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ABSTRACT 

Physicochemical Characterization of the Bacterial Cu(I) Sensor CsoR.  (December 2009) 

Zhen Ma, B.S., Fudan University 

Chair of Advisory Committee: Dr. David P. Giedroc 

 

 

 M. tuberculosis copper-sensitive operon repressor (Mtb CsoR) is the founding 

member of a new metalloregulatory protein family in prokaryotes that regulates the 

transcription of the cso operon in response to copper toxicity. Mtb CsoR tetramer binds 1 

monomer mol equiv of Cu(I) with very high affinity (log KCu=18.0) via three conserved 

residues, Cys36, His61’ and Cys65’. Binding of Cu(I) allosterically inhibits the CsoR 

binding to the DNA operator (CsoO) overlapping the cso promoter (ΔGc=+3.6 kcal/mol, 

pH 7.0, 25 oC). These findings are consistent with a role of CsoR as a transcriptional 

repressor with Cu(I) binding inducing transcriptional derepression. To explore the 

mechanism of this regulation, His61 was substituted with 1-methylhistidine (MeH) or β-

(2-thiazolyl)-alanine (Thz) using a native chemical ligation strategy. The CsoO binding 

affinities of the resultant H61MeH and H61Thz CsoRs are both refractory to inhibition 

by Cu(I) binding despite the fact that each forms a high affinity 3-coordinate complex 

with Cu(I). This suggests that while Cu(I) is coordinated by the Nδ1 atom of His61, the 

Nε2 atom plays an critical role in driving this allosteric switch. Evidence in support of a 

formation of a hydrogen bonding network involving the Nδ1 face of His61 and two 

conserved “second coordination shell” residues, Glu81’ and Tyr35, is presented. 
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Remarkably, this mechanism is analogous to that proposed for the Zn(II) sensor CzrA 

from S. aureus.  To test this, we employed the same native chemical ligation approach to 

substitute the key Zn(II) ligand His97 with 1-methylhistidine; with the preliminary 

findings fully consistent with an intersubunit allosteric switch involving the Nε2 face of 

this key His97 residue in CzrA. 

 Two predicted homologs of Mtb CsoR were also biochemically characterized to 

obtain additional support for the hypothesis that CsoR is a key Cu(I) regulatory protein 

in many bacterial species. B. subtilis CsoR, known to regulate the transcription of  the 

copZA operon, was found to have biochemical properties similar to those of Mtb CsoR 

as to Cu(I) binding, DNA binding and Cu(I)-dependent allosteric regulation. 

Interestingly, Bsu CsoR also binds other divalent metal ions (Zn, Ni) with high affinity 

but with metal coordination geometries distinct from that of Cu(I). Binding of these 

divalent metal ions only weakly regulates copZA operator binding in vitro, suggesting 

that coordination number and geometry are most closely related to the allosteric 

regulation. Finally, a putative CsoR from the pathogenic S. aureus Newman strain was 

identified and characterized, and was found to exhibit biochemical properties similar to 

those of Mtb and Bsu CsoRs. Parallels between Cu(I)-sensing CsoRs and functional 

orthologs in the CsoR/RcnR family are further discussed in the context of the 

mechanism and evolutionary divergence of this new family of regulatory proteins. 
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CHAPTER I 

INTRODUCTION* 

 

 Transition metal ions have long been known as essential nutrients. These metal 

ions include manganese, iron, cobalt, nickel, copper, zinc and to a more specialized 

degree, molybdenum, tungsten and vanadium. These ions function either as structural 

components or enzyme cofactors, and are thus involved in many important biological 

processes (1, 2). Such roles cannot be carried out by any other entity in the cell, thus 

making metal ions essential for all life (3). On the other hand, each of these metal ions in 

excess is toxic to cells to various degrees, largely as a result of perturbation of 

homeostasis and/or by initiation of oxidative stress. Also, an individual metal ion can 

only fulfill limited roles (1). As a result, during the course of evolution, all cells have 

evolved mechanisms to ensure a delicate or optimized balance of each transition metal 

ion, thereby coordinating the control of inserting the “right” metal into a target protein at 

the “right” time and “right” place (1, 2, 4, 5). 

 

METAL HOMEOSTASIS AND TRANSPORT 

The homeostasis of essential metal ions is maintained by extensive regulatory  

and protein-coding machinery that controls the uptake, intracellular trafficking and 

____________ 
This dissertation follows the style of Biochemistry.  
 
*This chapter is reproduced in part with permission from “Coordination chemistry of 
bacterial metal sensing and transport” Ma, Z., Jacobsen, F. E. and Giedroc, D. P., 2009, 
Chemical Review, in press. Copyright [2009] American Chemical Society. 
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efflux/storage of these metal ions. Metal homeostasis is defined as the process in which   

an optimal metal concentration or bioavailability is maintained in the cell, or in different 

intracellular compartments, in the case of eukaryotic cells (1). The scarcity of a 

particular metal ion may cause reprogramming of cellular events, possibly via increasing 

the uptake and/or lowering the requirement for this metal ion by down-regulating the 

proteins require that metal ion for function. On the other hand, under metal stress or an 

excess of metals, cells require the ability to efflux, store or otherwise detoxify metals to 

mitigate the effect of toxicity (Figure 1) (6). In prokaryotes, all of these processes are 

highly coordinated largely at the level of transcriptional regulation by a panel of 

metalloregulatory or metal sensor proteins (see below).    

In bacteria, acquisition or uptake of essential transition metal ions requires 

special consideration. In gram-negative bacteria, metal ions have to pass through the 

outer membrane (OM), the periplasmic space and the inner or plasma membrane (PM) 

before they reach the cytosol where many metal ions are incorporated into the target 

proteins. Trimeric β-barrel proteins called porins in the outer membrane allow for non-

selective diffusion of metal ions; in other cases, mostly for Fe, there are specific high 

affinity outer membrane receptors mediating the transport of low molecular weight Fe-

chelates, e.g., siderophores, across the outer membrane (1). To meet the demands of the 

cell, the cytosol effectively concentrates all metal ions by employing specific metal 

uptake transporters located in the plasma membrane (7). The uptake systems are driven 

either by the hydrolysis of ATP, e.g., ATP-binding cassette (ABC) transporters and P-

type ATPases, or via coupling to an energetically favorable process, such as co-transport  



 3

 

 

 

 

 

Figure 1. Cartoon representation of how a generic metal sensor protein affects resistance 
to toxic concentrations of a particular transition metal ion in the cytoplasm. Adapted 
from reference (6). 
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of protons or other small molecules across the lipid bilayer (symport or antiport). In 

gram-positive bacteria, an extra layer of lipopolysaccharide or complex carbohydrates is 

present and this may potentially affect the rate and mechanism of metal uptake. 

 In the cytosol and periplasmic space in gram-negative bacteria, certain metal 

ions, especially copper ions, seem to require specific trafficking mechanisms to target it 

to correct proteins (5). Such trafficking is usually mediated by proteins called 

metallochaperones, which have been reported for copper, nickel and iron-sulfur protein 

biogenesis. Recent work also suggests that in E. coli, a periplasmic Zn(II) binding 

prtotein, YodA, has characteristics consistent with a role as a Zn chaperone (8-11). The 

metal transfer from these metallochaperones to an acceptor protein occurs by formation 

of a transient protein-protein interaction mediated by intermolecular metal complexes, as 

described for Cu trafficking via a ligand exchange reaction (12).  

To mitigate the possible toxicity generated by excess metals, different metal 

efflux transporters have evolved, such as P-type ATPases, CDF antiporters and RND 

type transporters (13-16). In some cases, Cys-rich metallothioneins such as those 

described for Zn and Cu detoxification, or ferritin-like bacterioferritins and Dps-type 

proteins for iron storage, can function to sequester excess metal ions in the cytosol (17-

19). This storage mechanism is likely to be crucial for iron homeostasis, since iron 

availability is usually very limited. Bacteria have also evolved highly specific small 

molecule chelators, such as siderophores, for iron sequestration in the extracellular 

milieu and uptake. Such processes are energetically expensive; therefore, these cytosolic 
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stores allow the cell to mobilize Fe when the extracellular iron source in the immediate 

milieu becomes limiting (19). 

The expression of these proteins relevant to metal homeostasis is controlled 

mainly by various transcriptional regulators in bacteria (see below). Since the 

requirement for each metal is different, a hypothesis that emerges is that the homeostasis 

machinery and the regulation must be selective in order to effectively control the 

intracellular availability of a particular metal ion. Therefore, each individual component 

is thought to be “tuned” so that the affinity or sensitivity matches the prevailing 

conditions in the cell (1). In fact, the concentrations of different metal ions in different 

organisms may vary widely and so far, there is only limited experimental data on this 

fundamental aspect of metal homeostasis. Further investigation of this may provide 

considerable insights into intracellular mechanisms of metal homeostasis. 

 

COPPER IN BIOLOGY 

 The total copper concentration in an E. coli  cell grown aerobically in minimal 

media is low (10-6 M), but still much higher than the concentration of copper outside of 

the cell in the same media (10-8 M) (7). Copper has two accessible redox states, Cu(I) 

(cuprous) and Cu(II) (cupric), which can be reversibly interconverted. The standard 

reduction potential for Cu(II)/Cu(I) is 150 mV, while a range of 200-800 mV can be 

achieved when Cu is coordinated by proteins; therefore, Cu is an excellent cofactor for 

well-known oxidoreductases, such as cytochrome c oxidase and superoxide dismutase 

(SOD) (20, 21), and indeed in any reaction that requires electron transfer. In fact, it has 
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been estimated that 93% of Cu-containing enzymes are used as conduits for electron 

transfer via reversible redox cycling of Cu(I)/Cu(II) (2). 

 Uncomplexed copper ions are extremely toxic to the cell. Free Cu(I) ion can react 

with hydrogen peroxide through a Fenton like reaction to produce reactive hydroxyl 

radicals, which can readily react with proteins, lipids and nucleic acids (20). In support 

of this, recent microarray and proteomics studies shown that copper stress can induce the 

genes related to oxidative stress defense, suggesting a connection between Cu 

homeostasis and oxidative stress, although the underlying mechanism remains unclear 

(22, 23). A more recent report suggests that in E. coli, Cu(I) may directly damage the 

solvent exposed iron-sulfur clusters in proteins and significantly interrupt their functions 

in the absence of molecular oxygen; iron release caused by such damage may induce 

mis-regulation of Fe homeostasis and, in aerobic conditions, Fe mediated oxidative 

stress (24). On the other hand, free Cu(II) ion is capable of directly oxidizing amino acid 

side chains as well as inducing amyloid formation, and thus is associated with many 

amyloid-related diseases in mammals (25-28). Therefore, the bioavailable copper levels 

must be strictly controlled inside the cell and is proposed to be buffered at a 

concentration in the 10-18 M range. As such, it is widely accepted that in bacterial and 

yeast cells, there is no free or bioavailable copper in the cell (29). Control of Cu 

homeostasis in bacteria is particularly important since most prokaryotes lack a cytosolic 

Cu requirement. Thus, virtually any Cu(I) in the cytoplasm in a non-photosynthetic 

bacterium is toxic. In fact, Cu has long been used as a bactericidal agent in water 

purification, plants, and recent efforts have attempted to exploit the sensitivity of the 
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major hospital pathogen, MRSA (methicillin-resistant Staphylococcus aureus), to Cu(I) 

(30).  

 Another important motivation for understanding bacterial copper homeostasis is 

that proteins involved in Cu-transport, trafficking and sensing can be tied in some way to 

the viability or the virulence of human pathogenic bacteria (31, 32). Although the 

molecular details of this are unknown, the immediate milieu that must be colonized by 

these microbes in the host may be characterized by metal concentrations that are either 

too high or greatly limiting, with metal homeostasis required for successful adaptation to 

these changing conditions (33).  

  

METALLOREGULATORY PROTEINS IN PROKARYOTES 

 Prokaryotes typically contain a panel of metalloregulatory proteins that 

collectively manage metal ion homeostasis in the cell. These specialized “metal receptor 

proteins” function as transcriptional regulators of genes that encode membrane-bound 

transporters that mediate metal ion uptake and efflux from the cytosol, and to a lesser 

degree, genes that encode intracellular chelators, e.g., metallothioneins, and, in the case 

of Hg and As, metal detoxification enzymes (Figure 1) (34-36). These systems 

collectively and globally coordinate homeostasis of individual metal ions in the cytosol.  

Seven major transcriptional regulator families have thus far been structurally and/or 

functionally characterized in some detail, with new ones (at least three more) emerging 

from other transcriptional regulator families in which the majority members play no role 

in metal homeostasis (Figure 2) (6).  
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Figure 2. Structural families of metalloregulatory proteins.  For each family, boxes for 
metals that are known to be sensed are shaded red on the abbreviated periodic table, 
while green boxes on the left denote known family members that are known to sense 
cytosolic oxidative stress.  Boxes identifying putative metal sensors and non-metal 
sensing oxidative stress regulators are shaded pink or yellow, respectively.  The four-
letter designations for individual proteins that perform the function listed in the nearby 
box are given (see text for details).  The mechanism of regulation of gene expression is 
indicated as is the DNA-binding domain that mediates operator-promoter DNA binding.  
Ribbon representations of selected representative members are shown on the right with 
individual protomers shaded red and blue in each case.  Structures are from top to 
bottom: 1) apo S. aureus pI258 CadC with structural α5-Zn(II) ions shaded yellow 
(1U2W pdb code) (37); 2)  E. coli Cu(I)-sensor CueR with regulatory Cu(I) ions in red 
(1Q05) (38); 3) M. tuberculosis Cu(I)-sensor CsoR with regulatory Cu(I) ions shaded 
red (2HH7) (39); 4) S. aureus BlaI as a model for Enterococcus CopY (1SD4) (40); 5) 
TetR-Tc-Mg DNA complex structure as model for S. pneumonia SczA (3CDL) (41); 6)  
apo B. subtilis PerR with structural Zn(II) ions in yellow (2FE3) (42); 7) B. subtilis MntR 
with MnA/MnC binuclear cluster ions in green (2F5F) (43); 8) Ni(II)-bound E. coli NikR-
nik operator DNA complex with high affinity Ni(II) ions shown in green and regulatory 
K+ ions in purple (2HZV) (44); 9) B. subtilis OhrR-DNA complex (1Z9C) (45); 10) 
Molybdate sensor ModE with molybdate shaded green (1O71) (46).   
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 Transcriptional regulators from different sensor families sometimes regulate the 

expression of genes with identical functions in different organisms, consistent with a 

"mix-and-match" approach for the evolution of metal sensing operons or regulons in a 

particular organism, perhaps aided by horizontal gene transfer and subsequent 

convergent evolution (47). For example, individual members of a set of Cu(I)-specific 

effluxing P-type ATPases that share high  pairwise sequence similarity are regulated by 

CsoR in M. tuberculosis, CueR (a MerR family member) in E. coli and CopY in E. 

hirae, each of which are characterized by distinct mechanisms of metalloregulation of 

transcription (Figure 2) (39, 48, 49).  Even in the same organism, E. coli, the 

transcription of functionally orthologous metal uptake transporters, e.g., ABC 

transporters specific for Ni(II) and Zn(II), are regulated by metal sensor proteins from 

distinct structural families, which are NikR and Zur (a Fur family member), respectively 

(50, 51).  The functional equivalent of Zur from gram-negative proteobacteria is 

hypothesized to be a MarR family member AdcR in at least some gram-positive 

organisms (Figure 2).  

 ArsR/SmtB and MerR proteins, as two most extensively studied families of 

metalloregulatory proteins, will be discussed in detail here in order to summarize 

common features and outstanding questions regarding the mechanism of metal sensing 

in the cell. CopY, as the only other known family of Cu-sensors in prokaryotes, will also 

be briefly described. From this discussion, an understanding of metal specificity and 

mechanisms of metal-dependent allosteric regulation of DNA binding allows us to place 

our studies of the new CsoR family proteins in context. It should be pointed out that the 
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molecular details by which an individual metalloregulatory protein selectively responds 

to one or a small overlapping subset of metal ions remain elusive, due in part to limited 

number of high resolution structures of each functionally relevant “allosteric” state 

within any regulating systems (6). 

 

ArsR/SmtB FAMILY OF TRANSCRIPTIONAL REPRESSORS 

 The ArsR/SmtB (ArsR) family is the most extensively studied and likely the 

largest and most functionally diverse metalloregulatory protein family known to date 

(52, 53). This family of proteins is named for its founding members, the E. coli plasmid 

R773 As(III)/Sb(III) sensor ArsR and the Synechococcus PCC 7942 Zn(II) sensor SmtB 

(54, 55). Many bacterial genomes across virtually every bacterial taxonomy encode at 

least one ArsR-family regulator as annotated by the NCBI Cluster of Orthologous 

Groups (COG0640) and the number of unique ArsR/SmtB-encoding genes is 

conservatively in excess of 500 (53). Notably, the Actinobacteria Mycobacterium 

tuberculosis and Streptomyces coelicolor appear to encode ten and thirteen ArsR/SmtB 

proteins, respectively, the majority of which have not yet been functionally or 

structurally characterized. Detailed comparative studies of ArsR/SmtB sensors therefore 

provides an excellent opportunity to investigate how nature employs the same protein 

fold to create proteins with distinct or orthologous functions (56, 57).  

 The ArsR/SmtB family includes proteins responsible for sensing a wide variety 

of metal ions, ranging from essential metal ions Zn(II), Cu(I) and Ni(II), to toxic metal 

pollutants such as As(III), Cd(II) and Pb(II) (Figure 2). Genes regulated by ArsR/SmtB 
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family proteins are usually responsible for effluxing, scavenging, or detoxifying excess 

metal ions found in the cytosol. As transcriptional repressors, apo ArsR/SmtB proteins 

bind to a DNA operator which physically overlaps the promoter where they repress 

transcription of downstream genes.  Metal binding induces a low affinity conformation 

that mediates dissociation from the DNA and thus drives transcriptional derepression.  

One striking aspect of ArsR/SmtB family proteins is that diverse metal ion binding sites 

have evolved at structurally distinct places on what is likely the same protein fold.  

These have been designated α3N/α3 (or metal site 1 in S. aureus pI258 CadC), α4C (as 

in M. tuberculosis CmtR) and α5 (or site 2 in S. aureus pI258 CadC), α5C and α5-3 

(Figure 3). This nomenclature derives from the secondary structural element, e.g., the α3 

helix, or the N- or C-terminal “tail” region, that are known, or projected on the basis of 

mutagenesis experiments, to provide ligand donor atoms to the metal ion in each case. 

These metal coordinating residues are also highlighted on a multiple sequence alignment 

of representative ArsR-family sensors discussed here (Figure 4) (47, 52, 53, 56). The α3/ 

α3N and α4C metal binding sites nearly exclusively utilize cysteine residues to 

coordinate metal ions, and as a result, thiophilic or “soft”, highly polarizable, metals 

such as Cd(II), Pb(II) and As(III) bind here (Figure 3-4).  In three cases where Zn(II) is 

known to bind to the α3N sites to carry out regulation in the cell, e.g., in the 

cyanobacterial Zn(II) sensors Anabaena AztR, O. brevis BxmR, and Synechocystis ZiaR, 

a His residue replaces one of the Cys to create a S3N donor set, distinct from the S3 

[Pb(II)] and S4 [Cd(II)] donor sites of the related Cd(II)/Pb(II) sensor, S. aureus CadC 

(58-63).  
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Figure 3.  Summary of the known metal binding sites of ArsR/SmtB family repressors 
on the structure of S. aureus pI258 CadC homodimer.(37)  Left, spacefilling models of 
two views of CadC adapted from ref. (64) with ribbon representations of the same view 
shown on the right.   One protomer is shaded pink and the other grey, with the α-helices 
labeled consecutively from the N-terminus α0-α5 of the ribbon diagrams (which 
correspond to α1-α6 in the Ye et al. structure), along with schematic locations of the 
α3N (yellow) and α5 (shaded red) sensing sites on each view of the dimer (37).  The 
approximate locations and schematic renderings of representative coordination 
complexes of distinct sensing sites are shown on the left and correspond to S. aureus 
pI258 CadC (yellow, α3N), E. coli plasmid  R773 ArsR (green, α3), S. aureus 
CzrA/Synechococcus SmtB and M. tuberculosis NmtR (red, α5 and α5C, respectively), 
M. tuberculosis CmtR (orange, α4C), C. glutamicum ArsR1 (blue) and A. ferrooxidans 
ArsR (purple).  The α5-3 metal site characterized in the Ni/Co sensor M. tuberculosis 
KmtR (53) is not explicitly shown, but partially overlaps the α5 site.  See text for details 
and Figure 4 for a multiple sequence alignment that highlights these metal sensor sites in 
the ArsR/SmtB family. 
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Figure 4.   Multiple sequence alignment of ArsR/SmtB family repressors with the 
secondary structural units of apo-CadC shown (37).  These secondary structural units 
align well with those known for S. aureus CzrA (65) and Synechococcus SmtB (66).  
The residues known to coordinate regulatory metal ions in each sequence are shaded 
yellow (Cys), green (His) or red (Asp/Glu) in each sequence, with degree of residue-
specific conservation at each position in the alignment indicated by the blue shading.   
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 Recent work reveals that As(III)-sensing ArsRs have evolved a range of 

regulatory binding sites that are structurally distinct from the canonical E. coli 

R773ArsR. This provide significant support for the hypothesis that the ArsR/SmtB 

family protein matrix is particularly adaptable or evolutionarily “plastic” relative to the 

nature and number of regulatory metal binding sites (Figure 3-4). This is projected to 

occur as a result of convergent evolution in response to environmental pressures (64). 

For example, in Corynebacterium glutamicum ArsR1, As(III) is coordinated by three 

cysteine residues in a trigonal S3 coordination complex at a site distinct from the 

canonical α3 or α4C sensing sites, in linking two consecutive Cys from the N-terminal 

α0 helix and single Cys in the opposite protomer just N-terminal to the CVC sequence of 

E. coli R773 ArsRs and S. aureus CadC (64). Thus, while reminiscent of the S4 Cd(II) 

sensing site of CadC, it is clearly structurally distinct, consistent with independent 

evolution of this metal site (Figure 4).   

 A recently characterized ArsR/SmtB family repressor, BxmR from the 

cyanobacterium O. brevis, provides an illustration of the evolution of functional 

diversity and redundancy of metal binding sites within a single family member (60).  

BxmR regulates the expression of metallothionein and P-type ATPase in response to 

both Cu(I)/Ag(I) and Zn(II)/Cd(II), as well as the thiol-specific oxidant diamide, all 

novel properties (60, 67, 68). BxmR, like its closest ortholog, Synechocystis ZiaR, 

retains all the metal binding residues in both the α3N and α5 sites (Figure 4). The α3N 

site is capable of binding Cd(II), Ag(I) and Cu(I), the latter through formation of a 

binuclear Cu2S4 cluster analogous to that of E. hirae CopY, while the α5 site is capable 
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of binding only Zn(II) with high affinity. Unlike CadC, which binds a structural Zn(II) 

ion at α5 site with no regulatory function, metal binding to either the α3N or α5 site in 

BxmR is capable of  negatively regulating operator DNA binding in vitro (37, 61). 

Strikingly, however, the functional metal specificity profile of each site differs. The 

cysteine-rich α3N site adopts a range of coordination structures that mediate 

metalloregulation of DNA binding by all metals that induce gene expression in the cell, 

Cd(II), Zn(II), Ag(I) and Cu(I); in contrast, the α5 site is capable of driving only Zn(II) 

regulation (60). Thus, BxmR exhibits the novel property of possessing a relaxed metal 

response, and has retained a functional redundancy in the ability to sense Zn(II). The 

biological significance of these findings is not yet known.  

 The C-terminal α5 helical region of ArsR/SmtB family repressors has also been 

subjected to evolutionary modification in a way that changes the metal specificity of a 

particular sensor. For example, the canonical α5 sensing site, first structurally 

characterized in the zinc sensors Synechococcus SmtB and S. aureus CzrA adopts an 

evolutionarily conserved tetrahedral N2O2 or N3O coordination geometry, respectively 

(66, 69, 70). In contrast, the Ni(II)/Co(II) sensing site of M. tuberculosis NmtR forms an 

octahedral N/O-rich coordination complex that incorporates the same four Zn(II)-site α5 

ligands, but adds two additional ligands, thought to be provided by the C-terminal tail 

found in NmtR but missing in SmtB/CzrA, to create an n=6 complex optimized for 

Ni(II)/Co(II) sensing (Figure 4) (70, 71). Interestingly, KmtR, a second Ni(II)/Co(II) 

sensor in M. tuberculosis that functions independently of NmtR, may also form an 

octahedral histidine-rich coordination site for Ni(II) and Co(II), but with a different set 
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of ligating residues relative to NmtR, in a metal site designated α5-3 (53). Finally, Af 

ArsR forms a trigonal S3 As(III) coordination site derived from consecutive Cys that 

align with the C-terminus of the α5 helix, and a third more C-terminal Cys (Figure 3-4) 

(72).       

Several metal-free (apo) and metal-bound ArsR/SmtB repressor structures have 

been solved for individual members of this large protein family by x-ray crystallography 

or NMR spectroscopy. These include crystallographic structures of the apo- and Zn(II)-

bound α5 Zn(II)/Co(II) sensor Synechococcus SmtB, the apo- and Zn(II)-bound α5 

Zn(II)/Co(II) sensor S. aureus CzrA, the apo-structure of α3N Cd(II)/Pb(II) sensor S. 

aureus CadC, as well as a solution structure for Cd(II)-bound α4C Cd(II)/Pb(II) sensor 

M. tuberculosis CmtR (37, 66, 73). As shown on the structure of a representative 

ArsR/SmtB repressor, S. aureus pI258 CadC, all ArsR/SmtB proteins are dimeric and 

possess a similar fold with a winged helix-turn-helix motif (α3-turn-αR) used for DNA 

binding (37). Remarkably, the structures of CadC and Synechococcus SmtB can be 

described as “flat” or “open” molecules, with the winged helical domain an integral part 

of the dimer, the primary interface of which is formed by the N-terminal α1 and C-

terminal α5 helices; in CadC, the N-terminal α0 helix also packs against the winged 

helix domain. In other metal sensor families, the winged helix domain constitutes a 

folded subdomain within the molecule.    

 Our understanding of the molecular basis of allosteric negative regulation of 

operator DNA binding in ArsR/SmtB family repressors remains confined to Zn(II)-

sensing α5 family sensors.  Crystallographic structures of the apo- and Zn(II)-bound 
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forms of SmtB and CzrA along with solution NMR studies suggest a quaternary 

structural switching model for allosteric regulation (66). This model involves a hydrogen 

bonding network formed upon metal binding, which connects the metal binding α5 helix 

and the DNA binding domain. The hydrogen bonding network is proposed to drive a 

quaternary structural change upon metal binding, resulting in a “closed” conformation 

with poor DNA binding affinity (66). Although it has been proposed that this hydrogen 

bonding pathway substantially contributes to the large observed coupling free energy 

ΔGc of ≈ +6 kcal/mol, the origin of the driving force for this allosteric switch remains 

unclear (70, 74). Recent dynamics and thermodynamics studies provide additional 

details into this aspect (65, 74). Our recent NMR determination of the solution structure 

of CzrA in the DNA-bound state reveals a model by which Zn(II) binding results in a 

large conformational change that drives CzrA off the DNA operator (65). 

 Although most ArsR/SmtB family proteins are proposed to be metalloregulatory 

repressors, some family members have been reported to regulate genes involved in other 

cellular processes.  For example, Vibrio cholerae HlyU regulates the expression of the 

hemolysin gene HlyA, and its homolog has been proposed to function as a master 

transcriptional regulator for virulence in Vibrio vulnificus (75).  Pseudaminobacter 

salicylatoxidans KCT001 SoxR is the regulator of a cluster of genes required for sulfur 

oxidation, which is induced by reduced sulfur compounds, e.g., thiosulfate, in the 

chemolithotrophic α-proteobacteria (76). Xylella fastidiosa BigR regulates the 

transcription of genes related to biofilm formation, while E. coli YgaV represses the 

expression of the ygaVP operon encoding a membrane-associated protein YgaP that 
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displays a sulfur transferase (rhodanese) activity (77).  Each of these proteins are 

predicted to be ArsR/SmtB family repressors with a similar fold but lack all of the 

known metal binding sites thus far characterized; each contains two conserved Cys, 

however, that are predicted to be close to another in the tertiary structure to perform 

cysteine disulfide or persulfide chemistry (Figure 4). 

  

MerR FAMILY OF TRANSCRIPTIONAL ACTIVATORS 

 The mercuric ion resistance regulator, MerR, first studied in transposons Tn501 

from P. aeruginosa and Tn21 from Shigella flexneri R100 plasmid, is the prototype 

metalloregulatory protein, upon which the word “metalloregulatory” was originally 

coined (35, 78, 79). The Hg(II) sensor MerR is now known to be the founding member 

of a large class MerR family regulators (COG0789) that function as transcriptional 

activators of the expression of genes required for metal efflux or detoxification, or in 

some cases, defense against oxidative stress and drug resistance (80-82). MerR proteins 

collectively possess very similar N-terminal winged helical domains comprised of a 

helix-turn-helix-β-hairpin structure, followed by a long dimerization helix, but quite 

divergent C-terminal effector binding domains.  The structural diversity in the C-

terminal region makes it possible for individual MerR family proteins to sense not only 

various metal ions, including Zn(II) by ZntR, Cu(I) by CueR, Hg(II) by MerR, Au(I) by 

GolS, Cd(II) by CadR and Pb(II) by PbrR, but also oxidative stress by SoxR via an [2Fe-

2S] cluster, and small molecule drugs in the case of BmrR and MtaN (38, 83-89).  
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 Insights into the coordination chemistry of MerR regulators was first determined 

in MerR itself by 199Hg NMR spectroscopy and site-directed mutagenesis experiments to 

adopt a subunit-bridging trigonal planar Hg(II) coordination site formed by three 

cysteine residues (Figure 5) (90, 91). In striking contrast to ArsR/SmtB family repressors 

which have evolved an impressive panel of regulatory metal binding sites at distinct 

locations on the protein scaffold (see Figure 3) as a means to evolve metal selectivity, 

the metal binding sites in individual MerR family proteins are all composed of residues 

derived from two symmetry-related metal binding loops at the periphery of the dimer, 

positioned just C-terminal to the long dimerization helix, which itself is followed by a 

short C-terminal helix.  This single metal binding site region in MerR proteins has 

evolved to sense a wide range of divalent as well as monovalent metal ions, each of 

which is characterized by a signature disposition of metal ligands (Cys/His), in the metal 

binding loop and elsewhere (38, 82). A comparison between Cu(I)-bound E. coli CueR 

and Zn(II)-bound E. coli ZntR structures reveals several key determinants for metal 

specificity of monovalent metal ions (CueR) over divalent metal ions (ZntR). Change in 

the coordination number, charge neutralization and hydrogen bonding interactions all 

play important roles in specific metal binding (Figure 5) (38, 90). On the other hand, the 

amino acids in the metal binding loop have shown to be crucial to distinguish between 

similar monovalent metal ions, such as Cu(I) vs. Au(I), in the case of Salmonella GolS 

and R. metallidurans CupR (85, 92). 

 MerR family proteins are unique in the mechanism of transcription activation 

among all the metalloregulatory proteins (81). The DNA sequences MerR proteins  
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Figure 5.  Ribbon representations of the metal binding loops of various MerR family 
metalloregulators.  In all cases, only one of the two symmetry-related metal sites are 
shown with one protomer is shaded blue and the other red; annotated metal donor 
ligands shown in stick.  The structures shown are the Cu(I) bound form of E. coli 
CueR(38),  the Zn(II)2 sulfate anion (shown in red/orange)-bridged binuclear structure 
of E. coli ZntR (38), and the [2Fe-2S]2+ center of E. coli SoxR (93).  A schematic of the 
single subunit-bridging Hg(II) site of Tn501 MerR consistent with spectroscopic and 
functional data but of unknown structure is also shown for comparison (90, 91). 
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apo recognize have one common feature, that is a long 19- or 20-bp spacer between the -

35 and -10 promoter elements, which results in poor RNA polymerase binding affinity 

and transcription initiation efficiency (94). As originally determined for MerR itself, 

both theand effector-bound forms are capable of binding to their cognate operator DNA 

sequences with similar affinities (95). However, only the effector-bound form can 

significantly unwind and distort the DNA helix, bringing the -35 and -10 elements into 

the same side of the DNA helix in a position optimized for RNA polymerase binding and 

ultimately transcriptional activation (94). Thus, both RNA polymerase and the effector-

bound MerR family member are predicted to bind to the promoter simultaneously. This 

mechanism of allosteric modulation of the DNA structure was first documented at high 

resolution by the crystallographic structure of a multidrug efflux regulator B. subtilis 

BmrR bound to a small lipophilic drug, tetraphenylphosphonium (TPP), in complex with 

its cognate 22-base pair DNA operator; this was followed by several other multidrug 

transporter regulator-DNA complex structures (88). Unfortunately, there is as yet no 

high resolution structure for any MerR family metal sensor in complex with DNA. 

However, the recently published structure of the oxidative stress sensor E. coli SoxR-

DNA complex sheds considerable light on this. SoxR contains an oxidized [2Fe-2S]2+ 

cluster coordinated by four cysteines from the metal binding loop (Cys119, Cys122, 

C124 and Cys130) that is analogous to that found in metal sensing MerR proteins 

(Figure 5) .  

 The activated, oxidized [2Fe-2S]2+ form of SoxR bound to DNA uncovers at high 

resolution what may be a general structural mechanism of activation from a 20-bp spacer 
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promoter. A 20-bp spacer is most commonly found in the cognate operator-promoter 

sequences for many metal ion sensors in the MerR family, including MerR, ZntR and 

CueR (93). This structure is distinct from the previously reported BmrR-DNA and 

MtaN-DNA complexes, each of which is characterized by a 19-bp spacer in the 

promoter (88). In the SoxR-DNA structure, the long dimerization helix (α5) exhibits the 

largest differences relative to the drug-BmrR-DNA structures, in that it is twisted into a 

unique position relative to BmrR and is stabilized by hydrophobic interactions. The 

DNA in the complex is also more significantly bent (≈65o) than that in BmrR- and 

MtaN-DNA complexes (≈47~50o)  (Figure 6A), resulting in further shortening of ≈3.4 

Å, which compensates for the additional 1-bp spacer in the DNA relative to the 19-bp 

spacer DNA for the BmrR and MtaN complexes. Furthermore, signal transduction 

between the sensing domain and the DNA-binding domain is proposed to be mediated 

by direct interactions between the two domains (Figure 6B and C) (93). An analogous 

set of interactions are also found in the recent drug bound BmrR-DNA complex to be 

crucial for transcription activation, and may well be common to all MerR family 

regulators (96). 

 

CopY FAMILY OF Cu-SENSORS 

 CopY represents a small family of copper-specific metalloregulatory proteins 

restricted largely to the Firmicutes, and was first characterized in Enterococcus hirae 

(39, 49). It is proposed to be a member of MecI/BlaI family of repressors associated with 

antibiotic resistance due to the high sequence similarity in the N-terminal DNA binding  
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Figure 6.  Crystallographic structure of the oxidized (activated) E. coli SoxR-DNA 
complex (93).  (A) Overall view of the structure of SoxR-DNA complex showing a 
significant bend (~65o) in the sox operator DNA.  The DNA strands are colored green 
and cyan and shown in stick representation; the two protomers of the SoxR homodimer 
are shown as ribbon structures, and shaded as in Figure 5.   (B) Intersubunit hydrogen 
bonding interactions that link main chain carbonyl oxygen atoms from G123 and C124 
in the metal binding loop that coordinates the [2Fe-2S]2+ cluster with the side chain of 
R55' from the DNA binding domain of the opposite protomer.  A main chain-side chain 
hydrogen bond between C119 and W91’ from the dimerization helix of the opposite 
protomer is also shown.  (C) A close-up view of the [2Fe-2S]2+ cluster revealing how 
electrostatic interactions around the bridging S2– anion S1 may facilitate the 
conformational change upon reversible reduction/oxidation of the cluster (93). 
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domain and the fact that CopY and MecI/BlaI recognize identical cognate DNA 

sequences (97). E. hirae CopY regulates the transcription of the copYZBA operon which 

encodes two copper-specific P-type ATPases (CopA and CopB) thought to be involvedin 

copper uptake and efflux, respectively, and the copper chaperone CopZ.  It has been 

shown that Zn(II)-bound CopY binds to the operator-promoter region of the copYZBA 

operon and represses the transcription; Cu(I)-bound CopZ then transfers Cu(I) to Zn(II)-

bound CopY, forming Cu(I)-CopY which dissociates from the DNA and leads to 

transcriptional derepression of the operon (98). Nearly all CopYs possess a conserved 

CXCXXXXCXC motif close to the C-terminus. Spectroscopic studies suggested that 

each CopY protomer within the dimer is capable of binding 2 equivalents of Cu(I) per 

monomer to form a highly luminescent binuclear S4Cu2 cluster exactly analogous to 

Cu(I) formed by the ArsR/SmtB family regulator BxmR (60, 98). The degree to which 

this mechanistic scenario characterizes other CopYs has not yet been tested.  

 Recent functional and structural studies of the CopY family Cu-sensor 

Lactococcus lactis IL1403 CopR provides new insights into the CopR regulon as well as 

high resolution structure of the N-terminal winged helix DNA binding domain (23, 99). 

Expression profiling experiments reveal that the CopR regulon consists, as expected, of 

Cu-homeostasis related genes including copB and the copRZA operon, but also genes 

related to oxidative stress resistance, e.g., lactate oxidase (lctO), nitroreductase (ytjD) 

and glyoxalase I (yaiA) (23). Similar findings characterize M. tuberculosis and are all 

consistent with the physiological scenario in which excess Cu(I) may be capable of 

engaging in redox cycling and generation of reactive oxygen species either directly by 
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Fenton chemistry or indirectly by damaging iron-sulfur cluster which may further lead to 

Fe-mediated oxidative stress (22, 24, 100). The solution structure of the CopR N-

terminal DNA binding domain monomer reveals, as anticipated, a winged helix-turn-

helix domain similar to the N-terminal domain of S. aureus MecI and BlaI, the 

regulators of the genes encoding the penicillin binding protein and  β-lactamase, whose 

crystal structures with and without DNA bound have been previously reported (40, 99).  

Further biophysical and structural characterization of the C-terminal Cu(I) binding 

domain in the context of the intact homodimeric repressor, however, will be required to 

fully understand how Cu(I) is capable of mediating an allosteric or regulatory response 

upon DNA binding, while Zn(II) is not. 

 

CsoR/RcnR FAMILY 

 Unlike other Cu(I) sensors such as E. coli CueR and E. hirae CopY which are 

largely confined to the Proteobacteria and Firmicutes, respectively, genes encoding 

CsoRs are widely distributed through most other major bacterial species (39). As the 

founding member, M. tuberculosis CsoR (Mtb CsoR) has been characterized using 

biological, biophysical and structural methods. CsoR is the transcriptional repressor for 

the cso (Cu-sensitive operon) which encodes CsoR itself, a gene of unknown function 

but limited to mycobacteria (rv0968 in Mtb), and a Cu(I)-effluxing P-type ATPase CtpV 

(Figure 7). Apo-CsoR binds to the operator-promoter region upstream of the csoR gene, 

with the addition of Cu(I), but not other divalent metals, resulting in derepression of 

transcription.  Physiological Cu(I) stress induces the expression of a relatively small  
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Figure 7.  Genetic organization of the Mtb copper-sensitive operon (cso) with the CsoO 
sequence in bold. 
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number of genes in M. tuberculosis, and it is not known as yet how many of these are 

regulated by CsoR (22).  It is also not known as yet if the expression of a recently 

characterized Cu(I)-binding metallothionein MymT is regulated by CsoR (17). 

The 2.6 Å crystallographic structure of Cu(I)-bound CsoR reveals a homodimeric 

structure with a core antiparallel four-helix bundle (α1, α1’, α2, α2’) and the short C-

terminal α3 helix stacked against the base of the molecule, proximate to α2’ helix of the 

opposite protomer (Figure 8). The Cu(I) ion is coordinated to an intersubunit metal 

binding site formed by two conserved cysteines (Cys36 and Cys65’) and one conserved 

histidine (His61’) (Figure 9) (39). Due to the lack of a classical DNA binding motif such 

as winged helix-turn-helix domain commonly found in other metalloregulatory proteins, 

how apo-CsoR binds to the cognate DNA operator remains unclear, as well as the 

mechanism by which Cu(I) binding induces allosteric negative regulation of operator 

DNA binding. 

 E. coli RcnR is a Co(II)/Ni(II) sensor that regulates the expression of a nickel and 

cobalt efflux protein RcnA (101). RcnA is proposed to be a member of the major 

facilitator superfamily (MFS) family of membrane permeases that are unrelated to 

NiCoT permeases (102). Although RcnR shares low sequence similarity with CsoR, it is 

predicted to be an all α-helical protein with a fold similar to that of CsoR; thus, RcnR 

and CsoR are considered to be distantly related orthologs that represent two major 

subfamilies in this new metalloregulatory protein family (103). Unlike Cu(I)-sensing 

CsoRs, RcnRs possess a His-Cys-His-His W-X-Y-Z metal binding fingerprint (Figure 

10); recent Ni(II) and Co(II) binding experiments coupled with characterization by 
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Figure 8.  Ribbon representation of the 2.6 Å crystallographic structure of the Cu(I)-
bound M. tuberculosis CsoR homodimer (39). The crystallographically defined structure 
of the Cu(I) coordination complex is shown in stick representation, while schematic 
representations of Cu(I) and Ni(II) complexed of CsoR and E. coli RcnR (103), 
respectively, are also shown.  Cys sulfur ligands are shaded yellow while N/O ligands 
are given by the blue spheres.  The α-helices of the blue protomer in CsoR are labeled 
α1-α3. 
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Figure 9.  Multiple sequence alignment of CsoR/RcnR family proteins. Organisms and 
(locus tags) for the other entries are as follows: M. tuberculosis (Rv0967, Rv0190 and 
Rv1766), M. marinum (MM4874), M. ulceran (MUL0425), B. subtilis (BSU33520), S. 
aureus (NWMN1991and an unannotated ORF encoded by the complementary strand of 
37974-38234), S. pneumoniae (SPD0073) and E. coli RcnR (b2015). The three 
conserved Cu(I) ligands in Cu-sensing CsoRs are indicated by the red arrows. The C-
terminal tails in several pathogenic mycobacterial species are highlighted in yellow. 
Secondary structure is annotated based on the crystal structure of Cu(I) bound Mtb CsoR 
(39).  
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Figure 10.  A schematic representation of the W-X-Y-Z “fingerprint” of individual 
CsoR/RcnR family repressors.  The X-Y-Z region of the fingerprint is defined by the 
ligands to the Cu(I) ion in Cu(I)-sensing CsoRs, corresponding to C36, H61’ and C65’ in 
opposite protomers of M. tuberculosis CsoR (shaded red and blue, respectively) (39).  W 
corresponds to H3 in E. coli RcnR which must occupy the third position relative to the 
Met1 αNH2 group (103).  The invariant Cys in the X position is shaded red.   
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electronic and x-ray absorption spectroscopies reveal that RcnR binds both Ni(II) and 

Co(II) with a 6-coordinate octahedral geometry, clearly distinct from that of the Cu(I)-

CsoR complex (Figure 8). Although the Ni(II) and Co(II) coordination spheres may 

differ slightly, they both include all four of the signature residues conserved in 

CsoR/RcnR-like proteins, with a fifth ligand thought to be donated from the α-amino 

group at the N-terminus which would be in close proximity. The identity of the sixth 

ligand remains unknown, with the possible recruitment of a backbone amide or a solvent 

molecule into the first coordination shell (103). The obvious differences between 

coordination geometries of Cu(I)-bound CsoR and Ni(II)-bound RcnR reinforce the 

notion that coordination geometry controls metal selectivity, with a higher coordination 

number far more favorable for Ni(II) and Co(II), relative to Cu(I).   

In a striking parallel with ArsR/SmtB α5-site sensors as well as MerR family 

sensors, a comparison of CsoR and RcnR illustrates the degree to which metal sites with 

distinct selectivities can be evolved from a common “core” of primary coordinating 

residues, which in this case likely corresponds to the Cys pair across the protomer 

interface, Cys36 and Cys65’ in M. tuberculosis CsoR. Metal binding here, or even 

reversible disulfide bond formation or derivatization of one or both Cys in other CsoR 

orthologs, might be anticipated to alter the structure of the dimer (or oligomer), which in 

turn might be necessary, albeit not sufficient in the case of CsoR and RcnR, to drive 

allosteric negative regulation of DNA binding.  The characterization of non-metal ion 

sensing CsoRs is thus of interest. 
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 An extensive multiple sequence alignment of CsoR/RcnR family proteins 

(formerly annotated as DUF156; now COG1937) reveals other members with 

“fingerprint” residues distinct from the x-Cys-His-Cys and His-Cys-His-His W-X-Y-Z 

residues of CsoR and RcnR, respectively (Figure 9-10) (39, 103). These putative CsoR 

homologs are proposed to be involved in some way in oxidative stress sensing or 

antibiotic resistance, based solely on the immediate genomic neighborhood (Figure 10); 

there is no evidence as yet that these CsoRs actually bind DNA, although this seems 

likely (103). Inspection of the structure of M. tuberculosis CsoR reveals that these two 

conserved cysteine residues in an x-Cys-x-Cys CsoR are predicted to be in close 

proximity, which makes it possible for these residues to undergo reversible disulfide 

bond formation as a result of oxidative stress.  Such a mechanism has been shown to be 

operative in other antibiotic and redox sensing repressors, as exemplified by the MarR 

family member Pseudomonas aeruginosa MexR (104). However, to qualify as a 

cytosolic redox sensor, the reduction potential of this cysteine pair must be tuned in a 

way that tracks with changes in that potential that occur under conditions of oxidative 

stress. Therefore, both functional biological and biochemical studies will be required to  

understand this non-metal-sensing subgroup of this newly discovered metalloregulatory 

protein family (see Chapter VI) (39). 

 

SCOPE OF THE RESEARCH 

 Extensive studies on the ArsR/SmtB and MerR families of metalloregulatory 

proteins summarized above reveal common features and unresolved issues regarding 
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how these metal sensor proteins specifically respond to a particular metal ion. In order to 

gain further insights into the CsoR/RcnR family of metalloregulatory proteins, this 

dissertation focuses on understanding common features of the Cu(I)-sensing subgroup of 

this new protein family. Three CsoR family members, including the founding member 

M. tuberculosis CsoR (Mtb CsoR) (39), B. subtilis CsoR (Bsu CsoR) (105) and a 

predicted CsoR from S. aureus (Sau CsoR), are characterized in Chapters II, IV and V, 

respectively. General biochemical and biophysical properties including metal binding 

and DNA binding of these CsoRs are presented as are insights into the structural 

mechanism of Cu(I)-mediated negative allosteric regulation of DNA binding (Chapter 

III). Conventional mutagenesis approaches have been combined with a native chemical 

ligation strategy to specifically incorporate an unnatural amino acid analog into Mtb 

CsoR in order to explore the underlying molecular details of the regulation. A parallel 

strategy has also been applied to CzrA, a SmtB/ArsR family Zn(II)-sensing 

transcriptional repressor with the findings consistent with a common mechanism of 

metal-dependent allosteric regulation involving the Nε2 face of metal coordinated 

histidine.  
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CHAPTER II 

BIOCHEMICAL PROPERTIES OF M. tuberculosis CsoR 

 

INTRODUCTION 

 As the founding member of the new family of Cu-sensing transcriptional 

repressors, M. tuberculosis CsoR (Mtb CsoR) was first shown to regulate the 

transcription of  an operon encoding CsoR itself, a small protein of unknown function 

and a P-type ATPase for Cu effluxing (Figure 7) (39). Apo-CsoR represses the 

transcription by binding to an operator (denoted Mtb CsoO) in the operator-promoter 

region upstream of the csoR gene. Cu(I) binding to CsoR causes dissociation of the 

protein-DNA complex and leads to derepression of transcription(39).  

 The crystal structure of Cu(I)-bound Mtb CsoR solved at 2.6 Å reveals a 

homodimeric α-helical protein. Each protomer consists of two long helices (α1, α2) and 

one short helix (α3) in which α1, α1’, α2 and α2’ form a four-helix bundle stabilized by 

several conserved salt bridges between α1and α1’ (Figure 8) (39). The Cu(I) ion is 

bound at two symmetry-related intersubunit sites via Cys36, His61’ and Cys65’. 

However, there are no classical DNA binding motifs found in the structure and it is 

therefore not yet known how Mtb CsoR binds DNA. Mtb CsoR is also different from 

many other predicted or known Cu-sensing CsoR homologs in that it has a long C-

terminal tail (~30 amino acids) which is not present in the crystal structure, possibly due 

to its flexible nature. This C-terminal tail is only found in several CsoR homologs in 

pathogenic mycobacterial species and its function remains unknown. 
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 In this chapter, a characterization of the biochemical and biophysical properties 

of Mtb CsoR in solution are presented. Direct Cu(I) titrations in the absence or presence 

of bathocuproine disulfonate (BCS) reveal that Mtb CsoR binds 1 mol equiv Cu(I) ion 

per monomer with very high affinity (log KCu= 18.0). X-ray absorption spectroscopy 

(XAS) followed by site-directed mutagenesis shows Cu(I) is coordinated by Cys36, 

His61 and Cys65, forming a trigonal planar S2N complex. Apo-CsoR binds a 50 bp 

DNA derived from the operator-promoter region (Mtb CsoO) with high affinity as 

determined by fluorescence anisotropy, while the affinity of Cu(I)-bound CsoR 

decreases significantly. Interestingly, either full deletion (Δ89-119) or partial deletion 

(Δ99-119) of the C-terminal tail causes a significant decrease in the DNA binding 

affinity, while deletion of the C-terminal 13 residues (Δ107-119) retains wild-type DNA 

binding affinity. Finally, substitution of two residues in a positively charged surface 

patch, Arg15 and Arg55 with Ala, results in undetectable DNA binding by fluorescence 

anisotropy assay. Based on these observations, further mutagenesis experiments as well 

as a unnatural amino acid substitution strategy were carried out in order to understand 

the mechanism of how Cu(I) binding regulates the DNA binding. These experiments are 

described in Chapter III. 

 

MATERIALS AND METHODS 

Plasmid construction, protein overexpression and purification. The Mtb csoR gene was 

amplified from M. tuberculosis H37Rv genomic DNA and cloned into the pET3a vector 

(Novagen, WI) between the NdeI and BamHI restriction sites (39). Amino acid 
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substitutions were introduced by site-directed quick-change mutagenesis. The integrity 

of resultant plasmids was confirmed by DNA sequencing.  

 For both wild-type and mutant CsoRs, the expression plasmids were transformed 

into E. coli BL21(DE3). A single colony from the LB plate containing 100 mg/L 

ampicillin was inoculated into 200 mL LB medium containing 100 mg/L ampicillin and 

grown overnight in a 37 oC shaker. 20 mL of the overnight culture was then inoculated 

into 1 L of the same LB medium and grown at 37 oC until the OD600 reached 0.6-0.8. 

0.4 mM IPTG was then added and cells were grown for additional 2 h before harvesting 

by low speed centrifugation. Cell pellets were resuspended in 200 mL Buffer A (25 mM 

MES, 2 mM DTT, 1 mM EDTA, pH 5.8) and lysed by sonication. The lysate was 

centrifuged and 0.15% (v/v) polyethyleneimine (PEI) was added to the supernatant to 

precipitate the nucleic acids. Mtb CsoR remained in the pellet and was resuspended by 

washing the pellet with Buffer A containing 0.5 M NaCl overnight. After centrifugation, 

the supernatant was subjected to (NH4)2SO4 precipitation and the pellet was resuspended 

in Buffer A and dialyzed against Buffer A containing 0.05 M NaCl. The sample was 

then subjected to purification by cation-exchange chromatography using a sulfoprophyl 

(SP)-sephadex Fast Flow column with Buffer A using a salt gradient of 0.05 – 0.75 M 

NaCl. Fractions containing Mtb CsoR were combined and concentrated to a final volume 

of ~3 mL. 1 mL of the resultant protein was then loaded onto a Superdex 200 30/100GL 

size exclusion column (GE Healthcare, NJ) pre-equilibrated with Buffer A containing 

0.4 M NaCl. Fractions containing Mtb CsoR were combined and dialyzed against Buffer 

B (25 mM Tris, 2 mM DTT, 1 mM EDTA, pH 8.0) containing 0.05 M NaCl. The protein 
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was further purified on a quadramine (Q)-sephadex Fast Flow column with Buffer B 

using a salt gradient of 0.05 – 0.5 M NaCl. The resultant protein fractions were pooled, 

concentrated and dialyzed against Buffer S (10 mM HEPES, 0.2 M NaCl, pH 7.0) in an 

anaerobic Vacuum Atmospheres glovebox (Vacuum Atmospheres, CA).  The purity of 

the final products was estimated by visualization of Coomassie-stained 18% Tris-glycine 

SDS-PAGE gels to be ≥90%. The protein concentration was determined by amino acid 

analysis carried out by the Texas A&M University Protein Chemistry Laboratory (PCL) 

or using a ε280=1615 M-1cm-1. The free thiol content was determined by the DTNB (5, 5'-

dithiobis-(2-nitrobenzoic acid)) assay to be more than 95% of expected value (39, 105). 

Less than 0.1% copper was detected by atomic absorption spectroscopy in all purified 

protein samples. 

Cu(I) binding and BCS competition monitored by UV-vis absorption spectroscopy.  250 

µL aliquots of 20 µM Mtb CsoR monomer with or without 50 µM bathocuproine 

disulfonate (BCS) (Sigma, MO) in buffer S were prepared in an anaerobic glovebox.  

Different amounts of CuCl (Sigma, MO) were added to each aliquot and the UV-vis 

absorption spectrum was taken.  The copper concentration was determined by atomic 

absorption spectroscopy. Samples with BCS were equilibrated in the glovebox at 

ambient temperature (≈22 oC) for 3 h before recording the spectrum to ensure that 

equilibrium was reached.  Absorption at 240 nm and 483 nm was plotted against total Cu 

concentration. The Cu(I) binding affinity was determined by fitting the data to a simple 

competition model using Dynafit (106) with the overall affinity constant β2 for 

Cu(I)(BCS)2 fixed at 1019.8 M-2 (Figure 11) (Appendix A) (107). 



 39

 Alternatively, 10 to 15 μM CsoRs were mixed with 50, 250 and 500 μM BCS (or 

BCA) in buffer S anaerobically. 20 μM Cu(I) was then added to the mix in a total 

volume of 250 μL. The mixtures were incubated at ambient temperature (≈22 oC) for 3 h 

before the absorption spectrum of each sample was taken. The Cu(I)(BCS)2 

concentration in these samples was determined by comparing the absorbance at 483 nm 

with 20 μM Cu(I)(BCS)2 complex in the same buffer. The CsoR-Cu(I) affinity constant 

which assumes identical and independent sites on the CsoR oligomer (KCu) was then 

calculated using the following equation (107, 108): 

][apoCsoR](BCS)[Cu
CsoR][BCS][Cu

2
I

2I
2β=CuK  

Here β2=1019.8 M-2 is the overall formation constant of Cu(I)(BCS)2 complex (107). The 

average and standard deviation of the binding constants at three different BCS 

concentrations is reported. For the similar competition assay with bicinchoninic acid 

(BCA) (Sigma, MO), β2=1017.2 M-2 for Cu(I)(BCA)2 complex was used and the 

formation of this complex was monitored by absorbance at 562 nm (Figure 11) (109). 

Cu(I) X-ray absorption spectroscopy.  Both wild-type and mutant Mtb CsoRs were 

mixed with 0.8 mol equiv of Cu(I) in 10 mM HEPES, 0.2 M NaCl, 30% (v/v) glycerol, 

pH 7.0 in an anaerobic environment and concentrated to ≈0.5~1.0 mM final protein 

concentration. Samples were loaded into standard XAS cuvettes or 5-well polycarbonate 

XAS cuvettes and immediately frozen in liquid N2. XAS data were collected at Stanford 

Synchrotron Radiation Lightsource (SSRL) on beamline 9-3 or at the Canadian Light 

Source (CLS) on the HXMA beamline. EXAFS data analysis was performed using 
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Figure 11.  Structures of BCS and BCA used in the competition assay with overall Cu(I) 
binding constant β2 for formation of the BCS2:Cu or BCA2:Cu complexes at pH 7.0 
indicated (107, 109). 
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EXAFSPAK software, using ab initio phase and amplitude functions computed with 

FEFF v7.2, according to standard procedures as described before (110, 111). 

Fluorescence anisotropy.    A 50 bp 5’-fluorescein (FL) labeled DNA (5’-FL-CGACT 

CCTTGGGTAGCCCACCCCCAGTGGGGTGGGATACCATGAACGGGTG-3’) 

(Operon, AL) containing the 28 bp inverted repeat in bold letters was used (Appendix B) 

(39). The double stranded DNA was made by mixing the labeled strand with 1.1 mol 

equiv of the unlabeled complementary strand.  The mixture was heated at 95 oC for 10 

min and then slowly cooled to room temperature.  Formation of double stranded DNA 

was confirmed by native TBE polyacrylamide gel electrophoresis.  A typical anisotropy 

experiment was carried out with 10 nM DNA in 10 mM HEPES, 0.2 M NaCl, 2 mM 

DTT, pH 7.0 at 25 oC unless noted otherwise. To verify the stoichiometry of DNA 

binding, 10 µM DNA was mixed with different concentrations of Mtb CsoR monomer 

up to 100 µM in the same buffer in room temperature. 100 µL of each mixture was 

loaded onto a Tricon Superdex 200 column (GE Healthcare, NJ) on an Äkta-10 purifier.  

Elution profiles were obtained by monitoring the absorption at 220 nm, 260 nm and 280 

nm simultaneously.   

 The anisotropy of the fluorescein fluorescence was monitored by exciting 

fluorescein at 490 nm (1.0/1.0 slits).  With apo- or Cu(I)-bound Mtb CsoRs added, the 

average anisotropy of 5 measurements was reported for each addition. The resulting data 

were fitted to a stepwise model involving the binding of two non-dissociable tetramers to 

one DNA using Dynafit assuming a linear change in anisotropy with fractional 

saturation of the DNA (see Appendix C) (106, 110).  Since Cu(I)-bound Mtb CsoR does 
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Figure 12.  Coupled equilibria of Mtb CsoR tetramer (T)-DNA (D) complexes as a 
function of Cu. ACu=KCu

4, where KCu is the microscopic binding constant to each 
protomer. ACu represents the macroscopic binding constant of four Cu(I) ions bound to a 
CsoR tetramer. A2

apo and A2
Cu represent the macroscopic binding constants of two CsoR 

tetramers binding to one DNA in absence or presence of Cu(I), respectively.  
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not reach saturation of the DNA under conditions of the experiment, the maximum 

anisotropy value was fixed to the same value as that measured for apo-Mtb CsoR. The 

coupling free energy, ∆Gc, is operationally defined here by ΔGc= -RTln(A2
Cu/A2

apo), 

where A2
apo and A2

Cu are the macroscopic DNA binding constants for apo- and Cu(I)-

bound CsoRs, respectively (Figure 12).    

Circular Dichroism Spectroscopy.  For circular dichroism, protein samples were 

dialyzed against 10 mM sodium phosphate pH 7.0, 0.2 M NaF anaerobically. ~8 µM 

CsoR monomer was then loaded into a 1 mm pathlength rectangular quartz cuvette. The 

circular dichroism spectrum for each sample was collected using an Aviv DS62 circular 

dichroism spectrometer with 3 individual scans from 180–260 nm. The data was 

converted to mean residue ellipticity [θMRW] using the equation [θMRW]= θ/10Crl, where 

θ is the millidegrees as collected by the spectrometer, Cr is the mean residue 

concentration and l is the pathlength. 

 

RESULTS 

Mtb CsoR binds 1 mol equiv Cu(I) per monomer with very high affinity.  Direct titration 

of Cu(I) into wild-type Mtb CsoR causes a ligand to metal charge transfer (LMCT) at 

240 nm with an ε240 ≈ 12,500 M-1cm-1. This absorption is saturable upon addition of ~1 

mol equiv Cu(I) per monomer and reports on Cys thiolate-Cu(I) coordination (Figure 

13A and inset) (39). The small increase of absorbance after saturation may be due to 

slight precipitation of the protein (Figure 13A, inset). In order to further verify the 

stoichiometry, Cu(I) binding was monitored by tyrosine fluorescence. Interestingly,  
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Figure 13. Cu(I) binding to Mtb CsoR. (A) Apoprotein-subtracted molar absorptivity 
spectrum of 20 μM Cu(I):Mtb CsoR wild-type (solid line), H61A (dashed line) and 
C36A (dotted line) CsoRs mixture at a 1:1 molar ratio. Inset: Cu(I) binding isotherm of 
wild-type CsoR. (B) Anaerobic titration of 10 µM apo-Mtb CsoR with Cu(I) as 
monitored by change in tyrosine fluorescence. Conditions: 10 mM HEPES, 0.2 M NaCl, 
pH 7.0, at ambient temperature (panel A) and 25.0±0.1 oC (panel B). 
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Figure 14. A representative wild-type CsoR-BCS competition titration. 19 μM CsoR 
(monomer) and 60 μM BCS were mixed with different concentrations of CuCl in an 
anaerobic chamber (10 mM HEPES, 0.2 M NaCl, 25 oC). Log KCu is fitted by a simple 
competition model by Dynafit to be 17.9 ± 0.4 as shown by the black solid line, 
consistent with the affinity determined using a different experimental strategy as 
described in Methods. The dashed lines represent simulations with log KCu=16 (black), 
17 (blue), 18 (red) and 19 (green) under the same conditions. 
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Cu(I) binding causes dramatic quenching (~40%) of tyrosine fluorescence from the 

single tyrosine residue (Y35) in CsoR and this change is saturable at about 1 monomer 

mol equiv Cu(I) (Figure 13B). These data taken collectively establish the Cu(I) binding 

stoichiometry as one Cu(I) per monomer. 

 The Cu(I) binding affinity was further determined by a competition assay using 

bathocuproine disulfonate (BCS) as a competitor ligand (Figure 11A). As shown in 

Figure 14, when increasing concentrations of Cu(I) are added to a mixture of 19 μM 

CsoR monomer and 60 μM BCS, no change in absorbance at 483 nm is observed until 

about 19 μM Cu(I). This suggests that no Cu(I)(BCS)2 complex is formed until virtually 

all of the CsoR is saturated with Cu(I). Data fitting using simple competition model by 

Dynafit reveals the Cu(I)-CsoR binding affinity to be logKCu =17.9±0.4 (Figure 14) 

(Appendix A) (106, 111).  

 Using an alternative approach as described in Methods, different concentrations 

of BCS were mixed with CsoR and Cu(I) present at the same concentration. The 

formation of Cu(I)(BCS)2 complex was quantified by absorbance at 483 nm and 

therefore KCu of CsoR can be calculated (see Methods). Using this assay, log KCu for 

wild-type CsoR is determined to be 18.1±0.1, in excellent agreement with the direct 

titration result (Figure 14). Therefore, this assay was used to determine the binding 

affinities of CsoR mutants in the studies that follow. An average of log KCu=18.0 (±0.2) 

obtained by both methods is thus reported in Table 1. 

Mtb CsoR coordinates Cu(I) with Cys36, His61 and Cys65.  The Cu(I) coordination 

geometry in solution was determined by x-ray absorption spectroscopy (XAS). For wild- 
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Table 1.  Cu(I) and DNA binding affinities of Mtb CsoRa 
 

Mtb CsoR   log KCu
b  DNA binding affinityd ΔGc 

(kcal/mol)       A2 (x1014 M-2) 
wild-type apo 18.0 (±0.2)  3.7 (±1.0)  

  Cu(I)   0.0079 (±0.0023) 3.6 (±0.2)  
wild-type 1-106 apo 17.3 (±0.4) 17 (±7.8)  

 Cu(I)  0.10 (±0.03) 3.0 (±0.3)  
H61A apo 14.5 (±0.3) n.d.e  

  14.9 (±0.4)c   
C36A apo   3.7 (±0.9)  

 Cu(I)  10.5 (±8.4) -0.6 (±0.5) 
R15A/C36A/R55A apo  n.d.   
C36A CsoR 1-98 apo  0.055 (±0.011)  
C36A CsoR 1-88 apo  n.d.   

 
a Conditions: 10 mM HEPES, 0.2 M NaCl, pH 7.0, 25 ºC, with 2 mM DTT present only 

in the DNA binding experiments.   

b Determined by competition with the chromophoric complex CuI(BCS)2 (log β2=19.8) 

as described in Methods.  

c BCA is used as a competitor with a log β2=17.2 for CuI(BCA)2 complex used in 

calculation. 

d Determined using fluorescence anisotropy-based titrations.   

e n.d., not detected, Ki≤105 M-1 under these conditions. 
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Figure 15.  X-ray absorption spectroscopy (XAS) of Cu-CsoR. (A) Copper K-edge X-
ray absorption near-edge spectra of CsoR with 1.0 (solid line) and 0.5 (broken line) 
metal stoichiometries (solid and broken lines overlap) (curve 1), compared with the 
spectrum of the trigonally coordinated cuprous model ([Cu4(SPh)6]2–) (curve 2). Also 
shown is the near-edge spectrum of H61A CsoR (curve 3), compared with the spectrum 
of the two-coordinate species ([Cu(SR)2]–) (curve 4). (B) Cu-S phase-corrected EXAFS 
Fourier transforms (solid lines) plus best fits (broken lines) of CsoR (1) and H61A CsoR 
(curve 2). (C) EXAFS data (solid lines) plus best fit (broken lines) of CsoR (1.0 
stoichiometry) (curve 1) and H61A CsoR (curve 2). Parameters that derive from the 
fitted curves are compiled in Table 2. 
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Table 2.  XAS fitting parameters for Mtb CsoRa 

 

Sample  N R (Å) σ2 (Å2) ΔE0 (eV) F b 

WT CsoR Cu-S 2 2.204(3) 0.0038(1) -19.5(10) 0.335 

Cu-N 1 1.955(21) 0.0093(2) 

H61A CsoR Cu-S 2 2.143(1) 0.0031(6) -17.9(4) 0.233 
 

aCoordination numbers N, interatomic distances R are given in Å, Debye-Waller factors 

σ2 (the mean-square deviations in interatomic distance) in Å2, and the threshold energy 

shifts ΔE0 are given in eV. The values in parentheses are the estimated standard 

deviations obtained from the diagonal elements of the covariance matrix. 

 bThe fit-error function F is defined by F = ∑ ∑− 2
exp

2
exp

6 )(/))()(( ttcalcd kkkk χχχ  

where χ(k) are the EXAFS oscillations and k is the photo-electron wave number. 
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type CsoR, the pre-edge peak at 8940 eV in the edge spectrum shown in Figure 15A is 

consistent with a 1s 4p excitation typical for 3-coordinate Cu(I) (111). Data analysis of 

the Cu K-edge extended X-ray absorption fine structure (EXAFS) spectrum (Figure 

15C) as well as the Fourier transforms as shown in (Figure 15B) reveals a trigonal Cu(I) 

complex with two S-Cu interactions at 2.20 Å and a N/O interaction at 1.97 Å (Table 2). 

 To confirm the identity of the Cu(I) ligands in CsoR, two substitution mutants, 

C36A and H61A, were purified and characterized. Interestingly, the LMCT molar 

intensity for C36A CsoR is only about half of what is observed for wild-type CsoR, 

consistent with only one S-Cu coordination bond (Figure 13A). In addition, preliminary 

EXAFS data for C36A CsoR shows only one S-Cu interaction at 2.23 Å and two Cu-

(N/O) interactions at 1.98 Å (data not shown). Therefore, Cu(I) is likely to be 

coordinated by Cys65, His61 and possibly a third ligand from the solvent.  Although the 

UV spectrum of Cu(I)-substituted H61A CsoR is different from wild-type CsoR, the 

molar intensity is consistent with 2 Cu(I)-thiolate coordination bonds. The Cu(I) binding 

affinity as determined by BCS and BCA competition assays is decreased by ~5000 fold 

relative to wild-type CsoR (Table 1). Remarkably, x-ray absorption spectroscopy of 

H61A CsoR suggests a 2-coordinate Cu(I)-complex with two S-Cu interactions at 2.14 Å 

(Figure 15, Table 2). All of these data are consistent with the crystal structure where 

Cu(I) is coordinated by Cys36, His61 and Cys65 in CsoR. Both the XAS and Cu(I) 

binding affinity studies also reveal that decrease of coordination number from 3 to 2 in 

the H61A mutant causes a significant decrease in the Cu(I) binding affinity by >103 fold; 
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however, the two Cu(I)-thiolate coordination bonds provide the largest contribution to 

the Cu(I) binding free energy.  

DNA binding of wild-type Mtb CsoR is regulated by Cu(I).  To determine the DNA 

binding affinity of CsoR to the operator DNA (Mtb CsoO), a fluorescence anisotropy 

based assay was employed (see Methods). To fit the anisotropy data, a model invoking 

the binding of two non-dissociable tetramers to one DNA was used on the basis of the 

size exclusion chromatography profile shown in Figure 16A, in which 80 μM CsoR 

monomer is required to saturate 10 μM input DNA, consistent with our findings with 

Bsu CsoR (see Chapter IV) . The normalized binding isotherms shown in Figure 16B 

reveal that apo-CsoR binds to the DNA with much higher affinity than Cu(I)-bound 

CsoR, with an overall binding affinity, A2
apo=3.7 x 1014 M-2 vs. A2

Cu=7.9 x 1011 M-2 in 

the absence and presence of Cu(I), respectively. Therefore, Cu(I) binding strongly 

negatively regulates the cso operator binding affinity of Mtb CsoR, corresponding to a 

ΔGc of +3.6 (±0.2) kcal/mol (Table 1). 

The positively charged patch and the C-terminal tail are important for DNA binding. 

The crystal structure of Cu(I)-bound Mtb CsoR reveals an all α-helical structure with no 

classic DNA binding motifs (Figure 8) (39). A positively charged patch was observed in 

the structure which was proposed to be important for DNA binding (39). To test this, 

two arginine residues in this patch were substituted with alanine in the context of C36A 

CsoR, which although poorly regulated by Cu(I) binding, retains high affinity for the 

CsoO DNA (Figure 17A, Table 1). This mutant was also easier to purify with high yield. 

Surprisingly, the resultant protein, R15A/R55A/C36A CsoR binds the DNA with an 
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Figure 16.  DNA binding of wild-type Mtb CsoR. (A) Two CsoR tetramers (8 
monomers) bind to one 50 bp DNA. Elution profile obtained with 10 μM DNA only 
(solid line) and 10 μM DNA mixed with 80 μM CsoR monomer from a Superdex 200 
column as monitored by absorption at 260 nm. (B) Normalized fluorescence anisotropy-
based DNA binding isotherms acquired in the absence (○) and presence (□) of Cu(I). 
Curves represent the best fit using a stepwise two tetramer DNA binding model (Appendix 
C). Conditions: 10 mM HEPES, 0.2 M NaCl, 2 mM DTT, pH 7.0, 25 oC. 
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undetectably low affinity under the standard experimental conditions used (K≤105 M-1) 

(Figure 17A). To verify that this mutant is folded normally, the far UV-CD spectrum 

was acquired and compared to that of C36A CsoR (Figure 17B). No significant 

differences are observed, suggesting the mutant protein is folded with no significant 

perturbation in secondary structure. Therefore, this positively charged patch may be 

important for DNA binding, possibly via electrostatic interactions with the DNA 

phosphate backbone.  

 In the crystal structure of Cu(I)-bound Mtb CsoR, essentially all of the C-

terminal tail (residues 89-119) is not observed in the final model (39). Since this tail is 

only present in CsoR homologs from pathogenic mycobacterial species (Figure 9), it is 

of interest to determine how the deletion of the tail influences the functional properties 

of CsoR. Surprisingly, deletion of the entire C-terminal tail in the context of C36A CsoR 

(C36A CsoR 1-88), i.e., that which directly corresponds to the crystal structure, results 

in an undetectable DNA binding affinity (K≤105 M-1) in the anisotropy assay under 

standard solution conditions (0.2 M NaCl, pH 7.0, 25 oC). Adding back 10 residues to 

create C36A CsoR 1-98 CsoR partially restores DNA-binding affinity, but not to a level 

comparable to that of full-length C36A CsoR (Figure 18, Table 1). These data suggest 

that this C-terminal tail is also important for DNA binding, although the detailed 

mechanism by which this occurs remains unknown (see Chapter VI).  

 A more detailed comparison of the amino acid sequence of the C-terminal tail of 

CsoRs from other pathogenic mycobacterial species reveals that the tail sequence is 

highly conserved until residue 106 (Figure 9). Therefore, CsoR 1-106 in the context of 
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Figure 17.  Arg15 and Arg55 are important for DNA binding. (A) Normalized 
fluorescence anisotropy-based DNA binding isotherms of C36A (○) and 
R15A/C36A/R55A (□) Mtb CsoRs. Curves represent the best fit using a stepwise two 
tetramer DNA binding model. DNA binding R15A/C36A/R55A CsoR is not detected in 
this assay. Conditions: 10 mM HEPES, 0.2 M NaCl, 2 mM DTT, pH 7.0, 25 oC. (B) 
Circular dichroism spectra comparison of CsoR C36A (solid) and R15A/C36A/R55A 
(dash) CsoRs. Conditions: 10 mM sodium phosphate pH 7.0, 0.2 M NaF.  
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Figure 18.  DNA binding of C-terminal deletion mutants. (A) Normalized fluorescence 
anisotropy-based DNA binding isotherms of C36A 1-119 (○), C36A 1-98 (Δ), C36A 1-
88 (□) and wild-type 1-106 (◊) Mtb CsoRs. (B) Normalized fluorescence anisotropy-
based DNA binding isotherms of wild-type 1-106 acquired in the absence (○) and 
presence (□) of Cu(I). All curves represent the best fit using a stepwise two tetramer 
DNA binding model. Conditions: 10 mM HEPES, 0.2 M NaCl, 2 mM DTT, pH 7.0, 25 
oC. 
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wild-type CsoR was constructed and purified. The overall DNA binding was determined 

to be A2=1.7x1015 M-2 in the apo form which is comparable to that of wild-type CsoR 

(Table 1). The DNA binding affinity is also significantly decreased by Cu(I) binding, 

resulting a coupling free energy of ΔGc=3.0 kcal/mol for CsoR 1-106 (Figure 18, Table 

1). The Cu(I) binding affinity is determined by BCS competition assay to be log 

KCu=17.3 (Table 1). These data provide support for the assertion that 1-106 are necessary 

and sufficient to maintain the functional properties of wild-type CsoR, a finding that we 

further exploit in the following Chapter III. 

 

DISCUSSION 

 The Cu(I) binding affinity reported here (log KCu =18.0) reveals that CsoR binds 

Cu(I) very tightly. Such high affinity is not unprecedented for Cu(I) binding proteins 

however. In fact, another Cu(I) regulatory protein CueR from E. coli is proposed to be 

induced by zeptomolar (10-21 M) Cu concentrations (38). Some of the metal binding 

domains of the Cu(I) P-type ATPase as well as the Cu chaperones are also reported to 

bind Cu(I) with very high affinity (107, 111, 112). These observations are consistent 

with the hypothesis that there is no free or bioavailable Cu(I) ion in the cytosol of 

bacterial or yeast cells, likely due to it its toxicity (38). This is probably one of the 

reasons why a high affinity trigonal planar 3-coordinate Cu(I) complex appears to have 

been evolved in all the putative Cu(I)-sensors in this family (Figure 10). A 2-coordinate 

Cu(I) complex as found in H61A CsoR, may not bind Cu(I) with sufficient affinity to 

function as a Cu(I)-sensor in the cell. A similar scenario likely also characterizes the 
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CsoRs that harbor only x-Cys-x-Cys signature (see Figure 10); thus these CsoRs may not 

bind Cu(I) with sufficient affinity to carry out Cu-sensing under physiological conditions 

in the cell.  

 The Cu-efflux P-type ATPase (Rv0969; Figure 7) regulated by CsoR in Mtb 

represents one mechanism by which excess amounts of Cu can be effluxed from the 

cytosol. The recent report of a Cu-metallothionein, MymT, provides another possible 

copper detoxification mechanism, although it remains unclear if and how the expression 

of MymT is regulated (17). However, one important component required to carry out Cu 

trafficking in the cytosol, the Cu chaperone, still remains to be identified in Mtb. No 

putative Cu chaperone can be identified in Mtb by sequence alignment using the 

bacterial Cu chaperone B. subtilis CopZ sequence as query. However, there are two 

other CsoR homologs encoded in the Mtb genome, annotated as rv0190 and rv1766. The 

protein encoded by rv0190 retains all three conserved Cu(I) binding ligands, in a fashion 

similar to the bona fide Cu-sensing CsoRs (Figure 9). Interestingly, microarray data 

obtained with Mtb grown in liquid culture reveal that rv0190 is highly induced by 

elevated Cu concentration added to the growth media (0.5 mM), suggesting a possible 

function in Cu homeostasis. Since rv0190 does not contain the C-terminal tail which is 

important for DNA binding at least for Mtb CsoR, it is unlikely to regulate the cso 

operon via binding to the operator DNA. It cannot be ruled out though that rv0190 

encodes a transcriptional repressor that regulates different gene(s) distinct from that of 

CsoR. Alternatively, it may function as a Cu chaperone or a Cu-storage protein, a 

hypothesis that requires further biological and biochemical support. Interestingly, rv0190 
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is positioned next to a putative major facilitator superfamily (MFS) transporter (rv0191) 

of unknown substrate specificity. Rv1766, on the other hand, contains an x-Cys-x-Cys 

sequence and its biological function remains totally unknown.  

 Although it is not known yet how Mtb CsoR binds the cognate DNA operator, 

the unique C-terminal tail seems to be important for this interaction. The tail is highly 

conserved as shown in Figure 9, but consists mainly of neutral and hydrophobic rather 

than basic amino acids. Other CsoR homologs do not contain such tails, and yet can bind 

DNA with high affinity at least as shown for Bsu CsoR (111). Therefore, it seems 

unlikely that this tail forms crucial directly interactions with DNA, although direct 

experimental support for or against this proposal are lacking. Alternatively, this tail may 

be indirectly involved in DNA binding, possibly via stabilizing the tetrameric 

oligomerization state or stabilizing a certain conformation of CsoR for high affinity 

DNA binding (see Chapter VI).  

 The minimal DNA sequence that Mtb CsoR recognizes is a 28 bp GC-rich 

inverted repeat as previously described (39). A 50 bp DNA containing this 28 bp was 

used in the DNA binding studies here to avoid incomplete double strand formation 

especially under low DNA concentration in fluorescence anisotropy experiments 

(Appendix B). To identify the DNA sequences crucial for the interactions with CsoR, 

several deletion and mutant CsoO DNA operators were prepared and the DNA binding 

activity of each qualitatively determined by gel filtration chromatography at 10 μM 

DNA concentration (Appendix B). Deletion of 7 bp at either side of the 28 mer results in 

only very weak DNA binding as reported by a broad peak of 220 nm absorption in these 
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elution profiles (data not shown). These preliminary data suggest that both the GC-rich 

regions and the inverted repeat are important for specific high affinity interactions with 

Mtb CsoR.  

 The data presented in this chapter document the biochemical properties of the 

founding member of this new metalloregulatory protein family, Mtb CsoR (39). In the 

following chapter, the mechanism by which Cu(I) allosterically inhibits DNA operator 

binding is further investigated by conventional mutagenesis as well as native chemical 

ligation, the latter approach used to incorporate a single unnatural amino acid in a key 

position in the protein.  
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CHAPTER III 

EXPLORING THE MECHANISM OF ALLOSTERIC NEGATIVE REGULATION OF 

CsoO BINDING BY M. tuberculosis CsoR 

 

INTRODUCTION 

 Metalloregulatory or metal sensor proteins control the intracellular availability of 

essential transition metal ions and collectively mediate metal homeostasis (1, 6). These 

specialized metal receptor proteins regulate gene expression by binding a specific metal 

ion, which, in turn, allosterically activates or inhibits operator DNA binding, thus 

leading to derepression, co-repression or activation of transcription of metal homeostasis 

genes (1, 6). Metal ion-dependent regulation of operator DNA binding likely requires a 

change in the structure and/or dynamics of the regulator. However, the structural and 

molecular details in many cases are poorly understood due mainly to a lack of high 

resolution structural and dynamical information for functionally important allosteric 

states in any one system (1, 6). 

Amino acid substitution is a commonly used tool to investigate the roles of 

individual amino acid residues in driving functional regulation. However, this approach 

has limited application in specific cases when the residue of interest is thought to 

perform multiple functions. For example, as discussed in Chapter I, in the Zn(II)-sensor 

S. aureus CzrA, His97 is hypothesized to play two roles in the regulation of the operator-

promoter binding (66, 113). In one, the Nδ1 donates a coordination bond to the Zn(II), 

while in the other, the Nε2 face is proposed to initiate the formation of a hydrogen 



 61

bonding network that physically links the zinc binding and DNA binding sites of the 

repressor (66, 113). As might be anticipated, conventional site-directed mutagenesis of 

His97 induces a non-native octahedral Zn(II) coordination geometry with KZn decreased 

by more than 105-fold; the same substitutions abrogate Zn(II)-dependent allosteric 

negative regulation of czr operator binding and thus are mechanistically uninformative 

(113).  It is therefore impossible to probe these two roles separately by conventional 

mutagenesis.  A more powerful approach is to site-specifically incorporate a unnatural 

amino acid, e.g., a specific His analog, to create mutant proteins with defined atom 

substitutions rather than residue substitutions in a way that retains many of the 

physicochemical characteristics of the wild-type amino acid (114, 115).  

 As shown in Chapter II, Cu(I) binding to Mtb CsoR negatively regulates the 

DNA binding affinity, resulting in an allosteric coupling free energy ΔGc of 3.6 ± 0.2 

kcal/mol at 25 oC. Interestingly, substitution of the key Cu(I) ligand His61 with alanine 

results in a 2-coordinate Cu(I) geometry with a significantly lower Cu(I) affinity (log 

KCu=14.5) and undetectable DNA binding affinity (K<105 M-1); as a result, the coupling 

free energy cannot be determined. Thus, H61 in CsoR may play multiple key roles, and 

conventional mutagenesis will not be capable of probing these roles separately. To better 

understand the mechanism, we incorporated 1-methyl-His (MeH) or β-(2-thiazolyl)-Ala 

(Thz) into Mtb CsoR by native chemical ligation in replacement of His61 to specifically 

perturb the possible function of the Nε2 face of His61. We postulate that this face of 

His61 initiates hydrogen bonding interactions to other “second coordination shell” 

residues which may include Tyr35 and Glu81 (Scheme 1). Consistent with this model, 
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we show that the DNA binding activity of H61MeH and H61Thz CsoRs is not strongly 

regulated by Cu(I) binding, despite the maintenance of a 3-coodinate Cu(I) geometry and 

high Cu(I) binding affinity. Amino acids substitutions of the proposed “second shell” 

residues Tyr35 and Glu81 also result in a significant decrease in allosteric coupling free 

energy with no significant perturbation of either the Cu(I) binding affinity or Cu(I) 

coordination geometry. Formation of such a hydrogen bonding network may drive the 

conformational change that decreases the DNA binding affinity thus contributing to the 

observed coupling free energy. To our knowledge, this is the first example where the 

native chemical ligation approach is applied to specifically interrupt a possible hydrogen 

bond interaction crucial for allosteric regulation. This approach was further applied to 

the Zn(II) sensor CzrA and the preliminary findings from these experiments are also 

discussed.  

 

MATERIALS AND METHODS 

Unnatural amino acid incorporation by native chemical ligation.    The C-terminal 

peptide of Mtb CsoR (residue 58-106, L58 substituted with Cys) was synthesized with 

incorporation of MeH (1-methylhistidine) or Thz (β-(2-thiazolyl)-alanine) analog 

(obtained as a Boc-derivative from Bachem, CA) at residue 61 by standard Boc-based 

solid phase peptide synthesis in collaboration with Dr. Richard DiMarchi at Indiana 

University. The DNA sequence encoding the N-terminal CsoR peptide (residue 1-57) 

was cloned into the pTXB1 vector (New England Biolabs, MA) between NdeI and SpeI 

restriction sites in frame to a C-terminal intein domain to express as an intein fusion  
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protein. The fusion protein was expressed in E. coli BL21(DE3) as described in Chapter 

II and the cells were lysed in Buffer C (25 mM Tris, 0.5 M NaCl, 2 mM TCEP, pH 8.0). 

Sodium 2-mercaptoethanesulfonate (MESNA) (Sigma, MO) was added to the lysis 

supernatant which contained CsoR 1-57-intein to a concentration of 100 mM and stirred 

at 4 oC for 24 h to cleave the intein. The resultant CsoR 1-57 containing a C-terminal 

thioester was then purified using an SP column and concentrated to a final volume of 2 

mL to about 2 mM (monomer) in Buffer C with 5 mM MESNA. 1 mL of CsoR1-57 

thioester was used to dissolve 12 mg (about 1.8 mM in 1 mL) of the C-terminal peptide 

58-106. 7 M urea, 10 mM TCEP and 100 mM MESNA were added to the ligation 

reaction and pH adjusted to 7.5 using 1 M NaOH (Figure 19A). The reaction was carried 

at room temperature in air overnight. The ligated CsoR was then purified by a µRP (GE 

Healthcare, NJ) reverse phase column using a 0.1% TFA solution with 0-75% 

acetonitrile gradient. Fractions containing CsoR were combined and refolded into Buffer 

S (10 mM HEPES, 0.2 M NaCl, pH 7.0) containing 2 mM DTT by stepwise increasing 

the pH. The final preparation was dialyzed in the glovebox against Buffer S as described 

in Chapter II. The purity of the protein was estimated to be >90% by SDS-PAGE gel and 

the number of reduced Cys residues (3 expected) was confirmed by the DTNB assay. 

The integrity of the resultant proteins was analyzed by MALDI-TOF as well as trypsin 

digestion followed by tandem MS/MS sequencing (Figure 20).   

Construction and purification of H97MeH CzrA using native chemical ligation. The C-

terminal peptide of CzrA (residues 96-106, H96 substituted with Cys) was synthesized 

with incorporation of MeH (1-methylhistidine) at residue 97 by standard Boc-based solid  
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Figure 19.  Semi-synthesis of H61MeH CsoR (A) and H97MeH CzrA (B) (see Methods 
for details). The H61Thz CsoR was made using the same scheme as shown in panel (A).  
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phase peptide synthesis in collaboration with Dr. Richard DiMarchi at Indiana 

University. The DNA sequence encoding the N-terminal peptide (residue 1-95) was 

cloned into the pTXB1 vector (New England Biolabs) between NdeI and SpeI restriction 

sites in frame to a C-terminal intein fusion. The CzrA 1-95-intein fusion was then 

expressed in E. coli BL21(DE3) as described above. After sonication using Buffer C, the 

CzrA 1-95-intein fusion was found to be insoluble and remained in the low speed lysis 

pellet. This pellet was then resuspended in Buffer C containing 7 M urea and refolded by 

stepwise decreasing the urea concentration in Buffer C. The resultant soluble fraction of 

CzrA 1-95-intein was cleaved with the addition of 100 mM MESNA as described above 

with CzrA 1-95-thioester further purified on a C18 reverse phase column by running a 0-

75% acetonitrile gradient in 0.1% TFA. Fractions containing CzrA 1-95 thioester were 

pooled and concentrated to ~1 mL and ligated to the C-terminal peptide using conditions 

analogous to those as described above for CsoR (Figure 19B). The resultant H97MeH 

CzrA was further purified on a µRP (GE Healthcare, NJ) reverse phase column under 

denaturing conditions and finally refolded into Buffer P by stepwise increasing pH (10 

mM HEPES, 0.4 M NaCl, pH 7.0) with 2 mM DTT. 

Purification of H96C CzrA.  An overexpression plasmid containing S. aureus  H96C 

CzrA was constructed by site-directed quick-change mutagenesis using pET3a-CzrA as 

template (113). The protein was expressed in E. coli BL21(DE3) in M9 minimum 

medium containing 100 mg/ml ampicillin supplemented with 15NH4Cl as the sole 

nitrogen source and purified using the published procedure (70, 113) except that 2 mM 

DTT was added to all the buffers used during the purification. Purified H96C CzrA was 
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extensively dialyzed in the glovebox against Buffer P. The protein concentration was 

determined using ε280nm=4470 M-1cm-1 and the mol equiv of free reduced thiol was 

determined by the DTNB assay to be 0.9 (1.0 expected). 

Purfication of CsoR mutants.  See Methods in Chapter II. 

Cu(I) binding affinity determination of CsoR mutants.  The Cu(I) binding affinities for 

various CsoR mutants were determined by varying the BCS concentration in a 

competition assay as described in Chapter II. 

X-ray absorption spectroscopy.   See Methods in Chapter II. 

Fluorescence anisotropy.  DNA binding experiments of CsoR were carried out as 

described in Chapter II. The DNA binding activity of H96C and H96C/H97MeH 

(hereafter referred to as simply H97MeH CzrA) CzrAs was measured in 10 mM HEPES, 

0.4 M NaCl, 2 mM DTT, pH 7.0 with 10 μM Zn(II) or 1 mM EDTA present in the 

solution. 4 nM fluorescein labeled 28 bp with the 12-2-12 inverted repeat underlined was 

used (5’-FL-TAATATATGAACAAATATTCAGATGAAA-3’). The data were fitted 

using Dynafit with a 1:1 dimer:DNA binding model with the dimerization constant fixed 

at Kdim=1.7x105 M-1 (70, 116). 

Co(II) and Zn(II) binding to CzrA.  CoCl2 titrations with 100 μM CzrA monomer (50 

μM dimer) were carried out in Buffer P anaerobically as previously described (70, 117). 

For the Zn(II) titrations, ZnSO4 was titrated into a mixture of 2.4 μM magfura-2 and 1.7 

μM CzrA monomer in Buffer P. The excitation spectrum from 265-455 nm with 

λem=497 nm was measured after each addition. Fluorescence intensities at 325 and 379 
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nm were plotted against total Zn(II) concentration and the data were simultaneously 

fitted to a simple competition model using Dynafit as described (Appendix D) (118).  

NMR spectroscopy  NMR spectra were acquired on a Varian Unity Inova 600 MHz 

spectrometer equipped with a cryo-probe in the MetaCyt Biomolecular NMR Laboratory 

at Indiana University. NMR samples contained ≈0.25 mM 15N-labeled H96C CzrA or 

0.07 mM 15N-labeled H97MeH CzrA in 10 mM MES, 50 mM NaCl and 2 mM DTT 

with or without 1.1 monomer mol equiv of Zn(II) added (pH 6.0). 1H–15N HSQC spectra 

were acquired at 40 °C as described previously(113). All spectra were processed and 

analyzed using NMRPipe and SPARKY (119, 120). 

 

RESULTS 

L58C CsoR 1-106 was chosen to incorporate His-analogs.  Mtb CsoR is 119 residues in 

length with two key Cu(I) coordinating Cys residues. We chose a semisynthetic route 

using an intein fusion strategy (see Methods) (115).  As shown in Chapter II, the C-

terminal tail (residues 89-119) is essential for high affinity DNA binding by CsoR. 

However, partial truncation at residue 106 results in a protein with near wild-type Cu(I) 

binding and DNA binding properties. Therefore, the C-terminal peptide that would have 

to be made by solid-phase peptide synthesis was truncated at residue 106 to maximize 

the synthesis efficiency without significantly affecting the properties of the ligated 

protein.  The most efficient semisynthesis of a chemically ligated protein also requires a 

non-native Cys residue to be incorporated at the ligation junction (121). We settled on a 

non-conserved and solvent exposed residue, Leu58, at the C-terminus of the α2 helix.   
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Figure 20.  MS/MS results of the ligated CsoRs. (A) Tandem mass spectrum of doubly-
charged peptide 56VMCHN(MeH)LET64 from precursor ion m/z 578.1 with several 
identified fragment ions labeled. Fragment ions b5 and b6 confirm the location of the 
methyl group on His61. The underlined C corresponds to the L58C substitution which 
also defines the ligation junction. (B) Tandem mass spectrum of triply-charged peptide 
56VMCHN(Thz)LETCFSTAVLDGHGQAAIEELIDAVK87 from precursor ion m/z 
1195.4 with several identified fragment ions labeled.  Fragment ions y26 and y27 confirm 
the location of the thiazole substitution in place of His61. 
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 To insure that these modifications did not significantly affect the properties of 

Mtb CsoR, the parent molecule L58C CsoR 1-106 was purified and extensively 

characterized. This mutant maintains a high Cu(I) binding affinity with log KCu=17.3 

(±0.3) as determined by the BCS competition assay (Table 3). XAS reveals a 3-

coordinate Cu(I) complex similar to that of wild-type CsoR (Figure 21, Table 4). More 

importantly, apo-L58C CsoR 1-106 binds the DNA with an affinity similar to wild-type 

CsoR 1-106, with Cu(I) binding significantly decreasing the DNA binding affinity; this 

results in a coupling free energy ΔGc of +3.0 kcal/mol, a value close to that of wild-type 

CsoR (Figure 22A, Table 3). These data clearly reveal that L58C CsoR1-106 is 

characterized by properties very similar to that of wild-type CsoR and CsoR 1-106. We 

therefore chose this context with which to incorporate both H61MeH and H61Thz 

substitutions by native chemical ligation.   

Cu(I) does not regulate the DNA binding of either H61MeH or H61Thz CsoRs.  The His-

analogs were incorporated into CsoR as described in Methods. The integrity of the 

resultant proteins were verified by tandem MS/MS spectroscopy as described in Figure 

20. As shown in Figure 22B, C and Table 3, both H61MeH and H61Thz CsoRs in their 

apo forms bind to the DNA with affinities close to the parent L58C CsoR 1-106, 

suggesting both proteins are folded correctly and retain high CsoO binding affinity. 

Strikingly, Cu(I) binding to either of the two proteins only weakly regulates the DNA 

binding, resulting in a coupling free energy close to zero (Figure 22B and C, Table 3).  

 To confirm that the Cu(I) binding properties were not perturbed in H61MeH and 

H61Thz substituted L58C CsoR 1-106, both XAS and BCS competition assays were  
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Table 3.  Cu(I) affinities, DNA binding affinities, and allosteric coupling free energies 
for various Mtb CsoRsa 

 
Mtb CsoR   log KCu

b
  DNA binding affinityd r0 r∞ ΔGc 

(kcal/mol)       A2 (x1014 M-2)     

Wild-type apo 18.0 (±0.2)   3.7 (±1.0) 0.0975 0.1100  
  Cu(I)   0.0079 (±0.0023) 0.1040 0.1170 3.6 (±0.2)  

WT 1-106 apo 17.3 (±0.4) 17 (±7.8) 0.1100 0.1250  
 Cu(I)  0.10 (±0.03) 0.1135 0.1285 3.0 (±0.3)  

L58C 1-106  apo 17.3 (±0.3) 2.6 (±1.4) 0.1197 0.1290   
  Cu(I)   0.015 (±0.01) 0.1160 0.1270 3.0 (±0.4)  

H61MeH apo 18.4 (±0.2) 0.67 (±0.23) 0.1170 0.1310   
  Cu(I)   0.7 (±0.3)    0.1175 0.1300 0 (±0.4)  

H61Thz apo 16.7 (±0.1) 3.1 (±1.0)   0.1056 0.1210  
  Cu(I)   1.4 (±0.4)   0.1092 0.1240 0.5 (±0.2)  

H61A apo 14.5 (±0.3) n.d.e    
  14.9 (±0.4)c     
  Cu(I)   n.d.     n.d.  

E81A apo 17.7 (±0.4)  14.7 (±5.7) 0.1000 0.1150   
  Cu(I)   5.3 (±2.4) 0.0980 0.1143 0.6 (±0.3) 

E81Q apo 17.6 (±0.5) 26.6 (±10.0) 0.1085 0.1205   
  Cu(I)   1.0 (±0.2) 0.1030 0.1145 1.9 (±0.3) 

E81D apo 17.8 (±0.4) 4.3 (±1.8) 0.1060 0.1190   
  Cu(I)   0.36 (±0.2) 0.1050 0.1200 1.5 (±0.3) 

E81N apo 17.3 (±0.4) 2.8 (±1.1) 0.1075 0.1205   
  Cu(I)   0.19 (±0.1) 0.1040 0.1170 1.6 (±0.4) 

Y35F apo 16.7 (±0.4) 14.3 (±3.6) 0.1000 0.1160   
  Cu(I)   0.24 (±0.07) 0.1075 0.1230 2.4 (±0.2) 

Y35F/E81Q apo 17.6 (±0.3) 10 (±2.9) 0.1080 0.1240   
  Cu(I)   1.7 (±0.8) 0.1117 0.1240 0.8 (±0.3)f 

 

aConditions: 10mM HEPES, 0.2 M NaCl, pH 7.0, 25 ºC, with 2 mM DTT present only in 
the DNA binding experiments.  bDetermined by competition with the chrmophoric 
complex CuI(BCS)2 (log β2=19.8) (or cCuI(BCA)2) as described in Chapter II.  
dDetermined using fluorescence anisotropy-based titrations like those shown in Figure 
22.  en.d., not detected, Ki≤105 M-1 under these conditions.  fδ=ΔΔGc

Y35F/E81Q-
(ΔΔGc

Y35F+ΔΔGc
E81Q)=+0.1 kcal/mol indicates the pairwise interaction between Y35F 

and E81Q, where ΔΔGc
mut=ΔGc

mut-ΔGc
WT. 
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Figure 21.  X-ray absorption spectroscopy (XAS) of Cu(I)-bound WT 1-106 (dashed 
black), L58C (solid black), H61MeH (dashed red) and H61Thz (dashed green) CsoRs.  
(A) and (C) Cu K-edge X-ray absorption edge spectra with (B) and (D) EXAFS spectra 
and the Fourier transforms (k3 weighted, k=2-12 Å-1) in the inset are shown. The bold red 
curve represents the best fit for H61MeH CsoR with the fitting parameters compiled in 
Table 4. The spectra for CsoR 1-106 and L58C CsoR 1-106 shown in (C) and (D) are the 
same as those in (A) and (B).  
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Table 4.  XAS fitting parameters for various Mtb CsoR mutants a 

Sample  
Fit Shell Ras σas

2 ΔE0 f'b (k range) 
Δk3χ (Å) (Å2) (eV)   

WT CsoR 1-106 1 Cu-S2 2.21 0.0017 -9.191 0.070
    Cu-N1 1.96 0.0016 [-9.191]c   
    Cu-C1 [2.95] [0.0032] [-9.191]   
    Cu-C1 [3.00] [0.0033] [-9.191]   
    Cu-N1 [4.13] [0.0020] [-9.191]   
    Cu-C1 [4.17] [0.0020] [-9.191]   

L58C 1-106 1 Cu-S2 2.22 0.0022 -8.654 0.067
  Cu-N1 2.03 0.0016 [-8.654]  
  Cu-C1 [3.01] [0.0032] [-8.654]  
  Cu-C1 [3.06] [0.0033] [-8.654]  
  Cu-N1 [4.19] [0.0020] [-8.654]  
    Cu-C1 [4.23] [0.0020] [-8.654]   

H61MeH 1 Cu-S2 2.25 0.0014 -2.850 0.89
  Cu-N1 2.04 0.0016 [-2.850]  
  Cu-C1 [3.02] [0.0032] [-2.850]  
  Cu-C1 [3.07] [0.0033] [-2.850]  
  Cu-N1 [4.20] [0.0020] [-2.850]  
    Cu-C1 [4.24] [0.0020] [-2.850]   

a Shell is the chemical unit defined for the multiple scattering calculation. Subscripts 

denote the number of scatterers per metal. Ras is the metal-scatterer distance. σas
2 is a 

mean square deviation in Ras. ΔE0 is the shift in E0 for the theoretical scattering 

functions. 

b f' is a normalized error (chi-squared): 

 

c Numbers in square brackets were constrained to be either a multiple of the above value 

(σas
2) or to maintain a constant difference from the above value (Ras, ΔE0). 
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carried out. As shown in Figure 21 and Table 4, the near edge spectra show similar pre-

edge features at about 8940 eV, consistent with a 3-coordinate Cu(I) complex in both 

proteins (122). Quantitative analysis of the EXAFS spectrum of H61MeH CsoR further 

confirms that this CsoR forms a Cu(I) complex that is structurally very similar to the 

parent L58C and wild-type CsoR 1-106. Consistent with this, the Cu(I) binding affinity 

is not significantly decreased in these mutants and is at least  ≥100 fold greater than that 

of H61A CsoR (Table 3). Therefore, the Cu(I) binding affinity and  structure of the 

chelate in each ligated protein is not significantly changed relative to CsoRs containing a 

native His in this position. These findings clearly establish that the Nε2 face of His61 in 

CsoR is specifically required to thermodynamically and functionally link Cu(I) binding 

to DNA binding, likely via hydrogen bond interactions with nearby “second 

coordination shell” residues (Scheme 1). 

Conserved residues Tyr35 and Glu81 are also essential for the allosteric negative 

regulation by Cu(I).  A multiple sequence alignment of proposed Cu(I)-sensing CsoRs 

reveals that Tyr35 and Glu81 are highly conserved and are in close proximity to His61 in 

the Cu(I)-bound Mtb CsoR structure (Figure 8-9). Therefore these residues are excellent 

candidates that might interact directly with Nε2 face of His61 and mediate allosteric 

regulation in this system (Scheme 1) (39, 111). Inspection of the CsoR structure suggests 

a hydrogen bonding network involving Tyr35, Glu81 and His61 in the Cu(I) bound state, 

formation of which would allosterically inhibit DNA binding. Consistent with this, Y35F 

CsoR reveals a 33% decrease in coupling free energy, while the inhibition of DNA 

binding of E81A CsoR by Cu(I) is greatly diminished, with a coupling free energy of  
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Figure 22.  Normalized fluorescence anisotropy-based DNA binding isotherms of L58C 
CsoR 1-106 (A), H61MeH (B) and H61Thz (C) CsoRs acquired in the absence (○) and 
presence (□) of stoichiometric Cu(I). The solid curves represent the best fit using a 
stepwise, two-tetramer DNA binding model (Appendix C) with A2 (Table 3) defined by 
K1·K2 (Figure 12). Conditions: 10 mM HEPES, 0.2 M NaCl, 2 mM DTT, pH 7.0, 25 oC. 
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Figure 23.  Normalized fluorescence anisotropy-based DNA binding isotherms of E81A 
(A) andY35F (B) CsoRs acquired in the absence (○) and presence (□) of stoichiometric 
Cu(I).  Curves represent the best fit using a stepwise two tetramer DNA binding model 
with the fitting parameters given in Table 3. Conditions: 10 mM HEPES, 0.2 M NaCl, 2 
mM DTT, pH 7.0, 25 oC. 
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just 0.6 kcal/mol (Figure 23, Table 3). The Cu(I) binding affinity and coordination 

geometry as measured using the BCS competition assay and x-ray absorption 

spectroscopy, respectively, reveal that the decrease in the coupling free energy is not 

caused by change in Cu(I) binding affinity or coordination structure, but specifically 

from “second coordination shell” interactions (Table 3). 

 More conservative substitutions of Glu81, i.e., with Gln, Asp or Asn, also give 

rise to significant decreases in ∆Gc, to about 50% of that of wild-type CsoR, while Cu(I) 

binding affinities remain unaffected (Table 3).  Inspection of the magnitude of ∆Gc for a 

double mutant, Y35F/E81Q CsoR, reveals a near additivity of ∆∆Gc value measured for 

the component single mutants (δ=ΔΔGc
Y35F/E81Q-(ΔΔGc

Y35F+ΔΔGc
E81Q)=+0.1 kcal/mol) 

(see Table 3). In this case as well, the Cu(I) binding affinity is not significant decreased, 

consistent with a 3-coordinate Cu(I) complex. This finding reveals that these residues, 

while playing important functional roles, only weakly interact energetically to drive 

allosteric negative regulation of CsoR by Cu(I).  This suggests that hydrogen bonds from 

Tyr35 and Glu81 to His61, but not to each other (Scheme 1), are most critical for Cu(I)-

dependent metalloregulation in this system (Figure 24A).     

 Interestingly, this proposed allosteric coupling mechanism in CsoR is analogous 

to the proposed mechanism of zinc dependent regulation of the DNA binding affinity of 

the ArsR/SmtB Zn(II) sensor S. aureus CzrA (66). In CzrA, the Zn(II) ligand His97 is 

proposed to initiate a hydrogen bond network through its Nε2 face that physically links 

the Zn(II)-binding site via Nδ1 and the DNA binding site, thus stabilizing a low affinity 

DNA binding conformation (Figure 24B) (66). The native chemical ligation method 
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Figure 24.  Proposed models for metal-dependent allosteric regulation by Cu(I) in M. 
tuberculosis CsoR (A) and by Zn(II) in S. aureus CzrA (B).  
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used here provides an excellent opportunity to specifically probe the role of this 

hydrogen bonding network, both energetically and possibly structurally provided 

sufficient ligated protein can be obtained. Below, we describe the purification scheme 

and present preliminary findings obtained for ligated CzrA. 

A H96C substitution was first chosen to define the ligation junction with which to 

prepare H97MeH CzrA.  As mentioned above, this strategy requires incorporation of a 

single non-native Cys residue at the ligation junction. Based on the structure of CzrA 

(66), His96 is solvent exposed in the C-terminal α5 helix and a previous mutagenesis 

study revealed that substitution of this residue (H96A CzrA) resulted in a protein with 

wild-type properties (Lee S. and Giedroc D.P., unpublished observations).  

 To verify this, 15N-labeled H96C CzrA was purified. As expected, H96C CzrA 

retained high affinity binding to Zn(II) with KZn≥109 M-1 as measured by a competition 

assay with magfura-2 (Figure 25A, Table 5) (70, 113). More importantly, H96C CzrA 

binds 1 mol equiv Co(II) per monomer and binding of Co(II) gives rise to a d-d 

transition envelope at ~570 nm of ε≈400 M-1cm-1, consistent with a tetrahedral or 

distorted tetrahedral Co(II) coordination complex (Figure 25B and inset) (70). This 

spectrum is quite similar to that observed for the N3O-Co(II) formed by wild-type CzrA 

(70). In particular, ligand to metal charge transfer (LMCT) absorption is not observed in 

the far UV region, revealing that the non-native Cys96 (the only Cys residue in H96C 

CzrA) is not recruited into the Co(II) coordination complex.  

   The DNA binding properties of H96C CzrA were next determined by 

fluorescence anisotropy assay. Apo-H96C CzrA binds to a 28 bp DNA derived from the  



 80

 

 
 
 
Figure 25.  Zn(II) and Co(II) binding to various S. aureus CzrAs. Zn(II) titration into a 
mixture of 1.7 μM H96C CzrA (A) or H97MeH CzrA (B) in presence of 2.4 μM 
magfura-2. The solid curve shows a best fit using a simple competition model by Dynafit 
(Appendix D) with the binding parameters compiled in Table 5. (C) Apoprotein-subtracted 
molar absorptivity spectra of Co(II):H96C CzrA mixture at 1:1 molar ratio. The binding 
isotherm is shown in the inset. Conditions: 10 mM HEPES, 0.4 M NaCl, pH 7.0. 
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Figure 26.  Normalized fluorescence anisotropy-based DNA binding isotherms of H96C 
(A) and H97MeH (B) CzrAs acquired in the absence (○) and presence (□) of 10 μM 
Zn(II).  Curves represent the best fit using a 1:1 dimer:DNA binding model with the 
dimerization constant Kdim fixed at 1.7x105 M-1 with the binding parameters compiled in 
Table 5 (70). Conditions: 10 mM HEPES, 0.4 M NaCl, 2 mM DTT, pH 7.0, 25 oC, with 
1 mM EDTA (○) or 10 μM Zn(II) (□).  
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Table 5.  Summary of fitting parameters for H96C and H97MeH CzrAs in comparison 
with wild-type and H97D CzrAs measured previously 
 

CzrA KZn1 (M-1) KZn2 (M-1) Kapo (M-1) KZn (M-1) ΔGc (kcal/mol) 

Wild-typea 2.5 (±0.3) x 1012 3.4 (±0.6) x 1010 2.7 (±0.5) x 1010 5.7 (±1.2) x 105 6.3 (±0.2) 

Wild-typeb 1.2 (±0.2) x 1012 6.0 (±1.0) x 1010 1.3 (±0.9) x 1011 n.d.d 6.0 (±1.0) 

H97Da 1.5 (±0.1) x 107 ≤105 ≥ 5 x 109 ≥ 5 x 109 0 

H96C ≥109 ≥109 2.9 (±0.5) x 109  7.4 (±0.1) x 105  4.9 (±0.1) 

H97MeHc 3.9 (±0.9) x 108 3.5 (±1.6) x 106 3.4(±0.3) x 109   5.0(±0.7) x 108  1.1 (±0.1) 

 

a Numbers determined by UV-vis and fluorescence spectroscopies adapted from 

reference (113, 116). A 57 bp DNA involving the 28 bp inverted repeat was used in the 

DNA binding experiments and the stepwise binding constant K1 was shown here. 

b Numbers determined by isothermal titration calorimetry (ITC) adapted from reference 

(74). 

c Average values of two determinations with different concentrations of H97MeH CzrA 

and magfura-2. 

d Not determined. 
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operator-promotor region of the czr operon (CzrO) with an affinity of Kapo=2.9(±0.5) x 

109 M-1, while Zn(II)-bound H96C binds the same DNA with much lower affinity of 

KZn=7.4(±0.1) x 105 M-1, resulting in a coupling free energy of +4.9 kcal/mol (Figure 

26A, Table 5). These affinities as well as the coupling free energy are very similar to 

those reported for wild-type CzrA (70, 113, 116). As expected, the 1H-15N HSQC spectra 

of apo and Zn(II)-bound H96C CzrA are virtually identical to that of wild-type CzrA 

outside of the site of the substitution consistent with the finding that H96C CzrA exhibits 

near wild-type Zn(II) binding and DNA binding properties (113, 123).  

Zn(II) only weakly regulates the DNA binding of H97MeH CzrA.  Due to the fact that the 

CzrA1-95-intein fusion was not soluble, the yield for the CzrA1-95 peptide was very 

low; as a result, only limited amounts of H97MeH CzrA were obtained. The preliminary 

data suggest both the apo and Zn(II)-bound CzrA bind to the DNA operator with an 

affinity that is more similar than different (Kapo=3.4(±0.3) x 109  M-1; KZn=5.0(±0.7) x 

108 M-1), resulting in an allosteric coupling free energy of +1.1 kcal/mol, significantly 

lower than that of the parent H96C CzrA (Figure 26B, Table 5). The Zn(II) binding 

affinity of H97MeH CzrA determined by a magfura-2 competition assay was found to be 

KZn1=3.9(±0.9) x 108  M-1 and KZn2=3.5(±1.6) x 106 M-1(Figure 25C, Table 5). Although 

>1000 fold lower than wild-type CzrA, H97MeH CzrA still binds stoichiometric Zn(II) 

with an affinity ≥30-fold higher than other site-directed mutants of H97, e.g., H97D 

CzrA, which binds one Zn(II) per dimer with a measurable affinity but with a non-native 

coordination octahedral geometry (113). The measurable decrease of the Zn(II) binding 

affinity suggests that the proposed hydrogen bond involving Nε2 of His97 in wild-type 
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CzrA may be energetically connected to Zn(II) binding, perhaps by restricting the 

relative conformation of the imidazole side chain and optimizing the orientation of the 

Nδ1 for Zn(II) binding. Alternatively, the methyl group might potentially perturb the 

local structure and therefore decrease the Zn(II) binding affinity. To test this latter idea, 

we have acquired 1H-15N HSQC spectra of H97MeH CzrA (15N-labeled from residues 1-

95) at 70 µM monomer in the presence and absence of saturating Zn(II) and compared 

these spectra with those of the parent H96C CzrA. Although the quality of these spectra 

of H97MeH CzrA is poor due to the low sample concentration, several key conclusions 

can be reached by inspection of the chemical shift perturbation maps shown (Figure 27).  

Incorporation of the methyl group in H97MeH CzrA causes only a local perturbation in 

the structure of the CzrA dimer, since the chemical shift differences between H97MeH 

and parent H96C CzrAs are small and localized in both the absence and presence of 

saturating Zn(II) (Figure 27A and B). Remarkably, Zn(II) binding to H97MeH CzrA 

causes a conformational change in the dimer that is essentially indistinguishable from 

that of H96C CzrA, as shown by the similar chemical shift perturbation maps (Figure 

27C and D). These observations suggest that the hydrogen bonding network initiated by 

the Nε2 atom of H97 is not required to drive the conformational change in CzrA upon 

Zn(II) binding, the importance of which will be further discussed below. 

 

DISCUSSION 

 In this chapter, unnatural amino acid incorporation was used to probe what we 

hypothesize is the “second coordination shell” that links metal binding to DNA binding  
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Figure 27.  Chemical shift perturbation maps of H96C and H97MeH CzrAs. Each shows 
chemical shift perturbation of apo H96C vs. apo H97MeH CzrA (A), Zn(II)-bound 
H96C vs. Zn(II)-bound H97MeH (B), apo H96C vs. Zn(II) bound H96C CzrA and apo 
H97MeH vs. Zn(II)-bound H97MeH CzrA (D). In H97MeH CzrA, residues 96-106 are 
not 15N-labeled and thus cannot be observed. Other residues for which crosspeaks could 
not be unambiguously assigned are given a Δδ=0. These data were acquired, processed 
and analyzed by Alfredo J. Guerra (Guerra A.J., Ma Z. and Giedroc D.P., unpublished 
results). Conditions: 10 mM MES, 50 mM NaCl, pH 6.0, 40 oC. 
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in both Mtb CsoR and S. aureus CzrA. This strategy allows us to surgically perturb the 

hydrogen bonding interactions involving the Nε2 face of a key liganding histidine 

without affecting the other roles that this His could play, e.g., in metal coordination by 

Nδ1. Such a semisynthetic approach is capable of introducing amino acid analogs 

anywhere into a protein; however, this approach is clearly limited by the length of the 

peptide to be synthesized by solid phase peptide synthesis and the potentially poor 

solubility of the intein fusion and cleaved proteins. An alternative strategy is to fully 

synthesize the entire protein in pieces, methods of which have been optimized and 

developed (124). Such a strategy involves dividing the protein into several peptides and 

stepwise ligating them together. However, as determined by the nature of the ligation 

reaction, a Cys residue is required at each ligation junction; as a result it is important to 

verify that the incorporation of non-native Cys residues does not affect the functional 

properties of the resultant protein. The application of such a strategy to metal binding 

proteins requires extra caution since Cys residues are very good metal binding ligands. 

Introducing multiple Cys residues into these proteins may cause an unanticipated change 

in metal coordination structure, enhance non-specific metal binding or lead to 

unanticipated disulfide bond formation, each of which might significantly interfere with 

the structure and function of the protein. 

 Another complementary methodology to site-specifically incorporate an 

unnatural amino acid is via utilization of an orthologous tRNA-aminoacyl-tRNA 

synthetase pair which can specifically incorporate amino acid analogs or other 

biochemical and biophysical probes into a protein co-translationally in vivo, typically 
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via terminator codon supression (114). However, such a strategy requires a bacterial 

strain carrying a specific orthologous tRNA synthetase that can charge the tRNA 

corresponding to an amber codon with an amino acid analog. Therefore, to incorporate 

different His analogs into either CsoR or CzrA would require screening procedures to 

obtain such strain (114). Since such a strain to incorporate His analogs is not yet 

available to our knowledge, due to the relatively small size of each protein studied here, 

a semisynthetic approach was chosen in this study. 

 The proposed allosteric regulation mechanism for Mtb CsoR is analogous to that 

previously proposed for CzrA and is further investigated here. This is remarkable since 

these two proteins belong to different families of metalloregulatory proteins with 

completely different structures (Figure 24). And yet, nature has evolved in these two 

proteins analogous mechanisms for metal regulation. The approach outlined here 

provides a tool to probe such a mechanism when high resolution structures of different 

allosteric states of the protein are not available. Such mechanism may not be operative in 

CsoR orthologs, including the Ni(II)/Co(II) sensor RcnR or the putative CsoR-like 

oxidative stress sensors simply because that Tyr35 and Glu81 are not conserved in these 

proteins (see alignment in Figure 9).  

 Both H61MeH and H61Thz Mtb CsoRs are capable of forming 3-coordinate 

Cu(I) complexes with an equilibrium affinity close to wild-type CsoR. In contrast, our 

preliminary studies on H97MeH CzrA reveal a ≈1000 fold decrease Zn(II) affinity of 

each of the two sites in the homodimer (Table 5). Previous crystallographic and NMR 

studies of apo and Zn(II)-bound CzrA suggest that formation of the hydrogen bond 
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network initiated by the Nε2 face of His97 physically links the Zn(II) binding and DNA 

binding sites, and is used to drive a conformational change that greatly reduces the DNA 

binding affinity. Data here suggest that this hydrogen bonding network may also 

influence the Zn(II) binding, possibly via confining the conformation of the imidazole 

side chain of His97. Formation of hydrogen bond network may enthalpically favor the 

Zn(II) binding. A detailed thermodynamics study using isothermal titration calorimetry 

(ITC) on wild-type CzrA has recently been carried out in our laboratory in order to 

deconvolute the enthalpic and enthropic contributions to the allosteric coupling free 

energy that links the binding of Zn(II) and DNA to CzrA (74). It will be of great interest 

to investigate H97MeH CzrA in this context which may provide information on the 

energetic role of this hydrogen bonding network in Zn(II) binding. However, such study 

requires high concentrations of protein and the yield of the semisynthesis strategy 

outlined in this chapter is likely too low. Alternatively, a totally synthetic approach or 

one that involves an in vivo codon redefinition may be used (114, 124), although 

challenges associated with these two strategies need to be considered.  

 The substantial decrease in Zn(II) affinity can also be a result of a change in the 

structure from the additional methyl groups in the H97MeH CzrA dimer. To begin to test 

this idea, uniformly 15N-labeled CzrA1-95-intein fusion protein was purified and the 

resultant ligated H97MeH CzrA investigated by 1H-15N NMR spectroscopy (Figure 27). 

The 1H-15N HSQC spectra for residues 1-95 of the parent H96C CzrA and H97MeH 

CzrA are very similar, revealing that the methyl group does not significantly perturb the 

protein fold in the absence or presence of Zn(II) (Figure 27A and B). Strikingly, the 
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chemical shift perturbations that occur upon Zn(II) binding to H96C vs. H97MeH CzrA 

(Figure 27C and D) are also very similar to one another, which suggests that the average 

conformations of these two proteins are indeed similar in both functional states. This 

would seem to argue against an unanticipated steric effect of the additional methyl group 

and is consistent with the conclusion that the binding of Zn(II) to H97MeH CzrA results 

in a conformational change that is similar to that of the parent H96C CzrA. In fact, the 

identity of the intersubunit perturbation of residues 65 and 68 in H96C and H97MeH 

CzrAs virtually ensures this (65). Thus, the methyl group does not intrinsically block the 

formation of the allosterically inhibited state in the absence of DNA.  

 How then does loss of this hydrogen bonding interaction nearly abrogate 

inhibition of DNA binding by Zn(II)? One strong possibility is that the bound DNA 

effectively prevents this conformational change which is required to drive CzrA off the 

operator. Indeed, a major role of Zn(II) binding by CzrA is to “freeze out” a 

conformational state(s) that has low affinity for the DNA (65). The Nε2 hydrogen 

bonding network may therefore be specifically required to stabilize this dynamically 

“rigidified” state, which at the same time, might enhance KZn. Detailed solution NMR 

and structural studies will be required to obtain direct support for this idea. Although the 

methyl group perturbations appear small, a thiazole or oxazole substitution of the 

imidazole side chain may further minimize any unanticipated structural perturbations 

that might result. It is important to point out, however, that the methyl group and 

thioether substitutions of the Nε2 atom of His61 in Mtb CsoR were functionally quite 

similar. These experiments are underway in our laboratory.  
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CHAPTER IV 

BIOCHEMICAL PROPERTIES OF B. subtilis CsoR* 

 

INTRODUCTION 

 In previous chapters, the characterization of Mtb CsoR as the founding member 

of a new metalloregulatory family was presented, as were insights into the mechanism of 

Cu(I)-dependent allosteric negative regulation of DNA binding by employing both 

conventional and unnatural amino acid substitution methods. Further insights into this 

new family of metalloregulatory proteins can be obtained from investigation of the 

known or proposed CsoRs from other microorganisms. In this context, known Cu(I)-

sensing CsoR from B. subtilis (Bsu CsoR) is discussed in this chapter, which will be 

followed by a focus on a putative Cu(I)-sensing CsoR from S. aureus (Sau CsoR).  

 With the publication of the structure and function of Mtb CsoR, the 

characterization of Bsu CsoR as a Cu sensor that regulates the transcription of copZA 

operon was reported soon after. copZ encodes the Cu chaperone while copA encodes the 

Cu-efflux P-type ATPase (105). Bsu CsoR shares high sequence similarity with Mtb 

CsoR and has been shown to bind to a pseudo-palindromic DNA in the operator-

promoter region of copZA operon (Bsu CopO) and repress the transcription (Figure 9). 

Addition of Cu inhibits the binding and derepresses the transcription, allowing the  

____________ 
* Reproduced in part with permission from “Molecular insights into the metal selectivity 
of the copper(I)-sensing repressor CsoR from Bacillus subtilis” Ma Z., Cowart D. M., 
Scott R. A. and Giedroc D. P., 2009, Biochemistry, 48(15), 3325-3334, Copyright [2009]  
American Chemical Society. 
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expression of CopZ/CopA proteins to traffic and efflux the excess Cu out of the 

cytoplasm.  

 Here, using a series of biochemical and biophysical experiments, we show that 

Bsu CsoR binds 1 mol equiv Cu(I) per monomer with very high affinity (≥1019 M-1). X-

ray absorption spectroscopy (XAS) shows Cu(I) adopts, as expected, an S2N 

coordination geometry similar to Mtb CsoR (39). Unlike Mtb CsoR, both apo and Cu(I)-

bound Bsu CsoRs are non-dissociable tetramers in the low micromolar monomer 

concentration range. Size exclusion chromatography reveals apo-Bsu CsoR binds to a 30 

bp copZA operator DNA (Bsu CopO) with a saturating stoichiometry of 8 monomers, or 

two tetramers, to one two-fold symmetric, pseudo-palindromic 30 bp DNA sequence.  

The DNA binding affinities were further determined by fluorescence anisotropy for both 

apo and Cu(I)-bound Bsu CsoRs under defined solution conditions. The Cu(I)-dependent 

regulation of DNA binding is abrogated in an E90A Bsu CsoR mutant. Interestingly, Bsu 

CsoR is also capable of binding other divalent metal ions including Co(II), Zn(II) and 

Ni(II), and in fact binds Ni(II) and Zn(II) with 108-109 M-1 affinities at equilibrium. 

While with weaker affinity than Cu(I), Zn(II) may well be partly bound to CsoR in vivo. 

However, each of these metals adopts a non-native (non-trigonal) coordination geometry 

and each fails to strongly negatively regulate operator DNA binding in vitro. 

 

MATERIALS AND METHODS 

Plasmid construction, protein expression and purification.   The Bsu CsoR-pET16b 

expression plasmid was a generous gift of Dr. John D. Helmann (Cornell University) 
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(105).  Amino acid substitutions were introduced into this plasmid by site-directed 

quick-change mutagenesis and the integrity of the resulting plasmids were confirmed by 

DNA sequencing.  Wild-type and E90A Bsu CsoRs were expressed and purified using 

similar procedures as described previously for Mtb CsoR in Chapter II (39, 105).  

Expression plasmids containing wild type or mutant Bsu CsoR were transformed into E. 

coli BL21(DE3) and grown in LB media until OD600 reached 0.6-0.8. 0.4 mM IPTG was 

then added and cells were grown for additional 2 h before harvesting by low speed 

centrifugation. Cell pellets were suspended in 200 mL Buffer A (25 mM MES, 2 mM 

DTT, 1 mM EDTA, pH 5.8) and lysed by sonication. The lysate was centrifuged and 

0.15% (v/v) polyethyleneimine (PEI) was added to the supernatant to precipitate the 

nucleic acids. Bsu CsoR remained in the supernatant and was subjected to (NH4)2SO4 

precipitation and the pellet was resuspended in Buffer A and dialyzed against Buffer A 

containing 0.05 M NaCl. The sample is then purified by SP Fast Flow, Superdex 200 

size exclusion chromatography as described previously (39). The resultant proteins were 

pooled, concentrated and dialyzed against Buffer N (10 mM MES, 0.2 M NaCl, pH 6.5) 

in an anaerobic Vacuum Atmospheres glovebox.  The purity of the final products was 

estimated by visualization of Coomassie-stained 18% Tris-glycine SDS-PAGE gels to be 

≥90%. Protein concentration was determined by UV absorption using ε280nm=1615 M-1 

cm-1 and free thiols were determined by the DTNB assay to be more than 95% of 

expected value (39, 105). Less than 0.1% copper was detected by atomic absorption 

spectroscopy in all purified protein samples. 
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Cu(I) binding and BCS competition monitored by UV-vis absorption spectroscopy.  

These experiments were carried out anaerobically in Buffer N as described in Chapter II.  

Cu(I)-binding monitored by tyrosine fluorescence. These experiments were carried out 

anaerobically in Buffer N as described in Chapter II. 

Cu(I) X-ray absorption spectroscopy.  The XAS samples were prepared anaerobically in 

10 mM MES, 0.2 M NaCl, 30% (v/v) glycerol, pH 6.5 and data were collected and 

analyzed as described in Chapter II. 

Sedimentation velocity and equilibrium experiments.   All analytical ultracentrifugation 

experiments were carried out using a Beckman model Optima XL-I analytical 

ultracentrifuge equipped with an An-60 Ti rotor in the Physical Biochemistry 

Instrumentation Facility at Indiana University.  All samples were prepared in buffer N 

and loaded into centerpieces inside the anaerobic glovebox.  110 µL samples for 

equilibrium experiments were prepared at 8 µM, 14 µM and 20 µM monomer 

concentrations (≈0.3, 0.5 and 0.8 OD230 initially) and loaded into 6-channel Epon 

charcoal-filled centerpieces.  Intensity scans at 230 nm were taken at speeds of 19,300, 

30,600 and 38,700 rpm at 20 oC. All equilibrium data were fit globally to a single 

species model using Ultrascan as described (70).  For sedimentation velocity 

experiments, 450 µL samples were loaded into a two-channel aluminum centerpiece 

with 1.2 cm path length.  The rotor speed was 60,000 rpm at 20oC and intensity data at 

230 nm were collected as a function of time.  Sample concentrations were 8 µM and 20 

µM Bsu CsoR monomer (≈0.3 and 0.8 OD230 initially).  Data were analyzed using 
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Ultrascan software interfaced with a genetic algorithm and Monte Carlo analysis 

package essentially as described (125-128).  

Size exclusion chromatography.   A 30 bp DNA derived from the copZA operator-

promoter region (Bsu CopO: 5’-TTGTAATACCCTACGGGGGTATGGTAGGAT-3' 

and the complementary sequence) (Operon, AL) was used for all DNA binding 

experiments. 10 µM DNA was mixed with different concentrations of Bsu CsoR 

monomer up to 100 µM in buffer N with 2 mM DTT in room temperature. 100 µL of 

each mixture was loaded onto a Tricon Superdex 200 column (GE Healthcare, NJ) on an 

Äkta-10 purifier.  Elution profiles were obtained by monitoring the absorption at 240 

nm, 260 nm and 280 nm simultaneously.  

Fluorescence anisotropy.    A 30 bp 5’-fluorescein labeled DNA (Operon, AL) with the 

same sequence as above was used. The double stranded DNA was made by mixing the 

labeled strand with 1.1 mol equiv of the unlabeled complementary strand.  The mixture 

was heated at 95 oC for 10 min and then slowly cooled to room temperature.  Formation 

of double stranded DNA was further confirmed by native TBE polyacrylamide gel 

electrophoresis.  A typical anisotropy experiment was done with 4 nM DNA in 10 mM 

MES, 0.4 M NaCl, 2 mM DTT, pH 6.5 at 25oC unless noted otherwise.  Anisotropy was 

monitored by exciting the fluorescein at 487 nm.  With apo- or Cu(I)-bound Bsu CsoRs 

added, the average anisotropy of 5 measurements was reported for each addition.  For 

Ni(II)- and Zn(II)-bound Bsu CsoRs, 1 mol equiv of metal ions were mixed with Bsu 

CsoR as titrant; an additional 5 µM Ni(II) or Zn(II) was present in the cuvette to ensure 

that only the metal-bound CsoR was present during these titrations.  The resulting data 
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were fitted to a stepwise model involving the binding of two non-dissociable tetramers to 

one DNA using Dynafit assuming a linear change in anisotropy with fractional 

saturation of the DNA (Appendix C) (106, 110).  Since Cu(I)-bound Bsu CsoR does not 

reach saturation, the maximum anisotropy value was fixed at the same value as that 

obtained for apo-Bsu CsoR.  The coupling free energy, ∆Gc, is operationally defined by 

ΔGc=-RTln(K1
CuK2

Cu/K1
apoK2

apo), where K1
apo, K2

apo, K1
Cu and K2

Cu are stepwise DNA 

binding constants for apo and Cu(I)-bound Bsu CsoRs, respectively.  This formalism for 

∆Gc was used since the saturating and presumably fully repressing complex invokes two 

bound tetramers bound per palindromic operator DNA segment, as well as the high 

inverse correlation between the magnitudes of K1 and K2. 

Other metal binding experiments.  Zn(II) binding was monitored by a chelator 

competition assay with magfura-2 (KZn=5.0 x 107 M-1 at pH 7.0) using UV-vis 

absorption spectroscopy as previously described (70, 110).  The data were fit using a 

competitive binding model with Dynafit (106) to determine the Zn(II) binding affinity 

(Appendix D).  Co(II) and Ni(II) binding experiments were carried out as described 

previously (70, 110) in Buffer N.  Ni(II) binding affinity was determined by a 

competition assay with EGTA (129).  All concentrations of metal titrants were 

determined using atomic absorption spectroscopy. 

 

RESULTS 

Bsu CsoR binds 1 mol equiv Cu(I) per monomer with an affinity higher than that of BCS.  

It has been previously shown that Bsu CsoR regulates the expression of copZA operon 
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by binding to the promoter region and that the addition of CuSO4 and DTT as reductant 

resulted in disruption of the DNA binding.  It was therefore proposed that the DNA 

binding affinity of Bsu CsoR is regulated by Cu(I) binding.  Here, we show that Bsu 

CsoR binds Cu(I) directly in vitro by both UV-vis and tyrosine fluorescence 

spectroscopy. 

 Addition of Cu(I) into an anaerobic solution of Bsu CsoR causes increased 

absorption in the ultraviolet region (ε240nm≈16,000 M-1cm-1); this reports on the 

formation of thiolate-copper coordination bonds and the spectrum is quite similar to that 

of Cu(I)-saturated Mtb CsoR (39, 110). This increase is saturable at ≈1.0 mol equiv 

Cu(I) per monomer (Figure 28A). Significant quenching of tyrosine fluorescence is 

observed upon Cu(I) binding as shown in Figure 28B.  Maximum quenching is achieved 

upon addition of  ≈1.2 mol equiv Cu(I).  Therefore, both UV-vis and tyrosine 

fluorescence suggest Bsu CsoR binds ≈1 Cu(I) ion per mol monomer.  

 The Cu(I) binding affinity was estimated by a competition experiment using 

BCS, a Cu(I) specific competitor which can form a Cu(I)(BCS)2 complex that absorbs at 

483 nm with a β2=19.8 (107). Figure 29 shows the change of the absorbance at 483 nm 

when Cu(I) is added to a mixture of 20 μM Bsu CsoR monomers and 50 μM BCS.  No 

change of absorbance is observed until about 20 μM Cu(I) is added, suggesting the Cu(I) 

added initially is bound to Bsu CsoR but not BCS. After Bsu CsoR is saturated with 1 

mol equiv Cu(I), additional Cu(I) forms a complex with BCS reported by the linear 

increase of absorbance at 483 nm, which is saturated at about 45 μM total Cu(I), 

reporting on the formation of ≈25 μM Cu(I)(BCS)2 complex.  The fact that no 
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Figure 28.  Bsu CsoR binds 1 monomer mol equiv of Cu(I). (A) Apoprotein-subtracted 
molar absorptivity spectrum of Cu(I):Bsu CsoR mixture at 1:1 molar ratio with the 
binding isotherm shown in the inset. (B) Anaerobic titration of 10 µM apo-Bsu CsoR 
with Cu(I) as monitored by change in tyrosine fluorescence. Conditions: 10 mM MES, 
0.2 M NaCl, pH 6.5, 25oC. 
 
 
 
 

A
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Cu(I)(BCS)2 complex is formed until saturation of Bsu CsoR suggests that Bsu CsoR 

binds Cu(I) with much higher affinity than BCS.  Due to the sharpness of the transition, 

this binding isotherm provides only a lower limit of the apparent binding affinity of 

KCu≥1019 M-1 when fit to a single site binding model [1:1 Cu(I) per protomer] under 

these solution conditions (Table 6).   Although CsoR is a tetramer (see below), 

microscopic binding constants for individual sites in the tetramer, and thus any 

cooperativity of metal binding to these sites, cannot be resolved by this assay under these 

conditions given the stoichiometric nature of the complex formation (Figure 12). 

Cu(I) forms a trigonal S2N coordination site in Bsu CsoR.  Copper K-edge X-ray 

absorption spectroscopy was used to determine the structure of Cu(I) complex formed at 

0.8:1 Cu(I):Bsu CsoR monomer molar ratio (chosen to assure that all Cu(I) was bound to 

protein).  The pre-edge peak at 8940 eV in the edge spectrum shown in Figure 30A is 

consistent with a 1s 4p excitation typical for 3-coordinate Cu(I) (122). The Cu K-edge 

extended X-ray absorption fine structure (EXAFS) spectrum as well as the Fourier 

transforms are shown in Figure 30B; structural parameters derived from EXAFS curve 

fitting are shown in Table 7.  The data are best fit to a 3-coordinate model, with two Cu-

S interactions at 2.20 Å and a single Cu-N/O interaction (fixed at 2.05 Å).  This Cu-S 

distance is consistent with 3-coordinate Cu(I) and is similar to the Cu-S distance 

previously reported for Mtb CsoR.  Significant outer-shell scattering observed between 3 

and 4 Å is consistent with the third coordinating ligand being a nitrogen atom from a His 

residues, possibly from His70 which corresponds to known Cu(I) ligand His61 in Mtb 

CsoR (39).  These data are consistent with the idea that Cu(I) is coordinated by Cys45’, 
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Table 6.  Metal and DNA binding affinities and allosteric coupling free energies for 

metalloderivatives of wild-type and E90A Bsu CsoRs. 

      

Bsu CsoR metal  metal binding affinitya DNA binding affinityb ΔGc  

    (M-1)  K1 (M-1) K2 (M-1) (kcal/mol)  

Wild-type apo - 3.1 (±0.8) x 107  8.3 (±2.2) x 107   - 

 Cu(I) ≥ 1019 2.9 (±0.4) x 106  ≤1.0 x 105 ≥ +5.4 

 Co(II) ≤ 105 - - - 

 Ni(II) 3.6 (±0.3) x 109 5.7 (±1.0) x 106 3.1 (±0.5) x 107 +1.6 (±0.3) 

 Zn(II) 1.6 (±0.1) x 108,c 1.0 (±0.3) x 107 1.5 (±0.4) x 107 +1.7 (±0.3) 

E90A apo - 9.5 (±3.0) x 106  1.3 (±0.4) x 107   - 

 Cu(I) ≥ 1019 4.8 (±2.0) x 106  1.1 (±0.4) x 108   –0.9 (±0.4) 
 

aThe results of fitting to a simple 1:1 (metal:monomer) binding model.  bSolution 

conditions: 10 mM MES, 0.4 M NaCl, 2 mM DTT, pH 6.5, 25 oC.  We note that unique 

values of K1 and K2 are not readily resolved in this assay (see Methods)   cA fit to two-

site step-wise dimer binding models gives KZn1= 1.7 (±0.4) x 109 M-1; KZn2= 4.5 (±0.3) x 

107 M-1.    
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Figure 29.  BCS competition experiment with wild-type Bsu CsoR. Different amounts 
of Cu(I) were mixed with 20 µM Bsu CsoR monomer and 50 µM BCS in buffer N with 
the absorption at 483 nm plotted against the total Cu(I) concentration.  The solid curve 
represents the best-fit to a simple competition model (see text for details). The dash lines 
represent simulations with log KCu=17 (green), 18 (blue) and 19 (red) under the same 
conditions. Conditions: 10 mM MES, 0.2 M NaCl, pH 6.5.  
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His70 and Cys74 in Bsu CsoR dimer, which are analogous to the Cu(I) ligands in Mtb 

CsoR dimer.  Virtually identical spectra and curve-fitting results were obtained for E90A 

Bsu CsoR, suggesting no significant change in the first-shell coordination of Cu(I) in this 

mutant (Figure 30C, Table 7). 

Both apo and Cu(I)-bound Bsu CsoRs are tetramers.  A preliminary characterization 

using Superdex 200 size exclusion chromatography on both apo and Cu(I)-bound Bsu 

CsoR revealed a single species roughly corresponding to a homotetramer in both cases. 

To better characterize the assembly state of Bsu CsoR in solution, analytical 

sedimentation equilibrium and velocity ultracentrifugation experiments were carried out 

with apo and Cu(I)-bound Bsu CsoRs in the low micromolar monomer concentration 

range.  

 The equilibrium scans were globally fit with a single ideal species model, with 

representative data and fits shown for the apo- and Cu(I)-bound Bsu CsoRs in Figure 

31A and Figure 31B, respectively.  For apo and Cu(I)-bound Bsu CsoR, the single 

species molecular weights of 41.0±0.5 kDa and 39.8±0.6 kDa, respectively, were 

obtained.  This suggests that the assembly state of both forms of CsoR is tetrameric 

under these solution conditions (expected molecular weight of 45.9 kDa) and a lower 

limit of the dimer-tetramerization equilibrium constant is 107 (M dimer)-1.  This is in full 

agreement with results for the Ni(II)/Co(II) sensor E. coli RcnR (103), but distinct from 

what was previously reported for Mtb CsoR, where a significant dimer-tetramer 

equilibrium was observed (39).  One possible explanation is that the dimer-tetramer 
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Table 7.  XAS fitting parameters for Bsu CsoRa 

 
Sample  

Fit Shell Ras σas
2 ΔE0 f'b (k range) 

Δk3χ (Å) (Å2) (eV)   

WT Bsu CsoR 1 Cu-S2 2.20 0.0023 -3.853 0.070 
(k = 2-12Å-1)   Cu-N1 2.05c 0.0016 [-3.853]d  
Δk3χ = 12.729  Cu-C1 [3.04] [0.0032] [-3.853]  

  Cu-C1 [3.08] [0.0033] [-3.853]  
  Cu-N1 [4.21] [0.0020] [-3.853]  
  Cu-C1 [4.24] [0.0020] [-3.853]  

E90A Bsu CsoR 1 Cu-S2 2.20 0.0024 -4.322 0.076 
(k = 2-12Å-1)  Cu-N1 2.05 0.0016 [-4.322]  
Δk3χ = 14.157  Cu-C1 [3.04] [0.0032] [-4.322]  

  Cu-C1 [3.08] [0.0033] [-4.322]  
  Cu-N1 [4.21] [0.0020] [-4.322]  
    Cu-C1 [4.24] [0.0020] [-4.322]   

a Shell is the chemical unit defined for the multiple scattering calculation. Subscripts 

denote the number of scatterers per metal. Ras is the metal-scatterer distance. σas
2 is a 

mean square deviation in Ras. ΔE0 is the shift in E0 for the theoretical scattering 

functions. 

b f' is a normalized error (chi-squared): 

 

c Underlined numbers were fixed at the indicated value (not optimized). 

d Numbers in square brackets were constrained to be either a multiple of the above value 

(σas
2) or to maintain a constant difference from the above value (Ras, ΔE0). 



 103

 

 

 

Figure 30.  X-ray absorption spectroscopy (XAS) of Cu(I)-bound Bsu CsoR. (A) Cu K-
edge X-ray absorption edge spectra of Cu(I)-bound WT (solid) and E90A Bsu CsoRs 
(dashed). Copper K-edge EXAFS spectra and the Fourier transforms (k3 weighted, k=2-
12 Å-1) for Cu(I)-bound WT (B) and the E90A Bsu CsoRs (C). In B and C, solid curves 
represent the experimental data and dashed curves represent best fits with parameters 
compiled in Table 7. 
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equilibrium of Mtb CsoR is influenced by the 30 amino acid C-terminal tail found only 

in CsoR homologs from pathogenic mycobacteria. 

 To further confirm the assembly state and obtain further insights into the 

hydrodynamic properties of the apo- and Cu(I)-bound tetramers, sedimentation velocity 

experiments were carried out under the same solution conditions.  Consistent with the 

equilibrium experiments, a single boundary was observed for all samples; quantitative 

analysis of these distribution plots is consistent with a single species of sedimentation 

coefficient 3.03 S for apo-Bsu CsoR and 3.34 S for Cu(I)-bound Bsu CsoR (Figure 31C 

and Figure 31D, respectively).  The fitted parameters and predicted hydrodynamic 

characteristics are compiled in Table 8.  These data taken collectively suggest that the 

dominant assembly state of each form of CsoR is a highly asymmetric tetramer with 

Cu(I) binding inducing a small but measurable change in the hydrodynamic properties of 

the molecule.   

Apo-Bsu CsoR binds operator DNA with 2:1 tetramer:DNA stoichiometry.  It was 

previously shown that Bsu CsoR is capable of binding to an operator in the promoter 

region of copZA operon, although the stoichiometry and affinity were not investigated in 

detail (105).  Size exclusion chromatography was first used to determine the DNA 

binding stoichiometry (Figure 32A).  Addition of 40 µM apo-Bsu CsoR monomer to 10 

µM DNA gives rise to a new peak with an elution volume of 13.7 mL, assigned to a Bsu 

CsoR-DNA complex, with a significant fraction of free DNA.  Addition of 80 µM apo-

Bsu CsoR monomer to 10 µM DNA reveals that only the 13.7 mL peak is observed with 

no evidence of free DNA, suggesting that all the protein and DNA added form the 
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Figure 31.  Analytical ultracentrifugation of apo and Cu(I)-bound Bsu CsoRs. (A) and 
(B) Representative equilibrium data with a global fit to a single ideal species model and 
residuals for both apo and Cu(I)-bound Bsu CsoR at 0.3 AU230, respectively. The three 
data sets correspond to different rotor speeds: 1) 19,300 rpm; 2) 30,600 rpm; 3) 38,700 
rpm.  The solid curves show a global fit to a single ideal species model (residues in 
upper panel). (C) and (D) Distribution of sedimentation coefficient of apo and Cu(I)-
bound Bsu CsoRs, respectively.  All parameters derived from sedimentation velocity fits 
are compiled in Table 8. 
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Table 8.  Summary of fitted parameters derived from the sedimentation velocity 

experiments with Bsu CsoR 

 

 CsoR s x 1013 (sec) D x 107 (cm2/sec) RMSD f/f0
a 

apo (0.3 OD230) 3.05 6.84 0.0067 1.50 

apo (0.8 OD230) 3.01 7.08 0.011 1.52 

Cu(I)-bound (0.3 OD230) 3.34 6.07 0.0082 1.37 

Cu(I)-bound (0.8 OD230) 3.34 6.10 0.0095 1.37 
 

a Frictional coefficients calculated from s and D upon fixing the molecular weight of the 

tetramer to 45.9 kDa. 
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complex.  Further addition of protein does not affect the protein-DNA complex peak at 

13.7 mL, with only free protein peak eluting at 15.9 mL (data not shown).  This suggests 

that the Bsu CsoR-DNA interaction saturates at 8:1 monomer:DNA ratio corresponding 

to two tetramers per DNA.  Similar experiments carried out with Cu(I)-bound Bsu CsoR 

reveals the elution of only free DNA and free protein and no protein-DNA complex peak 

(data not shown), which is consistent with the fact that Cu(I) binding to Bsu CsoR 

significantly decreases the DNA binding affinity.  

 Fluorescence anisotropy experiments first carried out in buffer N (0.2 M NaCl) 

with 2 mM DTT with 10 nM 30 bp DNA further confirm the stoichiometry.  Under these 

conditions, apo-Bsu CsoR binds the fluorescein-labeled 30 bp DNA with very high 

affinity (≥109 M-1) as revealed by the stoichiometric binding curve (Figure 32B).  The 

binding isotherm increases linearly and saturates at about 8 Bsu CsoR monomers to 1 

DNA, consistent with the stoichiometry determined by size exclusion chromatography.  

Since free Bsu CsoR is a stable tetramer, these data are consistent with a binding 

stoichiometry of two tetramers to one two-fold symmetric DNA. 

DNA binding affinity of apo and Cu(I)-bound Bsu CsoRs.  The apparent DNA binding 

affinity of apo-Bsu CsoR was estimated to be 2x107 M-1 by electrophoretic mobility shift 

assay (EMSA) in 20 mM Tris, 50 mM NaCl, 1 mM DTT at pH 8.0 (105).  To determine 

the binding affinity quantitatively, we performed the fluorescence anisotropy 

experiments in 10 mM MES, 0.4 M NaCl, 2 mM DTT, pH 6.5, 25 oC. Figure 33A shows 

a typical normalized Bsu CsoR-DNA binding curve monitored by fluorescence 

anisotropy. Since only a lower limit of tetramerization constant of 107 M-1 was 
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Figure 32.  Bsu CsoR-copZA operator DNA binding stoichiometry. (A) Elution profile 
obtained with different Bsu CsoR:DNA ratios from a Superdex 200 column as monitored 
by absorption at 260nm. Conditions: 10 mM MES, 0.2 M NaCl, 2 mM DTT, pH 6.5. (B) 
Normalized DNA binding isotherm based on fluorescence anisotropy with 10 nM DNA 
in 10 mM MES, pH 6.5, 0.2 M NaCl, 2 mM DTT, 25oC. 
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determined by analytical ultracentrifugation, these DNA binding data were fit using a 

stepwise binding model of two non-dissociable tetramers to one DNA (Appendix C).  

Apo-Bsu CsoR binds to the DNA with K1
apo=3.1(±0.8) x 107 M-1 and K2

apo = 8.3 (±2.2) x 

107 M-1, while Cu(I)-bound Bsu CsoR binds the same DNA with K1
Cu=2.9(±0.4) x 106 

M-1 and K2
Cu≤1.0 x 105 M-1.  This gives an operationally defined coupling free energy 

(ΔGc) ≥ 5.4 kcal/mol (Table 6).  The second binding event was not observed for Cu(I)-

bound protein under the experimental conditions, therefore only an upper limit for K2
Cu 

is reported here. 

DNA binding by E90A CsoR is not regulated by Cu(I) binding.  How Cu(I) binding 

changes the conformation and/or assembly state of CsoR in a way that results in an 

allosterically inhibited conformation remains unclear; however, data in Chapter III 

suggest that Tyr35, His61 and Glu81 in Mtb CsoR are involved in the regulation (39).  

Therefore, to test whether Bsu CsoR shares an allosteric mechanism that is similar to that 

suggested for Mtb CsoR, the equivalent residue of Glu81, Glu90 in Bsu CsoR, was 

substituted with an Ala.  As shown in Figure 33B, Cu(I)-bound E90A CsoR binds the 30 

bp DNA with a high affinity that is similar in magnitude to that of apo-E90A CsoR, 

suggesting that Cu(I) binding does not negatively regulate the DNA binding affinity of 

this mutant.  Since the Cu(I)-binding affinity (Table 6) and the coordination environment 

of E90A CsoR (Figure 30) are indistinguishable from those of wild-type CsoR, these 

data suggest that E90 plays an important role in mediating Cu(I)-dependent negative 

regulation of DNA binding. 
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Figure 33.  Normalized fluorescence anisotropy-based DNA binding isotherms of WT 
(A) and E90A (B) Bsu CsoRs acquired in the absence (○) and presence (□) of Cu(I).  
Curves represent the best fit using a stepwise two tetramer DNA binding model with the 
fitting parameters given in Table 6. Conditions: 10 mM MES, pH 6.5, 0.4 M NaCl, 2 
mM DTT, 25oC. 
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The Binding of Zn(II), Co(II) and Ni(II) to Bsu CsoR.  Although studies in Mtb and in M. 

smegmatis reveal that Cu(I) is the primary inducer of csoR-dependent gene expression, it 

was of interest to determine the specificity of Cu(I) binding and the degree to which 

other metals could allosterically regulate copZA operator-promoter binding.  A Zn(II) 

titration using magfura-2 as a competition chelator shows that Bsu CsoR binds Zn(II) 

with KZn=1.6 (±0.1) x 108 M-1 (Table 6).  To provide insights into the coordination 

geometry of Zn(II), Co(II) was used as a structural surrogate for Zn(II) (70, 110).  Not 

surprisingly, Co(II) binds to Bsu CsoR with an affinity far lower than that of Zn(II), with 

KCo ≤105 M-1 under the same conditions.  As shown in Figure 34A, Co(II) bound Bsu 

CsoR shows strong ligand-to-metal charge transfer (LMCT) at 290 nm with an ε=1500 

M-1cm-1 and at 335 nm with an ε=800 M-1cm-1.  The d-d transition envelope centered at 

≈600 nm gives an ε≈300 M-1cm-1.   These data taken together are consistent with a 

tetrahedral or distorted tetrahedral Co(II) complex with one or two of the Cys residues as 

donor atoms to the Co(II).  Since Co(II) is bound tetrahedrally, Zn(II) may well bind 

with the same coordination geometry, although this was not directly determined here. 

 When apo-Bsu CsoR binds Ni(II), the UV-vis absorption spectrum shows a 

feature at ≈480 nm with a molar intensity of ε=100 M-1cm-1(Figure 34B and inset).  This 

feature is consistent with a square planar or distorted square planar coordination 

geometry as observed previously for E. coli NikR (129) and nickel-substituted mutant 

retroviral-type zinc-finger peptides (130).  The intense ligand-to-metal charge transfer 

transitions in the near ultraviolet region suggest that Cys residues are involved in 

coordinating Ni(II).  The binding isotherm as shown in the inset of Figure 34B shows a  
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Figure 34.  Co(II) and Ni(II) binding to Bsu CsoR. Apoprotein-subtracted molar 
absorptivity spectra of Co(II):Bsu CsoR mixture at 2:1 molar ratio (A) or  Ni(II):Bsu 
CsoR mixture at 1:1 molar ratio (B). The binding isotherms shown in the insets are fitted 
with a simple 1:1 binding model with parameters collected in Table 6. 
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linear increase up to about 1.2 mol equiv Ni(II) followed by a sharp transition to a 

plateau, revealing that Bsu CsoR binds ≈1 mol equiv Ni(II) with a binding affinity ≥107 

M-1 (i.e., stoichiometrically).  The binding affinity estimated by an EGTA competition 

experiment was determined to be KNi=3.6(±0.3) x 109 M-1 (Table 6). 

 These metal binding experiments clearly show that Bsu CsoR is also capable of 

binding other divalent metal ions with widely different affinities and coordination 

geometries.  To test whether these metal ions are significant allosteric negative effectors 

of DNA binding, fluorescence anisotropy experiments analogous to that shown in Figure 

33 for Cu(I) were carried out with excess metal ion to ensure that the metal-bound form 

of the protein is the predominant species in solution.  The fitted parameters are compiled 

in Table 6.  Both Zn(II) and Ni(II) complexed Bsu CsoR bind to the 30 bp copZA 

operator DNA with affinity close to that of apo-Bsu CsoR, each resulting in only a small 

positive coupling free energy (Figure 35, Table 6).  This is consistent with previous 

observations that divalent metal ions are poor regulators of DNA binding of Mtb CsoR 

both in vitro and in vivo, despite their high equilibrium affinities for these metals (39). 

 

DISCUSSION 

 Bsu CsoR regulates the transcription of copZA operon, which encodes two 

important components of the Cu homeostasis system, the Cu-chaperone CopZ and the 

Cu-effluxer CopA. It is widely accepted that in both eukaryotes and prokaryotes, the 

intracellular trafficking of copper ions is dependent on metallochaperones which 

reinforces the idea that there is little or no “free” or bioavailable copper ions in the cell 
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Figure 35. Normalized fluorescence anisotropy-based DNA binding isotherms of apo- 
(○), Zn(II)- (▲) and Ni(II)-bound (□) WT Bsu CsoRs. The solid, dash and dot curves 
represent data fit by a stepwise binding model (Figure 12, Appendix C) and the parameters 
are compiled in Table 6. Conditions: 10 mM MES, 0.4 M NaCl, 2 mM DTT, pH 6.5, 
25oC. 
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(29, 131, 132).  It is still unclear how Bsu CsoR, as a Cu-sensor, obtains the copper ion 

in the cell, although one strong possibility is from CopZ. Such a CopZ-dependent 

transfer of Cu to Bsu CsoR is analogous to the accepted mechanism in Enterococcus 

hirae, where the Zn(II)-bound form of the Cu-sensor CopY acquires Cu from the Cu-

chaperone CopZ with displacement of Zn(II) (133).  Under uninduced conditions, a 

background level of CopZ in the cell functions as a copper chelator or buffer, perhaps 

delivering copper to target proteins.  The ratio between apo and Cu-bound CopZ may be 

thermodynamically and kinetically maintained in a certain “window” by various cellular 

protein-protein interactions and Cu-transfer reactions.  Upon Cu stress, Cu-bound CopZ 

may be formed quickly, therefore making it possible to transfer Cu to Bsu CsoR, leading 

to derepression of the copZA operon; this, in turn, results in increased expression of apo-

CopZ and CopA required to efflux excess Cu out of cytosol, bringing this ratio back into 

a normal or unstressed range.  Cu(I)-bound Bsu CsoR may then be degraded or 

potentially transfer Cu to other target proteins, e.g. CopA itself, via a ligand exchange 

reaction (12). It is also unknown if apo-CsoR or apo-CsoR bound to the operator is 

loaded with Zn(II), as has been proposed for E. hirae CopY.                      

 Bsu and Mtb CsoRs share very high amino acid sequence identity.  In particular, 

all three proposed Cu ligands are conserved as are two proposed “second coordination 

shell” residues, corresponding to Tyr35 (Tyr44 in Bsu) and Glu81 (Glu90 in Bsu) in Mtb 

CsoR.  The major difference between the two CsoRs is that Mtb CsoR contains a unique 

≈30 amino acid C-terminal tail which is missing in the previously solved crystal 

structure of Cu(I)-CsoR from Mtb (Chapter II) (39).  Aside from this, these two CsoRs 
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possess very similar biochemical and biophysical properties.  Both coordinate 1 

monomer mol equiv of Cu(I) with very high affinity to form a trigonal planar S2N 

coordination geometry with very similar Cu-S distances. It is also the case that Bsu CsoR 

is a stable tetramer in the low micromolar (monomer) concentration range, while a 

dimer-tetramer equilibrium was observed in previous analytical ultracentrifugation 

studies carried out on full-length Mtb CsoR (39).  Adjacent C2-symmetric dimers in the 

crystal structure of Cu(I)-bound Mtb CsoR pack against one another to form a tetramer 

with D2 rotational symmetry.  In this configuration of the tetramer, the C-terminal tail of 

Mtb CsoR would be positioned at the dimer-dimer or tetramer interface; it therefore 

seems possible that the flexible C-terminal tail may influence the Mtb CsoR tetramer.  

This has yet to be investigated systematically (see Chapter VI). 

 We find no significant differences in assembly states of the apo and Cu(I)-bound 

forms of Bsu CsoR, which are both tetrameric under the conditions investigated.  

Therefore, only a lower limit of the tetramerization constant (Ktet) of about 107 (M 

dimer)-1 could be estimated from these data.  However, differences in Ktet in the 

nanomolar concentration range cannot be ruled out by these data; if this is the case, they 

may be partly responsible for the different DNA binding affinities reported here for apo- 

and Cu(I)-CsoRs.  On the other hand, the sedimentation velocity experiments show a 

small increase in sedimentation coefficient in Cu(I)-bound Bsu CsoR, suggesting a 

conformation with a smaller frictional coefficient, thus more spherical relative to  the 

apoprotein (Table 8).  However, this change may not play a primary role in allosteric 
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regulation of DNA binding because a similar change in sedimentation coefficient 

appears to characterize E90A CsoR as well (data not shown).  

 Understanding what happens when a particular metal sensor binds the “wrong” 

metal is just as important as understanding how the cognate metal ion drives regulation 

of gene expression (5).  We show here that the metal binding site of Bsu CsoR can adopt 

a range of distinct coordination numbers and geometries upon binding different metal 

ions.  Co(II), and by inference Zn(II), adopts a tetrahedral or distorted tetrahedral 

geometry while Ni(II) appears to form a square planar or distorted square planar 

geometry.  Each complex incorporates one or both Cys residues in Bsu CsoR; in fact, it 

is formally possible that each employs all three Cu(I) ligands while adding a fourth 

ligand, perhaps from the N-terminal region like in RcnR (103), or from solvent.  In any 

case, the Co(II) and Ni(II) coordination geometries are clearly distinct from that of 

RcnR, where each metal adopts an octahedral or pseudo-octahedral complex (103).  

Strikingly, while the binding of Cu(I) stabilizes an allosterically inhibited conformation 

of Bsu CsoR, neither Zn(II) nor Ni(II) is capable of strongly regulating the DNA 

binding, despite their high equilibrium affinities (albeit ≥10 orders of magnitude smaller 

than KCu) (Table 6).  In fact, KNi for CsoR may well be comparable to KNi for the bona 

fide Ni/Co sensor E. coli RcnR; in contrast, KCo is at least 104-smaller for Bsu CsoR (KZn 

has not been reported for RcnR) (103). These features are consistent with the emerging 

theme that formation of the “native” coordination geometry is most closely linked to 

biological metalloregulation, rather than absolute metal binding affinity (6, 70, 113). 

This, in turn, suggests that specific features of trigonal planar Cu(I) coordination 
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complex in CsoR may organize a “second coordination shell” of interactions used to 

drive defined conformational changes that are linked to Cu(I)-mediated derepression of 

gene expression (see Chapter III) (39, 110). 

 As discussed in the previous chapters, one strong candidate for propagating this 

structural change in Cu(I)-CsoRs is the Nε2 face of His70 (His61 in Mtb CsoR).  The 

crystal structure of Mtb CsoR reveals that this face of the His61 imidazole ring is in 

close proximity to the side chains of both Glu81and Tyr35’ in Mtb CsoR (39) which 

correspond to Glu90 and Tyr44’ in Bsu CsoR.  Glu90 is a highly conserved residue in 

the α3 helix of all Cu(I)-specific CsoRs, and we show here that an Ala substitution 

abolishes negative regulation of DNA binding without significantly interfering with the 

Cu(I) affinity or coordination geometry.  We note that the significant quenching of the 

steady-state tyrosine fluorescence upon Cu(I) binding is consistent with a tyrosinate-like 

species, that might form as a result of hydrogen bonding of the hydroxyl proton with an 

as yet unidentified acceptor, an excellent candidate for which is Glu90 (134).  

Interestingly, both of these conserved residues have also been shown to be crucial for 

allosteric regulation in Mtb CsoR (see Chapter III). 
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CHAPTER V 

BIOCHEMICAL PROPERTIES OF A PUTATIVE Cu(I)-SENSING CsoR FROM 

Staphylococcus aureus 

 

INTRODUCTION 

 In the previous chapter, the transcriptional regulator Bsu CsoR was 

biochemically and biophysically characterized. The genes encoding both Mtb and Bsu 

CsoRs have common genomic neighbors including genes encoding a putative P-type 

ATPase predicted to efflux Cu(I) from the cytoplasm, and in the case of Bsu CsoR, a 

well-characterized Cu(I) metallochaperone (135). However, this is not always the case. 

Many genes encoding what we anticipate are Cu(I)-specific CsoRs do not have gene 

neighbors directly implicated in Cu homeostasis, thus making it difficult to predict the 

gene(s) that might be regulated. S. aureus CsoR (Sau CsoR) is one such example and is 

discussed here.  

 A gene encoding a putative Cu effluxing P-type ATPase CopA in the Newman 

strain of Staphylococcus aureus (NWMN_2457) was the first functionally characterized 

gene to be related to Cu resistance of S. aureus (136). The transcriptional level of copA 

in the laboratory strain, S. aureus SH1000, is strongly induced when elevated CuSO4 

concentrations are added to the medium. This immediately suggests that S. aureus must 

encode a regulator with a role in Cu(I) homeostasis. However, no Cu-specific 

metalloregulatory protein has been identified in this microorganism (136). Close 

inspection of the promoter region of copA reveals a GC-rich inverted repeat very similar 



 120

to the inverted repeats found in the Mtb CsoO and Bsu copZA operator-promoter regions 

(Figure 36) (39, 111). Therefore, we proposed that the copA gene in S. aureus is 

regulated by a CsoR, despite the fact that there are no CsoR-like proteins close to the 

copA gene (Figure 36). 

 A blast search using Mtb CsoR sequence as query reveals two CsoR homologs in 

the Newman strain of S. aureus. These are NWMN_1991 (Figure 36) and another 

unannotated open reading frame (ORF) between NWMN_0026 and NWMN_0027 

(encoded by the complementary strand of 37974-38234). Further analysis of the protein 

sequences reveals that the latter contains only the x-Cys-x-Cys signature, and is 

classified as a putative oxidative stress sensor (Sau CsoRox, see Chapter VI) (Figure 9) 

(103). On the other hand, NWMN_1991 contains the x-Cys-His-Cys signature and 

shares many other structural features of a bona fide Cu sensor. This gene is tentatively 

designated Sau CsoR proposed to encode a Cu(I)-sensor that regulates the transcription 

of copA and potentially copZ genes and perhaps others (Figure 36).  

 To test this, a ΔcsoR strain of S. aureus Newman was constructed in the 

laboratory of Dr. Eric Skaar at Vanderbilt University. Preliminary studies show that this 

strain is less sensitive to elevated Cu concentrations in the growth media, a phenotype 

that is similar to that of a B. subtilis ∆csoR strain (Appendix E) (105). This would occur 

as a result of the constitutive expression of copA gene, consistent with the role of CsoR 

as a repressor of copA and copZ transcription. As was previously done for Mtb and Bsu 

CsoRs, the putative Sau CsoR was over expressed and purified from E. coli and 

characterized biochemically. Sau CsoR binds one mol equiv Cu(I) per monomer with 
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very high affinity and x-ray absorption spectroscopy suggests a 3-coordinate Cu(I) 

complex, likely formed by the conserved residues Cys41, His66 and Cys70. More 

importantly, Sau CsoR binds a 39 bp DNA cop operator (CopO) fragment derived from 

the promoter region of copA gene, and Cu(I) binding greatly decreases the binding 

affinity. The findings are consistent with a derepression model established for other 

CsoRs.  

 

MATERIALS AND METHODS 

Plasmid construction and protein purification.  The Sau csoR gene was initially 

amplified from the region 2212576-2212914 as annotated for NWMN_1991 in S. aureus 

Newman genomic DNA (provided by Dr. Eric Skaar at Vanderbilt University). It was 

then cloned into pET3d vector between the NcoI and BamHI restriction sites. The 

resultant protein after expression showed poor solubility and no DNA binding activity 

on a 39 bp DNA derived from the promoter of S. aureus copA gene (Figure 36). Further 

inspection of the DNA sequence of csoR gene revealed another initiation codon at 

2212869, resulting in an ORF 15 codons shorter than the annotated CsoR with an 

obvious ribosome binding site just upstream of this initiation codon. A multiple 

sequence alignment of Cu(I)-sensing CsoRs reveals that no other CsoR contains an 

extended N-terminal region (Figure 9). Therefore, the region corresponding to 2212576-

2212869 was hypothesized to represent the actual ORF encoding CsoR and was further 

amplified from the genome and cloned into pET3d vector between the NcoI and BamHI 

restriction sites. The second residue was changed to an alanine for cloning purposes.  
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Figure 36.  Genomic location of genes encoding CopA, CopZ and a putative CsoR in S. 
aureus Newman. The DNA sequence in the copA promoter region is also shown in 
comparison with Bsu CopO which has been shown to be bound by Bsu CsoR in Chapter 
IV (105).  
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Amino acid substitutions were introduced to this plasmid by site-directed quick-change 

mutagenesis. The sequences of all the resultant plasmids were verified by DNA 

sequencing. 

 Plasmids carrying wild-type or mutant Sau CsoRs were transformed into E. coli 

pLysS. A single colony from an LB plate containing 100 mg/L ampicillin was inoculated 

into 200 mL LB medium containing 100 mg/L ampicillin and grown overnight in a 37 

oC shaker. 20 mL of the overnight culture was then used to inoculate 1 L of the same LB 

medium and grown at 37 oC until OD600 reached 0.6-0.8. 0.4 mM IPTG was then added 

and cells were grown for additional 2 h before harvesting by low speed centrifugation. 

Cells were resuspended in 200 mL Buffer E (25 mM HEPES, pH 7.0, 2 mM EDTA, 2 

mM DTT) and lysed by sonication. After centrifugation, 0.15% (v/v) of PEI was added 

to the supernatant to precipitate the nucleic acids. Both wild-type and C41A Sau CsoR 

appeared to be in the PEI pellet which was then resuspended in Buffer E containing 0.5 

M NaCl. In contrast, H66A Sau CsoR appeared to reside in the PEI supernatant fraction. 

The supernatant containing Sau CsoR was then subjected to ammonium sulfate 

precipitation and the resulting pellet was resuspended in Buffer E and dialyzed against 

Buffer E containing 0.05 M NaCl. The sample was then purified by Q Fast Flow column 

with Buffer E using a salt gradient of 0.05 – 0.5 M NaCl. Fractions containing Sau CsoR 

were combined and concentrated to a final volume of ~3 mL. 1 mL of the resultant 

protein was then loaded onto a Superdex 200 30/100GL size exclusion column (GE 

Healthcare, NJ) pre-equilibrated with Buffer E containing 0.3 M NaCl. The fractions 

containing Sau CsoR were combined and dialyzed against Buffer E containing 0.05 M 



 124

NaCl and loaded onto a MonoQ column for further purification. Fractions from MonoQ 

column containing Sau CsoR were then pooled and concentrated to a volume of ~6 mL 

and dialyzed into Buffer S (10 mM HEPES, 0.2 M NaCl, pH 7.0) in the glovebox. The 

purity of the final products was estimated by visualization of Coomassie-stained 18% 

Tris-glycine SDS-PAGE gels to be ≥90%. Protein concentration was determined by 

using a ε280=1615 M-1cm-1. The free thiol content was determined by the DTNB assay to 

be more than 90% of expected value (2.0 expected) (39, 105). Less than 0.1% copper 

was detected by atomic absorption spectroscopy in all purified protein samples. 

Cu(I) binding experiments.  see Methods in Chapter II 

X-ray absorption spectroscopy.  see Methods in Chapter II 

Size exclusion chromatography.  100 μL of 50 μM Sau CsoR monomer was loaded on to 

a Superdex 200 (GE Healthcare, NJ) column pre-equilibrated with 10 mM HEPES, 0.4 

M NaCl, 2 mM DTT, pH 7.0 on an Äkta-10 purifier. The elution profile was monitored 

by UV absorbance at 220 nm, 260 nm and 280 nm simultaneously.  

Electrophoretic mobility shift assay (EMSA).  Different amounts of Sau CsoR (1-10 μM 

monomer) were mixed with 0.5 μM 39 bp DNA (CopO) (5’-CGATTGACTTATATACC 

TATAGGGGGTACATTAGACGTG-3’) derived from the promoter region of the S. 

aureus copA gene in Buffer S containing 2 mM DTT. For Cu(I)-bound samples, Sau 

CsoRs were loaded with 1.0 mol equiv Cu(I) before adding to the DNA. After 

incubating for 30 min at room temperature, the mixtures were loaded onto a 6% TBE 

polyacrylamide gel (Invitrogen, CA) and run at 120 V for 45 min before staining with 
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ethidium bromide. The gel was then scanned by a Typhoon Imager (GE Healthcare, NJ) 

in the Physical Biochemistry Instrumentation Facility at Indiana University.  

 

RESULTS 

Sau CsoR binds 1 mol equiv Cu(I) per monomer with high affinity.  To show that Sau 

CsoR binds Cu(I) in vitro, CuCl was directly titrated anaerobically into Sau CsoR 

purified from E. coli. Binding of Cu(I) to CsoR results in a ligand to metal charge 

transfer (LMCT) at about 240 nm with an ε≈15000 M-1cm-1 (Figure 37). Similar features 

characterize Cu(I) binding to Mtb and Bsu CsoRs, suggesting two Cys-Cu(I) 

coordination bonds (39, 111). The increase of absorbance saturates upon ~1 mol equiv 

Cu(I) per Sau CsoR monomer (Figure 37 inset). Therefore, Sau CsoR binds 1 mol equiv 

Cu(I) per monomer, and two Cys residues are likely involved in the coordination. 

  The Cu(I) binding affinity was further quantified using a BCS competition assay 

in which different BCS concentrations were mixed with CuCl and Sau CsoR 

anaerobically (see Methods). When Cu(I) is added into a mixture of Sau CsoR and BCS, 

CsoR strongly competes with BCS in binding Cu(I), suggesting an affinity similar to, or 

higher than, BCS. Log KCu was calculated to be 18.1±0.5 by quantification of the 

Cu(I)(BCS)2 complex in the solution based on the absorption at 483 nm. Substitution of 

Cys41 or His66 (equivalent of C36 and His61 in Mtb CsoR) with alanine results in a 

significant decrease in KCu, with log KCu of 14.5±0.1 and 15.3±0.1 for C41A and H66A 

CsoRs, respectively. These data are consistent with the scenario that these two residues 

are involved in Cu(I) binding. 
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Figure 37. Sau CsoR binds 1 monomer mol equiv of Cu(I) with high affinity. 
Apoprotein-subtracted molar absorptivity spectrum of Cu(I):Sau CsoR mixture at 1:1 
molar ratio. Inset: the binding isotherm of anaerobic titration of CuCl into 22 μM Sau 
CsoR monomer. Conditions: 10 mM HEPES, 0.2 M NaCl, pH 7.0. 
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Sau CsoR forms a 3-coordinate complex with Cu(I).  The Cu(I) coordination geometry 

was further determined by x-ray absorption spectroscopy. As shown in Figure 38A, 

when bound to 0.8 mol equiv Cu(I), the pre-edge peak at 8940 eV is consistent with a 

1s 4p excitation typical for 3-coordinate Cu(I) (Figure 38A) (39, 111, 122). This is 

very similar to what has been shown for Mtb CsoR 1-106 (Chapter III). The Fourier 

Transform as well as the Cu K-edge extended X-ray absorption fine structure (EXAFS) 

spectrum for Sau CsoR with the best fit are shown in Figure 38B and C, respectively. 

The fitted parameters are compiled in Table 9. The fit suggests two Cu-S interactions at 

2.20 Å and one Cu-N/O interaction at 2.01 Å. The Cu-S distances are very similar to the 

previous reported distances for Mtb and Bsu CsoRs.  The significant outer shell 

scattering at 3-4 Å is consistent with the third ligand being a histidine residue. Sau CsoR 

His66 corresponds to His61 in Mtb CsoR and His70 in Bsu CsoR (Figure 9), and the 

Cu(I) binding affinity is significantly decreased in the H66A mutant. Therefore, it is 

highly likely that His66 serves as the third ligand, together with Cys41 and Cys70, to 

form the S2N coordination site for Cu(I). 

Sau CsoR self-associates in solution.  During the purification of Sau CsoR, it was 

observed that CsoR elutes from a size exclusion column much earlier than what had 

been previously observed for Mtb and Bsu CsoRs. This suggests that the assembly state 

of Sau CsoR may be considerably larger than a tetramer. To test this, 50 μM Sau CsoR 

monomer was loaded onto a Superdex 200 column. The elution profile revealed a highly 

asymmetric peak with a maximum absorbance at ~11.7 mL corresponding to a molecular 

weight in excess of 300 kDa (Figure 39). Such asymmetry suggests that there are  
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Figure 38.  X-ray absorption spectroscopy (XAS) of Cu(I)-bound Sau CsoR. (A) Cu K-
edge X-ray absorption edge spectra of Cu(I)-bound WT Sau CsoR (solid black) and Mtb 
CsoR 1-106 (dashed blue) exactly the same as shown in Chapter III. The Fourier 
transforms (k3 weighted, k=2-12 Å-1) and copper K-edge EXAFS spectrum for Cu(I)-
bound WT Sau CsoR are shown in panels (B) and (C), respectively. The solid red curves 
in B and C represent the best fits with parameters compiled in Table 9. 
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Table 9. XAS fitting parameters for Sau CsoRa. 
 

Sample  
Fit Shell Ras σas

2 ΔE0 f'b (k range) 
Δk3χ (Å) (Å2) (eV)   

Sau CsoR 1 Cu-S2 2.20 0.0028 -5.420 0.102 
Cu-N1 2.01 0.0016 [-5.420]c 
Cu-C1 [2.99] [0.0032] [-5.420] 
Cu-C1 [3.04] [0.0033] [-5.420] 
Cu-N1 [4.17] [0.0020] [-5.420] 

    Cu-C1 [4.22] [0.0020] [-5.420]   
 
a Shell is the chemical unit defined for the multiple scattering calculation. Subscripts 

denote the number of scatterers per metal. Ras is the metal-scatterer distance. σas
2 is a 

mean square deviation in Ras. ΔE0 is the shift in E0 for the theoretical scattering 

functions. 

b f' is a normalized error (chi-squared): 

 

c Numbers in square brackets were constrained to be either a multiple of the above value 

(σas
2) or to maintain a constant difference from the above value (Ras, ΔE0). 
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Figure 39.  Elution profile of 50 μM Sau CsoR monomer from a Superdex G200 
column. Conditions: 10 mM HEPES, 0.4 M NaCl, 2 mM DTT, pH 7.0. 
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multiple oligomerization states in the solution, clearly distinct from the Bsu CsoR 

tetramer, which elutes at ~15.9 mL from the same column (Figure 39); the “shoulder” in 

the elution profile at the same position may correspond to tetrameric Sau CsoR (10 mM 

HEPES, pH 7.0, 0.4 M NaCl, 2 mM DTT). The solution condition dependence and Cu(I) 

dependence of the assembly states, as well as the functional relevance, are not yet 

known.  

DNA binding of Sau CsoR.  To test whether Sau CsoR is involved in Cu homeostasis, a 

ΔcsoR strain was first made and its growth under different Cu concentrations in the 

medium was tested in collaboration with Dr. Eric Skaar’s laboratory. As shown in 

Appendix E, wild-type S. aureus Newman strain shows slower growth with increasing 

concentrations of Cu in the medium, suggesting the elevated Cu is toxic to the cell. 

Interestingly, the ΔcsoR strain shows no such growth phenotype at Cu concentration as 

high as 125 μM and only 500 μM Cu in the medium appears to be toxic. These data 

suggest that the ΔcsoR strain is less sensitive to Cu-stress, which is analogous to what 

has been found in ΔcsoR strain of B. subtilis (105). Since we hypothesize that CsoR is a 

repressor for the copA gene encoding a Cu-effluxing P-type ATPase, in the ΔcsoR strain, 

copA gene is expected to be constitutively transcribed regardless of Cu concentration. 

Such transcription level of copA may allow the strain to be more resistant to Cu stress 

comparing to wild-type strain, in which copA gene is at least partly repressed under low 

Cu concentrations.  

 Based on these observations, it was postulated that Sau CsoR regulates the 

transcription of copA gene by binding to the promoter region, in a fashion similar to that 
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of Mtb and Bsu CsoRs. To test this, a 39 bp DNA derived from the copA gene promoter 

region (Sau CopO) containing an inverted repeat analogous to those of Mtb CsoO and 

Bsu CopO (Figure 36) is used in an eletrophoretic mobility shift assay (EMSA). As 

shown in Figure 40A, Sau CsoR is capable of forming a complex with this 39 bp DNA 

in the apo-form, while addition of Cu(I) to the mixtures inhibits the formation of such a 

complex. This is consistent with what has been shown previously for Mtb CsoR (Chapter 

II) and Bsu CsoR (Chapter IV), in which Sau CsoR in the apo-form binds to the 

promoter region of copA gene and therefore represses the transcription, while Cu(I) 

binding to Sau CsoR induces transcriptional derepression. 

 Furthermore, a mutation of each of the two Cu(I) ligands, Cys41 and His66, 

alters the DNA binding properties. As shown in Figure 40B, no H66A CsoR-DNA 

complex is detected under these conditions (10 mM HEPES, 0.2 M NaCl, 2 mM DTT, 

pH 7.0), suggesting that this mutant is unable to bind to the DNA or simply binds with 

very low affinity; note that this was previously established for Mtb H61A CsoR (Chapter 

II and III) (Table 1). This reveals that the key allosteric residue His66 may have a third 

function, which is to play a direct role in DNA binding, in addition to Cu(I) binding and 

allosteric coupling (Chapter III). On the other hand, Sau C41A CsoR is capable of 

binding the DNA in the presence or absence of bound Cu(I) (Figure 40B). This finding 

is also analogous to the findings for Mtb C36A CsoR (Table 1). However, the loss of 

Cu(I)-dependent regulation likely results from significant change in the coordination 

geometry and Cu(I) binding affinity, but not in the allosteric regulation pathway itself.  
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Figure 40.  DNA binding of wild-type Sau CsoR (A) and H66A and C41A mutants (B) 
in absence or presence of saturating Cu(I) as monitored by EMSA. Possible non-specific 
H66A CsoR-DNA complex may form under the high DNA concentration (0.5 μM) used 
here as indicated by the arrow in panel (B).  Condition: 10 mM HEPES, 0.2 M NaCl, 2 
mM DTT, pH 7.0. 
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DISCUSSION 

 These data provide the first evidence that the gene designated NWMN_1991 may 

encode a CsoR in S. aureus that functions as a Cu(I)-sensor protein in regulating the 

transcription of copA required to mitigate Cu(I) stress by effluxing Cu from the 

cytoplasm. Both the biological and biochemical data are consistent with a derepression 

model similar to that described for Mtb and Bsu CsoRs, in which the apo Sau CsoR 

binds to the promoter region of copA gene and represses the transcription, while Cu(I) 

binding induces derepression.  

 The Sau ΔcsoR strain constructed by our collaborator has been found to be more 

resistant to Cu stress (Appendix E). The DNA binding study reported here suggests that 

Sau C41A CsoR binds to the DNA regardless of the presence of Cu(I). Therefore, a S. 

aureus strain carrying C41A CsoR is expected to repress the transcription of copA even 

under Cu stress and will be more sensitive to Cu stress when compared to the wild-type 

strain. Thus, C41A CsoR will function as a dominant negative mutant. On the other 

hand, Sau H66A CsoR is incapable of binding the DNA. The transcription of copA in a 

strain carrying H66A is expected to be constitutively on and may present a phenotype 

that is similar to that of the ΔcsoR strain (Appendix  EAPPENDIX E). The studies of 

the Cu resistance of these two strains will provide more convincing evidence to support 

the proposed function of Sau CsoR. RT-PCR experiments being carried out to determine 

the transcription of copA in these different strains comparing to wild-type strain grown 

under different Cu concentrations in the medium will also be necessary to verify the 

proposed role of CsoR in transcriptional regulation. In addition, the Cu content in these 
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different S. aureus strains is being measured by ICP-MS (9) with the prediction that 

strains with constitutive copA transcription will be expected to have a low cytosolic Cu 

content, relative to C41A CsoR-allele containing strains.  

 It is also noted that the gene encoding the proposed Cu-chaperone CopZ is next 

to copA (Figure 36). Although the transcription of copZ gene is also Cu-dependent, these 

two genes do not seem to be co-transcribed (136). Therefore, it is not yet known whether 

the transcription of copZ is also regulated by CsoR or some other as yet unknown 

regulator. An assay to determine whether CsoR can bind the promoter region of copZ as 

well as the transcription level of copZ in the ΔcsoR strain comparing to the wild-type 

strain will be required to understand this.  

 Efforts have also been made to quantify the DNA binding affinity of apo and 

Cu(I)-bound Sau CsoR using a fluorescence anisotropy-based assay as described in 

previous chapters. In fact, the DNA binding affinity of apo-Sau CsoR was determined to 

be A2
apo≈1014 M-2 with a change in the anisotropy of the fluorescein fluorescence of the 

39 bp DNA consistent with a stoichiometry of two tetramers per DNA (data not shown). 

These characteristics are similar to that determined for apo-Mtb CsoR determined under 

similar solution conditions (Chapter II). However, when Cu(I)-bound Sau CsoR was 

titrated into the same DNA, a binding isotherm that fails to “saturate” was obtained. This 

is likely the result of non-specific interactions between high molecular weight CsoR 

aggregates and the DNA which may be enhanced by Cu(I). Systematically changing of 

solution conditions, i.e., salt concentration and pH, failed to prevent such interactions 

(data not shown). Interestingly, no complex is observed in the EMSA assay carried out 
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here (Figure 40A), thus consistent with the idea that these interactions between Cu(I)-

bound CsoR and DNA are weak and kinetically labile and thus dissociate during 

electrophoresis. Although the DNA binding affinity is unable to be obtained by EMSA 

under the conditions of high input DNA concentrations used here (~0.5 µM DNA), 

further experiments using 32P or digoxigenin end-labeled DNA will provide a better 

estimate of the CopO binding affinities of apo- and Cu(I) Sau CsoRs (39, 105). 
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CHAPTER VI 

SUMMARY AND PERSPECTIVES 

 

SUMMARY 

In this work, three Cu-sensing homologs from the newly described CsoR/RcnR 

metalloregulatory family have been biochemically characterized using biochemical and 

biophysical methods. These include the founding member, Mtb CsoR, a subsequently 

described Bsu CsoR and a candidate CsoR from  S. aureus. Biochemical data reveal that 

each shares properties consistent with a role as a Cu(I) sensor in the cytosol where it 

regulates the transcription of genes involved in Cu homeostasis. All three CsoRs form 3-

coordinate trigonal planar S2N complexes with Cu(I) characterized by extraordinarily 

high affinity (log KCu ≥ 18). Cu(I)-binding in turn decreases the operator DNA binding 

affinity and leads to derepression of the genes repressed by the apo-form of these CsoRs. 

Efforts to explore the underlying mechanism of this allosteric negative regulation by 

Cu(I) using a combination of unnatural amino acid substitution and conventional 

mutagenesis reveal three essential residues in Mtb CsoR. These include the Cu(I) ligand 

His61 itself and two “second coordination shell” residues, Tyr35 and Glu81, which 

appear to be involved in propagating the allosteric response. As a result of these studies, 

we have proposed that upon coordination of Cu(I) via the Nδ1 atom of His61 (Mtb CsoR 

numbering system) , the Nε2 atom may form a hydrogen bonding network with Tyr35 

and Glu81, which further stabilizes a conformation of the protein with low DNA binding 

affinity. We further establish that substitution of His61 with Ala not only alters the first 
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coordination sphere of the Cu(I) ion (39), but largely abrogates operator DNA binding. 

While this work provides novel molecular level insights into this new family of 

metalloregulatory proteins, several key unresolved issues remain (see below).  

 

PERSPECTIVES 

How does CsoR bind to its DNA operator?  The Cu(I)-bound structure of Mtb CsoR 

reveals a novel protein fold with no classical DNA binding motif (Figure 8). High 

resolution structural studies coupled with a better understanding of the minimal 

structural characterization of the DNA operator will provide further insights into the 

protein-DNA complex and how Cu-binding inhibits the complex. A recent report on the 

DNA sequences bound by E. coli RcnR revealed that a “G-tract” flanked by short 

inverted repeats may characterize the minimal structural element recognized by RcnR 

tetramer, although the extent to which this is true for CsoRs remain to be tested (137). 

Bsu CsoR is likely the best structural target among the three CsoRs characterized here 

since it lacks the long C-terminal tail of Mtb CsoR, like nearly all other CsoRs (Figure 

9). More importantly, Bsu CsoR is easily purified to very high yield from E. coli and as 

shown in Chapter IV is a stable tetramer in both apo- and Cu(I) bound states, physical 

properties consistent with an excellent structural target. Solution conditions (10 mM 

MES, 50 mM NaCl, 2 mM TCEP, pH 6.0, 40 oC) have been established that give rise to 

≥80% of the number of expected backbone amide correlations in a fully deuterated 

sample in a 1H-15N HSQC NMR spectrum. These spectra may well permit detailed NMR 

studies of the CsoR tetramer and the tetramer-DNA complex. At a minimum, these 
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preliminary spectra certainly argue for a rotationally symmetric complex with D2 

symmetry (data not shown). 

  Alternatively, crystallography could be used to solve the high resolution 

structure of Bsu CsoR-DNA complex, as well as that of apo and Cu(I)-bound Bsu CsoR. 

The DNA binding stoichiometry and affinity determined here along with previous 

footprinting results (105) provide crucial information that can be used to screen 

crystallization conditions for the protein-DNA complex. A comparison of all three 

allosteric states will provide detailed insights as to how this putative hydrogen bonding 

network drives allosteric inhibition of DNA binding. Such studies are also critical for 

our understanding of how His61 stabilizes the complex with DNA. 

 Other biochemical methods can also be used to probe the DNA binding surface 

on CsoR. For example, a pulse-chase mass spectrometry-based ratiometric lysine 

modification scheme has been developed in our laboratory to identify which Lys 

residues in CsoR are protected from reaction with a chemical reagent when bound to 

DNA. Alternatively, H/D exchange mass spectrometry could also be used to obtain 

dynamics information from backbone amide protons in the event that NMR studies 

ultimately fail (138).This approach can also be used to probe more subtle conformational 

changes upon Cu(I) binding, as has been described in B. subtilis MntR, a Mn(II)-

regulatory protein (139). The biochemical data here clearly suggest that Bsu CsoR is also 

capable of binding Zn(II) and Ni(II) with high affinity, but the binding of these divalent 

metal ions are unable to induce a conformation that is characterized by low-affinity 
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DNA binding. These non-inducing metal ions can serve as good controls in developing 

this method, as has been shown for MntR (139).  

Role of the C-terminal tail of Mtb CsoR.  As discussed, Mtb CsoR has a unique C-

terminal tail consisting of ≈30 amino acids residues, ≈18 of which are highly conserved 

in pathogenic mycobacteria (through V104; Figure 9). An unexpected finding was that 

this region plays an important role in DNA binding (Chapter II) since truncation of the 

tail before residue 106 significantly decreases the DNA binding affinity. The conserved 

residues in the tail are mostly neutral and hydrophobic in nature, and are therefore 

unlikely to interact directly with the DNA. One possibility is that the tail influences the 

oligomerization or the conformational state of CsoR in solution or when bound to DNA. 

 The crystallographic structure of Cu(I)-bound CsoR reveals that the tetramer may 

form as a dimer of dimers, with the α3 helices positioned at the dimer-dimer interface. 

Therefore, although the C-terminal tail is not resolved in the structure, it is very likely to 

be found at this interface where it could potentially stabilize the tetramer or alternatively 

change the distance between positively charged patches on one face of the tetramer (39). 

This may also suggest the exciting possibility that another protein, e.g., a Cu chaperone, 

might bind to this tail and thereby mediate disassembly of the protein-DNA complex in 

some way. In any case, a systematic study on the assembly state of the full-length Mtb 

CsoR as well as the deletion mutants will likely shed considerable light on understanding 

the fundamental role of the C-terminal tail in Mtb CsoR.   

From where does CsoR obtain Cu(I) inside of the cell? Due to the toxicity of free Cu(I) 

ions, there is likely to be little bioavailable Cu(I) in the cell (38). Therefore, it is not yet 
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known how CsoR obtains its Cu(I) ion. B. subtilis provides an excellent opportunity with 

which to investigate this problem since the Cu chaperone CopZ, a good candidate for Cu 

delivery to CsoR, has been extensively structurally and biochemically characterized 

(112, 135, 140, 141). Intermolecular Cu(I) transfer from the Cu chaperone to the target 

proteins usually occurs via an intermolecular ligand exchange reaction (Figure 41) (12). 

Our detailed structural and thermodynamic knowledge of both Bsu CsoR and CopZ 

(111, 112, 141) will allow us to readily test whether CopZ is capable of transferring 

Cu(I) to CsoR, in a mechanism that is analogous to that proposed for CopZ and the Cu 

regulatory repressor CopY in E. hirae (142). It would be interesting to examine both the 

kinetic and thermodynamic aspects of the transfer reaction. Kinetically, Cu(I) transfer 

through a ligand exchange reaction is expected to be much faster than a mechanism 

where Cu(I) first dissociates from CopZ and then binds to CsoR, because Cu(I)-CopZ 

affinity is very high and koff for Cu(I) should be very slow (112). The significant 

quenching of the tyrosine fluorescence upon Cu(I) binding to CsoR (Chapter IV) 

provides an excellent probe with which to monitor such a transfer event. It would also be 

interesting to carry out such a kinetics study in presence of DNA to determine the rate at 

which CsoR dissociates from the DNA in presence of Cu(I)-bound CopZ by 

fluorescence anisotropy. 

Cu(I) transfer can also be monitored under equilibrium conditions as shown for 

CopY and CopA using size-exclusion chromatography (142, 143). Since CsoR forms a 

tetramer (~45 kDa) and CopZ (~8 kDa) is monomeric, these two proteins can easily be 

separated from one another in a mixture. More importantly, the Cu content of the 
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Figure 41.  Intermolecular Cu(I) transfer by a ligand exchange reaction. (A) Schematic 
model of Cu(I) exchange between a Cu(I) donor metallochaperone and a Cu(I) target 
protein, e.g., the MBD of a P-type ATPase.  The structural intermediate shown in 
brackets is a transiently formed Cu(I)-cross linked intermolecular complex (29), a three-
dimensional NMR-based model of which is shown in (B) for the complex between the 
Cu(I) chaperone ScAtx1 and the N-terminal MBD of PacS from Synechocystis PCC 
6803 (144). 
 

 

 

 

 



 143

individual fractions can be easily measured by atomic absorption spectroscopy or ICP-

MS to follow Cu(I) transfer (142). Finally, although the ligand exchange reaction likely 

involves the formation of a transient metal-mediated protein-protein intermediate that 

may be difficult to detect using standard biochemical methods, such an short-lived 

transfer intermediate has been captured and studied by NMR spectroscopy in other 

systems (12). The fact that B. subtilis CopZ has been extensively studied by NMR 

spectroscopy greatly facilitates such experiments (135, 141). 

Function of the CsoR-like putative oxidative stress sensors.  As discussed in Chapter I, 

the amino acids in the W-X-Y-Z “signature” positions of CsoR/RcnR family sensors 

(see Figure 10) suggest the hypothesis that a group of CsoR orthologs with x-Cys-x-Cys 

motif may sense oxidative stress or function in sulfur metabolism in some way. A survey 

of the genomic neighborhoods of these genes reveals common neighbors such as 

rhodanese homology domain proteins and/or a putative glyoxalase I, the latter of which 

facilitates resistance to oxidative stress and carbonyl electrophiles (1, 103). However, 

there is as yet no direct biological or biochemical evidence in support of this hypothesis. 

 Investigation of a homology model of these putative oxidative stress sensing 

CsoRs reveals that the two conserved Cys residues are likely in close proximity 

(analogous to Cys36 and Cys65’ in Mtb CsoR) with which to reversibly form a disulfide 

bond under oxidizing conditions. This may then induce a conformational change in the 

dimer (or tetramer) as well, which will in turn regulate the DNA binding affinity. 

Oxidative stress sensing via formation of a reversible disulfide bond has been shown in 

several oxidative stress sensors, including the P. aeruginosa MexR from MarR family 
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(104) and E. coli OxyR from LysR family (Figure 2) (145). However, it should be 

pointed out that the pKa and reduction potential of the Cys pair must be tuned in such a 

way that reversible disulfide bond formation can occur in the cytosolic milieu over a 

range of reduction potentials accessible in oxidatively stressed vs. non-stressed cells. 

 To begin to investigate the function of these CsoR-like proteins, candidate 

CsoRox containing x-Cys-x-Cys signatures from S. pneumoniae (SPD_0073) and S. 

aureus Newman (Figure 42) have been expressed in E. coli and purified to homogeneity 

in our laboratory. We also have access to deletion strains made in collaboration with 

Drs. Malcolm Winkler (Indiana University) and Eric Skaar (Vanderbilt University), 

respectively. Although functional characterization of these strains is in progress, 

preliminary data suggest that both proteins are purified as partially oxidized dimers 

(unlike bona fide Cu sensors) which suggests that the reduction potential of this Cys pair 

may well be more negative than in the Cu sensors (Ma, Z. et al., unpublished 

observations). In addition, Sau CsoRox purified from E. coli is capable of binding to the 

DNA derived from this promoter region of NWMN_0027 under reducing conditions in 

vitro. We therefore hypothesize that Sau CsoRox regulates the transcription of 

NWMN_0027, although further biological and biochemical experiments are required to 

fully understand the functional importance and mechanism of derepression of this 

subfamily of regulators. 
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Figure 42.  Genetic localization of the gene encoding Sau CsoRox. The DNA sequence 
in the promoter region of NWMN_0027 is shown in comparison with Bsu CopO (see 
Chapter IV). NWMN_0027 encodes a putative rhodanese homology domain often 
associated with cyanide detoxification, sulfur trafficking via formation of Cys 
persulfides and iron-sulfur protein biogenesis (146). 
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APPENDIX A 
 
Dynafit script for Cu(I)-BCS competition assay for CsoR 
 
[task] 
 data = equilibria 
 task = fit 
 
[mechanism] 
 
 Cu + M + M <==> Cu.M2 : K1 assoc. 
  
 Cu + P2 <==> Cu.P2 : K3 assoc. 
    
 
[concentrations] 
 P2 = 22 , M = 50 
 
[constants] 
 K1 = 63000000, K3 = 1000000000000 ? 
 
[equilibria] 
 directory ./data/CsoR/ 
 extension txt 
     variable Cu 
 file BCS | response M = 0.00021 , Cu.M2 = 0.01079 
  
[output] 
 directory ./output/CsoR/BCS 
 
[end] 
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APPENDIX B 
 
DNA binding of wild-type and mutant Mtb CsoOs tested by gel-filtrationa (10 mM 
HEPES, 0.2 M NaCl, 2 mM DTT, pH 7.0) 
 
 

 
a 10 μM DNA was mixed with 80 μM Mtb CsoR monomer in 10 mM HEPES, 0.2 M 

NaCl, 2 mM DTT, pH 7.0.  

b All protein-DNA complex and no free DNA detected (Figure 16A). 

c Free DNA as well as a broad peak of protein-DNA complex and free protein detected.  

d All free DNA and no binding. 

 

 

 

 

 

 

 

 

 

 



 164

APPENDIX C 
 
Dynafit script for CsoR-DNA interaction 
 
[task] 
 data = equilibria 
 task = fit 
[mechanism] 
 CsoR + D <==> CsoR.D : K1 assoc. 
         CsoR + CsoR.D <==> CsoR2.D : K2 assoc. 
[concentrations] 
 D = 0.01 
[constants] 
 K1 = 10 ? , K2 = 10 ? 
[equilibria] 
 directory ./data 
 extension txt 
 variable CsoR 
 file CsoR | response D = 11.69 , CsoR.D = 12.1  ,  CsoR2.D = 12.7  
[output] 
 directory ./output/CsoR 
[end] 
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APPENDIX D 
 
Dynafit script for Zn(II)-magfura-2 competition assay for CzrA 
 
[task] 
 data = equilibria 
 task = fit 
 
[mechanism] 
 P + P <==> P2 : Kdim assoc. 
         Zn + M* <==> Zn.M* : K1 assoc. 
 Zn + P2 <==> Zn.P2 : K2 assoc. 
   Zn + Zn.P2 <==> Zn2.P2 : K3 assoc. 
 
[concentrations] 
 M* = 2.4  , P = 1.67 
 
[constants] 
 Kdim=0.17 , K1 = 50  , K2 = 5000 ?, K3=100 ? 
 
[equilibria] 
 directory ./data 
 extension txt 
 variable Zn 
 file lig325_2 | response M* = 22191, Zn.M* = 98217 
 file lig379_2 | response M* = 54667, Zn.M* = 16037 
  
[output] 
 directory ./output/CzrAlig 
 
[end] 
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APPENDIX E 
 
Growth curves obtained for wild-type (A) and putative ΔcsoR locus (B) S. aureus 
Newman strain at different Cu concentrations added to the medium. These experiments 
were carried out in Dr. Erik Skaar’s laboratory at Vanderbilt University. 
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