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ABSTRACT 

 

 Ultrashort Pulse Propagation in the Linear Regime. (December 2009) 

Jieyu Wang, B.S., University of Science and Technology of China 

Chair of Advisory Committee: Dr. George W. Kattawar 

 

 First, we investigate the Bouguer-Lambert-Beer (BLB) law as applied to the 

transmission of ultrashort pulses through water in the linear absorption regime.  We 

present a linear theory for propagation of ultrashort laser pulses, and related 

experimental results are in excellent agreement with this theory. Thus we conclude that 

recent claims of the BLB law violations are inconsistent with the experimental data 

obtained by our group. 

Second, we study the dynamics of ultrashort pulses in a Lorentz medium and in 

water via the saddle point method.  It shows that the saddle point method is a more 

efficient and faster method than the direct integration method to study one-dimensional 

pulse propagation over macroscopic distances (that is, distance comparable to the 

wavelength) in a general dielectric medium. Comments are also made about the 

exponential attenuation of the generalized Sommerfeld and Brillouin precursors. By 

applying the saddle point method, we also determined that the pulse duration estimated 

by the group velocity dispersion (GVD) approximation is within 2% of the value 

computed with the actual refractive index for a propagation distance of 6 m in water. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

 

A. Pioneering study of precursors 

In Brillouin’s book [1], Wave Propagation and Group Velocity, he used the word 

“forerunner” instead of the current widely accepted word “precursor” to describe the 

wave front of the electric fields which comes earlier than the main signal. In fact, the 

study of the details of pulse propagation in a linear dispersive medium was somewhat 

motivated by the debate of whether the speed of energy can be greater than the speed of 

light ! . 

Before the wide application of the ultrashort pulses and before the study on strong 

absorptive media, it was reasonable to define the signal velocity as the propagation 

velocity of the peak of the pulse, which coincides with the group velocity. Group velocity 

describes the velocity for the multi-chromatic light propagation in a linear dispersive and 

non-strong absorptive medium. For simplicity, one dimensional group velocity is defined 

as the following: 

!" !
#!

#$!! "
!

c

&!! " "!
#&!! "

#!

!
c

&!"" #
#&!""

#"
"

,                               (1.1) 

where !  is the speed of light, !  is the angular frequency (hereafter referred to simply as 

frequency), ! !
!"!

#
 is the wavelength in vacuum, !  is the wave vector and  

!!! " =
k!! "#

!
 is the refractive index of the medium. If we define the wave vector in 
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vacuum as !
!
"! # !

!

"
!
$"

#
, then !!! " !

"!! "

"
#
!! "

. The refractive index !!! "  is a function 

of frequency in a dispersive medium. In the strong anomalous dispersion regime, 

where dn
d!

! ! , the predicted group velocity can be negative or greater than the speed of 

light for some frequencies. Chu and Wong’s group [2] even measured a negative signal 

velocity and velocity greater than the light speed. C. G. B. Garrett and D. E. McCumber 

[3] and Crisp [4,5] showed that even when the group velocity is negative or greater than 

! , it is still capable of describing the signal velocity. They claimed that this seeming 

violation of causality is due to the pulse shape distortion. Also, they claimed the results 

don’t violate special relativity because the signal peak propagation is different from the 

energy or the information propagation. Energy velocity !
"

 is a better quantity to describe 

information propagation, and it is defined as the rate of energy flow divided by the stored 

energy density [3]. London showed that the energy velocity is always less than !  [6]. In a 

later paper, Xiao and Oughtsun [7] pointed out that, as the propagation distance increases, 

the accuracy of the asymptotic description of energy velocity increases while that of the 

group velocity description decreases. In many situations, a single concept of velocity is 

not enough to the describe pulse propagation due to pulse shape distortion. It is therefore 

necessary to obtain the details of the electric field information. 

Brillouin studied the detailed dynamics of a step-modulated signal, which is 

generally composed of the forerunners and the main signal, in a Lorentz medium. 

Oughstun [8] made his own contribution to this field by using a modern asymptotic 

method, improving and correcting some comments in Brillouin’s book. 



 3

It is stated that the medium needs time to be set into motion before it responds to 

the wave front, and thus the wave front propagates as it would in a vacuum. There are 

two types of precursors in [1]; the first is the Sommerfeld precursor of high frequency 

and the second is the Brillouin precursor of low frequency. 

Precursors are again brought to attention because Choi and Österberg [9] claimed 

that they observed optical precursors in deionized water.  Their measurements showed 

that the precursors are attenuated less than exponential with distance and therefore 

significantly more energy remains in the pulse after propagating through 5 m of water 

when compared with the predictions of the Bouguer-Lambert-Beer (BLB) law. If this 

claim were true, precursors make it possible to transmit light over much greater distances, 

which could be applied to underwater communication and remote sensing. In the later 

papers, Österberg’ s group [10, 11] again stated that their data disagreed with the BLB 

law, while the experimental results of several other groups [12, 13] are consistent with 

the BLB law. To reconcile the two conflicting claims regarding pulse propagation in a 

linear medium and obtain an overall understanding of precursors, our group conducted 

well-designed experiments and performed detailed study of ultrashort pulse propagation. 
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B. Introduction to the methods of solving pulse propagation in the linear regime 

The general Maxwell equations frequently used in a bulk medium are the macroscopic 

Maxwell equations [14]. They can be derived from the microscopic ones (the Maxwell 

equations in vacuum). The microscopic Maxwell equations in CGS unit are  

                          
!

! "
"
b ! !"! #

"
e "

$
"
b

$t
! !                                                         

                       
!

! "
"
e ! #

v
! $

"
#! %

"
b &

$

c
%

'
#
e

't
! !

"

"
J
v
 ,                                      (1.2) 

where  
v
!  and !

"
!  are the microscopic electric and magnetic fields and !

v
 and 

!

v
!
v
 are the 

microscopic charges and current densities. The medium is considered to be a collection of 

moving point charges in vacuum, that is, a source of charges !
v
 and currents 

!

v
!
v
. A 

spatial average of the isolated atoms and the linear polarization approximation lead to the 

macroscopic Maxwell equations in a homogeneous and isotropic medium, where the 

whole medium is treated approximately as a continuous medium.  The macroscopic 

Maxwell equations follow: 

!

! "
"
! ! !"! #

"
" "

$
"
!

$#
! !

! "
"
D ! %"! #

"
% &

$
"
D

$#
!
v
& "

                                                (1.3) 

where !
"
! and !

"
! are the macroscopic electric and magnetic fields, !

"
!  and !

"
!  are the 

derived fields, which are related to!
"
!  and !

"
!  through the linear polarization !

"
! and 

magnetization !
"
! for mono-chromatic light:  

!

"
! ! !

!

"
" "

"
#"

"
$ !

#

!
!

"
% "

"
& .                                                (1.4) 
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In the dielectric media we consider, the magnetization is neglected.  
r
!  is proportional to 

!

"
! , and we have 

                         !
"
! ! !

"
"  and 

!

"
! !

!

!
"

"
" .                                                      (1.5)  

The relationship between  

r
!  and !

"
!  depends on the frequency. For a certain 

frequency ! , 

    
!

"
!!! " ! "!! "

"
"!! " .                                                       (1.6) 

Eq. (1.5) is valid only for monochromatic radiation. A pulse with a broad spectrum can 

be seen as a superposition of many harmonic waves. First, we can solve the electric 

propagation for a single frequency combining Eqs. (1.3) and (1.6) (i.e. solve the field in 

spectral space), and then apply the superposition method to obtain the total electric field.  

This is also a popular application of the Fourier transformation.  

For a polarized plane wave propagating in the ! direction, the Fourier component 

of the electric field 
!

"
!!""! #  satisfies the following equation:  

 
!
2
v
!("," ) ! !

0
#(" )"

2
r
!("," ) " 0 ,                                             (1.7) 

where k!! " =! "!! "!
#

. This equation is obtained through the Fourier transformation 

of Eq. (1.3) combined with the dispersion relationship (1.5) and (1.6).  The solution of the 

polarized harmonic wave in the ! ! !  half space is: 

          !!""! # = !!$"! #%&'!#!$!! #"# .                                           (1.8) 

Here !!"#! $  is determined by the boundary condition. The intensity in spectral space, 

which is the square modulus of the above Fourier component, follows the BLB law 

directly: 
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        I!! " = I# !! "$%&!"#!! """ ,                                                 (1.9) 

where !(" ) ! # $%(!(" ))  is the absorption coefficient and !
!
"! # ! ""!$! #""!$! #

% . 

Applying the inverse Fourier transformation or the superposition rule, the electric field in 

the time domain is: 

        !!""## ! !!$"! #%&'!" $%!! #" # $!##&! .                                   (1.10) 

Here E!"#! $  is the spectral amplitude or the Fourier component of the electric field at 

! ! ! : 

!!"#! $ = !!"# "$%&'!#!"$$"" .                                                 (1.11) 

Formula (1.10) is the basic formula we use to solve the one dimensional electric 

field propagation problem. Direct integration is sometimes difficult for a pulse with a 

broad spectrum traveling a long distance ! , because the phase oscillates very fast. 

Therefore, asymptotic methods such as the saddle point method are used to solve Eq. 

(1.10) and to obtain analytic solutions. The saddle point method has been only applied to 

media with sharp peak absorptive lines [1, 8], and it turns out to be a very good method to 

solve pulse propagation problems in water, the refractive index of which is relatively flat. 

An alternative way to solve the electric field is to deal with the equations in the 

time domain directly: 
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!

! "
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! !
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"
"
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" !  

!

! "
"
! #

$
"
"

$#
! !                                                                (1.12 (a))             
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"
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"
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"
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"
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"
r "# # " #&" &

$

#

$
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#'&'# (&"&&

#'

'
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                            (1.12 (b)) 

Eq. (1.12 (a)) is derived from 
!

"
!!! " ! "!! "

"
"!! "  via the Fourier transformation. The 

value of the !
"
!  field at time t depends on the !

"
!  field at all previous times.  Eq. (1.12) is 

difficult to calculate numerically because the integration needs to be recalculated for each 

time step, and storage is required for !
"
! at all previous times. Auxiliary differential 

equation (ADE) method [15] is developed for the Debye and the Lorentz medium, when 

the convolution integration (Eq. (12)) is replaced by P linear first order equations for the 

P-pole Debye model (see Debye model below) and P second order equations for the P-

pole Lorentz medium. For the one-pole Debye model, 

!(" ) ! !
#
"
!
!
$ !

#

1$ ""%
,                                                       (1.13) 

where !
"

is the permittivity in the high frequency limit, !
s
is the static permittivity in the 

low frequency limit, and ! is the characteristic relaxation time of the medium. For a 

medium which has one or more real poles of separate frequencies, we have, for example, 

the P-pole Debye model,  

!(" ) ! !
#
"

!
!"
$ !

#

1$ #"%
""!1

$

& .                                                  (1.14) 
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Here ! !" is the static permittivity in the low frequency limit and ! !  is the relaxation time 

for the p"#  pole.  

For simplicity, we describe how to obtain the ancillary differential equations for 

the 2-pole Debye model [15-17]. The permittivity of the 2-pole Debye model is shown in 

Eq. (1.15). 

!!" " ! !
#
"
!
!#
$ !

#

#$ ""%
#

"
!
!$
$ !

#

#$ ""%
$

.                                      (1.15) 

By replacing the permittivity expression in Eq. (1.13), we obtain: 

!

!!
"
r "## ! !"$!

"
r "## "

$

%#
!!!$ # % !" #$!

"
r "$ #%% &$ #'

%"

"

& $

! !"$!
"
r "## "

$

%#

!
($
% !"

$% &$'
$

$!
"
r "$ #%% &$ #'

%"

"

& $ "
$

%#

!
(%
% !"

$% &$'
%

$!
"
r "$ #%% &$ #'

%"

"

& $ &

 (1.16) 

We then define  

!

!
!
"
"
r #! $ ! "#!#

!

$
$!
" $

%

!" #!#
!

%"
"
r #! $#

!
%
"
"
r #! $ ! "#!#

%

$
$%
" $

%

!" #!#
%

%"
"
r #! $&

                                         (1.17) 

In the time domain, we obtain the ancillary current via the Fourier transformation: 

                           
!

!" !
"
r "$# !

$

%!
!" !

"
r "" #%&" $'

#$

$

% "  

 

!J
"
!
r
r "t#

!t
!
"
%"
# "

$

%
"

!E!
r
r "t#

!t
#
$

%
"

J
"
!
r
r "t# ,  with ! ! !"#  .                   (1.18) 

Differentiating Eq. (1.16) with respect to time, we get 

!

!!!
"
" "##

!#
! "

#

!$!
"
" "##

!#
" %

$
!
"
" "## " %

%
!
"
" "## .                              (1.19) 



 9

Finally, replacing 
!!

!"
 in Eq. (1.12(a)) by Eq. (1.19) and replacing !

"
r  by ! , we obtain the 

equations for one dimensional electric field propagation in the z  direction through a 2-

pole Debye model, and we can then apply the FDTD method [15] and Discontinuous 

Galerkin (DG) method [18] to solve the equations. 

!!

!"
! "

!

!
"

!#

!$
#

!#

!"
!
!

#
$

%
&

&!!

'

% "
!

#
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!$
#

!%
&

!"
!
#
(&
" #

$

&
&

!#

!"
"
!

&
&

%
&
$

                                        (1.20) 

! ! !"# for the two-pole and ! ! !"#"$$$"" for the P-pole Debye model. Similar results can 

be deduced for the Lorentz medium.  

The advantage of the ADE method over the convolution integration (1.12 (b)) is 

significant when the dielectric properties of the medium we study can be expressed as a 

sum of the Debye or Lorentz models. For example, the permittivity of water [19] can be 

fit as Eq. (1.21) in a broad spectral regime: 

!!" " !

!" # !
"
"

"!#

#

$

!" # $
"
"

"!#

#

$
 ,                                                        (1.21) 

where !!" " is the permittivity of water, !
"

is the m
"#

 zero and !
m

 is the m
"#

 pole of 

!!" " . In total, there are! zeros and M poles in this example. In a practical calculation, 

the required spectral regime is relatively narrow, and we can get a more accurate fitting 

of the permittivity. The coefficients of the ancillary equations for the Debye medium are 

all real. A general complex permittivity can be written in the form of a summation: 
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!(" ) ! !
#
"

!"

1$ #"$""!1

%

% ,                                                      (1.22) 

with the complex coefficients ap and !p . The ADE method can be generalized to a larger 

group of dielectric media with permittivity in the form (1.22). Similar to the Debye 

medium (Eq. (1.17)), we have: 

!

!" !
"
r "! # = "$!%"

&"

$" $!%"
'!

"
r "! # .                                        (1.23) 

The only difference is that the coefficients in the equations for 
!
!
"
!
"
r "$#  are complex: 

!

!!" !
"
# "$#

!$
!
%"

&"

!'!
"
# "$#

!$
"
$

&"
! " !

"
# "$# .                                          (1.24) 

We should separate the variable 
!
!
"
!
"
r "$#  into a real part 

!
!
"
!
"
r "$# and an imaginary part 

!
!
"
!
"
r "$#

$$ , which results in 2P ancillary equations instead of P equations for the P-pole 

Deybe model. 

 

C. Introduction to the saddle point method 

When calculating the extreme values (maximum or minimum) of a one-dimensional 

function or a real variable function, we calculate the first derivative of the function. For 

example, in the two functions !
!
""# ! "

$ and !
!
""# ! "

$ , ! ! !  is the stationary point for 

the two equations satisfying the relation: 

                            
!"
!
"##

!#
! $# ! % , 

!"
!
"##

!#
! $#

!
! % . 

!
!
""#  reaches its minimum value at ! ! !  while !

!
""#  does not, even though 

!"
!
"##

!#
! $ at 

! ! ! , as shown in Fig. (1.1(a)) . Thus ! ! !  is the saddle point for !
!
""# . 
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For a complex function! = !!" " , where ! ! ! " "# , x  and !  are the real part 

and imaginary part of ! , and !(" ) ! !(" ) " "#(" )where u!! "  and !!! "  are the real part 

and imaginary part of !!" " , respectively. When we differentiate a complex function, the 

difference from a real function is that for a complex function there are infinite paths in 

the complex plane to calculate the derivative (see Fig. 1(b)), while for the real variable 

function there is only one path which is along the real axis. The Cauchy-Riemann 

conditions guarantee the existence of the derivative of a complex function by requiring 

all the derivatives along any direction are the same: 

!!

!"
!
!#

!$

!!

!$
! "

!#

!"
!

                                                           (1.25) 

The Cauchy-Riemann conditions also limit the stationary points to be the saddle 

points but not the points at which the function reaches its extreme value. From the 

Cauchy-Riemann equations, we get 

             
!
!
!

!"
!
!
!
!
!

!#
!
" " .                                                     (1.26) 
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(a) 

 

 (b) 

Fig. 1.1 (color online) Examples of saddle points. 
(a) Example of the saddle point at ! ! !  for !

!
""# ! "

$ .  
(b) Example of the saddle point for ! ! "! ! #! . 
 
 
  

The points satisfying the above condition are not extreme value points, because 

the equation indicates the curvatures (the second derivative at ) at the stationary points 
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along the x direction and ! direction are of different signs. For example, 

!
!
!

!"
!
! "#

!
!
!

!#
!
" " , indicates that at the saddle point, the value of the function reaches a 

maximum along the !  direction and a minimum along the !  direction. Therefore, in the 

complex plane, a function doesn’t obtain the extreme value over the complex plane, 

although for a special path (equivalent to a single variable function), it is possible to 

obtain the maximum or the minimum value. 

For a integration below, 

! ! !(" )"(" )
#$

$

% #" ! !(" )$x&(" )

#$

$

% #" ,                                      (1.27)    

where !(" ) is a slowly changing function, and!!! " is a fast changing function because it 

has a generalized phase !!(" ) . ! is a large real positive number and !(" ) is a complex 

function of ! . When dealing with integration of a function !!! " , it is straightforward to 

emphasize the regime where the real part of !(" ) (or !!! " ) is large, because the 

exponential function and the large value of !make the outside regime significantly small 

compared with the function values within this regime. The natural way is to find the 

maximum value of !!" "  along the real axis (the original integration path). In the 

situation when there is no stationary point for !(" )  on the real axis but only in the 

complex plane, which is equivalent to 
!!(" )

!"
! 0  having only complex solutions of ! , 

we try to deform the integration path to the complex plane.  In the theory of contour 

integration, if there is no pole for the integration function !!! " : 

             !" ! #!! "
$

" %! ! #   or ! ! "!! "
#! $#"

%! $#"

" &! ! "!! "
#! $$"

%! $$"

" &! .                  (1.28) 
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As indicated in Fig. 1.2, C is the contour, A, B are any two different points in the contour. 

P1 indicates one path, and P2 indicates the other path. P1 and –P2 together form the 

contour. 

 

 

 

 

 
 
 

 
 
Fig. 1.2 (color online) Illustration of the contour path for complex integration. A, B are 
two points on the contour. P1 represents the path from A to B indicated by the yellow 
arrow and P2 represents the path from A to B indicated by the green arrow. C represents 
the contour indicated by the black arrow. 
 
 

We have enough clues to deform the original integration on the real axis to a path 

in the complex plane which passes the saddle points. Next, we want to determine which 

path is the one we want. Since the function value changes quickly, it is reasonable to 

think that the integration should be along the path where the function value has the 

steepest descent near the saddle point. Along this path, the smallest range of integration is 

needed to achieve the same accuracy. 

Also from the Cauchy-Riemann conditions, the level curves on u  (where u is 

constant) and the level curves of !  (wherev  is constant) are perpendicular.  Therefore the 

steepest descent direction is along the path with constant v  or with constant imaginary 

!!" " . That is to say, the phase is stationary along the steepest descent path near saddle 

points. Usually, the expression of path in the complex plane is an intricate function of ! , 

B 
 

A
 

C 
 

P2 
 

P1 
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which requires more work to calculate the integral. It is found that in many cases, it is an 

easier and just as accurate way to deform the path a little bit from the steepest descent 

direction [20], which is called the critical path, and then apply Taylor expansion to the 

generalized phase.  The important advantage is that we obtain an analytic result with this 

method. The critical path can replace the steepest descent path only if the angle between 

the two paths is smaller than 90 degrees. 

It is assumed here !!" "  can be expanded as a convergent power series and the 

series converge in the regime !! "!
"
!! ! . !" , j ! !"#"$$$"!  are the coefficients of the 

Taylor expansion (1.29).  

!(" ) ! !("
0
) " !

2
(" #"

0
)
2
" !

3
(" #"

0
)
3
" ....  .                           (1.29) 

 Keeping terms of up to second order, the integration is approximated by: 

!!" "!"#!" "$ #" # !!"
$
"!

"#!"$ "$2 !
"$2 !" %"$ "

2

$ #" .                         (1.30) 

The values of a
!
"! "!

#
$
! are real and negative along the critical direction in the path 

near the saddle point !
0
.  In the case !

!
!" !

!
" "

! # , the path for !  near !
!
 satisfies: 

!! "!
0
# !$ !! "!

0
# $ !

"!# "$ #" %& .                                               (1.31) 

In this path, after a variable change !!
"
"!

"#
$
%
! !

%
!! "!

#
$
% , the integration path is 

changed back to the real axis.  

!!"
"
#!

"#!"" ##$

$"#
$

$!#%
!
$!"% $"%" #

$

% &"
%
.                                           (1.32) 

The subscript real  indicates the real axis here. After extending the integration to infinity, 

the final analytic solution is: 

!(" )!"#(" )$ #" % !("
0
)!

"#("0 ) (
&2'

"# '' ("
0
)
)
1/2 , with ! !! ""

#
$ ! %!

%
.      (1.33) 
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Although the derivation is slightly complicated, the resulting formula is simple. 

We don’t even have to explicitly express the path in the complex plane. What we need to 

do is check the validity of the Taylor expansion and whether the direction of the critical 

path is close to the steepest descent direction near the saddle points. 
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                                               CHAPTER II 

THE BLB LAW AND THE TRANSMISSION OF ULTRASHORT PULSES IN 

WATER 

 

 A. The Bouguer-Lambert-Beer (BLB) law 

The BLB law was first discovered by Pierre Bouguer, when he studied light attenuation 

through transparent media.  It was thought that light attenuation was merely caused by 

absorption, while it was later found to be caused by both absorption and scattering.  In 

general, the BLB law describes an exponential dependence of the transmission with 

respect to the path length.  The BLB law can be expressed in a differential equation as 

below: 

!"

!#
! !$" .                                                         (2.1) 

In this differential equation, the loss rate of the physical quantity !  is proportional to its 

own intensity. ! is usually a positive constant. For a general pulse propagation problem, 

C ! ! " " , where !  is the absorption coefficient, !  is the scattering coefficient, and ! is 

usually called the extinction coefficient.  Because our discussion focuses on the spectral 

regime where the scattering effect is much weaker than the absorption effect, in the 

following we assume C  equals!! . 

Later studies of light propagation based on electromagnetism showed that the 

exponential extinction of light as a function of propagation distance is only an 

approximation for the multi-chromatic light source used in earlier experiments. The 

propagation of the polarized chromatic field !!""! #  through an isotropic homogeneous 

medium in the ! ! !  half space according to the introduction in Chapter I follows: 
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!
!!""! # = "# !! #$%&'!$!! #" "!%#&( .                                                     (2.2) 

Recalling that !!! " !
"!! "!

#
, the field in the spectral space can also be written as: 

!
!!""! # = "# !! #$%&'"! ()!$!! ##" * % " &! !+$!$!! #" * % " '#, !""""""""""""""""""(2.3) 

 
"! !! " is the Fourier component of the launched pulse. The intensity follows:  

!!""! # = #!""! ##
$
!""! # = $!! #%&'!"(! I*!%!! ##" + &# ,                        (2.4) 

where
!
!!! " ! "" !! " ""

#
!! " and the corresponding absorption coefficient is 

!!" " ! #" $%!!!" "" & " . 

The traditional BLB law for the exponential attenuation is only true for 

monochromatic light. The absorption coefficient !!! "  is a function of frequency, and 

therefore the BLB law for each frequency !  is: 

d"

dz
! !"(# )" .                                                               (2.5) 

Thus the solution for the transmission of each frequency component is: 

!!""! # ! #!! #$%&!"#!! #"# .                                                    (2.6) 

Our laser source works in a linear regime and the superposition method is applied to 

obtain the total transmission: 

! !"" ! ! #!" "#$%!#$!" """$" .                                                 (2.7) 
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Therefore, for non-monochromatic light, especially a pulse with a broad spectrum 

and steep absorption coefficient distribution, the transmission doesn’t attenuate simply 

exponentially. Here we use a broad conception of BLB law, which includes exponential 

attenuation for monochromatic light and sub-exponential attenuation for the broad-

spectrum light propagation. 

 

B. Simulation of the propagation of ultrashort pulses  

One main goal of our experiments is to test the validity of the BLB law.  Based on Eq. 

(2.6) and Eq. (2.7), several inferences can be made: 

(1) The transmission at a certain propagation distance only depends on the initial 

spectrum and the absorption coefficient.  Chirps used to modify the phases of pulses only 

change the temporal properties of the pulses and do not change the spectral intensity. 

Therefore, chirps don’t influence the law of transmission.  

(2) The average absorption coefficient !  (defined as Eq. (2.8)) is a monotonically 

decreasing function of z , and is always no less than the minimum absorption coefficient 

!
!"#

 in the efficient spectral regime. 

! ! !!" ""!" "#$%!#"!" "#"$" & !!" "#$%!#"!" "#"$"$$
% !!" ""'() #$%!#"!" "#"$"$ & !!" "#$%!#"!" "#"$"$
! !'() *

            (2.8) 

Greater absorption coefficients correspond to a faster attenuation. Thus the 

spectral components of smaller absorption coefficients become more competitive through 

propagation.  The frequency corresponding to the peak of the spectrum is determined by 

the competition between the initial spectrum and the absorption coefficient distribution at 
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a certain propagation distance. When !  goes to infinity, the remaining frequency 

component corresponds to the smallest absorption coefficient.  

Since the intensity and the power attenuate very quickly, we use a log scale 

coordinate to describe the transmission. Following Eq. (2.7), the transmission of the 

power is not an exponential function and the average coefficient !  describes the average 

attenuation speed of the overall power.  

 Our experimental measurement of radiance is a function relating to wavelength, 

and it is convenient to calculate the transmitted power in wavelength space. For example, 

Eq. (2.8) can be written as: 

! !z" ! ! #!""#$%!#$!""z"%" ,                                                (2.9) 

with !!!" ! #"c#!#"c $ !" $ !# . 

Predictions and analyses are made for a Gaussian profile pulse propagating in 

water with different spectral widths and central wavelengths.  The predicted spectrum 

attenuation for a Gaussian profile pulse centered at 800 nm and with a spectral width of 

90 nm is shown in Fig. 2.1. As the pulse propagates, the peak slowly moves to the 

spectral regime with smaller absorption coefficients. 
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Fig. 2.1 (color online) Spectral attenuation and absorption coefficient. (a) Spectral 
attenuation for different propagation distances in water from 0 to 5m, and data is obtained 
for an increase step of 0.5 m from the top to bottom. The pulse is a Gaussian profile with 
a spectral width 90 nm and is centered at 800 nm. (b) Absorption coefficient of water [21, 
22]. 

 

The propagation of pulses with two different spectral widths of 45 nm and 90 nm 

and with four distinctive central wavelengths from 760 nm to 860 nm are simulated.  A 

combination of Pope and Kou’s data is used in the simulation [21, 22].  The attenuation 

of broader spectrum pulses is generally slower than the narrower ones as shown in Fig 

2.2 (a), while the rate of decrease of the average absorption coefficients are greater than 

the narrower counterpart in Fig 2.2 (b). For pulses with same spectral width but at 

different spectral regime (different central wavelengths), the greater absorption 

coefficients in the longer wavelength regime cause much lower energy at even a small 

propagation distance. 
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(a) Power transmission                            (b) Average absorption coefficient 
 

Fig. 2.2 (color online) Pulse transmission in water. The circles, squares, and triangles 
denote center wavelengths of 760,800 and 840 nm and the solid and dashed lines denote 
bandwidths of 45 and 90 nm. (a) Simulation of power transmission as a function of 
propagation distance.  (b) Simulation of the average absorption coefficient as a function 
of propagation distance. 
 
 
 
C. Experimental results 

In our experiment with setup shown in Fig. 2.3 [23], we employed a Ti: sapphire-based 

laser system, consisting of an oscillator (Mira, Coherent: 800 nm center wavelength, 80 

nm FWHM band-width, 500 mW average power, 76 MHz repetition rate) and an 

amplifier (Legend; Coherent: 35 fs pulse duration, 1kHz repetition rate, 1mJ pulse 

energy). The parameters of the laser were chosen to best match with earlier experiments 

[9-13]. One of the key factors in our experiment was to exclude any nonlinear effect.  The 

pulses are attenuated by the neutral density filters and passed through a telescope to 

reduce the beam size before entering the water sample (see Fig 2.4). The beam size is 

approximately 10 mm for the amplified beam and 2 mm for the oscillator beam. The 

water sample is contained in a cylindrical glass cell whose length can be varied from 150 

to 450 cm. The output signal is measured first by a power meter (1815-C, Newport) and 
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then by a spectrometer (USB2000, Ocean Optics) after reflected off a speaker, which is 

applied to eliminate pulse speckles. 

We take special care to establish that each experiment is completed within the 

linear regime of the response of the medium.  We vary the input power using the neutral 

density filter, and measure the output, and establish a linear regime for input power below 

8.6 mW, where the transmitted power is a linear function of the input power as shown in 

Fig 2.4. The power we used in experiments is within this range. We design the 

experiments with varying parameters of pulse duration, repetition rate and chirps. First, 

we vary the pulse chirp (and therefore its duration) while keeping the spectrum the same. 

Then, we increase the pulse duration by cutting the spectrum.  

The total transmitted power is measured by the power meter and is also calculated 

by integration of the spectrum measured by the spectrometer. Comparison between 

simulation experimental results is made in Fig. 2.5 and Fig. 2.6 to verify that the 

attenuation behavior is consistent with the BLB law. We have to point out as we mention 

above, the transmission is only a sub-exponential and thus not straight line in a semi log 

coordinate.  The seeming linear behavior in our figure is because the relatively narrow 

spectral width of the pulse and the absorption coefficient is a relatively flat and 

symmetric function of frequencies in this regime.  
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Fig. 2.3 (Color online) Experimental setup. The beam path through the amplifier, pulse 
shaper, and telescope is optional, depending on the experiment performed. The upper 
right inset shows the input pulse spectrum, while the lower right inset shows a frequency-
resolved optical gating trace of the transform-limited input pulse. ND, neutral density. 
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Fig. 2.4 (Color online) Normalized transmitted power for amplified pulses propagating 
through 150 cm of water as a function of incident power. The triangles designate power 
meter measurements, while the circles designate integrated spectrometer measurements. 
The dashed line represents the expected trend for linear behavior. It can be seen that for 
total incident powers above 8.6 mW, the transmitted power deviates from linear behavior. 
Therefore, all experiments are conducted at incident power levels at or below this point. 
All error bars are smaller than the size of the symbols. 
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(a) Power measured by the power meter.       (b) Power measured by the spectrometer  
 
Fig 2.5 (Color online) Total measured power as a function of propagation distance. The 
circles and squares represent amplified pulses with total incident powers of 8.6 and 4.8 
mW, respectively. The triangles represent oscillator pulses with total incident power of 
43 mW; solid lines indicate the predicted simulated behavior for each pulse following Eq. 
(2.7). All error bars are smaller than the size of the symbols. (a) Power measured by the 
power meter. (b) Power measured by the spectrometer. 
 

 
Our spectrometer enables us to analyze the transmission for single frequency 

components, which provides a direct way to verify the BLB law. The attenuation for 

several frequencies is shown in Fig. 2.6.  By linear regression, we can obtain the 

absorption coefficients from the experimental data and the results agree very well with 

the existed absorption data obtained by Kou [21] as shown in Fig. 2.7.  For more 

absorption data in a short wavelength regime, Pope and Fry’s data is also used [22]. It is 

also found that there are no significant changes in transmitted power when applying 

chirps to the pulse and changing the pulse duration. 
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Fig. 2.6 (Color online) Spectral power for various wavelengths as a function of 
propagation distance. The light source are amplified pulses with total incident power of 
4.8mW. Squares, circles, and triangles with apices up and sown represent wavelengths of 
700, 800, 810 and 820 nm, respectively. The solid lines are exponential fits weighted 
with uncertainty. All error bars not shown are smaller than the size of the symbols. 
 
 

 

 
Fig. 2.7 (Color online) Comparison of absorption curves of water. The data groups are 
measured by Kou et al. [21] (lighter curve), and measured from the deionized water 
sample. Also shown are absorption coefficients measured by laser oscillator (asterisks) 
and amplified pulses (circles) with total incident powers of 43 and 4.8 mW, respectively. 
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D. Conclusion and discussion 

Though the bandwidth of the spectrum influences the attenuation of the power, it still 

falls into the category of the BLB law by a superposition of exponential attenuation. Our 

results are inconsistent with the claims that the propagation of ultrashort pulses violates 

the BLB law. However, we are still not able to make a conclusion about whether there is 

any precursor existed in the experiments. This question would be answered in the 

following chapters. 

A transmission-limited ultrashort pulse has a very broad spectrum and thus large 

dispersion. Therefore any device, even a very thin optical device can apply dispersion to 

the pulse and increase the pulse duration.  For example, the tank, which contains the 

water cell, has a glass window. To compensate for the dispersion caused by the glass 

window, a sophisticated autocorrelator must be used to monitor the pulse duration while 

Dazzler is used to compensate for this dispersion.  As an example, we compared pulse 

widening of an initially 30 fs and 7 fs pulse, both of which we employed in our 

experiment. For the convenience of comparison, we use Gaussian profiles and the same 

central wavelength for both pulses and we found that through a glass with a thickness less 

than 2 mm, the pulse duration of initial 7 fs pulse becomes even longer than the initial 30 

fs one as shown in Fig. 2.8. 
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Fig. 2.8 (color online) Comparison of pulse durations through glass.  Incident 7 fs and 30 
fs pulses centered at 800 nm are employed.  GVD is the group velocity dispersion (see 
Chapter IV for details). Circles and stars represent pulse durations calculated by the 
actual refractive index while the solid lines represent the results calculated by the GVD 
(or linear dispersion) approximation. The refractive index of the BK 7 glass is determined 
by the Sellmeier equation [24].  
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                                 CHAPTER III 
 

APPLYING THE SADDLE POINT METHOD TO PULSE PROPAGATION IN A 

LORENTZ MEDIUM 

 

A. Dynamics of the electric field propagation in a Lorentz medium 

In Chapter I, we introduced the saddle point method. In this chapter, we apply this 

method to solve the pulse propagation problem in a Lorentz medium. In the simulation, 

symbols and parameters of the Lorentz medium and the initial spectrum follow 

Oughstun’s paper [25].  A pulse is launched at the interface between vacuum and the 

Lorentz medium located in the ! ! !  half space. The pulse is polarized and propagates in 

the positive !  direction and thus it is a one-dimensional pulse propagation problem. The 

electric field can be expressed as (see Chapter I): 
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!!""##  is the electric field as a function of time and propagation distance and !!! "!
"
"  

is the initial spectral amplitude , which can be obtained from the Fourier transformation 

of the launched pulse at ! ! ! : 

!!! "!
"
" ! #!#$! " !

%

&#
#!#$$"%

" &! $

"$

$

% '$ ,                            (3.2) 

with !!"#"$ ! # !"$ ! %&'(!!
" ! ""

$
$) *+,-!" %" "# $ ,                                                         (3.3) 

 

where !
!
is the carrier frequency, ! is the initial phase of the signal,  !

!
is the time 

corresponding to the pulse peak, and ! is a time parameter which is proportional to the 



 31

pulse duration. For simplicity and with no loss of generality, we assume !
!
! ! , ! = ! . 

Following Eq. (3.2),  
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Define !
!
! !

"#$
" here. In the simulation, following Oughstun [25], define !"  as the 

distance of the 1/e attenuation of the field amplitude at the carrier frequency !
!
 or   

!" !
c

!"#$#!
c
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. Define the generalized dimensionless space-time parameter 

! = !!" " "
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# $ #  and thus the phase can be written as a form of 
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The values of the parameters are: 
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The linear dielectric is described by the single resonance Lorentz model, and the 

refractive index follows: 
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#&$ ,                                            (3.6) 

where !
!
is the undamped resonance frequency, ! is the plasma frequency and  !  is the 

damping constant of the lossy dielectric. A Lorentz medium has a very sharp absorption 

peak near the resonance frequency as shown in Fig. 3.1.  



 32

 

 

Fig. 3.1 (color online) Real part and imaginary part of the refractive index of a Lorentz 
medium. The parameters are chosen the same as those in the simulation.  
 
 

Before applying the saddle point method, comparing the expression in Eq. (3.1) 

and Eq. (1.27), !(" ) ! # , !  is replaced by ! ! " and !!" "  is replaced by Eq. (3.7). 

!(" ) ! #(" #$) ! !" ("(" ) %$) % #(" %"
$
)
$
$ % % , with ! ! !" ! # .              (3.7) 

For a more general function!!! "!
"
" , we can write !!" "  as: 
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%
))% / & .                            (3.8) 

When including the detailed form of the spectrum, the electric field can be explicitly 

expressed as: 
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By this comparison, the saddle points are determined by the following equation: 
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The equation generally has five solutions for the Lorentz medium and so there are five 

saddle points. The five saddle points change as !  changes and have a trajectory as shown 

in Fig. 3.2.  The saddle points are named according to the magnitudes their real part. For 

example, saddle point 1 (sp 1) is the saddle point with the smallest real part while saddle 

point 5 (sp 5) is the saddle point with the greatest real part.  

We construct a path in the complex plane which passes along or close to the 

direction of steepest descent, and the path includes the saddle points near the real axis 

while excludes the saddle points with large imaginary values. As shown in Fig. 3.3 (a), 

the green saddle point is in the deformed path while the red one is not.  For a later time, if 

the originally more distant saddle point comes closer to the real axis, we should change 

the path to pass both of the saddle points (the dashed pink line in Fig. 3.3 (b)). 
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(a) 

 

(b)                                                                   (c) 

Fig. 3.2 (color online) Five branches of saddle points for ! ! !" ! "#$%& . (a) The 
trajectory of the five saddle points in the complex plane. (b) The real part of the saddle 
points change as a function of ! . (c) The imaginary part of the saddle points change as a 
function of ! . 

 

 

 

 

 



 35

 

 

 

 

 
(a) (b) 
 

Fig 3.3 (color online) Graph description of the deformed path passing saddle points. The 
red line is the real axis. Two small circles represent saddle points. (a) The red saddle 
point is distant from the real axis and it is not included in the path (the dashed blue line).  
(b) As !  becomes larger, the red saddle point gets closer to the real axis, and it begins to 
contribute to the integration since it is now close to the path and the path should be 
changed to pass both of the saddle points as the dashed pink line. 
 

Simulation results by the saddle point method compared with the electric field 

obtained by direct integration are shown in Fig. 3.4 and Fig. 3.5 for different propagation 

distances from ! ! !" ! "#$%%  to ! ! !" ! "## . We analyzed a little more detail about the 

so-called generalized Sommerfeld and Brillouin precursor as stated by Oughstun [25], at 

! ! !" ! "#$%& .  

 

 

Im 

Re Re 
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(a) 

 

(b)                                                                    (c) 

 
Fig. 3.4 (color online) Comparison of electric field by direct integration method and the 
saddle point method at ! ! !" ! "#$%& . The blue line represents the result achieved by the 
direct integration and the green line by the saddle point method. (a) The green line is 
mainly contributed to by saddle point 3 and saddle point 5 in Fig. 3.2, corresponding the 
generalized Brillouin and Sommerfield precursor, respectively. (b) The green line is 
contributed to by saddle point 5 and it matches with the field by direct integration in the 
high frequency component. (c) The green line is contributed to by saddle point 3 and it 
matches with the field by direct integration in the low frequency component. 

 

There are both Sommerfeld and Brillouin precursors; the Sommerfeld precursor 

(high frequency) is due to the contribution of the path near saddle point 5 while the 
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Brillouin precursor (low frequency) is due to the contribution of the path near saddle 

point 3. The saddle point method not only gives an approximation with great accuracy 

but also provides separate saddle points to represent the Sommerfeld and Brillouin 

precursors in a straightforward way. More simulation results are shown in Fig. 3.5. 

 

        

(a) ! ! !" ! "#$%&                                                (b) ! ! !" ! "#$%&  

 

  (c) ! ! !" ! "##                                                 (d) ! ! !" ! "##  

Fig. 3.5 (color online) Comparison of electric field by direct integration method and the 
saddle point method at different propagation distances. The range is from ! ! !" ! "#$%%  
to ! ! !" ! "## . 
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When !  increases to 300 z" , only one pattern of the electric field is visible, 

which is mainly contributed by saddle point 3, which means that the Sommerfeld field 

has died out and only the Brillouin field exists. 

From the principle of asymptotic expansion, the saddle point method should be 

more accurate for greater z .  Up to the maximum z  in our simulation, the match between 

the direct integration of electric field and saddle point method is all right, we can still see 

apparent deviation around ! = !"##  in Fig. 3.5 (c) and (d). The reason may lie in that the 

truncation of the Taylor expansion of the phase to second order is not valid because the 

value of the second order coefficient is too small.  To further justify this point, the value 

of the second order coefficient as a function of !  at the saddle point in the Taylor 

expansion are shown in Fig. 3.6, which have a minimum around ! ! !"##  (see Eq. 

(1.29)). One possible way to solve this deviation is to keep more terms in the expansion 

but the result is no longer analytic. 
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Fig. 3.6 The value of the second order coefficient !
!

 in the Taylor expansion of Eq. 
(1.29) as a function of ! . 
 
 
 
B. Exponential attenuation of the electric field and the spectral attenuation  

There is still a very important unanswered question: whether light attenuation can be less 

than exponential, for example, algebraic. Österberg [9] claimed for some special !  (or 

time), the real part of the coefficient in front of !  becomes zero in the phase (Eq. (3.12)) 

and the field has no exponential but only algebraic dependence on the propagation 

distance. As to the practical application, the question is: does this phenomenon happen 

for a dominant ! , or whether a significant part of the energy decays algebraically. One 

reason to reject this point is from the viewpoint of transmission. The intensity for 

monochromatic light follows the BLB Law and the total intensity is a sum of exponential 

functions (still much faster than algebraic decay).  Another way is to examine the field 

attenuation in time domain directly. The electric field obtained by the saddle point 

method has an analytic expression from Eq. (1.33): 
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!!z"##  is the electric field contributed by all the saddle points, while !" !#"$#  is the 

electric field given by the !"#  saddle point ! !" #
. 

For ! >200 z" , only one saddle point significantly contributes to the field.  For 

different z  ranging from 200 z"  to 400 zd , the amplitude of electric field is shown in 

Fig. 3.7. 

 

 

Fig. 3.7 (color online) Amplitude of the electric field as a function of !  for different 
propagation distances. The lines from top (blue color) to bottom (yellow color) represent 
different !  ranging from 200 z"  to 400 zd . 
 
 

If we fix the value of ! , the attenuation approximately follows the BLB law as 

shown in Fig. 3.8. 
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Fig. 3.8 (color online) The intensity of electric field as a function of propagation distance 
for different !  ranging from 1.4 to 2.1. The axis of y is a log scale. The blue dots 
represent the intensity for a certain ! and the green line is the linear fit. 
 

We can derive a similar formula as the BLB law in the time domain. The total 

energy of the electric field is: 
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By comparison to the actual BLB law, 
!

"!!"##"
$$
## #$ %$&&

 is the spectral intensity with 

respect to !  and !!! "#
" "#  is the corresponding refractive index as a function of ! . 

The absorption properties separate the spectrum into two parts as the pulse passes 

through the medium as shown in Fig. 3.9 (a-c). At first, the high frequencies dominate 

and the Sommerfeld precursor develops. As !  increases, the low frequency spectral 

components become more important, and thus the energy gradually concentrates in the 

Brillouin precursors. 
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(a)                                                               (b) 

 

(c)                                                             (d) 

Fig. 3.9 (color online) Spectral attenuation and group velocity. (a) Spectrum at 
propagation distances from z ! z" ! "#$%%  to ! ! !" ! "#$%& when the Sommerfeld 
precursor dominates. (b) Spectrum at propagation distances from ! ! !" ! "#$%&  to 
! ! !" ! "#$ , when Sommerfeld and Brillouin precursor coexist. (c) Spectrum at 
propagation distance greater than ! ! !" ! "#$ , when only Brillouin precursor dominates. 
(d) Group velocity (GV) for the two ranges of frequency 0-30 !"!!  and 60-100 !"!1 , 
respectively. 
 
 
 
 
 
 
 
 
 
 



 44

We here make a comment that the study of precursors or forerunners in 

Brillouin’s book emphasized the wave front of the pulse (when !  is close to 1). While in 

Oughstun’s paper and book, the saddle point method in fact is applied to solve for the 

electric field, which may not be appropriate for the name “precursor”. Only the wave 

front of the Sommerfeld precursor in the high frequency limit can be called a precursor in 

the traditional meaning.  The generalized Sommerfeld precursor comes earlier than the 

Brillouin precursor because the group velocity as shown in Fig. 3.9 (d) is greater for high 

frequency components when compared with low frequency components which are 

determined by the refractive index of the Lorentz medium. Therefore, to observe 

precursors instead of mere pulse breakers, shorter pulses with a very steep rise, which is 

similar to the step-modulated signal applied in Brillouin’s book, is required. 
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CHAPTER IV 

APPLYING THE SADDLE POINT METHOD TO ULTRASHORT PULSE 

PRPAGATION IN WATER 

 

A. Dynamics of the electric field propagation in water 

The saddle point method has only been applied to a medium with a sharp absorption peak 

and high dispersion (such as the Lorentz medium) and this method turns out to be a very 

good approximation. For water, the refractive index is smoother compared to the Lorentz 

medium and thus has much less dispersion. At first glance, the saddle point method seems 

not to work well for ultrashort pulse propagation in water. However, it turns out that the 

results are even better when applied to water than to the Lorentz medium and thus we 

conclude the saddle point method is a general method to solve pulse propagation problems.   

To make the simulation results more relevant to the actual laser, a Gaussian 

profile pulse centered at 600 nm and with pulse duration of 10 fs is chosen.  The analytic 

refractive index (Eq. (4.1) and Eq. (4.2)) we use here is from Quan and Fry [26] and it 

matches very well with the measured refractive index data in a range from 200 to 1100 

nm as verified in [27]. The spectrum of the pulse for the simulation is shown in Fig. 4.1.  

Therefore, the analytic fit to the refractive index is sufficient for our simulation. 

!!!" ! #$%#&'( "#)$'*&!
"#
" +%&,!

"&
"#$#+)) ##-

*
!

"% ,  with !  in nm.       (4.1) 

!!! " ! #$%#&'( " )%*& "#+
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!
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!
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with !  in !s!! .                                                                                                               (4.2) 
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Fig. 4.1 (color online) Spectrum and the refractive index of water used in simulation. 
 

Water absorption is not as significant as dispersion in the spectral regime we 

consider here (from 400 to 800 nm for example) and the absorption doesn’t contribute to 

the fast phase oscillation, therefore we neglect it here. It is not difficult to add the 

absorption and this results in a complex index rather than a real index. We extend the 

frequency regime of the refractive index to infinity.  Although, the refractive index 

doesn’t follow Eq. (4.1) outside the range from 200 to 1100 nm, the detailed form of the 

refractive index doesn’t influence the field as long as the spectral intensity is negligible 

there (due to Gaussian profile distribution of the spectrum). 

Following the same process which we applied in Chapter III to a Lorentz medium, 

we solve pulse propagation in water at propagation distances from 60 !!  to 6 m, which 

corresponds to !"#  to 10#  times the carrier wavelength of 600 nm.  We use a 10 fs 



 47

Gaussian profile pulse as the launched pulse. The initial electric field and the electric 

field in the spectral space (the spectral amplitude) are: 

!!"#"$ !
%

&!
'()!"

& *+!&$"

# "
&

&

$c-.!$
#
"$ ,                                (4.3) 

!!! "!
"
" ! #$%&"

!! "!
"
"'# (

'

) *+!'"
, ! #$%&"#!! "!

"
"' , .                 (4.4) 

Define ! !
! !

"

# $%&"'
. Here in the simulation!

!
! "! !"  is the initial pulse duration, and 

!
!
is the carrier frequency with a value about 3.14 !"!!  as calculated by the central 

wavelength !
!
(600 nm): 

! ! !
!"!

#!

! "#$% "#
$$  .                                              (4.5)                               

The saddle points are obtained by solving 

!!!" "##

!"
! "!#!" # $## $ ""

!#!" #

!"
$ $$!" $"

%
#% % & ! & .           (4.6) 

!!! " is the analytic refractive index (Eq. (4.2)).  There are three saddle points, because 

Eq. (4.2) is a third order polynomial. The saddle points are ordered according to the 

magnitudes of their real part. Only the last two saddle points play a role in the integration 

(Eq. (1.10)). As !  changes, or similarly as time changes, each saddle point has a 

trajectory in the complex plane. For example, at a propagation distance of 6 cm in water, 

the trajectory for the three branches of saddle points are shown in Fig. 4.2. 
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Fig. 4.2 (color online) Saddle point trajectory. For a fixed value of ! , sp 1 represents the 
saddle point with the smallest real part and sp 3 the greatest. The black line stands for the 
central frequency (the real part).  
 
 

It can be concluded from both the physical and mathematical points of view, that 

the saddle points which have small imaginary parts and also close to the carrier frequency 

are the ones which contribute to the electric field (Eq. (1.10)). 

The simulation results obtained by the saddle point method are shown in the Fig. 

4.3 at propagation distances from 60!!  to 6 m in water and are compared with the 

electric field obtained from the direct integration method.  The contributions of saddle 

points change their role as the propagation distance increases. From 60!!  to 600!! , 

the second saddle point dominates the integration. At a distance of 600 !! , the result 

does not match the direct integration for only a very small range of ! (! ! !"#$  in Fig. 

4.3 (b)) and the magnitude of the electric field is insignificant in this regime. For this 

condition, we can separate !  into two different regimes; for ! ! !"#$  we use the second 

saddle point while for ! ! !"#$  we use the third saddle point. It is more convenient to 



 49

determine the regime by setting a limit for the value of the field, because the saddle point 

field (Eq. (1.33)) becomes very intensive, for example, the perpendicular green lines for 

! ! !"#$  as shown in Fig. 4.3 (b). After 600 !m , only the path integration near the third 

saddle point contributes to the electric field as shown in Fig 4.3 (c-f). For propagation 

distances greater than 6mm, the direct integration method can’t provide accurate results 

even for the envelope. But the saddle point method still provides reasonable solutions up 

to a propagation distance of 6 m. And there is not much difficulty in extending the length 

even further. 

Thus the saddle point method is more accurate than the direct integration method 

for a propagation distance greater than 6 mm. It is also faster computationally. The only 

main time consumption is solving for the saddle points. To maximize the efficiency, extra 

effort is required to estimate a !  window for the simulation, because for a macroscopic 

propagation distance, a small change of !  can lead to a great change in t for a certain !  

as indicated by the definition of ! .  
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(a)                                                                          (b) 

 

 

(c)          (d) 

Fig. 4.3 (color online) Comparison of the results obtained by the direct integration (blue 
color) method and the saddle point method (green color) (direct and sp method in the 
legend). 
(a) z ! !"#!

c
! "$"%mm             (b) z ! !"#!

c
! "$%mm  
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(e)                                                                          (f) 

Fig. 4.3 continued. 

 

B. The GVD approximation  

The convenience of the saddle point method in solving for electric fields provides a way 

to estimate the valid regime of the group velocity dispersion (GVD) approximation for 

water by comparison of pulse durations based on the GVD (or linear dispersion) 

approximation and the actual dispersion.  For a Gaussian profile pulse, the GVD 

approximation leads to an analytic solution for the electric field and thus the pulse 

duration. 

The phase delay between different spectral components determines the dispersion 

and thus the broadness of the pulse.  Using the carrier frequency !
!
as reference, the 

phase can be expressed in Taylor expansion: 

!!"#
"
! !$#!" !"

%
# ! !

!"#
$

$
#!" !"

%
#
$ +… ,                                        (4.7) 
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where !" !
#
"
$!! "

#!
"

! !!%

, ! ! !"#"$%%% . The GVD approximation keeps the expansion to 

second order and we define !"# !
$
!
%

$!
!

! !!&

. Therefore the value of GVD equals !
!
. By 

replacing the phase by the GVD approximation and using the spectrum (4.4) in Eq. 

(1.10), an analytic solution of the electric field is obtained:  
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The intensity envelope is: 
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Recall that !
!
! "#$ , ! !

! !
"

# $%&"'
, and pulse duration is defined as the full width at half 

maximum (FWHM) of the intensity, we are led to a hyperbolic relation between the pulse 

duration !  and the propagation distance !  

          ! !!" ! ! #
2
" !
% &'!2""#$

! #

"
2
!
2    ,                                            (4.10)  

where !"# !
$
!
%

$!
!

! !!&

, and GVD is the group dispersion velocity in fs! " mm . 

For a large ! , the dependence of pulse duration versus propagation distance is linear: 

! (!) "
4 ln(2)"#$

! 0

!  .                                               (4.11) 

By applying the saddle point method for a very long propagation distance, we can 

calculate electric field and pulse duration. In Fig. 4.4, we compare pulse durations 

obtained by the GVD approximation and the saddle point method using the actual 
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dispersion function. The valid regime of the GVD approximation is important for the 

estimation of pulse duration and phase compensation by using low order dispersion. The 

higher order dispersion becomes significant only for long propagation distances. The 

simulation results show that, up to a 6 m propagation distance in water, the percentage 

error of the pulse durations is within 2% as shown in Fig. 4.5. Therefore, we conclude 

that for a medium with a flat refractive index such as water, the GVD approximation is 

sufficient for a propagation distance of several meters. 

 

 

Fig. 4.4 (color online) Comparison of pulse durations obtained by the GVD 
approximation and the saddle point method.  
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Fig. 4.5 (color online) Percentage error of pulse duration obtained by the GVD 
approximation method. The error is calculated with respect to pulse duration obtained by 
the actual dispersion function. 
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CHAPTER V 
 

SUMMARY AND CONCLUSIONS 

 

There are two categories of precursors, shown in Brillouin’s book. The Sommerfeld 

precursor is the forerunner with high frequency components and the Brillouin precursor is 

the forerunner with low frequency components.  Brillouin applied the saddle point 

method to investigate the wave front of a step-modulated signal which propagates with a 

velocity near the speed of light in a Lorentz medium.  Oughstun ’s work is more general. 

He applied the saddle point method to solve a Gaussian profile pulse propagating in a 

Lorentz medium, which leads to the so-called generalized Sommerfeld and Brillouin 

precursors [25]. The generalized Sommerfeld precursor in [25] propagates faster than the 

Brillouin precursor because the high frequency component has a greater group velocity. 

Therefore, the concept of precursors used by Oughstun is different from the original 

forerunner defined by Sommerfeld and Brillouin. The forerunners can only be observed 

for a pulse with a very sharp rise time, as indicated by Brillouin. The conclusion of 

Österberg [9] that the precursor could propagate with less than exponential attenuation is 

also not reasonable. Our experimental results verify that light transmission in the linear 

regime follows the BLB law. Theoretical study and simulation results also show that 

there are no conflicts between the BLB law and the existence of precursors.  

Compared with the FDTD [15] method and discontinuous Galerkin method [18], 

for which efficient algorithms are developed only for the Debye and Lorentz dielectric 

medium, the saddle point method provides a fast, efficient and analytic way to solve the 

pulse propagation problem in a general medium. This method works well for a Lorentz 
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medium which has a sharp absorption line and a steep dispersion distribution and works 

even better for a medium such as water which has a relatively flat refractive index 

distribution. The accuracy is much higher than the direct integration method for a 

propagation distances greater than 6 mm based on the simulation of a 10 fs Gaussian 

profile pulse centered at 600 nm.  Therefore, we conclude that the saddle point method is 

a very general method. By applying this method, we can compare the pulse durations 

given by the GVD approximation and those obtained by the actual refractive index and 

the error is within 2% up to a propagation distance of 6 m in water.  
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