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ABSTRACT 

 

Non-destructive Testing of Overhead Transmission Lines: Numerical and Experimental 

Investigation. (December 2009) 

Salil Subhash Kulkarni, B.Tech, College of Engineering, Pune, India 

Chair of Advisory Committee: Dr. Stefan Hurlebaus 

Overhead transmission lines are periodically inspected using both on-ground and 

helicopter-aided visual inspection. Factors including sun glare, cloud cover, close 

proximity to power lines and the rapidly changing visual circumstances make airborne 

inspection of power lines a particularly hazardous task. In this research, a finite element 

model is developed that can be used to create the theoretical dispersion curves of an 

overhead transmission line. The complex geometry of the overhead transmission line is 

the primary reason for absence of a theoretical solution to get the analytical dispersion 

curves. The numerical results are then verified with experimental tests using a non-

contact and broadband laser detection technique. The methodology developed in this 

study can be further extended to a continuous monitoring system and be applied to other 

cable monitoring applications, such as bridge cable monitoring, which would otherwise 

put human inspectors at risk. 
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1. INTRODUCTION 

Multi-strand cables are the main components of a number of structures. Some of them are 

the overhead transmission lines; suspension or cable stayed bridges, prestressed or post 

tensioned members, elevators etc. Being the main load carrying members, their efficient 

functioning is of highest priority. The cables can suffer defects in their functioning life 

that could pose a serious threat to its safe operation. This research aims at developing a 

method for structural health monitoring of overhead transmission lines using ultrasonic 

waves.  

The overhead transmission line can undergo defects like broken insulators, loose 

earth conductors, broken strands, broken lightning rods etc. Presently and in the past, 

transmission line monitoring has been undertaken by both on-ground and aerial methods. 

The aerial approach involves using a helicopter. These inspections are also affected by 

the rapidly changing weather conditions. Some of these inspections have resulted in 

accidents, some involving human casualties as well. Table 1.1 summarizes the helicopter 

data for helicopter accidents during aerial inspections [1]. Figure 1.1 shows an ongoing 

helicopter survey while Figure 1.2 shows a helicopter accident during a transmission line 

investigation. 

 

  

This thesis follows the style of NDT&E Journal. 
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Table 1.1: Summary of helicopter accidents during aerial observations. 
 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Total 
Accidents 

163 191 197 206 182 205 214 180 193 162 

Fatal 
Accidents 

27 34 31 35 29 26 37 33 25 25 

Fatal 
Injuries 

43 66 57 63 51 41 67 68 40 43 

FAR 91 
Aerial  

6 6 13 7 5 8 8 9 4 6 

 

 

 

 

Figure 1.1: Aerial inspection of high voltage power lines. 
 

 

 

Figure 1.2: Crash site of a helicopter involved in aerial inspection of a high voltage 
power line. 
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Figure 1.3: Basic idea of transmission line monitoring. 
 

 

 

 

Figure 1.4: Cross-section of a transmission line. 
 

 

 

The basic idea of this study is depicted in Figure 1.3. A piezoelectric transducer is 

located in the middle part of the cable. It can send as well as receive ultrasonic waves. 

The sent wave reflects at any defect it encounters in its path. This reflected wave reaches 

back the transducer. The amplitude of the reflected wave is compared to a threshold 

value. If it is more than the threshold value, existence of a defect can be ascertained. 

Amongst the various defects that can occur in a transmission line, this research 

specifically looks into the detection of cracks in the individual strands.  
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The overhead transmission line consists of a total of 33 strands. There are 26 

aluminum strands each of 4.45mm in diameter and 7 steel strands of 3.5mm diameter. 

The steel strands are provided to carry the load of the cable. The total diameter of the 

cable is about 28.3mm. A cross-sectional view of the cable is shown in Figure 1.4. The 

experimental work looks into the attenuation and dispersion behavior of the first 

longitudinal mode. It is first performed for a single aluminum strand.  

Use of ultrasonic waves for defect detection in cables has been a topic of previous 

research. However, very few have tried to extend their findings for the case of an entire 

cable which makes this research unique. Elastic pulse propagation in wires with circular 

cross-section was studied by Meitzler [2]. Based on his observations of pulse distortion 

for pulses propagating in other modes, he concluded that the coupling between the 

various modes of propagation leads to pulse distortion.  

Rizzo and Lanza di Scalea [3] extended this research to seven wire cables. 

Ultrasonic waves in individual wires were detected using magnetostrictive sensors. Their 

research specifically spoke about the acoustoelastic effect in cables. The change in 

velocity of longitudinal waves as an effect of applied stress is called the acoustoelastic 

effect. They proposed an acoustoelastic formulation of the Pochhammer-Chree 

longitudinal vibrations in cylinder shaped waveguides. This would help in predicting the 

change in the velocity of the ultrasonic waves as a function of stress.  

Further research by Rizzo and Lanza di Scalea [4] looked into wave propagation 

in seven strand cables to the extent of individual strands. This time their research was 

concentrated on the modes of propagation of waves that travel with minimal losses. They 



5 
 

 
 

characterized the longitudinal and flexural waves in terms of dispersive velocity and 

frequency dependent attenuation. They used a broad-band ultrasonic setup and time 

frequency wavelet transform processing to achieve their objective. 

In another paper by Rizzo and Lanza di Scalea [5], they look at the denoising 

property of the Discrete Wavelet Transform (DWT).  

Washer et al. [6] looked into stress levels for post-tensioning rods using 

acoustoelastic effect.  

The technique of using artificial neural networks for monitoring overhead 

transmission lines was suggested by Jayasinghe et al. [7]. This technique is based on the 

high frequency phenomena associated with the partial discharge occurrences that 

originate from different defects arising in the transmission lines. A simulation technique 

based on the same theory was proposed by Aggarwal et al. [8]. 

A microprocessor based technique was proposed by Muraoka et al. [9]. The 

process was based on measuring the impedance to a fault point by recording the current 

and voltage at that location. The voltage drop per unit length can be obtained from the 

local terminal current and the line impedance per unit length. Using this, the location of 

the defect can be determined by simply taking the ratio of the line voltage drop at that 

location to the voltage drop per unit length. 

However, none of the research done in the past on this topic attempted to use the 

finite element (FE) procedure for studying wave propagation in single or multi-wire 

cables. Most of the past research involved using the experimental methods to reach their 
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respective conclusions. The research was limited to the topic of studying the behavior and 

propagation of ultrasonic waves in cables. Moser [10] actually made use of the FE 

method for studying wave propagation in solids. However, the solid he chose was a 

simple plate. Compared to the multi-wire strand, the geometry of the plate is relatively 

very simple to model. Further the element size for the mesh depends on the frequency of 

the propagating wave. Moser used a lower frequency which allowed him to use a coarser 

mesh and still get good results. However, the frequency under consideration for this 

research requires a much finer mesh which further complicates the situation. 

Protopappas et al. [11] studied the use of ultrasonic waves in the intact and 

healing long bones. The bone healing process was simulated as a three stage process by 

constructing a finite element model of the fracture callus. The model is subjected to a 

broadband 1-MHz excitation and the dispersion of guided modes is compared to the 

analytical dispersion curves.  

 Another important aspect which separates this research from earlier work is the 

fact that all earlier work involved simple geometries which already had existing 

analytical solutions. For the multi-strand cable, there is no analytical solution. 

 This thesis is divided into six sections. Section 2 discusses the theory behind 

guided waves in circular rods. It includes details about longitudinal modes, flexural 

modes and dispersion curves. Section 3 explains the experimental characterization of the 

different modes and talks about the experiments performed to study the propagation of 

ultrasonic waves in overhead transmission lines. The finite element model developed to 
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corroborate the experimental results is discussed in Section 4. Section 5 presents a 

discussion on the results obtained which is then followed by conclusions in Section 6.      
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2. GUIDED WAVES IN CIRCULAR RODS 
 

Ultrasonic waves are used for material characterization in many structural health 

monitoring and nondestructive evaluation applications. Guided ultrasonic waves are 

particularly effective in interrogating large structural components, because guided waves 

propagate far distances when compared to body waves. Guided waves appear in a medium 

that has two parallel surfaces in relative proximity. The disturbances are constrained to 

move between these two surfaces and therefore the system behaves as a waveguide. One 

considers two generic cases which can be called symmetric and antisymmetric, 

respectively; former is approximately rod-like or longitudinal while the latter is 

approximately beam-like or flexural. The essence of the analysis is that standing waves 

are established in the transverse (short) direction while the propagating waves are 

manifested in the longitudinal direction. The following equations are derived according to 

[12].  

 Consider a solid, circular, cylindrical rod as shown in Figure 2.1.  The 

components of the displacements can be written in terms of potential functions in 

cylindrical coordinates 

( )

1

1

1 1 ,

z
r

r z

r
z

HHu
r r z

H Hu
r z r

rH Hu
z r r r

θ

θ

θ

θ

θ

θ

∂∂∂Φ
= − −
∂ ∂ ∂

∂ ∂∂Φ
= + −

∂ ∂ ∂
∂ ∂∂Φ

= + −
∂ ∂ ∂

      (2.1) 
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Figure 2.1: Coordinates for a solid cylindrical rod. 
 

 

 

where  are the displacements in cylindrical co-ordinates and Φ, Η are the 

potential functions. 

The potentials Φ and H satisfy the scalar and vector equations, 

2
2

2 2
1

2
2

2 2
2

1 ,

1 ,

c t

c t

∂ Φ
∇ Φ =

∂

∂
∇ =

∂
HH

        (2.2) 

where, 

2 2 2
2

2 2 2 2

1 1 ,
r r r r zθ

∂ Φ ∂Φ ∂ Φ ∂ Φ
∇ Φ = + + +

∂ ∂ ∂ ∂
      (2.3) 

2
2 2

2 2
2 2

2

2

2 .

r
r

r

z

HHH
r r
H HH
r r

H

θ

θ
θ

θ

θ

∂ ∇ − − ∂ 
∂ ∇ = ∇ − + ∂

 ∇  
 

H       (2.4) 

z 

r 

a 
θ 
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The stresses are given by Hooke’s Law, 2ij ij ijeτ λ δ µ= ∆ + , where, 

,

1 ,

,

1 1 ,
2
1 1 ,
2
1 1 .
2

r
rr

r

z
zz

r
r

z r
rz

z
z

ue
r

u ue
r r
ue
r

u uue
r r r

u ue
r r z

u ue
z r

θ
θθ

θ θ
θ

θ
θ

θ

θ

θ

∂
=
∂
∂

= +
∂

∂
=
∂

∂ ∂∂ = + − ∂ ∂ ∂ 
∂ ∂ = + ∂ ∂ 

∂ ∂ = + ∂ ∂ 

       (2.5) 

The boundary conditions for the problem will be given by 

( ) ( ) ( ) 0 .rr r rzr a r a r aθτ τ τ= = = = = =      (2.6) 

One can consider now the conditions under which harmonic waves may propagate in a 

cylinder. Thus consider , rHΦ to be of the general form 

( ) ( ) ( )

( ) ( ) ( )

e ,

e .

i z t

i z t
r r r

f r

H h r

ξ ω
φ

ξ ω

θ

θ

−

−

Φ = Θ

= Θ
       (2.7) 

When these are substituted in the scalar and vector wave equations, sine and cosine 

solutions results for the θ -dependence. Thus for Φ one obtains 

2
2

2 2
1

1 1 ,f f f f f
r r cφ φ φ φ φ

ωξ′′ ′ ′ ′′Θ + Θ + Θ − Θ = − Θ     (2.8) 

giving 



11 
 

 
 

2
2 2 2 2

2
1

.f fr r r k
f f c

φ

φ

ωξ
′′Θ ′′ ′

+ − − = − =  Θ 
     (2.9) 

Thus, 

sin cos .A k B kφ θ θΘ = +        (2.10) 

Single valuedness requirements on φΘ make k n= , an integer. Similar solutions also hold 

for , ,r zθΘ Θ Θ . Furthermore, later requirements on the nature of the θ  dependence for the 

longitudinal and flexural modes would lead to discard either sine or cosine terms in the 

various Θ results.  The resulting expressions for , , ,r zH H HθΦ  become 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

cos e ,

sin e ,

cos e ,

sin e .

i z t

i z t
r r

i z t

i z t
z z

f r n

H h r n

H h r n

H h r n

ξ ω

ξ ω

ξ ω
θ θ

ξ ω

θ

θ

θ

θ

−

−

−

−

Φ =

=

=

=

       (2.11) 

One now proceeds with the determination of the r dependence for the four functions.  

Starting with Φ , equation (2.10) yields 

2 2
2

2 2

d 1 d 0,
d d

f f n f
r r r r

α
 

+ + − = 
 

      (2.12) 

where, 2 2 2 2
1/ cα ω ξ= − .  This is Bessel’s equation of order n having the solution 

( ) ( ) ,nf r AJ rα=         (2.13) 
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where the second solution ( )nY rα  has been discarded because of its singular behavior at 

the origin.  The equation that results for zh  is similar to (2.12) with 2α  replaced by 2β .  

 

The solution is  

( ) ( )3z nh r B J rβ= ,        (2.14) 

where, 2 2 2 2
2/ cβ ω ξ= − .  The remaining two equations ( )rh r  and ( )h rθ  will be 

coupled, as study of the vector Laplacian (2.4) will reveal.  The resulting equations are 

( )

( )

2 2
2 2

2 2 2
2

2 2
2 2

2 2 2
2

d d1 1 2 0,
d d

d d1 1 2 0.
d d

r r
r r r r

r

h h n h nh h h h
r r r r c
h h n h nh h h h
r r r r c

θ

θ θ
θ θ θ θ

ωξ

ωξ

+ + − + − − + =

+ + − + − − + =
   (2.15) 

These equations may be solved simultaneously for rh and hθ .  Thus subtract the first from 

the second to give 

( ) ( )
22

2
2 2

1d 1 d 0.
d d r

n
h h

r r r r θβ
 + + + − − = 
  

     (2.16) 

This has the solution 

( )2 12 .r nh h B J rθ β+− =        (2.17) 

Add the two equations of (2.15) to give 
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( ) ( )
22

2
2 2

1d 1 d 0.
d d r

n
h h

r r r r θβ
 − + + − + = 
  

     (2.18) 

This has the solution 

( )1 12 .r nh h B J rθ β−+ =        (2.19) 

Adding and subtracting (2.17) and (2.18), one obtains 

( ) ( )
( ) ( )

1 1 2 1

1 1 2 1

,

.
r n n

n n

h B J r B J r

h B J r B J rθ

β β

β β
− +

− +

= +

= −
      (2.20) 

There are four constants associated with the components of displacement, with three 

boundary conditions to be applied.  The property of gauge in variance can now be used to 

eliminate one of the constants, without loss of generality.  Setting 2 0B = , which results in 

( ) ( )rh r h rθ= − , the resulting displacements and some of the stresses are 

( ){ } ( )

( ){ } ( )

( ){ } ( )

/ cos e ,

/ sin e ,

1 / cos e ,

i z t
r z r

i z t
r z

i z t
z r r

u f n r h h n

u n r f h h n

u f h n h r n

ξ ω

ξ ω
θ

ξ ω

ξ θ

ξ θ

ξ θ

−

−

−

′= + +

′= − + −

′= − − − +

     (2.21) 

( ) ( )

( ) ( )

( )

2 2

2

2 2

2 cos e ,

2 12 sin e ,

12 cos e .

i z tz
rr z r

i z t
r z z r r

i z t
rz r r z

hnf f h h n
r r

n f nf h h h h n
r r r

n n nf h h h n
r r r

ξ ω

ξ ω
θ

ξ ω

τ λ α ξ µ ξ θ

τ µ β ξ θ

ξτ µ ξ β ξ θ

−

−

−

   ′′ ′ ′= − + + + − +   
   

 +    ′ ′′ ′= − − − − − −        
  +  ′ ′= − − + − + −   

   

 (2.22) 
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The procedure to obtain the frequency equation is to substitute the results for , , ,r zf h h hθ  

in (2.22) evaluated at r a= . The resulting determinant of coefficients, which yields the 

frequency equation, is 

( )0 , 1,2,3 ,ija i j= =        (2.23) 

 

 

where, 

( )( )
( ) ( ) ( )

( ){ } ( ) ( )

( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( ){ } ( ) ( )

( )

( )

( )

22 2
2 2

11 2

22
12

13

21

22

22
23

31

2 2

32 2

33

,
2

,

2 ,

,

,

2 2 ,

,

,
2

.

n n

n n

n n

n n

n n

n n

n

n

n

a
a a n J a a Ja

a n a J a a Ja

a n a Ja J a

a n a Ja J a

a n a Ja J a

a n a J a a Ja

a aJ a

a aJ a

a nJ a

λ α ξ α
α α α α

µα

β β β β

β β β

α α α

β β β

β β β β

α α

β ξ β β
ξ
β

 +  ′= + − + 
  

′= − −

′= −

′= −

′= − −

′= − − +

′= −

− ′= −

=

  (2.24) 

2.1 LONGITUDINAL MODES 

Consider the propagation when / 0uΘ = ∂ ∂Θ = .  From equation (2.2), one has 

,r
Hu

r z
θ∂∂Φ

= −
∂ ∂

        (2.25) 
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( )1 .z

rH
u

z r r
θ∂∂Φ

= +
∂ ∂

        (2.26) 

So, that determination of Φ  and Hθ  shall be sufficient to prescribe the motion.  The 

solutions for Φ  and Hθ  have been given previously by (2.11), where 0n =  in the 

cos nθ  dependence. Thus it follows that  

( ) ( )i z- t
0 e ,AJ r ξ ωαΦ =         (2.27) 

( ) ( )i z- t
2 1 e .H B J r ξ ω

θ β= −        (2.28) 

Substitution of the above in the non-trivial boundary conditions, which are ( ) 0rr r aτ = =  

and ( ) 0rz r aτ = =  yields the frequency equation.  This is given in a cofactor matrix 

11 12

31 32

0,
a a
a a
′ ′

=
′ ′

         (2.29) 

where, 

( )( )
( ) ( ) ( )

( ) ( ) ( )
( )

( )

22 2
2

11 0 02

2
12 0 0

31 0

2 2

32 02

,
2

,

,

.
2

a
a a J a a Ja

a a J a a Ja

a aJ a

a aJ a

λ α ξ α
α α α α

µα

β β β β

α α

β ξ β β
ξ

 + ′ ′= + + 
  

′ ′= − −

′ ′= −

−′ ′= −

   (2.30) 

It expands to give 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2
1 1 0 1 1 0

2 4 0.J a J a J a J a J a J a
a
α β ξ α β β ξ α β ξ αβ α β+ − − − =   

           (2.31) 

This result is referred to as the Pochhammer frequency equation for the longitudinal 

modes.  The displacements for this mode are given by  

( ) ( ) ( )

( ) ( ) ( )

-
2 1 1

2

-
2 0 0

2

e ,

e ,

i z t
r

i z t
z

Au B J r i J r
B

Au B i J r J r
B

ξ ω

ξ ω

α α ξ β

ξ α β β

 
= − + 

 
 

= − 
 

     (2.32) 

where, 

( )
( )

2 2 2
1

2
2 1

.
2

J aA
B J a

βα β ξ
β ξ α

  −
= − 

 
      (2.33) 

The interpretation of the displacement fields as being a resultant of dilatational and shear 

waves holds.  Thus in the case of zu  the ( )0J rα  term of (2.32) may be interpreted as the 

longitudinal component of a set of plane dilatational waves whose normals form a conical 

surface, where the axis of the cone is the z -axis.  The ( )0J rβ term of (2.32) is the 

longitudinal component of a set of transverse waves.  

2.2 FLEXURAL MODES 

The general characteristic equation (2.23) was found to yield the longitudinal frequency 

equation for 0n = .  For this case one or two of the displacement components were found 

to vanish.  In order to investigate the propagation of flexural waves, all displacement 
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components will exist.  The case of 1n =  corresponds to the lowest order family of 

flexural modes. The displacements are given from (2.21) and the frequency equation is 

obtained by expanding (2.23). The resulting Pochhammer frequency equation is 

( ) ( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( )

2 2 2 2
0 0 0 0 02

1 1 1 2 3 4 52
1 1 1 1 1

0,
a J a a J a J a aJ a aJ a

J a J a f f f f f
J a J a J a J a J a

β β αβ α β β β α α
α β

β α β β α
 

+ + + + = 
 

             (2.34) 

where, 

( )
( )

( )
( )

22 2 2 2
1

2 2 2 2 2 2
2

6 6 4 4 4 2 6 2 2 4 2 4 6 4 4
3

2 2 2 2 4 2 2 2 2
4

2 2 4 4 2 2 2 2 4 2 2 4 4
5

2 ,

2 5 ,

10 2 2 4 ,

2 2 9 ,

2 8 .

f a a

f a a a

f a a a a a a

f a a a a

f a a a a a a

β ξ

β ξ β

β β β ξ β ξ β ξ ξ

β β ξ β ξ

β β β β ξ ξ ξ

= −

= +

= − − + + −

= − −

= − + − + −

    (2.35) 

2.3 DISPERSION CURVES 

The theoretical solution for dispersion curves can be obtained by solving (2.31) and 

(2.34). Figure 2.2 shows the dispersion curves in the ( ,f ξ )-domain for the longitudinal 

and flexural waves in the frequency-wavenumber domain for an aluminum rod with 

diameter of 4.45 mm, together with the mode notation (L for longitudinal and F for 

flexural).  The frequency-wavenumber domain is the most natural way to present the 

dispersion curves.  Unfortunately, by measuring waves one obtains the propagation time.  

The expected arrival time t  for a specific mode at circular frequency ω  is given by 

,
( )g

st
c ω

=     (2.36) 
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where, s  is the source-receiver distance. 

The group velocity for each of the different modes at all relevant frequencies are 

determined by numerically differentiating ω  with respect toξ  

d .
dgc ω
ξ

=     (2.37) 

 

 

 

Figure 2.2: Frequency spectrum for the longitudinal (blue) and flexural (red) modes of a 
rod. 

 

 

 

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wavenumber [1/m]

fre
qu

en
cy

 [M
H

z]

F(1,3)

F(1,2)

L(0,3)

L(0,2)

L(0,1)

F(1,1)



19 
 

 
 

It is crucial that the original frequency-wavenumber domain dispersion curves are 

computed with a high precision.  This accuracy is required in order to avoid severe 

numerical oscillations for the computed group velocities.  The group velocity is the 

velocity of the energy transport (Hurlebaus, 2005) and should not be mixed up with the 

phase velocity.   

The definition of the phase velocity is 

.pc ω
ξ

=     (2.38) 

Figure 2.3 shows the first two dispersion curves for the longitudinal and flexural 

waves in the phase-velocity-frequency domain, while Figure 2.4 depicts these curves in 

the group-velocity-frequency domain.  It is obvious from Figure 2.4 that longitudinal 

waves having a frequency below f ~ 100 kHz only the lowest order, or bar mode, will 

propagate in the strand and this mode propagates approximately non-dispersively with 

velocity ρ/Ec = . 
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Figure 2.3: Phase velocity for the longitudinal (blue) and flexural (red) modes of a rod. 
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Figure 2.4: Group velocity for the longitudinal (blue) and flexural (red) modes of a rod. 
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3. EXPERIMENTAL CHARACTERIZATION 

The previous section demonstrated the propagation of different modes in a rod.  Since 

there exists no closed form analytical solution of the wave propagation in a wire 

consisting of several strands, the preliminary studies described in this section 

concentrates on wave propagation in a single strand.  

3.1 LONGITUDINAL AND FLEXURAL MODES 

The first step of this research involved determining how ultrasonic waves propagate.  The 

experimental setup for measuring the longitudinal modes in a single strand is depicted in 

Figure 3.1. A single burst sine wave of a function generator is amplified with a RF 

amplifier and this signal is used to drive a piezoelectric transducer.  The piezoelectric 

transducer generates an elastic wave in the strand.  The wave then propagates through the 

aluminum strand (diameter 4.45 mm, length 820 mm), is detected by a laser vibrometer, 

and is captured by a digital phosphor oscilloscope. 
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Figure 3.1: Experimental setup for longitudinal wave measurements in a single strand. 
 

 

 

 

 

Figure 3.2:  Longitudinal wave measurements in a single strand at various frequencies.  
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Finally, the data sets are transferred via RS232 to the PC.  Note that the laser 

vibrometer makes non-contact, high fidelity, and point-like measurements over a wide 

frequency range.  Figure 3.2 depicts the measured longitudinal out-of-plane velocity at 

the end of the strand for different excitation frequencies.  It is obvious that different 

modes are present in the strand as already predicted in Section 2.  Furthermore, it is 

obvious that different modes appear and disappear with frequency.   

Figure 3.3, shows the equivalent results to Figure 3.2 as obtained from the finite 

element model of a single strand. Figure 3.4 depicts a similar setup as already shown for 

the measurement of the longitudinal waves; however, the laser vibrometer now measures 

the flexural out-of-plane velocity.   

 

 

Figure 3.3: Longitudinal wave measurements in a single strand at various frequencies 
obtained for the finite element model. 
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Figure 3.4: Experimental setup for flexural wave measurements in a single strand. 
 

 

 

3.2 ATTENUATION COEFFICIENT 

Considering equation (2.32) it is obvious that the amplitude of the wave does not change 

with distance z .  Hence, this equation does not account for any attenuation due to 

material or geometrical effects.  Therefore, one can simplify equation (2.32) by 

considering a constant amplitude, but adding a term that counts attenuation due to 

material damping 

( )* -e ,i z t
zu C ξ ω
=          (3.1) 
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where C is the amplitude, ω is the frequency, and *
1 2iξ ξ ξ= +  is the complex wave 

number of the propagating wave.  The 1ξ  contribution is associated with propagation of 

the wave, and the 2ξ  contribution is associated with spatial attenuation of the wave.  

From equation (3.1), it follows that the ratio of the displacement amplitudes between two 

measurement points is  

2
( ) e ,

( )
zz

z

u z z
u z

ξ− ∆+ ∆
=           (3.2) 

where ∆z is the separation distance between the measurement points.  Rearranging for the 

attenuation coefficient 2ξ  yields 

z
2

z

( )1 ln
( )
u z

z u z z
ξ

 
=  ∆ + ∆ 

.               (3.3) 

Instead of measuring at the surface of the strand at two different points, one can use the 

same experimental setup as described in Figure 3.1.  The laser Doppler vibrometer is 

particularly well suited to such attenuation measurements since it is non-contact and 

therefore does not influence wave propagation.  Since the wave is bouncing back and 

forth it is possible to get multiple reflections.  The maximum amplitudes of the 

reflections can be used to calculate the attenuation coefficient simply by replacing ∆z 

with twice of the integer of the length of the strand.  Substituting the measured 

amplitudes and the separation distance into equation (3.3) yields an experimental estimate 

for the attenuation coefficient.  Figure 3.5 shows the multiple reflections of the 

longitudinal wave in a single aluminum strand (diameter of 4.45 mm, length of 820 mm), 
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for a single burst excitation of frequency 100 kHz.  By assuming a reasonable signal to 

noise ratio SNR=2, it can be seen that the longitudinal wave propagates a very long 

distance.  The amplitude of the wave exceeds the signal to noise ratio of two even after 

propagating over 30 m.  The attenuation coefficient of the first longitudinal mode at this 

specific excitation frequency can be obtained as 2 0.15ξ =  1/m.  

 

 

 

Figure 3.5: Longitudinal wave in a strand with multiple reflections. 
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3.3 DAMAGE DETECTION 

 

 

 

 
Figure 3.6: View of transverse cut in the cable. 

 

 

 

Since the overall goal of this research is to monitor overhead transmission lines, artificial 

damage in the form of a transverse cut has to be inflicted on the cable.  Cuts are made 

into the wire (Figure 3.6) at 700 mm from the piezoelectric ring using a handsaw and data 

is collected at different levels of damage ranging from a 2 mm cut to a complete cut.  The 

same experimental setup is used as already described in the previous section. 

In the signals received, the original reflections that existed before cutting occurred 

due to the waves propagating back off the end of the specimen and reflections due to the 

cut could both be seen.  With increasing depth of the cut, the amplitudes of the reflections 

from the end become smaller while the reflections due to the cut increase in amplitude.  

Figure 3.7 depicts a signal of the undamaged cable as well as of the cable where depth of 

the cut is 7 mm.  Figure 3.8 is a zoom of Figure 3.7 and it additionally shows the 

reflection due to a complete cut.   
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Figure 3.7: Change in signal due to damage. 
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Figure 3.8: Zoom of the reflected signal. 

 

 

 

Once the cable was cut into two pieces, the final signal resembled the original 

signal of the wire before cutting occurred.  The only difference that existed between the 

signals was the location between reflections.  When the transmission line is cut into two 

pieces, the distance between reflections is shorter due to the smaller length of the cable.  

It is important to note that the signal amplitude is not zero at the undamaged cable 

because of the multi-mode behavior of the wave.  So, for monitoring of overhead 

transmission lines, one always has to compare the undamaged cable with the damaged 

one.  Figure 3.9 depicts the relation between the maximum amplitude of the reflected 

wave at the cut and the depth of the cut.  It is obvious that with increasing cut the 
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amplitude of the reflected wave increases.  As the degree of damage is increased by 

making deeper cuts, the maximum wave amplitude also increased and the pattern of 

increase follows a near linear trend.  This relation can be used for monitoring purposes in 

order to identify the state of damage in a cable by measuring the amplitude of the 

reflected wave of the cable. 

 

 

 

Figure 3.9: Maximum amplitude of reflected wave at various damage levels.  
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4. FINITE ELEMENT MODEL 
 

This research proposes the use of ultrasonic waves for defect detection in overhead 

transmission lines. The finite element model is proposed to validate the procedure. As 

explained in Section 1, the geometry of the transmission cable is complex. It consists of a 

total of 33 strands (7 steel and 26 aluminum). These strands are arranged in layers and 

twisted together. However, along with the twists, the fact that adjacent layers of strands 

are twisted in opposite directions also adds to the complexity of the geometry. 

 The finite element modeling is done using the commercially available finite 

element software Abaqus. Since the problem involves studying the behavior of ultrasonic 

waves in a transmission cable, it is classified as a dynamic analysis. Abaqus provides two 

main types of dynamic analysis – the dynamic/implicit and the dynamic/explicit analysis. 

Abaqus/Standard uses the implicit Hilber-Hughes-Taylor operator for integration of the 

equations of motion while Abaqus/Explicit uses the central-difference operator. The 

implicit dynamic analysis requires the inversion of the integration operator matrix and 

solving a set of nonlinear equilibrium equations at each time increment. Comparing this 

with an explicit dynamic analysis where displacements and velocities are calculated in 

terms of quantities known at the beginning of an increment thereby eliminating the task 

of forming and inverting the global mass matrix which thus makes the increment 

relatively inexpensive compared to that of an implicit analysis [13]. However, as 

mentioned before, the implicit analysis uses the Hilber-Hughes-Taylor operator which is 

unconditionally stable while the central-difference operator used by the explicit analysis 



33 
 

 
 

is only conditionally stable. This advantage of the implicit analysis allows it to have no 

limits on the size of the time increment that can be used for the analysis.  

 The largest time increment that can be used by the central-difference method 

without rapidly growing errors has a direct relation with the time required for a stress 

wave to cross the smallest element in the model. This means that the time of increment in 

an explicit analysis will be very short if the mesh is very fine. Abaqus recommends this 

method over the implicit analysis for problems involving wave propagation studies. 

 One of the drawbacks of the explicit analysis in Abaqus/Explicit is the fact that it 

offers fewer element types than Abaqus/Standard. Only 1st order displacement method 

elements are allowed and each degree of freedom in the model must have mass or rotary 

inertia associated with it. However, the method has some important advantages: 

1. The relation between rise in cost and problem size is linear in case of the explicit                               

analysis whereas the cost of solving nonlinear equations rises nonlinearly with the 

size of the problem. Therefore Abaqus/Explicit is more suited for larger problems. 

2.   Processes or events that are extremely discontinuous are better handled by the explicit 

method as compared to the implicit method. 

3.   Abaqus/Explicit is better at solving general three-dimensional contact problems 

involving deformable bodies. 

4.   Stress wave propagation problems are solved more efficiently by the Abaqus/Explicit 

than Abaqus/Standard. 
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The model is subjected to loading in the form of a pulse as shown Figure 4.1. The 

pulse width is varied from about 1µs to 100µs. However, since there is no appreciable  

    

Figure 4.1: Excitation pulse. 
 

 

 

difference in the output, the results provided through this document are for the 1µs pulse 

unless mentioned otherwise. The simulation runs for a total time period of 1e-04s. The 

outputs recorded through the simulations are the spatial velocities in the global X, Y and 

Z directions.  

4.1 FINITE ELEMENT MODEL PARAMETERS 

A stepwise approach is adopted during the modeling process. The model of an aluminum 

strand is developed having a length of 100mm and a diameter of 4.45mm. The main 

focus of this section is to look at the different stages of the modeling approach adopted.  

As mentioned in the initial parts of this section, the geometry of the transmission 

line is particularly complex considering the 33 individual strands that are twisted 

together. Hence, to make the modeling easier, an individual strand is initially considered 

for the purpose of modeling. For an individual strand, the axisymmetric approach of 

         1 μs 
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modeling is adopted initially since the cylindrical geometry of the strand can easily be 

reproduced by revolving a rectangle around one of its longer axes. The rectangle has 

dimensions of 2.225mm by 100mm where the axis of revolution coincides with the 

longer side. The loading too is applied on the entire circular face of the cylinder. This 

makes the problem completely axisymmetric where both the load and the geometry  

 

 

 

Figure 4.2: Axisymmetric mesh 0.02mm in element size with inclined loads. 
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are axisymmetric. The loading is applied along the shorter side of the rectangle while the 

output is recorded at the opposite side. The details are as shown in Figure 4.2. 

The second stage of modeling the single strand is the 3D modeling. Here the 

procedure for modeling is slightly different than the axisymmetric case. Abaqus provides 

a tool to extrude a 2D figure into a 3D model. Hence, to make a model of a cylinder, it 

just involves creating a circle of the desired dimension and extruding it through the 

desired length, which in this case is 100mm. The loading is applied on the one circular 

face of the cylinder while the output is recorded at the opposite. The Figure 4.3 shows the 

3D model of a single strand along with the loading.  

 

 

 

Figure 4.3: 3-D mesh 0.1mm in element size with inclined loads. 
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 The final stage of the modeling is creating the entire 33 strand transmission line in 

Abaqus. This is one of the most critical tasks of this research and something that makes it 

unique. The twisting of the alternate strand layers in opposite directions makes this 

problem even more intricate. The cross-section of the transmission cable is first created in 

AutoCad, a popular drafting software, and the exact co-ordinates to define the centers of 

each individual strand are located. The next stage is to create this exact cross-section in 

Abaqus. Each layer of strands is modeled as a separate part. Hence, in total, there is a 

single central strand, a layer of 6 strands, another layer of 10 strands and the final layer of 

16 strands. Each layer other than the single strand is twisted in the opposite directions. A 

basic contact condition is defined between the concentric layers. The other important 

factor of the total model is the fact that the inner 7 strands are of steel having a diameter 

of 3.5mm while the outer 26 are aluminum having a diameter of 4.45mm. Figure 4.4 

shows the FEM model. 
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Figure 4.4: 3-D cable with inclined loading on highlighted outer strand. 
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Figure 4.5: 3-D cable model showing opposite twisting layers of strands. 
 

 

 

The two materials used for the modeling are steel and aluminum. The steel strands 

are the load bearing members while the aluminum is used for transmission purposes. The 

properties for the two materials are as shown in Table 4.1. 

Table 4.1: Material properties 
Material Steel Aluminum 

Young’s Modulus (GPa) 210 70 

Mass Density (Kg/m3) 7850 2850 

Poisson’s Ratio 0.30 0.33 
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4.2 DISCUSSION ON ELEMENTS USED 
 

Choosing an appropriate element is very important in any finite element analysis. Any 

element is basically characterized by the basic properties of degrees of freedom, number 

of nodes, formulation and integration. The degrees of freedom are important because they 

are the fundamental quantities calculated in any analysis. The number of nodes is 

important because all the unknown quantities are computed at the nodes. In between the 

nodes these quantities are calculated using the interpolation functions. The order of the 

interpolation functions depends on the number of nodes.  

An element’s formulation depends on the mathematical theory used to define the 

behavior of the element. Depending on the type of problem, this may be Lagrangian or 

Eulerian. The integration refers to the numerical method that is used to integrate various 

quantities over the volume of the element. Abaqus uses the Gaussian integration method 

for most of the problems. If required, elements with reduced integration can also be used. 

Reduced integration usually means that an integration scheme one order less than the full 

integration scheme is used. An important point while using elements with reduced 

integration in computer based finite element software is the fact that they need much less 

computation time as compared to those with full integration. This factor becomes very 

important when we have very fine meshes with large number of elements. However a 

problem associated with the reduced integration is that except in 2D and axisymmetric 

geometries modeled with higher order elements, the element stiffness matrix becomes 

rank deficient. This problem is commonly referred to as hourglassing. Since these 

elements have only 1 integration point (due to reduced integration), it is possible that they 
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distort in such a way that the strains are zero at that point. In such a case this would give 

wrong results. Hence, 1st order reduced integration elements are recommended only with 

very fine meshes. Such problem is not experienced by the 2nd order elements. Since the 

frequencies to be worked with in this problem are in the ultrasonic range, a fine mesh is 

desired. Hence, elements with reduced integration are used for both axisymmetric as well 

as 3D modeling.  

For the problem under consideration, its geometry is a three dimensional cylinder. 

The possible methods for meshing it are using 3D elements like hexahedral, tetrahedral or 

prism or going for axisymmetric elements. A basic understanding of the finite element 

method helps in deciding to go with the hexahedral elements for the 3D modeling. 

Another important aspect requiring mention is that the analysis adopted for this modeling 

is a dynamic explicit analysis, the reasons for which are explained earlier in this section. 

One drawback of using this method of analysis is that it does not allow the use of 2nd or 

higher order elements for meshing. This automatically discards the use of P-type meshing 

for convergence studies. Hence the research uses the H-type meshing for convergence 

studies. The C3D8R element is used for the 3D model while the CAX4R element is used 

for the axisymmetric model. A discussion regarding some fundamental properties of 

these elements is provided below. 

C3D8R:  

The notation stands for a 3D continuum 8-node element with reduced integration. It 

represents a brick element. It is as shown in Figure 4.6.  
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Figure 4.6: 3D continuum 8-node brick element. 
 

 

 

As shown in Figure 4.6, it has 8 nodes and hence it is a 1st order element. This makes it a  

constant strain element. If used in the isoparametric form it can provide more than 

constant strain response but the higher order terms that the solution contains are not 

accurate and hence of no use. As discussed in this section, we see that the 2nd order 

elements are better for meshing but due to the limitation on Abaqus/Explicit we have to 

use the 1st order brick element. The degrees of freedom active for this element are the 

displacements in the 3 global axes.  

The element uses an isoparametric interpolation. It is defined in terms of the 

isoparametric coordinates ξ, η, ζ. They have a range of -1 to +1 in each element. The 

master element with the node numbering is as shown in the Figure 4.7. These are material 

coordinates since Abaqus is a Lagrangian code. 
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Figure 4.7: Isoparametric brick element. 
 

 

 

The interpolation function for the brick element is, 

 

This isoparametric element is integrated using numerical method. Abaqus uses the 

Gaussian integration method. Since this is a constant strain element, the strain obtained 

by the Gaussian integration is an averaged value over the entire volume of the element. 

However the Abaqus/Explicit solver which we use for our analysis uses a different 

method for calculation of this strain. It is called the Centroidal Strain Formulation, which 

uses the 1 point Gauss integration to obtain the strain at the element center. The purpose 
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of using this method is to have an improved computational efficiency which again 

stresses the importance of choosing the correct element and its properties in order to get 

the best results in an efficient manner. 

When we use reduced integration for the 1st order element like C3D8R, 

hourglassing can make the element unusable. For this Abaqus provides hourglass control 

in the form of artificial stiffness or artificial damping. 

CAX4R: 

The notation stands for a 4-node axisymmetric continuum element with reduced 

integration. The axisymmetric elements use the cylindrical coordinate system given by r, 

z and θ. The method involved in producing the cylindrical strand is to create a rectangle 

(in r-z plane) with dimensions equal to the radius and length of the strand. This rectangle 

is then meshed using the CAX4R element. Finally, during analysis, Abaqus revolves the 

rectangle about its length so as to create the actual geometry. The isoparametric master 

element for the 4 node element is shown in Figure 4.8. 
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Figure 4.8: Isoparametric 4-node master element. 
 

 

The active degrees of freedom are the displacements in the r and z direction. The 

displacements are the usual isoparametric interpolations with respect to r and z, 

augmented by Fourier expansions with respect to θ. The general expression for the 

interpolation function is as given below 

      (4.2) 

where n is the number of terms used in the Fourier interpolation with respect to θ. and 

 are functions of r and z giving the solution amplitudes.  

The integration scheme used for these elements is a product of integration with 

respect to the element coordinates in surfaces that were originally in the r-z plane and 

integration with respect to θ. It is important to control the hourglassing in this element. 

The hourglassing can vary along the circumference.  
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5. RESULTS 
 

In Section 2 of this document, the procedure to obtain the analytical or the theoretical 

dispersion curves was described. The calculation was done in Matlab and the theoretical 

plots for group velocity versus frequency were obtained. In order to validate the FE 

model, it is necessary that the group velocity curves obtained by processing data from the 

FE model should match the theoretical curves. The output from the FE model is in the 

form of time history for the node velocities in the global X, Y and Z directions.  

Using the short-time Fourier Transform (STFT) makes it possible to convert the 

measured time history signals into time frequency domain. STFT involves analyzing only 

a small section of a signal at a time. The process is known as signal windowing. The 

STFT converts a signal into a two-dimensional time-frequency function. The STFT is 

given by, 

 

where h(t) is the window function. The window function splits the entire signal into 

smaller overlapping pieces which are then Fourier transformed individually. The energy 

density spectrum is called a spectrogram given by 

 

Once the time-frequency representations are obtained, it can be easily transformed 

into the group-velocity-frequency domain by knowing the wave propagation distance d. 
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The relation is given by the simple equation cg = d/t, where cg is the resulting group 

velocity and t is the propagation time [14].  

As discussed in [14], this procedure is complicated for signals containing 

reflections and/or discontinuities by the unknown propagation distance d. However, the 

important feature here is that all signals reflected from any location still propagate within 

the same model. Hence, all these signals contain a subset of permissible Lamb modes 

inherent to the model. For known propagation distance, the group-velocity 

representations will be similar. Due to the reflections a number of changes can take place 

in the representations. These changes could involve complete disappearance of some 

modes, new modes being visible or even change in the frequency content of some modes. 

 This section looks at the results obtained from different simulations. These 

simulations are varied mostly in the method in which the load was applied. The mesh size 

is left the same for most of them. The mesh size governs the run-time and memory 

requirements for the simulations. As explained earlier, this analysis allowed on H-type 

meshing for convergence studies. Hence the mesh size is progressively reduced in order 

to study the convergence of the solution. The simulation is started with the axisymmetric 

model having a mesh size of 0.02mm. This size is chosen considering the 

recommendations given in [10]. Figure 5.1 gives the time domain signal from which 

Figure 5.2 was obtained. Figure 5.2 shows the results for this simulation. The velocity 

time histories obtained from Abaqus are converted into the group-velocity-frequency 

representation as explained before. The output is then superimposed with the theoretical 

group velocity dispersion curves. 
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Figure 5.1: Time domain signal for axisymmetric single strand model of mesh size of 
0.02mm subject to a pulse of 10 MHz. 

 

 

 

 

Figure 5.2: Group velocity curve for axisymmetric single strand model of  mesh size of 
0.02mm subject to a pulse of 10 MHz. 

L (0,1) 
F(1,1) 
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 Figure 5.2 shows that the first longitudinal mode from the FE analysis seems to be 

matching well with the theoretical curve. But anything beyond that doesn’t seem to match 

with any of the theoretical curves. The runtime for this simulation is around 6 hours on 

the supercomputer Hydra (IBM p5-575 Cluster 1600) provided by Texas A&M 

Supercomputing.  

 Since Figure 5.2 showed only the 1st longitudinal mode L(0,1), the mesh is tested 

for being coarse, thus not giving the correct results. Making the mesh finer is an option 

but it comes at the cost of increasing the runtime and memory requirements. Hence, 

instead of 10 MHz, a pulse of 1 MHz is used. Figure 5.3 gives the time domain signal 

while Figure 5.4 shows the results for this simulation. 

 

 

 

Figure 5.3: Time domain signal for axisymmetric single strand model with mesh size of 
0.02mm subject to a pulse of 1MHz. 
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Figure 5.4: Group velocity curve for axisymmetric single strand model with mesh size of 
0.02mm subject to a pulse of 1MHz. 

 

. 

 

 
Figure 5.4 clearly shows that the 1st longitudinal mode. If one compares Figures 

5.2 and 5.4, one can see that the L(0,1) mode has significantly improved and now 

matches much better with the theoretical mode. But once again, L(0,1) is the only mode 

visible in the FE analysis representation. There are some traces of a mode from 1 MHz to 

2 MHz and between the group velocities of 2000 m/s and 3000 m/s. This is the Rayleigh 

wave velocity mode. It is the mode to which all other modes would eventually converge.  

 A number of attempts are made to get the other dispersion curves as well. Figure 

5.5 shows the time domain signal for a simulation that has the same configuration as 

L(0,1) F(1,1) 
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Figure 5.4, the only difference being the load applied as traction instead of pressure. 

Figure 5.6 gives the results for the same. 

 

Figure 5.5: Time domain signal for axisymmetric single strand model with mesh size of 
0.02mm subject to a pulse of 1MHz applied as traction. 
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Figure 5.6: Group velocity curve for axisymmetric single strand model with mesh size of 
0.02mm subject to a pulse of 1MHz applied as traction. 

 

 

 

 Figure 5.6 also shows a lot of similarity to Figure 5.4. Both figures show the 

L(0,1) mode quite well and also give some indications of the Rayleigh wave velocity 

mode, but there are no signs of any of the flexural modes. A possible cause for this could 

be the loading direction. Initially the loading is applied in the longitudinal or transverse 

direction to the axisymmetric model. Another simulation is attempted by applying the 

loading in the inclined direction. It is assumed that the inclined loading would induce 

both the longitudinal as well as the flexural modes in the model. The time domain signals 

are given by figure 5.7 while the results for the same are shown in Figure 5.8 

 

L(0,1) F(1,1) 
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Figure 5.7: Time domain signal for axisymmetric single strand model with mesh size of 
0.02mm subject to a pulse of 1MHz applied in the inclined (45o) direction. 

 

 

 

Figure 5.8: Group velocity curve for axisymmetric single strand model with mesh size of 
0.02mm subject to a pulse of 1MHz applied in the inclined (45o) direction. 

L(0,1) F(1,1) 
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 Some other trials mostly involve changing the type and direction of loading or 

changing the pulse width and accordingly the mesh size. The output is recorded at 

different nodes so as to try and get both the symmetric as well as the anti-symmetric 

modes. However, in each of these trials the same results are obtained with the L(0,1) 

mode being the dominant one and some indications of the Rayleigh wave velocity mode. 

As a last attempt for the axisymmetric model, it is decided to use a very fine mesh. 

Abaqus has a smallest element size limitation of 0.004mm. This mesh is used for the 

axisymmetric model. To reduce the overall size of the model, the length is reduced to 

50mm. Inspite of reducing the model length; it contains a staggering 4.45 million 

elements within an area of 2.225mm by 50mm. There are a total of 4460446 nodes and 

8920892 variables to compute. This problem would require a large amount of computing 

power and time.  The supercomputing department at Texas A&M helped this requirement 

by authorizing the use of a special queue without pre-emption for this particular 

simulation. Protection against pre-emption assures the continuous running of the 

simulation as well. The output is requested at a select few nodes only so as to make it 

easy for the solver to write the output to the output database file and also to reduce the 

overall size of the database. The simulation runs for a total time of about 129 hours or 5 

full days and 9 hours. The time domain signal is given by Figure 5.9 while the processed 

output is as shown in Figure 5.10. Once again we see that the 1st longitudinal mode 

L(0,1) is present along with indications of the Rayleigh wave velocity mode.  
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Figure 5.9: Time domain signal for axisymmetric single strand model with mesh size of 
0.004mm subject to a pulse of 1MHz applied in inclined (45o) direction. 

 

 

 

 

Figure 5.10: Group velocity curve for axisymmetric single strand model with mesh size 
of 0.004mm subject to a pulse of 1MHz applied in inclined (45o) direction. 

L(0,1) 
F(1,1) 
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 The next step in the research is using a 3-D model instead of the axisymmetric 

one and run similar set of simulations. The 3-D model should give better results 

compared to the axisymmetric model. However, the 3-D model would require more time 

and memory compared to the axisymmetric model for the same mesh density. Figure 5.11 

gives the time domain signal and Figure 5.12 shows the group velocity dispersion curves 

for a 3-D model subjected to a 1 MHz pulse as load with an element size of 0.1mm. 

Looking at the results for the axisymmetric case, the load is applied in the inclined (45o) 

direction in the form of traction. We see that neither modes are visible in the figure.  

 

 

 

Figure 5.11: Time domain signal for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied in inclined (45o) direction. 
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Figure 5.12: Group velocity curve for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied in inclined (45o) direction. 

 

 

 

 The next simulation that is tried involves the loading being applied in the 

longitudinal direction in the form of traction again. The results are shown in Figure 5.12 

and Figure 5.14. We see that there is not much change as far as depicting the group 

velocity modes is concerned between Figure 5.12 and 5.14. The next figures show the 

results for the simulation which has loading along the longitudinal direction in the form 

of pressure and not traction. Figure 5.15 shows the time domain and Figure 5.16 shows 

the velocity curves recorded along the longitudinal direction while Figure 5.17 and 

Figure 5.18 respectively show the same but recorded in the transverse direction.  

 

L(0,1) F(1,1) 
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Figure 5.13: Time domain signal for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied in longitudinal direction. 

 

 

 

Figure 5.14: Group velocity curve for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied in longitudinal direction. 

L(0,1) 
F(1,1) 
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Figure 5.15: Time domain signal for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied as pressure in longitudinal direction. 

 

 

 

 

Figure 5.16: Group velocity curve for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied as pressure in longitudinal direction. 

L(0,1
 

F(1,1) 
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Figure 5.17: Time domain signal for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied as pressure in transverse direction. 

 

 

 

 

Figure 5.18: Group velocity curve for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied as pressure in transverse direction. 

L(0,1) 
F(1,1) 
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In all these figures we see that none of them depict any of the velocity modes in 

an acceptable manner. Figure 5.16 is the one which comes closest in giving the 1st 

longitudinal mode L(0,1). However, even that is not accurate. The 3-D model uses the 

C3D8R element through these models. The reduced integration (denoted by R in the 

element name) could be responsible for suppressing the modes since it introduces 

artificial damping as explained in earlier sections. Hence, another simulation is 

performed which contained the element C3D8, a simple 8-noded hexahedral element 

without reduced integration. The loading used was again a 1 MHz pulse applied in the 

inclined direction (45o) as traction. Figure 5.19 shows the time domain signal and Figure 

5.20 shows the processed results. 

 

 

 

Figure 5.19: Time domain signal for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied as traction in the inclined direction. 
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Figure 5.20: Group velocity curve for 3-D single strand model with mesh size of 0.1mm 
subject to a pulse of 1MHz applied as traction in the inclined direction. 

 

 

 

 However any more simulations using the C3D8 element does not provide any 

better results than what is already available. Also, comparing the results between the 

axisymmetric and the 3-D single strand models, it can be concluded that load applied as 

traction in the inclined direction was more or less giving the 1st longitudinal mode in both 

the models. Hence the same method for loading is decided to be used for the 3-D model 

of the entire cable. The mesh size for the cable model is only 0.4mm. The reason for that 

is the memory limitation of the computer. Any chance to make the mesh finer terminates 

Abaqus citing memory limit exhaustion. Figure 5.21 gives the time domain results Figure 

L(0,1) 
F(1,1) 
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5.22 gives the group velocity results for the total cable model. Here the loading is applied 

to an external strand and recorded at the end of the same strand.  

 

 

 

Figure 5.21: Time domain signal for 3-D cable model with mesh size of 0.4mm subject 
to a pulse of 1MHz applied as traction in the inclined direction. 
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Figure 5.22: Group velocity curve for 3-D cable model with mesh size of 0.4mm subject 
to a pulse of 1MHz applied as traction in the inclined direction. 

 

 

 

 Initial observation of the Figure 5.22 indicates some hints of a mode similar to the 

1st longitudinal mode in the single strand.  

 The next task is to introduce a cut in one of the strands of the model and observe 

the change in the output. Figure 5.23 gives the corresponding time domain signal in 

which one can clearly see the two peaks. The first one is corresponding to the load 

application while the second is for the wave reflection after it has covered a total distance 

of 200mm. The time interval between the two peaks matches with the distance the wave 

has to cover and the expected bulk velocity of the wave. Figure 5.24 gives the group 
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velocity curves for an undamaged model in which the axial particle velocity is recorded 

at the location of application of the pulse.  

 

 

 

Figure 5.23: Time domain signal for an undamaged 3-D cable model with mesh size of 
0.4mm subject to a pulse of 1MHz applied as traction in the inclined direction. 
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Figure 5.24: Group velocity curve for an undamaged 3-D cable model with mesh size of 
0.4mm subject to a pulse of 1MHz applied as traction in the inclined direction. 

 

 

 

 The damage is induced at middle of the strand (50mm) in the form of a complete 

crack. Figure 5.25 gives the time domain signal recorded for this simulation. Since in this 

case, the pulse has to cover only a distance of 100mm, we can see exactly twice the 

number of peaks in the time domain signal as compared to that of the undamaged model. 

Figure 5.26 gives the group velocity curves for a damaged model in which the axial 

particle velocity is recorded at the location of the load application.  
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Figure 5.25: Time domain signal for a damaged 3-D cable model with mesh size of 
0.4mm subject to a pulse of 1MHz applied as traction in the inclined direction. 

 

 

 

Figure 5.26: Group velocity curve for a damaged 3-D cable model with mesh size of 
0.4mm subject to a pulse of 1MHz applied as traction in the inclined direction. 
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6. CONCLUSIONS AND FUTURE RESEARCH 

The conclusions of this research can be broadly classified into two types. First would be 

the experimental conclusions while second would be those based on the finite element 

study. In this research, the feasibility of continuous, on-line monitoring of power lines 

using ultrasonic waves is considered.  First a brief review in the theory of guided waves 

of rods is presented. It turns out that wave propagation in a single strand is complicated 

due to the multi-mode and dispersive nature of the guided wave and is even more 

complicated for a transmission line consisting of twisted strands of two different 

materials.  The result of the attenuation coefficient of the transmission line is that a 

guided wave can propagate over a very long distance, so it will be possible to have a 

limited amount of sending/receiving transducers to monitor the power line.  

Finally, the experimental study shows that the damage in a transmission line can 

be detected.  A defect in the cable will cause a portion of the incident ultrasonic wave to 

be reflected back to the transducer.  It is also obvious that when a piezoelectric ring-

actuator is used for the excitation of the ultrasound, the ultrasound is better coupled in to 

the outer strands than to the inner strands.  However, it is shown that ultrasonic waves do 

indeed propagate in the inner strands. 

Section 5 shows the results obtained from the finite element simulations. One 

common result clearly seen in all the single strand simulation results is the 1st 

longitudinal mode L(0,1). For both the axisymmetric as well as the 3-D single strand 

models, the 1st longitudinal mode can be seen quite well. The only other mode visible is 
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the Rayleigh wave velocity mode to which all the longitudinal and the flexural modes 

would eventually coincide. The amount of simulations tried to obtain the remaining 

modes suggests the need for a different approach to model the strands as well as complete 

cable. Also, more research is needed to make the simulations economically viable as far 

as run-time and memory requirements are considered.  

 The future research would involve getting all the dispersion modes from the finite 

element model. The next major step would then be to introduce a crack in the strands and 

then study the change in behavior of the dispersion curves. Once obtained, the proposed 

methodology can be used for continuous monitoring of the transmission line. The 

technology can also be used to monitor other cable structures such as suspension or 

cable-stayed bridges. 
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