2. Hydrogel swelling ratio, tensile strength (TS), % elongation at break (%EL), 
and adsorption of BSA protein.   

 Swelling Ratio Tensile Strength 
(kPa) 

% EL mg BSA absorbed 
per cm2 (x 10-4)* 

L control 7.0 ± 0.01 34.2 ± 3.0 40.5 ± 4.0 5.2 ± 1.2 
A1 L99 6.5 ± 0.03 34.5 ± 4.2 49.2 ± 4.9 3.6 ± 0.6 

A10 L 90 6.2 ± 0.04 27.5 ± 3.4 48.5 ± 4.1 13.5 ± 3.5 
A20 L 80 6.7 ± 0.05 22.3 ± 2.9 49.2 ± 7.2 25.7 ± 4.9 

B1 L 99 6.6 ± 0.15 34.4 ± 5.2 48.8 ± 7.0 9.4 ± 1.7 
B10 L 90 6.6 ± 0.12 26.0 ± 2.9 48.2 ± 5.0 14.5 ± 1.5 
B20 L 80 7.1 ± 0.10 20.0 ± 2.7 45.2 ± 4.9 28.7 ± 6.4 

C1 L 99 6.7 ± 0.14 40.6 ± 9.4 55.0 ± 9.0 14.1 ± 6.4 
C10 L 90 6.8 ± 0.05 29.0 ± 3.5 53.6 ± 6.3 5.7 ± 2.6 
C20 L 80 7.3 ± 0.08 24.5 ± 1.8 53.4 ± 4.4 19.0 ± 1.6 

     
H control 8.0 ± 0.06 39.7 ± 7.7 61.0 ± 9.3 12.4 ± 4.7 

A1 H99 8.0 ± 0.06 35.5 ± 2.4 64.0 ± 3.3 10.1 ± 1.8 
A10 H 90 8.0 ± 0.11 48.1 ± 5.0 82.9 ± 7.4 16.0 ± 4.3 
A20 H 80 7.9 ± 0.11 37.1 ± 6.7 77.4 ± 9.9 10.2 ± 1.9 

B1 H 99 8.0 ± 0.18 39.7 ± 5.3 65.9 ± 5.4 5.3 ± 2.1 
B10 H 90 8.1 ± 0.09 46.0 ± 4.3 79.2 ± 4.8 15.0 ± 9.9 
B20 H 80 8.1 ± 0.08 26.8 ± 6.8 59.6 ± 10.8 8.6 ± 1.1 

C1 H 99 8.0 ± 0.01 33.4 ± 5.9 58.5 ± 6.5 15.0 ± 1.6 
C10 H 90 8.1 ± 0.23 25.6 ± 4.3 51.1 ± 5.1 12.8 ± 3.1 
C20 H 80 8.4 ± 0.16 33.6 ± 4.5 73.6 ± 6.2 10.0 ± 1.3 

*After 3 hr exposure to BSA (0.1 mg/mL PBS) 
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For hydrogels based on L, increased levels of PDMSstar-MA (A-C) 

systematically decreased tensile modulus (Figure 2.3). A similar but less substantial 

decrease in tensile modulus was observed for hydrogels based on H (Figure 2.4). 

Although the weight percent of A-C impacted tensile modulus of PDMSstar-PEO 

hydrogels, the Mn of A-C did not. The dynamic storage modulus (G’) of the hydrogels 

was also measured in compression as a function of frequency (Figure 2.5). Based on the 

tensile test results, the hydrogels with 1 wt% A-C showed characteristics intermediate of 

the corresponding pure PEG-DA hydrogel and those containing 10 wt% A-C. Therefore, 

compression tests were not conducted on hydrogel compositions with 1 wt% A-C due to 

the limited additional information that would be obtained. Over the low strain conditions 

examined, G’ values exhibited values similar to the corresponding tensile modulus and 

likewise generally decreased with higher levels of A-C. The PDMS particles, although 

they do not significantly alter swelling, apparently change the manner in which the 

surrounding PEG-DA hydrogel network deforms under applied stress. Thus, these 

PDMSstar-PEO hydrogels are particularly useful to examine scaffold mechanical 

properties on cell behavior as modulus may be tuned independent of swelling.  
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Figure 2.3. Tensile modulus of hydrogels based on L. Statistical significance 
within a given series (i.e. A, B and C) was determined by one-way analysis of 
variance (Holm-Sidak method where p ≤ 0.05.) For a given series, all are 
statistically different versus the control and other compositions. 
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Figure 2.4. Tensile modulus of hydrogels based on H. Statistical 
significance within a given series (i.e. A, B and C) was determined by one-
way analysis of variance (Holm-Sidak method where p ≤ 0.05, unless 
otherwise noted. [#] indicates p > 0.05). 
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Non-specific Protein Adhesion  

Proteins which are non-specifically adsorbed from serum or plasma as well as 

specifically introduced to the scaffold are known to alter cell behavior.[44, 50, 63] Thus, 

to study cell behavior in response to specific, isolated scaffold properties, the protein 

resistant nature of PEG-DA hydrogels must be maintained. The adhesion of BSA to 

PDMSstar-PEG hydrogels was compared to that of the corresponding PEG-DA hydrogels 

(L and H controls) (Table 2.2). Aside from A20L80 and B20L80, BSA adsorption levels 

by PDMSstar-PEG hydrogels were generally similar to each other and to the PEG-DA 

hydrogels. PDMS has been shown to be highly adhesive to proteins due to its 

hydrophobicity [100]. Despite the presence of PDMS, PDMSstar-PEG hydrogels exhibit 

Figure 2.5. Storage modulus (G’) of hydrogels measured in compression.  
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protein resistance similar to PEG-DA hydrogels. It has been previously shown that BSA 

adsorption on PEG-DA hydrogels is intimately linked to its hydrophilicity.[101] Because 

of the similar swelling of the series of PDMSstar-PEG hydrogels based on L or H, it is 

reasonable that protein adsorption is also similar. For all hydrogels, protein adsorption 

levels were within the range reported for PEG-DA hydrogels.[101] Retention of the low 

protein adsorption property of PEG-DA hydrogels by these PDMSstar-PEG hydrogels is 

useful to extend their utility as scaffolds in tissue engineering.  

 

Cytotoxicity 

Low cytotoxicity of PDMSstar-PEG hydrogels is critical for their utility as tissue 

engineering scaffolds. LDH is a soluble cytosolic enzyme that is released into the culture 

medium following membrane damage due to apoptosis or necrosis.[102] Differences in 

the normalized levels of exogenous LDH across cell-laden hydrogels therefore indicate 

difference in the extent of cell death induced by various formulations. To assess the 

cytocompatibility of PDMSstar-PEG gels, LDH activity assays were conducted on 

hydrogels based on H and C macromers (Figure 2.6). Although the exogenous LDH 

activity at 24 h was higher the hydrogel containing 20 wt % C versus the corresponding 

pure PEG-DA hydrogel (H control), the hydrogels containing 1 wt% and 10 wt% of C 

demonstrated similar cytocompatibility. At 72 h, all formulations showed similar levels 

of exogenous LDH activity. Thus, PDMSstar-PEG hydrogels appear to maintain the low 

cytotoxicity of PEG-DA hydrogels over a range of PDMS levels. 
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2.8 Conclusion 

  A library of 18 unique PDMSstar-PEG hydrogels were formed by the rapid 

photocrosslinking of 10 wt% aqueous precursor solutions containing varying weight 

ratios of PDMSstar-MA (A-C: 1.8k, 5k and 7k g/mol, respectively) and PEG-DA (L and 

H: 3.4k and 6k g/mol, respectively): 0:100, 1:99, 10:90 and 20:80, respectively. PEG-

DA hydrogels are single-component systems in which only two compositional variables 

(e.g. PEG-DA Mn and concentration) may be utilized to alter hydrogel properties. These 

PDMSstar-PEG hydrogels are two-component systems in which four compositional 

variables (e.g. PEG-DA and PDMSstar-MA Mn and concentration) may be altered to tune 

physical and additionally chemical properties. The chemical properties of the hydrogels 

were switched from a purely organic, PEG to inorganic-organic with increased levels of 

A-C. Hydrogel morphology consisted of spherical PDMS-enriched microparticles 

Figure 2.6. LDH activity at 24h (left columns) and 72 h (right columns).  
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dispersed throughout a PEG matrix. Although not demonstrated here, filtration of the 

precursor solution prior to crosslinking produces a finer dispersion of PDMS particles in 

the PEG matrix to further control the morphology and chemical composition of the 

hydrogel. For hydrogels based on L, increased levels of A-C systematically decreased 

tensile modulus and a similar but less substantial decrease was observed for hydrogels 

based on H. At the same weight ratio, the Mn of A-C did not significantly impact 

mechanical properties. For a given hydrogel series based on L or H, the equilibrium 

swelling did not differ substantially across hydrogel formulations relative to that of the 

corresponding pure PEG-DA hydrogel (L and H controls). Thus, for a given hydrogel 

series, modulus was decoupled from equilibrium swelling. These hydrogels therefore 

permit the evaluation of the effect of scaffold modulus apart from hydration. The 

resistance to non-specific protein adsorption as well of low cytotoxicity of PEG-DA 

hydrogels was maintained for the PDMSstar-PEG hydrogels. Thus, these inorganic-

organic hydrogels with tunable chemical and physical properties should prove useful in 

elucidating cell-material interactions. 
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CHAPTER III 

THERMORESPONSIVE NANOCOMPOSITE HYDROGELS WITH  

CELL-RELEASING BEHAVIOR 

 

3.1 Overview  

Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels become more hydrophobic 

when they reversibly switch from a water-swollen to a deswollen state above the volume 

phase transition temperature (VPTT, ~ 33 °C) which has been used to modulate cell 

adhesion. In the current work, we prepared novel thermoresponsive nanocomposite 

hydrogels comprised of a PNIPAAm hydrogel matrix and polysiloxane colloidal 

nanoparticles (~220 nm ave. diameter) via in situ photopolymerization of aqueous 

solutions of NIPAAm monomer, N,N’-methylenebisacrylamide (BIS, crosslinker), 

photoinitiator and polysiloxane nanoparticles (0.5 to 2.0 wt% based on solution weight) 

at ~7 °C.  The VPTT of the nanocomposite hydrogels is not altered versus the pure 

PNIPAAm hydrogel. Dynamic mechanical analysis and tensile tests revealed that higher 

nanoparticle content generally produced improved hydrogel mechanical properties. 

Surfaces of nanocomposite hydrogels became increasingly more hydrophobic at all 

temperatures between 10 and 40 °C as the amount of hydrophobic polysiloxane 

nanoparticles was increased. When cooled from 37 °C to 25 °C, mouse smooth muscle 

precursor cells (10T1/2) were effectively detached from nanocomposite hydrogel 

surfaces. The utility of photopatterning to create surface micropillars comprised of 

nanocomposite hydrogels was demonstrated.   
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3.2 Introduction 

Materials which reversibly switch from a hydrophilic to hydrophobic state in 

aqueous media in response to an external stimulus are of interest for creating “smart” or 

“intelligent” biomedical materials [103]. Thermoresponsive hydrogels are crosslinked, 

three dimensional polymer networks that reversibly swell with and then expel aqueous 

media in response to temperature changes. Thermoresponsive hydrogels may be 

prepared by crosslinking polymers which exhibit a lower critical solubility temperature 

(LCST) [103, 104]. Most widely studied is poly(N-isopropylacrylamide) (PNIPAAm) 

(LCST, ~32 °C) which is soluble in water below the LCST and reversibly insoluble 

above the LCST [105]. Crosslinked PNIPAAm hydrogels undergo a reversible volume 

phase transition in water from a swollen state to a deswollen state above their volume 

phase transition temperature (VPTT; ~33 °C) [106, 107]. Thus, surfaces of PNIPAAm 

hydrogels [108-110] as well as those comprised of covalently grafted PNIPAAm chains 

[110-112] undergo a large discontinuous change from a hydrophilic to a hydrophobic 

state when heated above the phase transition temperature.  

The thermal modulation of hydrophilic/hydrophobic surface properties of 

PNIPAAm systems is useful for the controlled detachment of cultured cells [113, 114].  

In this way, confluent cell sheets useful for tissue engineering may be detached from 

culture without enzymes or chelating agents known to damage cells [115]. Cells 

generally adhere and proliferate more readily on polymeric materials with hydrophobic 

surfaces rather than hydrophilic surfaces [2, 116-124]. Often characterized by contact 

angle measurements, polymer surfaces displaying water contact angles greater than 90° 
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are generally considered to be hydrophobic [125]. Several studies have shown that cell 

adhesion is maximized on moderately hydrophobic surfaces displaying a water contact 

angle between 40 and 70° [2, 120-124]. Thus, at ~ 37 °C (above the LCST), PNIPAAm-

grafted surfaces are relatively hydrophobic and various types of cells grow well.  

However, upon cooling below 32 °C (below the LCST), they become more hydrophilic 

and cells spontaneously detach without damaging the cells [126-130].  Similarly, cells 

may be detached from the surfaces of  PNIPAAm hydrogels after cooling below the 

VPTT [131, 132].   

Extending the utility of PNIPAAm hydrogels as robust cell-releasing materials 

for tissue culture substrates [113, 114], anti-fouling coatings [133-135], or “self-

cleaning” implanted sensor membranes [136, 137] requires improvement of their poor 

mechanical properties as well as tailoring the changes in surface 

hydrophilicity/hydrophobicity. Hybrid materials prepared from inorganic and organic 

components have attracted interest to yield properties superior to that of parent materials 

[138-142]. For targeted biomedical applications, the proximity of the VPTT to room 

temperature and body temperature is desirable to maintain. However, the VPTT of 

PNIPAAm hydrogels (and LCST of aqueous solutions of linear PNIPAAm) are typically 

altered upon copolymerization with a second monomer. For instance, the VPTT of 

PNIPAAm-based hydrogels is generally decreased by incorporation of hydrophobic 

comonomers [143, 144] or increased with hydrophilic comonomers [144, 145]. On the 

other hand, the VPTT of PNIPAAm hydrogels is not usually altered if the second 

component is incorporated as chemically independent phase. For instance, 
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interpenetrating polymer networks (IPNs) and semi-IPNs have been prepared with 

chemically independent PNIPAAm and poly(dimethylsiloxane) (PDMS) (a hydrophobic, 

inorganic polymer) components without altering the VPTT but improving mechanical 

strength [146-148]. Hybrid composites comprised of an organic PNIPAAm matrix and 

silica (SiO2) particles (an inorganic glass) have also been studied to improve mechanical 

properties. For instance, PNIPAAm hydrogels covalently bonded to silica particles may 

be formed by in situ copolymerization of NIPAAm with 3-methacryloxypropyl-

trimethoxysilane (MPTMOS) or ethylene triethoxysilane (ETEOS) followed by sol-gel 

condensation which leads to a decrease in the VPTT with increased silane content [149-

151]. However, the VPTT was not changed for PNIPAAm hydrogels containing but not 

covalently bonded to silica particles as formed by in situ polymerization of NIPAAm 

and N,N’-methylenebisacrylamide (BIS) or high molecular weight PNIPAAm each with 

tetramethoxysilane (TMOS) followed by sol-gel condensation [152, 153].   

 In this paper, thermoresponsive nanocomposite hydrogels were prepared 

consisting of an organic PNIPAAm hydrogel matrix and variable levels of inorganic 

polysiloxane nanoparticles.  Nanoparticles are classically defined as colloidal systems 

with a diameter smaller than 1000 nm [154, 155].  Here, polysiloxane nanoparticles 

(diameter = 106 – 531 nm) were prepared from cationic emulsion polymerization of 

octamethylcyclotetrasiloxane (D4) and 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetra-

siloxane (D4
Vi). The resulting nanoparticles were subsequently stabilized by free radical 

crosslinking the copoly(dimethylsiloxane/methylvinylsiloxane) chains inside the 

nanoparticles. Crosslinked polysiloxane nanoparticles (0.5 – 2.0 wt%) were introduced 
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into aqueous solutions of NIPAAm, BIS (crosslinker), and photoinitiator and 

subsequently photopolymerized at low temperatures (~ 7 °C) to yield thermoresponsive 

nanocomposite hydrogels. The effect of polysiloxane nanoparticle content on hydrogel 

morphology, VPTT, mechanical properties as well as temperature-dependent swelling 

behavior, surface properties, and cell release behavior are presented. Furthermore, we 

demonstrated the successful photopatterning of nanocomposite hydrogels which may 

extend their utility in applications such as cell co-culture [156, 157] and microfluidics  

[158, 159]. 

 

3.3 Experimental Section 
 
Preparation of Crosslinked Polysiloxane Colloidal Nanoparticles 

 Polysiloxane colloidal particles were prepared by cationic emulsion 

polymerization of D4 and D4
Vi (Fig. 3.1) [160].  Into a 500 mL water-jacketed 

polymerization vessel equipped with a mechanical stirrer and Teflon stirring paddle, 

reflux condenser, and addition funnel, DBSA (0.5 g, 1.53 mmol) was dissolved in 

deionized (DI) water (200 g).  A mixture of D4 (39.6 g, 133.8 mmol) and D4
Vi (9.9 g, 

28.8 mmol) was added dropwise via the addition funnel to the DBSA aqueous solution 

with constant stirring (300 rpm).  The resulting stable emulsion was then heated to 75 °C 

for 24 h with constant stirring (280 rpm). The final emulsion was cooled, filtered 

through a 10 μm filter bag, and the pH adjusted to 7 with aq. NH4OH (25 wt%). The 

solid content of the emulsion was determined by weight loss from an aliquot after drying 

(115 °C, 8 h). Emulsion solid content: 17.4% (87 % conversion).  
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Figure 3.1.  (a) Preparation of colloidal polysiloxane nanoparticles via emulsion 
polymerization and subsequent crosslinking and (b) preparation of thermoresponsive 
nanocomposite hydrogels with variable wt% nanoparticles (based on total solution 
weight). 

(b) 

Pure 0.5 wt% 1.0 wt% 1.5 wt% 2.0 wt% 

OHN

O

N
H

O

N
H

+ + water 

Crosslinked colloidal 
polysiloxane nanoparticles 

(0.5 – 2.0 wt% solids 
based on solution wt) 

Irgacure 2959

Exposed to 365 nm UV-light 
(~7 °C, 30 min) 

cryo-TEM micrograph 

Crosslinked colloidal polysiloxane nanoparticles

(a) Si
O

Si
O Si

O
Si

O Si
O

Si
O Si

O
Si

O

C12H25 SO3H

+

D4 D4
Vi

DBSA 1.  75 °C, 24 h (Polymerize) 
2.  K2S2O8, 80 °C, 10 h (Crosslink) water



 42

Linear copoly(dimethylsiloxane/methylvinylsiloxane) was isolated from the 

aforementioned colloidal nanoparticles for subsequent characterization. A portion of the 

final emulsion was precipitated into ethanol, centrifuged, and the isolated clear oil dried 

under vacuum. 1H NMR δ (ppm): 0.1 (bs, Si-CH3), 5.7-6.0 (m, Si-CH=CH2); ratio of 

12:1. Gel permeation chromatography (GPC): Mw/Mn = 67,200/36,500 g/mol, PDI = 

1.84.   

 These colloidal nanoparticles were subsequently stabilized by crosslinking of the 

copoly(dimethylsiloxane/methylvinylsiloxane) chains within the nanoparticles via their 

vinyl groups (Fig. 3.1) [161]. The above final emulsion (50 g) was added to a 3-neck 

round bottom (rb) flask equipped with a Teflon-covered stir bar, reflux condenser, and 

nitrogen (N2) inlet.  After the addition of K2S2O8 (0.5 g), the mixture was reacted at 80 

ºC for 10 h under N2. The emulsion was cooled and filtered through a 10 μm filter bag. 

The resulting colloidal nanoparticles were purified via dialysis (Slide-A-Lyzer ® 

Dialysis Cassette, MWCO = 10,000, Pierce Chemical Co.) against daily changes of DI 

water for 3 days. Emulsion solid content: 8.5%. Dynamic light scattering (DLS): 219 nm 

(average diameter) and 0.10 (polydispersity, PD) with particles ranging in size from 106 

to 531 nm. 

 

Characterization of Polysiloxane Colloidal Nanoparticles 

 Particle size of colloidal nanoparticles was determined by dynamic light 

scattering (DLS) (Malvern Zetasizer® Nano S) with a detection angle of 90 º.  

Measurements were carried out at 25 °C.  One μL of the designated emulsion was 
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diluted with ~ 20 mL filtered DI water just prior to measurement in order to rule out 

interaction and multiple scattering effects.  

 Cryogenic transmission electron microscopy (Cryo-TEM) was used to visualize 

the nanoparticles and confirm their lack of aggregation in water. A JEOL 1210 TEM, 

operated at 120 kV and equipped with a Gatan 626 cryo holder, was used for imaging. 

Further details on sample preparation and imaging analysis were previously described 

[162]. 

GPC analysis of the isolated linear copoly(dimethylsiloxane/methylvinyl-

siloxane) was performed on a Viscotek GPC system equipped with three detectors in 

series: refractive index (RI), right angle laser light scattering (RALLS), and viscometer 

(VP). The ViscoGEL™ HR-Series (7.8 mm x 30 cm) column packed with 

divinylbenzene crosslinked polystyrene (SDVB) was maintained at 25 °C in a column 

oven.  The eluting solvent was HPLC grade toluene at a flow rate of 1.0 mL/min. The 

detectors were calibrated with a polystyrene (PS) narrow standard with the following 

parameters: MW (66K), polydispersity (1.03), intrinsic viscosity (0.845 dL/g), and dn/dc 

(0.112 mL/g). Data analysis was performed with Viscotek OmniSec software (Version 

4.0).    

 1H NMR spectrum of a 5% (w/v) CDCl3 solution of isolated linear 

copoly(dimethylsiloxane/methylvinylsiloxane) was obtained on a Mercury 300 300-

MHz spectrometer operating in the Fourier transform mode. Residual CDCl3 served as 

an internal standard. 
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Extent of Crosslinking 

The amount of uncrosslinked material in select hydrogels was determined by 

weight loss following Soxhlet extraction. For a given hydrogel, three hydrogel discs (13 

mm diameter, 1.5 mm thickness) were punched from a single hydrogel sheet with a die 

and immediately dried in a vacuum oven (30 in. Hg, 60 ºC, 24 h) and weighed. The dried 

discs were extracted with dichloromethane in a Soxhlet apparatus for 12 hr and weighed 

after similarly drying in a vacuum oven. The percentage of uncrosslinked material was 

calculated as the average weight difference of the extracted versus unextracted weight 

divided by the unextracted weight. 

 

Morphological Characterization 

 The morphology of hydrogels was studied by scanning electron microscopy 

(SEM). To retain their morphology, swollen hydrogel specimens were freeze dried in 

lyophilizer (Labconco CentriVap Gel Dryer System) for 6 h at -40 °C.  Cross-sections of 

the freeze-dried gels were subjected to Pt-sputter coating and viewed with a field 

emission SEM (Zeiss 1530 VP FE-SEM) at accelerated electron energy of 5 keV and 15 

keV.  

 

Equilibrium Swelling  

For equilibrium swelling measurements, three hydrogel discs of constant 

dimension (13 mm diameter, 1.5 mm thickness) were prepared as above. Hydrogel 

equilibrium swelling ratio is defined as: swelling ratio = (Ws - Wd)/Wd, where Ws is the 
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weight of the water-swollen hydrogel at a certain temperature and Wd is the weight of the 

vacuum dried hydrogel (30 in. Hg, 60 ºC, 24 h).  Each disc was sealed inside a vial 

containing 20 mL DI water, immersed in a temperature controlled water bath for 24 h at 

the designated temperature (10 to 50 °C), removed, blotted with filter paper to remove 

surface water, and weighed (Ws).  

 

Volume Phase Transition Temperature (VPTT) 

 VPTT of swollen hydrogels were determined by differential scanning calorimetry 

(DSC, TA Instruments Q100). Water-swollen hydrogels were blotted with filter paper 

and a small piece sealed in a hermetic pan. After cooling to -50 °C, the temperature was 

increased to 50 ºC at a rate of 3 ºC/min for 2 cycles. The resulting exothermic phase 

transition peak is characterized by the initial temperature at which the exotherm starts 

(To), the peak temperature of the exotherm (Tmax) and the enthalpy change (ΔH) of the 

phase transition. Data reported is from the 2nd cycle. 

 

Dynamic Mechanical Analysis (DMA) 

DMA of hydrogels were measured in the compression mode with  a dynamic 

mechanical analyzer (TA Instruments Q800) equipped with parallel-plate compression 

clamp with a diameter of 40 mm (bottom) and 15 mm (top). Swollen hydrogel discs of 

constant dimension (13 mm diameter, 1.5 mm thickness) were punched from a hydrogel 

sheet and clamped between the parallel plates. Silicone oil was then placed around the 

exposed edges of the hydrogel to prevent dehydration.  Following equilibration at the 25 
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°C (5 min), the samples were tested in a multi-frequency-strain mode (1 to 100 Hz) at 

the temperature of 25 °C (below the VPTT).  Results reported are based on the average 

of five individual specimens. 

 

Tensile Test 

Tensile tests of hydrogels ring specimens were measured on a TA Instruments 

DMA Q800 operating in the tension mode. Specimens with a ring geometry were 

prepared by cutting a portion from a hydrogel tube produced from the double wall 

tubular mold (ID = 3 mm, OD = 7.5 mm). Individual rings (~3 mm width) were cut from 

the central portion of the appropriate hydrogel tube using a clean razor blade and sample 

dimensions measured with an electronic caliper. Each hydrogel ring was blotted with 

filter paper and loaded onto custom aluminum bars gripped directly into DMA tension 

clamps so that the upper and lower bars were located inside the ring. Samples were 

subjected to a constant strain (1 mm/min) until they broke at the center of one side of the 

ring. Stress was calculated from the measured force divided by the cross-sectional area 

of two rectangles with sides equal to the width and wall thickness of the ring. The gauge 

length corresponded to the outer diameter of the ring less the wall thickness. The 

following parameters were determined: (1) tensile modulus, (2) ultimate tensile strength 

(UTS), and (3) % strain at break. The tensile modulus was obtained from the slope of the 

linear part of the stress-strain curve. The UTS represents the maximum stress prior to 

failure. Strain was calculated from the measured displacement divided by the gauge 
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length. Results reported are the average result of three specimens cut from central 

portion of the same hydrogel tube. 

 

Contact Angle Measurements 

 The temperature-dependent surface properties of the hydrogels were determined 

by measuring static contact angles (θstatic) of sessile of distilled/DI water droplets (10 μL) 

with a KSV Instruments CAM-200 contact angle measurement system equipped with an 

autodispenser, video camera, and KSV CAM drop-shape analysis software. θstatic was 

measured at 10 and 25 °C (below VPTT) and at 40 °C (above VPTT). Hydrogel sheets 

(1.5 mm thick) were immersed in a temperature controlled water bath and equilibrated at 

the designated temperature (~30 min). The hydrogel was removed from the water bath, 

gently blotted with Kim Wipes to remove surface water, and placed on a pre-set 

thermostatted stage to maintain the designated temperature during the measurements. 

After every measurement, the hydrogel was re-immersed in the water bath for 30 min 

and the process repeated.  Values were obtained 1 min after deposition of the water 

droplet.  The reported θstatic value is the average of ~6 measurements.   

 

Temperature-dependent Cell Release  

 Hydrogel sheets (a-e) were prepared as above under sterile conditions. A “PEO-

RGDS” hydrogel was prepared from poly(ethylene oxide)-diacrylate (PEO-DA, Mn = 

6000 g/mol) containing the acrylate-derivatized cell adhesion peptide RGDS (acryoyl-

PEO-RGDS). Preparation of PEO-DA and acryloyl-PEO-RGDS are described elsewhere 
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[95]. Photoinitiator solution (10 μL of 30 wt% solution of DMAP in NVP) was added 

for every one mL of aqueous solution containing 10 wt% PEO-DA macromers and 1 

μmol/mL acryoyl-PEO-RGDS in PBS. The PEO-DA and PNIPAAm-based precursor 

solutions were each cured between two glass sheets separated by 0.5 mm polycarbonate 

spacers by exposure to 365 nm UV light (UV-Transilluminator, 6 mW/cm2) for 2 min. 

All hydrogel formulations were permitted to swell for two days in phosphate-buffered 

saline (PBS; pH = 7.4) with daily PBS changes to remove hydrogel impurities. Swollen 

hydrogel discs of constant dimension (9 mm diameter, 0.5 mm thickness) were punched 

from each hydrogel sheet and transferred to a 24 well plate containing media in each 

well. The plate was then incubated at 37 °C (above VPTT) for 2 h to force PNIPAAm-

based hydrogels (a-e) into a deswollen, hydrophobic state and to equilibrate the 

hydrogels with the cell culture media. Mouse smooth muscle precursor cells (10T1/2) 

were seeded onto each hydrogel surfaces at 25,000 cells/cm2. After incubation at 37 °C 

for 4 h, the 24 well plate was transferred to a Zeiss Axiovert A200 microscope and air-

cooled to 25 °C (below VPTT) at a rate of ~ 2 ºC/min thereby causing a-e to swell. The 

well plate was then transferred back to a 37 °C incubator for 4 h and a second cooling 

cycle was similarly performed. For each cooling cycle, images were captured at two 

second intervals.   

 

 Photo-patterning 

Microscope glass slide onto which hydrogel micropatterns are formed was 

cleaned by soaking in Piranha solution (H2O2 and concentrated H2SO4; 1:3 vol:vol) for 
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10 min, followed by thorough washing with DI water and blow drying with N2 gas. 

Another glass slide working as a cover was cleaned with acetone and isopropanol 

followed by thoroughly washing with DI water. Aqueous precursor solutions for pure 

PNIPAAm hydrogel (a) and for nanocomposite hydrogel c (containing 1 wt% 

nanoparticles) were each pipetted in between the two cleaned glass slides separated by a 

100 µm thick spacer. A mask with 100 or 200 μm diameter circular patterns was placed 

on top of the Piranha cleaned glass slide of the sandwiched structure. The entire structure 

was immersed into an ice water bath (~7 °C) and exposed to longwave UV light 

(Omnicure Series 1000, 15 mW/cm2, 365 nm) for 40 sec.  After removing the slide and 

mask from one side of the sandwich structure, unpolymerized solution was carefully 

washed out with DI water. SEM images of the glass-bound hydrogel micropillars (a, c) 

were captured following air-drying and Pt-sputter coating (Zeiss 1530 VP FE-SEM, 

accelerated electron energy of 5 keV).   

  

3.4 Materials 

Octamethylcyclotetrasiloxane (D4), 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclo-

tetrasiloxane (D4
Vi), and silicone oil (trimethylsiloxy terminated PDMS; viscosity = 1000 

cSt.) were purchased from Gelest Inc. Dodecylbenzensulfonic acid (DBSA, BIO-SOFT® 

S-101) was received from Stepan Co.. Potassium persulfate (K2S2O8), N-isopropyl-

acrylamide (NIPAAm, 97%), 2,2-dimethyl-2-phenyl-acetophenone (DMAP), N-vinyl-

pyrrolidone (NVP) were purchased from Aldrich. N,N’-methylenebisacrylamide (BIS, 

99%) was obtained from Acros Organics. 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-
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methyl-1-propane-1-one (Irgacure® 2959) was obtained from Ciba.  All reagents were 

used as received.  Mouse smooth muscle precursor cells (10T1/2) were obtained from 

American Type Culture Collection (ATCC). 

 

3.5 Preparation of Nanocomposite Hydrogels 

Nanocomposite hydrogels were prepared by in situ photopolymerization of 

aqueous precursor solutions containing NIPAAm monomer, BIS crosslinker, Irgacure-

2959 photoinitiator, and crosslinked polysiloxane nanoparticles (Fig. 3.1).  In a 50 mL rb 

flask equipped with a Teflon-covered stir bar, NIPAAm (1.0 g, 8.84 mmol), BIS (0.02 g, 

0.13 mmol), and Irgacure-2959 (0.08 g, 0.36 mmol) were dissolved in DI water (the total 

volume equal to 7 mL including the volume of water introduced later by the nanoparticle 

emulsion) and the solution stirred under N2 for 15 min. Finally, the appropriate amount 

of emulsion containing crosslinked colloidal nanoparticles was added and the mixture 

stirred for 10 min under N2.  In total, four different hydrogel compositions were prepared 

with varying amounts of colloidal nanoparticles: (a) pure NIPAAm (no nanoparticles; a 

control), (b) 0.5 wt%, (c) 1.0 wt%, (d) 1.5 wt%, and (e) 2.0 wt% (wt % solids of 

nanoparticles with respect to total precursor solution wt). 

Hydrogel sheets (1.5 or 0.5 mm thick) were prepared by first pipetting a 

precursor solution between two clamped glass microscope slides (75 x 50 mm) separated 

by polycarbonate spacers of appropriate thickness.  The mold was submerged in an ice 

water bath (~7 °C) and exposed to longwave UV light (UV-Transilluminator, 6 

mW/cm2, 365 nm) for 30 min. After removal from the mold, the hydrogel sheet was 
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rinsed with DI water and then soaked in DI water for 2 days with daily water changes to 

remove impurities. Hydrogel sheets (1.5 mm thick) were used to prepare samples for 

morphological, VPTT, swelling, mechanical, and contact angle studies. Hydrogel sheets 

(0.5 mm thick) were used for cell-release studies.  

For tensile tests, hydrogels were prepared with a “ring” geometry. First, 

hydrogels were prepared in a hollow tube geometry with a double walled tubular mold 

composed of an inner glass mandrel (diameter = 3 mm) and an outer glass cylinder 

(diameter = 7.9 mm). The tubular mold was filled with a precursor solution and cured 

while submerged in an ice water bath (~7 °C) for 30 min under constant rotation such 

that each surface point of the mold received equal UV intensity and exposure time. The 

hydrogel tube was removed from the mold and similarly purified as above by rinsing and 

soaking in DI water. Cutting the resulting hydrogel tube into ~3 mm wide pieces 

afforded hydrogel ring specimens.   

 

3.6 Results and Discussion 

Preparation of Crosslinked Polysiloxane Colloidal Nanoparticles 

 Polysiloxane colloidal nanoparticles were prepared by cationic ring-opening 

emulsion polymerization of D4 and D4
Vi using DBSA as an inisurf (i.e. an initiator and 

surfactant) (Fig. 3.1) [160]. From the non-crosslinked nanoparticles was isolated linear 

copoly(dimethylsiloxane/methylvinylsiloxane) (Mw/Mn = 67,200/36,500 g/mol). Based 

on 1H NMR analysis, the ratio of dimethylsiloxane and methyvinylsiloxane repeat units 

is 4 to 1.  The colloidal nanoparticles were subsequently crosslinked via free radical 
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reaction between of the vinyl groups. Surfactant and other reaction impurities were 

removed from the resultant emulsion via dialysis. This process yielded polysiloxane 

colloidal nanoparticles having an average diameter of 219 nm (PD = 0.10) with particles 

ranging in size from 106 to 531 nm. 

 

Preparation of Nanocomposite Hydrogels: Crosslinking and Morphology 

Nanocomposite hydrogels (b-e) were prepared by photopolymerization aqueous 

mixtures of NIPAAm monomer, BIS crosslinker, Irgacure-2959 photoinitiator, and 

crosslinked colloidal polysiloxane nanoparticles ~7 °C for 30 min (Fig. 3.1). PNIPAAm 

hydrogels are typically formed by the free radical crosslinking copolymerization of 

aqueous solutions of NIPAAm and BIS using redox initiators which typically relies inert 

environments, elevated temperatures, and/or long reaction times [108, 163-166].  Thus, 

photopolymerization was utilized herein to prepare PNIPAAm nanocomposite hydrogels 

more rapidly with a 30 min cure time [167-169]. Although NIPAAm may be 

photocrosslinked in the absence of a crosslinker (e.g. BIS), it may produce elevated sol 

content [170]. With increasing PDMS nanoparticle content, the aqueous precursor 

solutions became increasingly opaque which may block the transmission of UV-light 

and diminish extent of crosslinking. However, following Soxhlet extraction, hydrogels 

containing 2 wt% nanoparticles (d) and pure PNIPAAm hydrogel (a) both exhibited no 

detectable weight loss (<0.1 wt%). Thus, photopolymerization effectively produced 

nanocomposite hydrogels without significant amounts of non-reacted NIPAAm.  
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Figure 3.2.  SEM micrographs of (A) pure PNIPAAm hydrogel a; (B) nanocomposite 
hydrogel b (containing 0.5 wt% nanoparticles); (C) nanocomposite hydrogel e 
(containing 2.0 wt% nanoparticles); (D) nanocomposite hydrogel b. 
 

 The preparation temperatures (Tprep) at which PNIPAAm hydrogels are formed 

has been shown to impact their chemical and physical properties by altering hydrogel 

morphology [171-176]. PNIPAAm hydrogels formed at Tprep < 20 °C are 

morphologically homogeneous whereas those formed at higher temperatures are 

heterogeneous. At Tprep > ~ 20 °C, newly formed insoluble PNIPAAm chains phase 

separate such that subsequent crosslinking leads to the formation of a macroscopic 

network of loosely interconnected highly crosslinked polymer rich domains and lightly 

crosslinked polymer poor domains. As a result, heterogeneous PNIPAAm hydrogels are 

opaque whereas homogeneous hydrogels are transparent. Heterogeneous PNIPAAm 

hydrogels display higher swelling ratios but are mechanically weaker compared to the 
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C 
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D 
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corresponding homogeneous hydrogel [174-176]. Thus, to optimize mechanical strength 

of the nanocomposite hydrogels, photopolymerization was conducted at ~7 °C to obtain 

nanocomposite hydrogels consisting of a homogeneous PNIPAAm matrix with 

embedded nanoparticles. The homogeneity of the PNIPAAm hydrogel matrix is 

confirmed by the optically transparent nature of the pure PNIPAAm hydrogel (a, no 

nanoparticles). Freeze-drying (i.e. lyophilization) is known to preserve the structure and 

volume of swollen hydrogels even after all (or almost all) solvent is removed [177]. 

SEM micrographs of lyophilized nanocomposite hydrogels revealed that all 

demonstrated a uniform porous morphology characteristic of homogeneous PNIPAAm 

hydrogels. Representative SEM images are shown in Fig. 3.2 [176].  

 

Equilibrium Swelling  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.  Equilibrium swelling ratio of nanocomposite hydrogels containing 0.5-2.0 
wt% nanoparticles (b-e) and pure PNIPAAm hydrogel control (a). 
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Equilibrium swelling of the hydrogels (a-e) was measured gravimetrically from 

10 to 50 °C to determine temperature sensitivity. The shift from a water swollen to a 

deswollen state occurs at ~ 33-35 °C for all hydrogels (a-e) (Fig. 3.3). Thus, the presence 

of hydrophobic polysiloxane nanoparticles did not alter the VPTT of nanocomposite 

hydrogels (b-e) versus the pure PNIPAAm hydrogel (a) because of their chemically 

independent nature within the PNIPAAm matrix.  The magnitude of change from a 

swollen to deswollen state of the hydrogels decreased with increased levels of 

polysiloxane nanoparticles in the order: a (0 wt%) > b (0.5 wt%) > c (1.0 wt%) > d 

(1.5wt%) > e (2.0 wt%). Below the VPTT, increased levels of polysiloxane 

nanoparticles produced a decrease in equilibrium swelling. However, above the VPTT, 

increased levels of nanoparticles led to slightly more deswelling. Similar observations 

were made for PNIPAAm/PDMS semi-IPNs as the PDMS content increased [148] or for 

PNIPAAm/silica hydrogel composites as silica content increased [149-151]. The 

reduced swelling of nanocomposite hydrogels may be attributed to their increased 

hydrophobicity and subsequent reduced water uptake caused by incorporation of 

hydrophophobic polysiloxane nanoparticles. 

 
Volume Phase Transition Temperature (VPTT) 

PNIPAAm hydrogels exhibit a significant endothermic effect during the volume 

phase transition due to breaking of hydrogen bonds between water molecules 

surrounding hydrophobic moieties on the polymer [166, 178]. The VPTT is typically 

designated by either the onset (To) or maximum temperature (Tmax) of the endothermic 

peak [167, 179-181].  
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The VPTT and transition enthalpy (ΔH) values of the nanocomposite hydrogels 

(b-e) and PNIPAAm control (a) were determined by their respective DSC thermograms 

of swollen hydrogel specimens (Fig. 3.4, Table 3.1 and 3.2). To values were determined 

from the intersecting point between two tangent lines from the baseline and slope of the 

endothermic peak [180]. The VPTT (Tmax or To) of nanocomposite hydrogels (b-e) 

remained essentially unchanged relative to that of the pure PNIPAAm hydrogel (a). 

Similarly, the ΔH values of nanocomposite hydrogels were similar to that of the pure 

PNIPPAm hydrogel. This indicates that polysiloxane nanoparticles do not interfere with 

dissociation of water molecules from hydrophobic groups when heated above the VPTT 

 Composition  Static Contact Angle 

 
Hydrogel 

Solid wt% 
nanoparticles 

 θstatic (°) 
@ 10 °C 

θstatic (°) 
@ 25 °C 

θstatic (°) 
@ 40 °C 

a 0  50.6 ± 0.4 61.1 ± 3.1 69.2 ± 2.0 
b 0.5  53.1 ± 1.9 60.7 ± 1.5 72.4 ± 1.2 
c 1.0  54.0 ± 1.7 62.8 ± 1.5 75.7 ± 0.2 
d 1.5  57.3 ± 0.4 68.1 ± 0.6 75.8 ± 2.0 
e 2.0  60.7 ± 1.1 69.7 ± 1.4 77.7 ± 0.7 

 

Table 3.2. Surface properties of nanocomposite hydrogels (b-e) and pure PNIPAAm 
hydrogel control (a). 

Table 3.1. Thermal transition properties of nanocomposite hydrogels (b-e) and pure 
PNIPAAm hydrogel control (a). 

 Composition  Volume Phase Transition 
Temperature (VPTT) 

 
Hydrogel 

Solid wt% 
nanoparticles 

  
To (°C) 

 
Tmax (°C) 

 
ΔH (J/g) 

a 0  33.3 35.7 3.96 
b 0.5  33.2 35.7 3.83 
c 1.0  33.3 35.8 4.14 
d 1.5  33.3 35.8 3.79 
e 2.0  33.5 36.0 3.71 
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(Table 3.2). The endothermic peak of the nanocomposite hydrogels slightly broadened 

with increased polysiloxane particle content. Broadening of the endothermic peak of 

PNIPAAm-based hydrogels is an indicator of more gradual deswelling above the VPTT 

[151, 182].  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4.  DSC thermograms for nanocomposite hydrogels (b-e) and pure PNIPAAm 
hydrogel (a).   
 

Dynamic Mechanical and Tensile Properties 

 The mechanical properties of biomaterials such as hydrogels directly affect their 

utility and performance. Because of their frequent use to measure hydrogel mechanical 

properties, both dynamic mechanical analysis (DMA) and tensile tests were utilized in 

this study [98, 183, 184]. Mechanical properties of hydrogels in a swollen state are most 

relevant to their end-use applications. However, mechanical testing of swollen hydrogels 

is challenging because the difficulty maintaining hydration and their high water 

content/low polymer mass to unit volume make them mechanically weak and difficult to 
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handle. Thus, during DMA, silicone oil was placed around the hydrogel disc specimen 

sandwiched between two compression clamps to inhibit water loss.  Tensile testing of 

flat, rectangular hydrogel specimens with ends secured in tension grips is often 

complicated by sample slippage from or breakage at the grip. Thus, specimens with a 

ring geometry were employed to minimize slippage/breakage for improved accuracy 

[48].  Ring specimens also allowed their rapid mounting on tensile bars so that testing 

was completed before significant water loss occurred.  

In DMA, the measured storage modulus (G’) is related to a materials stiffness or 

resistance to deformation [185].  At all frequencies (1 -100 Hz), the G’ of the 

nanocomposite hydrogels (b-e) were higher than that of the pure PNIPAAm hydrogel (a) 

and increased with higher levels of polysiloxane nanoparticles (Fig. 3.5). These 

differences in G’ became more pronounced as the frequency was increased. 

Nanocomposite hydrogels (b-e) also generally showed an increase in tensile modulus 

and ultimate tensile strength (UTS) with increased polysiloxane nanoparticles content 

(Table 3.3). The degree of hydrogel swelling is directly related to its mechanical 

properties and many methods to improve mechanical strength are designed to reduce 

swelling [98].  Thus, the increase in nanocomposite hydrogel G’, tensile modulus, and 

UTS with increasing amounts of nanoparticles is at least partially attributed to reduced 

water content at 25 °C (Fig. 3.3).  For PNIPAAm and other hydrogels, lower water 

content levels typically also results in a reduction in % strain at  break [186].  However, 

percent strain at break was observed to generally increase with nanoparticle levels. 

Higher % strain at break values coupled with higher tensile modulus and UTS values of  
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nanocomposite hydrogels indicate the enhanced mechanical properties is due in part to 

the reinforcement of PNIPAAm matrix by the polysiloxane nanoparticles.   

 

 

 

 

Table 3.3.  Tensile properties of nanocomposite hydrogels (b-e) and pure 
PNIPAAm hydrogel control (a). 
  Composition  Tensile Properties 

 
Hydrogel 

Solid wt% 
nanoparticles 

 Modulus 
(kPa) 

UTS 
(kPa) 

% strain 
at break 

a 0  14.5 ± 1.6 6.7 ± 1.5 50.4 ± 7.7 
b 0.5  16.5 ± 1.0 9.8 ± 1.2 62.1 ± 3.7 
c 1.0  15.6 ± 0.6 9.5 ± 0.5 64.3 ± 1.9 
d 1.5  15.1 ± 2.1 10.9 ± 1.5 75.1 ± 4.5 
e 2.0  17.4 ± 1.5 10.8 ± 1.3 69.6 ± 3.7 
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Figure 3.5.  Storage modulus (G’) of nanocomposite hydrogels (b-e) and pure 
PNIPAAm hydrogel (a) measured in the compression mode. 
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Temperature-dependent Surface Properties 

Contact angle values of PNIPAAm surfaces vary according to the specimen 

preparation and goniometric technique used with most studies reported conducted on 

surface-grafted PNIPAAm [187, 188]. Herein, hydrogel sheets were carefully 

equilibrated in a water bath at the designated temperature for 30 min before each 

measurement and surface water removed by gentle blotting with filter paper. This 

process was designed to prevent inconsistency in hydrogel hydration and temperature 

which could lead to erroneous measurements. Surfaces of plasma polymerized 

PNIPAAm hydrogel thin films on silicon surfaces exhibited a dramatic increase in 

hydrophobicity when the temperature was increased from ~10 to ~25 °C, well before the 

VPTT [189].  Thus, we measured θstatic of water droplets at 10 and 25 °C (below VPTT) 

and at 40 °C (above VPTT) (Table 3.2). As expected, for a given composition, hydrogel 

surface hydrophobicity increased (i.e. θstatic increased) as the temperature increased. 

Surface hydrophobicity significantly increased between 25 and 40 °C as well as between 

10 and 25 °C. As the amount of hydrophobic polysiloxane nanoparticles was increased, 

surface hydrophobicity of b-e increased at all temperatures. The average increase in 

θstatic was ~18 ° for all hydrogels when heated from 10 to 40 °C. 

 

Temperature-Dependent Cell Release Behavior 

The ability of nanocomposite hydrogels to release mouse smooth muscle 

precursor cells (10T1/2) from their surfaces was assessed by examining cell morphology 

before and after thermal cooling. A PEO-RGDS hydrogel served as a control as it is non-
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thermoresponsive but cell-adhesive [190].  Since cells grow well on more hydrophobic 

surfaces, cells were cultured on hydrogels at 37 °C (above the VPTT). It was observed 

that more cells adhered to the nanocomposite hydrogels (b-e) compared to the pure 

PNIPAAm hydrogel (a) which may be explained by the higher hydrophobicity of b-e 

(Table 3.2). Cooling from 37 °C (above VPTT) to 25 °C (below VPTT) forced the 

PNIPAAm-based hydrogels (a-e) to swell and become more hydrophilic (Table 3.2). 

The media within each well containing the hydrogel disc provided water for the swelling 

process. After the first cooling cycle, a round cell morphology indicative of end stages of 

cell detachment was observed for cells on a-e. Time-lapsed images of cell detachment 

from nanocomposite hydrogel e (containing 2 wt% nanoparticles) are shown in Fig. 3.6. 

In contrast, cells on the PEO-RGDS hydrogel control maintained an extended 

morphology indicative of cell adhesion and spreading. Following a subsequent second 

heating-cooling cycle, the round morphology was even more pronounced on a-e (Fig. 

3.7).   

 
 
 
 
 
 
 
 
 
 
 
Figure 3.6.  Time-lapsed images of a mouse smooth muscle precursor cells (10T1/2) on 
hydrogel e (containing 2 wt% nanoparticles) during first cooling cycle from 37 °C to 25 
°C. The cell cluster collapses as individual cells switch from an extended morphology to 
a round morphology as they detach during the hydrogel swelling induced by cooling. All 
scale bars are 100 μm. Dashed white line encircles cell cluster. Dark circle is a bubble. 
 

t = 0 sec t = ~20 sec t = ~ 30 sec t = ~10 sec 
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Figure 3.7.  Mouse smooth muscle precursor (10T1/2) cells displayed a rounded 
morphology indicative of detachment on hydrogels a-e following two cycles of thermal 
cooling from 37 °C to 25 °C. A PEO-RGDS hydrogel served as a cell-adhesive but non-
thermoresponsive control.  All scale bars are 100 μm. 
 

Photopatterning 

 Given the interest in photopatterning of PNIPAAm hydrogels, we evaluated the 

utility of this technique for nanocomposite hydrogels. Direct photopolymerization with a 

photolithography mask having 100 or 200 μm diameter circular patterns successfully 

produced surface micropillars of nanocomposite hydrogel c (containing 1 wt% 

nanoparticles) and the pure PNIPAAm hydrogel control (a) (Fig. 3.8). Because the 

samples were dried for SEM, the micropillars exhibit diameters of less than 100 μm and 

200 μm respectively.  This initial study demonstrates the utility of photopatterning to 

prepare microstructures with nanocomposite hydrogels for targeted applications. 

PEO-RGDS control a b 

c d e 
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Figure 3.8. SEM micrographs of micropillar structures of pure PNIPAAm hydrogel (a) 
[top row] and nanocomposite hydrogel (c, containing 1.0 wt% nanoparticles) [bottom 
row]. Micropillars were prepared by direct photopolymerization with a photolithography 
mask having 200 μm circular patterns [left column] and 100 μm circular patterns [right 
column].  All scale bars are 50 μm. 
 

3.7 Conclusions 

Novel thermoresponsive composite hydrogels comprised of a PNIPAAm 

hydrogel matrix and polysiloxane colloidal nanoparticles (~220 nm ave. diameter) were 

prepared via in situ photopolymerization of aqueous solutions of NIPAAm monomer, 

BIS crosslinker, photoinitiator and polysiloxane nanoparticles (0.5 to 2.0 wt% based on 

solution weight) at ~7 °C. Due to the low preparation temperature, the nanocomposite 

hydrogels exhibited a homogeneous morphology confirmed by SEM analysis. The 

equilibrium swelling of nanocomposite hydrogels was reduced with increased levels of 

polysiloxane nanoparticles. Because the nanoparticles exist as a chemically independent 

phase, the VPTT of the nanocomposite hydrogels is not altered compared to pure 

PNIPAAm hydrogels. Increasing the nanoparticle content generally led to an increase in 

storage modulus (G’), tensile modulus, ultimate tensile strength (UTS), and % strain at 
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break of the nanocomposite hydrogels. An increase in surface hydrophobicity was 

marked by an increase of θstatic by ~18 ° upon heating from 10 °C (below VPTT) to 40 

°C (above VPTT) for nanocomposite hydrogels (b-e) and pure PNIPAAm hydrogel (a). 

Nanocomposite hydrogels became increasingly more hydrophobic at all temperatures as 

the amount of hydrophobic polysiloxane nanoparticles was increased. When cooled from 

37 °C to 25 °C, mouse smooth muscle precursor (10T1/2) cells were shown to 

effectively detach from nanocomposite hydrogel surfaces. Finally, the ability for these 

nanocomposite hydrogel formulations to be photopatterned was demonstrated. 
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CHAPTER IV 

TRANSPARENT THERMORESPONSIVE NANOCOMPOSITE HYDROGELS 

WITH CELL-RELEASING BEHAVIOR 

 

4.1 Overview  

Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels become more hydrophobic 

when they reversibly switch from a water-swollen to a deswollen state above the volume 

phase transition temperature (VPTT, ~ 33 °C) which has been used to modulate cell 

adhesion. In the current work, we prepared novel transparent thermoresponsive 

nanocomposite hydrogels comprised of a PNIPAAm hydrogel matrix and polysiloxane 

colloidal nanoparticles (~54 nm ave. diameter) via in situ photopolymerization of 

aqueous solutions of NIPAAm monomer, N,N’-methylenebisacrylamide (BIS, 

crosslinker), photoinitiator and polysiloxane nanoparticles (0.5 to 4.0 wt% based on 

solution weight) at ~7 °C.  Compared to previous studies of similar hydrogels containing 

larger polysiloxane nanoparticles (219 nm ave. diameter), these hydrogels were optically 

clear. The VPTT of the nanocomposite hydrogels is not altered versus the pure 

PNIPAAm hydrogel. When cooled from 37 °C to 25 °C, mouse smooth muscle 

precursor cells (10T1/2) were effectively detached from nanocomposite hydrogel 

surfaces due to hydrogel swelling.  



 66

4.2 Introduction 

Hydrogels which reversibly switch from a hydrophilic/swollen to 

hydrophobic/deswollen state in response to an external stimulus are of interest for 

creating “smart” or “intelligent” biomedical materials [103]. Thermoresponsive 

hydrogels are crosslinked, three dimensional polymer networks that reversibly swell 

with and then expel aqueous media in response to temperature changes. 

Thermoresponsive hydrogels may be prepared by crosslinking polymers which exhibit a 

lower critical solubility temperature (LCST) [103, 104]. Most widely studied is poly(N-

isopropylacrylamide) (PNIPAAm) (LCST, ~32 °C) which is soluble in water below the 

LCST and reversibly insoluble above the LCST [105]. Crosslinked PNIPAAm hydrogels 

undergo a reversible volume phase transition in water from a swollen state to a 

deswollen state above their volume phase transition temperature (VPTT; ~33 °C) [106, 

107]. Thus, surfaces of PNIPAAm hydrogels [108-110] as well as those comprised of 

covalently grafted PNIPAAm chains [110-112] undergo a large discontinuous change 

from a hydrophilic to a hydrophobic state when heated above the phase transition 

temperature.  

The thermal modulation of PNIPAAm hydrogels has been shown to be useful for 

the controlled detachment of cultured cells in vitro [113, 114].  In this way, confluent 

cell sheets useful for tissue engineering may be detached from culture without enzymes 

or chelating agents known to damage cells [115]. Cell adhesion is diminished not only 

by physical changes of the surface (i.e. swelling/deswelling) but also by changes in 

surface properties. Often characterized by contact angle measurements, polymer surfaces 
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displaying water contact angles greater than 90° are generally considered to be 

hydrophobic [125]. Several studies have shown that cell adhesion is maximized on 

moderately hydrophobic surfaces displaying a water contact angle between 40 and 70° 

[2, 120-124]. Thus, at ~ 37 °C (above the LCST), PNIPAAm-grafted surfaces are 

relatively hydrophobic and various types of cells grow well.  However, upon cooling 

below 32 °C (below the LCST), they become more hydrophilic and cells spontaneously 

detach without damaging the cells [126-130].  Similarly, cells may be detached from the 

surfaces of  PNIPAAm hydrogels after cooling below the VPTT [131, 132].   

The focus of this work herein is extending the utility of PNIPAAm hydrogels as 

robust “self-cleaning” implanted sensor membranes [136, 137]. Membrane biofouling is 

considered to be a leading cause of sensor failure as adhered proteins and cells diminish 

the diffusion of the target analyte (e.g. glucose) to the sensor [22]. Because sensors are 

often based on optical or fluorescent signals, a membrane which is also transparent is 

desirable. Our concept of a self-cleaning sensor membrane prepared from a 

thermoresponsive nanocomposite hydrogel material is depicted in Fig. 4.1. The 

nanocomposite hydrogel sensor membrane will remove cells that accumulate on its 

surface via periodic thermal modulation. In this figure, the “self-cleaning” mechanism is 

accomplished through deswelling although cells may also be released via swelling as 

demonstrated herein. This “self-cleaning” membrane will enable a glucose biosensor to 

remain implanted for longer periods of time without compromising glucose-sensing 

sensitivity.  
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Figure 4.1.  Thermal modulation of the thermoresponsive nanocomposite hydrogel 
sensor membrane will regulate the self-cleaning process. 

 

 Transparent thermoresponsive nanocomposite hydrogels were prepared 

consisting of an organic PNIPAAm hydrogel matrix and variable levels of inorganic 

polysiloxane nanoparticles (Fig. 4.2).  Here, polysiloxane nanoparticles (diameter = ~54 

nm) were prepared from anionic emulsion polymerization of octamethyl-

cyclotetrasiloxane (D4) and 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane 

(D4
Vi). The resulting nanoparticles were subsequently stabilized by free radical 

crosslinking the copoly(dimethylsiloxane/methylvinylsiloxane) chains inside the 

2. Over time, the sensor membrane surface 
will accumulate proteins and cells from the 
physiological environment thereby blocking 
diffusion of glucose. Conventional sensor 
membranes would require replacement of 
the sensor at this stage.   

3. Heating above the VPTT (with 
an external “watch device”) will 
cause the membrane to deswell. 
This physical collapse and change 
in surface properties will disrupt 
adhesion of proteins and cells. 

glucose 

glucose 

Heat above 
VPTT

1. At 37 °C (body temp.), the thermoresponsive nanocomposite 
hydrogel sensor membrane is in a swollen state (i.e. below the 
VPTT).  Glucose diffusion is readily achieved through the “expanded” 
membrane to the enclosed assay. Its enhanced mechanical 
properties allow the sensor to be placed in vivo without breakage 
(and eventually removed without breakage as well). 

fluorescent glucose-
responsive assay: (AF594 
glycodendrimer/ConA)  
 

hydrogel sensor 
membrane 
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Figure 4.2.  (a) Preparation of colloidal polysiloxane nanoparticles via emulsion 
polymerization and subsequent crosslinking and (b) preparation of 
thermoresponsive nanocomposite hydrogels with variable wt% nanoparticles 
(based on total solution weight). 
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 nanoparticles. Crosslinked polysiloxane nanoparticles (0.5 – 4.0 wt%) were introduced 

into aqueous solutions of NIPAAm, BIS (crosslinker), and photoinitiator and 

subsequently photopolymerized at low temperatures (~ 7 °C) to yield thermoresponsive 

nanocomposite hydrogels. The effect of polysiloxane nanoparticle content on hydrogel 

morphology, VPTT, mechanical properties as well as temperature-dependent swelling 

behavior, and cell release behavior are presented.  

 

4.3 Experimental Section 

Preparation of Crosslinked Polysiloxane Colloidal Nanoparticles  

Polysiloxane colloidal particles were prepared by anionic emulsion olymerization 

of D4 and D4
Vi (Fig. 4.2).  Into a 500 mL water-jacketed polymerization vessel equipped 

with a mechanical stirrer and Teflon stirring paddle, reflux condenser, and addition 

funnel, Brij 35 [C12H25(OCH2CH2)23OH, Polyoxyethylene (23) lauryl ether] (6 g), Brij 

78 [Polyoxyethylene (20) stearyl ether C18H37(OCH2CH2)20OH] (13.5 g) and Tergitol 

[Polyglycol ether surfactant] (10.71 g,) were dissolved in deionized (DI) water (146.79 

g).  A mixture of D4 (62.4 g, 210 mmol) and D4
Vi (15.6 g, 45 mmol) was added dropwise 

via the addition funnel to the aqueous solution with constant stirring (300 rpm). Then, 

KOH aqueous solution (25 wt%) was added dropwise via the addition funnel. The 

resulting stable emulsion was then heated to 80 °C for 24 h with constant stirring (280 

rpm). The final emulsion was cooled, filtered through a 10 μm filter bag, and the pH 

adjusted to 7 with aqueous acetic acid (25 wt%). The solid content of the emulsion was 
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determined by weight loss from an aliquot after drying (115 °C, 8 h). Emulsion solid 

content: 22.2 % (83 % conversion).  

These colloidal nanoparticles were subsequently stabilized by crosslinking of the 

copoly(dimethylsiloxane/methylvinylsiloxane) chains within the nanoparticles via their 

vinyl groups (Fig. 4.2). The above final emulsion (50 g) was added to a 3-neck round 

bottom (rb) flask equipped with a Teflon-covered stir bar, reflux condenser, and nitrogen 

(N2) inlet.  After the addition of K2S2O8 (0.5 g), the mixture was reacted at 80 ºC for  

10 h under N2. The emulsion was cooled and filtered through a 10 μm filter bag. The 

resulting colloidal nanoparticles were purified via dialysis (Slide-A-Lyzer ® Dialysis 

Cassette, MWCO = 10,000, Pierce Chemical Co.) against daily changes of DI water for 

3 days. Emulsion solid content: 10.4%. Dynamic light scattering (DLS): 54 nm (average 

diameter) and 0.2 (polydispersity, PD).  

 

 Characterization of Polysiloxane Colloidal Nanoparticles 

 Particle size of colloidal nanoparticles was determined by dynamic light 

scattering (DLS) (Malvern Zetasizer® Nano S) with a detection angle of 90 º.  

Measurements were carried out at 25 °C.  An aliquot of the designated emulsion was 

highly diluted with DI water just prior to measurement in order to rule out interaction 

and multiple scattering effects. 

 Cryogenic transmission electron microscopy (Cryo-TEM) was used to visualize 

the nanoparticles and confirm their lack of aggregation in water. A FEI-Q20 TEM, 
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operated at 120 kV and equipped with a Gatan 626 cryo holder, was used for imaging. 

Further details on sample preparation and imaging analysis were previously described. 

 

Extent of Crosslinking 

The amount of uncrosslinked material in select hydrogels was determined by 

weight loss following Soxhlet extraction. For a given hydrogel, three hydrogel discs (13 

mm diameter, 1.5 mm thickness) were punched from a single hydrogel sheet with a die 

and immediately dried in a vacuum oven (30 in. Hg, 60 ºC, 24 h) and weighed. The dried 

discs were extracted with dichloromethane in a Soxhlet apparatus for 12 h and weighed 

after similarly drying in a vacuum oven. The percentage of uncrosslinked material was 

calculated as the average weight difference of the extracted versus unextracted weight 

divided by the unextracted weight. 

 

Morphological Characterization 

 The morphology of hydrogels was studied by scanning electron microscopy 

(SEM). To retain their morphology, swollen hydrogel specimens were freeze dried in 

lyophilizer (Labconco CentriVap Gel Dryer System) for 6 h at -40 °C [68].  Cross-

sections of the freeze-dried gels were subjected to Pt-sputter coating and viewed with a 

field emission SEM (Zeiss 1530 VP FE-SEM) at accelerated electron energy of 5 keV 

and 15 keV.  
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Kinetic Swelling 

For swelling measurements, three hydrogel discs of constant dimension (13 mm 

diameter, 1.5 mm thickness) were prepared as above. For dynamic deswelling 

measurements, hydrogel water retention is defined as: water retention = (Wt – Wd)/Ws, 

where Wt is the mass of the wet hydrogel at 50 ºC. Each disc, sealed inside a vial 

containing 20 mL DI water, immersed in water bath for 24 h at 22 °C to get equilibrium. 

The equilibrated hydrogel discs were then quickly transferred into a 50 °C water bath. At 

10, 20, 40 and 80 min, the samples were taken from the water bath and weighed after the 

excess water on the surfaces blotted with filter paper. 

For dynamic swelling measurements, hydrogel water retention is defined as: 

water uptake = (Wt – Wd)/Ws, where Wt is the mass of the wet hydrogel at 50 ºC. Each 

disc was immersed in water bath for 4 h at 50 °C. The partly shrunk hydrogel discs were 

further dried in a vacuum oven at 60 °C overnight until the hydrogel reached a constant 

weight. After drying, the discs were then transferred into vials containing 20 ml DI water 

and placed into a water bath at 22 ºC. At 10, 20, 40, 80, 120, 200, 320, and 450 min, the 

samples were taken out of the water bath and the masses were recorded after blotting 

with filter paper. 

 

Volume Phase Transition Temperature (VPTT) 

 VPTT of swollen hydrogels were determined by differential scanning calorimetry 

(DSC, TA Instruments Q100). Water-swollen hydrogels were blotted with filter paper 

and a small piece sealed in a hermetic pan. After cooling to -50 °C, the temperature was 
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increased to 50 ºC at a rate of 3 ºC/min for 2 cycles. The resulting exothermic phase 

transition peak is characterized by the initial temperature at which the exotherm starts 

(To), the peak temperature of the exotherm (Tmax) and the enthalpy change (ΔH) of the 

phase transition. Data reported is from the 2nd cycle. 

 

Dynamic Mechanical Analysis (DMA) 

DMA of hydrogels were measured in the compression mode with  a dynamic 

mechanical analyzer (TA Instruments Q800) equipped with parallel-plate compression 

clamp with a diameter of 40 mm (bottom) and 15 mm (top). Swollen hydrogel discs of 

constant dimension (13 mm diameter, 1.5 mm thickness) were punched from a hydrogel 

sheet and clamped between the parallel plates. Trimethylsiloxy terminated PDMS was 

then placed around the exposed edges of the hydrogel to prevent dehydration.  Following 

equilibration at the 25 °C (5 min), the samples were tested in a multi-frequency-strain 

mode (1 to 100 Hz) at the temperature of 25 °C (below the VPTT).  Results reported are 

based on the average of five individual specimens. 

 

Tensile Test 

Tensile tests of hydrogels ring specimens were measured on a TA Instruments 

DMA Q800 operating in the tension mode. Specimens with a ring geometry were 

prepared by cutting a portion from a hydrogel tube produced from the double wall 

tubular mold (ID = 3 mm, OD = 7.5 mm). Individual rings (~3 mm width) were cut from 

the central portion of the appropriate hydrogel tube using a clean razor blade and sample 
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dimensions measured with an electronic caliper. Each hydrogel ring was blotted with 

filter paper and loaded onto custom aluminum bars gripped directly into DMA tension 

clamps so that the upper and lower bars were located inside the ring. Samples were 

subjected to a constant strain (1 mm/min) until they broke at the center of one side of the 

ring. Stress was calculated from the measured force divided by the cross-sectional area 

of two rectangles with sides equal to the width and wall thickness of the ring. The gauge 

length corresponded to the outer diameter of the ring less the wall thickness. The 

following parameters were determined: (1) tensile modulus, (2) ultimate tensile strength 

(UTS), and (3) % strain at break. The tensile modulus was obtained from the slope of the 

linear part of the stress-strain curve. The UTS represents the maximum stress prior to 

failure. Strain was calculated from the measured displacement divided by the gauge 

length. Results reported are the average result of three specimens cut from central 

portion of the same hydrogel tube. 

 

Temperature-dependent Cell Release  

 Hydrogel sheets (a-f) were prepared as above under sterile conditions. A “PEO-

RGDS” hydrogel was prepared from poly(ethylene oxide)-diacrylate (PEO-DA, Mn = 

6000 g/mol) containing the acrylate-derivatized cell adhesion peptide RGDS (acryoyl-

PEO-RGDS) with standard procedures [191]. Photoinitiator solution (10 μL of 30 wt% 

solution of DMAP in NVP) was added for every one mL of aqueous solution containing 

10 wt% PEO-DA macromers and 1 μmol/mL acryoyl-PEO-RGDS in PBS. The PEO-DA 

and PNIPAAm-based precursor solutions were each cured between two glass sheets 
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separated by 0.5 mm polycarbonate spacers by exposure to 365 nm UV light (UV-

Transilluminator, 6 mW/cm2) for 2 min. All hydrogel formulations were permitted to 

swell for two days in phosphate-buffered saline (PBS; pH = 7.4) with daily PBS changes 

to remove hydrogel impurities. Swollen hydrogel discs of constant dimension (9 mm 

diameter, 0.5 mm thickness) were punched from each hydrogel sheet and transferred to a 

24 well plate containing media in each well. The plate was then incubated at 37 °C 

(above VPTT) for 2 h to force PNIPAAm-based hydrogels (a-e) into a deswollen, 

hydrophobic state and to equilibrate the hydrogels with the cell culture media. Mouse 

smooth muscle precursor cells (10T1/2) were seeded onto each hydrogel surfaces at 

25,000 cells/cm2. After incubation at 37 °C for 4 h, the 24 well plate was transferred to a 

Zeiss Axiovert A200 microscope and air-cooled to 25 °C (below VPTT) at a rate of ~ 2 

ºC/min thereby causing a-e to swell. The well plate was then transferred back to a 37 °C 

incubator for 4 h and a second cooling cycle was similarly performed. For each cooling 

cycle, images were captured at two second intervals.  

 

4.4 Materials 

Octamethylcyclotetrasiloxane (D4) and 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl-

cyclotetrasiloxane (D4
Vi) were purchased from Gelest Inc. Brij 35, Brij 78, Tergitol 

solution (70% in H2O), Potassium hydroxide (KOH)4, Potassium persulfate (K2S2O8), N-

isopropylacrylamide (NIPAAm, 97%), 2,2-dimethyl-2-phenyl-acetophenone (DMAP), 

N-vinylpyrrolidone (NVP) were purchased from Aldrich. N,N’-methylenebisacrylamide 

(BIS, 99%) was obtained from Acros Organics. 1-[4-(2-Hydroxyethoxy)-phenyl]-2-
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hydroxy-2-methyl-1-propane-1-one (Irgacure® 2959) was obtained from Ciba.  Acetic 

acid was received from Fisher Scientific. All reagents were used as received. 

 

4.5 Preparation of Nanocomposite Hydrogels 

Nanocomposite hydrogels were prepared by in situ photopolymerization of 

aqueous precursor solutions containing NIPAAm monomer, BIS crosslinker, Irgacure-

2959 photoinitiator, and crosslinked polysiloxane nanoparticles (Fig. 4.1).  In a 50 mL rb 

flask equipped with a Teflon-covered stir bar, NIPAAm (1.0 g, 8.84 mmol), BIS (0.02 g, 

0.13 mmol), and Irgacure-2959 (0.08 g, 0.36 mmol) were dissolved in DI water (the total 

volume equal to 7 mL including the volume of water introduced later by the nanoparticle 

emulsion) and the solution stirred under N2 for 15 min. Finally, the appropriate amount 

of emulsion containing crosslinked colloidal nanoparticles was added and the mixture 

stirred for 10 min under N2.  In total, four different hydrogel compositions were prepared 

with varying amounts of colloidal nanoparticles: (a) pure NIPAAm (no nanoparticles; a 

control), (b) 0.5 wt%, (c) 1.0 wt%, (d) 2.0 wt%,  (e) 3.0 wt%, and (f) 4.0 wt% (wt % 

solids of nanoparticles with respect to total precursor solution wt). 

Hydrogel sheets (1.5 or 0.5 mm thick) were prepared by first pipetting a 

precursor solution between two clamped glass microscope slides (75 x 50 mm) separated 

by polycarbonate spacers of appropriate  thickness (1.5 mm for mechanical test and 0.5 

mm for cell release test).  The mold was submerged in an ice water bath (~7 °C) and 

exposed to longwave UV light (UV-Transilluminator, 6 mW/cm2, 365 nm) for 30 min. 

After removal from the mold, hydrogel sheet was rinsed with DI water and then soaked 
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in DI water for 2 days with daily water changes to remove impurities. Hydrogel sheets 

(1.5 mm thick) were used to prepare samples for morphological, VPTT, swelling, 

mechanical, and contact angle studies. Hydrogel sheets (0.5 mm thick) were used for 

cell-release studies.  

For tensile tests, hydrogels were prepared with a “ring” geometry. First, 

hydrogels were prepared in a hollow tube geometry with a double walled tubular mold 

composed of an inner glass mandrel (diameter = 3 mm) and an outer glass cylinder 

(diameter = 7.9 mm). The tubular mold was filled with a precursor solution and cured 

while submerged in an ice water bath (~7 °C) for 30 min under constant rotation such 

that each surface point of the mold received equal UV intensity and exposure time. The 

hydrogel tube was removed from the mold and similarly purified as above by rinsing and 

soaking in DI water. Cutting the resulting hydrogel tube into ~3 mm wide pieces 

afforded hydrogel ring specimens. 

 

4.6 Results and Discussion 

Preparation of Crosslinked Polysiloxane Colloidal Nanoparticles 

 Polysiloxane colloidal nanoparticles were prepared by anionic ring-opening 

emulsion polymerization of D4 and D4
Vi using Brij 35 and Brij 78 as an inisurf (i.e. an 

initiator and surfactant) (Fig. 4.2) [160]. The colloidal nanoparticles were subsequently 

crosslinked via free radical reaction between of the vinyl groups. Surfactant and other 

reaction impurities were removed from the resultant emulsion via dialysis. This process 
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yielded polysiloxane colloidal nanoparticles having an average diameter of 54 nm (PD = 

0.2). 

 

Preparation of Nanocomposite Hydrogels: Crosslinking and Morphology 

Nanocomposite hydrogels (b-f) were prepared by photopolymerization aqueous 

mixtures of NIPAAm monomer, BIS crosslinker, Irgacure-2959 photoinitiator, and 

crosslinked colloidal polysiloxane nanoparticles ~7 °C for 30 min (Fig. 4.3). PNIPAAm 

hydrogels are typically formed by the free radical crosslinking copolymerization of 

aqueous solutions of NIPAAm and BIS using redox initiators which typically relies inert 

environments, elevated temperatures, and/or long reaction times [108, 163-166].  Thus, 

photopolymerization was utilized herein to prepare PNIPAAm nanocomposite hydrogels 

more rapidly with a 30 min cure time [167-169]. With increasing PDMS nanoparticle 

content, resulting hydrogels were substantially more transparent than hydrogels prepared 

with 220 nm polysiloxane particles [99]. Following Soxhlet extraction, hydrogels 

containing 4 wt% nanoparticles (f) and pure PNIPAAm hydrogel (a) both exhibited no 

detectable weight loss (<0.1 wt%). Thus, photopolymerization effectively produced 

nanocomposite hydrogels without significant amounts of non-reacted NIPAAm.  

 The preparation temperatures (Tprep) at which PNIPAAm hydrogels are formed 

has been shown to impact their chemical and physical properties by altering hydrogel 

morphology [171-176]. Thus, to optimize mechanical strength of the nanocomposite 

hydrogels, photopolymerization was conducted at ~7 °C to obtain nanocomposite 

hydrogels consisting of a homogeneous PNIPAAm matrix with embedded nanoparticles. 

2 μm 
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The homogeneity of the PNIPAAm hydrogel matrix is confirmed by the optically 

transparent nature of the pure PNIPAAm hydrogel (a, no nanoparticles). Freeze-drying 

(i.e. lyophilization) is known to preserve the structure and volume of swollen hydrogels 

even after all (or almost all) solvent is removed [177]. SEM micrographs of lyophilized 

nanocomposite hydrogels revealed that all demonstrated a uniform porous morphology 

characteristic of homogeneous PNIPAAm hydrogels. Representative SEM images are 

shown in Fig. 4.3 [176].  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3.  SEM micrographs of (A) nanocomposite hydrogel f (containing 4.0 wt% 
nanoparticles); (B) nanocomposite hydrogel c (containing 1.0 wt% nanoparticles). 
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Kinetic Swelling  

 At ~ 200 min, all hydrogels reached 80% swelling when cooled from 50 to 22 

°C.  Swelling was fastest for the hydrogel containing 1 wt% nanoparticles. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.  Kinetic swelling ratio of nanocomposite hydrogels containing 0.5-2.0 wt% 
nanoparticles (b-e) and pure PNIPAAm hydrogel control (a). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5.  Kinetic deswelling ratio of nanocomposite hydrogels containing 0.5-2.0 
wt% nanoparticles (b-e) and pure PNIPAAm hydrogel control (a). 
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Table 4.1. Composition and thermal transition properties of nanocomposite hydrogels 
(b-f) and pure PNIPAAm hydrogel control (a). 
 

 Composition  Volume Phase Transition Temperature 
(VPTT) 

 
Hydrogel 

Solid wt% 
nanoparticles 

  
To (°C) 

 
Tmax (°C) 

 
ΔH (J/g) 

a 0  32.7 35.4 5.25 
b 0.5  33.2 35.9 4.87 
c 1.0  32.6 34.9 6.59 
d 2.0  32.9 35.3 4.42 
e 3.0  32.7 35.2 5.56 
f 4.0  32.6 35.1 5.47 

 

PNIPAAm hydrogels exhibit a significant endothermic effect during the volume 

phase transition due to breaking of hydrogen bonds between water molecules 

surrounding hydrophobic moieties on the polymer [166, 178]. The VPTT is typically 

designated by either the onset (To) or maximum temperature (Tmax) of the endothermic 

peak [167, 179-181]. The VPTT and transition enthalpy (ΔH) values of the 

nanocomposite hydrogels (b-f) and PNIPAAm control (a) were determined by their 

respective DSC thermograms of swollen hydrogel specimens (Fig. 4.6, Table 4.1). To 

values were determined from the intersecting point between two tangent lines from the 

baseline and slope of the endothermic peak [180]. The VPTT (Tmax or To) of 

nanocomposite hydrogels (b-f) remained essentially unchanged relative to that of the 

pure PNIPAAm hydrogel (a). Similarly, the ΔH values of nanocomposite hydrogels 

were similar to that of the pure PNIPPAm hydrogel. This indicates that polysiloxane 

nanoparticles do not interfere with the dissociation of water molecules from hydrophobic 

groups when heated above the VPTT. The endothermic peak of the nanocomposite 

hydrogels slightly broadened with increased polysiloxane particle content. Broadening 
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of the endothermic peak of PNIPAAm-based hydrogels is an indicator of more gradual 

deswelling above the VPTT [151, 182].  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 4.6.  DSC thermograms for nanocomposite hydrogels (b-f) and pure PNIPAAm 
hydrogel (a).   
 

Tensile Tests and Dynamic Mechanical Analysis 

 The mechanical properties of biomaterials such as hydrogels directly affect their 

utility and performance. Because of their frequent use to measure hydrogel mechanical 

properties, both dynamic mechanical analysis (DMA) and tensile tests were utilized in 

this study [98, 183, 184]. Mechanical properties of hydrogels in a swollen state are most 

relevant to their end-use applications. However, mechanical testing of swollen hydrogels 
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sandwiched between two compression clamps to inhibit water loss.  Tensile testing of 

flat, rectangular hydrogel specimens with ends secured in tension grips is often 

complicated by sample slippage from or breakage at the grip. Thus, specimens with a 

ring geometry were employed to minimize slippage/breakage for improved accuracy 

[48].  Ring specimens also allowed their rapid mounting on tensile bars so that testing 

was completed before significant water loss occurred.  

In DMA, the measured storage modulus (G’) is related to a materials stiffness or 

resistance to deformation [185]. At all frequencies (1-100 Hz), the G’ of the 

nanocomposite hydrogels (b-f) were higher than that of the pure PNIPAAm hydrogel (a) 

and increased with higher levels of polysiloxane nanoparticles (Fig. 4.7). These 

differences in G’ became more pronounced as the frequency was increased. 

Nanocomposite hydrogels (b-f) also showed an increase in tensile modulus and ultimate 

tensile strength (UTS) with increased polysiloxane nanoparticles content up to 2 wt% 

(Table 4.2).  
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Figure 4.7.  Storage modulus (G’) of nanocomposite hydrogels (b-f) and pure 
PNIPAAm hydrogel (a) measured in the compression mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Composition  Tensile Properties 

 
Hydrogel 

Solid wt% 
nanoparticles 

 Modulus 
(kPa) 

UTS 
(kPa) 

% strain at break 

a 0  14.5 ± 1.6 6.7 ± 1.5 50.4 ± 7.7  
b 0.5  17.1±0.2 7.0±1.3 46.9±8.1 
c 1  17.5±2.1 8.6±1.1 58.9±8.0 
d 2  17.2±0.5 8.8±1.0 57.8±5.8 
e 3  14.2±1.0 7.2±1.0 56.7±6.9 
f 4  13.8±0.0 6.7±0.9 53.7±7.2 

200 nm 1  15.6 ± 0.6 9.5 ± 0.5 64.3 ± 1.9   

Table 4.2.  Tensile properties of nanocomposite hydrogels (b-f) and pure PNIPAAm 
hydrogel control (a). 

20

25

30

35

40

45

50

55

60

65

70

0 10 20 30 40 50 60 70

Frequency [Hz]

 G
' [

K
Pa

]

b 

e 

c 

f 

d 

a 



 86

Temperature-Dependent Cell Release Behavior 

The ability of nanocomposite hydrogels to release mouse smooth muscle 

precursor cells (10T1/2) from their surfaces was assessed by examining cell morphology 

before and after thermal cooling. A PEO-RGDS hydrogel served as a control as it is non-

thermoresponsive but cell-adhesive [190].  Since cells grow well on more hydrophobic 

surfaces, cells were cultured on hydrogels at 37 °C (above the VPTT). It was observed 

that more cells adhered to the nanocomposite hydrogels (b-f) compared to the pure 

PNIPAAm hydrogel (a) which may be explained by the higher hydrophobicity of b-f 

due to the presence of hydrophobic PDMS nanoparticles. Cooling from 37 °C (above 

VPTT) to 25 °C (below VPTT) forced the PNIPAAm-based hydrogels (a-f) to swell and 

become more hydrophilic. The media within each well containing the hydrogel disc 

provided water for the swelling process. After the first cooling cycle, a round cell 

morphology indicative of end stages of cell detachment was observed for cells on a-f. 

Time-lapsed images of cell detachment from nanocomposite hydrogel c (containing 1 

wt% nanoparticles) are shown in Fig. 4.8. In contrast, cells on the PEO-RGDS hydrogel 

control maintained an extended morphology indicative of cell adhesion and spreading. 

Following a subsequent second heating-cooling cycle, the round morphology was even 

more pronounced on a-f (Fig. 4.9).   
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Figure 4.8.  Time-lapsed images of a mouse smooth muscle precursor cells (10T1/2) on 
hydrogel c (containing 1 wt%; top row) and hydrogel d (2 wt%; bottom row) 
nanoparticles during first cooling cycle from 37 °C to 25 °C. The cell cluster collapses as 
individual cells switch from an extended morphology to a round morphology as they 
detach during the hydrogel swelling induced by cooling.  
 

 

 

 

 

 

 

 

 

 
Figure 4.9.  Mouse smooth muscle precursor (10T1/2) cells displayed a rounded 
morphology indicative of detachment on hydrogels a-f following two cycles of thermal 
cooling from 37 °C to 25 °C. A PEO-RGDS hydrogel served as a cell-adhesive but non-
thermoresponsive control.  All scale bars are 100 μm. 
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4.7 Conlusions 

Transparent thermoresponsive composite hydrogels comprised of a PNIPAAm 

hydrogel matrix and polysiloxane colloidal nanoparticles (~54 nm ave. diameter) were 

prepared via in situ photopolymerization of aqueous solutions of NIPAAm monomer, 

BIS crosslinker, photoinitiator and polysiloxane nanoparticles (0.5 to 4.0 wt% based on 

solution weight) at ~7 °C. Due to the low preparation temperature, the nanocomposite 

hydrogels exhibited a homogeneous morphology confirmed by SEM analysis. Because 

the nanoparticles exist as a chemically independent phase, the VPTT of the 

nanocomposite hydrogels is not altered compared to pure PNIPAAm hydrogels. 

Increasing the nanoparticle content generally led to an increase in storage modulus (G’), 

and tensile modulus. When cooled from 37 °C to 25 °C, mouse smooth muscle precursor 

(10T1/2) cells were shown to effectively detach from nanocomposite hydrogel surfaces.  
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Conclusions 

In Chapter II, a library of 18 unique PDMSstar-PEG hydrogels were prepared by 

photochemical cure of varying weight ratios of PDMSstar-MA (A-C) and PEG-DA (L 

and H). Thus, the chemical properties of the hydrogels were switched from a purely 

organic, PEG to inorganic-organic with increased levels of A-C. The morphology of 

these hydrogels consisted of spherical PDMS-enriched microparticles dispersed 

throughout a PEG matrix. For hydrogels based on L, increased levels of A-C 

systematically decreased tensile modulus and a similar but less substantial decrease was 

observed for hydrogels based on H. For a given hydrogel series based on L or H, the 

equilibrium swelling of PDMSstar-PEG hydrogels were not substantially different from 

one another or the corresponding pure PEG-DA hydrogel (L and H controls). Thus, for 

a given hydrogel series, modulus was independent of hydration. These hydrogels 

therefore permit the evaluation of the effect of scaffold modulus apart from hydration. 

The resistance to non-specific protein adhesion as well of non-cytoxicity of PEG-DA 

hydrogels was maintained for the PDMSstar-PEG hydrogels. Thus, these inorganic-

organic hydrogels with tunable chemical and physical properties are useful to define 

cell-material interaction relationships in tissue engineering. 

In Chapters III and IV, novel thermoresponsive composite hydrogels comprised 

of a PNIPAAm hydrogel matrix and polysiloxane colloidal nanoparticles (both ~54 nm 
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and ~220 nm ave. diameter) were prepared via in situ photopolymerization. The 

nanocomposite hydrogels exhibited a homogeneous morphology confirmed by SEM 

analysis. The VPTT of the nanocomposite hydrogels is not altered compared to pure 

PNIPAAm hydrogels, since the nanoparticles exist as a chemically independent phase. 

The dynamic storage modulus (G’) in compression and tensile modulus generally 

increased with nanoparticle content compared with pure PNIPAAm hydrogels. When 

cooled from 37 to 25°C, mouse smooth muscle precursor (10T1/2) cells were shown to 

effectively detach from nanocomposite hydrogel surfaces.  

 

5.2 Future Directions 

In the future studies, physical properties of PDMSstar-PEG hydrogels may be 

altered by systematically tuning total concentration of macromers in the aqueous solution 

rather than at the same concentration (i.e. 10 wt%) used in Chapter II. These 

concentrations (5-20 wt%) may be prepared individually or using a gradient maker.  Our 

collaborator, Prof. Mariah Hahn (Texas A&M University) has recently shown that 

osteoblasts transdifferente into chrondrocyte-like cells as PDMS content increased in 

PDMSstar-PEO hydrogels.  Thus, these scaffolds merit further study for osteochondral 

tissue regeneration. The stimulation of hydroxyapatite onto these hydrogels when 

exposed to simulated body fluid (SBF) is currently being examined in our group.  In 

addition, it was recently observed that organic solvent-based solutions (e.g. 

dichloromethane) of these macromers results in a homogeneous precursor solutions that 

upon photocure and hydration with water are notably tougher. 
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Enhancing the mechanical properties of sensor membrances is valuable to 

maintain their integrity during insertion and removal from the body.  We have recently 

begun work to improve the mechanical behavior of PNIPAAm nanocomposite hydrogels 

by changing the PNIPAAm matrix. For instance, interpenetrating polymer networks 

(IPNs) have been formed with a “tightly” crosslinked and second “loosely” crosslinked 

PNIPAAm hydrogel.  These are sometimes referred to as double network hydrogels.  

Incorporation of the 220 and 54 nm polysiloxane nanoparticles into these tougher 

hydrogel matrixes may produce a membrane with excellent mechanical and self-cleaning 

properties.   
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APPENDIX A 

 
1H NMR of PDMSstar-Si-H (a). 

 
1H NMR of PDMSstar-MA (A). 
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1H NMR of PDMSstar-Si-H (b). 

 

 
1H NMR of PDMSstar-MA (B). 
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1H NMR of PDMSstar-Si-H (c). 

 

 
1H NMR of PDMSstar-MA (C). 
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1H NMR of PEG-DA (L). 

 

 
1H NMR of PEG-DA (H). 
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SEM images and corresponding EDS spectra of C20H80 (A) bulk matrix (B) a 
microparticle. The presence of Si in the microparticle and not the surrounding area 
indicates that they are Si-enriched and formed from PDMSstar-MA. 
 

A B 
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Swelling ratio of L series hydrogel at 37 ºC. Statistical significance within a given series 
(i.e. A, B and C) was determined by one-way analysis of variance (Holm-Sidak method 
where p = 0.05. (#) indicates p > 0.05.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Swelling ratio of H series hydrogel at 37 ºC. Statistical significance within a given series 
(i.e. A, B and C) was determined by one-way analysis of variance (Holm-Sidak method 
where p = 0.05. (*) indicates p < 0.05). Remaining compositions are all statistically 
similar. 
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Tensile strength of L series hydrogels. Statistical significance within a given series (i.e. 
A, B and C) was determined by one-way analysis of variance (Holm-Sidak method 
where p = 0.05. (#) indicates p>0.05). 
 

Tensile strength of H series hydrogels. Statistical significance within a given series (i.e. 
A, B and C) was determined by one-way analysis of variance (Holm-Sidak method 
where p = 0.05. (*) indicates p<0.05). 
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Elongation% of L series hydrogels. Statistical significance within a given series (i.e. A, 
B and C) was determined by one-way analysis of variance (Holm-Sidak method where p 
= 0.05. (*) indicates p < 0.05). 
 
 

Elongation% of H series hydrogels. Statistical significance within a given series (i.e. A, 
B and C) was determined by one-way analysis of variance (Holm-Sidak method where p 
= 0.05. (*) indicates p<0.05). 
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UTS/TM of L series hydrogels. Statistical significance within a given series (i.e. A, B 
and C) was determined by one-way analysis of variance (Holm-Sidak method where p = 
0.05. (*) indicates p < 0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UTS/TM of H series hydrogels. Statistical significance within a given series (i.e. A, B 
and C) was determined by one-way analysis of variance (Holm-Sidak method where p = 
0.05. (*) indicates p < 0.05). 
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E%/TM of L series hydrogels. Statistical significance within a given series (i.e. A, B and 
C) was determined by one-way analysis of variance (Holm-Sidak method where p = 
0.05. (#) indicates p > 0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E%/TM of H series hydrogels. Statistical significance within a given series (i.e. A, B 
and C) was determined by one-way analysis of variance (Holm-Sidak method where p = 
0.05. (#) indicates p > 0.05). 
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APPENDIX B 

 

1H NMR of polysiloxane nanoparticles (~ 220 nm ave. diameter). 
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APPENDIX C 

 

1H NMR of polysiloxane nanoparticles (~ 54 nm ave. diameter). 
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