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ABSTRACT 

 

Modeling of Electronically Commutated Motor Controlled Fan Powered Terminal Units. 

(December 2009) 

Jacob Lee Edmondson, B.S., Brigham Young University 

Chair of Advisory Committee: Dr. Dennis O’Neal 

 

 Empirical models of airflow and power consumption were developed for series 

and parallel variable air volume fan powered terminal units (FPTUs).  An experimental 

setup and test procedure were developed to test the terminal units over typical operating 

ranges.  The terminal units in this study used either an 8 in. (20.32 cm) or a 12 in. (30.48 

cm) primary air inlet.  All terminal units utilized electronically commutated motor 

(ECM) controllers.  Data collected were compared against previous data collected for 

silicon controlled rectifier (SCR) units.  Generalized models were developed for both 

series and parallel units, and compared against models developed for SCR units.   

In addition to the performance modeling, power factor and power quality data 

were also collected for each terminal unit.  The power quality analysis included 

recording and analyzing harmonic distortion for current, voltage, and power up to the 

25
th
 harmonic.  The total harmonic distortion (THD) was also recorded and presented.  

For the series terminal units, models were developed for fan airflow, fan power, 

and primary airflow.  The models for fan airflow all had R
2
 values above 0.987.  The 
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models for fan power all had R
2
 values above 0.968.  The models for primary airflow all 

had R
2
 values above 0.895. 

For the parallel terminal units, models were developed for leakage, fan airflow, 

fan power, and primary airflow.  All of the leakage models had R
2
 values above 0.826.  

All of the fan airflow models had R
2
 values above 0.955.  All of the fan power models 

had R
2
 values above 0.922.  All of the primary airflow models had R

2
 values above 

0.872. 

The real power THD was below 1.5% for both series and parallel FPTUs.  The 

current THD ranged from 84% to 172% for series FPTUs and from 83% to 183% for 

parallel FPTUs.  The voltage THD was below 1.4% for both series and parallel FPTUs. 

The performance models developed will help improve the accuracy of building 

energy simulation programs for heating, ventilation, and air conditioning (HVAC) 

systems utilizing ECM controlled FPTUs.  Increasing the accuracy of these simulations 

will allow HVAC system designers to better optimize their designs for specific building 

types in a wide variety of climates. 
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 CHAPTER I 

INTRODUCTION 

 

 Recent fluctuations in the price of energy and concern for the environment have 

renewed interest in reducing energy use.  Much of the focus has been on reducing fossil 

fuel use to both decrease the environmental impact of producing and using fossil fuels, 

and to reduce the impact of instability in fossil fuel rich regions.  One way to reduce the 

amount of fossil fuels we consume is to transition to alternative sources of energy, but 

this is costly and time consuming.  Another way, which is both less expensive and 

quicker, is to increase the efficiency of the energy we use.  One way to increase this 

efficiency is to optimize current technologies. 

 In the United States, data from the Energy Information Administration (EIA) 

indicates commercial buildings used approximately 3.559 quadrillion BTUs (1043 

billion kWh) of electricity in 2003.  Of this, about 30%, 1.084 quadrillion BTUs (317.7 

billion kWh), was used for heating, ventilating, and air conditioning (HVAC) (EIA 

2008).  Variable air volume (VAV) systems allow greater HVAC system efficiency 

without sacrificing occupant comfort (Ardehali and Smith 1996).  In VAV systems 

(Figure 1-1), a terminal unit is used to adjust the amount of primary air delivered to a 

zone to maintain the temperature of the zone.  Some terminal units are also designed to  

facilitate the induction of recycled zone air to provide better temperature control while  

 

 

 

____________ 

This thesis follows the style of HVAC&R Research. 
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maintaining a minimum flow of primary air to maintain Indoor Air Quality (IAQ).  In 

fan powered terminal units (FPTUs), the ratio of conditioned primary air and recycled 

zone air is a function of mechanical damper settings and the speed of the fan in the 

FPTU. 

 

 

Figure 1-1: Typical VAV System Configuration (Cramlet 2008) 

 

There are two basic configurations of FPTUs: series and parallel.  In a series 

FPTU (Figure 1-2a), the internal fan is in series with the primary air, meaning the fan 
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must be on in series with the primary fan to supply air to the zone.  In a parallel FPTU 

(Figure 1-2b), the internal fan is in parallel with the primary fan, meaning fan operation 

is not mandatory for the FPTU.  Another difference between the two types of FPTUs is 

that the fan in a series FPTU can create a slight vacuum inside the unit which draws air 

into it.  The fan in a parallel unit pressurizes the FPTU causing some of the primary air 

to leak out of the unit.  Another difference between them is that series terminal units 

allow the primary air system to operate at a lower static pressure because the terminal 

unit fan adds static pressure to the system. 

 

 

Figure 1-2: Generic Sketches of a) Series FPTU, and b) Parallel FPTU (Cramlet 2008) 
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Because parallel units do not require the internal fan to operate continuously, 

many authors have concluded that parallel terminal units use less energy than series units 

(Wendes 1994, Chen and Demster 1996, Elleson 1993).  This perception has led 

ASHRAE (2004) in Standard 90.1 and the California Energy Commission (Hydeman et 

al. 2003) to prescribe the use of parallel FPTUs in VAV systems.  This conclusion is 

accurate if based only on the energy use of the FPTU.  However, with a series unit, it is 

possible to operate the primary fan at a lower static pressure because the FPTU fan adds 

static pressure to the system.  This creates a potential for energy savings in the overall 

system with the lower static pressure of the primary air system.  In addition, leakage in a 

parallel terminal unit increases primary air energy use because the fan has to make up for 

the leakage. 

 Computer simulations by Elleson (1993) and Kolderup et al. (2003) indicated 

that systems utilizing parallel terminal units use less energy overall than systems using 

series units.  These studies did not account for all the variables affecting terminal unit 

performance.  To more accurately account for these variables, Furr (2006) developed 

semi-empirical models of FPTU airflow and power performance on terminal units using 

silicon controlled rectifier (SCR) controlled AC induction fan motors.  Newer FPTUs are 

controlled by using electronically commutated motor (ECM) variable speed fan motors.  

Cramlet (2008) began developing empirically derived models for these ECM controlled 

units, and this thesis is a direct continuation of his work.   

 One objective of this study was developing semi-empirical models of airflow 

performance of the FPTUs over a wide variety of operating conditions.  Characteristic 
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equations were developed using variables such as inlet air velocity pressure, upstream 

and downstream static pressures, damper setting, and fan speed.  These models can be 

used by building energy simulation programs to better predict the airflow performance 

of FPTUs for different operating conditions.  This will allow VAV systems to be tuned 

for stability and performance (Khoo et al. 1998). 

 A second objective of this study was characterizing the energy performance of 

ECM controlled FPTUs.  Semi-empirical models of the power consumption of these 

units over a wide variety of operating conditions were developed.  These models can be 

used in conjunction with the airflow models mentioned above to allow simulation 

software to more accurately predict the power consumption of the FPTU.   

A third objective of this study was to characterize the power factor and power 

quality of the ECM controlled fans.  The power factor is important for several reasons.  

One reason is that a low power factor increases the losses in the electrical distribution 

system and limits the capacity for expansion.  It also results in increased voltage drop at 

the point of use, which can cause loss of efficiency and reduced load capacity of motors 

(EnergyIdeas Clearinghouse 2002).  Some utilities also asses a surcharge for power 

factors below a certain level.  To avoid these problems, low power factors must be 

corrected. 

 The power quality analysis included harmonics of voltage, current, and real 

power.  Specific attention was paid to triplen harmonics, which are odd harmonics that 

are also multiples of three.  These harmonics are in phase with the fundamental current, 

and they add together increasing heat generation and voltage drop along the neutral 
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conductor.  They can also induce noise into nearby circuits (Kennedy 2000).  The total 

harmonic distortion (THD) was also analyzed.  THD is the sum of all harmonic values of 

current, voltage, or real power.  High THD can cause overheating in electrical equipment 

and overloading of neutrals (Gosbell 2000). 

This thesis has seven chapters.  Chapter II is a review of applicable research 

concerning VAV systems and FPTUs especially with regards to energy performance.  

Chapter III details the experimental apparatus and setup.  Chapter IV describes the 

procedures used to perform the experiments and analyze the data to develop the semi-

empirical models.  Chapter V presents the results for series terminal units.  Chapter VI 

presents the results for the parallel units.  Chapter VII discusses the results and presents 

conclusion.  A complete set of data is presented in the appendices. 
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 CHAPTER II 

LITERATURE REVIEW 

 

The HVAC industry has largely adopted VAV systems because they consume 

less energy than Constant Air Volume (CAV) systems.  Both systems can provide 

similar levels of occupant comfort.  Studies have been conducted on improving and 

optimizing the performance of VAV systems for both thermal comfort and IAQ.  One of 

the first studies to verify the energy savings of VAV systems was a study conducted by 

Inoue and Matsumoto (1979) in Japan.  They used HASP/ACLD 7101 (1971) simulation 

software to compare building energy use for several CAV and VAV systems, and then 

verified their conclusions with field measurements at a building in Tokyo.  They 

concluded that a VAV system could save 30% to 50% of fan energy over a CAV system, 

either dual duct or terminal reheat.  They also concluded that VAV systems could save 

up to 40% in cooling costs. 

 Sekhar (1997) used DOE2.2 (LBNL 1998) energy simulation software to conduct 

a similar simulation study on buildings in hot humid climates, particularly those found in 

Southeast Asia.  He found that using a VAV system could save 50% to 70% on fan 

energy compared to a CAV system.  Utilizing a VAV system also reduced space cooling 

from 10.9% to 18.5%, and total HVAC energy use 11.5% to 25.7% depending on the 

specific building being simulated.  One common limitation of these studies is that they 

both used damper only terminals with no fan. 
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 One study that included FPTUs in its analysis concluded that a VAV system 

utilizing FPTUs could save 40% on utility costs compared to a CAV system (Ardehali 

and Smith 1996).  They utilized the TRACE (1993) program to model a “typical” 

existing office building in Des Moines, IA, but did not differentiate between series and 

parallel units.  As these studies show, VAV systems are more energy efficient than CAV 

systems, including fan powered terminal systems.  It is important to determine the 

differences between series and parallel units, so they can be applied properly to 

maximize energy savings and occupant comfort. 

 One study (Elleson 1993) that did differentiate between series and parallel units 

was performed on a cold air system.  These systems supply conditioned air at 45°F 

(7.2°C) instead of the 55°F (12.8°C) in traditional systems.  The study simulated a 12 

story office building in Southern California, and a 21 story office building in Seattle, 

WA.  The computer models were verified by field measurements at both of these 

buildings.  Although focused on showing the benefits of a cold air distribution system, 

the system also showed the relative energy consumption of the different types of FPTUs.  

Elleson concluded that parallel units can save between 24% and 47% on fan energy 

compared to series units in a traditional system, and between 30% and 54% in a cold-air 

system.  The study included a supply duct static pressure 0.25 in. w.g. (62.3 Pa) lower 

for series units than for parallel units. 

 A study commissioned by the California Energy Commission (Kolderup et al. 

2003) compared series and parallel fan powered terminal units with unpowered VAV 

terminal units.  The study utilized the built in terminal unit types in DOE2.2 (LBNL 
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1998) simulation software, with the FPTUs serving the perimeter zones.  The use of 

series terminal units in this simulation allowed for a reduction in the supply fan static 

pressure from 4.0 in w.g. (996 Pa) for parallel and unpowered terminal units to 3.67 in 

w.g. (914 pa) for the series FPTUs.  Despite the lower supply static pressure, the series 

terminal units were found to have an overall fan energy use 94% higher than parallel 

units.  This result was partially due to the assumed lower efficiency of the small terminal 

unit fan compared the main supply fan.  They also found a slight reduction in fan energy 

use with the parallel FPTUs compared to unpowered terminal units.  Comparing overall 

HVAC system utility costs resulted in parallel units performing nearly identical to 

unpowered units, and series units increasing utility costs about 10% (Kolderup et al. 

2003). 

 Though both of these studies (Elleson 1993 and Kolderup et al. 2003) indicate a 

significant reduction in utility costs for parallel units compared to series units, they were 

focused on specific buildings in specific locations, and may not apply to different 

climates.  In the California Energy Commission Study, it was noted that one reason the 

small effect of parallel units on fan energy may be due to the low reheat requirements in 

California (Kolderup et al. 2003).  In climates where more reheat is required, the 

terminal unit fan may be in operation more often, resulting in higher energy costs.  Both 

of these studies used the built in functions in their HVAC simulation software. 

 There is little experimental evidence to support the simulations of fan powered 

terminal units, especially terminal units utilizing ECM controlled fans.  Khoo et al. 

(1998) developed non-linear models of unpowered VAV terminal units, and found that 
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they were significantly more accurate than the damper only models traditionally used.  

Because many software packages utilize damper only models, the results of simulations 

may not be accurate.  Furr (2006) provided the first work on developing models of fan 

powered units that accurately reflect real world performance.  His work focused on 

FPTUs utilizing SCR controlled fans.  Cramlet (2008) began work on modeling FPTUs 

with ECM controlled fans.  He also compared performance of nearly identical terminal 

units, the only difference being the use of SCR or ECM controlled fans.  He found that 

the energy savings realized by using ECM control instead of SCR control may be 

dependent on the usage characteristics of the FPTU, especially for parallel units.   

 Cramlet (2008) also investigated the power quality performance of FPTUs.  He 

found that the ECM controlled fans had lower power factor (PF), and increased 

harmonic distortion compared to SCR controlled units.  The magnitude of this impact is 

important for two reasons.  First, equipment damage from excessive harmonic distortion 

may go unnoticed for many years, especially if the distortion is unknown (Gosbell 

2000).  Second, low PF may incur increased utility costs from utility company fees and 

increased losses in the distribution system (EnergyIdeas Clearinghouse 2002).  If the 

magnitude of power factor and harmonic distortion problems is known, corrective 

equipment can be installed in the facility. 

 Developing better models of terminal units using ECM controlled fans will allow 

building simulation programs to more accurately simulate energy use in HVAC systems.  

Better performance data and models will allow designers to make better decisions of 

which type of FPTU to install based on overall system costs.  By determining the 
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magnitude of possible problems resulting from low PF and high harmonic distortion, 

HVAC system designers will be better able to determine if PF and THD corrective 

equipment needs to be installed, or if the impact is small enough to the whole system 

that corrective equipment would be an unwise investment. 



 12

 CHAPTER III 

EXPERIMENTAL APPARATUS 

 

This research contained two main phases: data acquisition and data analysis.  

This chapter focuses on the equipment used for data acquisition, including the equipment 

used to run the tests, as well as the data acquisition equipment.  Different data 

acquisition systems were used for airflow and power measurements. 

3.1.  Airflow Equipment 

Figure 3-1 shows a general overview of the airflow test setup.  The equipment 

consisted of a VAV FPTU, two airflow test chambers, and primary and assist blowers.  

The upstream airflow chamber (AMCA Figure 15) was used to measure the primary air 

supplied to the VAV terminal unit.  The primary blower attached to this chamber was 

used to control the amount of air and the upstream static pressure.  The downstream 

airflow chamber (AMCA Figure 12) was used to measure the airflow provided by the 

FPTU to the zone.  The assist blower on this chamber was used to control the 

downstream static pressure.  The equipment shown in Figure 3-1 is explained in more 

detail in the following sections of this chapter. 
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Figure 3-1: Experimental Apparatus (Cramlet 2008) 

 

3.1.1. Variable Air Volume Fan Powered Terminal Units.  The purpose of this study 

was to evaluate and model the airflow and power performance of the fan powered 

terminal units.  These units came in both series (Figure 3-2a), and parallel (Figure 3-2b) 

configurations.  Both configurations allow the terminal unit to induce air from the return 

plenum space and mix it with the conditioned primary air to maintain thermal comfort.   

The terminal units used in this study came in two sizes, 8 in. (20.32 cm) and 12 in. 

(30.48 cm) primary air inlets, from three different manufacturers.  One manufacturer 

supplied terminal units using motors from two different manufacturers.  Since Cramlet 

(2008) tested two of the FPTUs provided by one manufacturer, 14 different terminal 

units were tested in this study.  The different manufactures are named using A, B, and C, 

with -M1 and -M2 being used to denote the different brand of motors provided by 

manufacturer C.  All terminal units were also categorized by size (8 in. (20.32 cm) and 
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12 in. (30.48 cm)), type (parallel or series), and ECM controlled FPTUs.  This led to the 

following naming convention.  ECM_P12C-M1 is the name for a 12 in. (30.48 cm) 

parallel FPTU from manufacturer C using brand 1 of the fan motor.  For manufacturers 

A and B, a 12 in. (30.48 cm) parallel FPTU would be EMC_P12A and ECM_P12B 

respectively. 

 

 

Figure 3-2: (a) Generic Series Terminal Unit, (b) Generic Parallel Terminal Unit (Cramlet 2008) 
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While the manufacturers differed in their specific designs, they all followed the 

general design elements shown in Figure 3-2, and thus contain similar elements.  The 

internal components of the VAV FPTUs are now discussed. 

All terminal units have a primary air inlet to which the primary air ducts are 

connected.  The inlet duct was circular, and contained a differential pressure sensor to 

measure the airflow into the FPTU.  The sensor was designed to take a multi-point 

average pressure reading of the air entering the FPTU through the primary air inlet.  

Specifically, it took the velocity pressure at four points to gain a better representation of 

the average velocity pressure across the duct to gain a more accurate representation of 

the airflow in case of uneven flow.  The outlet taps were then connected to a pressure 

transducer which read the differential pressure at the primary air inlet.  Figure 3-3 shows 

a representation of this device. 

Immediately after the inlet velocity pressure sensor was a mechanical damper 

used to regulate the amount of primary air delivered to the terminal unit.  The terminal 

units tested in this study used one of two primary air dampers.  The first was a butterfly 
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Figure 3-3: Inlet Air Velocity Pressure Sensor (Cramlet 2008) 

 

type damper, shown in Figure 3-4a, which had an operating range from 0°, fully open, to 

90°, fully closed.  This design was used in the parallel terminal units.  The second type 

of primary damper was an opposing blade damper, shown in Figure 3-4b, which had an 

operating range from 0°, fully open, to 45°, fully closed.  This design was used in the 

series terminal units. 
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Figure 3-4: (a) Butterfly Damper, (b) Opposing Blade Damper (Cramlet 2008) 

 

Both damper designs allowed the dampers to be operated by rotating a single 

shaft.  The dampers were operated by using an actuator with a 0-10 VDC input control 

voltage.  By using an electronically controlled actuator, damper angles were able to be 

accurately and precisely controlled for all terminal units.  Figure 3-5 illustrates the 

damper actuator and control of a butterfly damper, which is similar to an opposing blade 

damper except for angle of shaft rotation. 
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Figure 3-5: Electronic Damper Actuator (Cramlet 2008) 

 

After the damper actuator, some designs incorporated a diffuser to smooth the 

airflow into the terminal unit.  The diffuser type implemented in this study was a piece 

of perforated sheet metal placed orthogonal to the primary inlet.  Figure 3-6 shows the 

basic design and location of this diffuser. 
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Figure 3-6: Primary Air Inlet Diffuser (Cramlet 2008) 

 

The main feature of a FPTU is the small fan located inside the terminal unit.  

Although these fans are typically single width centrifugal fans using a forward curve 

blade, shown in Figure 3-7, they do come in a variety of sizes and voltages.  All of the 

fans in this study were supplied with single phase 277 VAC power.  Depending on the 

size and airflow needs of the FPTU, several different capacities were used.  Table 3-1 

shows the fan capacities used in the different terminal units. 
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Figure 3-7: Single Width, Forward Curve Centrifugal Fan (Cramlet 2008) 

 

 

Table 3-1: Terminal Unit Fan Capacities 

FPTU Rated Fan Power  

S8A ½ hp (373 W) 

S8B ½ hp (373 W) 

S8C-M2 ½ hp (373 W) 

S12A 1 hp (746 W) 

S12B ½ hp (373 W) 

S12C-M1 ¾ hp (559 W) 

S12C-M2 ¾ hp (559 W) 

P8A ½ hp (373 W) 

P8B ½ hp (373 W) 

P8C-M2 ½ hp (373 W) 

P12A 1 hp (746 W) 

P12B ½ hp (373 W) 

P12C-M1 ¾ hp (559 W) 

P12C-M2 ¾ hp (559 W) 
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All terminal unit fans in this study utilized electronically commutated motors 

(ECM).  These consist of a brushless DC motor containing an internal inverter and 

microprocessor based motor controller.  Figure 3-8 shows a typical ECM motor.  The 

controller and motor were matched to the terminal unit fan, and then programmed by the 

manufacturer depending on the specific needs of the FPTU.  The ECM controller can 

dynamically adjust fan torque and speed to provide a specific airflow through the fan. 

 

 

Figure 3-8: Typical ECM Motor (Cramlet 2008) 

 

The final feature of the terminal units is this study is the back draft damper, 

which is only found on parallel units.  The purpose of this damper is to prevent 
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conditioned primary air from flowing back through the terminal unit fan during times 

that the fan is not operating.  By limiting the amount of leakage through the fan, overall 

terminal unit efficiency is improved.  Although some parallel FPTUs have utilized a 

back draft damper operated by the primary air stream (Furr 2006), illustrated in Figure 

3-9, all terminal units in this study used a gravity operated design Figure 3-10.  The air 

operated damper was hinged along the upstream edge, and was closed by the force of the 

primary air striking the damper arm.  The gravity operated damper was hinged along the 

upper edge of the fan outlet, and closed due to the weight of the damper itself.  The 

internal pressure of the FPTU also assisted the seal of the back draft damper once it was 

closed.  Both types were meant to remain closed except when the terminal unit fan is in 

operation, in which case the pressure at the fan outlet would overcome the pressure on 

the damper and open it up. 
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Figure 3-9: Air Operated Back Draft Damper (Cramlet 2008) 
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Figure 3-10: Gravity Operated Damper (Cramlet 2008) 

 

3.1.2. Primary and Assist Fans.  All airflow quantities were calculated using the 

procedures outlined in ANSI/ASHRAE Standard 120 (1999).  The overall airflow 

equipment configuration setup is shown in Figure 3-1, while the configuration and 

features of the upstream and downstream airflow chambers are detailed in Figure 3-11 

and Figure 3-12 respectively.  Both the AMCA Figure 15 and AMCA Figure 12 airflow 

chambers were built to the specifications in Air Movement & Control Association 

International, Inc. (AMCA) Standard 210 (1999). 
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Figure 3-11: AMCA Figure 15 Flow Metering Nozzle Chamber (Cramlet 2008) 
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Figure 3-12: AMCA Figure 12 Flow Metering Chamber (Cramlet 2008) 

 

A large capacity primary blower supplied air to the AMCA Figure 15 chamber.  

The blower was dynamically controlled using a variable speed drive (VSD) controller.  

Two diffuser screens were used to smooth air entering and exiting a nozzle bank.  

Nozzles were selected by covering or uncovering the outlet of the nozzle.  Airflow was 

determined from the cumulative cross-sectional area of the nozzles, the pressure 
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differential across the nozzles, and the static pressure inside the chamber.  Airflow was 

adjusted to standard temperature and pressure to compensate for variations in the 

environmental conditions inside the lab during testing.  At the exit of the chamber was a 

fitting built to specifications in ANSI/ASHRAE Standard 120 (1999). 

The AMCA Figure 12 chamber was similar to the AMCA Figure 15 chamber, 

except that the fitting was on the entrance and the fan at the exit.  The assist blower was 

used to decrease the pressure immediately upstream of the chamber downstream static 

pressure in Figure 3-1.  The nozzles in this chamber allowed for the measurement of the 

airflow downstream of the FPTU, which included air induced by the terminal unit fan as 

well as leakage from the VAV FPTU. 

Figure 3-13 shows the different air streams for an FPTU.  Several assumptions 

were used to simplify the conservation of mass equations (Equation 3-1).  All airflow 

measurements were assumed to be taken at steady state, which leads to Equation 3-2.  

The mass flow is equal to volumetric flow multiplied by density (Equation 3-3).  Since 

uniform unconditioned laboratory air was used for both primary and induced air, and the 

temperature rise across the fan was assumed to be negligible, the density of the air was 

assumed to be constant.  This results in the airflow in being equal to the airflow out 

(Equation 3-4). 
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Figure 3-13: Volumetric Balance of FPTU (Furr 2006) 
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The airflow induced by the terminal unit fan in a parallel FPTU is calculated as 

the difference between the airflow through the AMCA Figure 15, Qprimary, and AMCA 

Figure 12, Qout, chambers (Equation 3-5).  It must be noted that this includes leakage 
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from the terminal unit.  In a series FPTU, the flow rate of the terminal unit fan is simply 

the airflow through the AMCA Figure 12 chamber. 

 

 QQ primaryout
−=Qinduced

 (3-5) 

 

Table 3-2 shows the different characteristics of the two airflow chambers used in 

the test.  As shown, nozzle combinations differed between the chambers, and were 

operator selectable depending on the specific needs of the test.  As the cumulative nozzle 

area was increased, less static pressure was required to generate the same amount of 

airflow.  The complete procedures used to calculate airflow were in ANSI/ASHRAE 

Standard 120 (1999).  Table 3-3 shows the power, controller, and motor characteristics 

of the two chambers. 

 

Table 3-2: Chamber Airflow Characteristics 

AMCA 

Chamber 

Maximum Flow 

CFM (m
3
/s) 

Available Nozzles’ Diameters 

Inches (cm) 

Figure 15 4000 (1.89) 1.5 (3.8) 3 (7.6) 5 (12.7) 5 (12.7) 5 (12.7) 5 (12.7) 

Figure 12 5000 (2.36 1.5 (3.8) 5 (12.7) 5 (12.7) 8 (20.3)   

 

Table 3-3: Chamber Power Characteristics 

AMCA 

Chamber 

Fan Power 

Hp (kW) 
Controller Motor 

Figure 15 10 (7.5) VSD AC Induction 

Figure 12 7.5 (5.8) VSD AC Induction 
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Sheet metal ductwork was used to connect the airflow chambers to the terminal 

unit being tested, see Figure 3-14.  The length of this ductwork, as well as the location of 

the static pressure points, was dictated by ANSI/ASHRAE Standard 130 (2006).  The 

duct upstream of the terminal unit was circular duct of the same diameter as the air inlet 

port on the terminal unit.  The downstream duct was a rectangular duct 16 in (40.6cm) x 

15 in. (38.1 cm) with an equivalent diameter of 17 in. (43.2 cm).  At the location of the 

static pressure measurements, holes were drilled into the metal, and covered with copper 

pressure taps of the same diameter.  The copper taps were then sealed with adhesive 

tape.  To measure the average static pressure inside the duct, four holes were used, 90° 

apart, with the taps connected in such a way that the length of tubing to the pressure 

transducer was the same for all of the taps.  Figure 3-15 shows an illustration of the 

copper pressure taps and how they were applied to the sheet metal ducting.  Figure 3-16 

illustrates how the taps were connected with tubing to measure the average static 

pressure. 

 

 

Figure 3-14: Experimental Ductwork (Cramlet 2008) 
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Figure 3-15: Pressure Tap (Cramlet 2008) 

 

 

 

Figure 3-16: Pressure Taps and Connecting Tubing (Cramlet 2008) 
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3.1.3. Data Acquisition.  This study required the measurement of several different 

pressures, both static and differential, as well as temperature and relative humidity (RH) 

to accurately measure the airflow.  All pressure measurements were made using Dwyer 

Series 616C pressure transducers connected to pressure taps with flexible tubing.  Since 

the different pressure measurements were in different pressure ranges, several sizes of 

pressure transducers were used, a complete listing can be found in Table 3-4.  All 

transducers were calibrated with a water manometer to within 0.01 in. w.g. (2.49 Pa), 

and had an accuracy of 0.25% of full-scale output. 

 

Table 3-4: Sizing of Pressure Transducers 

Pressure Location Transducer size 

in. w.g. (kPa) 

Figure 15 differential pressure 0-6 (0-1.5) 

Figure 15 static pressure 0-10 (0-2.5) 

Upstream static pressure 0-2 (0-0.5) 

Inlet air velocity pressure 0-2 (0-0.5) 

Downstream static pressure 0-2 (0-0.5) 

Figure 12 static pressure 0-10 (0-2.5) 

Figure 12 differential pressure 0-6 (0-1.5) 

 

 

All pressure transducers utilized an output signal of 4-20 mA, so terminating 

resistors were used to convert the current into a voltage for the data acquisition system to 

measure.  During testing, the output signal of the pressure transducers was found to 

contain significant noise, sometimes of a much greater magnitude than the real signal.  

Some of this came from pressure pulsations of the fans, and some appeared to be due to 

dirty system power.  For this reason, low-pass RC filters were constructed for each of the 
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pressure transducers; see Figure 3-17 for design of a low-pass RC filter.  These filters 

used a 330 Ω resistor and a 1000 µF capacitor, which when used in Equation (3-6) 

indicate a cutoff frequency of 0.5 Hz.  Using this cutoff frequency in Equation (3-7) 

means that noise from dirty power, which was the largest source, at 60 Hz will be 

reduced by over 99%.  To further reduce the impact of noise, pressure measurements 

were made at 1000Hz and averaged over 10 seconds. 

 

 

Figure 3-17: RC Filter (Cramlet 2008) 
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Temperature and RH measurements were also taken with transducers with a 

linear output, though in this case it was a voltage output rather than a current output, so 
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no terminating resistors were needed.  These measurements were taken using a dual 

purpose probe (Rotronic L-Series) placed near the induced air inlet on the FPTU, though 

care was taken to insure it did not interfere with airflow into the FPTU.  The output 

signal from this probe did not seem to be as affected by noise, so no RC filters were 

needed.  The probe had an accuracy of ±0.9°F (±0.5°C) for temperature and ±0.3% for 

RH.  A mercury thermometer was also placed near this probe to allow for quick 

verification of temperature.  Periodically, the RH reading was verified using the wet bulb 

temperature in the lab. 

The computer data acquisition system consisted of two internal and two external 

DAQ boards from national instruments.  All pressure measurements were recorded using 

a 16-bit, 8-channel differential input NI-SC2040 external board connected to an NI-6034 

internal PCI board.  Temperature and RH were recorded using an NI-6024E internal PCI 

board used in conjunction with a CB-68LP external terminal block.  This allowed for 12-

bit resolution on inputs, and also provided two 0-10 VDC analog outputs.  These outputs 

were used to control the primary and assist blowers on the airflow chambers.  A custom 

Visual Basic (Microsoft 1998) program was the user interface for the National 

Instruments DAQ equipment.  The 0-10 VDC control signals for the damper actuator 

and ECM control were provided by manual external power supplies.  A custom program 

was written using VB.net (Microsoft 2007) to automatically collect the data from all of 

the tests for a FPTU into a single spreadsheet, and also sorted the data into another 

spreadsheet for ease of analysis. 
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3.2.  Power Equipment 

All electrical power measurements were made in accordance with ASHRAE 

Standard-130 (2006).  A Fluke 435 power quality analyzer was used to measure the 

FPTU power characteristics.  The measurements were made exterior to any internal 

components of the ECM motor setup, including the ECM controller which was powered 

via the main supply line using a transformer to convert the 277 VAC to 24 VAC.  For 

most of the FPTUs, the total current draw was less than 5A, so Fluke i5s current probes 

with a 0-5A range were used.  These probes had a basic accuracy of 1% of reading, plus 

5mA for readings below 1A (Fluke 2005).  On some of the larger FPTUs, the current 

draw exceeded 5A at higher ECM settings, but remained below 10A.  For these cases, 

Fluke i1000s selectable range current probes were used.  For the 0-10A range, these 

probes had a basic accuracy of 3% of reading plus 0.1A (Fluke 2000).  Table 3-5 lists 

which tests used the different current probes with 5A representing the i5s probes and 

10A representing the i1000s probes set to the 10A range. 
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Table 3-5: List of Current Probes Used 

FPTU 
ECM Setting 

25% 50% 75% 100% 

ECM_S8A 5A 5A 5A 5A 

ECM_S8B 5A 5A 10A 10A 

ECM_S8C-M2 5A 5A 5A 5A 

ECM_S12A 5A 5A 5A 10A 

ECM_S12B 5A 5A 5A 10A 

ECM_S12C-M1 5A 5A 10A 10A 

ECM_S12C-M2 5A 5A 5A 10A 

ECM_P8A 5A 5A 5A 5A 

ECM_P8B 5A 5A 5A 5A 

ECM_P8C-M2 5A 5A 5A 5A 

ECM_P12A 5A 5A 5A 10A 

ECM_P12B 5A 5A 5A 5A 

ECM_P12C-M1 5A 5A 5A 5A 

ECM_P12C-M2 5A 5A 5A 5A 

 

The simultaneously measured and recorded electrical data included, but was not 

limited to, voltage, current, real power, apparent power, power factor, THD, and up to 

the 25th harmonic of voltage, current, and power.  Current probes were placed on the 

main power and neutral lines, while voltage probes were placed on the main, neutral, and 

ground lines, see Figure 3-18.  The data from several tests were stored in the analyzer’s 

internal flash memory, and then downloaded all at once to the pc via a proprietary usb 

interface.  Fluke Power Log (2008) software was used to operate the usb interface.  After 

the files were downloaded and saved on the pc, the Power Log (2008) software was used 

to export most of the electrical data into text files.  These text files were then converted 

into Excel files prior to the data being collected by the previously mentioned vb.net 

(Microsoft 2007) program. 
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Figure 3-18: Setup of Electrical Measurements (Cramlet 2008) 
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 CHAPTER IV 

EXPERIMENTAL PROCEDURE 

 

Experimental data were collected on 14 VAV fan powered terminal units from 

three different manufacturers.  The previous chapter explains the equipment used to 

perform the tests and measure the different variables.  This chapter explains the 

procedures used to conduct the tests, the process used to acquire the data, and the 

statistical analysis applied to the raw data to develop the semi-empirical models of 

terminal unit performance. 

4.1. Method of Experimentation 

This study used the same basic factorial test matrix developed by Cramlet (2008).  

Several independent test variables were chosen for both their representative nature of 

terminal unit performance, as well as availability for measurement in the field.  The 

range and levels used for the variables was chosen to obtain an accurate representation 

of performance for typical operating conditions found in the field.  Some tests were also 

performed at more extreme operating conditions to determine their effect on FPTU 

performance.  Table 4-1 and Table 4-2 list the independent variables chosen, as well as 

the levels used for testing the series and parallel FPTUs respectively.  For parallel units, 

a level of 0.0 in. w.g. (0 Pa) of upstream static pressure represented the minimum 

upstream static pressure required for positive air flow through the terminal unit, and was 

higher than the downstream static pressure.  Test levels were adjusted based on each 
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unit’s specific characteristic performance limits, due to differences in size and terminal 

unit design from manufacturer to manufacturer. 

 

Table 4-1: Series Test Matrix 

Independent Variable Number of Test Points Value Range 

D, damper position 4 100%, 75%, 50%, 25% open 

V, ECM setting 4 100%, 75%, 50%, 25% full scale 

Pup, upstream static pressure 
6 

0.0 – 2.0 in. w.g. 

(0 – 498 Pa) 

Pdown, downstream static pressure 
1 

0.25 in. w.g. 

(62 Pa) 

 

 

Table 4-2: Parallel Test Matrix 

Independent Variable Number of Test 

Points 
Value Range 

D, damper position 4 100%, 75%, 50%, 25% open 

V, ECM setting 
5 

100%, 75%, 50%, 25%, 0% full 

scale 

Pup, upstream static pressure 
5 

0.0 – 2.0 in. w.g. 

(0 – 498 Pa) 

Pdown, downstream static pressure 
3 

0.1 – 0.5 in. w.g. 

(25 – 125 Pa) 

 

 

The position of the damper, D, varied for different FPTU configurations.  

Common to all was the use of a damper actuator operated by a 0-10 VDC control signal, 

generated by a regulated DC power supply.  This actuator varied linearly from 0° (fully 

open) to fully closed as a function of control voltage.  For units with a butterfly damper, 

the range of motion was from 0° to 90°.  The test positions used were 0°, 22.5°, 45°, and 
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67.5°.  For units with opposing blade dampers, the range of motion was only 0° to 45°, 

so the tests were performed at 0°, 11.25°, 22.5°, and 33.75°.  The fully closed position 

was not included in the factorial matrix because it eliminated the effect of upstream 

static pressure on the terminal unit performance.  It also eliminated any primary supply 

air flow into the FPTU. 

Each manufacturer used a different method to operate the ECM controller, which 

controlled the speed and torque of the fan motor.  Each motor controller was uniquely 

programmed, so motor speed did not correlate precisely to input voltage.  ECM input 

setting was used as the independent variable.  Three types of controllers were provided, 

and each controller was set to airflows of 100%, 75%, 50%, and 25%.  Manufacturer A 

provided a controller that was set to a value between 0 and 100, so settings of 100, 75, 

50, and 25 were used.  Manufacturer B provided a controller that was set using a 2 – 10 

VDC signal, so settings of 4 VDC, 6 VDC, 8 VDC, and 10 VDC were used.  

Manufacturer C provided a controller that was set with a 0 – 10 VDC signal, so settings 

of 2.5 VDC, 5 VDC, 7.5 VDC, and 10 VDC were used.  On series units, testing with the 

terminal unit fan off was impractical because the fan had to be running for air to be 

supplied to the zone.  For parallel units, however, turning the terminal fan off put the 

FPTU into full cooling mode.  This allowed the performance to be measured for times 

when the terminal fan would not required to operate, and also helped quantify FPTU 

leakage since there would be no induced air in this case. 

Both upstream and downstream static pressures depend on the conditions inside a 

building.  They were both included in the data collection due to their significant effect 
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on VAV FPTU performance.  These pressures were adjusted by varying the speed of the 

primary and assist blowers, which was facilitated by a Visual Basic (Microsoft 1998) 

data acquisition program.  Upstream static pressures were varied from 0 in. w.g. (0 Pa) 

to 2.0 in. w.g.(498 Pa)  for both series and parallel terminal units.    The downstream 

static pressure affected each configuration differently.  In parallel terminal units, the 

upstream pressure must be greater than the downstream pressure to prevent air from 

flowing backwards through the terminal unit.  The test matrix for parallel units ensured 

that upstream static pressure would always be greater than the downstream pressure.  

Because series units do not have this same limitation, a different test matrix was used 

which did not vary downstream static pressure. 

4.2.  Environmental Considerations 

All testing was performed at the Energy Systems Laboratory facility at the 

Riverside Campus of Texas A&M University.  The test setup was located in an open, 

high-bay lab.  Depending on the local environmental conditions, the lab had the 

capability to operate without external cooling.  Some tests were run during these time 

periods, while others were run during times when space heating or cooling was required.  

Because of this variation in laboratory operation, the air temperature for testing ranged 

from 67.0°F (19.4°C) to 81.6°F (27.6°C).  The relative humidity (RH) ranged from 

22.5% to 79%. 

Though typical HVAC systems supply cooled air at 55°F (12.8°C), this study 

used unconditioned laboratory air since it was primarily concerned with the performance 

of the terminal unit itself.  Temperature and humidity were recorded as outlined in the 
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previous chapter, and were assumed to be uniform throughout the test setup, though 

there could be a temperature rise of as much as 2°F (1.2°C) across the fans.  For 

example, the density of air at 70°F (21°C) and 60% RH is 0.0738 lb/ft
3
 (1.18 kg/m

3
).  

The density of air at 75°F (24°C) and 50% RH is 0.0731 lb/ft
3
 (1.17 kg/m

3
).  Note, both 

of these conditions have approximately the same specific humidity.  This 5°F (2.8°C) 

temperature difference results in a density difference of less than 1%.  This shows that 

the effect of temperature rise due to fans can be ignored. 

The procedures used to calculate air flow can be found in ANSI/ASHRAE 

Standard 120-99 (1999).  This standard specifies a procedure to calculate airflow 

utilizing temperature, RH, and pressure measurements.  All air flow calculations were 

adjusted to a standard air flow based on a reference air density of 0.075 lb/ft
3
 (1.20 

kg/m
3
).  This was done for two main reasons.  First, all test results, regardless of actual 

conditions at time of testing, needed to be directly comparable.  Second, it allowed 

results to be applicable across different climate and altitude conditions. 

4.3.  Statistical Analysis 

The statistical analysis was performed using SPSS (2008) software.  The goal of 

the analysis was to generate simple, intuitive, and, most importantly, accurate models of 

FPTU performance.  Models were generated for primary airflow, fan airflow, terminal 

unit power consumption, and leakage (for parallel units). 

Models were developed using similar techniques as used in previous VAV FPTU 

research performed by Furr (2006) and Cramlet (2008).  The linear and non-linear 

regressions performed on airflow and power data included temperature, upstream and 
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downstream static pressures, inlet air velocity pressure, damper position, and ECM input 

voltage.  Interdependent variables were carefully excluded as they would generate 

unnecessary redundancy.  The assumptions used for the regression analysis were: an 

appropriate linear relationship between the response variable and predictors, independent 

and random errors, and constant variance of the errors (Montgomery et al. 2001). 

The R
2
 statistic was used to quantify the accuracy with which the statistical 

model correlated with the test data.  The R
2
 statistic varies between 0 and 1, and gives a 

measure of how well the statistical model represents the variance in the real data.  As the 

value of R
2
 rises, the model correlates better with the data.  An R

2
 value equal to one 

means the statistical model correlates with the data perfectly (Montgomery et al. 2001). 

Since series and parallel terminal have fundamentally different performance 

characteristics, different statistical analyses were required for each type of FPTU.  The 

main difference in the two analyses was in the specific variables used, though the 

general form was consistent.  For example, in modeling the airflow of the terminal fan in 

series units, inlet air velocity pressure was used.  In parallel units, the inlet air velocity 

pressure was replaced by the downstream static pressure.  This pressure could not be 

used for series units because it was constant for all tests.  When possible, while 

maintaining sufficiently high R
2
 values, the same form of equations was used for both 

series and parallel units.  Since the same form of expressions were used as in previous 

research (Furr 2006 and Cramlet 2008), it was possible to compare results from both 

ECM and SCR controlled FPTUs.  It should be noted that due to the difference of type 
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and magnitude of the voltages used, 160 VAC to 280 VAC on SCR units and 0 VDC to 

10 VDC on ECM units, the coefficients between the two had different meanings.   

 



 45

 CHAPTER V 

SERIES TERMINAL UNITS RESULTS AND MODELS 

 

Experimental data were collected on seven ECM controlled fan powered terminal 

units.  This section discusses those results, and compares them to results from previous 

studies by Cramlet (2008) and Furr (2006).  Models were developed for both the airflow 

and power performance of the units.  The goal was to develop simple models similar to 

previous models by Cramlet and Furr that would provide sufficient characterization of 

the FPTUs for use in building simulation models.  The airflow and power results and 

models are discussed in separate sections.  Each section contains a brief summary of the 

method used, the results of this study, a comparison to previous results, and a discussion. 

 During testing, it was observed that some conditions caused the terminal unit fan 

to run backwards.  These conditions were usually well beyond the normal operating 

conditions of the terminal units, and were not used for the data analysis.   

 It was also observed, that when the ECM controller was turned to its highest 

setting, the fan sometimes pulsed or even cycled on and off.  While this is a normal 

result of operating the motor at or exceeding its designed range, it caused several 

difficulties in testing.  First, it was difficult to achieve equilibrium to run some tests.  A 

second difficulty arose from using the PC to measure airflow and the Fluke 435 to 

measure power, since they were not synchronous.  At these conditions, it was possible 

that the airflow was measured during a spike in airflow, while the power was measured 
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in a dip, or vice versa.  This meant that the recorded power could vary from the power 

being consumed at the moment the airflow was measured. 

5.1.  Series Terminal Unit Airflow 

Series terminal units are characterized by a centrifugal fan in line with the 

primary airstream.  These units require that the fan be operated continuously to supply 

air to the conditioned space.  If the primary airflow is lower than the air being supplied 

by the terminal unit fan, additional air can be drawn in from the plenum.  Both the 

primary airflow delivered to the FPTU and the air delivered by the FPTU fan need to be 

quantified.  

 In a series terminal unit, the internal pressure is affected by variations in 

upstream duct static pressure, damper position, and primary airflow.  Even with these 

variations, a series terminal unit will typically provide fairly constant airflow at a given 

fan setting (Alexander and Int-Hout 1998).  This result has been confirmed by this study, 

as well as by Cramlet (2008) and Furr (2006).  The exception would be at extreme 

conditions which caused the fan to rotate backward or pulse on and off.  Absent these 

extreme conditions, the variable with the largest impact was the ECM fan setting. 

5.1.1. Primary Airflow Analysis and Model.  The primary air supplied to the FPTU 

was modeled as a function of the pressure differential across the FPTU and the air inlet 

damper position.  In this study, the downstream static pressure was used in conjunction 

with the upstream static pressure to calculate this differential pressure, DP.  If the 

internal pressure of the terminal unit were typically measured in series units, it would 
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probably provide a better variable for the unit’s performance rather than the downstream 

static pressure.  However, no FPTUs provide static pressure taps at this location. 

Different manufactures used either butterfly or opposing blade designs for the 

primary air inlet damper.  During testing, both types of dampers were set at 100% open, 

75% open, 50% open, and 25% open.  Manufacturer C used an opposing blade type 

damper for both brands of motors.  In this case, 0° indicated a fully open damper, while 

45° represents a fully closed damper.  Both Manufacturers A and B used a butterfly 

damper.  In this case, 0° indicates a fully open damper, while 90° represents a fully 

closed damper. 

Figure 5-1 shows the primary air plotted against DP for the 8” series FPTU from 

Manufacturer C, using motor M2.  Figure 5-2 shows this same plot for the 12” series 

FPTU from Manufacturer A.  The curves are generated using the models presented later 

in this section.  A full set of results were included in Appendix A. 
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Figure 5-1: Qprimary vs. DP for ECM_S8C-M2 

 

 

 

Figure 5-2: Qprimary vs. DP for ECM_S12A 
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The form of the equation of these curves was originally developed by Furr et al. 

(2008), and presented in Equation (5-1).  The primary airflow delivered to the FPTU was 

proportional to the square root of the differential pressure across the terminal unit at a 

given damper setting.  Because the downstream static pressure was maintained at 0.25 in 

w.g. for all of the tests, the DP required an offset to keep the value inside the square root 

positive.  Furr et al. (2008) determined that an offset of 0.27 in. w.g. best fit the 

empirical data, and the same offset was used in this study to maintain model consistency.  

If the static pressure internal to the FPTU were measured and used in the model, it is 

likely no offset would be needed.  It would also likely improve the model, since the 

pressure rise across the fan would be eliminated. 

 

 0.27DP*)S*CS*C(1*CQ 2
321primary

+++=  (5-1) 

 

The coefficients of the model for the different terminal units tested, as well as the 

R
2
 values are presented in Table 5-1.  The results for FPTU ECM_S8C-M1 were 

measured by Cramlet (2008).  The results for the SCR FPTUs were determined by Furr 

et al. (2008), and presented in Table 5-2.  When comparing FPTUs from Manufacturer 

C, the M1 terminal units were identical in design to the SCR controlled FPTUs, while 

the M2 terminal units had a slightly different design.  None of the ECM controlled 

FPTUs were the same units used in the SCR controlled FPTU study (Furr 2006). 

In general, this model correlated well with the measured performance.  The R
2
 

values for the ECM controlled FPTUs ranged from 0.895 to 0.977.  The R
2
 values for the 
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SCR controlled FPTUs were slightly higher, with the lowest value being 0.920 and the 

highest reaching 0.987.   

 

Table 5-1: Model Coefficients for ECM Controlled FPTU 

FPTU C1 C2 C3 R
2
  

ECM_S8A 1637 -1.95E-02 7.80E-05 0.955 

ECM_S12A 5109 -2.15E-02 1.14E-04 0.946 

ECM_S8B 2094 -2.83E-02 2.06E-04 0.962 

ECM_S12B 5886 -3.17E-02 2.54E-04 0.895 

ECM_S8C-M1 2344 -3.84E-02 4.15E-04 0.977 

ECM_S8C-M2 1895 -3.58E-02 3.70E-04 0.951 

ECM_S12C-M1 5125 -3.09E-02 1.28E-04 0.927 

ECM_S12C-M2 4561 -1.86E-02 -1.71E-04 0.909 

 

 

 
Table 5-2: Model Coefficients for SCR Terminal Units 

FPTU C1 C2 C3 R
2
 

SCR_S8A 1644 -1.94E-02 8.46E-05 0.970 

SCR_S12A 4350 -2.24E-02 1.29E-04 0.963 

SCR_S8B 2127 -2.53E-02 1.78E-04 0.987 

SCR_S12B 5903 -3.11E-02 2.67E-04 0.934 

SCR_S8C 2137 -3.17E-02 2.82E-04 0.920 

SCR_S12C 4022 -1.85E-02 -9.5E-.05 0.964 

 

 

5.1.2. Fan Airflow Analysis and Model.  The airflow provided by the fan in an ECM 

Controlled series FPTU is mainly a function of the ECM input setting.  Some of the 

FPTUs also showed a slight dependence on inlet air velocity pressure, Piav.  These 

results were similar to those obtained by Cramlet (2008) and Furr et al. (2008).  One 

reason for the similar results was the design of the series terminal units.  Because 
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upstream airflow and pressure have little effect on the internal static pressure, the fan 

sees approximately the same pressure differential over a wide range of operating 

conditions.  Another reason the results were similar was the ECM Controller, which was 

designed to maintain constant airflow for a given ECM input setting despite changes in 

operating conditions.  Figure 5-3 and Figure 5-4 show fan airflow versus inlet velocity 

pressure for FPTUs ECM_S8B and ECM_S12C-M2 respectively. 

 

 

Figure 5-3: Qfan vs. Piav for ECM_S8B 
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Figure 5-4: Qfan vs. Piav for ECM_S12C-M2 

 

The main difference between these results and those obtained by Furr (2006) for 

the SCR controlled units, was the dependence of fan airflow on the fan setting.  Due to 

the design of the ECM controller, the fan airflow varied approximately linearly with the 

change in ECM input setting.  For example, if the ECM setting was doubled, the airflow 

approximately doubled.  On the SCR models, changing the voltage by the same 

percentage did not change the airflow the same amount depending on what the starting 

voltage is.  Starting at the minimum voltage, and increasing the SCR voltage by 30VAC 

did not result in the same airflow change as going from 30VAC below max voltage to 

the maximum SCR voltage. 
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The model used to fit the data is shown in Equation (5-2), and was similar to that 

used by Furr (2006).  The ECM results are shown in Table 5-3, and the SCR results from 

Furr (2006) are shown in Table 5-4.  It must be noted that V did not mean the same thing 

for the ECM and SCR models.  In the ECM models, it was a percentage of the voltage 

between minimum and maximum ECM setting.  The reason for using percentage instead 

of a straight DC voltage as used by Cramlet (2008) was that the ECM controllers were 

controlled by the three manufacturers in different ways, Table 5-5 provides a summary 

of the ECM settings used.   

 

 
P*CV*CV*CCQ iav43

2
21fan

+++=  (5-2) 

 

Manufacturer A provided a controller that was adjusted by turning a set screw to 

change the setting from 0 to 100, so settings of 25, 50, 75, and 100 were used.  FPTUs 

from Manufacturer B were controlled with a 2-10 VDC input, so settings of 4, 6, 8, and 

10 VDC were used.  Manufacturer C provided a controller that was adjusted using a 0 – 

10 VDC signal, so settings of 2.5, 5, 7.5, and 10 VDC were used.  For the SCR units, V 

represents the AC voltage measured after the SCR controller.  The SCR controller was 

set at several different voltages ranging from the minimum to the maximum voltage 

(Furr 2006). 

This model correlated well with the data.  The lowest R
2
 value was 0.987 for 

ECM_S8A.  For the SCR controlled FPTUs, the lowest R
2
 was 0.989 for SCR_S8A.  No 

results are included for SCR_S12B here because it required a different model due to a 



 54

malfunctioning SCR controller (Furr 2006).  The coefficients for ECM_S8C-M1 were 

converted from VDC to % to match the other ECM controlled FPTU coefficients. 

 

Table 5-3: ECM Coefficients for Fan Airflow Model 

FPTU C1 C2 C3 C4 R
2
 

ECM_S8A 58.918 0.016 8.502 6.602 0.987 

ECM_S12A 148.921 0.025 20.236 43.5 0.996 

ECM_S8B -90.795 -0.052 21.411 20.123 0.991 

ECM_S12B 375.117 0.015 11.587 -32.312 0.993 

ECM_S8C-M1 108.301 0.0113 12.2977 12.441 0.997 

ECM_S8C-M2 -82.18 -0.043 18.18 34.252 0.992 

ECM_S12C-M1 467.397 0.025 15.48 26.097 0.995 

ECM_S12C-M2 67.426 -.000787 21.47 75.604 0.997 

 

Table 5-4: SCR Coefficients for Fan Airflow Model 

FPTU C1 C2 C3 C4 R
2
 

SCR_S8A -1776 -0.0228 16.49 0.0036 0.989 

SCR_S12A -778.5 0.0091 6.918 0.0394 0.993 

SCR_S8B -1705 -0.0254 18.15 -0.0448 0.994 

SCR_S8C -1310 -0.0183 13.94 0.0677 0.997 

SCR_S12C -1903 -0.0105 16.78 0.0812 0.99 

 

Table 5-5: Summary of ECM Settings 

FPTU 

Manufacturer 

ECM Settings 

25% 50% 75% 100% 

A 25% 50% 75% 100% 

B 4 VDC 6 VDC 8 VDC 10 VDC 

C 2.5 VDC 5 VDC 7.5 VDC 10 VDC 

 

 



 55

5.2.  Series Terminal Unit Power Performance 

Both power consumption and power quality were measured.  A model was 

developed for the power consumption as a function of ECM setting and inlet air velocity 

pressure, Piav.  Because the fan airflow was mainly controlled by the ECM setting, the 

model used the ECM setting rather than fan airflow as an input.  Power consumption 

was also influenced by downstream static pressure and the primary airflow.  Since 

downstream pressure remained constant, it was not used in the model.  The impact of 

primary airflow on the power consumption was modeled by including Piav. 

The power factor and power quality were varied by ECM setting.  Although 

Cramlet (2008) did measure these data for one series SCR terminal unit, Furr (2006) did 

not, so there is very little comparison between ECM and SCR power quality 

performance. 

5.2.1. Fan Power Consumption Analysis and Model.  The power consumption of the 

VAV fan was mainly dependent on the airflow it produced.  The airflow was almost 

entirely dependent on the ECM setting, and since the ECM setting was an input into the 

system, it was used for modeling rather than the airflow.  It was also slightly dependent 

on primary airflow, which was represented by Piav.  Figure 5-5 shows the power 

consumption of the fan versus the airflow of the fan for terminal unit ECM_S8A, while 

Figure 5-6 shows these data for terminal unit ECM_S12C-M1. 
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Figure 5-5: Power vs. Qfan for ECM_ S8A 

 

 

Figure 5-6: Power vs. Qfan for ECM_ S12C-M1 
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These figures show the typical power curve for all ECM series terminal units 

tested.  They were also consistent with the results obtained by Cramlet (2008).  The main 

difference between these data and those obtained by Furr (2006) was that the power 

curve for the SCR motors was linear with respect to Qfan, while it was parabolic for the 

ECM motors.  Figure 5-7 shows a comparison of power consumption for SCR_S8C 

(Furr 2006) and ECM_S8C-M1 (Cramlet 2008).  At the lowest flow rates, the SCR unit 

consumed five times more power than the ECM unit.  As the flow rates increased, the 

difference in power consumption narrowed.   

 

 

Figure 5-7: Power vs. Qfan for SCR_S8C and ECM_S8C-M1 
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The fan power model used for the ECM controlled fans was similar to the model 

used for the SCR controlled units (Equation 5-3) except for the definition of the 

voltages, V.  For the SCR units, V represented the AC voltage measured after the SCR 

controller.  For the ECM units, it represented the percent of maximum ECM setting.   

Table 5-6 presents the coefficients for the ECM terminal units, and Table 5-7 

presents the results for the SCR units obtained by Furr (2006).  The model produced 

satisfactory results for the ECM units, which were generally on par with those for the 

SCR units.  For the ECM units, the lowest R
2
 was 0.968, which meant the model fit the 

data well.  For the SCR units, the lowest was 0.870, which was believed to be due to a 

faulty SCR controller (Furr 2006).  For the properly functioning SCR units, the lowest 

R
2
 was 0.983.  Overall, this model appeared to correlate the power consumption of the 

motors with the independent variables without adding much complexity. 

 

 
P*CV*CV*CCPower iav43

2
21fan +++=  (5-3) 

 

 
Table 5-6: Fan Power Model Coefficients for ECM Series Terminal Units 

FPTU C1 C2 C3 C4 R
2
 

ECM_S8A 70.343 0.049 -2.602 2.338 0.968 

ECM_S12A 197.65 0.161 -9.589 24.376 0.989 

ECM_S8B 8.89 0.061 -0.221 21.258 0.985 

ECM_S12B 112.278 0.074 -3.657 -31.915 0.978 

ECM_S8C-M1 78.998 0.07045 -3.1497 -12.993 0.998 

ECM_S8C-M2 46.608 0.045 -1.165 -4.711 0.993 

ECM_S12C-M1 145.834 0.111 -4.31 -45.401 0.998 

ECM_S12C-M2 179.663 0.131 -7.303 -18.473 0.996 

 



 59

 

Table 5-7: Fan Power Model Coefficients for SCR Series Terminal Units 

FPTU C1 C2 C3 C4 R
2
 

SCR_S8A -732.7 -0.0114 7.13 -2.12 0.989 

SCR_S12A -269.4 0.00854 1.80 19.05 0.997 

SCR_S8B -595.7 -0.0111 6.96 -13.25 0.983 

SCR_S12B 125.9 0.00534 0.736 -16.36 0.870 

SCR_S8C -455.5 -0.00817 5.32 1.91 0.994 

SCR_S12C -917.0 -0.0129 9.86 97.73 0.99 

 

 

5.2.2. Power Factor Analysis.  The power factor of FPTUs was important for two main 

reasons.  First, some utilities charge a penalty fee for power factors that fall below a 

certain value.  Second, low power factor means that the electricity demand is higher than 

it needs to be, and also often results in a higher demand charge from the utility.  Higher 

demand means the current is higher than necessary, so any losses due to resistance in the 

wire, known as I
2
R losses, are increased as well.   

On the ECM controlled fans, the power factor was generally between 0.4 and 0.6 

regardless of the ECM setting.  Each individual motor seemed to react differently to 

increasing ECM settings, with no consistent trend.  Figure 5-8 shows the power factor at 

different ECM settings for ECM_S8A.  Figure 5-9 the power factor at different ECM 

settings for ECM_S12C-M2.  Each ECM setting also displayed a range of power factors, 

with some motors and settings having more or less variation than other settings.  The 

variation affects different ECM settings in different ways.  For terminal unit ECM_S8A, 

the highest power factors for low ECM settings were achieved with the highest primary 
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flow.  However, at the maximum setting, the highest power factor was achieved at 

medium primary air flow rates. 

 

Figure 5-8: Power Factor vs. ECM Input for ECM_ S8A 
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Figure 5-9:  Power Factor vs. ECM Input for ECM_S12C-M2 

Cramlet (2008) showed that SCR controllers behave completely differently.  As 

the SCR controller is turned up, the power factor also approaches one.  This behavior is 

shown in Figure 5-10, which also shows an almost linear increase in power factor for 

terminal unit SCR_S8C.  In contrast, for the ECM controlled fan, the power factor 

stayed nearly constant.  The SCR controller “chops” the sine wave to achieve lower 

voltages, and slows down the motor.  At its maximum setting, there is almost no 

distortion to the sine wave, resulting in a much higher power factor. 
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Figure 5-10: Power Factor vs. Controller Voltage for SCR_S8C and ECM_S8C-M1 

 

Power factor was only one measure used to evaluate the impact of a FPTU.  For 

example, a low power factor at very low power level did not have as much effect on 

demand as a slightly higher power factor at much higher power levels.  Another useful 

quantity was the apparent power, which is related to real power by the power factor 

(Equation 5-4).  Apparent power is the amount of demand seen on the supply side of the 

building.  Figure 5-11 (Cramlet 2008) compares the apparent power of an ECM 

controlled fan and an SCR controlled fan, both in an S8C terminal unit, of identical 

design.  This shows that at flow rates below 1050 CFM (0.496 m3/s), the ECM unit has 

as much as a four times advantage in apparent power, despite its lower power factor.  As 

the flow rate increases, the SCR’s power factor increases, which kept its apparent power 
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relatively constant.  Since the ECM’s power factor remains fairly constant, it’s apparent 

power increased as the flow rate, and thus real power, increased.  At approximately 1050 

CFM (0.496 m3/s), the apparent power of the ECM became higher than the apparent 

power of the SCR (Cramlet 2008). 

 

 rPowerFacto*werApparentPoalPowerRe =  (5-4) 

 

Figure 5-11: Comparison of Apparent Power for SCR and ECM Controlled FPTU 

 

This behavior of the ECM was duplicated in this study.  Because the power 

factor of the ECM did not vary significantly across its range of operation, the increase in 

apparent power was similar in shape, though not magnitude, to the increase in real 

power.  Figure 5-12 shows the apparent power of terminal unit ECM_S8A plotted 
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against the airflow of the fan.  The curve for apparent power was similar to the curve for 

real power for this same FPTU (Figure 5-5).  A similar comparison can be made for 

terminal unit ECM_S12C-M1 in Figure 5-13 and Figure 5-6, respectively.  ECM_S8A 

had similar apparent and real power requirements at about 1050 CFM (0.496 m3/s), as 

ECM_S12C-M1 did at approximately 1700 CFM (0.802 m3/s).  In this case, the larger 

FPTU was more efficient than the smaller FPTU because it was producing more airflow 

at the same power. 

 

 

Figure 5-12: Apparent Power vs. Qfan for ECM_ S8A 
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Figure 5-13: Apparent Power vs. Qfan for ECM_ S12C-M1 

 

5.2.3. Power Quality Analysis.  Harmonic data for the first 25 harmonics of current, 

voltage, and power were recorded.  The harmonic data represents the amount of 

distortion relative to a 60 Hz sine wave caused by the ECM and controller electronics.  A 

complete set of harmonic data is found in the appendix.  The harmonic data were 

recorded as a percentage of the fundamental, or first harmonic, value.  It was then 

converted to volts, amps, or watts for reporting. 

Figure 5-14 shows the real power harmonics, in percentage form, for ECM_S8A, 

Figure 5-15 shows the same harmonics in watts.  Figure 5-16 and Figure 5-17 repeat the 

same two graphs for ECM_S12C-M2.  The magnitude of the real power harmonics was 

below 1% of the fundamental harmonic.  There did not appear to be any discernible 
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trend of the dependence on ECM setting with respect to harmonics in Figure 5-14 or 

Figure 5-16.  The size of the unit also did not appear to be a factor.  One noticeable 

attribute of the power harmonics was that some harmonics were negative.  It was 

assumed that these harmonics were transferring power back to the voltage source.  It 

should also be noted that there was very little real power consumed by harmonic 

distortion because the magnitudes were small (less than 1%) for all harmonics. 

 

Figure 5-14: Real Power Harmonics (%) for ECM_ S8A 
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Figure 5-15: Real Power Harmonics (Watts) for ECM_ S8A 

 

 

Figure 5-16: Real Power Harmonics (%) for ECM_ S12C-M2 
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Figure 5-17: Real Power Harmonics (Watts) for ECM_S12C-M2 

 

One problem with analyzing harmonic distortion by the individual harmonics 

was the difficulty in looking at a whole range of frequencies at one time.  A more 

convenient approach to plot and analyze harmonic distortion was to look at their 

cumulative effect through the total harmonic distortion (THD), defined in 

Equation (5-5).  THD was much easier to plot and analyze, though specific situations 

may warrant a more in depth analysis of individual harmonics.  The THD for real power 

is reported here in its percentage form. 
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Figure 5-18 presents the THD for ECM_S8A, and Figure 5-19 presents it for 

ECM_S12C-M2.  The THD was highest for 100% ECM setting for ECM_S8A, while it 

was at its highest at the lowest ECM setting for ECM_S12C-M2.  This showed THD 

was not entirely dependent on ECM setting.  It should be noted that if this value were 

plotted in Watts, the higher ECM settings would have higher THD due to their much 

higher power consumption.  A summary of the real power THD for all terminal units 

tested is presented in Table 5-8. 

 

Table 5-8: Real Power THD (%) 

FPTU 
ECM Setting 

Average 
25% 50% 75% 100% 

ECM_S8A 0.62 0.54 0.75 0.84 0.69 

ECM_S8B 0.93 0.73 0.87 0.89 0.86 

ECM_S8C-M2 0.61 0.43 0.35 0.43 0.46 

ECM_S12A 0.98 1.00 0.96 0.73 0.92 

ECM_S12B 0.64 1.21 0.83 0.67 0.84 

ECM_S12C-M1 1.46 1.33 1.22 1.38 1.35 

ECM_S12C-M2 1.45 1.21 1.22 0.95 1.21 
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Figure 5-18: Real Power THD (%) for ECM_ S8A 

 

 

Figure 5-19: Real Power THD (%) for ECM_ S12C-M2 
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The distortion of the voltage sine wave was below 1.5% of the fundamental 

harmonic for all FPTUs tested.  There was also little difference between different ECM 

settings, or FPTU size.  Figure 5-20 shows the voltage harmonics for ECM_S8B as a 

percentage of the fundamental, while Figure 5-21 shows these harmonics as a voltage.  

Figure 5-22 shows the voltage harmonics for ECM_S12B as a percentage of the 

fundamental, and Figure 5-23 shows the harmonics as voltage.  Similar results were also 

found for FPTUs from the other manufacturers.  The THD for voltage was also a 

convenient way to quickly analyze the cumulative effect of the different harmonics 

without having to view a large number of separate harmonic values, and is presented in 

Table 5-9 for all terminal units tested. 

 

Table 5-9: Voltage THD (%) 

FPTU 
ECM Setting 

Average 
25% 50% 75% 100% 

ECM_S8A 0.78 0.75 0.8 0.78 0.78 

ECM_S8B 0.86 0.82 0.82 0.91 0.85 

ECM_S8C-M2 0.87 0.76 0.76 0.7 0.77 

ECM_S12A 1.11 1.13 1.12 1.17 1.13 

ECM_S12B 0.87 1.18 1.08 1.04 1.04 

ECM_S12C-M1 1.33 1.21 1.33 1.22 1.27 

ECM_S12C-M2 1.3 1.26 1.26 1.33 1.29 
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Figure 5-20: Voltage Harmonics for ECM_S8B (%) 

 

 

Figure 5-21: Voltage Harmonics for ECM_S8B (Volts) 
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Figure 5-22: Voltage Harmonics for ECM_S12B (%) 

 

 

Figure 5-23: Voltage Harmonics for ECM_S12B (Volts) 
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The behavior of the harmonic distortion of the current was different from that of 

the voltage.  First, the distortion of the current was much greater than the voltage.  When 

looking at the magnitude of the harmonic distortion in amps, there was a difference both 

between ECM settings, as well as between different sizes of FPTUs.  The difference was 

likely because the voltage was nearly constant for all of the tests, while the RMS current 

was highly dependent on ECM setting, and the 12 inch units often drew more power and 

current than their 8 inch counterparts.  When viewed as a percentage, there was not as 

much difference between terminal unit size or ECM setting.   

Figure 5-24 and Figure 5-25 compare the current harmonics for FPTU 

ECM_S8A as a percentage of fundamental and in amps, respectively.  Figure 5-26 and 

Figure 5-27 repeat the comparison for FPTU ECM_S12A.  In Figure 5-24, for a given 

harmonic, the difference was relatively small between ECM settings, but viewing that 

same harmonic in Figure 5-25 shows a very large difference.  This was because at an 

ECM setting of 100%, the current was many times larger than the current at an ECM 

setting of 25%.  Also notice that there was little difference in percentages between 

Figure 5-24 and Figure 5-26.  For example, the 5th harmonic in both figures was around 

80%, a little higher for ECM_S12A and a little lower for ECM_S8A.  The 5th harmonic 

for ECM_S12A, in Figure 5-27, was over 4 amps, while the 5th harmonic for 

ECM_S8A, in Figure 5-25, was under 2 amps.  These results illustrated that percentage 

distortion can sometimes be misleading because a high percentage at low current levels 

does not impact the overall system as much as the same percentage at higher current 

levels.  Table 5-10 contains a summary of the current THD for all terminal units tested. 
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Table 5-10: Current THD 

FPTU 
ECM Setting 

Average 
25% 50% 75% 100% 

ECM_S8A 89.34 89.55 91.24 90.32 90.11 

ECM_S8B 90.39 89.52 89.68 89.08 89.67 

ECM_S8C-M2 84.53 85.99 85.99 86.43 85.74 

ECM_S12A 88.23 85.79 84.44 84.79 85.81 

ECM_S12B 91.38 90.02 88.73 88.55 89.67 

ECM_S12C-M1 168.52 155.25 159.83 164.98 162.15 

ECM_S12C-M2 171.89 158.8 147.43 135.76 153.47 

 

 

 

Figure 5-24: Current Harmonics for ECM_S8A (%) 
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Figure 5-25: Current Harmonics for ECM_S8A (Amps) 

 

 

Figure 5-26: Current Harmonics for ECM_S12A (%) 
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Figure 5-27: Current Harmonics for ECM_S12A (Amps) 

 

When discussing current harmonics, the main concern is with the triplen 

harmonics, which are odd multiples of 3 of the fundamental.  Triplen harmonics are in 

phase with the fundamental, and thus add to the peak current.  Figure 5-28 shows the 

triplen harmonics of terminal unit ECM_S8A as percentage of the fundamental, and 

Figure 5-29 shows these harmonics in amps.  Figure 5-30 and Figure 5-31 show the 

same graphs for terminal unit ECM_S12A.  These harmonics are a subset of those 

discussed previously.  It is important to note, that the percentages did not tell the whole 

story.  If one only had the harmonics as a percentage, the conclusion may be made that 

lower ECM settings have as much of a problem with harmonic distortion as higher 

settings.  This was not completely true, since the lower ECM settings had a much lower 
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current draw, so the harmonics produced at these settings contribute much less to the 

harmonic distortion in the overall system. 

 

 

Figure 5-28: Current Triplen Harmonics for ECM_S8A (%) 
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Figure 5-29: Current Triplen Harmonics for ECM_S8A (Amps) 

 

 

Figure 5-30: Current Triplen Harmonics for ECM_S12A (%) 
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Figure 5-31: Current Triplen Harmonics for ECM_S12A (Amps) 
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 CHAPTER VI 

PARALLEL FAN POWERED TERMINAL UNITS RESULTS AND MODELS 

 

 Data were collected for seven ECM controlled parallel fan powered terminal 

units from three different manufacturers.  Data were collected using the equipment 

described in Chapter III, following the procedure outlined in Chapter IV.  Models were 

developed for airflow and power performance.  Airflow and power will be discussed in 

separate sections in this chapter. 

6.1. Parallel Terminal Unit Airflow 

Several aspects of the airflow performance of the FPTU were analyzed and 

modeled.  As with the series units, it was important to quantify the primary airflow 

delivered to the FPTU as well as the air supplied by the FPTU.  The primary airflow 

behaved similarly to that of the series units, in that it depended on damper setting and the 

differential pressure across the terminal unit.  The air supplied by the terminal unit 

depended on primary airflow, the airflow induced by the terminal unit fan, and leakage 

from the terminal unit. 

6.1.1. Primary Airflow Analysis and Model.  As with the series units, the primary 

airflow was dependent on the position of the primary air inlet damper and the differential 

pressure across the damper.  The upstream and downstream static pressures were used to 

calculate the differential pressure across the damper.  This pressure difference should be 

a better approximation than it was in the series units because the pressure rise across the 

terminal unit fan was not included in the downstream static pressure.  There must be a 
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positive pressure differential for there to be airflow through the FPTU for normal 

operating conditions.   

 At very high airflows, it was observed that the downstream static pressure was 

sometimes higher than the upstream static pressure.  As air moved from the smaller 

upstream duct into the larger downstream duct, it slowed down, increasing the static 

pressure.  If this increase in static pressure was greater than the losses in the FPTU 

between the two static pressure taps, the downstream static pressure would be larger than 

the upstream static pressure.  These conditions were generally outside the designed range 

of operation of the FPTUs, and were not reported in the data this study. 

 All of the manufacturers utilized a butterfly damper in the parallel units, so each 

FPTU was tested at settings of 0° (fully open), 22.5°, 45°, and 67.5°.  Figure 6-1 shows 

the primary airflow plotted against DP (Pup – Pdown) for terminal unit ECM_P8B.  Figure 

6-2 shows the same data for terminal unit ECM_P12C-M2.  The curves were generated 

using a fit of the data to Equation (6-1). 
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Figure 6-1: Qprimary vs. DP for ECM_P8B 

 

 

Figure 6-2: Qprimary vs. DP for ECM_P12C-M2 
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DP*)S*CS*C1(*CQ 2

321primary
++=  (6-1) 

  

The values for the coefficients and R
2
 values for each terminal unit are presented 

in Table 6-1.  The data for ECM_P8C-M1 were from Cramlet (2008).  The data for the 

SCR controlled units were from Furr et al (2008) and presented in Table 6-2.  The only 

differences in design between the ECM controlled FPTUs from manufacturer C were the 

motors and controllers used to vary fan speed.  They were comparable to the FPTUs 

utilizing SCR controlled motors. 

 This model generally correlated well with the primary airflow data.  All of the 

FPTUs had R
2
 values of 0.96 or above.  The only exception to this was the 12 inch 

FPTU from manufacturer B, which was at 0.872.  It was difficult to set the damper 

position correctly for ECM_P12B due to an inaccurate analog display that was used to 

set the damper position.  The results for this unit may possibly be improved by further 

testing.  These results were generally higher than those obtained for the SCR units. 

 

Table 6-1: Model Coefficients for ECM Controlled Units 

FPTU C1 C2 C3 R
2
 

ECM_P8A 1380 -2.03E-02 8.90E-05 0.982 

ECM_P12A 3868 -1.54E-02 3.27E-05 0.961 

ECM_P8B 2212 -2.71E-02 1.89E-04 0.988 

ECM_P12B 6528 -2.84E-02 2.06E-04 0.872 

ECM_P8C-M2 1469 -2.35E-02 1.38E-04 0.975 

ECM_P8C-M1 1671 -2.53E-02 1.71E-04 0.978 

ECM_P12C-M1 3380 -2.25E-02 1.22E-04 0.960 

ECM_P12C-M2 3747 -2.98E-02 2.27E-04 0.969 
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Table 6-2: Model Coefficients for SCR Controlled Units 

FPTU C1 C2 C3 R
2
 

SCR_P8A 1363 -2.02E-02 9.87E-05 0.924 

SCR_P12A 7425 -3.07E-02 2.45E-04 0.935 

SCR_P8B 1935 -2.48E-02 1.91E-04 0.981 

SCR_P12B 5781 -2.77E-02 2.04E-04 0.935 

SCR_P8C 1594 -2.73E-02 1.91E-04 0.981 

SCR_P12C 1838 -1.16E-02 1.63E-05 0.637 

 

 

6.1.2. Fan Airflow Analysis and Model.  Figure 6-3 shows the fan airflow for terminal 

unit ECM_P8A plotted against the downstream static pressure.  This figure shows how 

ECM controlled fans were designed to operate, which was at a constant airflow at a 

given ECM setting across a wide range of operating conditions.  Each ECM setting in 

this case shows a basically constant airflow at different downstream static pressures.  

Figure 6-4 shows the fan airflow for terminal unit ECM_P12B.  At the lower ECM 

settings, the fan appeared to behave similar to that of unit ECM_P8A, with little 

variation at different downstream static pressures.  At the highest setting there was a 

noticeable decrease in Qfan as the downstream pressure increased, with the fan output 

nearly identical to the next lower ECM setting at a downstream static pressure of 0.5 in. 

w.g. (125 Pa).  These data were plotted to illustrate the behavior of ECM_P12B at the 

highest ECM setting, but were not included in the data analysis. 
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Figure 6-3: Qfan vs. Pdown for ECM_P8A 

 

 

Figure 6-4: Qfan vs. Pdown for ECM_P12B 



 87

 The airflow induced by the fan in a parallel unit was mainly a function of the 

ECM setting.  As seen in Figure 6-4, the highest ECM setting sometimes performed 

differently than the other ECM settings.  In ECM_P12B the difference in behavior for 

the 10 VDC setting was possibly due to using a somewhat undersized motor for the 

application.  This unit used a ½ hp motor, while ECM_P12C-M1 and ECM_P12C-M2 

used ¾ hp motors and ECM_P12A used a 1 hp motor.  When the FPTUs were operating 

near their design limits, such as the 10 VDC setting for ECM_P12B, the ECM controller 

often performed erratically.  These data were not included in the data analysis, though 

they were plotted to show the erratic behavior at the 10 VDC ECM setting. 

 The model for fan airflow is shown in Equation (6-2).  It was the same form used 

by Furr (2006) and Cramlet (2008).  All of the terminal units in this study used a gravity 

operated backdraft damper, while those from manufacturer A tested by Furr (2006) 

utilized a primary air operated backdraft damper.  The different damper resulted in the 

addition of the term in parentheses in Equation (6-2).   

 

 
)P*C(P*CV*CV*CCQ iav5down43

2
21fan

++++=  (6-2) 

 

For the SCR units, V represented the AC voltage measured after the SCR 

controller.  For the ECM units, V represented the ECM setting as a percent of maximum 

airflow.  For unit ECM_P8C-M1 this required adjusting the C2 and C3 coefficients from 

CFM/V
2
 and CFM/V to CFM/%

2
 and CFM/% respectively.  Manufacturer A provided a 

controlled adjusted by turning a screw located on the controller to choose a setting from 
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zero to 100, so it simply represents the ECM setting.  Manufacturer B used a 2 – 10 

VDC signal, so the settings used were 4 VDC (25%), 6 VDC (50%), 8 VDC (75%), and 

10 VDC (100%).  Manufacturer C used a control signal of 0 – 10 VDC, so settings of 2.5 

VDC (25%), 5 VDC (50%), 7.5 VDC (75%), and 10 VDC (100%) were used.  Table 6-3 

contains a summary of the ECM settings used. 

 

 
Table 6-3: Summary of ECM Settings for Parallel FPTUs 

FPTU 

Manufacturer 

ECM Settings 

25% 50% 75% 100% 

A 25% 50% 75% 100% 

B 4 VDC 6 VDC 8 VDC 10 VDC 

C 2.5 VDC 5 VDC 7.5 VDC 10 VDC 

 

 

The data for the SCR units was taken from Furr (2006), while that for unit 

ECM_P8C-M1 was taken from Cramlet (2008).  The coefficients and R
2
 values for the 

ECM units are presented in Table 6-4.  All models for the ECM controlled FPTUs had 

R
2
 values above 0.955, and most of them above 0.98.  The coefficients and R

2
 values for 

the SCR units are presented in Table 6-5.  The SCR controlled FPTUs had a minimum 

R
2
 of 0.931, with the rest of the models being above 0.978. 
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Table 6-4: ECM Coefficients for Parallel Fan Airflow Model 

FPTU C1 C2 C3 C4 C5 R
2
 

ECM_P8A 139.907 0.18 5.047 66.163 0 0.992 

ECM_P12A 24.713 0.019 13.221 51.429 0 0.995 

ECM_P8B 300.029 0.007 7.846 139.826 0 0.994 

ECM_P12B 358.348 0.011 7.170 49.795 0 0.955 

ECM_P8C-M1 -282.267 -.13841 25.7991 -290.917 0 0.982 

ECM_P8C-M2 40.273 -0.011 11.015 -111.869 0 0.979 

ECM_P12C-M1 -206.123 -0.083 22.925 -122 0 0.99 

ECM_P12C-M2 -53.466 -0.039 16.115 -272.663 0 0.987 

 

Table 6-5: SCR Coefficients for Parallel Fan Airflow Model 

FPTU C1 C2 C3 C4 C5 R
2
 

SCR_P8A 1108.5 0.028 -9.53 -516.9 -172.8 0.985 

SCR_P12A -1567.2 -0.0199 16.98 -407.4 -360.2 0.978 

SCR_P8B -988.5 -0.0197 11.85 -303 0 0.99 

SCR_P12B -1143 -0.0131 13.56 -364.8 0 0.998 

SCR_P8C -1725 -0.0328 19.79 -564.4 0 0.991 

SCR_P12C -2142.9 -0.0396 26.36 -1920.9 0 0.931 

 

 

6.1.3. FPTU Leakage Analysis and Model.  The fan airflows in the previous section 

were the net airflows induced by the terminal unit fan. The induced air provided by the 

terminal fan was equal to the difference between the supply air and the primary supplied 

to the terminal unit plus the leakage, Equation (6-3).  Because there was not an easy way 

to directly measure the air induced by the fan with the laboratory equipment, leakage 

was measured by turning off the terminal fan so that the induced air, Qfan, would be 

equal to zero.  This meant the leakage was simply the difference between the primary air 

and the supply air. 
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 Q)QQ(Q leakageprimaryplysupfan
+−=  (6-3) 

 

Figure 6-5 shows the leakage for terminal unit ECM_P8C-M2 plotted against the 

inlet velocity pressure.  The data showed significant scatter with respect to inlet velocity 

pressure.  The leakage in this terminal unit was primarily dependent on the internal static 

pressure of the FPTU, regardless of the airflow.   

Figure 6-6 shows the leakage for unit ECM_P12A plotted against inlet velocity 

pressure.  The leakage from this FPTU was several times higher than the leakage for 

terminal unit P8C-M2.  In this study, both units from manufacturer A had much higher 

leakage than the other manufacturers.  It appeared that the larger leakage was possibly 

due to the type of grommet used for the point of entry of the motor cabling into the 

terminal unit.  There was little to no sealing between the grommet and the power/control 

cable bundle, Figure 6-7 and Figure 6-8. 

For this FPTU, there was a strong positive correlation between inlet velocity 

pressure and leakage.  This was assumed to be due to two main factors.  One was the 

power/control cable bundle strung directly through the primary air stream (Figure 6-9), 

which would redirect some of the air through the entry point of the cabling.  The other 

factor was the location of punch-outs for non-included accessories being directly 

opposite the primary air inlet, so that as primary airflow was increased, there would be 

increased stagnation pressure at the end of the terminal unit where the punch-outs were 

located (Figure 6-10).  This resulted in increased air leakage through the punch-outs.  

Both of these factors were observed during the tests. 
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Figure 6-5: Leakage vs. Piav for ECM_P8C-M2 

 

 

Figure 6-6: Leakage vs. Piav for ECM_P12A 
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Figure 6-7: Grommet and Cable Bundle for ECM_P12A 

 

 

Figure 6-8: Entry Point of Cable Bundle into FPTU ECM_P12A 
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Figure 6-9: Cable Bundle Through Primary Air Stream for ECM_P12A 

 

 

Figure 6-10: Punch-outs Opposite Primary Air Inlet for ECM_P12A 
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 Figure 6-11 and Figure 6-12 show the leakage for ECM_P8C-M2 and 

ECM_P12A, respectively, plotted versus Pdown.  The leakage for ECM_P8C-M2 varied 

almost linearly with downstream static pressure and showed little dependence on Piav.  

This variation was different from ECM_P12A where an increase in Piav from 0.25 in. 

w.g. (62.3 Pa) to 1.25 in. w.g. (311.4 Pa) resulted in an approximately 75 CFM (0.0354 

m
3
/s) increase in leakage at a downstream static pressure of 0.1 in. w.g. (24.9 Pa).  Both 

figures show leakage at three different inlet velocity pressures to illustrate the effect of 

increasing primary airflow on leakage from the terminal units.  Notice that increasing 

Piav affected each unit differently.  ECM_P8C-M2 showed little or slightly negative 

dependence on Piav.  Leakage for ECM_P12A showed a increase in leakage with respect 

to Piav.   

 

 

Figure 6-11: Leakage vs. Pdown for ECM_P8C-M2 
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Figure 6-12: Leakage vs. Pdown for ECM_P12A 

  

The equation used to model the air leakage was taken from Furr (2006), and is 

shown in Equation (6-4).  The coefficients for the ECM controlled terminal units are 

presented in Table 6-6, and the data for ECM_P8C-M1 was taken from Cramlet (2008).  

The coefficients for the SCR controlled terminal units were taken from Furr (2006) and 

are presented in Table 6-7.  All of the FPTUs from Manufacturer C were of the same 

design.  Manufacturer A used a primary air operated backdraft damper on the SCR units, 

but switched to a gravity operated damper for the ECM units.  The R
2
 values were 

generally lower than those for the other models, and ranged from 0.826 to 0.972 for the 

ECM FPTUs and from 0.767 to 0.989 for the SCR FPTUs.  The variation and low values 

were likely due to measuring leakage as a small difference between two large numbers. 
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 P*CP*CCQ iav3down21leakage
++=  (6-4) 

 

 
Table 6-6: ECM Coefficients for FPTU Leakage Model 

FPTU C1 C2 C3 R
2
 

ECM_P8A 43.287 121.922 11.878 0.972 

ECM_P12A 81.339 165.046 31.638 0.948 

ECM_P8B 8.705 72.872 -4.472 0.887 

ECM_P12B 15.997 78.834 -13.244 0.856 

ECM_P8C-M1 37.87 119.98 3.213 0.918 

ECM_P8C-M2 27.127 90.5 -4.985 0.895 

ECM_P12C-M1 28.996 72.274 -6.628 0.927 

ECM_P12C-M2 35.044 76.499 -4.948 0.826 

 

 

Table 6-7: SCR Coefficients for FPTU Leakage Model 

FPTU C1 C2 C3 R
2
 

SCR_P8A 16.47 138.1 -6.16 0.97 

SCR_P12A 14.4 97.94 -37.9 0.858 

SCR_P8B 13.8 37.41 0 0.767 

SCR_P12B 17.83 58.26 -27.16 0.945 

SCR_P8C 16.86 77.55 -10.76 0.97 

SCR_P12C 22.3 100.83 -15.02 0.989 

 

 

6.2. Parallel Terminal Unit Power Performance 

One of the main reasons for choosing parallel fan powered terminal units instead 

of series fan powered terminal units is the perceived lower energy requirements of 

parallel units.  To model the energy use of a FPTU, the power of the FPTU must be 
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characterized over the whole range of operating conditions of each FPTU.  In addition, 

comparisons of series and parallel FPTUs must also include the power required to supply 

the primary air.  The real power consumption of each terminal unit was measured and 

modeled.  In addition to the real power consumption, the apparent power and power 

factor, and power quality were also measured and analyzed.  Equations were developed 

to model the real power consumption. 

6.2.1. Fan Power Consumption Analysis and Model.  The fan power consumption in a 

parallel FPTU is dependent on the airflow produced and the downstream static pressure.  

Figure 6-13 shows the power consumption of terminal unit ECM_P8B plotted versus 

Qfan.  For the most part, this unit operated with airflow independent of downstream 

static pressure.  As downstream pressure increased, power consumption also increased.  

For example, at an ECM setting of 4 VDC, the fan was producing an airflow around 500 

– 600 CFM (0.236 – 0.283 m3/s).  There were three distinct power consumption levels, 

one at about 75 Watts, one at about 100 Watts, and the highest at about 150 Watts.  

These three power values corresponded directly with Pdown levels of 0.1 in. w.g. (24.9 

Pa), 0.25 in. w.g. (62.3 Pa), and 0.5 in. w.g. (124.5 Pa).  At an ECM setting of 10 VDC, 

when Pdown was raised to 0.5 in. w.g. (124.5 Pa), the fan airflow and power consumption 

were reduced to the same levels as an ECM setting of 8 VDC at 0.5 in. w.g. (124.5 Pa) 

downstream static pressure.  These reductions in airflow and power consumption were 

possibly due to operating the FPTU outside its designed rang of operation.  These data 

were not used in the data analysis. 



 98

 

Figure 6-13: Real Power vs. Qfan for ECM_P8B 

  

Figure 6-14 shows the real power consumption of terminal unit P12C-M1 plotted 

against Qfan.  At ECM settings of 5 VDC and 7.5 VDC, fan airflow remained constant at 

different levels of Pdown with power consumption increasing with increasing downstream 

static pressure.  At ECM settings of both 2.5 VDC and 10 VDC, which were on the limit 

of recommended operation, increasing Pdown resulted in increased power consumption 

with decreased airflow. 
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Figure 6-14: Power vs. Qfan for ECM_P12C-M1 

  

These results were fairly typical of the ECM terminal units tested in this study.  

Terminal unit ECM_P8C-M1, which was tested by Cramlet (2008), did not show a 

difference in airflow or power consumption between ECM settings of 7.5 VDC and 10 

VDC.  The reason for this difference appeared to be in the programming of that 

particular ECM motor/controller combination.  One difference between SCR and ECM 

controlled units was that fan airflow depended more on the downstream static pressure in 

SCR units than it did in ECM units.  The other main difference was that the power 

consumption of SCR models increased linearly with increasing airflow, while the 

increase was parabolic in ECM units.  The power consumption versus fan airflow is 

shown for SCR_P8C and ECM_P8C-M1 in Figure 6-15 (Furr 2006 and Cramlet 2008). 
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Figure 6-15: Real Power vs. Qfan for SCR_P8C and ECM_P8C-M1 

 

The form of the equation used to model power consumption was adopted from 

Furr (2006), and is shown in Equation (6-5).  The coefficients for ECM_P8C-M1 

(Cramlet 2008) have been adapted to the new scale for ECM setting.  Furr (2006) also 

required an additional term for SCR terminal unit P8A, which was the inlet air velocity 

pressure.  Since each manufacturer’s controller utilized a different control signal, it was 

determined that the best way to compare different ECM units was to use the percentage 

from minimum to maximum ECM setting explained in section 6.1.2.  The coefficients 

for the ECM units are presented in Table 6-8, while those for the SCR units are in Table 

6-9.  All of the models for the ECM FPTUs were above 0.919 indicating the models 

correlated well with the measured performance. 
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P*CP*CV*CV*CCPower iav5down43

2
21fan ++++=  (6-5) 

 

Table 6-8: ECM Coefficients for Fan Power Model 

FPTU C1 C2 C3 C4 C5 R
2
 

ECM_P8A 11.698 0.025 -0.919 203.915 0 0.953 

ECM_P12A 3.345 0.06 -1.987 358.335 0 0.922 

ECM_P8B 11.463 0.036 -0.35 245.189 0 0.990 

ECM_P12B 29.067 0.042 -0.521 196.659 0 0.955 

ECM_P8C-M1 -202.61 -.041 9.994 -8.424 0 0.919 

ECM_P8C-M2 55.736 0.074 -3.739 172.102 0 0.943 

ECM_P12C-M1 -59.413 0.027 1.347 167.824 0 0.977 

ECM_P12C-M2 22.523 0.043 -1.318 114.355 0 0.976 

 

 

Table 6-9: SCR Coefficients for Fan Power Model 

FPTU C1 C2 C3 C4 C5 R
2
 

SCR_P8A 5.86 0.000895 0.304 -89.3 -31.9 0.908 

SCR_P12A -631 -0.0039 6.22 -142 0 0.956 

SCR_P8B -258 -0.006 3.65 -82.3 0 0.989 

SCR_P12B -403 -0.00515 5.15 -128.7 0 0.996 

SCR_P8C -363 -0.0088 5.18 -145 0 0.99 

SCR_P12C -622 -0.0159 9.48 -638 0 0.923 

 

 

6.2.2. Power Factor Analysis.  As with the series terminal units, the ECM controlled 

fans on the parallel terminal units also had power factors that were generally between 0.4 

and 0.6.  Figure 6-16 shows the power factor of terminal unit ECM_P8A, and was 
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generally around 0.4.  At an ECM setting of 7.5 VDC, this unit displayed a spread in 

power factor of just below 0.4 to about 0.5.  This showed a spread in power factors that 

was common among the ECM controlled units.  Figure 6-17 shows the power factor for 

ECM_P12C-M2.  This unit had a slightly higher power factor of generally around 0.5.   

 

 

Figure 6-16: Power Factor for ECM_P8A 
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Figure 6-17: Power Factor for ECM_P12C-M2 

  

The apparent power performance of the terminal units was another important 

quantity used to evaluate the impact of ECM controlled FPTUs on electrical demand.  

The relationship between real power, apparent power, and power factor is shown in (5-

4).  Figure 6-18 shows the apparent power for terminal unit ECM_P8A plotted versus 

Qfan.  It shows that there were distinct levels of apparent power at each ECM setting, 

which corresponded to different levels of Pdown, similar to the real power consumption.  

No attempt was made to quantify the relationship between real power, Pdown, power 

factor, and apparent power in this study.  Figure 6-19 shows the apparent power for 

terminal unit ECM_P12C-M2 plotted against Qfan.  At a level of about 900 CFM (0.425 
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m3/s), ECM_P8A had an apparent power of approximately 700 VA.  ECM_P12C-M2 

did not reach this level of apparent power until about 1100 CFM (0.519 m3/s).   

 

 

Figure 6-18: Apparent Power vs. Qfan for ECM_P8A 
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Figure 6-19: Apparent Power vs. Qfan for ECM_P12C-M2 

 

Cramlet (2008) showed a comparison of the apparent power of an ECM and SCR 

controlled terminal unit.  This comparison is shown in Figure 6-20.  Only at the lowest 

flow levels did the ECM motor have a lower apparent power than the SCR motor.  At 

approximately 500 CFM (0.236 m3/s), both types of motor had an apparent power of 

approximately 400 VA.  Figure 6-15 shows the real power comparison for these same 

units.  The ECM unit had an average power consumption of about 150 Watts while the 

SCR unit had an average power consumption over 200 Watts.  For these two units, the 

ECM unit had a real power consumption advantage at flow rates below about 700 CFM 

(0.330 m
3
/s), but required more apparent power when airflow was above about 450 CFM 
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(0.212 m
3
/s).  The higher apparent power of the ECM could negate its real power 

advantage over the SCR controlled unit in some applications. 

 

 

Figure 6-20: Apparent Power vs. Qfan for SCR_P8C and ECM_P8C-M1 

 

Figure 6-21 compares the power factor for SCR_P8C and ECM_P8C-M1.  As 

with the series units, the SCR controlled parallel unit showed an increase in power factor 

with an increase in SCR setting.  Likewise, the power factor of the ECM controlled unit 

was relatively flat with respect to ECM setting.  The increase in power factor of the SCR 

unit would help explain why the apparent power was relatively constant throughout the 

entire range of airflow.  Likewise, the relatively constant power factor of the ECM unit 

would help explain the increase in apparent power with an increase in airflow. 
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Figure 6-21: Power Factor Comparison for SCR_P8C and ECM_P8C-M1 

 

6.2.3. Power Quality Analysis.  The power quality is also an important aspect of the 

performance of fan powered terminal units.  The harmonic distortion can cause problems 

for sensitive electronic equipment, decrease power factor, increase apparent power, 

overload neutral lines, and increase losses in the power distribution system (Kennedy 

2000 and Gosbell 2000).  Harmonics are often analyzed by looking at the percent 

distortion compared to the fundamental value, and also by looking at the magnitude of 

the distortion in units of amps, volts, or watts as the case may be. 

 The real power harmonics are important because they provide a direct indication 

of the amount of distortion in the power.  Figure 6-22 shows the power harmonics for 

ECM_P8B in percentage form, with the harmonics shown in watts in Figure 6-23.  
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Figure 6-24 shows the power harmonics in percentage form for ECM_P12C-M1, with 

harmonics shown in watts in Figure 6-25.  In contrast to the current and voltage 

harmonics, some of the watt harmonics were negative, which indicated that the 

distortion at these frequencies transferred power back to the voltage source.  In 

percentage form, the highest distortion for any single harmonic was about 0.5%, reached 

at an ECM setting of 8 VDC at the 5th harmonic for ECM_P8B, and at an ECM setting 

of 10 VDC at the 9th harmonic for ECM_P12C-M1.  In the case of ECM_P8A, this 

resulted in a distortion magnitude of about 1.25 watts.  For ECM_P12C-M1, the 

magnitude in watts of the 9th harmonic at an ECM setting of 10 VDC was about 1.75 

watts. 

 

Figure 6-22: Real Power Harmonics for ECM_P8B (%) 
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Figure 6-23: Real Power Harmonics for ECM_P8B (Watts) 

 

 

Figure 6-24: Real Power Harmonics for ECM_P12C-M1 (%) 
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Figure 6-25: Real Power Harmonics for ECM_P12C-M1 (Watts) 

 

Another method used to analyze the cumulative effect of harmonic distortion is 

the Total Harmonic Distortion (THD).  The THD of real power is presented here in 

percentage form.  Figure 6-26 shows the real power THD for ECM_P8B.  Figure 6-27 

shows the real power THD for ECM_P12C-M1.  Both of these graphs show that there 

seemed to be little dependence of percent THD on ECM setting.  If the THDs of these 

units were viewed in watts, the higher ECM settings would have higher THD since they 

have higher real power consumption.  ECM_P12C-M1 had higher THD than ECM_P8B, 

though overall, there did not appear to be any dependence of THD on terminal unit size.  

A complete summary of real power THD results are found in Table 6-10. 
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Figure 6-26: Real Power THD for ECM_P8B (%) 

 

 

Figure 6-27: Real Power THD for ECM_P12C-M1 (%) 
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Table 6-10: Summary of Real Power THD (%) 

FPTU 
ECM Setting 

Average 
25% 50% 75% 100% 

ECM_P8A 0.62 0.58 0.53 0.76 0.62 

ECM_P8B 0.84 0.97 0.74 0.92 0.87 

ECM_P8C-M2 0.60 0.88 0.62 0.65 0.69 

ECM_P12A 0.91 0.96 0.71 0.59 0.79 

ECM_P12B 0.84 0.77 0.63 1.21 0.86 

ECM_P12C-M1 1.40 1.24 1.31 1.26 1.30 

ECM_P12C-M2 1.21 1.11 1.03 0.61 0.99 

 

 

Harmonic distortion in the current signal is important because current spikes can 

damage electrical equipment.  Figure 6-28 shows the percent harmonic distortion for 

ECM_P8C-M2, and Figure 6-29 shows the percent harmonic distortion for P12B.  The 

maximum setting for P8C-M2 is 9.5 VDC due to problems operating the motor above 

this level.  These graphs show the typical behavior of current harmonic distortion which 

was higher at the lower harmonics and decreased as the harmonic frequency increased.  

Table 6-11 contains a summary of the current THD for all units tested. 



 113

 

Figure 6-28: Current Harmonics for ECM_P8C-M2 (%) 

 

 

Figure 6-29: Current Harmonics for ECM_P12B (%) 



 114

 
Table 6-11: Summary of Current THD (%) 

FPTU 
ECM Setting 

Average 
25% 50% 75% 100% 

ECM_P8A 90.24 90.28 90.28 90.65 90.36 

ECM_P8B 89.74 90.35 90.14 89.90 90.03 

ECM_P8C-M2 83.60 86.76 86.66 87.57 86.15 

ECM_P12A 153.7 155.8 140.7 142.6 148.2 

ECM_P12B 85.03 83.45 90.71 89.85 87.26 

ECM_P12C-M1 170.4 175.6 179.8 182.7 177.1 

ECM_P12C-M2 144.1 141.9 151.5 159.1 149.1 

 

 

Though the percentages are very high, they only tell part of the story, since the 

real danger of harmonic distortion of the current signal is high amperage in the system 

damaging electrical equipment.  Figure 6-30 shows the harmonic distortion of 

ECM_P8C-M2 in terms of amps, rather than percent.  Figure 6-31 shows this for 

ECM_P12B.  This shows that at the lower ECM settings, where the ECM controlled 

FPTUs had their greatest advantage in power consumption compared to SCR units, the 

magnitude of the current distortion was actually quite low.  The highest ECM setting 

resulted in similar magnitude of current harmonics despite different size terminal units. 
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Figure 6-30: Current Harmonics for ECM_P8C-M2 (Amps) 

 

 

Figure 6-31: Current Harmonics for ECM_P12B (Amps) 
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Of special importance when discussing current harmonics are the triplen 

harmonics, which are odd multiples of three of the fundamental frequency.  The triplen 

harmonics are important because they are in phase with the fundamental, and thus add to 

the peak current.  Figure 6-32 shows the triplen harmonics in percentage form for 

ECM_P8C-M2, and Figure 6-33 shows these harmonics in amps.  Figure 6-34 shows the 

triplen harmonics in percentage form for ECM_P12B, and Figure 6-35 shows them in 

amps.  For both FPTUs, the triplen harmonic plots in percentage form showed similar 

distortion for all of the ECM settings.  For the raw current data (in amps), the higher 

ECM settings had significantly higher current distortion, which was due to the much 

higher current draw at these settings.  There was little difference in current harmonics 

between the two terminal unit sizes. 

 

 

Figure 6-32: Current Triplen Harmonics for ECM_P8C-M2 (%) 
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Figure 6-33: Current Triplen Harmonics for ECM_P8C-M2 (Amps) 

 

 

Figure 6-34: Current Triplen Harmonics for ECM_P12B (%) 
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Figure 6-35: Current Triplen Harmonics for ECM_P12B (Amps) 

 

Harmonic distortion of the voltage signal can also cause problems with electrical 

equipment.  Figure 6-36 shows the voltage harmonics in percentage form for ECM_P8A, 

and Figure 6-37 shows the voltage harmonics for ECM_P8A in voltage form.  Figure 

6-38 shows the voltage harmonics for ECM_P12C-M2 in percentage form, with these 

harmonics in voltage form shown in Figure 6-39.  In percentage form, the harmonics 

were generally less than 1%, and appeared to show little dependence on ECM setting.  

Because the voltage was 277 VAC, several of the harmonics for both FPTUs were 

higher than one volt.  ECM_P12C-M2 had the 9th harmonic higher than 2 VAC, and the 

5VDC ECM setting reached almost 3 VAC at the 9th harmonic.  Table 6-12 contains a 

summary of the voltage THD for all terminal units tested. 
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Figure 6-36: Voltage Harmonics for ECM_P8A (%) 

 

 

Figure 6-37: Voltage Harmonics for ECM_P8A (Volts) 
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Figure 6-38: Voltage Harmonics for ECM_P12C-M2 (%) 

 

 

Figure 6-39: Voltage Harmonics for ECM_P12C-M2 (Volts) 
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Table 6-12: Summary of Voltage THD (%) 

FPTU 
ECM Setting 

Average 
25% 50% 75% 100% 

ECM_P8A 0.83 0.78 0.74 0.79 0.79 

ECM_P8B 0.84 0.89 0.93 0.93 0.90 

ECM_P8C-M2 0.87 0.99 0.86 0.85 0.89 

ECM_P12A 1.24 1.35 1.38 1.32 1.32 

ECM_P12B 0.94 1.04 1.03 1.32 1.08 

ECM_P12C-M1 1.19 1.19 1.27 1.13 1.20 

ECM_P12C-M2 1.18 1.40 1.13 1.05 1.19 
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 CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

Previous studies have shown that VAV systems use less energy than the older 

constant volume systems.  An integral part of every VAV system is the terminal unit.  

Some applications use fan powered terminal units, which come in either series or 

parallel configurations.  Some researchers have found that parallel FPTUs used less 

energy than systems with series FPTUs in some applications.  These studies have 

focused on office buildings in specific climates, but lack general applicability to other 

building types and climates.  One limitation of these studies was the lack of accurate 

performance models of fan powered terminal units.  Furr (2006) developed these models 

for fan powered terminal units with SCR controlled motors.   

While Furr’s study was an important step in characterizing FPTUs, many 

manufacturers sell units with ECM controlled motors.  These motors are assumed to be 

superior to the older SCR controlled motors in terms of energy consumption.  There had 

been little to no experimental validation of this assumption when the ECM controllers 

were applied to fan powered terminal units.  Cramlet (2008) developed experimental 

data and a preliminary model for one parallel and one series ECM controlled FPTU. 

This study extends the work of Cramlet (2008) to seven series and seven parallel 

ECM controlled fan powered terminal units from three different manufacturers.  The 

overall trends in performance of the ECM controlled FPTUs were similar with respect to 

different FPTU manufacturers, controller types, and motor manufacturers.  Models of 
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the same form used by Furr (2006) were applied in this study to satisfactorily represent 

the different performance characteristics of the ECM controlled FPTUs. 

Each series unit had three models developed to characterize its performance.  The 

first was the primary air performance, which was independent of fan voltage.  This 

model had R
2
 values that ranged from 0.895 to 0.962 for the ECM units and 0.920 to 

0.987 for the SCR units.  The series model could possibly be improved by using the 

internal FPTU static pressure to calculate the differential pressure used in the model 

instead of the static pressure downstream of the fan. 

The second model developed for the series fan powered terminal units was the 

airflow provided by the terminal unit fan.  For the ECM controlled units, the R
2
 values 

of this model ranged from 0.987 to 0.997.  This model also correlated highly for the SCR 

controlled units, with R
2
 values ranging from 0.989 to 0.997 for properly function SCR 

controllers.  The high R
2
 values for this form of the model demonstrate it explains most 

of the variability in the data. 

The last model developed for the series units was that of fan power consumption.  

This is perhaps the most important model of the three because ECM controlled fans are 

expected to perform much better than their SCR counterparts.  This model also 

correlated the data well for the ECM units.  R
2
 values ranged from 0.968 to 0.988.  

These R
2
 values were similar to units with SCR controllers.  Even a malfunctioning SCR 

was well represented by this model with an R
2
 value of 0.87.  This model can be used in 

conjunction with the fan airflow model to compare the power consumption of ECM and 

SCR controlled units at different operating conditions. 
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Due to their design, parallel fan powered terminal units were more complicated 

to model.  The air supplied by the terminal unit was dependent on both the primary air 

supplied to the terminal unit and the air induced by the terminal fan.  In contrast, for a 

series unit, the air supplied by the terminal unit is the airflow of the fan.  Another reason 

is that parallel terminal units can be operated with the fan completely off whereas the fan 

in a series unit is always on.  Parallel terminal units also have the added problem of air 

leakage from the FPTU which reduces the amount of air supplied by the terminal unit.  

As a consequence, parallel FPTUs required four different models to characterize their 

performance. 

The first model developed for the parallel FPTUs was for the primary supplied to 

the terminal unit.  Six of the seven models had R
2
 values between 0.96 and 0.988.  One 

model only had an R
2
 value of 0.872 which could likely be improved by further testing 

of this unit.  Six of the seven SCR units had R
2
 values from 0.893 to 0.981, which were 

similar to those of the ECM units.  One SCR unit had a low R
2
 value of 0.637.  Overall, 

this primary air model provided excellent correlation of the data for both ECM and SCR 

units. 

The second model developed for ECM units was that for fan airflow.  This model 

represented the effective airflow induced by the terminal fan.  This model provided high 

correlation to the data for the ECM units.  R
2
 values ranged from 0.955 to 0.995, with all 

but one above 0.979.  This model had a slightly different form for two of the SCR units, 

due to a different type of back draft damper.  This difference was not present in the ECM 
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units due to all units having the same type of damper.  The SCR units also conformed 

well with R
2
 values from 0.931 to 0.998, with all but one above 0.978. 

The third model developed for parallel units was for leakage.  This model was 

important because it represented the amount of conditioned primary air lost to the return 

air plenum that was unavailable for conditioning the zone.  The model was developed by 

testing the terminal unit with the terminal fan switched off.  The correlation to the data 

of this model varied widely between different ECM terminal units, with R
2
 values 

ranging 0.826 to 0.972, with only three of the seven above 0.9.  The variation in R
2
 

values was possibly due to differences in back draft damper operation with some being 

stuck open when the fan was turned off, or even due to gaps between the blower 

assembly and mounting flange.  This model performed better for the SCR units with four 

of six units tested having an R
2
 above 0.945, though one unit was at 0.858, and one unit 

at 0.767.  Overall, this model seems to represent fairly well the leakage from the 

terminal unit. 

The final model developed was that for fan power consumption.  This model was 

very important for several reasons.  First, some manufacturers believe ECM controlled 

fans do not have as much of an impact on the power consumption of parallel units as 

they do on series units.  Second, many of the models currently used for fan powered 

terminal units have not been tested in physical terminal units.  Third, parallel fan 

powered terminal units are widely believed to be the energy efficient choice when fan 

powered units are used.  A model of fan power consumption is needed to adequately 
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characterize the overall system energy consumption.  Such a model would allow 

comparisons of systems with parallel units to systems with series units. 

With the exception of one SCR unit that did not perform similarly to the other 

units of the same type, this model had the same form both ECM and SCR units.  This 

model correlated well to the data for ECM units with R
2
 values from 0.919 to 0.99.  It 

also correlated well for the SCR units with R
2
 values ranging from 0.908 to 0.996.  It is 

believed that the R
2
 values of the model may be improved for the ECM terminal units if 

the power data were measured in sync with the airflow data. 

These models will allow better simulations to determine if fan powered terminal 

units will perform better than non powered units in wider variety of climates and 

building types.  It will also allow simulations to determine if series or parallel fan 

powered terminal units would be more energy efficient for a given application, and 

which type would provide better comfort control, allowing a designer to make the 

optimum decision based on comfort and energy needs.  By having models for SCR and 

ECM controlled units, simulations will be able to determine if and how much benefit is 

gained by using ECM controlled fans instead of SCR controlled fans.  This will allow 

designers to make better decisions based on customer needs. 

Similar to previous research, the leakage model is still only applicable to a full-

cool mode.  If a leakage model could be developed that was applicable even when the 

fan is in operation, it may lead to better terminal unit design.  It may also allow whole 

system simulations to better predict the overall performance over a wider range of 

operating conditions. 
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APPENDIX A 

SERIES TERMINAL UNITS RESULTS 
 

 

Figure A-1: Qprimary vs. DP for ECM_S8A 
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Figure A-2: Qprimary vs. DP for ECM_S8B 

 

 

Figure A-3: Qprimary vs. DP for ECM_S8C-M2 
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Figure A-4: Qprimary vs. DP for ECM_S12A 

 

 

Figure A-5: Qprimary vs. DP for ECM_S12B 



 133

 

Figure A-6: Qprimary vs. DP for ECM_S12C-M1 

 

 

Figure A-7: Qprimary vs. DP for ECM_S12C-M2 
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Figure A-8: Qfan vs. Piav for ECM_S8A 

 

 

Figure A-9: Qfan vs. Piav for ECM_S8B 
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Figure A-10: Qfan vs. Piav for ECM_S8C-M2 

 

 

Figure A-11: Qfan vs. Piav for ECM_S12A 
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Figure A-12: Qfan vs. Piav for ECM_S12B 

 

 

Figure A-13: Qfan vs. Piav for ECM_S12C-M1 
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Figure A-14: Qfan vs. Piav for ECM_S12C-M2 

 

 

Figure A-15: Power vs. Qfan for ECM_S8A 
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Figure A-16: Power vs. Qfan for ECM_S8B 

 

 

Figure A-17: Power vs. Qfan for ECM_S8C-M2 
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Figure A-18: Power vs. Qfan for ECM_S12A 

 

 

Figure A-19: Power vs. Qfan for ECM_S12B 
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Figure A-20: Power vs. Qfan for ECM_S12C-M1 

 

 

Figure A-21: Power vs. Qfan for ECM_S12C-M2 
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Figure A-22: Watt/CFM vs. Qfan for ECM_S8A 

 

 

Figure A-23: Watt/CFM vs. Qfan for ECM_S8B 
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Figure A-24: Watt/CFM vs. Qfan for ECM_S8C-M2 

 

 

Figure A-25: Watt/CFM vs. Qfan for ECM_S12A 
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Figure A-26: Watt/CFM vs. Qfan for ECM_S12B 

 

 

Figure A-27: Watt/CFM vs. Qfan for ECM_S12C-M1 
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Figure A-28: Watt/CFM vs. Qfan for ECM_S12C-M2 

 

 

Figure A-29: Apparent Power vs. Qfan for ECM_S8A 
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Figure A-30: Apparent Power vs. Qfan for ECM_S8B 

 

 

Figure A-31: Apparent Power vs. Qfan for ECM_S8C-M2 
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Figure A-32: Apparent Power vs. Qfan for ECM_S12A 

 

 

Figure A-33: Apparent Power vs. Qfan for ECM_S12B 
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Figure A-34: Apparent Power vs. Qfan for ECM_S12C-M1 

 

 

Figure A-35: Apparent Power vs. Qfan for ECM_S12C-M2 
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Figure A-36: Power Factor vs. ECM Input Setting for ECM_S8A 

 

 

Figure A-37: Power Factor vs. ECM Input Setting for ECM_S8B 
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Figure A-38: Power Factor vs. ECM Input Setting for ECM_S8C-M2 

 

 

Figure A-39: Power Factor vs. ECM Input Setting for ECM_S12A 
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Figure A-40: Power Factor vs. ECM Input Setting for ECM_S12B 

 

 

Figure A-41: Power Factor vs. ECM Input Setting for ECM_S12C-M1 
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Figure A-42: Power Factor vs. ECM Input Setting for ECM_S12C-M2 

 

 

Figure A-43: Real Power THD (%) vs. ECM Input Setting for ECM_S8A 
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Figure A-44: Real Power THD (%) vs. ECM Input Setting for ECM_S8B 

 

 

Figure A-45: Real Power THD (%) vs. ECM Input Setting for ECM_S8C-M2 
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Figure A-46: Real Power THD (%) vs. ECM Input Setting for ECM_S12A 

 

 

Figure A-47: Real Power THD (%) vs. ECM Input Setting for ECM_S12B 
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Figure A-48: Real Power THD (%) vs. ECM Input Setting for ECM_S12C-M1 

 

 

Figure A-49: Real Power THD (%) vs. ECM Input Setting for ECM_S12C-M2 
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Figure A-50: Real Power Harmonics (%) for ECM_S8A 

 

 

Figure A-51: Real Power Harmonics (%) for ECM_S8B 
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Figure A-52: Real Power Harmonics (%) for ECM_S8C-M2 

 

 

Figure A-53: Real Power Harmonics (%) for ECM_S12A 
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Figure A-54: Real Power Harmonics (%) for ECM_S12B 

 

 

Figure A-55: Real Power Harmonics (%) for ECM_S12C-M1 
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Figure A-56: Real Power Harmonics (%) for ECM_S12C-M2 

 

 

Figure A-57: Real Power Harmonics (Watts) for ECM_S8A 
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Figure A-58: Real Power Harmonics (Watts) for ECM_S8B 

 

 

Figure A-59: Real Power Harmonics (Watts) for ECM_S8C-M2 
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Figure A-60: Real Power Harmonics (Watts) for ECM_S12A 

 

 

Figure A-61: Real Power Harmonics (Watts) for ECM_S12B 
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Figure A-62: Real Power Harmonics (Watts) for ECM_S12C-M1 

 

 

Figure A-63: Real Power Harmonics (Watts) for ECM_S12C-M2 
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Figure A-64: Current Harmonics (%) for ECM_S8A 

 

 

Figure A-65: Current Harmonics (%) for ECM_S8B 
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Figure A-66: Current Harmonics (%) for ECM_S8C-M2 

 

 

Figure A-67: Current Harmonics (%) for ECM_S12A 
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Figure A-68: Current Harmonics (%) for ECM_S12B 

 

 

Figure A-69: Current Harmonics (%) for ECM_S12C-M1 
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Figure A-70: Current Harmonics (%) for ECM_S12C-M2 

 

 

Figure A-71: Current Harmonics (Amps) for ECM_S8A 
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Figure A-72: Current Harmonics (Amps) for ECM_S8B 

 

 

Figure A-73: Current Harmonics (Amps) for ECM_S8C-M2 
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Figure A-74: Current Harmonics (Amps) for ECM_S12A 

 

 

Figure A-75: Current Harmonics (Amps) for ECM_S12B 
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Figure A-76: Current Harmonics (Amps) for ECM_S12C-M1 

 

 

Figure A-77: Current Harmonics (Amps) for ECM_S12C-M2 
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Figure A-78: Current Triplen Harmonics (%) for ECM_S8A 

 

 

Figure A-79: Current Triplen Harmonics (%) for ECM_S8B 
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Figure A-80: Current Triplen Harmonics (%) for ECM_S8C-M2 

 

 

Figure A-81: Current Triplen Harmonics (%) for ECM_S12A 
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Figure A-82: Current Triplen Harmonics (%) for ECM_S12B 

 

 

Figure A-83: Current Triplen Harmonics (%) for ECM_S12C-M1 
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Figure A-84: Current Triplen Harmonics (%) for ECM_S12C-M2 

 

 

Figure A-85: Current Triplen Harmonics (Amps) for ECM_S8A 
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Figure A-86: Current Triplen Harmonics (Amps) for ECM_S8B 

 

 

Figure A-87: Current Triplen Harmonics (Amps) for ECM_S8C-M2 
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Figure A-88: Current Triplen Harmonics (Amps) for ECM_S12A 

 

 

Figure A-89: Current Triplen Harmonics (Amps) for ECM_S12B 
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Figure A-90: Current Triplen Harmonics (Amps) for ECM_S12C-M1 

 

 

Figure A-91: Current Triplen Harmonics (Amps) for ECM_S12C-M2 
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Figure A-92: Voltage Harmonics (%) for ECM_S8A 

 

 

Figure A-93: Voltage Harmonics (%) for ECM_S8B 
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Figure A-94: Voltage Harmonics (%) for ECM_S8C-M2 

 

 

Figure A-95: Voltage Harmonics (%) for ECM_S12A 
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Figure A-96: Voltage Harmonics (%) for ECM_S12B 

 

 

Figure A-97: Voltage Harmonics (%) for ECM_S12C-M1 
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Figure A-98: Voltage Harmonics (%) for ECM_S12C-M2 

 

 

Figure A-99: Voltage Harmonics (Volts) for ECM_S8A 
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Figure A-100: Voltage Harmonics (Volts) for ECM_S8B 

 

 

Figure A-101: Voltage Harmonics (Volts) for ECM_S8C-M2 
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Figure A-102: Voltage Harmonics (Volts) for ECM_S12A 

 

 

Figure A-103: Voltage Harmonics (Volts) for ECM_S12B 
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Figure A-104: Voltage Harmonics (Volts) for ECM_S12C-M1 

 

 

Figure A-105: Voltage Harmonics (Volts) for ECM_S12C-M2 
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APPENDIX B 

PARALLEL TERMINAL UNITS RESULTS 

 

 

Figure B-1: Qprimary vs. DP for ECM_P8A 
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Figure B-2: Qprimary vs. DP for ECM_P8B 

 

 

Figure B-3: Qprimary vs. DP for ECM_P8C-M2 
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Figure B-4: Qprimary vs. DP for ECM_P12A 

 

 

Figure B-5: Qprimary vs. DP for ECM_P12B 
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Figure B-6: Qprimary vs. DP for ECM_P12C-M1 

 

 

Figure B-7: Qprimary vs. DP for ECM_P12C-M2 
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Figure B-8: Qfan vs. Pdown for ECM_P8A 

 

 

Figure B-9: Qfan vs. Pdown for ECM_P8B 
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Figure B-10: Qfan vs. Pdown for ECM_P8C-M2 

 

 

Figure B-11: Qfan vs. Pdown for ECM_P12A 
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Figure B-12: Qfan vs. Pdown for ECM_P12B 

 

 

Figure B-13: Qfan vs. Pdown for ECM_P12C-M1 
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Figure B-14: Qfan vs. Pdown for ECM_P12C-M2 

 

 

Figure B-15: Leakage vs. Piav for ECM_P8A 
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Figure B-16: Leakage vs. Piav for ECM_P8B 

 

 

Figure B-17: Leakage vs. Piav for ECM_P8C-M2 
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Figure B-18: Leakage vs. Piav for ECM_P12A 

 

 

Figure B-19: Leakage vs. Piav for ECM_P12B 
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Figure B-20: Leakage vs. Piav for ECM_P12C-M1 

 

 

Figure B-21: Leakage vs. Piav for ECM_P12C-M2 
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Figure B-22: Leakage vs. Pdown for ECM_P8A 

 

 

Figure B-23: Leakage vs. Pdown for ECM_P8B 



 195

 

Figure B-24: Leakage vs. Pdown for ECM_P8C-M2 

 

 

Figure B-25: Leakage vs. Pdown for ECM_P12A 
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Figure B-26: Leakage vs. Pdown for ECM_P12B 

 

 

Figure B-27: Leakage vs. Pdown for ECM_P12C-M1 
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Figure B-28: Leakage vs. Pdown for ECM_P12C-M2 

 

 

Figure B-29: Power vs. Qfan for ECM_P8A 
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Figure B-30: Power vs. Qfan for ECM_P8B 

 

 

Figure B-31: Power vs. Qfan for ECM_P8C-M2 
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Figure B-32: Power vs. Qfan for ECM_P12A 

 

 

Figure B-33: Power vs. Qfan for ECM_P12B 
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Figure B-34: Power vs. Qfan for ECM_P12C-M1 

 

 

Figure B-35: Power vs. Qfan for ECM_P12C-M2 
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Figure B-36: Watt/CFM vs. Qfan for ECM_P8A 

 

 

Figure B-37: Watt/CFM vs. Qfan for ECM_P8B 
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Figure B-38: Watt/CFM vs. Qfan for ECM_P8C-M2 

 

 

Figure B-39: Watt/CFM vs. Qfan for ECM_P12A 
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Figure B-40: Watt/CFM vs. Qfan for ECM_P12B 

 

 

Figure B-41: Watt/CFM vs. Qfan for ECM_P12C-M1 
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Figure B-42: Watt/CFM vs. Qfan for ECM_P12C-M2 

 

 

Figure B-43: Apparent Power vs. Qfan for ECM_P8A 
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Figure B-44: Apparent Power vs. Qfan for ECM_P8B 

 

 

Figure B-45: Apparent Power vs. Qfan for ECM_P8C-M2 
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Figure B-46: Apparent Power vs. Qfan for ECM_P12A 

 

 

Figure B-47: Apparent Power vs. Qfan for ECM_P12B 
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Figure B-48: Apparent Power vs. Qfan for ECM_P12C-M1 

 

 

Figure B-49: Apparent Power vs. Qfan for ECM_P12C-M2 
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Figure B-50: Power Factor vs. ECM Input Setting for ECM_P8A 

 

 

Figure B-51: Power Factor vs. ECM Input Setting for ECM_P8B 
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Figure B-52: Power Factor vs. ECM Input Setting for ECM_P8C-M2 

 

 

Figure B-53: Power Factor vs. ECM Input Setting for ECM_P12A 
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Figure B-54: Power Factor vs. ECM Input Setting for ECM_P12B 

 

 

Figure B-55: Power Factor vs. ECM Input Setting for ECM_P12C-M1 
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Figure B-56: Power Factor vs. ECM Input Setting for ECM_P12C-M2 

 

 

Figure B-57: Real Power THD (%) vs. ECM Input Setting for ECM_P8A 
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Figure B-58: Real Power THD (%) vs. ECM Input Setting for ECM_P8B 

 

 

Figure B-59: Real Power THD (%) vs. ECM Input Setting for ECM_P8C-M2 
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Figure B-60: Real Power THD (%) vs. ECM Input Setting for ECM_P12A 

 

 

Figure B-61: Real Power THD (%) vs. ECM Input Setting for ECM_P12B 
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Figure B-62: Real Power THD (%) vs. ECM Input Setting for ECM_P12C-M1 

 

 

Figure B-63: Real Power THD (%) vs. ECM Input Setting for ECM_P12C-M2 



 215

 

Figure B-64: Real Power Harmonics (%) for ECM_P8A 

 

 

Figure B-65: Real Power Harmonics (%) for ECM_P8B 
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Figure B-66: Real Power Harmonics (%) for ECM_P8C-M2 

 

 

Figure B-67: Real Power Harmonics (%) for ECM_P12A 
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Figure B-68: Real Power Harmonics (%) for ECM_P12B 

 

 

Figure B-69: Real Power Harmonics (%) for ECM_P12C-M1 
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Figure B-70: Real Power Harmonics (%) for ECM_P12C-M2 

 

 

Figure B-71: Real Power Harmonics (Watts) for ECM_P8A 
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Figure B-72: Real Power Harmonics (Watts) for ECM_P8B 

 

 

Figure B-73: Real Power Harmonics (Watts) for ECM_P8C-M2 
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Figure B-74: Real Power Harmonics (Watts) for ECM_P12A 

 

 

Figure B-75: Real Power Harmonics (Watts) for ECM_P12B 
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Figure B-76: Real Power Harmonics (Watts) for ECM_P12C-M1 

 

 

Figure B-77: Real Power Harmonics (Watts) for ECM_P12C-M2 
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Figure B-78: Current Harmonics (%) for ECM_P8A 

 

 

Figure B-79: Current Harmonics (%) for ECM_P8B 
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Figure B-80: Current Harmonics (%) for ECM_P8C-M2 

 

 

Figure B-81: Current Harmonics (%) for ECM_P12A 
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Figure B-82: Current Harmonics (%) for ECM_P12B 

 

 

Figure B-83: Current Harmonics (%) for ECM_P12C-M1 
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Figure B-84: Current Harmonics (%) for ECM_P12C-M2 

 

 

Figure B-85: Current Harmonics (Amps) for ECM_P8A 
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Figure B-86: Current Harmonics (Amps) for ECM_P8B 

 

 

Figure B-87: Current Harmonics (Amps) for ECM_P8C-M2 
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Figure B-88: Current Harmonics (Amps) for ECM_P12A 

 

 

Figure B-89: Current Harmonics (Amps) for ECM_P12B 
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Figure B-90: Current Harmonics (Amps) for ECM_P12C-M1 

 

 

Figure B-91: Current Harmonics (Amps) for ECM_P12C-M2 
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Figure B-92: Current Triplen Harmonics (%) for ECM_P8A 

 

 

Figure B-93: Current Triplen Harmonics (%) for ECM_P8B 
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Figure B-94: Current Triplen Harmonics (%) for ECM_P8C-M2 

 

 

Figure B-95: Current Triplen Harmonics (%) for ECM_P12A 
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Figure B-96: Current Triplen Harmonics (%) for ECM_P12B 

 

 

Figure B-97: Current Triplen Harmonics (%) for ECM_P12C-M1 
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Figure B-98: Current Triplen Harmonics (%) for ECM_P12C-M2 

 

 

Figure B-99: Current Triplen Harmonics (Amps) for ECM_P8A 
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Figure B-100: Current Triplen Harmonics (Amps) for ECM_P8B 

 

 

Figure B-101: Current Triplen Harmonics (Amps) for ECM_P8C-M2 
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Figure B-102: Current Triplen Harmonics (Amps) for ECM_P12A 

 

 

Figure B-103: Current Triplen Harmonics (Amps) for ECM_P12B 
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Figure B-104: Current Triplen Harmonics (Amps) for ECM_P12C-M1 

 

 

Figure B-105: Current Triplen Harmonics (Amps) for ECM_P12C-M2 
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Figure B-106: Voltage Harmonics (%) for ECM_P8A 

 

 

Figure B-107: Voltage Harmonics (%) for ECM_P8B 
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Figure B-108: Voltage Harmonics (%) for ECM_P8C-M2 

 

 

Figure B-109: Voltage Harmonics (%) for ECM_P12A 
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Figure B-110: Voltage Harmonics (%) for ECM_P12B 

 

 

Figure B-111: Voltage Harmonics (%) for ECM_P12C-M1 
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Figure B-112: Voltage Harmonics (%) for ECM_P12C-M2 

 

 

Figure B-113: Voltage Harmonics (Volts) for ECM_P8A 
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Figure B-114: Voltage Harmonics (Volts) for ECM_P8B 

 

 

Figure B-115: Voltage Harmonics (Volts) for ECM_P8C-M2 
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Figure B-116: Voltage Harmonics (Volts) for ECM_P12A 

 

 

Figurea B-117: Voltage Harmonics (Volts) for ECM_P12B 
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Figurea B-118: Voltage Harmonics (Volts) for ECM_P12C-M1 

 

 

Figure B-119: Voltage Harmonics (Volts) for ECM_P12C-M2 
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APPENDIX C 

AIRFLOW CHAMBER CHARACTERISTICS 

 

To verify the accuracy of the upstream and downstream air flow rates against 

each other, the “AMCA Figure 15” and “AMCA Figure 12” airflow chambers were 

connected directly together without the terminal unit.  The airflow rates through both 

chambers were then measured over the range of expected flow rates.  The results are 

presented in Table C-1.  The chamber airflow and power characteristics are presented in 

Tables C-2 and C-3 respectively. 

 

Table C-1: Chamber Calibration Results 

Test 
Point 

AMCA Figure 15 
CFM (m

3
/s) 

AMCA Figure 12 
CFM (m

3
/s) 

Difference 
CFM (m

3
s) 

Percent Difference 
(%) 

1 214.3 (0.101) 211.8 (0.100) -2.5 (0.001) -1.18036 

2 520.5 (0.246) 511.8 (0.242) -8.7 (0.004) -1.69988 

3 852.5 (0.402) 841.5 (0.397) -11 (0.005) -1.30719 

4 1193 (0.563) 1178.2 (0.556) -14.8 (0.007) -1.25615 

5 1532.9 (0.723) 1516.9 (0.716) -16 (0.008) -1.05478 

6 1875.8 (0.885) 1858.4 (0.877) -17.4 (0.008) -0.93629 

7 2217.5 (1.047) 2200 (1.038) -17.5 (0.008) -0.79545 

8 2554.9 (1.206) 2538.3 (1.198) -16.6 (0.008) -0.65398 

9 2892.8 (1.365) 2879.9 (1.359) -12.9 (0.006) -0.44793 

10 3000.4 (1.416) 2983.3 (1.408) -17.1(0.008) -0.57319 
 

 
Table C-1: Chamber Airflow Characteristics 

AMCA 

Chamber 

Maximum Flow 

CFM (m
3
/s) 

Available Nozzles’ Diameters 

Inches (cm) 

Figure 15 4000 (1.89) 1.5 (3.8) 3 (7.6) 5 (12.7) 5 (12.7) 5 (12.7) 5 (12.7) 

Figure 12 5000 (2.36 1.5 (3.8) 5 (12.7) 5 (12.7) 8 (20.3)   
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Table C-2: Chamber Power Characteristics 

AMCA 

Chamber 

Fan Power 
Hp (kW) 

Controller Motor 

Figure 15 10 (7.5) VSD AC Induction 

Figure 12 7.5 (5.8) VSD AC Induction 
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