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ABSTRACT

Listing Unique Fractional Factorial Designs. (December 2009)

Abhishek Kumar Shrivastava, B. Tech. (Hons.), Indian Institute of Technology

Kharagpur

Chair of Advisory Committee: Dr. Yu Ding

Fractional factorial designs are a popular choice in designing experiments for

studying the effects of multiple factors simultaneously. The first step in planning an

experiment is the selection of an appropriate fractional factorial design. An appro-

priate design is one that has the statistical properties of interest of the experimenter

and has a small number of runs. This requires that a catalog of candidate designs

be available (or be possible to generate) for searching for the ‘good’ design. In the

attempt to generate the catalog of candidate designs, the problem of design isomor-

phism must be addressed. Two designs are isomorphic to each other if one can be

obtained from the other by some relabeling of factor labels, level labels of each factor

and reordering of runs. Clearly, two isomorphic designs are statistically equivalent.

Design catalogs should therefore contain only designs unique up to isomorphism.

There are two computational challenges in generating such catalogs. Firstly,

testing two designs for isomorphism is computationally hard due to the large number

of possible relabelings, and, secondly, the number of designs increases very rapidly

with the number of factors and run-size, making it impractical to compare all designs

for isomorphism. In this dissertation we present a new approach for tackling both

these challenging problems. We propose graph models for representing designs and

use this relationship to develop efficient algorithms. We provide a new efficient iso-

morphism check by modeling the fractional factorial design isomorphism problem as

graph isomorphism problem. For generating the design catalogs efficiently we extend
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a result in graph isomorphism literature to improve the existing sequential design

catalog generation algorithm.

The potential of the proposed methods is reflected in the results. For 2-level

regular fractional factorial designs, we could generate complete design catalogs of run

sizes up to 4096 runs, while the largest designs generated in literature are 512 run

designs. Moreover, compared to the next best algorithms, the computation times

for our algorithm are 98% lesser in most cases. Further, the generic nature of the

algorithms makes them widely applicable to a large class of designs. We give details of

graph models and prove the results for two classes of designs, namely, 2-level regular

fractional factorial designs and 2-level regular fractional factorial split-plot designs,

and provide discussions for extensions, with graph models, for more general classes

of designs.
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CHAPTER I

INTRODUCTION

Technological advancements have lead to increased complexity in engineering systems

over the last few decades. These have significantly improved productivity and qual-

ity of delivered products and services but at the cost of new challenges in the tasks

of modeling and analysis of system-level behavior or phenomena. The study of such

large-scale systems usually involves conducting experiments involving large number of

variables and analyzing the collected data for discovering relationships. The subject

area of design of experiments provides a wide array of designs for effectively conduct-

ing experiments and analyzing collected data. Yang and Speed (2002), for instance,

provide a good discussion on the potential of experimental designs in designing DNA

microarray experiments, a relatively recent area of research.

Among the various classes of designs, fractional factorial designs are among the

most popular, if not the most popular (see Bisgaard (1992), Ilzarbe et al. (2008),

Prvan and Street (2002) and citations within for over 250 case studies), class of

designs used in the fields of science and engineering. Box and Hunter (1961a, 2000)

give a good discussion of the different circumstances in which factorial designs may

be a good choice. Fractional factorial designs are most commonly used when it is

known that only a few effects will be significant. This is usually the case for screening

experiments, where the task is to find the small number of significant factors (i.e.,

variables) from a large collection. Recently, fractional factorial designs with large run

sizes have been reported, for example, of over 600 runs in Lin and Sitter (2008) and

of 4096 runs in Mee (2004). The methodology developed in this dissertation aids the

The journal model is IIE Transactions.
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A B C D E F G

1 0 0 0 0 0 0 0

2 0 0 0 1 0 0 1

3 0 0 1 0 0 1 0

4 0 0 1 1 0 1 1

5 0 1 0 0 1 0 1

6 0 1 0 1 1 0 0

7 0 1 1 0 1 1 1

8 0 1 1 1 1 1 0

9 1 0 0 0 1 1 0

10 1 0 0 1 1 1 1

11 1 0 1 0 1 0 0

12 1 0 1 1 1 0 1

13 1 1 0 0 0 1 1

14 1 1 0 1 0 1 0

15 1 1 1 0 0 0 1

16 1 1 1 1 0 0 0

(a) Defining words: {ABE,

ACF , BDG}

A B C D E F G

1 0 0 0 0 0 0 0

2 0 0 0 1 0 0 1

3 0 0 1 0 0 1 1

4 0 0 1 1 0 1 0

5 0 1 0 0 1 0 0

6 0 1 0 1 1 0 1

7 0 1 1 0 1 1 1

8 0 1 1 1 1 1 0

9 1 0 0 0 1 1 0

10 1 0 0 1 1 1 1

11 1 0 1 0 1 0 1

12 1 0 1 1 1 0 0

13 1 1 0 0 0 1 0

14 1 1 0 1 0 1 1

15 1 1 1 0 0 0 1

16 1 1 1 1 0 0 0

(b) Defining words: {ABE,

ACF , CDG}

A C B D F E G

1 0 0 0 0 0 0 0

2 0 0 0 1 0 0 1

5 0 0 1 0 0 1 1

6 0 0 1 1 0 1 0

3 0 1 0 0 1 0 0

4 0 1 0 1 1 0 1

7 0 1 1 0 1 1 1

8 0 1 1 1 1 1 0

9 1 0 0 0 1 1 0

10 1 0 0 1 1 1 1

13 1 0 1 0 1 0 1

14 1 0 1 1 1 0 0

11 1 1 0 0 0 1 0

12 1 1 0 1 0 1 1

15 1 1 1 0 0 0 1

16 1 1 1 1 0 0 0

(c) Reordered matrix of (a). Relabeling B ↔ C, E ↔ F and rows gives (b)

Fig. 1. Example of two isomorphic 7-factor designs. Design matrices of two 27−3

designs are shown in (a) and (b). (c) shows that (a) and (b) are isomorphic

designs.

experimenter in searching for an appropriate design for such experiments.

Fig. 1(a) shows the design table/matrix of a 7-factor design with 16 runs. In

the design of experiments literature, the variables in an experiment are called factors
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and each setting of a variable is called a level. The columns A,B, . . . , G in Fig. 1

represent the factors and each row is a run, also called a treatment combination, in

the experimental design. The factors in this design have only two levels each, denoted

by ‘0’ and ‘1’. So each row gives the settings of the 7 factors in the corresponding run

of the design. When an experiment is performed using such a design, the runs may

be replicated and will (usually) be performed in random order. It may be noted that

the design in Fig. 1(a) is a 2-level regular fractional factorial design, a particular type

of fractional factorial design, but the design matrix representation shown is generic

and can be used to present any type of fractional factorial designs.

The first step in planning an experiment is the selection of an appropriate frac-

tional factorial design. An appropriate design is one that has the statistical proper-

ties of interest of the experimenter and has a small number of runs. By statistical

properties we mean the main effects and the interaction effects between the factors

(see Section II.1 for details on terminology) that can be estimated by analyzing the

data collected after performing an experiment using the chosen design. A reasonable

approach in selecting such a design is to start by selecting a (small) run-size for the

design, for the given number of factors, and then look for a design that has the desired

statistical properties. This requires that a catalog of candidate designs be available

(or be possible to generate) for searching for the ‘good’ design. In this dissertation

we present new efficient methods for generating catalogs of such large-size designs.

I.1. Unique designs

In the attempt to generate the catalog of candidate designs, the problem of design

isomorphism must be addressed. Figs. 1(a) and 1(b) show two 27−3 designs, i.e.,

7-factor regular fractional factorial designs with each factor having two levels. The
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columns A,B, . . . , G represent the factors and the rows are the treatment combina-

tions (level settings of the factors at each run). Suppose that the two designs given

in Figs. 1(a) and 1(b) are both in a catalog from which a design is to be chosen.

Reordering the rows and columns of the design matrix in Fig. 1(a) gives the design

matrix in Fig. 1(c). This design matrix is identical to the design matrix in Fig. 1(b)

if we exchange the labels of factors B and C (simply represented by B ↔ C), and

factors E and F (represented by E ↔ F ), and relabel the rows, in the current order,

from 1 to 16.

Two designs with the same number of runs, factors and levels are called equivalent

or isomorphic to each other if one can be obtained from the other by some relabeling

of factor labels, changes in run order or relabeling of level labels in the design matrix.

Therefore, the designs in Figs. 1(a) and 1(b) are isomorphic to each other. A natural

question here is whether it makes sense to interchange the labels of two factors. The

answer is yes, because, in a catalog, the factor labels have no physical meaning as

they are not associated with any physical variable. Hence, all the factors labels are

physically indistinguishable and can be interchanged. They become distinguishable

only when they are associated with the physical variables of an experiment. In this

dissertation, since we are interested in generating design catalogs, we will call a design

unique in a collection of designs if no other design in the collection is isomorphic to

this design. Further, we will call a collection of unique designs, i.e., a set where no

two designs are isomorphic, a non-isomorphic collection.

A catalog of designs should contain only those designs that are unique or non-

isomorphic to each other. This is so because the statistical properties of two isomor-

phic designs are the same. That is, the main effects and the interaction effects that

can be estimated from two isomorphic designs, when the factor labels are physically

indistinguishable, are the same. Thus, when choosing a design, keeping isomorphic
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designs wastes the effort of the experimenter by presenting designs with the same

statistical properties. Further, the size of the catalog can be greatly reduced by dis-

carding isomorphs. The number of isomorphic designs can be very large even for

moderate number of factors, levels and runs. For example, according to Chen et al.

(1993), the total number of 215−10 designs, i.e., 2-level regular fractional factorial de-

signs with 15 factors and 32 (= 215−10) runs, is 5,311,735, but the number of unique

or non-isomorphic designs of resolution ≥ 3 among these is only 144. Thus, keeping

only non-isomorphic designs will reduce the experimenter’s effort considerably as it

will require comparing the statistical properties of a much smaller set of designs.

I.2. Issues in generating design catalogs

There are two primary issues in devising methods for generating non-isomorphic cat-

alogs of fractional factorial designs. Firstly, the problem is computationally hard for

any sub-class (type) of fractional factorial designs. Secondly, very many sub-classes

of fractional factorial designs exist with somewhat differing mathematical structures

making it difficult to have one method uniformly efficient for all types of fractional

factorial designs.

I.2.1. Computational issues

There are two main components in the procedure for generating fractional factorial

designs – the isomorphism check and the design generation (or construction) algo-

rithm. The isomorphism check gives a condition that can be used to test if two designs

are isomorphic or not. The generation algorithm provides a procedure to generate

the entire non-isomorphic set without considering comparisons between all possible

designs.
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The problem of testing two designs for isomorphism is computationally hard

as the total number of relabelings is combinatorially large. For example, the total

number of relabelings of a 2n−k design, i.e., 2-level n-factor regular fractional factorial

design, is (n!)(2!)n(2n−k!). Further, the total number of these designs itself is also

usually very large. In general, the total number of 2n−k designs is
(

(2n−k−1)−(n−k)
k

)

.

So if we use the trivial approach of constructing the non-isomorphic catalog, by

discarding isomorphs from the entire collection of designs using some isomorphism

check, then we would be comparing a combinatorially large number of designs, where

each comparison in itself is a costly one.

I.2.2. Complicated designs

Many subclasses of fractional factorial designs exist in literature. The major sub-

classes are regular fractional factorial designs (Montgomery, 2000, Wu and Hamada,

2000) and non-regular designs like orthogonal arrays (Hedayat et al., 1999, Rao, 1947),

including Plackett-Burman designs (Plackett and Burman, 1946). Regular fractional

factorial designs have been the most popular, in practice, among these due to the

relative ease in analyzing the experimental data and inferring the results. It may be

noted that every regular fractional factorial design is an orthogonal array (while the

opposite is not true).

Although all these various types of fractional factorial designs can be represented

by a design matrix (as shown in Fig. 1(a)), the differing mathematical structures

provide potential for developing subclass-specific algorithms that are more efficient

than those developed for the general (non-regular) fractional factorial designs. For the

problem of isomorphism testing, it can be shown that the general isomorphism checks,

like that of Clark and Dean (2001), perform poorly for certain subclasses of designs,

like 2-level regular fractional factorial designs which have alternative representations
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(see Section II.1.4), when compared with methods developed specifically for this class,

e.g., Lin and Sitter (2008)’s method (see Section VI.1).

The development of isomorphism checks for these various design classes has thus

been done relatively independently. For example, Lin and Sitter (2008)’s isomor-

phism check, applicable only to 2-level regular fractional factorial designs, is based

on a representation specific to regular fractional factorial designs. Even extending

it to regular multi-level fractional factorial designs (i.e., designs having factors with

levels more than two) is difficult (Lin and Sitter, 2008). Cheng and Ye (2004), Clark

and Dean (2001), Sun et al. (2002) present isomorphism checks for general (i.e., both

regular and non-regular) fractional factorial designs but there are no trivial exten-

sions of these for, say, regular fractional factorial designs that would exploit their

structure (see Section II.3.1 for an extension of Clark and Dean (2001)’s isomorphism

check). Stufken and Tang (2007) present an isomorphism check for a specific subset

of orthogonal arrays and note that the extension to the general class is non-trivial.

The generation algorithms for various subclasses of designs have also been de-

veloped quite independently for the same reason. Although these algorithms have a

common sequential structure (cf. Bingham and Sitter (1999a), Chen et al. (1993) for

regular fractional factorial designs, Sun et al. (2002) for Plackett-Burman designs,

Angelopoulos et al. (2007), Schoen and Nguyen (2007) for orthogonal arrays) – larger

designs are constructed from smaller designs, usually by adding a factor to the smaller

design, the developments have been design class specific (like those in Bingham and

Sitter (1999a), Chen et al. (1993) for regular fractional factorial designs) and cannot

be trivially extended to other design classes.

A further extension of fractional factorial designs, which is of greater importance

to practitioners, is the inclusion of blocking and randomization constraints in con-

ducting experiments. These practical constraints have created variants of fractional
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factorial designs that are usually derived from a regular or non-regular fractional fac-

torial designs discussed above. But constraints are put on the randomization of the

runs in the design matrix and/or blocking factors are used to capture the influence

of extraneous variables. Examples of such designs are fractional factorial split-plot

designs, split-split-plot designs, strip-split-plot designs (Montgomery, 2000, Chapter

13), split-lot designs (Mee and Bates, 1998) and blocked fractional factorial designs

(Montgomery, 2000, Chapter 7), among others. Among these, regular fractional fac-

torial split-plot designs have been the quite popular in industrial applications. These

additional constraints further complicate the already hard problem of generating de-

signs and, although of great interest, little has been done for generating these designs

(Bingham and Sitter, 1999b, Butler, 2004, Kulahci and Bisgaard, 2005, McLeod and

Brewster, 2004).

I.3. Research objectives and contributions

In this dissertation, we present a framework for efficiently constructing catalogs of

non-isomorphic 2-level regular fractional factorial designs that is extensible to other

classes of fractional factorial designs. In particular, we extend the framework to 2-

level regular fractional factorial split-plot designs. The framework has two major

components – the isomorphism check and a result for speeding the generation algo-

rithm.

We provide a new approach for testing the isomorphism of fractional factorial

designs by modeling them as graphs. The 2-level regular fractional factorial designs

as bipartite graphs and the 2-level regular fractional factorial split-plot designs are

modeled as vertex-colored graphs. The problem is now transformed into a graph iso-

morphism problem. We use an efficient graph isomorphism check algorithm (McKay,
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1981) to provide a necessary and sufficient check for design isomorphism.

For generating the complete set of non-isomorphic 2-level regular fractional facto-

rial designs, we improve the existing sequential design generation algorithm (Lin and

Sitter, 2008) by using our isomorphism check and reducing the size of the collection

of designs from which isomorphs are to be eliminated. We extend some results from

graph isomorphism literature (McKay, 1998) to develop this reduction procedure. We

also extend the result to the split-plot designs, and discuss extensions to other design

classes (see Chapter VII).

The contributions of this dissertation are four-fold: (i) a new necessary and suffi-

cient check for 2-level regular fractional factorial design isomorphism; (ii) a generation

algorithm that can generate catalogs of non-isomorphic 2-level regular fractional fac-

torial designs much faster than any of the previous methods; (iii) a unified framework

to handle complicated designs; (iv) catalogs of up to 4096-run non-isomorphic 2-level

regular fractional factorial and 2-level regular fractional factorial split-plot designs,

not available earlier in literature.

The reason that our generation algorithm is faster can be understood as follows.

Firstly, for removing isomorphs from a collection, we run the isomorphism check

(which is usually the computationally expensive portion of a procedure for generating

non-isomorphic designs) only once for each design and not once for each pair of

designs. The only other existing method that does this is Lin and Sitter (2008)’s

eigenvalue check. However, our graph-based method allows us to do the isomorphism

check much faster than Lin and Sitter (2008). It should also be noted that Lin and

Sitter (2008)’s eigenvalue check is not guaranteed to always distinguish two isomorphic

designs. Other methods, e.g., Clark and Dean (2001), compare pairs of designs to

determine whether they are isomorphic to each other or not. Secondly, because we

model the problem as a graph isomorphism problem, we are able to reduce the size of
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the collection of candidate designs, from which we need to eliminate isomorphs. Not

only does our algorithm generate non-isomorphic designs much faster, it is also able

to generate designs with run sizes of 2048 and 4096 runs, which were not generated

by any existing methods.

As we will see in Chapters V and VII, the isomorphism check can be extended

to other classes of designs as long as we can construct a graph representation of these

designs that obeys certain properties. We will present some examples of such graph

representations. The generation algorithm, as noted earlier, is typically sequential

for most classes of designs. It seems possible to extend the result developed (for 2-

level regular fractional factorial designs) to reduce the number of candidate designs

which need to be compared for isomorphism. This result is extended to the case of

2-level regular fractional factorial split-plot designs, and we later provide thoughts on

extending it to other classes of fractional factorial designs.

I.4. Organization of this dissertation

The rest of this dissertation is organized as follows. Chapter II introduces the common

terminology in fractional factorial designs and formally introduces the problem of

fractional factorial design isomorphism. We then survey the various methods proposed

in literature for the testing two designs for isomorphism. We specifically look at

methods that are applicable to 2-level regular fractional factorial designs.

In Chapter III we present a new graph based isomorphism check for testing the

isomorphism between two 2-level regular fractional factorial designs. In this chapter

we propose a new graph model for modeling 2-level regular fractional factorial designs

as graphs. We then transform the problem of design isomorphism to the problem of

graph isomorphism and provide algorithmic details of the graph isomorphism algo-
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rithm used for solving our design isomorphism problem.

Chapter IV will present the problem of efficiently generating design catalogs,

given an isomorphism check. We will look at the sequential design generation pro-

cedure for 2-level regular fractional factorial designs and the methods proposed in

literature for speeding up this procedure. We will then present a new method for

further improving the computational efficiency of the existing design generation al-

gorithm.

In Chapter V we will consider the problem of generating catalogs of 2-level reg-

ular fractional factorial split-plot designs. We will extend the methods developed in

Chapters III and IV to efficiently generate these design catalogs.

Chapter VI presents the design catalogs that have been generated using the algo-

rithms developed in this dissertation. We also provide comparisons of computational

efficiency of generating 2-level regular fractional factorial designs with other methods.

We will conclude the dissertation in Chapter VII, giving insights into related

research problems and discussions on extending the framework developed in this dis-

sertation research to other classes of fractional factorial designs.

Since this dissertation is concerned only with the class of fractional factorial

designs, in the remainder of this dissertation, whenever we write designs we will

mean fractional factorial designs.
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CHAPTER II

DESIGN ISOMORPHISM

In this chapter we formally introduce the problem of fractional factorial design iso-

morphism (Section II.2) and review the existing literature for solving this problem

(Section II.3). But before that we introduce some definitions and terminology com-

mon in design of experiments and, in particular, fractional factorial designs literature,

in the next section.

II.1. Some preliminaries on fractional factorial designs

We use an example from Wu and Hamada (2000, Section 4.1) to explain the concepts

related to fractional factorial designs. We will refer to this example as the leaf spring

example throughout the dissertation. The example has been modified from its pre-

sentation in Wu and Hamada (2000) to illustrate the concepts in fractional factorial

designs relevant to this dissertation. Since the objective of this dissertation is to

construct designs, the focus here is on highlighting the mathematical structure of the

various designs and its implications to the ensuing data analysis. We thus provide no

details on how the data is actually analyzed.

II.1.1. Example: leaf spring experiment

An experiment needs to be conducted to improve the heat treatment process that

forms the curvature of a truck leaf spring. A leaf spring is a curved, rectangular

cross-section steel bar (or connected layers of these) used in the suspension of heavy

vehicles. The heat treatment process involves first heating in a high temperature

furnace, followed by processing in a forming machine and finally quenching in an
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Table 1. Leaf spring experiment – factors and levels (Wu and Hamada, 2000, Ta-

ble 4.1, page 154)

Factor Level

Label Description 0 1

A furnace temperature (◦F) 1840 1880

B heating time (seconds) 23 25

C transfer time (seconds) 10 12

D hold-down time (seconds) 2 3

E oil temperature (◦F) 130–150 150–170

oil bath. The objective of this experiment is to determine settings of the process

variables that will minimize the variation in the free height of the manufactured leaf

springs. The free height of a leaf spring is the distance between the center point of

the spring and the (imaginary) line joining the two end points of the (curved) leaf

spring. Five process variables are believed to effect the free height of the springs.

These are furnace temperature (A) and heating time (B) from the heating stage,

transfer time (C) to take a spring from the furnace to the forming machine, hold-

down time (D) under high pressure in the forming stage and the oil temperature (E)

in the quenching stage. We will denote the factors (i.e., process variables) by letters

A,B, . . . , E, as noted before, according to the usual practice in design of experiments

literature. Each of the five factors can be set at two levels, as shown in Table 1. The

two levels for the designs are denoted by ‘0’ and ‘1’. We thus need to design the

experiment for determining the effect of these process variables.
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II.1.2. Full factorial design

One choice of experimental design for performing the leaf spring experiment is the

5-factor full factorial design, denoted simply as 25 design. The design matrix of

this design is shown in Fig. 2. A full factorial design contains all possible runs or

treatment combinations, i.e., combinations of the settings of the factors, which is (as

the notation suggests) 25 = 32. The 25 design is an example of a is called a 2-level

design as all factors have only two levels. When the number of levels is more than two

but the same, say, s, for all factors then the design is called a multi-level or s-level

design. When all factors do not have the same number of levels, then the design is

called a mixed-level design.

It should be noted that Fig. 2 gives the treatment combinations of the 25 design

in a canonical order. When performing the actual experiment, the replications of the

runs may be considered and the runs will usually be randomized. For example, if two

replications of the 25 design are considered, then there are 64!
(2!)32

possible orderings of

the runs of the experiment. One of these orderings will be randomly chosen as the

experimental plan for the experiment.

The data collected from running the full factorial experiment can be used to

estimate the individual effect of the process variables, called the main effect, and the

interaction effect of combinations of process variables. Let zi denote the measured

free height of the leaf spring in run i of the experiment, and let z̄A=0 denote the

average of the free height of the leaf springs for those runs in which factor A was set

at level 0. The main effect of factor A, denoted by ME(A), is then defined as the

difference in the average values of the free heights at the two settings, i.e.,

ME(A) = z̄A=1 − z̄A=0. (2.1)
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A B C D E

1 0 0 0 0 0

2 0 0 0 0 1

3 0 0 0 1 0

4 0 0 0 1 1

5 0 0 1 0 0

6 0 0 1 0 1

7 0 0 1 1 0

8 0 0 1 1 1

9 0 1 0 0 0

10 0 1 0 0 1

11 0 1 0 1 0

12 0 1 0 1 1

13 0 1 1 0 0

14 0 1 1 0 1

15 0 1 1 1 0

16 0 1 1 1 1

17 1 0 0 0 0

18 1 0 0 0 1

19 1 0 0 1 0

20 1 0 0 1 1

21 1 0 1 0 0

22 1 0 1 0 1

23 1 0 1 1 0

24 1 0 1 1 1

25 1 1 0 0 0

26 1 1 0 0 1

27 1 1 0 1 0

28 1 1 0 1 1

29 1 1 1 0 0

30 1 1 1 0 1

31 1 1 1 1 0

32 1 1 1 1 1

Fig. 2. Full factorial design with 5 factors, each with 2 levels. Letters A, . . . , E

denote the five factors and ‘0’, ‘1’ denote the two levels of each factor.

The interaction effect between two or more factors captures the effect of the factor

combination that cannot be explained by simply adding the effects of the individual

factors. For example, in the leaf spring experiment, the analysis later revealed that

setting both furnace temperature (A) and oil temperature (E) at the same levels

(either both at 0 or at 1) leads to larger free height than when the two factors are set
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at different levels. The interaction effect AE is given by

INT (AE) =
1

2
{MEA=1(E) − MEA=0(E)}

=
1

2
{MEE=1(A) − MEE=0(A)}, (2.2)

where MEA=1(E) is ME(E) computed by only considering runs for which A is set

at level 1. The interaction effects can be computed for every factor combination,

from 2-factor combinations to the (only) 5-factor combination (ABCDE). We skip

the mathematical expressions for computing higher-order effects (like ABC, etc.).

They can be found in Wu and Hamada (2000, Section 3.4.2). All the main effects

and interaction effects among the factors of an experiment can be estimated in a full

factorial design.

II.1.3. Regular fractional factorial designs

It is not always feasible to perform such a large number of runs. In the leaf spring

experiment, running 32 runs (or 64, if two replications are made) may not be practical

as this leads to disruptions in daily operations and subsequent losses due to decreased

productivity and high experiment costs. Running a subset of the runs in Fig. 2 is

then more practical. This design, which considers only a subset of the runs in the 25

design is called a fractional factorial design.

Suppose the fractional factorial design given in Fig. 3 is used for performing the

experiment. This design uses the subset {1,3,5,7,10,12,14,16,18,20,22,24,25,27,29,31},

of 16 runs, of the runs given in the full factorial design in Fig. 2. The last column,

E, in Fig. 3 can be obtained by taking the modulo-2 sum of columns A and B.

Therefore, we have E = A + B, which is simply written as E = AB and equivalently

I = ABE. The modulo-2 term is omitted in the summation as all of A, . . . , E are
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A B C D E

1 0 0 0 0 0

2 0 0 0 1 0

3 0 0 1 0 0

4 0 0 1 1 0

5 0 1 0 0 1

6 0 1 0 1 1

7 0 1 1 0 1

8 0 1 1 1 1

9 1 0 0 0 1

10 1 0 0 1 1

11 1 0 1 0 1

12 1 0 1 1 1

13 1 1 0 0 0

14 1 1 0 1 0

15 1 1 1 0 0

16 1 1 1 1 0

Fig. 3. A 25−1 regular fractional factorial design. Letters A, . . . , E denote the five

factors. The defining relation is I = ABE.

in GF (2) (since each factor takes two levels), where GF (2) is the Galois field of two

elements. Here, I is the identity element, and the relation I = ABE is called a

defining relation. ABE is called a defining word of the 25−1 design. The ‘−1’ in

the exponent implies that the design has half the number of runs in the full factorial

design, i.e., 25−1 = 24 = 16 runs. A fractional factorial design that can be constructed

using such defining relations is called a regular fractional factorial design. All other

fractional factorial designs are called non-regular designs.

If, instead of the runs shown in Fig. 3, the complementary subset of 16 runs

would have been chosen, from the 25 design, for constructing the fractional factorial

design, then the defining relation would have been I = −ABE (i.e., E = −A + B).

The former fraction (shown in Fig. 3) is called the principal fraction and the latter

is called the alternate fraction. In this dissertation we ignore alternate fractions

as the corresponding designs can be trivially obtained from the principal fractions.

Moreover, alternate fractions and principal have the same statistical properties, and
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they are isomorphic under relabelings of the level labels of factors (e.g., in the 25−1

designs under consideration, changing the level labels of E in one fraction gives the

other fraction).

The trade-off of using a smaller run-size design is that all the main effects and

interaction effects cannot be estimated. For example, for the 25−1 design in Fig. 3, we

have A = BE, B = AE and E = AB from the defining relation I = ABE. Therefore,

we can only estimate the sum ME(A) + INT (BE) using either equation 2.1 or 2.2.

The main effect of A cannot be estimated independent of the interaction effect BE.

The main effect A is then said to be aliased with the interaction effect BE. Similarly,

the effect of B is aliased with AE and that of E with AB. Usually though, it is

assumed that lower order effects are more likely to be significant and the higher order

effect is then neglected. Therefore, we may estimate ME(A) using equation 2.1 by

assuming that INT (BE) is negligible. But, in practice, it is essential to ensure that

such an assumption is reasonable.

It should be noted that any combinations of factors, other than ABE, could have

also been chosen in the defining relation of the 25−1 design. This would have then

given a different 25−1 design – a design with different pairs of aliased effects and hence

capable of estimating a different set of effects. There are (theoretically) 25−1 possible

choices for the defining word, obtained by considering all possible combinations of the

5 letters of length one or more. But some of these are not practical. For example, a

defining relation I = AB would mean that the main effects of A and B are aliased

and cannot be independently estimated. Therefore, usually words of length at least

three are used as defining words. The number of possible choices for the defining

word is then 25 −
(

5
2

)

− 5 − 1 = 16.

A smaller, 8-run, regular fractional factorial design can also be considered for the

leaf spring experiment by using two defining relations instead of one in the design.
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A B C D E

1 0 0 0 0 0

2 0 0 1 1 0

3 0 1 0 1 1

4 0 1 1 0 1

5 1 0 0 0 1

6 1 0 1 1 1

7 1 1 0 1 0

8 1 1 1 0 0

Fig. 4. A 25−2 regular fractional factorial design. The defining contrast subgroup is

{I, ABE, BCD, ACDE}.

Suppose the 25−2 design is constructed by using defining words {BCD, ABE}. This

design, shown in Fig. 4, has the runs {1,4,6,7,9,12,14,15} of Fig. 3. Taking the

modulo-2 sum of the two defining words gives the word ACDE. Together, these

words form an abelian group, {I, ABE, BCD, ACDE}, called the defining contrast

subgroup of the design.

In general, an s-level regular fractional factorial design is denoted by sn−k, and

has n factors, each with s levels, and consists of sa (a = n − k) runs. Thus, it is

the 1
sk th fraction of a sn full factorial design, where the fraction is determined by k

defining words. The defining words are a set of generators for the defining contrast

subgroup (an abelian group). The group, therefore, consists of sk words, including the

identity element I. Hence, the fractional factorial designs generated in this manner

are also called group-generated fractions. For an introduction to group theory see

(Robinson, 1995, Rotman, 1995).

II.1.4. Representations of regular fractional factorial designs

A regular fractional factorial design is uniquely defined by the number of factors,

n, and its defining contrast subgroup, S (or equivalently, a set of defining words).

We will denote this representation by the tuple {n, S}. It must be noted that the
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defining words are not unique for a given design, i.e., there may exist two distinct sets

of defining words that generate the same defining contrast subgroup. For example,

another set of defining words for the design in Fig. 4 is {ABE, ACDE}.

An alternative representation of a regular fractional factorial design can be ob-

tained by using the treatment combination subgroup, T , of the design instead of the

defining contrast subgroup, S. The treatment combination subgroup of a design is

the group formed by the runs in the design matrix. For example, for the 25−2 design

in Fig. 4, the treatment combination subgroup consists of 8 elements {I, CD, BDE,

BCE, A, ACD, ABDE, ABCE}, each corresponding to the runs in the principal

fraction. The relationship between the defining contrast subgroup and the treatment

combination subgroup is well known to be one-to-one (see for instance Bailey (1977)).

For a 2n−k design, the size of S, the defining contrast subgroup, is 2k and that of T ,

the treatment combination subgroup is 2n−k. Therefore, we may choose the smaller

of the two representations depending on whether |T | = 2n−k < 2k = |S| or n < 2k.

II.1.5. Classification and ranking of designs

Suppose we decide to use a 25−1 design for performing the leaf spring experiment.

But, as we noted earlier, there are more than one 25−1 designs. A natural question

to ask then is which design is better? Since the different choices of 25−1 designs

lead to different sets of estimable effects, the designs are usually compared by their

estimation capability. Of course, if we knew exactly which main and interaction effects

are significant (and which not) then we could have precisely picked the one design

that could estimate all the significant effects. But usually such information is not

available, as in the case of our leaf spring experiment. In such a case we assume the

hierarchical ordering principle for the effects (Wu and Hamada, 2000, pg. 112), i.e.,

lower-order effects are more important than higher order ones and effects of the same
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order are equally significant. Some simple yet powerful metrics, namely resolution

and aberration, have been developed for classifying and ranking regular fractional

factorial designs based on this idea. These are based on what is known as the word

length pattern of a regular fractional factorial design.

The word length pattern of a regular fractional factorial design is given by the

vector (a3, a4, . . . , an), where ai is the number of words of length i appearing in the

defining contrast subgroup of the design. The length of a word is the number of

letters appearing in the word. Since designs with words length smaller than 3 are not

usually considered (as they would lead to aliased main effects, e.g., effects A and B

are aliased if AB is in the defining contrast subgroup), there is no a1 and a2 in the

word length pattern. The identity element I (taken to be of length identically zero)

in the defining contrast subgroup is ignored when writing the word length pattern.

For example, for the design in Fig. 4, the defining contrast subgroup is {I, ABE,

BCD, ACDE}. There are two words of length 3 (namely ABE and BCD) and

one word of length 4 (namely ACDE) appearing in the defining contrast subgroup.

Therefore, the word length pattern of this design is (3, 1, 0).

Given the word length pattern, (a3, a4, . . . , an), of a regular fractional factorial

design, the resolution of the design is defined as the smallest R such that aR > 0.

For the 25−2 in the example above, the resolution is therefore 3, typically denoted in

roman numerals as III. This design will usually be written as 25−2
III .

Designs with greater resolution are considered better as they have fewer lower-

order effects aliased with each other. The maximum resolution criterion (Box and

Hunter, 1961a,b) therefore recommends selecting the design that has the greatest

resolution, in a collection of designs. But this criterion generally does not discriminate

very well as usually more than a few designs may fall into the same resolution class.

To further discriminate between regular fractional factorial designs, Fries and Hunter
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(1980) proposed the minimum aberration criterion. This says that if two designs have

the same resolution R, then the design with a smaller value of aR in its word length

pattern is better. In practice, this leads to choosing the design which has a smaller

number of lower-order effects aliased with each other. The design which has the least

aberration among all the designs in its class (e.g., the class of 27−3 designs) is called

the minimum aberration design.

Extensions of the word length pattern, resolution and aberration to non-regular

designs also exist (Tang and Deng, 1999). But we will skip the details as their

knowledge will not be required in this dissertation.

II.2. The design isomorphism problem

In the context of fractional factorial designs, two types of isomorphisms or equiva-

lences have been identified in literature – combinatorial isomorphism and geometric

isomorphism. The distinction between the two is based on whether the factors being

considered are qualitative or quantitative. Quantitative factors are those whose lev-

els can be ordered on a numerical scale, whereas qualitative factors are those whose

levels cannot be put in any specific ordering. Combinatorial isomorphism is rele-

vant for qualitative factors, whereas geometric isomorphism is relevant in the case of

quantitative factors.

Two fractional factorial design matrices with qualitative factors are called com-

binatorially isomorphic to each other if one can be obtained from the other by some

relabeling of the factor labels, level labels of factors and row labels. Two fractional

factorial design matrices with quantitative factors are called geometrically isomorphic

to each other if one can be obtained from the other by some relabeling of the factor

labels, reversing the order of the levels of factors and relabeling of row labels. For
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2-level designs, these two definitions coincide. For this reason, in the remainder of

this dissertation we will refer to combinatorial isomorphism simply as isomorphism.

We thus have the following definition for design isomorphism.

Definition II.1. Two fractional factorial design matrices are called isomorphic to

each other if one can be obtained from the other by some relabeling of the factor

labels, level labels of factors and row labels.

Fig. 1 gives an example of two 27−3 design matrices that are isomorphic to each

other. Since a design matrix is uniquely defined by its defining contrast subgroup,

we have Proposition II.2, which essentially paraphrases Theorem 5 of Chen (1992).

Hence, we omit its proof.

Proposition II.2. Two 2-level regular fractional factorial designs, d1 ≡ {n, S1} and

d2 ≡ {n, S2}, where S1, S2 are defining contrast subgroups, are isomorphic to each

other if and only if one of S1 or S2 can be obtained from the other by some permutation

of factor labels and reordering of words.

Corollary II.3. Two 2-level regular fractional factorial designs, d1 ≡ {n, T1} and

d2 ≡ {n, T2}, where T1, T2 are treatment combination subgroups, are isomorphic to

each other if and only if one of T1 or T2 can be obtained from the other by some

permutation of factor labels and reordering of words.

Proof. This follows from Prop. II.2 due to the one-to-one relationship between defin-

ing contrast subgroup and treatment combination group.

It should be noted that, when two designs are isomorphic, the isomorphism is

the permutation (or relabeling map) from the factor labels of one design to the other,

under the action of which the two designs are identical.
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The defining contrast subgroup of the 27−3 design presented in Fig. 1(a) is

S1 = {I, ABE, ACF , BDG, ADEG, BCEF , CDEFG, ABCDFG}, and the defin-

ing contrast subgroup of the design in Fig. 1(b) is S2 = {I, ABE, ACF , CDG,

ADFG, BCEF , BDEFG, ABCDEG}. S1 is isomorphic to S2 under the factor

label permutation B ↔ C, E ↔ F . This relabeling map is the isomorphism between

the two designs.

Definition II.1 and Proposition II.2 (or Corollary II.3) provide ways for testing

if two designs are isomorphic by comparing their design matrices or defining contrast

subgroups, respectively, for isomorphism.

II.3. Isomorphism checks in literature

An isomorphism check gives a condition that can be used to test if two designs

are isomorphic or not. Isomorphism checks can be categorized by their classification

capability – whether they are necessary or, both, necessary and sufficient1 conditions.

Necessary checks are usually faster than necessary and sufficient checks but are not

always able to differentiate between two isomorphic designs.

Table 2 summarizes the major isomorphism checks proposed in literature. We

do not claim that we have listed all the approaches proposed in literature but we do

list the most promising approaches proposed for regular fractional factorial designs.

For a comprehensive review and comparisons, see Katsaounis and Dean (2008).

Various necessary conditions for checking the equivalence of two designs have

been studied in literature. Draper and Mitchell (1967) first proposed the problem of

isomorphism of 2-level regular fractional factorial designs. They suggested comparing

the word length patterns of two designs to decide if they are isomorphic or not, but

1We do not have a sufficient (and not necessary) category since we did not find
any isomorphism checks that would fall in this category.
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Table 2. Isomorphism checks proposed in literature

Isomorphism check Type of check Type of design Relevant papers

1 word length pattern necessary regular, multi-level Draper and Mitchell (1967)

2 letter pattern matrix necessary regular, multi-level Draper and Mitchell (1970)

3 exhaustive relabeling

check

necessary and sufficient regular, multi-level Chen et al. (1993)

4 Hamming distance based necessary and sufficient general, multi-level Clark and Dean (2001)

5 centered L2 discrepancy necessary general, multi-level Ma et al. (2001)

6 extended word length

pattern

necessary general, 2-level Sun et al. (2002)

7 minimal column base necessary and sufficient general, 2-level Sun et al. (2002)

8 indicator function repre-

sentation based

necessary and sufficient general, 2-level Cheng and Ye (2004)

9 moment projection pattern necessary regular, multi-level Xu (2005)

10 coset pattern matrix necessary regular, 2-level Zhu and Zeng (2005)

11 eigenvalues of word pattern

matrices

necessary, conjectured

sufficient

regular, 2-level Lin and Sitter (2008)
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noted that this is not a sufficient check. The same authors devised the letter pat-

tern matrix in Draper and Mitchell (1970), which they conjectured to be a sufficient

condition also. This conjecture was disproved by Chen and Lin (1991), who gave ex-

amples of two distinct 231−16
V II designs with identical letter pattern matrices. Recently,

Zhu and Zeng (2005) gave smaller examples, two 212−7 designs, disproving the same

conjecture.

Chen et al. (1993) proposed the first necessary and sufficient check, wherein they

compared two designs using an exhaustive relabeling approach. More recently, Clark

and Dean (2001) proposed a check based on the Hamming distances between points

in a high-dimensional space. This is a necessary and sufficient condition for checking

the isomorphism between two fractional factorial designs. Ma et al. (2001) extended

Clark and Dean (2001)’s work and proposed a necessary check by using the Hamming

distance matrix to define the centered L2-discrepancy, a uniformity measure, between

two designs. The latter two checks (Clark and Dean, 2001, Ma et al., 2001) are

applicable to non-regular designs also. These two checks have been found to be quite

efficient (Katsaounis and Dean, 2008) and we will be comparing the efficiency of our

proposed isomorphism check with them. Sections II.3.1 and II.3.2 present more

details on these two methods.

Sun et al. (2002) used the extended word length pattern, a generalization of the

word length pattern to non-regular designs (Tang and Deng, 1999), as a necessary

condition. They also proposed a necessary and sufficient isomorphism check for 2-level

(regular and non-regular) designs based on the minimal column base of a Hadamard

matrix. Xu (2005) use a coding theory approach to construct moment projection

patterns as a necessary condition for classifying fractional factorial designs. Zhu
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and Zeng (2005) compare coset pattern matrices2 to check for isomorphism. They

prove with examples that this is only a necessary condition. Lin and Sitter (2008)

construct a word pattern matrix and propose checking isomorphism by comparing the

eigenvalues of certain submatrices of this word pattern matrix. They have conjectured

that this condition is sufficient also. Lin and Sitter (2008)’s eigenvalues based check

appears to be the most efficient isomorphism checks among the proposed checks in

literature. Section II.3.3 presents details of this method.

In the next few subsections, we discuss the details of Clark and Dean (2001), Lin

and Sitter (2008), Ma et al. (2001)’s isomorphism checks. We will be comparing our

proposed isomorphism check with these isomorphism checks as they appear to be the

most efficient ones in literature.

II.3.1. Clark and Dean (2001)’s Hamming distance based method

Let Td denote the design matrix of a design d with n factors and N runs. Clark

and Dean (2001) construct a Hamming distance matrix Hd of size N × N for the

design d. The (i, j)th element of Hd is the number of mismatches in the ith and jth

runs (or rows) of Td; this is the Hamming distance between the runs i and j of Td.

The Hamming distance matrix obtained in this way is invariant to permutations of

factor labels (columns in Td) and level labels of factors.

Clark and Dean (2001) showed that two designs d1 and d2 with design matrices

Td1
and Td2

(of size N×n) are isomorphic if and only if (iff) there exists a permutation

of factor labels (of Td2
) and a row permutation of the Hadamard distance matrix (Hd2

)

such that the resulting Hd2
(after row permutation) is identical to Hd1

when any subset

of the columns in Td1
are used. It should be noted that since this isomorphism check

2A coset is an algebraic structure defined in group theory (Robinson, 1995, Rot-
man, 1995).
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A B C D E F G

1 0 0 0 0 0 0 0

2 0 0 0 1 0 0 1

3 0 0 1 0 0 1 0

4 0 0 1 1 0 1 1

5 0 1 0 0 1 0 1

6 0 1 0 1 1 0 0

7 0 1 1 0 1 1 1

8 0 1 1 1 1 1 0

9 1 0 0 0 1 1 0

10 1 0 0 1 1 1 1

11 1 0 1 0 1 0 0

12 1 0 1 1 1 0 1

13 1 1 0 0 0 1 1

14 1 1 0 1 0 1 0

15 1 1 1 0 0 0 1

16 1 1 1 1 0 0 0

Fig. 5. A 27−3 fractional factorial design with 7 factors, each with 2 levels, and

generators {ABE, ACF , BDG}.

uses design matrices it is applicable to all classes of fractional factorial designs with

qualitative factors and quantitative factors (after slight modification in the above

definition of distance matrix Hd).

The necessary and sufficient condition directly compares two designs for iso-

morphism. In the worst case, it requires considering n(n!)2 relabelings of a design.

Although this is much smaller than considering all possible relabelings but can still be

quite slow. For this reason, Clark and Dean (2001) recommended using a necessary

check for comparing two designs before running their necessary and sufficient check.

As a necessary check they compare the Hamming distance matrices constructed using

subsets of the factors and checking if the rows of the two matrices contain the same

set of distances with the same multiplicity.

As the Clark and Dean (2001)’s check targets the general class of fractional fac-

torial designs, it does not exploit the extra structure in regular fractional factorial

designs. For regular fractional factorial designs, we construct a new variant of Clark
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A B C D E F G

ABE 1 1 0 0 1 0 0

ACF 1 0 1 0 0 1 0

BDG 0 1 0 1 0 0 1

ADEG 1 0 0 1 1 0 1

BCEF 0 1 1 0 1 1 0

CDEFG 0 0 1 1 1 1 1

ABCDFG 1 1 1 1 0 1 1

Fig. 6. Matrix representation of a defining contrast subgroup for constructing variant

of Clark and Dean (2001)’s isomorphism check.

and Dean (2001)’s check (Shrivastava and Ding, 2010). Instead of computing the

Hadamard distance matrix from the design matrix we use the defining contrast sub-

group. We construct matrix representation of the defining contrast subgroup of a

design and then use this matrix to compute the Hadamard distance matrices. For

example, consider the design in Fig. 5. The defining contrast subgroup of this design

is {I, ABE, ACF , BDG, ADEG, BCEF , CDEFG, ABCDFG}. Fig. 6 shows

the matrix representation of the defining contrast subgroup. Each word in the defin-

ing contrast subgroup corresponds to a row in the matrix. The isomorphism check

of Clark and Dean (2001) can now be used with this matrix as input for each de-

sign. This representation has an advantage for large size designs where the number

of runs may well exceed the number of words in the defining contrast subgroup. For

example, a 215−5 design has (210 =) 1024 runs but has only (25 =) 32 words in its

defining contrast subgroup. This speeds up the computation involved in constructing

the Hadamard distance matrices.

II.3.2. Ma et al. (2001)’s centered L2 discrepancy based method

Ma et al. (2001) extended Clark and Dean (2001)’s Hadamard distance matrix based

method by computing the centered L2 discrepancy, CD2
2, of the designs for testing if
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two designs are isomorphic or not. The centered L2 discrepancy gives a measure of

the uniformity of a design (Fang et al., 2000). For a two level design d with N runs

and n factors, the centered L2 discrepancy can be computed by

CD2
2(d) =

(

13

12

)n

− 2

(

35

32

)n

+
1

n2

(

5

4

)n
(

n + 2
n
∑

i=1

i−1
∑

j=1

(

4

5

)Hd(i,j)
)

, (2.3)

where Hd(i, j) is the (i, j)th element of the Hadamard distance matrix Hd described

in the previous section.

The CD2
2(d) distribution can be computed by considering a subset of the factors.

Since there are
(

n

k

)

subsets of factors size k, the computed CD2
2(d) values are used to

form a distribution called the k-dimensional CD2
2(d) distribution; this is denoted by

Fk(d). F1(d), . . . , Fn(d) together form the CD2
2(d) distribution of the design d.

Ma et al. (2001) suggested comparing the CD2
2 distributions of two designs to

test for isomorphism. It can be shown that the two isomorphic designs will have the

same CD2
2 distribution and is therefore a necessary check. They further conjectured

that their method is also a sufficient check. The following example disproves this

conjecture.

Consider two 210−5 designs d1 and d2 given by defining contrast subgroups gen-

erated by generators g1 and g2, respectively:

g1 = {ABF,ACG,ADG,BEH,BCDI}

g2 = {ABF,ACG,BDG,CDH,BCEI}

Designs d1 and d2 were found to be non-isomorphic (using our graph based isomor-

phism check presented in Chapter III, and Clark and Dean (2001)’s isomorphism

check for defining contrast subgroups). Table 3 gives the identical CD2
2 distribution

of these two designs.
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Table 3. Distribution of CD2
2 values of two non-isomorphic 210−5 designs

Fj CD2
2 Freq.

F1 -0.984375 10

F2 -0.992188 45

F3 -0.996094 116

-0.992188 4

F4 -0.998047 174

-0.996094 36

F5 -0.999023 120

-0.998047 128

-0.996094 4

F6 -0.999023 163

-0.998047 47

F7 -0.999023 110

-0.998047 10

F8 -0.999023 44

F9 -0.999023 10

F10 -0.999023 1

II.3.3. Lin and Sitter (2008)’s eigenvalue method

Lin and Sitter (2008) have proposed a new necessary isomorphism check for 2-level

regular fractional factorial designs that they have conjectured to be sufficient also.

The method first constructs matrices from the defining contrast subgroups of the
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design, called the word pattern matrices. The following are the word pattern matrices

W3, W4, W5 and W6 of the 27−3 design in Fig. 5 with defining contrast subgroup {I,

ABE, ACF , BDG, ADEG, BCEF , CDEFG, ABCDFG}:

W3 =













1 1 0 0 1 0 0

1 0 1 0 0 1 0

0 1 0 1 0 0 1













,

W4 =







1 0 0 1 1 0 1

0 1 1 0 1 1 0






,

W5 =

(

0 0 1 1 1 1 1

)

, and

W6 =

(

1 1 1 1 0 1 1

)

.

The word pattern matrices are stacked by taking their all possible combinations

(which is 24 − 1 = 15, in the example above). The eigenvalues of the squares of

these stacked matrices are then computed. Lin and Sitter (2008) show that if two

designs are isomorphic then the computed set of eigenvalues of these two designs will

be the same. In their experiments they found that this criteria was always able to

distinguish between two non-isomorphic designs.

It is essential to note that there is a fundamental difference between the working

of the eigenvalue check (Lin and Sitter, 2008) and the other necessary and sufficient

checks, like Clark and Dean (2001). For comparing two designs, the eigenvalue check

involves running an expensive computation for each design and then comparing pairs

of eigenvalues (which is computationally cheap). The other methods, on the other

hand, run the expensive computation on the pair of designs to determine if they are

isomorphic or not. This fundamental difference makes the eigenvalue check more

attractive for use in a design catalog generation algorithm. This is because, for
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removing isomorphs from a collection of m designs, the eigenvalue check requires

only m expensive runs compared to m(m−1)
2

runs, in the worst case, required by the

other methods.

II.4. Summary

This chapter presented details on the mathematical structure and representations of

fractional factorial designs, in particular, regular fractional factorial designs. In the

next two chapters we will build on these representations of 2-level regular designs to

develop a new isomorphism check and an efficient design generation algorithm.

The isomorphism checks covered in this chapter present the best approaches

existing in current literature for comparing regular fractional factorial designs for

isomorphism. Of these, we chose to present details on three methods as we will be

comparing our proposed check with them in Chapter VI. This choice is motivated by

the results in Katsaounis and Dean (2008), which compares these various isomorphism

checks. They found Clark and Dean (2001)’s isomorphism check to be no slower than

any other necessary and sufficient check, and found Ma et al. (2001)’s necessary check

as a good trade-off between speed and discriminatory capability.



34

CHAPTER III

A NEW GRAPH BASED ISOMORPHISM CHECK

Graphs are mathematical structures that have been extensively studied in mathe-

matics and computer science. A simple undirected graph G(V,E) consists of disjoint

finite sets V of vertices, and E of edges. Each edge is a pair of distinct vertices,

and no two edges repeat in the edge set E. For an introduction to graph theory

please see Diestel (2005). Fig. 7 gives an example of a simple graph. The graph has

6 vertices {A, B, C, D, E, F} and 7 edges {(A,B), (A,F ), (B,C), (C,D), (C,F ),

(D,E), (D,F )}. Due to their simple structure, graphs have found wide applications

in science (Balaban, 1985, Mason and Verwoerd, 2007) and engineering (Cook et al.,

1998, Hayes, 2000a,b).

III.1. Graph models in design of experiments

There have been many studies relating the fields of experimental designs and graph

theory. But the generated knowledge can best be described to be skewed towards

C

A

B

D

E

F

Fig. 7. A simple graph
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the study of block designs, also called combinatorial designs. The relation between

block designs and regular graphs has been well established (Bose, 1963), and has been

used for constructing block designs (Kaski, 2002), including optimal designs (Cheng,

1981). The problem of testing isomorphism between block designs has also been shown

to be computationally equivalent to the graph isomorphism problem (Colbourn and

Colbourn, 1981). For further details on the use of graphs for studying block designs

see Cameron and van Lint (1980).

The use of graphs for studying factorial designs has primarily been limited to

representing the confounding (or aliasing) relationships. Recall that, in the design in

Fig. 5, since ABE is a defining word, main effect A is confounded with interaction

effect BE, effect B with AE, and effect E with AE. The first graphical representation

for these confounding relations seems to have been proposed in Daniel (1962). Taguchi

(Roy, 2001) provided graph representations of the orthogonal arrays and proposed

comparing a requirements graph for selecting the design for an experiment. Sun and

Wu (1994), Wu and Chen (1992) extended this design selection method by provided

graph representations for regular fractional factorial designs. In both of these graph

representations of designs, the vertices of the graph represent the factors and the

edges represent the two-factor (three-factor in Sun and Wu (1994)) interaction effects

that can be estimated by the design. These models are difficult to extend to include

higher order interaction effects.

In this dissertation we present new graph representations of fractional factorial

designs. This appears to be the first attempt to formally relate graphs with factorial

designs in a way that can be used for constructing factorial designs. We will use this

structural relationship to relate the problem of fractional factorial design isomorphism

with the graph isomorphism problem, and efficiently solve it.

In this and the following chapter, we will propose graph representations for 2-level
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regular fractional designs and use them to develop efficient algorithms for constructing

non-isomorphic catalogs of these designs. For brevity, we will refer to these 2-level

regular fractional factorial designs simply as fractional factorial designs or designs in

the remainder of this chapter and the next chapter.

III.2. 2-level regular fractional factorial designs as graphs

We provide a new bipartite graph representation of a 2-level regular fractional factorial

design. A bipartite graph G(Va, Vb, E) is a graph in which the vertex set V can be

partitioned into disjoint subsets Va and Vb such that each edge has one vertex in Va

and one in Vb.

Algorithm III.1. Construction of bipartite graph G(Va, Vb, E) for design d ≡ {n, S}

Input: design d ≡ {n, S}

Step 1. Start with an empty graph with no vertices, i.e., Va = φ and Vb = φ (and

hence, no edges, i.e., E = φ).

Step 2. For each factor in the design d, add a vertex in Va, i.e., add vertices va1, . . . , van

in Va.

Step 3. For each word in the defining contrast subgroup S, except I, add a vertex in

Vb, i.e., add vertices vb1, . . . , vb(|S|−1) in Vb, where |S| denotes the cardinality

of set S.

Step 4. For each word in S, except I, add edges between the vertex (in Vb) corre-

sponding to the word, and the vertices (in Va) corresponding to the factors

in the word.

The vertex sets Va and Vb form the two partitions of the graph. From Algo-

rithm III.1, it is clear that there exists a bipartite graph for each 2-level regular
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A

B

C

D

E

F

G

ABE

ACF

BDG

ADEG

BCEF

CDEFG

ABCDFG

Fig. 8. Bipartite graph for the 27−3 design in Fig. 1(a). Vertices on the left, set Va,

correspond to factors, and vertices on the right, set Vb, correspond to words

in the defining contrast subgroup.

fractional factorial design.

Fig. 8 shows the graph representation of the 27−3 design given in Fig. 1(a),

with defining contrast subgroup {I, ABE, ACF, BDG, ADEG, BCEF, CDEFG,

ABCDFG}. The vertex ABE in Vb, for example, is connected by edges to vertices

A, B, and E in Va.

Due to Corollary II.3, an alternative graph representation of the design can be

obtained by using the treatment combination subgroup, T , of the design instead of

the defining contrast subgroup, S. The alternative graph representation for a design

{n, T} is also obtained by following Algorithm III.1, but with S replaced by T . For

example, for the 27−3 design in Fig. 1(a), that has the treatment combination subgroup

{I, CF, DG, ACE, AEF, BDE, BEG, ABCD, ABCG, ABDF, ABFG, CDFG,

ACDEG, ADEFG, BCDEF, BCEFG}, each element corresponding to the runs in

the principal fraction, Fig. 9 shows the alternative graph representation.

It should be noted that for fixed n, since the size of the constructed graph
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A

B

C

D

E

F

G

BDE

BEG

ABCD

ABCG

ABDF

ABFG

CDFG

CF

DG

ACE

AEF

ACDEG

ADEFG

BCDEF

BCEFG

Fig. 9. Alternative bipartite graph for the 27−3 design in Fig. 1(a). Vertices on the

left, set Va, correspond to factors, and vertices on the right, set Vb, correspond

to words in the treatment combination group.

depends on the size of S or T , the alternative graph representation gives a smaller

graph whenever |T | = 2n−k < 2k = |S| or n < 2k. Thus, when converting a design to a

graph, we may choose one of the two representations depending on whether n < 2k or

not. In the 27−3 design example considered above, we have n = 7 > 6 = 2×3 = 2k. So

the graph constructed using the defining contrast subgroup is smaller and is selected.
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III.3. Graph isomorphism and fractional factorial design isomorphism

The fractional factorial design isomorphism problem can be translated to the problem

of checking isomorphism between the corresponding graph representations of the two

designs. The relabelings of factors of a design (in Proposition II.2) then correspond to

the permutations of vertex labels that preserve the partitions and vertex adjacencies

in the graph. This is the set of all vertex permutations that allow permutations only

within each of the partitions.

Theorem III.1. Two 2-level regular fractional factorial designs, d1 ≡ {n, S1} and

d2 ≡ {n, S2}, where n is the number of factors and S1, S2 are defining contrast sub-

groups, with graph representations G1(Va1, Vb1, E1) and G2(Va2, Vb2, E2), respectively,

are isomorphic to each other if and only if G1 and G2 are isomorphic to each other.

Proof. Let fi,j denote the ith, i = 1, . . . , n, factor in design dj, j = 1, 2.

First, assume that d1 and d2 are isomorphic.

Then ∃ a permutation (or relabeling) α of factor labels such that Sα
1 = S2, i.e. S1 is

isomorphic to S2 under the action of α.

Consider some word w1 = f1,1 · · · fm,1 ∈ S1. Then ∃ a word w2 = f1,2 · · · fm,2 ∈ S2,

such that wα
1 = w2 (∵ Sα

1 = S2). Therefore, the edges in Gα
1 are {fα

1,1, w
α
1 }, where

fα
1,1 ∈ V α

a1 and wα
1 ∈ V α

b1, or equivalently {f1,2, w2}, where f1,2 ∈ Va2 and w2 ∈ Vb2

in G2. Since w1 and f1,1 were arbitrary, and V α
a1 = Va2 and V α

b1 = Vb2, we have G1

isomorphic to G2.

Now, assume that G1 and G2 are isomorphic, with V α
a1 = Va2 and V

β
b1 = Vb2.

Let w1 = f1,1 · · · fm,1 ∈ S1. Let vb1 ∈ Vb1 correspond to w1, and v1,a1, . . . , vm,a1

correspond to f1,1, . . . , fm,1, respectively. Let vb2 ∈ Vb2 such that v
β
b1 = vb2. Let

v1,a2, . . . , vm,a2 ∈ Va2 be connected to vb2 by edges. Let w2 = f1,2 · · · fm,2 ∈ S2 corre-

spond to vb2, then v1,a2, . . . , vm,a2 correspond to f1,2, . . . , fm,2 in some order. Without
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loss of generality we assume that the correspondence is in the listed order. Further as-

sume, Since, G
αβ
1 = G2, we have for edges {vα

1,a1, v
β
b1} = {v1,a2, vb2}. Since the choice

of v1,a1 was arbitrary in the last statement, we have, for the corresponding words,

w
αβ
1 = w2. Again, since the choice of w1 ∈ S1 was arbitrary, we have S1 isomorphic

to S2. Therefore, d1 is isomorphic to d2.

Corollary III.2. Two 2-level regular fractional factorial designs, d1 ≡ {n, T1} and

d2 ≡ {n, T2}, where n is the number of factors and T1, T2 are treatment combination

subgroups, with graph representations G1(Va1, Vb1, E1) and G2(Va2, Vb2, E2), respec-

tively, are isomorphic to each other if and only if G1 and G2 are isomorphic to each

other.

Proof. Follows from Theorem III.1 and Corollary II.3

Theorem III.1 and Corollary III.2 give a necessary and sufficient condition for

checking if two fractional factorial designs are isomorphic by solving the graph iso-

morphism problem. In the next section we look at the graph isomorphism problem

and our approach to solving the graph isomorphism problem.

III.4. The graph isomorphism problem

The graph isomorphism problem is to check, given two graphs, if there exists a re-

labeling of the vertices of one graph that would make it identical to the other. The

relabeling should preserve the vertex adjacency of the vertices, i.e., if vertices v1 and

v2 have an edge between them then the relabeled vertices v′
1 and v′

2, respectively,

should also have an edge between them. The relabeling map from one vertex set to

the other is an isomorphism between the graphs. Fig. 10 shows an example of two
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B

C

F

E

B

C

F

E

(a) (b)

A A

D D

Fig. 10. Example of graph isomorphism. (a) and (b) show two simple graphs iso-

morphic to each other. Exchanging vertex labels B with F and C with E

gives the other graph.

isomorphic graphs. The graphs in Fig. 10 are essentially mirror images of each other,

and one can be obtained from the other by exchanging vertex labels B with F and

C with E.

III.4.1. Solving the graph isomorphism problem

The graph isomorphism problem has been extensively studied in mathematics and

computer science. Much effort has been put in developing efficient algorithms for this

problem. For a review on the history of the problem and algorithmic developments

towards solving this problem, please see Fortin (1996), Read and Corneil (1977). A

problem closely associated with the graph isomorphism problem is the problem of

finding the automorphisms of the graph. An automorphism is an isomorphism that

maps a graph to itself (i.e., a vertex label permutation that does not alter the graph).

There are two primary approaches to solving the graph isomorphism problem.

One is to test the isomorphism between two graphs by directly attempting to find a

relabeling map (i.e., an isomorphism) that makes one graph identical to the other.
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The other approach, which we use, is the so-called canonical labeling approach. In this

approach, a function C(G) is computed, for each graph G, that returns a canonical

label for the graph. The canonical label is such that, for two graphs G and H,

C(G) = C(H) iff graphs G and H are isomorphic to each other.

The most efficient canonical labeling algorithm is implemented in a C package

nauty based on McKay (1981). This package is available freely for research purposes

from the developer’s website (McKay, 2004). In practice nauty has been found to

be extremely efficient for most graphs and outperforms all other graph isomorphism

algorithms (Kocay, 1996).

III.4.2. nauty

The algorithm nauty takes as input a graph and outputs a canonical label for the

graph and the automorphisms of the graph. For computing a canonical label for a

graph, the algorithm nauty first uses a vertex invariant to create ordered partitions

of the vertex set of a graph. A partition of the vertex set V of a graph G(V,E) is a

sequence of disjoint subsets V1, V2, . . . , Vk of V . A vertex invariant is a function i(v)

such that if some isomorphism maps v to v′ then i(v) = i(v′). It should be noted that

the converse of this does not hold in general.

A popular vertex invariant is the degree of a vertex, d(v, V ), defined as the

number of edges containing the vertex v ∈ V . An initial partition is constructed by

computing the invariant for each vertex in the graph, i.e., d(v, V ). The partition is

then refined by computing the invariant d(v, Vi) for each vertex v but restricted to

each subset Vi in the partition; d(v, S) is defined as the number of edges between

vertex v and the vertices in S ⊆ V . The partition is recursively refined until no

further refinement of the partition is possible. The trivial total ordering scheme is

used to order the newly formed subsets at each refinement step.
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Initial partition V = A B C D E F

d(vi, V ) = 2 2 3 3 1 3

⇓
partitioning and ordering by d(v, V )

{V1, V2, V3} = E A B C D F

{d(vi, V1), d(vi, V2), d(vi, V3)} = {0,0,1} {0,1,1} {0,1,1} {0,1,2} {1,0,2} {0,1,2}

⇓
partitioning and ordering by {d(vi, V1), d(vi, V2), d(vi, V3)}

{V1, V2, V3, V4} = E A B C F D

{d(vi, V1), d(vi, V2), d(vi, V3), d(vi, V4)} = {0,0,0,1} {0,1,1,0} {0,1,1,0} {0,1,1,1} {0,1,1,1} {1,0,2,0}

Fig. 11. Example of partition refinement in nauty for the graph in Fig. 7. The

invariant used here is the degree of a vertex. At each step the invariant is

computed and the partition is refined so that the value of the invariant for

each vertex in the same cell is identical.

For example, for the graph in Fig. 7, Fig. 11 shows the steps in the partition

refinement routine. In the first step, the degree of each vertex, d(v, V ), is computed

and the vertex set is partitioned so that the vertices in the same cell have the same

degree. The cells are then ordered by the degree of the vertices in the cells. This

gives the partition {E,AB,CDF}. In the second step, the degree of each vertex

with respect to each of the cells is computed, i.e., {d(v, V1), d(v, V2), d(v, V3)}. In the

example, all the members in cell V3 do not have the same ordered set of values, so

the cell is split into two. This partition refinement procedure continues until the cells

can no more be split, which happens in the third iteration in this example.

Once no further refinement of a partition is possible, a search tree is constructed

by splitting the non-singleton subsets in the partition. Each branch of the tree corre-

sponds to one choice of the non-singleton subset and an ordering of the new subsets
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E A B C F D

split cell {A,B}

ւ ց

E A B C F D

. . . {0,0,1,1,1} {0,1,0,1,1} . . .

⇓ partition

refinement

E A B C F D

E A B C F D

E 0 0 0 0 0 1

A 0 0 1 0 1 0

B 0 1 0 1 0 0

C 0 0 1 0 1 1

F 0 1 0 1 0 1

D 1 0 0 1 1 0

E B A C F D

. . . {0,1,0,1,1} {0,0,1,1,1} . . .

⇓ partition

refinement

E B A F C D

E B A F C D

E 0 0 0 0 0 1

B 0 0 1 0 1 0

A 0 1 0 1 0 0

F 0 0 1 0 1 1

C 0 1 0 1 0 1

D 1 0 0 1 1 0

տ ր
identical adjacency matrices

=⇒ A ↔ B,C ↔ F is an automorphism

Fig. 12. Search tree for finding automorphisms for the graph in Fig. 7. The final

partition in Fig. 11 is split. Here only the {A,B} split is considered.

after splitting. The new partitions are then refined using the vertex invariant and

further split and refined continuously until discrete partitions are obtained. A dis-

crete partition is a partition that has only singleton subsets. Each discrete partition

is a (ordered) labeling of the graph. The automorphisms of the graph are obtained

by comparing the graphs (by their adjacency matrices) with two different labelings.

One of these labelings is chosen as the canonical labeling for the graph by nauty. The

choice is made based on a complicated scheme, see McKay (1981) for details.
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For the graph in Fig. 7, the search tree is constructed by starting from the

partition {E,AB,CF,D} that cannot be further refined. Fig. 12 shows the two

branches of the search tree after splitting the cell {AB}. After splitting the cell,

the partitions are again refined using the degree invariant d(v, Vi) (as shown in the

example in Fig. 11). In this example the discrete partitions are obtained in a single

step of partition refinement for each of the two branches considered. The figure

does not show splitting the cell {CF} which is also considered by the algorithm. The

adjacency matrices of the discrete partitions in Fig. 12 are identical, implying that the

function mapping the two ordered labelings is an automorphism, i.e., the relabeling

{A ↔ B,C ↔ F} is an automorphism of this graph as it does not alter the graph.

The search tree implemented in nauty is a depth-first tree which includes an

efficient implementation of the partition refinement routine. The canonical label

chosen by nauty basically corresponds to the smallest automorphism under certain

ordering of the automorphisms of the graph. The sorting criteria, although involved,

is relatively less expensive to compute. The algorithm further gains by including

certain pruning mechanisms for reducing the search tree.

The algorithm nauty is known to take exponential running time, in the number

of vertices, in the worst case (Kocay, 1996), which suggests that in the worst case,

the design isomorphism problem can be solved in exponential time in the number of

words in the defining contrast subgroup or treatment combination subgroup (since

Alg. III.1 requires O(n · |S|) or O(n · |T |) running time to transform a design to a

graph). Therefore, we expect our isomorphism check to also be very efficient for most

2-level regular fractional factorial designs.

It is essential to note that, similar to Lin and Sitter (2008), for comparing two

designs, our graph based isomorphism check involves running an expensive compu-

tation for each design and then comparing the pairs of canonical labels (which is
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computationally cheap). Therefore, for removing isomorphs from a collection of m

designs, our graph based isomorphism check requires only m expensive runs com-

pared to m(m−1)
2

runs, in the worst case, required by the other methods. Thus our

graph based check is also an attractive choice for use in a design catalog generation

algorithm. But we expect our graph based isomorphism check to outperform Lin and

Sitter (2008). This is because Lin and Sitter (2008)’s eigenvalue based check, given

the defining contrast subgroup, requires computing the eigenvalues of an exponen-

tially large number of matrices; if there are p word pattern matrices of a design then

eigenvalues of 2p − 1 matrices will be computed. The use of vertex invariants will

usually leads to much smaller than exponentially large leaf nodes (discrete partitions)

in the search tree. Further computing vertex invariants is much faster the eigenvalue

computations, which, in general, require O(m3) floating point operations for an m×m

matrix (Calvetti et al., 2002).

III.5. Summary

In this chapter we presented a new approach for solving the design isomorphism

problem for 2-level regular fractional factorial problems. The approach is based on

modeling the designs as graphs and then solving the graph isomorphism problem. In

Chapter VI we will see that this new method works much better than the existing

algorithms. Another good property of this approach is that it is extensible to other

classes of designs. We only need to find a graph representation of these designs that

gives a one-to-one map from the designs to the graphs (this property is necessary for

a result like Theorem III.1 to hold). In Chapter V we will see such an extension for

the case of 2-level regular fractional factorial split-plot designs.

Since we have stressed much on the computational difficulty of the design iso-
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morphism problem, it is essential that we comment on its computational complexity.

Given the proven relationship (in Theorem III.1) between design isomorphism and

graph isomorphism we will discuss in terms of the complexity of the graph isomor-

phism problem. The graph isomorphism problem has a special place in complexity

theory. It is known to be in NP, but it is not known whether it is in P or NP-complete.

The isomorphism problem for bipartite graphs has also been found to be computa-

tionally equivalent to the graph isomorphism problem (Zemlyachenko et al., 1985).

The graph construction for a design, as given in Algorithm III.1, has time complexity

O(n · |S|) (all steps other than Step 4 of the construction procedure take linear time

in n or |S|, the number of words in S), or O(n · |T |), if the treatment combination

subgroup is used instead. Thus, a design can be transformed into a graph in polyno-

mial time (polynomial in the number of factors and the number of words in S or T ).

Therefore, the problem of determining whether two designs are isomorphic or not is

no more harder than the graph isomorphism problem.
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CHAPTER IV

GENERATING NON-ISOMORPHIC CATALOGS OF 2-LEVEL

REGULAR FRACTIONAL FACTORIAL DESIGNS

The trivial way of finding all the non-isomorphic designs for a given number of factors,

n, and fraction, k, (or equivalently, the number of runs, 2n−k) is to generate all the

2n−k designs and compare them for isomorphism. But this approach is impractical

due to the excessively large number of designs (even for small n and k) and the costly

(necessary and sufficient) isomorphism check. The total number of 2n−k designs is

given by
(

(2n−k−1)−(n−k)
k

)

. So, for example, the total number of 32-run designs with

5, 6, 7, . . . factors is 1, 26, 325, 2,600, 14,950, 65,780, 230,230, 657,800, 1,562,275,

3,124,550, 5,311,735, . . . . So, even if we have a very efficient isomorphism check, the

problem of generating design catalogs is computationally hard.

In this chapter we describe algorithms that try to find all non-isomorphic designs

in a complete catalog without comparing all the designs for isomorphism. The existing

methods in literature for achieving this are described in Section IV.2. But before

that, in Section IV.1 we describe the sequential approach for generating complete

design catalogs on which the methods in Section IV.2 improve upon. Together, the

refined sequential algorithm for generating non-isomorphic catalogs is presented in

Section IV.3. Exploiting the graph models developed for fractional factorial designs

in Section III.2, we present a new method for further reducing the computational effort

in the generation algorithm in Section IV.4 and the final algorithm in Section IV.5.



49

2
4

design

2
5−1

designs

2
6−2

designs

2
7−3

designs
. . .

defining

word w1

defining

word w2

defining

word w3

Fig. 13. Sequential generation of 16-run designs. Starting with the full factorial

design, a larger (child) design is generated by adding a defining word to the

smaller (parent) design.

IV.1. Sequential generation of design catalogs

Fractional factorial designs are typically generated in a sequential manner. Fig. 13

shows the sequential generation of 16-run designs. First the (only) 24 full factorial

design is picked. A defining word w1 is added to this design to construct a 25−1

design. Then another defining word w2 is added to construct a 6-factor design and

the process continues until the design with the desired number of factors has been

constructed. To construct the collection of all the 2n−k designs, all possible choices

of the defining words are considered at each step of the sequential procedure. All

possible choices of the defining words are obtained by considering all combinations

of two or more factors in the full factorial design, in the first step of the sequential

procedure. Therefore, for the 16-run designs, all the defining words are obtained by

adding the new factor (e.g., G for 7-factor designs) to the words in the set {AB, AC,

AD, BC, BD, CD, ABC, ABD, ACD, BCD, ABCD}. We will call such a set the

set of candidate defining words. Words of length less than two are ignored from this

set because the resulting designs will then be of resolution less than three.

There are two ways in which the computational burden can be reduced from the

above method. One way is to consider only a subset of the entire subset of fractional
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factorial designs at each step of the sequential generation procedure (Chen et al.,

1993, Lin and Sitter, 2008, Xu, 2005). We will call this (sub)set of designs as the

set of intermediate designs. The set of non-isomorphic designs can then be obtained

from the set of intermediate designs by using an isomorphism check on this set. We

will discuss more details on this in Sections IV.2 and IV.4.

The other method to speed up the computations is by using a necessary isomor-

phism check. Chen et al. (1993), Lin and Sitter (2008), Xu (2005) decompose the

intermediate set of designs into smaller subsets, using a necessary condition (e.g., word

length pattern (Chen et al., 1993) or eigenvalue criterion (Lin and Sitter, 2008) among

others), such that two designs belonging to different subsets are non-isomorphic to

each other. Therefore, only the designs within the smaller subsets need to be com-

pared using a necessary and sufficient isomorphism check. Chen et al. (1993) and

Xu (2005) used an exhaustive relabeling check to do this. Lin and Sitter (2008) used

Clark and Dean (2001)’s condition as the necessary and sufficient condition in one

version of their generation algorithm, and their eigenvalue check in another version.

Both the versions generated the same list of designs but the second version of the

algorithm was much faster.

IV.2. Reducing intermediate designs

To reduce the size of the intermediate set of designs, two approaches have been

proposed in literature – one by Chen et al. (1993) and another by Bingham and

Sitter (1999a).
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Non-isomorphic

2
5−1 designs

Non-isomorphic

2
6−2 designs

27−3 designs

generated

from

26−2 designs

Non-isomorphic

2
7−3 designs

intermediate step

. . .

discard isomorphs

24

design

Fig. 14. Chen et al. (1993)’s sequential generation procedure. Intermediate designs

are constructed only from the non-isomorphic designs in the preceding stage.

IV.2.1. Chen et al. (1993)’s modified sequential generation

Let D0
n,k denote the set of all intermediate 2n−k designs constructed using all the

2(n−1)−(k−1) designs, and let Dn,k denote the set of non-isomorphic 2n−k designs (ob-

tained from D0
n,k using some isomorphism check). Now, consider the set D+

n,k of

designs constructed in a way similar to D0
n,k designs but by only using the Dn−1,k−1

designs, i.e., the set of all non-isomorphic 2(n−1)−(k−1) designs. Clearly, D+
n,k ⊂ D0

n,k.

Chen et al. (1993) showed that D+
n,k ⊃ Dn,k. Therefore, we can reduce the number

of intermediate designs in the sequential generation procedure by constructing inter-

mediate designs by only using non-isomorphic (parent) designs at each stage. Fig. 14

shows the updated sequential generation procedure.

IV.2.2. Bingham and Sitter (1999a)’s orderly approach

Bingham and Sitter (1999a) further reduced the size of the set of intermediate designs

by constructing the designs at each stage of the sequential generation procedure in an

orderly manner. They first sort the set of candidate defining words. Let C denote this

ordered set, ordered first by word lengths and then by lexicographic ordering to break

the ties. Then, intermediate designs are constructed by adding a candidate defining
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word to each design d in Dn−1,k−1, the set of all non-isomorphic 2(n−1)−(k−1) designs.

Those candidate designs for which the last added defining word (when constructing

the 2(n−1)−(k−1) design from a 2(n−2)−(k−2) design) lies before the newly added defining

word, in C, are not allowed. These candidate designs make up the set D+
n,k.

Suppose we want to construct the catalog of 26−2 fractional factorial designs. Ac-

cording to the sequential generation procedure described in Section IV.1, we first start

with the 24 design and construct 25−1 designs. The ordered set of candidate defining

words, C, here is {AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, ABCD}.

We construct the 5-factor designs by considering each of the candidate defining words

in the order listed in C. To construct the 6-factor designs we again add each of the

words in C to each of the 5-factor designs. Fig. 15 shows an example constructing

6-factor designs by selecting a different 5-factor design in the first step. In Fig. 15(a)

the 5-factor design is constructed by using the defining word ABE. We can now

construct 6-factor designs by using each of the words in C except AB. In Fig. 15(b)

the 5-factor design is constructed using the defining word ABCE but, according to

Bingham and Sitter (1999a)’s rule, we may use only the candidate words below ABC

in C to construct the 6-factor designs. Suppose we instead use the word ABF to

construct the 6-factor design in Fig. 15(b). Then it can be seen that this design, with

defining contrast subgroup {ABF, ABCE, CEF}, is isomorphic (under the relabel-

ing E ↔ F ) to the design with defining contrast subgroup {ABE, ABCF, CEF}

that will be chosen in Fig. 15(a) (according to Bingham and Sitter (1999a)’s rule).

Bingham and Sitter (1999a)’s rule thus avoids such obviously isomorphic duplicates

in the intermediate set by allowing only one of the two designs to be picked.
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24 design +

AB → 25−1 design + AB

→ 26−2 designs

AC AC

AD AD

BC BC

BD BD

CD CD

ABC ABC

ABD ABD

ACD ACD

BCD BCD

ABCD ABCD

(a) 6-factor designs constructed from the 5-factor design with defining word ABE

24 design +

AB AB

AC AC

AD AD

BC BC

BD BD

CD CD

ABC → 25−1 design + ABC

ABD ABD

→ 26−2 designsACD ACD

BCD BCD

ABCD ABCD

(b) 6-factor designs constructed from the 5-factor design with defining word ABCE

Fig. 15. Example of Bingham and Sitter (1999a)’s orderly design reduction proce-

dure. (a) and (b) show two (of possible 11) different 25−1 designs selected

by choosing candidate defining words, ABE and ABCE, respectively. 26−2

designs are constructed from these 25−1 designs by adding defining words

to them. Choices of candidate defining words not permitted by Bingham

and Sitter (1999a)’s rule are stricken out. So only four 26−2 designs can be

constructed in (b).

IV.3. Basic algorithm for generating non-isomorphic design catalogs

Combining the sequential generation procedure of Section IV.1 and the techniques for

reducing intermediate designs of Section IV.2, we get a design generation algorithm
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Input:

Dn,k, set of non-Isomorphic 2n−k designs;

C, ordered set of candidate defining words

Is

Dn,k empty?

Choose some d ∈ Dn,k;

delete d from Dn,k

Partition D+
n+1,k+1 into G1, . . . , Gm

s.t. two designs in Gi have same

word length pattern

For each c ∈ C, add the

2(n+1)−(k+1) design d ∪ c to

D+
n+1,k+1

Discard isomorphs from

each Gi

Yes

No

Output:

Dn+1,k+1, set of non-isomorphic

2(n+1)−(k+1) designs

Fig. 16. Basic algorithm for generating the catalog of non-isomorphic 2n−k designs

(Lin and Sitter, 2008) from the set of non-isomorphic 2(n−1)−(k−1) designs.

Dashed-line box highlights the use of a different isomorphism check from

Lin and Sitter (2008). Dashed line indicates the location where the new

candidate defining reduction method of Section IV.4 will come in.

similar to Lin and Sitter (2008). Fig. 16 shows a schematic representation of the

generation algorithm. It also highlights the differences between Lin and Sitter (2008)’s

algorithm and the final algorithm proposed in Section IV.5.

We generate the set of non-isomorphic 2n−k designs in a recursive manner as
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described in Section IV.1. We start with the only 2a(a = n − k) full factorial design,

generate all non-isomorphic 2(a+1)−1 designs, then all non-isomorphic 2(a+2)−2 designs,

. . . , and finally all non-isomorphic 2(a+k)−k (i.e., 2n−k) designs (see Section IV.2.1).

The basic algorithm proceeds by first constructing the ordered set of all candidate

defining words C. Then, candidate designs are constructed by adding a candidate

defining word to each design d in Dn−1,k−1, the set of all non-isomorphic 2(n−1)−(k−1)

designs, according to the procedure in Section IV.2.2. These candidate designs make

up the intermediate set D+
n,k. This set is then partitioned into subsets G1, . . . , Gm

using a necessary isomorphism check. We use the word length pattern check, also used

in Lin and Sitter (2008), in our implementation, as it is computationally inexpensive.

We then use our graph based isomorphism check to remove the isomorphs from each

subset. The subsets, together, now form the set Dn,k, the set of non-isomorphic 2n−k

designs.

Since this basic algorithm described above is similar to that in Lin and Sitter

(2008) and Bingham and Sitter (1999a), except for the graph based isomorphism

check, we skip the proof that the algorithm actually finds all the non-isomorphic

designs. The algorithm reduces the number of 2n−k designs considered for finding the

non-isomorphic designs, i.e., the set D+
n,k is smaller than the set of all possible 2n−k

designs. It seems obvious that the smaller the set D+
n,k is the faster the algorithm is

going to work. A method for further reducing D+
n,k is described in the next section.

It’s location in the final algorithm, relative to the algorithm in Fig. 16 is highlighted

by the dashed arrow.
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IV.4. New candidate defining word reduction method

In this section, we extend an idea suggested by McKay (1998), which proposes an al-

gorithm for generating non-isomorphic graphs, to reduce the candidate defining words

in C. This will further reduce the number of intermediate designs generated in D+
n,k.

Before we present the main result, we first extend the concept of automorphisms of

a graph (Cameron and Mary, 2004) to automorphisms of fractional factorial designs.

Definition IV.1. An automorphism of a 2-level regular fractional factorial design

d ≡ {n, S} is a relabeling of factor labels of d, such that the design obtained after

relabeling is identically d.

Fig. 17(a) shows the graph representation of a 26−2 design with defining contrast

subgroup {ABE, ACF, BCEF}. Fig. 17(b) shows the graph obtained after the

relabeling B ↔ C and E ↔ F . Clearly, the two graphs, and hence the designs, are

identical. Therefore, the relabeling B ↔ C and E ↔ F is an automorphism of the

26−2 design in Fig. 17.

Theorem IV.2. Suppose d ≡ {n, S} is a parent design, and c1 and c2 (not identically

equal to c1) are two candidate defining words. Further suppose that there exists an

automorphism α of d, such that c1 is isomorphic to c2 under this factor relabeling α.

Then, the child designs d ∪ c1 and d ∪ c2, obtained by adding the defining words c1

and c2 to d, respectively, are isomorphic to each other.

Proof. Since d ≡ {n, S}, we have d ∪ c1 = {n + 1, {S, c1S}} and d ∪ c2 = {n +

1, {S, c2S}}, where {S, ciS} is the defining contrast subgroup of d ∪ ci, i = 1, 2.

Since α is an automorphism of d, we only need to show that (c1S)α = c2S to prove

that (d ∪ c1)
α = d ∪ c2.

Let w ∈ S, then, since (c1S)α = c2S, we have (c1w)α = cα
1wα = c2w

α ∈ c2S.
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ABE

B

C

D

E

A

ACF

BCEF

F

(a)

ACF

C

B

D

F

A

ABE

BCEF

E

(b)

B ↔ C, E ↔ F

Fig. 17. Automorphism of a 26−2 design. (a) is the graph representation of the

26−2 design with defining contrast subgroup {ABE, ACF, BCEF}. The

relabeling B ↔ C and E ↔ F is an automorphism of this design as the

graph in (b) is identical to that in (a).

Since, the choice of w ∈ S is arbitrary, we have (c1S)α = c2S.

As an example, consider the 26−2 design in Fig. 17. Among the many different

possible defining words, consider the two defining words BDG and CDG to be added

to the 26−2 design. Under the relabeling B ↔ C and E ↔ F , which is an automor-

phism of the 26−2 design in Fig. 17, BDG and CDG are clearly isomorphic to each

other. The designs obtained from adding BDG (Fig. 8) and CDG are isomorphic to

each other.

The result in Theorem IV.2 allows us to reduce the candidate defining words

in C to C′ by keeping only the defining words that are non-isomorphic under all

the automorphisms of the parent design. That is, for each design we compute all

the automorphisms and then reduce the set C to C′ by keeping only non-isomorphic

defining words. For obtaining the automorphisms of a design, we compute the auto-
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morphisms of the corresponding graph representation, which we obtain using nauty

(as described in Section III.4.2). It should be noted that the computation of the

automorphism group with nauty does not incur any extra computational expense.

IV.5. Final algorithm for generating design catalogs

Algorithm IV.1 summarizes our design generation algorithm by combining the graph

based candidate defining word reduction method of Section IV.4 with the basic algo-

rithm described in Section IV.3.

Algorithm IV.1. Generating non-isomorphic 2(n+1)−(k+1) designs from 2n−k designs

Input: Dn,k, set of all non-isomorphic 2n−k designs

Step 1. Construct all possible 2a − 1 words, except I, from the first a = n − k

factors, and order them by their word lengths breaking ties with lexicographic

ordering. Call this ordered set C.

Step 2. For each design d ∈ Dn,k

(a) Find the set C′, of unique defining words, under the action of the auto-

morphisms of d on C.

(b) Construct a set of 2(n+1)−(k+1) designs by adding to d a defining word

c ∈ C′, where c lies below the last added word in d in the set C.

Step 3. Combining all the designs constructed for each d, form the set D+
n+1,k+1, the

set of intermediate designs.

Step 4. Partition the set D+
n+1,k+1 into subsets G1, . . . , Gm, such that designs in each

subset have the same word length pattern but designs in different subsets

have distinct word length pattern.
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Step 5. Use the graph based isomorphism check of Section III.3 to compare designs

within each subset Gi, i = 1, . . . ,m, to remove isomorphs from each subset.

Step 6. Collect all the remaining designs (in these subsets) in Dn+1,k+1, the set of

non-isomorphic 2(n+1)−(k+1) designs.

In step Step 5. of Alg. IV.1, we construct the graphs for the designs either from

their defining contrast subgroups or the treatment combination subgroups depending

on whether n ≥ 2k or not. Since the designs are generated recursively, starting from

the full factorial design, the first few iterations (while n ≥ 2k) use defining contrast

subgroup to construct the graph. Once n < 2k (so that |S| > |T |, the treatment

combination subgroup is used to construct the graph. Thus, the size of the graph

does not increase exponentially (in multiples of 2) forever with each iteration (as n

and k increase) but only linearly (in n).

Theorem IV.3. The algorithm IV.1 generates the complete set of non-isomorphic

2(n+1)−(k+1) designs.

Proof. The result follows from the basic algorithm and Theorem IV.2.

IV.6. Summary

This chapter presented the sequential generation procedure for efficiently generating

catalogs of 2-level regular fractional factorial designs. We developed a new method

for improving the efficiency of the sequential generation algorithm by reducing the

number of designs actually compared using an isomorphism check. The methods

developed in this and the preceding chapter appear in Shrivastava and Ding (2010),

which has been accepted for publication.

Similar to the graph based isomorphism check of Chapter III, this graph based
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method is also extensible to other classes of designs. In the next chapter we will see

one such extension for the case of 2-level regular fractional factorial split-plot designs.
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CHAPTER V

GENERATING CATALOGS OF FRACTIONAL FACTORIAL

SPLIT-PLOT DESIGNS

In the last two chapters we have presented a new graph based method for generating

catalogs of non-isomorphic 2-level regular fractional factorial designs. Although we

described the methods in the context of a specific class of designs, namely 2-level

regular fractional factorial designs, the methods are extensible to other classes of

designs. As a case in point, in this chapter, we extend these methods to the class of

2-level regular fractional factorial split-plot designs. We extend both the results – the

graph based isomorphism check and the candidate defining word reduction method

for improving the catalog generation algorithm.

Fractional factorial split-plot designs are a practical design option for an experi-

menter when complete randomization of the runs of a fractional factorial experiment

is not possible (see, for example, Gregory and Taam (1996), Kowalski and Potcner

(2003)). They have especially been recommended for robust product design over

Taguchi’s inner and outer arrays as a more economical and efficient option (Bingham

and Sitter, 2003, Box and Jones, 1992).

V.1. Preliminaries on fractional factorial split-plot designs

Consider the leaf spring experiment described in Section II.1.1. Running a completely

randomized fractional factorial design requires that the furnace temperature (A), in

the heating stage, be changed frequently, possibly after each run. This, although

possible, is impractical as it increases both the duration and the cost of performing

the experiment. Changing the heating time (B) after every run was also found to
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A B C D E

1 1 1 0 0 0
2 1 1 1 0 0
3 1 1 1 0 1
4 1 1 0 0 1
5 1 1 1 1 0
6 1 1 1 1 1
7 1 1 0 1 0
8 1 1 0 1 1
9 0 1 0 0 0

10 0 1 0 1 1
11 0 1 1 1 0
12 0 1 0 0 1
13 0 1 1 0 0
14 0 1 0 1 0
15 0 1 1 1 1
16 0 1 1 0 1
17 0 0 0 1 0
18 0 0 0 1 1
19 0 0 0 0 1
20 0 0 0 0 0
21 0 0 1 0 1
22 0 0 1 1 0
23 0 0 1 1 1
24 0 0 1 0 0
25 1 0 0 0 0
26 1 0 1 1 1
27 1 0 0 1 1
28 1 0 1 0 0
29 1 0 1 0 1
30 1 0 0 0 1
31 1 0 0 1 0
32 1 0 1 1 0

Fig. 18. A 32-run factorial split-plot experimental plan with 2 whole plot factors A

and B, and 3 sub-plot factors C, D and E.

increase the operational costs significantly. Thus, it would be better if we put some

restrictions on the randomization of the runs in the 25 design, when selecting the

experimental plan, and not just choose from any of the 32! arrangements (assuming

a single replicate) of the 25 full factorial design.

Under these constraints, one possible ordering in the experimental plan is the

arrangement of the runs of the 25 design as listed in Fig. 2, i.e., the canonical ordering.

This plan first fixes the furnace temperature and heating time, and then considers
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all combinations (23) of the other factors, namely transfer time (C), hold-down time

(D) and quench oil temperature (E); for example, in the first 8 runs A and B are set

to their level 0s and all possible combinations (23 = 8) of the settings of C, D and E

are considered. Other possible experimental plans can be obtained by randomizing

the order in which factors A and B are assigned levels, i.e., in 22! = 4! ways, and/or

randomizing the order of the settings of C, D and E (in 8! ways) for each fixed

setting of A and B. Thus, the number of possible choices of the experimental plan

are 22! × (23!)22

= 4! × (8!)4. Fig. 18 shows one such experimental plan.

Such experimental designs that have restrictions on randomization are called

split-plot designs. The difficult to change factors, A and B in the above example, are

called whole plot factors and the remaining (relatively) easy to change factors, C, D

and E in the leaf spring example, are called sub-plot factors. Although the split-plot

design discussed in the example above appears identical to the full factorial design,

this is a different design as the restricted randomization leads to an altogether different

statistical model. The split-plot design can, though, be seen as a cross product of two

factorial designs, one constructed for the whole plot factors and the other for sub-plot

factors.

V.1.1. Regular fractional factorial split-plot designs

In the split-plot design above, we used a full factorial design for both the whole plot

factors (22) and the sub-plot factors (23). Instead, we may use a regular fractional

factorial design for either the whole plot factors or the sub-plot factors. A design

constructed in this way is called a regular fractional factorial split-plot design. Such

a design is generally denoted as 2(n1+n2)−(k1+k2), where n1 and n2 are the number of

whole plot and sub-plot factors, respectively, and k1 and k2 are the levels of fraction-

ation in the whole plot and sub-plot, respectively. For example, using the defining
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A B C D E

1 0 0 0 0 0
2 0 0 0 1 1
3 0 0 1 0 1
4 0 0 1 1 0
5 0 1 0 0 0
6 0 1 0 1 1
7 0 1 1 0 1
8 0 1 1 1 0
9 1 0 0 0 0

10 1 0 0 1 1
11 1 0 1 0 1
12 1 0 1 1 0
13 1 1 0 0 0
14 1 1 0 1 1
15 1 1 1 0 1
16 1 1 1 1 0

Fig. 19. A 2(2+3)−(0+1) fractional factorial split-plot design. A and B are the whole

plot factors, and C, D and E are sub-plot factors. The defining relation is

I = CDE.

relation E = CD, we may construct a 2(2+3)−(0+1) design as shown in Fig. 19.

Bingham and Sitter (1999a) highlight some important properties that the defin-

ing relations in regular fractional factorial designs obey. Firstly, defining words of

whole plot fractions should not contain any sub-plot factors. This ensures that the

whole plot factors can be randomized independently of the sub-plot factors. Secondly,

defining words of sub-plot fractions may contain whole plot factors, but should have

at least two sub-plot factors. If instead, the defining word contains only one sub-plot

factor, then this effectively makes this sub-plot factor a whole plot factor. For ex-

ample, if in the above example we choose E = AB as a defining relation then the

defining word ABE has only one sub-plot factor. Fig. 3 gives the design matrix for

this design. As can be observed, whenever A and B are set at particular levels the

setting of E is also fixed, effectively making E a whole plot factor. The design in

Fig. 19 instead allows randomizing the whole plot factors first, independent of the

sub-plot factors, and then randomizing the sub-plot factor settings for each whole
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plot setting.

V.1.2. Properties of regular fractional factorial split-plot designs

As the difference between regular fractional factorial designs and regular fractional

factorial split-plot designs is only in the randomization structure, many concepts ap-

plicable to regular fractional factorial designs have straightforward extensions. These

include defining contrast subgroup, treatment combination subgroup, word length

pattern, design resolution and aberration (Huang et al., 1998). These objects are

constructed or computed by simply considering the split-plot design as a regular

fractional factorial design.

V.1.3. Representations of regular fractional factorial split-plot designs

Similar to the regular fractional factorial designs, given the number of whole plot

factors n1 and sub-plot factors n2, regular fractional factorial split-plot designs can

be uniquely represented by either the defining contrast subgroup (S) or the treatment

combination subgroup (T ). We will denote the defining contrast subgroup representa-

tion by the triplet {n1, n2, S} and the treatment combination subgroup representation

by {n1, n2, T}.

In the remainder of the chapter, we will only consider 2-level regular fractional

factorial designs, and, for brevity, will simply refer to them as split-plot designs.

V.2. The design isomorphism problem

Analogous to regular fractional factorial designs, we have the following definition of

design isomorphism for split-plot designs.

Definition V.1. Two regular fractional factorial split-plot design matrices are called



66

isomorphic to each other if one can be obtained from the other by some relabeling

of the whole plot factor labels, sub-plot factor labels, level labels of factors and row

labels.

Note that the difference between Definition V.1 and Definition II.1 (in Sec-

tion II.2) is that in the case of split-plot a whole plot factor cannot be relabeled

to a sub-plot factor and vice versa. That is, only factor label permutations are al-

lowed only within the whole plot and sub-plot factor sets and not between. Fig. 20

gives an example of two 2(3−1)+(4−2) design matrices that are isomorphic to each other

under the relabeling A ↔ B, d ↔ e. If, say, factors B and C in this example were

sub-plot factors, then the two designs would not have been isomorphic to each other;

as the relabeling under the relabeling A ↔ B would not have been permitted.

Since a split-plot design matrix is uniquely defined by its defining contrast sub-

A B C d e f g

1 0 0 0 0 0 0 0
2 0 0 0 0 1 1 0
3 0 0 0 1 0 1 1
4 0 0 0 1 1 0 1
5 0 1 1 0 0 0 1
6 0 1 1 0 1 1 1
7 0 1 1 1 0 1 0
8 0 1 1 1 1 0 0
9 1 0 1 0 0 0 0

10 1 0 1 0 1 1 0
11 1 0 1 1 0 1 1
12 1 0 1 1 1 0 1
13 1 1 0 0 0 0 1
14 1 1 0 0 1 1 1
15 1 1 0 1 0 1 0
16 1 1 0 1 1 0 0

(a) Defining words: {ABC,

def , Bdg}

A B C d e f g

1 0 0 0 0 0 0 0
2 0 0 0 0 1 1 1
3 0 0 0 1 0 1 0
4 0 0 0 1 1 0 1
5 0 1 1 0 0 0 0
6 0 1 1 0 1 1 1
7 0 1 1 1 0 1 0
8 0 1 1 1 1 0 1
9 1 0 1 0 0 0 1

10 1 0 1 0 1 1 0
11 1 0 1 1 0 1 1
12 1 0 1 1 1 0 0
13 1 1 0 0 0 0 1
14 1 1 0 0 1 1 0
15 1 1 0 1 0 1 1
16 1 1 0 1 1 0 0

(b) Defining words: {ABC,

def , Aeg}

Fig. 20. Two isomorphic 2(3−1)+(4−2) split-plot designs. A, B and C are whole plot

factors, and d, e, f and g are sub-plot factors. The two designs are isomor-

phic under the relabeling A ↔ B, d ↔ e.
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group, similar to Proposition II.2 and Corollary II.3, we have Proposition V.2 and

Corollary V.3. We skip the proofs of these as they are straightforward extensions.

Proposition V.2. Two 2-level regular fractional split-plot designs, d1 ≡ {n1, n2, S1}

and d2 ≡ {n1, n2, S2}, where S1, S2 are defining contrast subgroups, are isomorphic

to each other if and only if one of S1 or S2 can be obtained from the other by some

permutation of whole plot factor labels and sub-plot factor labels, and reordering of

words.

Corollary V.3. Two 2-level regular fractional split-plot designs, d1 ≡ {n1, n2, T1}

and d2 ≡ {n1, n2, T2}, where T1, T2 are treatment combination subgroups, are isomor-

phic to each other if and only if one of T1 or T2 can be obtained from the other by

some permutation of whole plot factor labels and sub-plot factor labels, and reordering

of words.

V.2.1. Isomorphism testing of two split-plot designs

Although, the problem of generating catalogs of split-plot designs has recently been of

considerable interest (Bingham and Mukerjee, 2006, Bingham et al., 2004, Bingham

and Sitter, 1999a, 2001, 2003, Huang et al., 1998, Mukerjee and Fang, 2002), there

has been a lack of isomorphism checks developed specifically for split-plot designs.

Bingham and Sitter (1999a) extended Chen et al. (1993)’s exhaustive relabeling based

(necessary and sufficient) isomorphism to test two split-plot designs for isomorphism.

Instead of considering all permutations of factor labels when comparing two split-plot

designs, they consider only the permutations that preserve the split-plot structure

(i.e., do not relabel whole plot factor to sub-plot factor). But this approach, as can

be imagined, is highly inefficient, especially as the number of factors increase.

As a necessary isomorphism check, any of the necessary or necessary and sufficient
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isomorphism checks for regular fractional factorial designs can be directly used. This

is so because if two split-plot designs are isomorphic, then the corresponding regular

fractional factorial designs, obtained from the split-plot designs by ignoring the whole

plot and sub-plot differentiation, are also isomorphic. For example, in Fig. 20 if we

ignore the split-plot structure then the 27−3 designs obtained would still be isomorphic

under the same relabeling map. The converse of this, though, is not true in general,

as it may involve exchanging the labels of a whole plot factor with a sub-plot factor.

V.2.2. Extension of graph based isomorphism check

In this section we extend the necessary and sufficient graph based isomorphism of

Chapter III to split-plot designs. We first provide a colored graph representation of

a split-plot design and then show the equivalence between testing these graphs for

isomorphism and the design isomorphism problem.

V.2.2.1. Split-plot designs as graphs

Here, we provide a vertex-colored graph representation of a 2-level regular frac-

tional factorial split-plot design. A vertex-colored graph (henceforth colored graph)

G(V,E, c) is a graph in which each vertex v in the set V is associated with a color,

given by c(v).

Algorithm V.1. Construction of colored graph G(V,E, c) for design d ≡ {n1, n2, S}

Input: design d ≡ {n1, n2, S}

Step 1. Start with an empty graph with no vertices, i.e., V = φ (and E = φ).

Step 2. For each whole plot factor in the design d, add a vertex in V and associate

it with color cw, i.e., add vertices vw1, . . . , vwn1
in V and set c(vwi) = cw

∀ i ∈ {1, . . . , n1}.
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Step 3. For each sub-plot factor in the design d, add a vertex in V and associate it with

color cs, i.e., add vertices vs1, . . . , vsn2
in V and set c(vsi) = cs∀i ∈ {1, . . . , n2}.

Step 4. For each word in the defining contrast subgroup S, except I, add a vertex in

V and associate it with color cg, i.e., add vertices vg1, . . . , vg(|S|−1) in V and

set c(vgi) = cg∀i ∈ {1, . . . , |S|−1}, where |S| denotes the cardinality of set S.

Step 5. For each word in S, except I, add edges between the vertex (in {vg1, . . . ,

vg(|S|−1)}) corresponding to the word, and the vertices (in {vw1, . . . , vwn1
} ∪

{vs1, . . . , vwn2
}) corresponding to the factors in the word.

The graph constructed by Algorithm V.1 has three colors – cw, cs and cg cor-

responding to the whole plot factors, sub-plot factors and the words in the defining

contrast subgroup.

Fig. 21 shows the colored graph representation of the 2(3−1)+(4−2) design shown

in Fig. 20(a), with defining contrast subgroup {I, ABC, Bdg, def, ACdg, Befg,

A

B

C

d

e

f

g

ABC

Bdg

def

ACdg

Befg

ACefg

ABCdef

Fig. 21. Colored graph for the 2(3−1)+(4−2) design in Fig. 20(a). Vertices correspond-

ing to whole plot factors (A,B,C), sub-plot factors (d, e, f, g) and words in

defining contrast subgroup have separate colors.
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ACefg, ABCdef}. In the figure, the vertex Bdg is connected by edges to vertices

B, d, and g, and vertices B, d and Bdg have different colors.

We also have an alternative graph representation of the split-plot design using

the treatment combination subgroup, T , of the design (due to Corollary V.3). The

alternative graph representation for a design {n1, n2, T} is obtained by following Algo-

rithm V.1, but with S replaced by T . Similar to the fractional factorial design case,

the alternative graph representation will a smaller graph whenever n < 2k, where

n = n1 + n2 and k = k1 + k2.

V.2.2.2. Split-plot design isomorphism and colored graph isomorphism

The split-plot design isomorphism problem can be translated to the problem of check-

ing isomorphism between the corresponding colored graph representations of the two

designs. The relabelings of the factors of the split-plot design (in Proposition V.2)

then correspond to the permutations of vertex labels that preserve the vertex color-

ings and the vertex adjacencies in the graph. This is the same as the colored graph

isomorphism problem.

Two colored graphs are called isomorphic to each other if there exists a vertex-

adjacency and color preserving relabeling of the vertices of one graph that makes it

identical to the other. A color-preserving relabeling means a vertex, e.g., v1, can be

relabeled to another label, say, v′
1, if and only if both v1 and v′

1 have the same color.

Fig. 22 illustrates colored graph isomorphism with graphs with two colors. Ignoring

the vertex colorings, graphs in Fig. 22(a) and (c) are isomorphic to each other under

the relabeling B ↔ F and C ↔ E. But, since vertex B (or C) does not have the

same color as vertex F (or E) in Fig. 22(c), this vertex permutation is not permitted.

Theorem V.4. Two 2-level regular fractional factorial split-plot designs,
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B

C

F

E

B

C

F

E

(a) (b)

A A

D D

B

C

F

E

(c)

A

D

Fig. 22. Example of colored graph isomorphism. (a) and (b) are isomorphic to each

other under the relabeling B ↔ F and C ↔ E. But (a) and (c) are not

isomorphic as there is no color-preserving relabeling; B and F have different

colors in (c)

d1 ≡ {n1, n2, S1} and d2 ≡ {n1, n2, S2}, where n1, n2 are the number of whole plot

and sub-plot factors, respectively, and S1, S2 are defining contrast subgroups, with

graph representations G1(V1, E1, c) and G2(V2, E2, c), respectively, are isomorphic to

each other if and only if G1 and G2 are isomorphic to each other.

Proof. Let Fw,i and Fs,i denote the set of whole plot and sub-plot factors, respec-

tively, in design di, i = 1, 2. Also, let fi,j denote some (ith) factor in design dj, j = 1, 2.

Without loss of generality we assume that the first n1 vertices in the graphs corre-

spond to the whole plot factors, the next n2 vertices correspond to the sub-plot factors

and the remaining vertices correspond to the defining contrast subgroup.

First, assume that d1 and d2 are isomorphic.

Then ∃ a permutation (or relabeling) α of factor labels such that Sα
1 = S2, i.e. S1 is

isomorphic to S2 under the action of α, and if factor fα
i,1 = fi,2 (i.e., fi,1 7→ fi,2 under α)

then either fi,1 ∈ Fw,1 and fi,2 ∈ Fw,2, or fi,1 ∈ Fs,1 and fi,2 ∈ Fs,2, i = 1, . . . , n1 + n2.

The second observation simply means that the permutation α preserves the split-plot
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structure of the design. Further, this means that the permutation α preserves the

color of the vertices in the corresponding graphs.

Consider some word w1 = f1,1 · · · fm,1 ∈ S1. Then ∃ a word w2 = f1,2 · · · fm,2 ∈ S2

such that wα
1 = w2 and fα

i,1 = fi,2, i ∈ {1, . . . , n1 + n2} (∵ Sα
1 = S2). Therefore, the

edges in Gα
1 are of the form {fα

1,1, w
α
1 } ≡ {f1,2, w2}, which is an edge in G2. Therefore

G1 and G2 are isomorphic under α.

Now, assume that G1 and G2 are isomorphic, with {vi,1, i = 1, . . . , n1}
α = {vi,2, i =

1, . . . , n1}, {vi,1, i = n1 + 1, . . . , n1 + n2}
β = {vi,2, i = n1 + 1, . . . , n1 + n2} and

{vi,1, i = n1 + n2 + 1, . . . , |V |}γ = {vi,2, i = n1 + n2 + 1, . . . , |V |}.

The color preserving permutations α and β imply that the whole plot factors in d1

are only relabeled to whole plot factors in d2, and the same holds for sub-plot factors.

Thus, we only need to now check that the S1 is isomorphic to S2.

Let w1 = f1,1 · · · fm,1 ∈ S1. Let vg1 ∈ V1 correspond to w1, and v1,1, . . . , vm,1 ∈ V1

correspond to f1,1, . . . , fm,1, respectively. Similarly, let w2 = f1,2 · · · fm,2 ∈ S2, v2 ∈ V2

correspond to w2, and v1,2, . . . , vm,2 correspond to f1,2, . . . , fm,2, respectively. Since,

G
αβγ
1 = G2, we have for edges {vαβ

1,1, v
γ
1} = {v1,2, v2}. Since the choice of v1,1 was ar-

bitrary in the last statement, we have, for the corresponding words, w
γ
1 = w2. Again,

since the choice of w1 ∈ S1 was arbitrary, we have S1 isomorphic to S2. Therefore, d1

is isomorphic to d2.

Corollary V.5. Two 2-level regular fractional factorial split-plot designs,

d1 ≡ {n1, n2, T1} and d2 ≡ {n1, n2, T2}, where n1, n2 are the number of whole plot

and sub-plot factors, respectively, and T1, T2 are treatment combination subgroups,

with graph representations G1(V1, E1, c) and G2(V2, E2, c), respectively, are isomor-

phic to each other if and only if G1 and G2 are isomorphic to each other.
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Proof. Follows from Theorem V.4 and Corollary V.3

Theorem V.4 and Corollary V.5 give a necessary and sufficient condition for

checking the isomorphism between two split-plot designs by solving the colored graph

isomorphism problem. For solving the colored graph isomorphism problem we use

canonical labeling algorithm, nauty, described in Section III.4.2.

V.3. Generating non-isomorphic catalogs of split-plot designs

The split-plot designs can be generated sequentially (or recursively) in a way similar

to that described in Chapter IV. That is, we can construct an (n + 1)-factor design

from an n-factor design by adding a defining word to the smaller design. But the

split-plot structure of the design adds some complications to this recursive method.

The new defining word could correspond either to a new whole plot factor or a sub-

plot factor. If the n-factor design was a 2(n1−k1)−(n2−k2) design then the new design

would then be either a 2(n1+1−k1−1)−(n2−k2) or a 2(n1−k1)−(n2+1−k2−1) design, depending

on the new factor.

Fig. 23 shows the sequential generation of 16-run designs starting with a 22+2 full

factorial design. Depending on whether the defining word w1 corresponds to a whole

plot factor or a sub-plot factor a 2(3−1)+2 or a 22+(3−1) design may be generated. Going

further one step we get a 2(4−2)+2, 2(3−1)+(3−1, 2(3−1)+(3−1) or 22+(4−2) design. The two

2(3−1)+(3−1) designs in second stage may be equivalent (if the same two candidate

defining words are used in opposite order). The branch corresponding to the second

2(3−1)+(3−1) design may be discarded as it will generate duplicate designs. To avoid

such duplicate branches, we use the rule that no defining word corresponding to a

whole plot factor is added to a design that contains a defining word corresponding to
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2
2+2

design

2
(3−1)+2

designs

. . .

defining

word w1

2
2+(3−1)

designs

2
(4−2)+2

designs

defining

word w2

2
(3−1)+(3−1)

designs

2
2+(4−2)

designs

defining

word w
′

2

2
(3−1)+(3−1)

designs

. . .

. . .

. . .

Fig. 23. Sequential generation of 16-run split-plot designs. Starting with the full

factorial design, a larger (child) design is generated by adding a defining

word to the smaller (parent) design.

a sub-plot factor.

Essentially, a 2(n1−k1)−(n2−k2) is generated by starting from 2a1+a2 design, where

a1 = n1−k1 and a2 = n2−k2, then recursively adding defining words corresponding to

whole plot factors until 2(n1−k1)−a2 designs are obtained. Then defining words corre-

sponding to sub-plot factors are added recursively to this design until 2(n1−k1)−(n2−k2)

designs are obtained. The defining words are chosen based on the constraints noted

in Section V.1.1.

Bingham and Sitter (1999a) used the sequential generation approach described

above along with the intermediate design reduction methods described in Section IV.2

for generating catalogs of non-isomorphic split-plot designs. At each step of the recur-
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sive procedure, they construct child designs by adding defining words (in all possible

ways) to non-isomorphic parent designs only, according to Section IV.2.1. Also, some

isomorphic designs are avoided by using the orderly approach of Section IV.2.2.

We use the approach of Bingham and Sitter (1999a), described above, for gener-

ating non-isomorphic design catalogs but further reduce the intermediate designs by

using the candidate defining word reduction method and the graph based isomorphism

check.

V.3.1. Candidate defining word reduction method

In this section, we extend the candidate defining word reduction method of Sec-

tion IV.4 to split-plot designs. We first extend the concept of automorphisms split-

plot designs.

Definition V.6. An automorphism of a 2-level regular fractional factorial split-plot

design d ≡ {n1, n2, S} is a split-plot structure preserving-relabeling of factor labels of

d, such that the design obtained after relabeling is identically d.

Fig. 24(a) shows the graph representation of a 2(3−1)+(3−1) design with defining

contrast subgroup {ABC, def, ABCdef}. Fig. 24(b) shows the graph obtained after

the relabeling A ↔ B and d ↔ e. Clearly, the two graphs, and hence the designs,

are identical. Therefore, the relabeling A ↔ B and d ↔ f is an automorphism of the

2(3−1)+(3−1) design in Fig. 24.

Theorem V.7. Suppose d ≡ {n1, n2, S} is a parent split-plot design, and c1 and c2

(not identically equal to c1) are two candidate defining words. Further suppose that

there exists an automorphism α of d, such that c1 is isomorphic to c2 under this factor

relabeling α. Then, the child split-plot designs d ∪ c1 and d ∪ c2, obtained by adding

the defining words c1 and c2 to d, respectively, are isomorphic to each other.
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ABC
B

C

d

e

A

def

ABCdef

f

(a)

A ↔ B, d ↔ e

ABC
B

C

d

e

A

def

ABCdef

f

(b)

Fig. 24. Automorphism of a 2(3−1)+(3−1) design. (a) is the graph representation of

the 26−2 design with defining contrast subgroup {ABC, def, ABCdef}.

The relabeling A ↔ B and d ↔ e is an automorphism of this design as the

graph in (b) is identical to that in (a).

Proof. Since d ≡ {n1, n2, S}, we have either d ∪ c1 = {n1 + 1, n2, {S, c1S}} and

d ∪ c2 = {n1 + 1, n2, {S, c2S}}, or d ∪ c1 = {n1, n2 + 1, {S, c1S}} and d ∪ c2 =

{n1, n2 + 1, {S, c2S}}, where {S, ciS} is the defining contrast subgroup of d ∪ ci,

i = 1, 2.

In either case, since α is an automorphism of d, we only need to show that

(c1S)α = c2S to prove that (d ∪ c1)
α = d ∪ c2.

Let w ∈ S, then, since (c1S)α = c2S, we have (c1w)α = cα
1wα = c2w

α ∈ c2S.

Since, the choice of w ∈ S is arbitrary, we have (c1S)α = c2S.

Theorem V.7 provides an extension of the candidate defining word reduction

method to split-plot designs that works identically to the way the reduction method

works for fractional factorial designs. For example, consider the two defining words

Bdg and Aeg that may be added to the 2(3−1)+(3−1) design in Fig. 24 to construct
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2(3−1)+(4−2) designs. These words are isomorphic to each other under the relabeling

A ↔ B and d ↔ e, which is an automorphism of the parent design. The designs

obtained from adding Bdg and Aeg, shown in Fig. 20, are also isomorphic to each

other.

V.3.2. Final algorithm

Algorithm V.2 summarizes our split-plot design generation algorithm by combining

the graph based candidate defining word reduction method of Section V.3.1 with

the sequential algorithm of Bingham and Sitter (1999a). We describe here only the

procedure for adding a sub-plot factor to the design. The procedure for adding a

whole plot factor, i.e., constructing 2(n1+1−k1−1)+n2 designs from 2(n1−k1)+n2 designs,

is identical to using Algorithm IV.1 for generating 2(n1+1)−(k1+1) fractional factorial

designs from 2(n1−k1) fractional factorial designs.

Algorithm V.2. Generating non-isomorphic 2(n1−k1)+(n2+1−k2−1) designs from

2(n1−k1)+(n2−k2) designs

Input: Dn1,n2,k1,k2
, set of all non-isomorphic 2(n1−k1)+(n2−k2) designs

Step 1. Construct all possible 2a−1 words, except I, from the first a = n1+n2−k1−k2

factors, ignoring words containing only whole plot factors. Order these by

their word lengths breaking ties with lexicographic ordering. Call this ordered

set C.

Step 2. For each design d ∈ Dn1,n2,k1,k2

(a) Find the set C′, of unique defining words, under the action of the auto-

morphisms of d on C.

(b) Construct a set of 2(n1−k1)+(n2+1−k2−1) designs by adding to d a defining
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word c ∈ C′, where c lies below the last added word in d in the set C.

Step 3. Combining all the designs constructed for each d, form the set D+
n1,n2+1,k1,k2+1,

the set of intermediate designs.

Step 4. Partition the set D+
n1,n2+1,k1,k2+1 into subsets G1, . . . , Gm, such that designs

in each subset have the same word length pattern but designs in different

subsets have distinct word length pattern.

Step 5. Use the graph based isomorphism check of Section V.2.2 to compare designs

within each subset Gi, i = 1, . . . ,m, to remove isomorphs from each subset.

Step 6. Collect all the remaining designs (in these subsets) in Dn1,n2+1,k1,k2+1, the set

of non-isomorphic 2(n1−k1)+(n2+1−k2−1) designs.

As in the case of regular fractional factorial designs, in step Step 5. of Alg. V.2,

we construct the graphs for the designs either from their defining contrast subgroups

or the treatment combination subgroups depending on whether n1+n2 ≥ 2×(k1+k2)

or not. Since the designs are generated recursively, starting from the full factorial

design, the first few iterations (while n1 + n2 ≥ 2 × (k1 + k2)) use defining contrast

subgroup to construct the graph. Once n1 + n2 < 2 × (k1 + k2) (so that |S| > |T |,

the treatment combination subgroup is used to construct the graph.

Theorem V.8. The algorithm V.2 generates the complete set of non-isomorphic

2(n1−k1)+(n2+1−k2−1) designs.

Proof. The result follows from the Bingham and Sitter (1999a)’s sequential algo-

rithm and Theorem V.7.
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V.4. Summary

In this chapter we extended the isomorphism check and the efficient generation algo-

rithm, developed in Chapters III and IV to 2-level regular fractional factorial split-plot

designs. The extensions were based on the vertex-colored graph representations of

these split-plot designs. The results extended in this chapter are included in Shrivas-

tava (2009), soon to be submitted for publication.

It may be noted that this graph representation can be easily extended to split-

split plot designs (Montgomery, 2000). Unlike split-plot designs where the factors

are divided into two sets, the split-split plot designs may have more than two sets.

A vertex colored graph can again be used by assigning a different color to each of

the sets of factors. In Chapter VII we will discuss such extensions to other classes of

designs.
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CHAPTER VI

RESULTS

In this chapter we show the effectiveness of the algorithms that have been developed

in this dissertation. We present the design catalogs that we generated using these

algorithms, and the comparisons of the computational efficiency of our proposed al-

gorithms with existing algorithms.

VI.1. 2-level regular fractional factorial designs

For generating catalogs of non-isomorphic 2-level regular fractional factorial designs,

the best results have so far been reported by Lin and Sitter (2008). The largest

catalogs, of non-isomorphic designs, that they could generate were the set of 512-run

designs with resolution ≥ 5 and 1024-run even designs with resolution ≥ 6. Even

designs are those in which the length of all words in the defining contrast subgroup is

even. Using Algorithm IV.1 we were able to generate all the designs generated by Lin

and Sitter (2008). Additionally, we could generate all of 1024-run (resolution ≥ 6),

2048-run (resolution ≥ 7) and 4096-run (resolution ≥ 8) designs. Table 4 shows the

number of non-isomorphic designs generated by our algorithm. The numbers in the

table match with those in Chen et al. (1993) and Lin and Sitter (2008).

Appendix A lists the complete catalog of non-isomorphic fractional factorial de-

signs of run sizes 1024, 2048 and 4096. For 1024-run designs, we only list the best

two designs according to the minimum aberration criteria (in Appendix A) as the

total number of these designs is very large. The other generated catalogs have been

omitted as they have been generated previously in literature.



81

Table 4. Number of non-isomorphic designs by run size.

Run Size (Resolution ≥ r)

n
16(3) 32(3) 64(3) 128(4) 256(5) 512(5) 1024(6) 2048(7) 4096(8)

5 3 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

6 4 4 1 ∗ ∗ ∗ ∗ ∗ ∗

7 5 8 5 1 ∗ ∗ ∗ ∗ ∗

8 6 15 14 5 1 ∗ ∗ ∗ ∗

9 5 29 38 13 5 1 ∗ ∗ ∗

10 4 46 105 33 9 6 1 ∗ ∗

11 3 64 273 92 11 16 6 1 ∗

12 2 89 700 249 14 36 14 6 1

13 1 112 1,794 623 15 92 24 9 6

14 1 128 4,579 1,535 11 282 47 7 7

15 1 144 11,635 3,522 6 1,011 98 7 4

16 ∗ 145 29,091 7,500 1 4,019 185 7 5

17 ∗ 129 † 14,438 1 13,759 380 3 5

18 ∗ 113 † 25,064 ∗ † 919 2 2

19 ∗ 91 † † ∗ † 1,701 1 1

20 ∗ 67 † † ∗ † 1,682 1 1

19 ∗ 91 † † ∗ † 1,701 1 1

20 ∗ 67 † † ∗ † 1,682 1 1

21 ∗ 50 † † ∗ † 739 1 1

22 ∗ 34 † † ∗ † 128 1 1
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Table 4 Continued

Run Size (Resolution ≥ r)

n
16(3) 32(3) 64(3) 128(4) 256(5) 512(5) 1024(6) 2048(7) 4096(8)

23 ∗ 21 † † ∗ † 8 1 1

24 ∗ 14 † † ∗ † 1 ∗ 1

25 ∗ 9 † † ∗ † ∗ ∗ ∗

26 ∗ 5 † † ∗ † ∗ ∗ ∗

27 ∗ 3 † † ∗ † ∗ ∗ ∗

28 ∗ 2 † † ∗ † ∗ ∗ ∗

29 ∗ 1 † † ∗ † ∗ ∗ ∗

30 ∗ 1 † † ∗ † ∗ ∗ ∗

31 ∗ 1 † † ∗ † ∗ ∗ ∗

32 ∗ 0 † † ∗ † ∗ ∗ ∗

∗no such designs exist.
†our implementation of no existing algorithms, including ours, returns a valid result for

this problem size.

VI.1.1. Computational efficiency

In this section we compare the computational efficiency of our proposed algorithms.

We first compare our isomorphism check with the three isomorphism checks described

in detail in Section II.3, which we believe are the most efficient ones in literature. The

three methods are Clark and Dean (2001)’s algorithm for defining contrast subgroup,

DeseqCS, Section II.3.1, Ma et al. (2001)’s algorithm, MaCD2, (Section II.3.2) and

Lin and Sitter (2008)’s eigenvalue check, EigVal, (Section II.3.3).



83

Our implementation of DeseqCS is based on the variant of Clark and Dean

(2001)’s isomorphism check built on the defining contrast subgroup representations

of regular fractional factorial designs. This method was described in Section II.3.1.

We expect this variant to perform better than the original algorithm as the new

method exploits the structure of regular fractional factorial designs.

In our implementation of Lin and Sitter (2008)’s eigenvalue check, we use LA-

PACK++ (Stimming, 2007), a C++ library for high performance linear algebra com-

putations, that uses LAPACK (Anderson et al., 1999) and BLAS (Lawson et al.,

1979) libraries, for matrix computations. We have used these libraries with the intent

to have an efficient implementation of the eigenvalue check. But since the implemen-

tations may not be the most efficient, we will not be interested in small differences in

performance in our comparisons. In the implementation of the eigenvalue check, on

issue needs to be addressed. The issue is that the method may run into a potential

problem due to the unavoidable round off errors in floating point computation. The

eigenvalues of the matrices constructed in Lin and Sitter (2008)’s method may not

all be integers so computing eigenvalues must involve floating point computations,

and the eigenvalues computed need to be rounded off. Rounding off eigenvalues may

lead to declaring isomorphic designs as non-isomorphic. It is not clear as to what

round off level should be chosen and it is not clear, either, how serious this problem

could be. Our experience in using the eigenvalue check has turned out positive. We

rounded off the eigenvalues to the nearest integer and this worked flawlessly in our

implementation.

To compare these isomorphism checks we implemented the basic algorithm de-

scribed in Section IV.3 using each of the four isomorphism checks – DeseqCS, MaCD2,

EigVal and our graph based isomorphism check, GBAnoR of Chapter III. Tables 5, 6

and 7 show the cumulative run times for generating 128-run, 256-run and 512-run de-
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signs, respectively. The tables compare five algorithms – DeseqCS, MaCD2, EigVal,

GBAnoR and GBA. GBA includes, both, our graph based isomorphism check and the

candidate defining word reduction procedure presented in Section IV.4, i.e., it is the

implementation of Algorithm IV.1. All the computations were done on a Windows

Server 2003 R2 Standard x64 edition with an Intel Xeon 3GHz processor and 16 GB

RAM. All the algorithms were programmed in C++ and built as 32-bit applications

with the Microsoft Visual C++ 8.0 compiler.

The cumulative run times in Tables 5, 6 and 7 include the time needed to gen-

Table 5. Comparison of cumulative CPU time (in seconds) for generating 128 run

(R ≥ 4) designs.

n − k DeseqCS MaCD2 EigVal GBAnoR GBA

8-1 0.078 0.297 0.062 0.000 0.000

9-2 0.484 1.609 0.249 0.015 0.000

10-3 5.484 9.437 1.843 0.046 0.015

11-4 55.109 54.014‡ 12.484 0.218 0.125

12-5 911.421 307.742‡ 84.029 1.109 0.671

13-6 14,322.500 1,539.800‡ 523.646 5.390 3.531

14-7 † 6,808.460‡ 3,290.970 25.765 18.484

15-8 † 27,747.500‡ 21,401.300 73.719 57.219

16-9 † † 9.3 days§ 211.362 175.752

†the problem size is too large for our implementation of the correspond-

ing algorithm to give valid results.
‡MaCD2 did not detect all non-isomorphic designs in this case.
§our implementation of EigVal could not handle this problem size; the

values reported are from Lin and Sitter (2008);
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erate a design through the recursive procedure starting from the full factorial design.

Between DeseqCS, MaCD2 and EigVal, the run times for EigVal are the best in all

cases. Compared to DeseqCS, EigVal may be performing better because it makes only

one expensive computation for each of the designs in the intermediate set of designs,

whereas DeseqCS needs to compare pairs of designs. But MaCD2 also requires only

one costly computation per design. The better performance of EigVal over MaCD2

suggests that a method, such as EigVal, developed specifically for 2-level regular de-

signs is probably able to exploit the structure of the designs much better than methods

developed to cater to the general class of designs. Nevertheless, EigVal appears to be

the fastest isomorphism check before our check. Also, in our runs we did not find a

single case where Lin and Sitter (2008)’s sufficiency conjecture fails.

Table 6. Comparison of cumulative CPU time (in seconds) for generating 256 run

(R ≥ 5) designs.

n − k DeseqCS MaCD2 EigVal GBAnoR GBA

9-1 0.156 2.250 0.046 0.015 0.000

10-2 1.171 9.296 0.312 0.031 0.015

11-3 7.046 37.453 1.906 0.078 0.031

12-4 44.25 110.110 6.609 0.203 0.093

13-5 179.75 260.050 17.671 0.484 0.265

14-6 486.593 407.052 31.530 0.921 0.546

15-7 941.046 486.084 41.467 1.359 0.921

16-8 1,025.160 492.990 42.858 1.656 1.203

17-9 1,025.340 493.178 43.061 1.843 1.296
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Table 7. Comparison of cumulative CPU time (in seconds) for generating 512 run

(R ≥ 5) designs.

n − k DeseqCS MaCD2 EigVal GBAnoR GBA

10-1 0.562 23.469 0.203 0.015 0.015

11-2 6.046 119.829 2.109 0.093 0.031

12-3 85.265 741.353 20.155 0.484 0.140

13-4 912.046 3,863.610‡ 126.341 2.265 0.750

14-5 13,683.700 19,168.600‡ 750.344 11.047 5.453

15-6 † 89,653.800‡ 5,119.450 57.219 38.641

16-7 † 100 hours‡ 30 hours§ 320.910 271.534

17-8 † † 12 days§ 1,877.180 1,796.540

†the problem size is too large for our implementation of the correspond

ing algorithm to give valid results.
‡MaCD2 did not detect all non-isomorphic designs in this case.
§our implementation of EigVal could not handle this problem size; the

values reported are from Lin and Sitter (2008);

Compared to EigVal, for k ≥ 3, the run times for GBAnoR are smaller by over

95% for the 128, 256 and 512-run designs. Since the only difference between EigVal

and GBAnoR is the isomorphism check used, these large differences indicate that our

isomorphism check is significantly faster than the eigenvalue check in Lin and Sitter

(2008). Better yet, our check is proven to be necessary and sufficient whereas theirs

is only proven necessary.

The improvement in run times by including the candidate reduction method is

much less but is still impressive. For k ≥ 3, the run times for GBA are between

30 – 80% of the run times for GBAnoR. Compared to EigVal, the total reduction in
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run times is over 98% in most cases. Note that EigVal is the fastest isomorphism

check before us. The generation of 217−8 (512-run) designs with resolution ≥ 5 took

about 12 days with EigVal (Lin and Sitter, 2008), whereas it took about 30 mins with

GBA. The further reduction in run time, over GBAnoR, due to candidate reduction

method was about 2.5 minutes (150 seconds).

The improvement due to our candidate defining word reduction method is better

reflected in Table 8. It compares the number of designs in the intermediate set from

which the non-isomorphic set is obtained by using some isomorphism check. The

number of designs left in D+
n,k is about 4000 – 8000 fewer for 128-run designs with

Table 8. Number of designs in intermediate set, D+
n,k, before discarding isomorphs.

128 run (R ≥ 4) 256 run (R ≥ 5) 512 run (R ≥ 5)

k
GBAnoR GBA GBAnoR GBA GBAnoR GBA

1 98 98 162 162 381 381

2 185 62 227 68 703 166

3 495 177 409 146 2,063 496

4 1,273 703 480 206 4,739 1,497

5 3,346 2,026 453 267 11,077 5,731

6 7,560 4,952 205 137 25,913 18,444

7 15,336 11,110 51 42 60,545 52,917

8 28,766 22,572 2 2 132,909 128,292

9 49,708 41,421 0 0 † †

†our implementation of no existing algorithms, including ours, returns a valid result

for this problem size.
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k ≥ 7, when candidate word reduction is used. This is a 16 – 28% reduction in the

number of designs in D+
n,k. For larger designs, for which the calls to nauty could be

more expensive, such reductions may lead to considerable reduction in computation

times.

VI.2. 2-level regular fractional factorial split-plot designs

For 2-level regular split-plot designs, only non-isomorphic minimum aberration de-

signs for 16-run (Bingham and Sitter, 1999a) and 32-run designs up to 13 factors

(Bingham and Sitter, 2001) have been reported. The reason for reporting mini-

mum aberration designs and not the entire catalog is perhaps because the number of

non-isomorphic designs is usually much larger for split-plot designs than for regular

fractional factorial designs. For this reason, we only present the set of non-isomorphic

minimum aberration designs in this dissertation.

Using the algorithms developed in Chapter V, we could generate all the designs

reported in literature earlier. Additionally we could generate 64-run (resolution ≥ 3)

designs up to 13 factors, 128-run (resolution ≥ 4) designs up to 13 factors, 256-run

(resolution ≥ 5) designs up to 17 factors, 512-run (resolution ≥ 5) designs up to 18

factors, 1024-run (resolution ≥ 6) designs up to 16 factors, 2048-run (resolution ≥ 7)

up to 23 factors, and 4096-run (resolution ≥ 8) designs up to 24 factors. Catalogs of

non-isomorphic minimum aberration designs, with run size up to 128, among these

are listed in Appendix B. The remaining designs are available from the author (and

for download at http://ise.tamu.edu/metrology, click on Publications, as supple-

ment to Shrivastava and Ding (2010)). The computation times for generating these

design catalogs is given in Table 9. Since there are neither any computational results

available in literature nor any other (efficient) isomorphism check available for 2-level
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Table 9. Computation times for generating catalogs of non-isomorphic minimum

aberration 2-level regular fractional factorial split-plot designs.

Run-size Resolution Largest n1 + n2 CPU time (in mins)

32 3 20 13.05

64 3 13 16.07

128 4 13 12.16

256 5 17 11.37

512 5 18 10.65

1024 6 16 24.55 hours

2048 7 23 3.42 hours

4096 8 24 7.65 hours

regular fractional factorial split-plot designs, we do not present any computational

comparisons.

Table 10 lists some selected 4096-run minimum aberration designs with 20 fac-

tors, i.e., n1 + n2 = 20. The whole plot factors are denoted by uppercase letters

and sub-plot factors are denoted by lowercase letters. It may be noted that the min-

imum aberration designs are not unique. For example, there are four 2(11−1)+(9−7)

non-isomorphic minimum aberration designs.

Table 10. Selected 20-factor, 4096-run minimum aberration 2-level regular fractional

factorial split-plot designs with resolution ≥ 8

n1.n2.k1.k2 defining words word length pattern

1.19.0.8 Abcdefgm, Abcdhijn, Abefhiko, Aceghjkp,
Adfgijkq, bceghilr, Abfghjls, bdefijlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]
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Table 10 Continued

n1.n2.k1.k2 defining words word length pattern

2.18.0.8 ABcdefgm, ABcdhijn, ABefhiko, Aceghjkp,
Adfgijkq, Bceghilr, ABfghjls, Bdefijlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

2.18.0.8 ABcdefgm, ABcdhijn, ABefhiko, Aceghjkp,
Adfgijkq, Bceghilr, ABfghjls, defghklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

3.17.0.8 ABCdefgm, ABCdhijn, ABefhiko, ACeghjkp,
Adfgijkq, BCeghilr, ABfghjls, Bdefijlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

3.17.0.8 ABCdefgm, ABCdhijn, ABefhiko, ACeghjkp,
Adfgijkq, BCeghilr, ABfghjls, defghklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

3.17.0.8 ABCdefgm, ABCdhijn, ABefhiko, ACeghjkp,
Adfgijkq, BCeghilr, ABdghkls, BCdfiklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

11.9.0.8 ABCDEFlm, ABCGHIln, ADEGHJlo,
BDFGIJlp, CEFHIJlq, CDFGHKlr,
AEFGIKls, BDEHIKlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

11.9.1.7 ABCDEFGM , ABCDHIkn, ABEFHJko,
ACEGIJkp, ACEFHIlq, BCDFHJlr,
BEFGIJls, BCEGHklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

11.9.1.7 ABCDEFGM , ABCDHIkn, ABEFHJko,
ACEGIJkp, ACEFHIlq, BCDFHJlr,
BCEGHkls, CDFGIklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

11.9.1.7 ABCDEFGM , ABCDHIkn, ABEFHJko,
ACEFHIlp, BCDEHJlq, ADEGHklr,
ABFGIkls, CEFGJklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

11.9.1.7 ABCDEFGM , ABCDHIkn, ABEFHJko,
ACEFHIlp, BCDEHJlq, ADEGHklr,
ABFGIkls, DFHIJklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

12.8.1.7 ABCDEFGM , ABCDHIln, ABEFHJlo,
ACEGIJlp, BCEGHKlq, ABFGIKlr,
DEFGJKls, CFHIJKlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

12.8.1.7 ABCDEFGHIJKM , ABCDEFln,
ABCGHIlo, ADEGHJlp, BDFGIJlq,
CEFHIJlr, CDFGHKls, AEFGIKlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

12.8.2.6 ABCDEFGM , ABCDHIJN , ABEFHIko,
ACEGHJkp, ADFGIJkq, BCEGHIlr,
ABFGHJls, BDEFIJlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

12.8.2.6 ABCDEFGM , ABCDHIJN , ABEFHIko,
ACEGHJkp, ADFGIJkq, BCEGHIlr,
ABFGHJls, DEFGHklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

12.8.2.6 ABCDEFGM , ABCDHIJN , ABEFHIko,
ACEGHJkp, ADFGIJkq, BCEGHIlr,
ABDGHkls, BCDFIklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]
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Table 10 Continued

n1.n2.k1.k2 defining words word length pattern

12.8.2.6 ABCDEFGM , ABCDHIJN , ABEFHIko,
ACEGHJkp, BCEGHIlq, ABFGHJlr,
DEFGHkls, ACDEIklt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

13.7.2.6 ABCDEFGM , ABCDHIJN , ABEFHIlo,
ACEGHJlp, ADFGIJlq, BCDEHKlr,
ABCGIKls, BEFGJKlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

14.6.3.5 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHIlp, BCEFHJlq, CDFGIJlr,
ACDFHKls, ABDGIKlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

15.5.4.4 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , BCEGHIlq, ABFGHJlr,
BDEFIJls, DEFGHKlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]

16.4.5.3 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ, BCEGHIlr,
ABFGHJls, BDEFIJlt

[130, 0, 0, 0, 120, 0,
0, 0, 5, 0, 0, 0, 0]
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CHAPTER VII

CONCLUSION

In this chapter we first summarize the proposed methods in this dissertation and

highlight the contributions. We then provide some thoughts on future work, including

immediate extensions of the current work and some related problems.

VII.1. Summary

In this dissertation, we develop a new efficient approach for listing non-isomorphic

catalogs of fractional factorial designs. We develop, both, a necessary and sufficient

isomorphism check for testing two designs for isomorphism, and a new method for

improving the efficiency of the sequential catalog generation algorithm.

We develop a new necessary and sufficient check for testing the isomorphism of

two 2-level fractional factorial designs based on a bipartite graph representation of

the design. This isomorphism check differs from other necessary and sufficient checks

(Chen et al., 1993, Clark and Dean, 2001) in that it does not directly compare two

designs. Instead, the method generates a canonical representation of a design such

that two isomorphic designs always have the same canonical representation. Our

comparisons indicate that our proposed isomorphism check runs significantly faster

than the existing checks in literature, including Lin and Sitter (2008)’s (necessary

and conjectured sufficient) eigenvalue check, Clark and Dean (2001)’s (necessary and

sufficient) check for defining contrast subgroup and Ma et al. (2001)’s (necessary)

isomorphism check.

The other necessary and sufficient checks, proposed in Sun et al. (2002) and

Cheng and Ye (2004), compare each pair of designs, similar to Clark and Dean (2001)’s
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method, to determine if they are isomorphic or not. Even if these methods are

faster, we do not expect them to have better performance than our isomorphism

check for large number of factors, n. This is because the collection of designs from

which isomorphs are to be removed rapidly increases with n. If m is the size of

one such collection of designs, then these methods would require m(m−1)
2

expensive

computations compared to m for our isomorphism check. Moreover, Katsaounis and

Dean (2008) compared Cheng and Ye (2004)’s method and Clark and Dean (2001)’s

method (which seems to be much slower than our method), among other methods,

but did not find enough evidence to conclude that Cheng and Ye (2004)’s method is

faster than Clark and Dean (2001)’s method.

Our graph representation also allows us to extend results in non-isomorphic graph

generation literature to the non-isomorphic design generation problem. Using results

from the graph isomorphism literature we improve the existing design generation al-

gorithm of Lin and Sitter (2008) by further reducing the number of designs to be

tested for isomorphism. We use this algorithm to generate 2-level designs for run

sizes up to 4096 and give comparisons of the computational effort. The computa-

tional results indicate remarkable improvement in run times and the ability to handle

large designs compared to Lin and Sitter (2008). Fig. 25 shows the largest size design

catalogs that were generated over the years, since the problem was first proposed by

Draper and Mitchell (1967). The figure includes only those publications that specifi-

cally generated non-isomorphic design catalogs. It is evident that the contribution of

our method in increasing the capability to handle larger designs is significant.

Further, we showed that the graph based methods developed for 2-level regular

fractional factorial designs are extensible to 2-level regular fractional factorial split-

plot designs, certifying the extensibility of the graph based approach. This allows

us to generate much larger split-plot design catalogs than those existing in current
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Fig. 25. History of size of 2-level regular fractional factorial non-isomorphic design

catalogs generated in literature. Draper and Mitchell (1967) proposed the

problem but could not generate complete non-isomorphic catalogs. Chen

et al. (1993) generated up to 64-run size catalogs and Lin and Sitter (2008)

generated up to 512-run size catalogs. We generated 4096-run size designs

with our proposed method.

literature. We have been able to generate split-plot designs up to 4096 runs. This is

a significant improvement over the 32-run size design catalogs provided by Bingham

and Sitter (2001).

VII.2. Extensions to other design classes

In the previous section (and also earlier in this dissertation), we have mentioned

about the extensible nature of our proposed framework for generating non-isomorphic

designs. The 2-level split-plot designs do provide some support to this argument. In

this section, we will look at some more general classes of fractional factorial designs to

which our methods can be extended. We provide graph representations of the designs
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A

B

C

D

E

ABCD2

A2B2C2D

AB2E2

A2BE

AC2DE

A2CD2E2

BC2DE2

B2CD2E

Fig. 26. Bipartite multigraph for the 35−2 design with defining contrast subgroup

{I, ABCD2, A2B2C2D, AB2E2, A2BE, AC2DE, A2CD2E2, BC2DE2,

B2CD2E}. Vertices on the left, set Va, correspond to factors, and vertices

on the right, set Vb, correspond to words in the defining contrast subgroup.

Multiple edges denote the more than one levels of each factor.

that may lead to results similar to Theorem III.1.

VII.2.1. Multi-level and mixed-level regular fractional factorial designs

Multi-level regular fractional factorial designs are designs where all factors have the

same number of levels, s, but s > 2. Mixed-level designs are those whose factors

may have different number of levels. Since these designs are very similar to the 2-

level regular fractional factorial designs, we can use similar graph representations for

these. We will discuss the case of multi-level designs here by considering a 3-level

design. The case for large s is almost identical but gets messier.

Multi-level regular designs can be represented as graphs by a natural extension of

Algorithm III.1. For example, consider the 35−2 design given by the defining contrast
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subgroup {I, ABCD2, A2B2C2D, AB2E2, A2BE, AC2DE, A2CD2E2, BC2DE2,

B2CD2E}. We can construct the graph for this design by following the same recipe

as given in Algorithm III.1, but with the additional instruction in Step 4 of the

algorithm that if a word has a squared term for a factor then we add two edges

between the vertex for the word and the vertex for the factor. The graph so obtained

is a bipartite multigraph. Fig. 26 shows the multigraph for the 35−2 design considered

above. Notice that there are two edges between the vertices ABCD2 and D.

For the case of mixed-level designs, we can use the same method as that for

multi-level designs to construct the graphs. Additionally, we color the vertices so

that vertices corresponding to factors with the same number of levels have the same

color. This gives us a colored multigraph.

Since the algorithms for constructing the graphs for multi-level and mixed level

designs follow similar steps to those in Algorithm III.1 (and are hence one-to-one

maps), we expect that proving the equivalence between the isomorphism problem for

these classes and the corresponding graph classes should be possible. One difficulty

in implementing this method is that we are not aware of any good implementations

of graph isomorphism algorithms that can handle multi-level designs. nauty does

not have this desired capability in its existing implementation, although the original

algorithm in McKay (1981) is capable of handling multigraphs.

The extension of the result in Theorem IV.2 to the case of multi-level and mixed-

level regular designs also seems possible. This is because the sequential algorithms

for 2-level designs and multi-level designs are very similar. As at each step the new

design is created by adding a defining word to the smaller designs.
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A B C D

1 0 0 0 0
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 0

Fig. 27. A 4-factor 5-run 2-level non-regular fractional factorial design.

VII.2.2. Non-regular designs

Since non-regular designs are by definition are those designs that do not have the

special structure of regular designs (given by the defining words), the extension of

results in this case is difficult. We provide a graph representation here that was

suggested in McKay (2007) for problem of testing the isotopy of two matrices.

Consider the 4-factor, 5-run, 2-level non-regular fractional factorial design in

A B C

1

2

3

4

D

5

A0
A1 B0 B1 C0 C1

D0

D1

Fig. 28. A vertex-colored graph representation for the non-regular fractional facto-

rial design in Fig. 27. The edges have been colored only to improve the

readability.
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Fig. 27. A graph representation for this design is shown in Fig. 28. The graph is

constructed by adding a vertex for each cell in the design matrix, each factor in the

design, each run in the design, and each of the level labels of each factor in the designs.

This is a vertex-colored graph, with the factors having one color, run labels having

another color and the pairs of levels of each factor having different sets of colors. That

is, the colors of, say, level ‘0’ of factors A and B are different.

The above representation seems one possible way of constructing the graphs, but

it is not clear if this representation will allow proving the equivalence between the

two isomorphism problems, and further lead to a necessary and sufficient isomorphism

check for non-regular designs. The hypothesis remains to be verified. But if proven

true, it may result in a fast isomorphism check for non-regular designs.

The example above considers a 2-level design, but it is easy to see that this

graph representation can be extended to multi-level designs. For mixed-level designs,

further partitioning of the factors into factors with same number of levels, as in the

previous section, may be done.

VII.3. Related problems

In this section we discuss some problems that may be able to benefit from the methods

and approaches developed in this dissertation.

VII.3.1. Constructing catalogs of optimal experimental designs

Usually it is desired that the complete set of all designs that are optimal based on

some criterion be available. Examples of such criteria for regular fractional factorial

designs are maximum resolution, minimum aberration, clear main effects and strongly

clear effects.
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The current approach to constructing these designs is to generate the entire

catalog of designs and store it (off-line generation), and then use the optimality criteria

to choose the optimal design(s) from this stored collection. It seems more desirable to

instead be able to generate the collection of optimal designs in real-time. This could

be done if the choice of the optimality criterion can be included as a constraint in the

sequential generation algorithm. As this will in turn lead to a smaller intermediate

set of designs at each step of the generation algorithm, it may be possible to explore

much larger size designs than can be generated for off-line use.

It should be noted that among the criteria mentioned above, the resolution cri-

terion can be used as a constraint in reducing the size of the intermediate set (see

Section IV.2.1). But such results are not available for other criteria. In particular, it

does not seem possible to get the collection of minimum aberration designs without

generating the entire collection of designs (see also Bingham and Sitter (1999a)). But

it is worth investigating what properties an optimality criteria should have for it to

be usable as a constraint in the design generation procedure.

VII.3.2. Using experimenter’s requirements as constraints in design gen-

eration

This problem is somewhat similar to the previous one. We again are interested in

real-time generation of design catalogs by including constraints on the generation

procedure. But here we want to take the experimenter’s requirements as inputs.

By requirements we mean the statistical effects that need to estimated from the

subsequent analysis of experiment data. The question to be answered is how these

requirements can be modeled so that they can be incorporated in the sequential design

generation procedure in an efficient manner.

It can be imagined that some simple requirements can be incorporated easily in



100

the generation scheme. For example, if all the main effects and two-factor interaction

effects need to be estimated then basically the requirement is that of a resolution IV

design. But for a complex set of requirements, which cannot be translated to the

design resolution, it is not clear if the generation algorithm can be sped up by us-

ing some constraints. For example if in a 7-factor experiment we are interested in

estimating all main effects, three two factor interactions (AB,BC,CD) and a three

factor interaction (AEF ), then we need at least a resolution IV design, but not all

resolution IV designs will be feasible solutions (e.g., any design with the word ABCD

in the defining contrast subgroup is infeasible).

Since these requirements can be complex, the possible solution seems to be

through modeling these experimenter’s requirements as graphs. Modeling these re-

quirements as graphs, and also modeling the statistical capabilities of fractional fac-

torial designs has been studied before. Some of these approaches include Taguchi’s

requirements graph and approaches for representing aliasing relationships of designs

(Sun and Wu, 1994, Wu and Chen, 1992) as graphs. But these representations can-

not usually be used for representing high order interactions, and also they are not

compatible with our graph representations of the designs.

The problem therefore is to devise new graph models, to capture these require-

ments, that can be easily incorporated in our design generation algorithm. For the

practitioner, this could allow generating the smaller feasible set of designs in real-time,

and may be even larger size designs than those available in off-line catalogs.

VII.3.3. Graph models for complicated engineering system designs

Fig. 29 shows a schematic of a phone quality testing system (Shrivastava et al.,

2006). The setup shown is used for testing multiple phones at a time. Each phone

is loaded on one of the fixtures in the system, and a computer controller executes
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Fig. 29. A complicated phone quality testing system.

a number of tests using the equipments in the system. There are multiple units of

each equipment available in the system, and these are shared by the fixtures. The

communication between the equipments and the fixtures is through communication

buses. Due to a limited number of buses, not every unit of every equipment can

be used by each fixture, but only a select few can be assigned to each fixture. The

assignments also include the specific bus which may be used by a fixture for accessing

an equipment unit. The problem of designing this system is then deciding how should

the different equipment units be allocated to the different fixtures, and further which

communication buses can be used for each of these communications.

The system design problem described above, although it appears quite different,

has a lot of similarity to the design generation problem. Since the different units of
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Fig. 30. A graph representation of the phone quality testing system in Fig. 29.

an equipment are identical to each other, all the buses are identical to each other

and all the fixtures are identical to each other, a lot of the possible system designs or

feasible solutions are isomorphic to each other.

Fig. 30 shows a vertex-colored graph representation of a possible design for the

phone quality testing system. Each feasible solution for the design problem can be

represented as a vertex-colored graph, and thus all non-isomorphic feasible solutions

are non-isomorphic graphs. These solutions can be generated by a sequential proce-

dure (McKay, 1998), similar to the sequential generation of designs. But the problem

of finding the best design is an optimization problem. Solving this optimization is a

challenging question since most optimization techniques require some notion of dis-

tance between solution points, but it is not clear how such a distance measure can be

defined.

This optimization problem can also be related to the problem of finding optimal

designs. An efficient solution to either of the problems may, thus, benefit the other

problem.
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VII.4. Conclusion

This dissertation contributes to both the research and practice of design of exper-

iments. It provides a new approach to modeling experimental designs as graphs,

thereby providing new opportunities for developing efficient methods for constructing

experimental designs. This is, to the best of our knowledge, the first approach in

modeling fractional factorial designs as graphs for the purpose of constructing them

efficiently. For the practitioners, we provide complete design catalogs that were not

available before.

To summarize, the following our the contributions of this research:

1. A new necessary and sufficient check for 2-level regular fractional factorial design

isomorphism.

2. A generation algorithm that can generate catalogs of non-isomorphic 2-level

regular fractional factorial designs much faster than any of the previous meth-

ods.

3. A unified framework customizable to different classes of fractional factorial de-

signs.

4. Catalogs of up to 4096-run non-isomorphic 2-level regular fractional factorial

and 2-level regular fractional factorial split-plot designs, not available earlier in

literature.
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APPENDIX A

LIST OF NON-ISOMORPHIC 2-LEVEL REGULAR FRACTIONAL

FACTORIAL DESIGNS

This appendix gives tables of some good 1024-run (Table 11) and all of 2048-

run (Table 12) and 4096-run (Table 13) designs. The defining words for each of the

designs are given. Additionally, the word length patterns of the designs are given.

Note that the first element of the word length pattern is aR, where R is the resolution

of the design.

Table 11. Best two 1024-run 2-level regular fractional factorial designs with resolu-

tion ≥ 6 by minimum aberration criterion

n− k.x defining words word length pattern

11-1.1 ABCDEFGHIJK [0, 0, 0, 0, 0, 1]
11-1.2 ABCDEFGHIK [0, 0, 0, 0, 1, 0]
12-2.1 ABCDEFGK, ABCDHIJL [0, 0, 3, 0, 0, 0, 0]
12-2.2 ABCDEFK, ABCGHIJL [0, 1, 1, 1, 0, 0, 0]
13-3.1 ABCDEFK, ABCGHIL, ADEGHJM [0, 4, 3, 0, 0, 0, 0, 0]
13-3.2 ABCDEK, ABCFGHL, ADFGIJM [1, 3, 2, 1, 0, 0, 0, 0]
14-4.1 ABCDEFK, ABCGHIL, ADEGHJM , BDFGIJN [0, 8, 7, 0, 0, 0, 0, 0, 0]
14-4.2 ABCDEK, ABFGHL, ACDFGIM , CEFHIJN [2, 6, 5, 2, 0, 0, 0, 0, 0]
15-5.1 ABCDEFK, ABCGHIL, ADEGHJM ,

BDFGIJN , CEFHIJO

[0, 15, 15, 0, 0, 0, 0, 0,
0, 1]

15-5.2 ABCDEK, ABFGHL, ACDFGIM , BCDFGJN ,
CEFHIJO

[3, 12, 11, 4, 0, 0, 0, 0,
1, 0]

16-6.1 ABCDEK, ABFGHL, ACFIJM , BCDFGIN ,
BCEFHJO, ABCDEFGHIJP

[6, 25, 15, 0, 10, 6, 0,
0, 0, 1, 0]

16-6.2 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
ADEFHIO, ADEFGJP

[8, 24, 13, 0, 8, 8, 2, 0,
0, 0, 0]

17-7.1 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
ADEFHIO, ADEFGJP , ABDGIJQ

[12, 41, 25, 0, 20, 22, 6,
0, 0, 1, 0, 0]

17-7.2 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
AEGIJO, ADEFHIP , BCEGHIQ

[13, 40, 25, 0, 18, 24, 6,
0, 1, 0, 0, 0]
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Table 11 Continued

n− k.x defining words word length pattern

18-8.1 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
AEGIJO, ADEFHIP , BCEGHIQ, BDEFGJR

[19, 66, 45, 0, 42, 60,
18, 0, 3, 2, 0, 0, 0]

18-8.2 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
AEGIJO, BDHIJP , ADEFHIQ, BCEGHIR

[20, 64, 46, 0, 40, 64,
16, 0, 4, 0, 1, 0, 0]

19-9.1 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
AEGIJO, BDHIJP , ADEFHIQ, BCEGHIR,
BDEFGJS

[28, 104, 78, 0, 88, 144,
48, 0, 12, 8, 1, 0, 0, 0]

19-9.2 ABCDEK, ABCFGL, ABDFHM , ACDFIN ,
AEGHIO, BDEGJP , CFGHJQ, DEFHIJR,
BCDFGIJS

[46, 56, 81, 72, 81, 72,
46, 56, 0, 0, 0, 0, 1, 0]

20-10.1 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
AEGIJO, BDHIJP , ADEFHIQ, BCEGHIR,
BDEFGJS, ACDGHJT

[40, 160, 130, 0, 176,
320, 120, 0, 40, 32, 5,
0, 0, 0, 0]

20-10.2 ABCDEK, ABCFGL, ABDFHM , ACDFIN ,
AEGHIO, BCDFJP , CEGHJQ, DEGIJR,
EFHIJS, BGHIJT

[90, 0, 255, 0, 332, 0,
255, 0, 90, 0, 0, 0, 0, 0,
1]

21-11.1 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
AEGIJO, BDHIJP , ADEFHIQ, BCEGHIR,
BDEFGJS, ACDGHJT , ABCFIJU

[56, 240, 210, 0, 336,
672, 280, 0, 120, 112,
21, 0, 0, 0, 0, 0]

21-11.2 ABCDEK, ABCFGL, ABDFHM , ACEGHN ,
BCEFIO, CDEGIP , ABEHIQ, BDEFJR,
ABGHJS, FGHIJT , ACDFGIJU

[128, 0, 410, 0, 608, 0,
680, 0, 160, 0, 61, 0, 0,
0, 0, 0]

22-12.1 ABCDEK, ABFGHL, CDFGIM , CEFHJN ,
AEGIJO, BDHIJP , ADEFHIQ, BCEGHIR,
BDEFGJS, ACDGHJT , ABCFIJU ,
ABCDEFGHIJV

[77, 352, 330, 0, 616,
1344, 616, 0, 330, 352,
77, 0, 0, 0, 0, 0, 1]

22-12.2 ABCDEK, ABCFGL, ABDFHM , ACEGHN ,
ACDFIO, BCEGIP , BCDFJQ, BDEGJR,
DEFHJS, AFGIJT , ACDGHIJU ,
ABCDEFHIJV

[183, 0, 600, 0, 1233, 0,
1324, 0, 585, 0, 155, 0,
15, 0, 0, 0, 0]

23-13.1 ABCDEK, ABCFGL, ABDFHM , ACEGHN ,
ACDFIO, BCEGIP , BCDFJQ, ABEGJR,
ADHIJS, CGHIJT , BCDEFHIU , ABCDGHIV ,
ACEFGIJW

[251, 0, 899, 0, 2235, 0,
2697, 0, 1545, 0, 496,
0, 65, 0, 3, 0, 0, 0]

23-13.2 ABCDEK, ABCFGL, ABDFHM , ACEGHN ,
ACDFIO, BCEGIP , BCDFJQ, ABEGJR,
ADHIJS, BGHIJT , BCDEFHIU , BCEFGHJV ,
ABCDGIJW

[252, 0, 890, 0, 2268, 0,
2632, 0, 1620, 0, 445,
0, 84, 0, 0, 0, 0, 0]

24-14.1 ABCDEK, ABCFGL, ABDFHM , ACEGHN ,
ACDFIO, BCEGIP , BCDFJQ, ABEGJR,
ADHIJS, BGHIJT , BCDEFHIU , BCEFGHJV ,
ABCDGIJW , ABEFHIJX

[336, 0, 1335, 0, 3888,
0, 5264, 0, 3888, 0,
1335, 0, 336, 0, 0, 0, 0,
0, 1]
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Table 12. All 2048-run 2-level regular fractional factorial designs with resolution ≥ 7

n− k.x defining words word length pattern

12-1.1 ABCDEFL [1, 0, 0, 0, 0, 0]
12-1.2 ABCDEFGL [0, 1, 0, 0, 0, 0]
12-1.3 ABCDEFGHL [0, 0, 1, 0, 0, 0]
12-1.4 ABCDEFGHIL [0, 0, 0, 1, 0, 0]
12-1.5 ABCDEFGHIJL [0, 0, 0, 0, 1, 0]
12-1.6 ABCDEFGHIJKL [0, 0, 0, 0, 0, 1]
13-2.1 ABCDEFL, ABCGHIM [2, 1, 0, 0, 0, 0, 0]
13-2.2 ABCDEFL, ABGHIJM [2, 0, 0, 1, 0, 0, 0]
13-2.3 ABCDEFL, AGHIJKM [2, 0, 0, 0, 0, 1, 0]
13-2.4 ABCDEFL, ABCGHIJM [1, 1, 1, 0, 0, 0, 0]
13-2.5 ABCDEFL, ABGHIJKM [1, 1, 0, 0, 1, 0, 0]
13-2.6 ABCDEFL, ABCGHIJKM [1, 0, 1, 1, 0, 0, 0]
13-2.7 ABCDEFGL, ABCDHIJM [0, 3, 0, 0, 0, 0, 0]
13-2.8 ABCDEFGL, ABCHIJKM [0, 2, 0, 1, 0, 0, 0]
13-2.9 ABCDEFGL, ABCDHIJKM [0, 1, 2, 0, 0, 0, 0]
14-3.1 ABCDEFL, ABCGHIM , ADEGHJN [4, 3, 0, 0, 0, 0, 0, 0]
14-3.2 ABCDEFL, ABCGHIM , ABDGJKN [3, 3, 0, 0, 1, 0, 0, 0]
14-3.3 ABCDEFL, ABCGHIM , ADEGJKN [3, 2, 1, 1, 0, 0, 0, 0]
14-3.4 ABCDEFL, ABCGHIM , DEFGJKN [4, 2, 0, 0, 0, 1, 0, 0]
14-3.5 ABCDEFL, ABCGHIM , DEGHJKN [4, 1, 0, 2, 0, 0, 0, 0]
14-3.6 ABCDEFL, ABCGHIM , ADEGHJKN [2, 3, 2, 0, 0, 0, 0, 0]
14-3.7 ABCDEFGL, ABCDHIJM , ABEFHIKN [0, 7, 0, 0, 0, 0, 0, 0]
15-4.1 ABCDEFL, ABCGHIM , ADEGHJN , BDFGIJO [8, 7, 0, 0, 0, 0, 0, 0, 0]
15-4.2 ABCDEFL, ABCGHIM , ADEGHJN ,

BDFGHKO

[7, 6, 0, 0, 1, 1, 0, 0, 0]

15-4.3 ABCDEFL, ABCGHIM , ADEGHJN , ADFGIKO [6, 7, 0, 0, 2, 0, 0, 0, 0]
15-4.4 ABCDEFL, ABCGHIM , ADEGHJN ,

BDFGIKO

[6, 5, 2, 2, 0, 0, 0, 0, 0]

15-4.5 ABCDEFL, ABCGHIM , ADEGHJN ,
BCDEGHKO

[7, 7, 0, 0, 0, 0, 0, 0, 1]

15-4.6 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJKO

[4, 7, 4, 0, 0, 0, 0, 0, 0]

15-4.7 ABCDEFGL, ABCDHIJM , ABEFHIKN ,
ACEGHJKO

[0, 15, 0, 0, 0, 0, 0, 0,
0]

16-5.1 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJP

[15, 15, 0, 0, 0, 0, 0, 0,
1, 0]

16-5.2 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CDFGHKP

[12, 13, 0, 0, 4, 2, 0, 0,
0, 0]



116

Table 12 Continued

n− k.x defining words word length pattern

16-5.3 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIKP

[11, 11, 4, 4, 0, 0, 0, 0,
1, 0]

16-5.4 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJKP

[8, 14, 8, 0, 0, 0, 0, 0,
0, 1]

16-5.5 ABCDEFL, ABCGHIM , ADEGHJN ,
ADFGIKO, ABFHJKP

[10, 15, 0, 0, 6, 0, 0, 0,
0, 0]

16-5.6 ABCDEFL, ABCGHIM , ADEGHJN ,
BCDEGHKO, BDFGIJKP

[7, 15, 8, 0, 0, 0, 0, 0,
1, 0]

16-5.7 ABCDEFGL, ABCDHIJM , ABEFHIKN ,
ACEGHJKO, ADFGIJKP

[0, 30, 0, 0, 0, 0, 0, 0,
0, 1]

17-6.1 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJP , CDFGHKQ

[21, 25, 0, 0, 10, 6, 0,
0, 1, 0, 0]

17-6.2 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CDFGHKP , AEFGIKQ

[20, 25, 0, 0, 12, 6, 0,
0, 0, 0, 0]

17-6.3 ABCDEFL, ABCGHIM , ADEGHJN ,
ADFGIKO, ABFHJKP , ACEIJKQ

[16, 30, 0, 0, 16, 0, 0,
0, 0, 1, 0]

18-7.1 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJP , CDFGHKQ, AEFGIKR

[33, 45, 0, 0, 30, 18, 0,
0, 1, 0, 0, 0]

18-7.2 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CDFGHKP , AEFGIKQ, BCEGJKR

[32, 46, 0, 0, 32, 16, 0,
0, 0, 1, 0, 0]

19-8.1 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJP , CDFGHKQ, AEFGIKR,
BDEHIKS

[52, 78, 0, 0, 72, 48, 0,
0, 4, 1, 0, 0, 0]

20-9.1 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJP , CDFGHKQ, AEFGIKR,
BDEHIKS, BCEGJKT

[80, 130, 0, 0, 160, 120,
0, 0, 16, 5, 0, 0, 0, 0]

21-10.1 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJP , CDFGHKQ, AEFGIKR,
BDEHIKS, BCEGJKT , ABFHJKU

[120, 210, 0, 0, 336,
280, 0, 0, 56, 21, 0, 0,
0, 0, 0]

22-11.1 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJP , CDFGHKQ, AEFGIKR,
BDEHIKS, BCEGJKT , ABFHJKU , ACDIJKV

[176, 330, 0, 0, 672,
616, 0, 0, 176, 77, 0, 0,
0, 0, 0, 0]

23-12.1 ABCDEFL, ABCGHIM , ADEGHJN ,
BDFGIJO, CEFHIJP , CDFGHKQ, AEFGIKR,
BDEHIKS, BCEGJKT , ABFHJKU , ACDIJKV ,
ABCDEFGHIJKW

[253, 506, 0, 0, 1288,
1288, 0, 0, 506, 253, 0,
0, 0, 0, 0, 0, 1]
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Table 13. All 4096-run 2-level regular fractional factorial designs with resolution ≥ 8

n− k.x defining words word length pattern

13-1.1 ABCDEFGM [1, 0, 0, 0, 0, 0]
13-1.2 ABCDEFGHM [0, 1, 0, 0, 0, 0]
13-1.3 ABCDEFGHIM [0, 0, 1, 0, 0, 0]
13-1.4 ABCDEFGHIJM [0, 0, 0, 1, 0, 0]
13-1.5 ABCDEFGHIJKM [0, 0, 0, 0, 1, 0]
13-1.6 ABCDEFGHIJKLM [0, 0, 0, 0, 0, 1]
14-2.1 ABCDEFGM , ABCDHIJN [3, 0, 0, 0, 0, 0, 0]
14-2.2 ABCDEFGM , ABCHIJKN [2, 0, 1, 0, 0, 0, 0]
14-2.3 ABCDEFGM , ABHIJKLN [2, 0, 0, 0, 1, 0, 0]
14-2.4 ABCDEFGM , ABCDHIJKN [1, 2, 0, 0, 0, 0, 0]
14-2.5 ABCDEFGM , ABCHIJKLN [1, 1, 0, 1, 0, 0, 0]
14-2.6 ABCDEFGM , ABCDHIJKLN [1, 0, 2, 0, 0, 0, 0]
14-2.7 ABCDEFGHM , ABCDIJKLN [0, 2, 1, 0, 0, 0, 0]
15-3.1 ABCDEFGM , ABCDHIJN , ABEFHIKO [7, 0, 0, 0, 0, 0, 0, 0]
15-3.2 ABCDEFGM , ABCDHIJN , ABCEHKLO [6, 0, 0, 0, 1, 0, 0, 0]
15-3.3 ABCDEFGM , ABCDHIJN , ABEFHKLO [5, 0, 2, 0, 0, 0, 0, 0]
15-3.4 ABCDEFGM , ABCDHIJN , ABEFHIKLO [3, 4, 0, 0, 0, 0, 0, 0]
16-4.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,

ACEGHJKP

[15, 0, 0, 0, 0, 0, 0, 0,
0]

16-4.2 ABCDEFGM , ABCDHIJN , ABEFHIKO,
CDEFHILP

[14, 0, 0, 0, 0, 0, 0, 0,
1]

16-4.3 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHILP

[13, 0, 0, 0, 2, 0, 0, 0,
0]

16-4.4 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJLP

[11, 0, 4, 0, 0, 0, 0, 0,
0]

16-4.5 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKLP

[7, 8, 0, 0, 0, 0, 0, 0, 0]

17-5.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ

[30, 0, 0, 0, 0, 0, 0, 0,
1, 0]

17-5.2 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , CDEFHILQ

[22, 0, 8, 0, 0, 0, 0, 0,
1, 0]

17-5.3 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , BCEGHILQ

[25, 0, 0, 0, 6, 0, 0, 0,
0, 0]

17-5.4 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKLQ

[15, 15, 0, 0, 0, 0, 0, 0,
0, 1]

17-5.5 ABCDEFGM , ABCDHIJN , ABEFHIKO,
CDEFHILP , ACEGHJKLQ

[14, 16, 0, 0, 0, 0, 0, 0,
1, 0]

18-6.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ, BCEGHILR

[46, 0, 0, 0, 16, 0, 0, 0,
1, 0, 0]
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Table 13 Continued

n− k.x defining words word length pattern

18-6.2 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , BCEGHILQ, ABFGHJLR

[45, 0, 0, 0, 18, 0, 0, 0,
0, 0, 0]

19-7.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ, BCEGHILR,
ABFGHJLS

[78, 0, 0, 0, 48, 0, 0, 0,
1, 0, 0, 0]

20-8.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ, BCEGHILR,
ABFGHJLS, BDEFIJLT

[130, 0, 0, 0, 120, 0, 0,
0, 5, 0, 0, 0, 0]

21-9.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ, BCEGHILR,
ABFGHJLS, BDEFIJLT , DEFGHKLU

[210, 0, 0, 0, 280, 0, 0,
0, 21, 0, 0, 0, 0, 0]

22-10.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ, BCEGHILR,
ABFGHJLS, BDEFIJLT , DEFGHKLU ,
ACDEIKLV

[330, 0, 0, 0, 616, 0, 0,
0, 77, 0, 0, 0, 0, 0, 0]

23-11.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ, BCEGHILR,
ABFGHJLS, BDEFIJLT , DEFGHKLU ,
ACDEIKLV , BCDGJKLW

[506, 0, 0, 0, 1288, 0, 0,
0, 253, 0, 0, 0, 0, 0, 0,
0]

24-12.1 ABCDEFGM , ABCDHIJN , ABEFHIKO,
ACEGHJKP , ADFGIJKQ, BCEGHILR,
ABFGHJLS, BDEFIJLT , DEFGHKLU ,
ACDEIKLV , BCDGJKLW , CFHIJKLX

[759, 0, 0, 0, 2576, 0, 0,
0, 759, 0, 0, 0, 0, 0, 0,
0, 1]
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APPENDIX B

LIST OF NON-ISOMORPHIC 2-LEVEL MINIMUM ABERRATION

FRACTIONAL FACTORIAL SPLIT-PLOT DESIGNS

This appendix gives tables of minimum aberration designs of 32 (Table 14), 64

(Table 15) and 128 (Table 16). The whole plot factors are denoted by uppercase

letters and the sub-plot factors by lowercase letters, in the tables. The defining words

for each of the designs are given. Additionally, the word length patterns of the designs

are given. Note that the first element of the word length pattern is aR, where R is

the resolution of the design.

Table 14. 32-run minimum aberration 2-level regular fractional factorial split-plot

designs with resolution ≥ 3

n1 + n2 n1.n2.k1.k2 defining words word length pattern

6 1.5.0.1 Abcdef [0, 0, 0, 1]
6 2.4.0.1 ABcdef [0, 0, 0, 1]
6 3.3.0.1 ABCdef [0, 0, 0, 1]
6 4.2.0.1 ABCDef [0, 0, 0, 1]
7 1.6.0.2 Abcf , Abdeg [0, 1, 2, 0, 0]
7 1.6.0.2 bcdf , Abceg [0, 1, 2, 0, 0]
7 2.5.0.2 ABcf , ABdeg [0, 1, 2, 0, 0]
7 2.5.0.2 ABcf , Acdeg [0, 1, 2, 0, 0]
7 2.5.0.2 Acdf , ABceg [0, 1, 2, 0, 0]
7 2.5.0.2 cdef , ABcdg [0, 1, 2, 0, 0]
7 3.4.0.2 ABdf , ABCeg [0, 1, 2, 0, 0]
7 3.4.0.2 ABdf , ACdeg [0, 1, 2, 0, 0]
7 3.4.0.2 Adef , ABCdg [0, 1, 2, 0, 0]
7 3.4.0.2 ABCdf , ABCeg [0, 1, 2, 0, 0]
7 3.4.1.1 ABF , Acdeg [1, 0, 1, 1, 0]
7 4.3.0.2 ABef , ACDeg [0, 1, 2, 0, 0]
7 4.3.1.1 ABCF , ABdeg [0, 1, 2, 0, 0]
7 5.2.1.1 ABCF , ABDeg [0, 1, 2, 0, 0]
7 5.2.1.1 ABCDF , ABeg [0, 1, 2, 0, 0]
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Table 14 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

8 1.7.0.3 Abcf , Abdg, Acdeh [0, 3, 4, 0, 0, 0]
8 1.7.0.3 bcdf , bceg, Abdeh [0, 3, 4, 0, 0, 0]
8 2.6.0.3 ABcf , ABdg, Acdeh [0, 3, 4, 0, 0, 0]
8 2.6.0.3 ABcf , Acdg, ABdeh [0, 3, 4, 0, 0, 0]
8 2.6.0.3 Acdf , Aceg, ABdeh [0, 3, 4, 0, 0, 0]
8 2.6.0.3 cdef , ABcdg, ABceh [0, 3, 4, 0, 0, 0]
8 3.5.0.3 ABdf , ACdg, ABCeh [0, 3, 4, 0, 0, 0]
8 3.5.0.3 ABdf , ACdg, BCdeh [0, 3, 4, 0, 0, 0]
8 3.5.0.3 ABdf , ABeg, ACdeh [0, 3, 4, 0, 0, 0]
8 3.5.0.3 ABdf , Adeg, ABCeh [0, 3, 4, 0, 0, 0]
8 3.5.0.3 Adef , ABCdg, ABCeh [0, 3, 4, 0, 0, 0]
8 3.5.1.2 ABF , Acdg, Bceh [1, 2, 3, 1, 0, 0]
8 4.4.0.3 ABef , ACeg, BCDeh [0, 3, 4, 0, 0, 0]
8 4.4.0.3 ABef , ACDeg, BCDeh [0, 3, 4, 0, 0, 0]
8 4.4.1.2 ABCF , ABdg, ACdeh [0, 3, 4, 0, 0, 0]
8 5.3.1.2 ABCF , ABeg, ACDeh [0, 3, 4, 0, 0, 0]
8 5.3.1.2 ABCDF , ABeg, ACeh [0, 3, 4, 0, 0, 0]
8 5.3.2.1 ABF , ACG, BCdeh [2, 1, 2, 2, 0, 0]
8 6.2.2.1 ABCF , ABDG, ACDeh [0, 3, 4, 0, 0, 0]
9 1.8.0.4 Abcf , Abdg, Abeh, Acdei [0, 6, 8, 0, 0, 1, 0]
9 1.8.0.4 bcdf , bceg, Abdeh, Acdei [0, 6, 8, 0, 0, 1, 0]
9 2.7.0.4 ABcf , ABdg, ABeh, Acdei [0, 6, 8, 0, 0, 1, 0]
9 2.7.0.4 ABcf , Acdg, Aceh, ABdei [0, 6, 8, 0, 0, 1, 0]
9 2.7.0.4 Acdf , Aceg, ABdeh, Bcdei [0, 6, 8, 0, 0, 1, 0]
9 3.6.0.4 ABdf , ACdg, Adeh, ABCei [0, 6, 8, 0, 0, 1, 0]
9 3.6.0.4 ABdf , ABeg, ACdeh, BCdei [0, 6, 8, 0, 0, 1, 0]
9 3.6.0.4 ABdf , Adeg, ABCeh, BCdei [0, 6, 8, 0, 0, 1, 0]
9 3.6.1.3 ABF , Acdg, Aceh, Bdei [1, 5, 6, 2, 1, 0, 0]
9 4.5.0.4 ABef , ACeg, ADeh, BCDei [0, 6, 8, 0, 0, 1, 0]
9 4.5.1.3 ABCF , ABdg, ABeh, ACdei [0, 6, 8, 0, 0, 1, 0]
9 5.4.1.3 ABCF , ABeg, ACDeh, BCDei [0, 6, 8, 0, 0, 1, 0]
9 5.4.1.3 ABCDF , ABeg, ACeh, ADei [0, 6, 8, 0, 0, 1, 0]
9 5.4.2.2 ABF , ACG, BCdh, Adei [2, 4, 6, 2, 0, 1, 0]
9 6.3.2.2 ABCF , ABDG, ABeh, ACDei [0, 6, 8, 0, 0, 1, 0]
9 6.3.3.1 ABF , ACG, BCH, ABCdei [4, 3, 3, 4, 0, 0, 1]
9 7.2.3.1 ABCF , ABDG, ACDH, BCDei [0, 7, 7, 0, 0, 0, 1]
10 1.9.0.5 Abcf , Abdg, Abeh, Acdei, bcdej [0, 10, 16, 0, 0, 5, 0, 0]
10 2.8.0.5 ABcf , ABdg, ABeh, Acdei, Bcdej [0, 10, 16, 0, 0, 5, 0, 0]
10 2.8.0.5 ABcf , Acdg, Aceh, ABdei, Bcdej [0, 10, 16, 0, 0, 5, 0, 0]
10 3.7.0.5 ABdf , ACdg, Adeh, ABCei, BCdej [0, 10, 16, 0, 0, 5, 0, 0]
10 3.7.1.4 ABF , Acdg, Aceh, Adei, Bcdej [1, 10, 11, 4, 3, 1, 1, 0]
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Table 14 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

10 4.6.0.5 ABef , ACeg, BDeh, CDei,
ABCDej

[0, 15, 0, 15, 0, 0, 0, 1]

10 4.6.1.4 ABCF , ABdg, ABeh, ACdei,
BCdej

[0, 10, 16, 0, 0, 5, 0, 0]

10 5.5.1.4 ABCDF , ABeg, ACeh, ADei,
BCDej

[0, 10, 16, 0, 0, 5, 0, 0]

10 5.5.2.3 ABF , ACG, BCdh, BCei, Adej [2, 8, 12, 4, 2, 3, 0, 0]
10 6.4.2.3 ABCF , ABDG, ABeh, ACDei,

BCDej

[0, 10, 16, 0, 0, 5, 0, 0]

10 6.4.3.2 ABF , ACG, BCH, Adei, ABCdj [4, 8, 8, 4, 4, 3, 0, 0]
10 7.3.3.2 ABCF , ABDG, ACDH, ABei,

ACej

[0, 16, 0, 12, 0, 3, 0, 0]

10 7.3.4.1 ABF , ACG, BCH, ABCI, Adej [7, 8, 3, 4, 5, 3, 1, 0]
10 8.2.4.1 ABCF , ABDG, ACDH, BCDI,

ABej

[0, 18, 0, 8, 0, 5, 0, 0]

11 1.10.0.6 Abcf , Abdg, Acdh, Abei, Acej, Adek [0, 25, 0, 27, 0, 10, 0,
1, 0]

11 1.10.0.6 Abcf , Abdg, Acdh, Abei, Acej, bdek [0, 25, 0, 27, 0, 10, 0,
1, 0]

11 2.9.0.6 ABcf , ABdg, Acdh, ABei, Acej,
Adek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 2.9.0.6 ABcf , ABdg, Acdh, ABei, Acej,
cdek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 2.9.0.6 ABcf , ABdg, Acdh, Acei, Adej,
ABcdek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 3.8.0.6 ABdf , ACdg, BCdh, ABei, ACej,
Adek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 3.8.0.6 ABdf , ACdg, BCdh, ABei, Adej,
Cdek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 3.8.0.6 ABdf , ACdg, ABeh, ACei, Adej,
ABCdek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 3.8.1.5 ABF , Acg, Bcdh, Bcei, Adej,
ABcdek

[2, 14, 22, 8, 6, 9, 2, 0,
0]

11 4.7.0.6 ABef , ACeg, BCeh, ADei, BDej,
CDek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 4.7.1.5 ABCF , ABdg, ACdh, ABei, ACej,
Adek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 4.7.1.5 ABCF , ABdg, ACdh, ABei, Adej,
Cdek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 5.6.1.5 ABCF , ABeg, ACeh, ADei, BDej,
CDek

[0, 25, 0, 27, 0, 10, 0,
1, 0]
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11 5.6.2.4 ABF , ACG, BCdh, BCei, Adej,
ABCdek

[2, 14, 22, 8, 6, 9, 2, 0,
0]

11 6.5.2.4 ABCF , ABDG, ABeh, ACei,
ADej, CDek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 6.5.3.3 ABF , ACG, BCH, Adei, ABCdj,
ABCek

[4, 14, 16, 8, 12, 9, 0,
0, 0]

11 7.4.3.3 ABCF , ABDG, ACDH, ABei,
ACej, ADek

[0, 25, 0, 27, 0, 10, 0,
1, 0]

11 7.4.4.2 ABF , ACG, BCH, ABCI, Adj,
Bdek

[8, 12, 10, 12, 12, 7, 2,
0, 0]

11 8.3.4.2 ABCF , ABDG, ACDH, BCDI,
ABej, ACek

[0, 26, 0, 24, 0, 13, 0,
0, 0]

11 9.2.5.1 ABF , ACG, ADH, BCDI,
ABCDJ , BCek

[4, 18, 12, 8, 12, 5, 4,
0, 0]

12 1.11.0.7 Abcf , Abdg, Acdh, bcdi, Abej, Acek,
Adel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 1.11.0.7 Abcf , Abdg, Acdh, Abei, Acej, bdek,
cdel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 2.10.0.7 ABcf , ABdg, Acdh, Bcdi, ABej,
Acek, Adel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 2.10.0.7 ABcf , ABdg, Acdh, Bcdi, Acej,
Adek, ABcdel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 2.10.0.7 ABcf , ABdg, Acdh, ABei, Acej,
Adek, cdel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 2.10.0.7 ABcf , ABdg, Acdh, ABei, Acej,
cdek, ABcdel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 3.9.0.7 ABdf , ACdg, BCdh, ABei, ACej,
BCek, Adel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 3.9.0.7 ABdf , ACdg, BCdh, ABei, ACej,
Adek, Bdel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 3.9.0.7 ABdf , ACdg, ABeh, ACei, Adej,
Bdek, ABCdel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 3.9.1.6 ABF , Acg, Adh, Bcdi, Bcej, Bdek,
Acdel

[3, 25, 23, 27, 25, 10,
13, 1, 0, 0]

12 4.8.0.7 ABef , ACeg, BCeh, ADei, BDej,
CDek, ABCDel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 4.8.1.6 ABCF , ABdg, ACdh, BCdi, ABej,
ACek, Adel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 4.8.1.6 ABCF , ABdg, ACdh, BCdi, ABej,
Adek, Cdel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 4.8.1.6 ABCF , ABdg, ACdh, ABei, ACej,
Adek, Bdel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]
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12 5.7.1.6 ABCF , ABeg, ACeh, BCei, ADej,
BDek, CDel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 5.7.2.5 ABF , ACG, Adh, BCdi, BCej,
Bdek, ACdel

[3, 25, 23, 27, 25, 10,
13, 1, 0, 0]

12 6.6.2.5 ABCF , ABDG, ABeh, ACei,
BCej, ADek, CDel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 6.6.3.4 ABF , ACG, BCH, Adei, ABCdj,
ABCek, BCdel

[4, 23, 28, 16, 28, 23, 4,
0, 0, 1]

12 7.5.3.4 ABCF , ABDG, ACDH, ABei,
ACej, BCek, ADel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 7.5.4.3 ABF , ACG, BCH, ABCI, Adj,
Bek, Cdel

[9, 17, 21, 27, 27, 18, 7,
1, 0, 0]

12 8.4.4.3 ABCF , ABDG, ACDH, BCDI,
ABej, ACek, ADel

[0, 38, 0, 52, 0, 33, 0,
4, 0, 0]

12 9.3.5.2 ABF , ACG, ADH, BCDI,
ABCDJ , BCek, BDel

[4, 26, 20, 24, 28, 13,
12, 0, 0, 0]

12 10.2.6.1 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, BDel

[8, 22, 24, 20, 24, 17, 8,
4, 0, 0]

13 1.12.0.8 Abcf , Abdg, Acdh, bcdi, Abej, Acek,
bcel, Adem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 1.12.0.8 Abcf , Abdg, Acdh, Abei, Acej, bdek,
cdel, Abcdem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 2.11.0.8 ABcf , ABdg, Acdh, Bcdi, ABej,
Acek, Bcel, Adem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 2.11.0.8 ABcf , ABdg, Acdh, Bcdi, ABej,
Acek, Adel, cdem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 2.11.0.8 ABcf , ABdg, Acdh, ABei, Acej,
Adek, cdel, ABcdem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 3.10.0.8 ABdf , ACdg, BCdh, ABei, ACej,
BCek, Adel, Bdem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 3.10.0.8 ABdf , ACdg, BCdh, ABei, ACej,
Adek, Bdel, Cdem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 3.10.1.7 ABF , Acg, Adh, Aei, Bcdj, Bcek,
Bdel, cdem

[4, 38, 32, 52, 56, 33,
32, 4, 4, 0, 0]

13 4.9.0.8 Aef , Beg, Ceh, Dei, ABCej,
ABDek, ACDel, BCDem

[4, 38, 32, 52, 56, 33,
32, 4, 4, 0, 0]

13 4.9.1.7 ABCF , ABdg, ACdh, BCdi, ABej,
ACek, BCel, Adem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 4.9.1.7 ABCF , ABdg, ACdh, BCdi, ABej,
ACek, Adel, Bdem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 4.9.1.7 ABCF , ABdg, ACdh, ABei, ACej,
Adek, Bdel, Cdem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]
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13 5.8.1.7 ABCF , ABeg, ACeh, BCei, ADej,
BDek, CDel, ABCDem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 5.8.2.6 ABF , ACG, Adh, Aei, BCdj,
BCek, Bdel, Cdem

[4, 38, 32, 52, 56, 33,
32, 4, 4, 0, 0]

13 6.7.2.6 ABCF , ABDG, ABeh, ACei,
BCej, ADek, BDel, CDem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 6.7.3.5 ABF , ACG, BCH, Adi, BCdj,
Bdek, ABCel, ACdem

[6, 31, 44, 40, 56, 47,
20, 8, 2, 1, 0]

13 7.6.3.5 ABCF , ABDG, ACDH, ABei,
ACej, BCek, ADel, BDem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 7.6.4.4 ABF , ACG, BCH, ABCI, Adj,
Bek, Cdel, ABCdem

[10, 24, 39, 54, 54, 39,
24, 10, 0, 0, 1]

13 8.5.4.4 ABCF , ABDG, ACDH, BCDI,
ABej, ACek, BCel, ADem

[0, 55, 0, 96, 0, 87, 0,
16, 0, 1, 0]

13 9.4.5.3 ABF , ACG, ADH, BCDI,
ABCDJ , BCek, BDel, ACDem

[4, 38, 33, 52, 52, 33,
38, 4, 0, 0, 1]

13 10.3.6.2 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, BDel, ABCem

[8, 31, 40, 40, 56, 47,
24, 8, 0, 1, 0]

13 11.2.7.1 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, ABCDem

[12, 30, 41, 44, 44, 41,
30, 12, 0, 0, 1]

14 1.13.0.9 Abcf , Abdg, Acdh, bcdi, Abej, Acek,
bcel, Adem, bden

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 2.12.0.9 ABcf , ABdg, Acdh, Bcdi, ABej,
Acek, Bcel, Adem, Bden

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 2.12.0.9 ABcf , ABdg, Acdh, Bcdi, ABej,
Acek, Bcel, Adem, cden

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 3.11.0.9 ABdf , ACdg, BCdh, ABei, ACej,
BCek, Adel, Bdem, Cden

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 3.11.1.8 ABF , Acg, Adh, Aei, Bcdj, Bcek,
Bdel, cdem, ABcdn

[5, 55, 45, 96, 106, 87,
82, 16, 17, 1, 1, 0]

14 3.11.1.8 ABF , Acg, Adh, Aei, Bcdj, Bcek,
Bdel, cdem, Acden

[5, 55, 45, 96, 106, 87,
82, 16, 17, 1, 1, 0]

14 4.10.0.9 Aef , Beg, Ceh, Dei, ABCej,
ABDek, ACDel, BCDem,
ABCDen

[8, 42, 64, 85, 112, 85,
64, 42, 8, 0, 0, 1]

14 4.10.1.8 ABCF , ABdg, ACdh, BCdi, ABej,
ACek, BCel, Adem, Bden

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 4.10.1.8 ABCF , ABdg, ACdh, BCdi, ABej,
ACek, Adel, Bdem, Cden

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 5.9.1.8 ABCF , Aeg, Beh, Cei, Dej,
ABCek, ABDel, ACDem, BCDen

[5, 55, 45, 96, 106, 87,
82, 16, 17, 1, 1, 0]
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14 5.9.2.7 ABF , ACG, Adh, Aei, BCdj,
BCek, Bdel, Cdem, ABCdn

[5, 55, 45, 96, 106, 87,
82, 16, 17, 1, 1, 0]

14 5.9.2.7 ABF , ACG, Adh, Aei, BCdj,
BCek, Bdel, Cdem, ABden

[5, 55, 45, 96, 106, 87,
82, 16, 17, 1, 1, 0]

14 6.8.2.7 ABCF , ABDG, ABeh, ACei,
BCej, ADek, BDel, CDem,
ABCDen

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 6.8.3.6 ABF , ACG, BCH, Adi, Aej,
BCdk, BCel, Bdem, ACden

[8, 43, 64, 80, 112, 95,
64, 32, 8, 5, 0, 0]

14 7.7.3.6 ABCF , ABDG, ACDH, ABei,
ACej, BCek, ADel, BDem, CDen

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 7.7.4.5 ABF , ACG, BCH, ABCI, Adj,
Bdk, Cel, ABdem, ABCden

[12, 35, 64, 88, 104,
103, 64, 24, 12, 5, 0, 0]

14 8.6.4.5 ABCF , ABDG, ACDH, BCDI,
ABej, ACek, BCel, ADem, BDen

[0, 77, 0, 168, 0, 203, 0,
56, 0, 7, 0, 0]

14 9.5.5.4 ABF , ACG, ADH, BCDI,
ABCDJ , Aek, BCel, BDem,
CDen

[5, 55, 45, 96, 106, 87,
82, 16, 17, 1, 1, 0]

14 10.4.6.3 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, BDel, ABCem, ACDen

[8, 45, 64, 72, 112, 107,
64, 24, 8, 7, 0, 0]

14 11.3.7.2 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, CDem, ABCen

[12, 41, 64, 72, 104,
115, 64, 24, 12, 3, 0, 0]

14 12.2.8.1 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, ABCDM , CDen

[16, 45, 64, 72, 96, 107,
64, 24, 16, 7, 0, 0]

15 1.14.0.10 Abcf , Abdg, Acdh, bcdi, Abej, Acek,
bcel, Adem, bden, cdeo

[0, 105, 0, 280, 0, 435,
0, 168, 0, 35, 0, 0, 0]

15 2.13.0.10 ABcf , ABdg, Acdh, Bcdi, ABej,
Acek, Bcel, Adem, Bden, cdeo

[0, 105, 0, 280, 0, 435,
0, 168, 0, 35, 0, 0, 0]

15 3.12.0.10 ABdf , ACdg, BCdh, ABei, ACej,
BCek, Adel, Bdem, Cden, ABCdeo

[0, 105, 0, 280, 0, 435,
0, 168, 0, 35, 0, 0, 0]

15 3.12.1.9 ABF , Acg, Adh, Aei, Bcdj, Bcek,
Bdel, cdem, ABcdn, ABceo

[6, 77, 62, 168, 188,
203, 188, 56, 62, 7, 6,
0, 0]

15 4.11.0.10 Aef , Beg, Ceh, ADei, BDej,
CDek, ABCel, ABDem, ACDen,
BCDeo

[12, 49, 108, 144, 176,
219, 176, 80, 36, 19, 4,
0, 0]

15 4.11.1.9 ABCF , ABdg, ACdh, BCdi, ABej,
ACek, BCel, Adem, Bden, Cdeo

[0, 105, 0, 280, 0, 435,
0, 168, 0, 35, 0, 0, 0]

15 5.10.1.9 ABCF , Aeg, Beh, Cei, Dej, ADek,
ABCel, ABDem, ACDen, BCDeo

[10, 60, 90, 141, 212,
193, 164, 98, 34, 18, 2,
1, 0]
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15 5.10.2.8 ABF , ACG, Adh, Aei, BCdj,
BCek, Bdel, Cdem, ABCdn,
ABCeo

[6, 77, 62, 168, 188,
203, 188, 56, 62, 7, 6,
0, 0]

15 5.10.2.8 ABF , ACG, Adh, Aei, BCdj,
BCek, Bdel, Cdem, ABCdn,
ABdeo

[6, 77, 62, 168, 188,
203, 188, 56, 62, 7, 6,
0, 0]

15 6.9.2.8 ABCF , ABDG, Aeh, Bei, Cej,
Dek, ABCel, ABDem, ACDen,
BCDeo

[6, 77, 62, 168, 188,
203, 188, 56, 62, 7, 6,
0, 0]

15 6.9.3.7 ABF , ACG, BCH, Adi, Aej,
BCdk, BCel, Bdem, Cden, ABdeo

[10, 60, 90, 141, 212,
193, 164, 98, 34, 18, 2,
1, 0]

15 7.8.3.7 ABCF , ABDG, ACDH, ABei,
ACej, BCek, ADel, BDem, CDen,
ABCDeo

[0, 105, 0, 280, 0, 435,
0, 168, 0, 35, 0, 0, 0]

15 7.8.4.6 ABF , ACG, BCH, ABCI, Adj,
Bdk, Ael, Bem, Cden, ACdeo

[14, 51, 92, 144, 212,
207, 144, 96, 46, 13, 4,
0, 0]

15 8.7.4.6 ABCF , ABDG, ACDH, BCDI,
ABej, ACek, BCel, ADem, BDen,
CDeo

[0, 105, 0, 280, 0, 435,
0, 168, 0, 35, 0, 0, 0]

15 9.6.5.5 ABF , ACG, ADH, BCDI,
ABCDJ , Aek, BCel, BDem,
CDen, ABCeo

[6, 77, 62, 168, 188,
203, 188, 56, 62, 7, 6,
0, 0]

15 10.5.6.4 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, Ael, BCem, BDen,
ACDeo

[10, 61, 90, 136, 212,
203, 164, 88, 34, 23, 2,
0, 0]

15 11.4.7.3 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, CDem, ABCen,
ABDeo

[12, 57, 100, 120, 200,
243, 152, 72, 44, 19, 4,
0, 0]

15 12.3.8.2 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, ABCDM , CDen,
ABCeo

[16, 57, 96, 120, 192,
243, 160, 72, 48, 19, 0,
0, 0]

15 13.2.9.1 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDeo

[22, 61, 94, 136, 188,
203, 156, 88, 46, 23, 6,
0, 0]

16 1.15.0.11 Abcf , Abdg, Acdh, bcdi, Abej, Acek,
bcel, Adem, bden, cdeo, Abcdep

[0, 140, 0, 448, 0, 870,
0, 448, 0, 140, 0, 0, 0,
1]

16 2.14.0.11 ABcf , ABdg, Acdh, Bcdi, ABej,
Acek, Bcel, Adem, Bden, cdeo,
ABcdep

[0, 140, 0, 448, 0, 870,
0, 448, 0, 140, 0, 0, 0,
1]
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16 3.13.0.11 Adf , Bdg, Cdh, dei, ABej, ACek,
BCel, ABCdm, ABden, ACdeo,
BCdep

[7, 105, 84, 280, 315,
435, 400, 168, 189, 35,
28, 0, 1, 0]

16 3.13.1.10 ABF , Acg, Adh, Aei, Bcdj, Bcek,
Bdel, cdem, ABcdn, ABceo, ABdep

[7, 105, 84, 280, 315,
435, 400, 168, 189, 35,
28, 0, 1, 0]

16 4.12.0.11 Aef , Beg, Ceh, Dei, ABej, ACek,
BCel, ABDem, ACDen, BCDeo,
ABCDep

[16, 65, 148, 236, 336,
419, 376, 240, 128, 59,
20, 4, 0, 0]

16 4.12.0.11 Aef , Beg, Ceh, ABei, ADej,
BDek, CDel, ABCem, ACDen,
BCDeo, ABCDep

[16, 65, 148, 236, 336,
419, 376, 240, 128, 59,
20, 4, 0, 0]

16 4.12.1.10 ABCF , ABdg, ACdh, BCdi, ABej,
ACek, BCel, Adem, Bden, Cdeo,
ABCdep

[0, 140, 0, 448, 0, 870,
0, 448, 0, 140, 0, 0, 0,
1]

16 5.11.1.10 ABCDF , Aeg, Beh, Cei, ADej,
BDek, CDel, ABCem, ABDen,
ACDeo, BCDep

[15, 65, 156, 232, 315,
435, 400, 216, 117, 75,
20, 0, 1, 0]

16 5.11.2.9 ABF , ACG, Adh, Aei, BCdj,
BCek, Bdel, Cdem, ABCdn,
ABCeo, ABdep

[7, 105, 84, 280, 315,
435, 400, 168, 189, 35,
28, 0, 1, 0]

16 6.10.2.9 ABCF , ABDG, Aeh, Bei, Cej,
Dek, ACel, ABCem, ABDen,
ACDeo, BCDep

[12, 83, 124, 230, 376,
391, 376, 244, 124, 69,
12, 6, 0, 0]

16 6.10.3.8 ABF , ACG, BCH, Adi, Aej,
BCdk, BCel, Bdem, Cden, ABCdo,
ABdep

[12, 83, 124, 230, 376,
391, 376, 244, 124, 69,
12, 6, 0, 0]

16 7.9.3.8 ABCF , ABDG, ACDH, Aei,
Bej, Cek, Del, ABCem, ABDen,
ACDeo, BCDep

[7, 105, 84, 280, 315,
435, 400, 168, 189, 35,
28, 0, 1, 0]

16 7.9.4.7 ABF , ACG, BCH, ABCI, Adj,
Bdk, Ael, Bem, Cden, ACdeo,
BCdep

[16, 70, 135, 231, 373,
405, 342, 262, 138, 52,
19, 3, 1, 0]

16 8.8.4.7 ABCF , ABDG, ACDH, BCDI,
ABej, ACek, BCel, ADem, BDen,
CDeo, ABCDep

[0, 140, 0, 448, 0, 870,
0, 448, 0, 140, 0, 0, 0,
1]

16 9.7.5.6 ABF , ACG, ADH, BCDI,
ABCDJ , Aek, BCel, BDem,
CDen, ABCeo, ABDep

[7, 105, 84, 280, 315,
435, 400, 168, 189, 35,
28, 0, 1, 0]

16 10.6.6.5 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, Ael, BCem, BDen,
CDeo, ABDep

[12, 83, 124, 230, 376,
391, 376, 244, 124, 69,
12, 6, 0, 0]
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16 11.5.7.4 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, Cem, Den, ABeo,
ABCDep

[15, 73, 140, 216, 363,
435, 352, 232, 133, 67,
20, 0, 1, 0]

16 12.4.8.3 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, ABCDM , CDen,
ABCeo, ABDep

[16, 76, 144, 192, 352,
486, 352, 192, 144, 76,
16, 0, 0, 1]

16 13.3.9.2 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
Aeo, BCDep

[23, 73, 132, 216, 347,
435, 368, 232, 141, 67,
12, 0, 1, 0]

16 14.2.10.1 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, ABCDep

[28, 84, 140, 224, 344,
406, 344, 224, 140, 84,
28, 0, 0, 1]

17 1.16.0.12 Abf , Acg, Adh, Aei, bcdj, bcek, bdel,
cdem, Abcdn, Abceo, Abdep, Acdeq

[8, 140, 112, 448, 504,
870, 800, 448, 504, 140,
112, 0, 8, 1, 0]

17 1.16.0.12 Abf , bcg, bdh, bei, Acdj, Acek, Adel,
cdem, Abcdn, Abceo, Abdep, bcdeq

[8, 140, 112, 448, 504,
870, 800, 448, 504, 140,
112, 0, 8, 1, 0]

17 2.15.0.12 Acf , Bcg, cdh, cei, ABdj, ABek,
Adel, Bdem, ABcdn, ABceo, Acdep,
Bcdeq

[8, 140, 112, 448, 504,
870, 800, 448, 504, 140,
112, 0, 8, 1, 0]

17 3.14.0.12 Adf , Bdg, Cdh, Aei, Bej, Cek,
Adel, Bdem, Cden, ABCdo,
ABCep, ABCdeq

[14, 112, 168, 364, 630,
750, 800, 568, 378, 224,
56, 28, 2, 1, 0]

17 3.14.0.12 Adf , Bdg, Cdh, dei, ABdj, ABek,
ACel, BCem, ABCdn, ABdeo,
ACdep, BCdeq

[14, 112, 168, 364, 630,
750, 800, 568, 378, 224,
56, 28, 2, 1, 0]

17 3.14.1.11 ABF , Acg, Adh, Aei, Bcdj,
Bcek, Bdel, cdem, ABcdn, ABceo,
ABdep, Acdeq

[8, 140, 112, 448, 504,
870, 800, 448, 504, 140,
112, 0, 8, 1, 0]

17 4.13.0.12 Aef , Beg, Ceh, Dei, ABej, ACek,
BCel, ADem, BDen, ACDeo,
BCDep, ABCDeq

[20, 86, 202, 366, 594,
778, 772, 604, 376, 190,
82, 22, 2, 1, 0]

17 4.13.1.11 ABCF , Adg, Bdh, Cdi, dej, ABek,
ACel, BCem, ABCdn, ABdeo,
ACdep, BCdeq

[8, 140, 112, 448, 504,
870, 800, 448, 504, 140,
112, 0, 8, 1, 0]

17 5.12.1.11 ABCF , Aeg, Beh, Cei, ABej,
ADek, BDel, CDem, ABCen,
ACDeo, BCDep, ABCDeq

[20, 84, 208, 368, 572,
790, 800, 576, 364, 212,
80, 16, 4, 1, 0]

17 5.12.1.11 ABCDF , Aeg, Beh, Cei, Dej,
ABek, ACel, BCem, ADen, BDeo,
CDep, ABCDeq

[20, 84, 208, 368, 572,
790, 800, 576, 364, 212,
80, 16, 4, 1, 0]
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17 5.12.2.10 ABF , ACG, Adh, Aei, BCdj,
BCek, Bdel, Cdem, ABCdn,
ABCeo, ABdep, ACdeq

[8, 140, 112, 448, 504,
870, 800, 448, 504, 140,
112, 0, 8, 1, 0]

17 6.11.2.10 ABCF , ABDG, Aeh, Bei, Cej,
Dek, ACel, ADem, ABCen,
ABDeo, ACDep, BCDeq

[18, 95, 192, 354, 626,
767, 752, 620, 374, 193,
80, 18, 6, 0, 0]

17 6.11.3.9 ABF , ACG, BCH, Adi, Aej,
BCdk, BCel, Bdem, Cden, ABCdo,
ABCep, ABdeq

[14, 112, 168, 364, 630,
750, 800, 568, 378, 224,
56, 28, 2, 1, 0]

17 7.10.3.9 ABCF , ABDG, ACDH, Aei, Bej,
Cek, Del, ABem, ABCen, ABDeo,
ACDep, BCDeq

[14, 112, 168, 364, 630,
750, 800, 568, 378, 224,
56, 28, 2, 1, 0]

17 7.10.4.8 ABF , ACG, BCH, ABCI, Adj,
Bdk, Ael, Bem, ABdn, Cdeo,
ACdep, BCdeq

[19, 95, 186, 354, 641,
767, 732, 620, 389, 193,
74, 18, 7, 0, 0]

17 8.9.4.8 ABCF , ABDG, ACDH, BCDI,
Aej, Bek, Cel, Dem, ABCen,
ABDeo, ACDep, BCDeq

[8, 140, 112, 448, 504,
870, 800, 448, 504, 140,
112, 0, 8, 1, 0]

17 9.8.5.7 ABF , ACG, ADH, BCDI,
ABCDJ , Aek, BCel, BDem,
CDen, ABCeo, ABDep, ACDeq

[8, 140, 112, 448, 504,
870, 800, 448, 504, 140,
112, 0, 8, 1, 0]

17 10.7.6.6 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, Ael, BCem, BDen,
CDeo, ABCep, ABDeq

[14, 112, 168, 364, 630,
750, 800, 568, 378, 224,
56, 28, 2, 1, 0]

17 11.6.7.5 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, Cem, Den,
ABCeo, ABDep, ABCDeq

[18, 95, 193, 354, 620,
767, 767, 620, 354, 193,
95, 18, 0, 0, 1]

17 12.5.8.4 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, ABCDM , Aen,
BCeo, BDep, ACDeq

[20, 92, 200, 336, 604,
838, 752, 544, 396, 220,
72, 16, 4, 1, 0]

17 13.4.9.3 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
Aeo, BCDep, ABCDeq

[24, 92, 192, 336, 600,
838, 768, 544, 392, 220,
64, 16, 8, 1, 0]

17 14.3.10.2 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, Aep, BCDeq

[30, 96, 184, 348, 598,
782, 768, 600, 394, 208,
72, 12, 2, 1, 0]

17 15.2.11.1 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, ABCDP , Aeq

[36, 112, 196, 364, 624,
750, 680, 568, 420, 224,
84, 28, 8, 1, 0]
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18 1.17.0.13 Abf , Acg, bch, Adi, Aej, bcdk, bcel,
bdem, cden, Abcdo, Abcep, Abdeq,
Acder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 1.17.0.13 Abf , Acg, bch, bdi, bej, Acdk, Acel,
Adem, cden, Abcdo, Abcep, Abdeq,
bcder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 2.16.0.13 Acf , Bcg, Adh, Bdi, Aej, Bek,
ABcl, ABdm, ABen, cdeo, Acdep,
Bcdeq, ABcder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 2.16.0.13 Acf , Bcg, Adh, Bdi, cej, dek, Acdl,
Bcdm, ABen, cdeo, ABcep, ABdeq,
ABcder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 2.16.0.13 Acf , Bcg, cdh, cei, ABcj, ABdk,
ABel, Adem, Bden, ABcdo, ABcep,
Acdeq, Bcder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 3.15.0.13 Adf , Bdg, Cdh, Aei, Bej, Cek,
ABdl, ACdm, BCdn, ABeo, ACep,
BCeq, ABCdr

[21, 126, 259, 532,
1029, 1380, 1515, 1368,
967, 602, 273, 84, 31, 3,
1, 0]

18 3.15.0.13 Adf , Bdg, Cdh, Aei, Bej, Cek,
ABdl, Adem, Bden, Cdeo, ABCdp,
ABCeq, ABCder

[21, 126, 259, 532,
1029, 1380, 1515, 1368,
967, 602, 273, 84, 31, 3,
1, 0]

18 3.15.0.13 Adf , Bdg, Cdh, Aei, Bej, Cek,
Adel, Bdem, Cden, ABCdo,
ABCep, ABdeq, ABCder

[21, 126, 259, 532,
1029, 1380, 1515, 1368,
967, 602, 273, 84, 31, 3,
1, 0]

18 3.15.0.13 Adf , Bdg, Cdh, dei, ABdj, ACdk,
ABel, ACem, BCen, ABCdo,
ABdep, ACdeq, BCder

[21, 126, 259, 532,
1029, 1380, 1515, 1368,
967, 602, 273, 84, 31, 3,
1, 0]

18 3.15.1.12 ABF , Acg, Bch, Adi, Aej, Bcdk,
Bcel, Bdem, cden, ABcdo, ABcep,
ABdeq, Acder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]
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18 4.14.0.13 Aef , Beg, Ceh, Dei, ABej, ACek,
BDel, CDem, ABCen, ABDeo,
ACDep, BCDeq, ABCDer

[24, 113, 272, 547,
1000, 1387, 1504, 1387,
1000, 547, 272, 113, 24,
0, 0, 1]

18 4.14.1.12 ABCF , Adg, Bdh, Cdi, Aej, Bek,
Cel, Adem, Bden, Cdeo, ABCdp,
ABCeq, ABCder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 4.14.1.12 ABCF , Adg, Bdh, Cdi, dej, ABdk,
ABel, ACem, BCen, ABCdo,
ABdep, ACdeq, BCder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 5.13.1.12 ABCF , Aeg, Beh, Cei, Dej, ABek,
ACel, BCem, ADen, ABDeo,
ACDep, BCDeq, ABCDer

[25, 108, 279, 556, 965,
1402, 1555, 1336, 971,
596, 277, 92, 23, 5, 1,
0]

18 5.13.1.12 ABCDF , Aeg, Beh, Cei, Dej,
ABek, ACel, BCem, ADen, BDeo,
CDep, ABCeq, ABCDer

[25, 108, 279, 556, 965,
1402, 1555, 1336, 971,
596, 277, 92, 23, 5, 1,
0]

18 5.13.2.11 ABF , ACG, Adh, Bdi, Aej,
BCdk, BCel, Bdem, Cden, ABCdo,
ABCep, ABdeq, ACder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 6.12.2.11 ABCF , ABDG, Aeh, Bei, Cej,
ABek, ADel, BDem, CDen,
ABCeo, ACDep, BCDeq, ABCDer

[24, 108, 288, 552, 936,
1422, 1600, 1296, 936,
636, 288, 72, 24, 9, 0,
0]

18 6.12.3.10 ABF , ACG, BCH, Adi, Aej,
BCdk, BCel, Bdem, Cden, ABCdo,
ABCep, ABdeq, ACder

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 7.11.3.10 ABCF , ABDG, ACDH, Aei, Bej,
Cek, Del, ABem, ACen, ABCeo,
ABDep, ACDeq, BCDer

[21, 126, 259, 532,
1029, 1380, 1515, 1368,
967, 602, 273, 84, 31, 3,
1, 0]

18 7.11.4.9 ABF , ACG, BCH, ABCI, Adj,
Bdk, Ael, Bem, ABdn, ABeo,
Cdep, ACdeq, BCder

[22, 126, 252, 532,
1050, 1380, 1480, 1368,
1002, 602, 252, 84, 38,
3, 0, 0]
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18 8.10.4.9 ABCF , ABDG, ACDH, BCDI,
Aej, Bek, Cel, Dem, ABen,
ABCeo, ABDep, ACDeq, BCDer

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 9.9.5.8 ABF , ACG, ADH, BCDI,
ABCDJ , Aek, Bel, BCem, BDen,
CDeo, ABCep, ABDeq, ACDer

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 10.8.6.7 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, Ael, BCem, BDen,
CDeo, ABCep, ABDeq, ACDer

[16, 148, 224, 560,
1008, 1374, 1600, 1248,
1008, 644, 224, 112, 16,
9, 0, 0]

18 11.7.7.6 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, Cem, Den, ABeo,
CDep, ABCeq, ABDer

[21, 126, 259, 532,
1029, 1380, 1515, 1368,
967, 602, 273, 84, 31, 3,
1, 0]

18 12.6.8.5 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, ABCDM , Aen,
BCeo, BDep, CDeq, ACDer

[24, 116, 272, 528,
1000, 1438, 1504, 1312,
1000, 612, 272, 80, 24,
9, 0, 0]

18 13.5.9.4 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
Aeo, Bep, BCDeq, ABCDer

[28, 112, 264, 536, 996,
1442, 1520, 1296, 996,
616, 264, 88, 28, 5, 0,
0]

18 14.4.10.3 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, Aep, BCDeq, ABCDer

[32, 116, 256, 528, 992,
1438, 1536, 1312, 992,
612, 256, 80, 32, 9, 0,
0]

18 15.3.11.2 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, ABCDP , Aeq, Ber

[38, 126, 252, 532,
1002, 1380, 1480, 1368,
1050, 602, 252, 84, 22,
3, 0, 0]

19 1.18.0.14 Abf , Acg, bch, Adi, bdj, Aek, bcdl,
bcem, bden, cdeo, Abcdp, Abceq,
Abder, Acdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 1.18.0.14 Abf , Acg, bch, Adi, bdj, bek, Acdl,
Acem, Aden, cdeo, Abcdp, Abceq,
Abder, bcdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]
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19 2.17.0.14 Acf , Bcg, Adh, Bdi, cdj, Aek, Bel,
ABcm, ABdn, ABeo, cdep, Acdeq,
Bcder, ABcdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 2.17.0.14 Acf , Bcg, Adh, Bdi, cdj, cek, ABdl,
ABem, Aden, Bdeo, ABcdp, ABceq,
Acder, Bcdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 2.17.0.14 Acf , Bcg, Adh, Bdi, Aej, Bek,
Acdl, Bcdm, Acen, Bceo, Adep,
Bdeq, Acder, Bcdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 2.17.0.14 Acf , Bcg, Adh, Bdi, cej, dek, Acdl,
Bcdm, ABen, cdeo, ABcdp, ABceq,
ABder, ABcdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 3.16.0.14 Adf , Bdg, Cdh, Aei, Bej, Cek,
ABdl, ACdm, BCdn, ABeo, ACep,
BCeq, ABCdr, ABCes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 3.16.1.13 ABF , Acg, Bch, Adi, Bdj, Aek,
Bcdl, Bcem, Bden, cdeo, ABcdp,
ABceq, ABder, Acdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 4.15.0.14 Aef , Beg, Ceh, Dei, ABej,
ACek, BCel, ADem, BDen, CDeo,
ABCep, ABDeq, ACDer, BCDes

[28, 147, 364, 791,
1596, 2409, 2860, 2883,
2356, 1569, 868, 357,
116, 34, 4, 1, 0]

19 4.15.1.13 ABCF , Adg, Bdh, Cdi, Aej, Bek,
Cel, ABdm, Aden, Bdeo, Cdep,
ABCdq, ABCer, ABCdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 4.15.1.13 ABCF , Adg, Bdh, Cdi, Aej, Bek,
Cel, Adem, Bden, Cdeo, ABCdp,
ABCeq, ABder, ABCdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 4.15.1.13 ABCF , Adg, Bdh, Cdi, dej,
ABdk, ACdl, ABem, ACen, BCeo,
ABCdp, ABdeq, ACder, BCdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]
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19 5.14.1.13 ABCF , Aeg, Beh, Cei, Dej,
ABek, ACel, BCem, ADen, BDeo,
ABDep, ACDeq, BCDer, ABCDes

[30, 138, 372, 812,
1554, 2408, 2912, 2856,
2338, 1582, 868, 364,
110, 31, 8, 0, 0]

19 5.14.1.13 ABCDF , Aeg, Beh, Cei, Dej,
ABek, ACel, BCem, ADen, BDeo,
CDep, ABCeq, ABDer, ABCDes

[30, 138, 372, 812,
1554, 2408, 2912, 2856,
2338, 1582, 868, 364,
110, 31, 8, 0, 0]

19 5.14.2.12 ABF , ACG, Adh, Bdi, Cdj, Aek,
BCdl, BCem, Bden, Cdeo, ABCdp,
ABCeq, ABder, ACdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 5.14.2.12 ABF , ACG, Adh, Bdi, Aej, Bek,
BCdl, BCem, Bden, Cdeo, ABCdp,
ABCeq, ABder, ACdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 6.13.2.12 ABCF , ABDG, Aeh, Bei, Cej,
Dek, ABel, ACem, BCen, CDeo,
ABDep, ACDeq, BCDer, ABCDes

[30, 136, 378, 816,
1526, 2418, 2962, 2816,
2298, 1632, 878, 336,
114, 37, 6, 0, 0]

19 6.13.3.11 ABF , ACG, BCH, Adi, Bdj, Aek,
BCdl, BCem, Bden, Cdeo, ABCdp,
ABCeq, ABder, ACdes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 7.12.3.11 ABCF , ABDG, ACDH, Aei, Bej,
Cek, Del, ABem, ACen, BCeo,
ADep, BDeq, CDer, ABCDes

[28, 147, 364, 791,
1596, 2409, 2860, 2883,
2356, 1569, 868, 357,
116, 34, 4, 1, 0]

19 7.12.4.10 ABF , ACG, BCH, ABCI, Adj,
Bdk, Ael, Bem, ABdn, ABeo,
Cdep, ACdeq, BCder, ABCdes

[25, 164, 336, 784,
1652, 2382, 2848, 2848,
2382, 1652, 784, 336,
164, 25, 0, 0, 1]

19 8.11.4.10 ABCF , ABDG, ACDH, BCDI,
Aej, Bek, Cel, Dem, ABen, ACeo,
ABCep, ABDeq, ACDer, BCDes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 9.10.5.9 ABF , ACG, ADH, BCDI,
ABCDJ , Aek, Bel, Cem, BCen,
BDeo, CDep, ABCeq, ABDer,
ACDes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]
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19 10.9.6.8 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, Ael, Bem, BCen, BDeo,
CDep, ABCeq, ABDer, ACDes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 11.8.7.7 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, Cem, Den, ABeo,
CDep, ABCeq, ABDer, ABCDes

[24, 164, 344, 784,
1624, 2382, 2904, 2848,
2312, 1652, 840, 336,
136, 25, 8, 0, 0]

19 12.7.8.6 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, ABCDM , Aen,
BCeo, BDep, CDeq, ABCer,
ABDes

[28, 148, 364, 784,
1596, 2430, 2860, 2848,
2356, 1604, 868, 336,
116, 41, 4, 0, 0]

19 13.6.9.5 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
Aeo, Bep, CDeq, BCDer, ABCDes

[32, 140, 360, 800,
1584, 2438, 2872, 2816,
2368, 1612, 856, 352,
112, 33, 8, 0, 0]

19 14.5.10.4 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, Aep, Beq, ACDer, BCDes

[36, 140, 348, 800,
1588, 2438, 2892, 2816,
2348, 1612, 852, 352,
124, 33, 4, 0, 0]

19 15.4.11.3 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, ABCDP , Aeq, Ber, Ces

[41, 147, 337, 791,
1597, 2409, 2869, 2883,
2395, 1569, 819, 357,
127, 34, 7, 1, 0]

20 1.19.0.15 Abf , Acg, bch, Adi, bdj, Aek, bel,
Acdm, bcdn, Aceo, bcep, Adeq, bder,
Acdes, bcdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 1.19.0.15 Abf , Acg, bch, Adi, bdj, Aek,
bel, bcdm, bcen, bdeo, cdep, Abcdq,
Abcer, Abdes, Acdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 2.18.0.15 Acf , Bcg, Adh, Bdi, cdj, Aek, Bel,
cem, ABcn, ABdo, ABep, cdeq,
Acder, Bcdes, ABcdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 2.18.0.15 Acf , Bcg, Adh, Bdi, cdj, Aek,
Bel, cem, ABcn, Adeo, Bdep, cdeq,
ABcdr, ABces, ABcdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]



136

Table 14 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

20 2.18.0.15 Acf , Bcg, Adh, Bdi, Aej, Bek,
Acdl, Bcdm, Acen, Bceo, Adep,
Bdeq, ABcdr, Acdes, Bcdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 2.18.0.15 Acf , Bcg, Adh, Bdi, Aej, Bek,
Acdl, Bcdm, Acen, Bceo, Adep,
Bdeq, Acder, Bcdes, ABcdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 3.17.0.15 Adf , Bdg, Cdh, Aei, Bej, Cek, del,
ABdm, ACdn, BCdo, ABep, ACeq,
BCer, ABCds, ABCet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 3.17.1.14 ABF , Acg, Bch, Adi, Bdj, Aek,
Bel, Acdm, Bcdn, Aceo, Bcep,
Adeq, Bder, Acdes, Bcdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 4.16.0.15 Aef , Beg, Ceh, Dei, ABej,
ACek, BCel, ADem, BDen, CDeo,
ABCep, ABDeq, ACDer, BCDes,
ABCDet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 4.16.1.14 ABCF , Adg, Bdh, Cdi, Aej, Bek,
Cel, dem, ABdn, ACdo, BCdp,
ABCeq, ABder, ACdes, BCdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 4.16.1.14 ABCF , Adg, Bdh, Cdi, Aej, Bek,
Cel, ABdm, ACen, Adeo, Bdep,
Cdeq, ABCdr, ABCes, ABCdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 4.16.1.14 ABCF , Adg, Bdh, Cdi, Aej, Bek,
Cel, ABdm, Aden, Bdeo, Cdep,
ABCdq, ABCer, ACdes, ABCdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 5.15.1.14 ABCDF , Aeg, Beh, Cei, Dej,
ABek, ACel, BCem, ADen, BDeo,
CDep, ABCeq, ABDer, ACDes,
BCDet

[35, 175, 491, 1155,
2415, 4005, 5255, 5743,
5225, 3925, 2465, 1225,
453, 150, 45, 5, 0, 0]

20 5.15.2.13 ABF , ACG, Adh, Bdi, Cdj, Aek,
Bel, BCdm, BCen, Bdeo, Cdep,
ABCdq, ABCer, ABdes, ACdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]
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n1 + n2 n1.n2.k1.k2 defining words word length pattern

20 5.15.2.13 ABF , ACG, Adh, Bdi, Aej, Bek,
BCdl, BCem, Bden, Cdeo, ABCdp,
ABCeq, ABder, ACdes, BCdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 6.14.2.13 ABCF , ABDG, Aeh, Bei, Cej,
Dek, ABel, ACem, BCen, ADeo,
CDep, ABDeq, ACDer, BCDes,
ABCDet

[36, 170, 496, 1170,
2380, 4004, 5320, 5698,
5180, 3990, 2464, 1190,
468, 155, 40, 6, 0, 0]

20 6.14.3.12 ABF , ACG, BCH, Adi, Bdj, Aek,
Bel, ACdm, BCdn, ACeo, BCep,
Adeq, Bder, ACdes, BCdet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 7.13.3.12 ABCF , ABDG, ACDH, Aei, Bej,
Cek, Del, ABem, ACen, BCeo,
ADep, BDeq, CDer, ABCes,
ABCDet

[35, 176, 490, 1148,
2422, 4026, 5234, 5708,
5260, 3960, 2430, 1204,
474, 157, 38, 4, 1, 0]

20 7.13.4.11 ABF , ACG, BCH, ABCI, Adj,
Bdk, Cdl, Aem, Ben, ABdo, ABep,
Cdeq, ACder, BCdes, ABCdet

[33, 188, 472, 1128,
2492, 4006, 5160, 5752,
5286, 3964, 2408, 1176,
508, 161, 24, 8, 1, 0]

20 8.12.4.11 ABCF , ABDG, ACDH, BCDI,
Aej, Bek, Cel, Dem, ABen,
ACeo, BCep, ADeq, BDer, CDes,
ABCDet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 9.11.5.10 ABF , ACG, ADH, BCDI,
ABCDJ , Aek, Bel, Cem, Den,
BCeo, BDep, CDeq, ABCer,
ABDes, ACDet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 10.10.6.9 ABF , ACG, BCH, ADI, BCDJ ,
ABCDK, Ael, Bem, Den, BCeo,
BDep, CDeq, ABCer, ABDes,
ACDet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 11.9.7.8 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, Aem, Ben, ACeo,
BCep, ADeq, BDer, ACDes,
BCDet

[32, 188, 480, 1128,
2464, 4006, 5216, 5752,
5216, 3964, 2464, 1176,
480, 161, 32, 8, 0, 0]

20 12.8.8.7 ABF , ACG, BCH, ADI, BDJ ,
ACDK, BCDL, ABCDM , Aen,
BCeo, BDep, CDeq, ABCer,
ABDes, ACDet

[32, 189, 480, 1120,
2464, 4034, 5216, 5696,
5216, 4034, 2464, 1120,
480, 189, 32, 0, 0, 1]
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n1 + n2 n1.n2.k1.k2 defining words word length pattern

20 13.7.9.6 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
Aeo, Bep, ABeq, CDer, ACDes,
BCDet

[37, 176, 476, 1148,
2464, 4026, 5164, 5708,
5330, 3960, 2388, 1204,
488, 157, 36, 4, 1, 0]

20 14.6.10.5 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, Aep, Beq, ACDer, BCDes,
ABCDet

[40, 173, 472, 1152,
2440, 4050, 5240, 5632,
5240, 4050, 2440, 1152,
472, 173, 40, 0, 0, 1]

20 15.5.11.4 ABF , ACG, BCH, ADI, BDJ ,
CDK, ABCL, ABDM , ACDN ,
BCDO, ABCDP , Aeq, Ber, Ces,
Det

[45, 175, 453, 1155,
2465, 4005, 5225, 5743,
5255, 3925, 2415, 1225,
491, 150, 35, 5, 0, 0]
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Table 15. 64-run minimum aberration 2-level regular fractional factorial split-plot

designs with resolution ≥ 3

n1 + n2 n1.n2.k1.k2 defining words word length pattern

7 1.6.0.1 Abcdefg [0, 0, 0, 0, 1]
7 2.5.0.1 ABcdefg [0, 0, 0, 0, 1]
7 3.4.0.1 ABCdefg [0, 0, 0, 0, 1]
7 4.3.0.1 ABCDefg [0, 0, 0, 0, 1]
7 5.2.0.1 ABCDEfg [0, 0, 0, 0, 1]
8 1.7.0.2 Abcdg, Abefh [0, 0, 2, 1, 0, 0]
8 1.7.0.2 Abcdg, bcefh [0, 0, 2, 1, 0, 0]
8 2.6.0.2 ABcdg, ABefh [0, 0, 2, 1, 0, 0]
8 2.6.0.2 ABcdg, Acefh [0, 0, 2, 1, 0, 0]
8 2.6.0.2 ABcdg, cdefh [0, 0, 2, 1, 0, 0]
8 2.6.0.2 Acdeg, Bcdfh [0, 0, 2, 1, 0, 0]
8 3.5.0.2 ABCdg, ABefh [0, 0, 2, 1, 0, 0]
8 3.5.0.2 ABCdg, Adefh [0, 0, 2, 1, 0, 0]
8 3.5.0.2 ABCdg, ABCefh [0, 0, 2, 1, 0, 0]
8 3.5.0.2 ABdeg, ACdfh [0, 0, 2, 1, 0, 0]
8 3.5.0.2 ABdeg, Cdefh [0, 0, 2, 1, 0, 0]
8 3.5.1.1 ABG, Acdefh [1, 0, 0, 1, 1, 0]
8 4.4.0.2 ABCeg, ABDfh [0, 0, 2, 1, 0, 0]
8 4.4.0.2 ABCeg, ADefh [0, 0, 2, 1, 0, 0]
8 4.4.0.2 ABCeg, ABCDfh [0, 0, 2, 1, 0, 0]
8 4.4.0.2 ABefg, CDefh [0, 0, 2, 1, 0, 0]
8 4.4.1.1 ABCG, ABdefh [0, 1, 0, 2, 0, 0]
8 5.3.0.2 ABCfg, ADEfh [0, 0, 2, 1, 0, 0]
8 5.3.1.1 ABCDG, ABefh [0, 0, 2, 1, 0, 0]
8 6.2.1.1 ABCDG, ABEfh [0, 0, 2, 1, 0, 0]
8 6.2.1.1 ABCDEG, ABCfh [0, 0, 2, 1, 0, 0]
9 1.8.0.3 Abcg, Abdeh, Acdfi [0, 1, 4, 2, 0, 0, 0]
9 1.8.0.3 bcdg, Abceh, Abdfi [0, 1, 4, 2, 0, 0, 0]
9 1.8.0.3 bcdg, Abceh, bdefi [0, 1, 4, 2, 0, 0, 0]
9 2.7.0.3 ABcg, ABdeh, Acdfi [0, 1, 4, 2, 0, 0, 0]
9 2.7.0.3 ABcg, Acdeh, Bcdfi [0, 1, 4, 2, 0, 0, 0]
9 2.7.0.3 Acdg, ABceh, ABdfi [0, 1, 4, 2, 0, 0, 0]
9 2.7.0.3 Acdg, ABceh, Adefi [0, 1, 4, 2, 0, 0, 0]
9 2.7.0.3 cdeg, ABcdh, Acefi [0, 1, 4, 2, 0, 0, 0]
9 2.7.0.3 cdeg, ABcdh, ABcefi [0, 1, 4, 2, 0, 0, 0]
9 2.7.0.3 cdeg, Acdfh, Bcefi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 ABdg, ABCeh, ACdfi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 ABdg, ABCeh, Adefi [0, 1, 4, 2, 0, 0, 0]
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n1 + n2 n1.n2.k1.k2 defining words word length pattern

9 3.6.0.3 ABdg, ACdeh, BCdfi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 ABdg, ACdeh, ABefi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 ABdg, ACdeh, Bdefi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 Adeg, ABCdh, ABefi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 Adeg, ABCdh, ABCefi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 Adeg, ABdfh, ACefi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 defg, ABdeh, ACdfi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 defg, ABdeh, ABCdfi [0, 1, 4, 2, 0, 0, 0]
9 3.6.0.3 ABCdg, ABCeh, Adefi [0, 1, 4, 2, 0, 0, 0]
9 3.6.1.2 ABG, Acdeh, Bcdfi [1, 0, 3, 3, 0, 0, 0]
9 4.5.0.3 ABeg, ACDeh, ABCfi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 ABeg, ACDeh, BCefi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 ABeg, ACDeh, ABCDfi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 ABeg, ACDeh, BCDefi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 ABeg, ABCfh, ADefi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 ABeg, ACefh, BDefi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 Aefg, ABCeh, ABDfi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 Aefg, ABCeh, ABCDfi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 ABCeg, ABCfh, ADefi [0, 1, 4, 2, 0, 0, 0]
9 4.5.0.3 ABefg, CDefh, ABCDei [0, 1, 4, 2, 0, 0, 0]
9 4.5.1.2 ABCG, ABdeh, ACdfi [0, 1, 4, 2, 0, 0, 0]
9 5.4.0.3 ABfg, ACDfh, BCEfi [0, 1, 4, 2, 0, 0, 0]
9 5.4.0.3 ABfg, ACDfh, BCDEfi [0, 1, 4, 2, 0, 0, 0]
9 5.4.0.3 ABCfg, ADEfh, BCDEfi [0, 1, 4, 2, 0, 0, 0]
9 5.4.1.2 ABCG, ABDeh, ACDfi [0, 1, 4, 2, 0, 0, 0]
9 5.4.1.2 ABCG, ABDeh, ACefi [0, 1, 4, 2, 0, 0, 0]
9 5.4.1.2 ABCDG, ABeh, ACefi [0, 1, 4, 2, 0, 0, 0]
9 5.4.2.1 ABG, ACH, BCdefi [2, 1, 0, 2, 2, 0, 0]
9 6.3.1.2 ABCG, ABDfh, ACEfi [0, 1, 4, 2, 0, 0, 0]
9 6.3.1.2 ABCDG, ABfh, ACEfi [0, 1, 4, 2, 0, 0, 0]
9 6.3.1.2 ABCDEG, ABfh, ACDfi [0, 1, 4, 2, 0, 0, 0]
9 6.3.2.1 ABCG, ABDH, ACDefi [0, 3, 0, 4, 0, 0, 0]
9 7.2.2.1 ABCG, ABDEH, ACDfi [0, 1, 4, 2, 0, 0, 0]
10 1.9.0.4 Abcg, defh, Abdei, Acdfj [0, 2, 8, 4, 0, 1, 0, 0]
10 1.9.0.4 bcdg, Abceh, Abcfi, bdefj [0, 2, 8, 4, 0, 1, 0, 0]
10 2.8.0.4 ABcg, defh, ABdei, Acdfj [0, 2, 8, 4, 0, 1, 0, 0]
10 2.8.0.4 ABcg, defh, Acdei, Bcdfj [0, 2, 8, 4, 0, 1, 0, 0]
10 2.8.0.4 Acdg, Befh, ABcei, ABdfj [0, 2, 8, 4, 0, 1, 0, 0]
10 2.8.0.4 Acdg, ABceh, ABcfi, Adefj [0, 2, 8, 4, 0, 1, 0, 0]
10 2.8.0.4 cdeg, Acdfh, Bcefi, ABdefj [0, 2, 8, 4, 0, 1, 0, 0]
10 3.7.0.4 ABdg, Cefh, ABCei, ACdfj [0, 2, 8, 4, 0, 1, 0, 0]
10 3.7.0.4 ABdg, Cefh, ACdei, BCdfj [0, 2, 8, 4, 0, 1, 0, 0]
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10 3.7.0.4 ABdg, ABCeh, ABCfi, Adefj [0, 2, 8, 4, 0, 1, 0, 0]
10 3.7.0.4 ABdg, ACdeh, ACdfi, ABefj [0, 2, 8, 4, 0, 1, 0, 0]
10 3.7.0.4 ABdg, ACdeh, ACdfi, Bdefj [0, 2, 8, 4, 0, 1, 0, 0]
10 3.7.0.4 Adeg, ABCdh, ABdfi, ACefj [0, 2, 8, 4, 0, 1, 0, 0]
10 3.7.0.4 Adeg, ABdfh, ACefi, BCdefj [0, 2, 8, 4, 0, 1, 0, 0]
10 3.7.1.3 ABG, cdeh, Acdfi, Bcefj [1, 1, 6, 6, 1, 0, 0, 0]
10 4.6.0.4 ABeg, CDfh, ACDei, ABCfj [0, 2, 8, 4, 0, 1, 0, 0]
10 4.6.0.4 ABeg, CDfh, ACDei, BCefj [0, 2, 8, 4, 0, 1, 0, 0]
10 4.6.0.4 ABeg, CDfh, ACefi, BDefj [0, 2, 8, 4, 0, 1, 0, 0]
10 4.6.0.4 ABeg, ACDeh, ABCfi, ADefj [0, 2, 8, 4, 0, 1, 0, 0]
10 4.6.0.4 ABeg, ACDeh, ACefi, BDefj [0, 2, 8, 4, 0, 1, 0, 0]
10 4.6.0.4 ABeg, ABCfh, ADefi, BCDefj [0, 2, 8, 4, 0, 1, 0, 0]
10 4.6.0.4 ABeg, ACefh, BDefi, ABCDfj [0, 2, 8, 4, 0, 1, 0, 0]
10 4.6.0.4 Aefg, ABCeh, ABDfi, BCDefj [0, 2, 8, 4, 0, 1, 0, 0]
10 4.6.1.3 ABCG, defh, ABdei, ACdfj [0, 2, 8, 4, 0, 1, 0, 0]
10 5.5.0.4 ABfg, ACDfh, ACEfi, BDEfj [0, 2, 8, 4, 0, 1, 0, 0]
10 5.5.1.3 ABCG, Defh, ABDei, ACDfj [0, 2, 8, 4, 0, 1, 0, 0]
10 5.5.1.3 ABCG, ABDeh, ABDfi, ACefj [0, 2, 8, 4, 0, 1, 0, 0]
10 5.5.1.3 ABCDG, ABeh, CDfi, ACefj [0, 2, 8, 4, 0, 1, 0, 0]
10 5.5.2.2 ABG, ACH, BCdei, Adefj [2, 1, 5, 6, 0, 0, 1, 0]
10 6.4.1.3 ABCG, DEfh, ABDfi, ACEfj [0, 2, 8, 4, 0, 1, 0, 0]
10 6.4.1.3 ABCG, ABDfh, ACEfi,

BCDEfj

[0, 2, 8, 4, 0, 1, 0, 0]

10 6.4.1.3 ABCDG, ABfh, ACEfi, ADEfj [0, 2, 8, 4, 0, 1, 0, 0]
10 6.4.1.3 ABCDEG, ABfh, ACDfi, ACEfj [0, 2, 8, 4, 0, 1, 0, 0]
10 6.4.2.2 ABCG, ABDH, ACDei, ABefj [0, 3, 7, 4, 0, 0, 1, 0]
10 6.4.3.1 ABG, ACH, BCI, ABCdefj [4, 3, 0, 3, 4, 0, 0, 1]
10 7.3.2.2 ABCG, ABDEH, DEfi, ACDfj [0, 2, 8, 4, 0, 1, 0, 0]
10 7.3.3.1 ABCG, ABDH, ACDI, BCDefj [0, 7, 0, 7, 0, 0, 0, 1]
10 8.2.3.1 ABCG, ABDH, ACDEI, ABEfj [0, 3, 7, 4, 0, 0, 1, 0]
11 1.10.0.5 Abcg, Abdh, Acdei, Acdfj, Abefk [0, 4, 14, 8, 0, 3, 2, 0,

0]
11 1.10.0.5 Abcg, defh, Abdei, Abdfj, Acefk [0, 4, 14, 8, 0, 3, 2, 0,

0]
11 1.10.0.5 bcdg, bceh, Abcfi, bdefj, Acdefk [0, 4, 14, 8, 0, 3, 2, 0,

0]
11 2.9.0.5 ABcg, ABdh, Acdei, Acdfj, ABefk [0, 4, 14, 8, 0, 3, 2, 0,

0]
11 2.9.0.5 ABcg, Acdh, ABdei, ABdfj, Acefk [0, 4, 14, 8, 0, 3, 2, 0,

0]
11 2.9.0.5 ABcg, defh, ABdei, ABdfj, Acefk [0, 4, 14, 8, 0, 3, 2, 0,

0]
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n1 + n2 n1.n2.k1.k2 defining words word length pattern

11 2.9.0.5 ABcg, defh, ABdei, Acdfj, Acefk [0, 4, 14, 8, 0, 3, 2, 0,
0]

11 2.9.0.5 ABcg, defh, Acdei, Acdfj, Bcefk [0, 4, 14, 8, 0, 3, 2, 0,
0]

11 2.9.0.5 Acdg, Aceh, ABdei, ABcfj, Adefk [0, 4, 14, 8, 0, 3, 2, 0,
0]

11 2.9.0.5 Acdg, Aceh, ABcfi, Adefj, Bcdefk [0, 4, 14, 8, 0, 3, 2, 0,
0]

11 2.9.0.5 Acdg, ABceh, ABcfi, Adefj,
Bcdefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, ACdh, ABCei, ABCfj,
Adefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, ACdh, BCdei, BCdfj,
Adefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, ABeh, ACdei, ABCfj,
Adefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, ABeh, ABCfi, Adefj,
BCdefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, Adeh, ABCei, ACdfj,
ABefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, Adeh, ACdfi, ABefj,
BCdefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, Cefh, ABCei, ABCfj,
Adefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, Cefh, ABCei, ACdfj,
Adefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, Cefh, ACdei, ACdfj,
Bdefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, ABCeh, ABCfi, Adefj,
BCdefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, ACdeh, ACdfi, ABefj,
BCdefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 ABdg, ACdeh, ACdfi, Bdefj,
ABCefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.0.5 Adeg, Adfh, ABCdi, ABefj,
BCdefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 3.8.1.4 ABG, cdeh, Acdfi, Bcefj, ABdefk [1, 2, 12, 12, 2, 1, 0, 0,
1]

11 4.7.0.5 ABeg, ACeh, BCDei, BCefj,
ADefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.0.5 ABeg, ACeh, ABCfi, ADefj,
BCDefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]
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Table 15 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

11 4.7.0.5 ABeg, ACeh, BCefi, ADefj,
ABCDfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.0.5 ABeg, ABfh, ACefi, ADefj,
BCDefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.0.5 ABeg, CDfh, ACDei, BCDej,
ABCfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.0.5 ABeg, CDfh, ACDei, ABCfj,
BCefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.0.5 ABeg, CDfh, ACDei, ACefj,
BDefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.0.5 ABeg, Aefh, ACDei, ABCfj,
BCDefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.0.5 ABeg, ACDeh, ABCfi, ADefj,
BCDefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.0.5 ABeg, ACDeh, ACefi, BDefj,
ABCDfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.1.4 ABCG, ABdh, ACdei, ACdfj,
ABefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 4.7.1.4 ABCG, defh, ABdei, ABdfj,
ACefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 5.6.0.5 ABfg, ACfh, BCDfi, BCEfj,
ADEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 5.6.1.4 ABCG, ABeh, ACDei, ABDfj,
ACefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 5.6.1.4 ABCG, ABeh, ABDfi, ACefj,
BCDefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 5.6.1.4 ABCG, Defh, ABDei, ABDfj,
ACefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 5.6.1.4 ABCG, ABDeh, ABDfi, ACefj,
BCDefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 5.6.1.4 ABCDG, ABeh, ACei, ABCfj,
ADefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 5.6.1.4 ABCDG, ABeh, ABfi, ACefj,
ADefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 5.6.2.3 ABG, ACH, defi, BCdej, ABCdfk [2, 2, 10, 12, 2, 1, 2, 0,
0]

11 6.5.1.4 ABCG, ABfh, ACDfi, ACEfj,
BCDEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 6.5.1.4 ABCDG, ABfh, ACfi, ADEfj,
BCDEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 6.5.1.4 ABCDEG, ABfh, ACfi, BCDfj,
BCEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]
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Table 15 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

11 6.5.2.3 ABCG, ABDH, ACDei, ACDfj,
ABefk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 6.5.3.2 ABG, ACH, BCI, Adej, ABCdfk [4, 4, 6, 8, 4, 3, 2, 0, 0]
11 6.5.3.2 ABG, ACH, BCI, defj, ABCdek [4, 4, 6, 8, 4, 3, 2, 0, 0]
11 7.4.2.3 ABCG, ABDH, ACDfi, ABEfj,

BCDEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 7.4.2.3 ABCG, ABDEH, ABfi, ACDfj,
ACEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 7.4.2.3 ABCG, ABDEH, DEfi, ABDfj,
ACEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 7.4.2.3 ABCG, ABDEH, DEfi, ACDfj,
ACEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 7.4.3.2 ABCG, ABDH, ACDI, Aefj,
BCDek

[0, 8, 10, 4, 4, 3, 2, 0,
0]

11 7.4.4.1 ABG, ACH, BCI, ABCJ , Adefk [7, 7, 1, 3, 5, 4, 3, 1, 0]
11 8.3.3.2 ABCG, ABDH, ACDEI, ACDfj,

ABEfk

[0, 4, 14, 8, 0, 3, 2, 0,
0]

11 8.3.4.1 ABCG, ABDH, ACDI, BCDJ ,
ABefk

[0, 14, 4, 0, 8, 1, 4, 0,
0]

11 9.2.4.1 ABCG, ABDH, ABEI, ACDEJ ,
BCDEfk

[0, 6, 12, 8, 0, 1, 4, 0,
0]

12 1.11.0.6 Abcg, Abdh, Acdei, Acdfj, Abefk,
bcdefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 2.10.0.6 ABcg, ABdh, Acdei, Acdfj, ABefk,
Bcdefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 2.10.0.6 ABcg, Acdh, ABdei, ABdfj, Acefk,
Bcdefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 2.10.0.6 Acdg, Aceh, ABdei, ABcfj, Adefk,
Bcdefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 3.9.0.6 ABdg, ACdh, ABCei, ABCfj,
Adefk, BCdefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 3.9.0.6 ABdg, ACdh, BCdei, BCdfj,
Adefk, ABCefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 3.9.0.6 ABdg, ABeh, ACdei, ABCfj,
Adefk, BCdefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 3.9.0.6 ABdg, Adeh, ABCei, ACdfj,
ABefk, BCdefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 3.9.1.5 ABG, Acdh, Acei, Bcfj, Adefk,
ABcdefl

[1, 6, 20, 16, 6, 9, 4, 0,
1, 0]

12 4.8.0.6 ABeg, ACeh, BCDei, BCefj,
ADefk, ABCDfl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]
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n1 + n2 n1.n2.k1.k2 defining words word length pattern

12 4.8.0.6 ABeg, CDfh, ACDei, BCDej,
ABCfk, ABDfl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 4.8.0.6 ABeg, CDfh, ACDei, ABCfj,
BCefk, ADefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 4.8.1.5 ABCG, ABdh, ACdei, ACdfj,
ABefk, BCdefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 5.7.0.6 ABfg, ACfh, DEfi, BCDfj,
BCEfk, ABCDEfl

[0, 8, 20, 14, 8, 7, 4, 2,
0, 0]

12 5.7.1.5 ABCG, ABeh, ACDei, ABDfj,
ACefk, BCDefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 5.7.1.5 ABCDG, ABeh, ACei, ABCfj,
ADefk, BCDefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 5.7.2.4 ABG, ACH, defi, BCdej, BCdfk,
ABCefl

[2, 4, 18, 22, 6, 3, 6, 2,
0, 0]

12 6.6.1.5 ABCDEG, ABfh, ACfi, BCDfj,
BCEfk, ADEfl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 6.6.2.4 ABCG, ABDH, ACDei, ACDfj,
ABefk, BCDefl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 6.6.3.3 ABG, ACH, BCI, Adej, Adfk,
ABCefl

[4, 6, 12, 16, 12, 9, 4,
0, 0, 0]

12 6.6.3.3 ABG, ACH, BCI, Adej, Bdfk,
Cefl

[4, 6, 12, 16, 12, 9, 4,
0, 0, 0]

12 6.6.3.3 ABG, ACH, BCI, defj, ABCdek,
ABCdfl

[4, 6, 12, 16, 12, 9, 4,
0, 0, 0]

12 7.5.2.4 ABCG, ABDEH, ABfi, ACDfj,
ACEfk, BCDEfl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 7.5.3.3 ABCG, ABDH, ACDI, Aefj,
BCDek, BCDfl

[0, 10, 20, 8, 8, 13, 4,
0, 0, 0]

12 7.5.4.2 ABG, ACH, BCI, ABCJ , Adek,
Bdfl

[7, 9, 7, 11, 13, 10, 5,
1, 0, 0]

12 8.4.3.3 ABCG, ABDH, ACDEI, ACDfj,
ABEfk, BCDEfl

[0, 6, 24, 16, 0, 9, 8, 0,
0, 0]

12 8.4.4.2 ABCG, ABDH, ACDI, BCDJ ,
ABek, ACefl

[0, 18, 8, 8, 16, 5, 8, 0,
0, 0]

12 9.3.4.2 ABCG, ABDH, ABEI, ACDEJ ,
ACfk, ABDEfl

[0, 10, 16, 16, 8, 5, 8,
0, 0, 0]

12 9.3.5.1 ABG, ACH, ADI, BCDJ ,
ABCDK, BCefl

[4, 14, 12, 4, 12, 9, 4,
4, 0, 0]

12 10.2.5.1 ABCG, ABDH, ABEI, ACDEJ ,
BCDEK, ACfl

[0, 12, 20, 6, 8, 11, 4,
2, 0, 0]

13 1.12.0.7 Abcg, Abdh, Abei, Acfj, Acdek,
Adefl, Abcdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]
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n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 1.12.0.7 Abcg, Abdh, Abei, cdfj, Acdek,
Acefl, bdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 1.12.0.7 Abcg, Abdh, Acei, Adej, Acdfk,
Abefl, bcdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 1.12.0.7 Abcg, Abdh, Acei, Adej, Acdfk,
bcefl, Abdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, ABdh, ABei, Acfj, Acdek,
Adefl, ABcdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, ABdh, ABei, cdfj, Acdek,
Acefl, Bdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, ABdh, Acei, Adej, Bcfk,
Bdefl, cdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, ABdh, Acei, Adej, cefk,
Bcdfl, Bdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, ABdh, Acei, Adej, Acdfk,
ABefl, Bcdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, ABdh, Acei, Adej, ABefk,
cdefl, ABcdfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, Acdh, Acei, Adfj, ABdek,
ABefl, ABcdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, Acdh, Acei, defj, ABdek,
ABdfl, Bcefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, Acdh, Bcei, Adej, Bdfk,
Acefl, ABcdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, Acdh, Bcei, Adej, defk,
ABdfl, ABefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 ABcg, Acdh, Bcei, Adej, ABdfk,
Acefl, Bcdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 Acdg, Aceh, Bdei, Acfj, ABdfk,
Bcefl, Adefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 2.11.0.7 Acdg, Aceh, Adfi, Aefj, ABdek,
ABcfl, Bcdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, ABei, ACej, Bdfk,
BCefl, Cdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, ABei, ACej,
ABCfk, Adefl, BCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, ABei, Cdej, ACfk,
Bdefl, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, ABei, Cdej, Bdfk,
ACefl, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, ABei, Cdej, Befk,
ABCfl, ACefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]
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n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 3.10.0.7 ABdg, ACdh, ABei, Cdej, Cefk,
BCdfl, Bdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, ABei, Cdej, ABCfk,
Adefl, BCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, ABei, Cdej, BCdfk,
ACefl, ABdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, ABei, Adfj, ABCfk,
ACefl, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACdh, Adei, Aefj, ABCek,
ABCfl, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ABeh, Cdei, ABfj, ACdfk,
BCefl, Adefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ABeh, Cdei, Adfj, Befk,
ABCfl, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ABeh, ACfi, Adfj, defk,
BCdel, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ABeh, ACfi, Adfj, ACdek,
BCdel, ABCdfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ABeh, Adfi, Aefj, ACdek,
ABCfl, BCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ABeh, Cdfi, Cefj, ACdek,
BCdel, ABdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACeh, Adei, Adfj, ABCfk,
ABefl, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACeh, Adei, Cdfj, BCefk,
Bdefl, ABCdem

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, ACeh, Adfi, Aefj, ABCfk,
BCdfl, ACdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, Adeh, Adfi, Cefj, ABCek,
BCdfl, ABefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, Adeh, Adfi, Cefj, ABCek,
BCdfl, Bdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, Adeh, Bdfi, Aefj, ABCek,
ACdfl, BCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.0.7 ABdg, Adeh, Cefi, ABCej,
BCdek, ABCfl, Bdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 3.10.1.6 ABG, Acdh, Acei, Bdej, Bcfk,
Adefl, ABcdefm

[1, 10, 32, 28, 14, 21,
16, 4, 1, 0, 0]

13 4.9.0.7 ABeg, ACeh, ADei, ABfj,
BCDek, ACDfl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ACeh, BDei, CDej, ABfk,
ACDfl, BCDfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]
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n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 4.9.0.7 ABeg, ACeh, BDei, CDej,
ABCfk, ADefl, BCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ACeh, BDei, CDej, BCefk,
ADefl, ABCDfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ACeh, BDei, ABfj, ACfk,
BCDfl, CDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ACeh, BDei, ABfj, Cefk,
ACDfl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ACeh, ABfi, CDfj, Cefk,
BCDel, BDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ACeh, ABfi, Cefj, BCDek,
ACDfl, ABDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ACeh, ADfi, Aefj, BCDek,
ABCfl, BCDfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ACeh, ADfi, Aefj, BCDek,
BCDfl, BCefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, CDeh, ABfi, CDfj,
ACefk, BCefl, ABDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, CDeh, ABfi, Cefj,
ACDfk, BCDfl, ABDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, CDeh, ABfi, ACDfj,
ACefk, BDefl, ABCDem

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, CDeh, ACfi, Aefj, Defk,
BCDfl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, ABfh, Cefi, Defj, ACDek,
BCDfl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.0.7 ABeg, CDfh, Aefi, BCDej,
ABCfk, ABDfl, BCefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.1.6 ABCG, ABdh, ABei, ACfj,
ACdek, Adefl, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.1.6 ABCG, ABdh, ABei, Adfj, ACdek,
ACefl, ABCdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.1.6 ABCG, ABdh, ABei, defj, ACdek,
ACdfl, BCefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.1.6 ABCG, ABdh, ACei, Adej, Bdfk,
BCefl, Cdefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 4.9.1.6 ABCG, ABdh, ACei, Adej, defk,
BCdfl, BCefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.0.7 ABfg, ACfh, ADfi, BEfj,
BCDfk, CDEfl, ABCDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCG, ABeh, ADei, CDej, BCfk,
ABDfl, ACDfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]
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Table 15 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 5.8.1.6 ABCG, ABeh, ADei, CDej,
ADfk, BCefl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCG, ABeh, ADei, CDej, Befk,
ACDfl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCG, ABeh, ADei, ABfj,
ACDfk, ACefl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCG, ABeh, ADei, ACfj, Befk,
BCDfl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCG, ABeh, ABfi, Defj,
ACDek, BCDfl, ACefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCG, ABeh, ACfi, Aefj, Defk,
BCDel, BCDfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCG, ABeh, ADfi, Aefj,
ACDek, BCDel, ABDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCG, ABeh, Defi, ACDej,
BCDek, ACDfl, BCefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCDG, ABeh, ACei, ADej,
ABfk, ACDfl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCDG, ABeh, ACei, ABfj,
ACfk, ADefl, BCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.1.6 ABCDG, ABeh, ACei, ABfj,
Cefk, ADefl, BCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 5.8.2.5 ABG, ACH, BCdi, Adej, Adfk,
BCefl, ABCdefm

[2, 9, 30, 30, 14, 21, 18,
2, 0, 1, 0]

13 6.7.1.6 ABCDG, ABfh, ACfi, ADfj,
BEfk, CDEfl, ABCDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 6.7.1.6 ABCDEG, ABfh, ACfi, BDfj,
CDfk, BCEfl, ADEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 6.7.2.5 ABCG, ABDH, ABei, ACfj,
ACDek, ADefl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 6.7.2.5 ABCG, ABDH, ABei, Aefj,
ACDek, ACDfl, ABCDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 6.7.2.5 ABCG, ABDH, ACei, ADej,
BCfk, BDefl, CDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 6.7.2.5 ABCG, ABDH, ACei, ADej,
Cefk, BCDfl, BDefm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 6.7.3.4 ABG, ACH, BCI, Adej, Bdfk,
Cefl, ABCdefm

[4, 9, 21, 31, 29, 18, 7,
5, 3, 0, 0]

13 7.6.2.5 ABCG, ADEH, ABfi, ADfj,
CDfk, BCEfl, ABCDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 7.6.2.5 ABCG, ABDEH, ABfi, ADfj,
CDfk, ACEfl, BCDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]
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Table 15 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 7.6.2.5 ABCG, ABDEH, ACfi, DEfj,
ABDfk, BCDfl, BCEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 7.6.3.4 ABCG, ABDH, ACDI, Aefj,
BCDek, BCDfl, ABCDefm

[0, 14, 33, 16, 16, 33,
14, 0, 0, 0, 1]

13 7.6.4.3 ABG, ACH, BCI, ABCJ , Adek,
Bdfl, Cefm

[7, 11, 15, 25, 29, 24,
13, 3, 0, 0, 0]

13 8.5.3.4 ABCG, ABDH, ACEI, ABfj,
ACDfk, ADEfl, ABCDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 8.5.3.4 ABCG, ABDH, ACDEI, ABfj,
AEfk, ACDfl, ABCDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 8.5.3.4 ABCG, ABDH, ACDEI, ACfj,
ADfk, ABEfl, BCDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 8.5.4.3 ABCG, ABDH, ACDI, BCDJ ,
ABek, ACfl, ADefm

[0, 22, 16, 20, 32, 17,
16, 4, 0, 0, 0]

13 9.4.4.3 ABCG, ABDH, ABEI, ACDEJ ,
ACfk, ADEfl, ABCDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 9.4.4.3 ABCG, ABDH, ACEI, ADEJ ,
BCfk, BDEfl, CDEfm

[0, 14, 28, 24, 24, 17,
12, 8, 0, 0, 0]

13 9.4.5.2 ABG, ACH, ADI, BCDJ ,
ABCDK, BCel, BDefm

[4, 18, 20, 16, 28, 21,
12, 8, 0, 0, 0]

13 10.3.5.2 ABCG, ABDH, ABEI, ACDEJ ,
BCDEK, ACfl, ADfm

[0, 16, 28, 18, 24, 23,
12, 6, 0, 0, 0]

13 10.3.6.1 ABG, ACH, BCI, ADJ , BCDK,
ABCDL, BDefm

[8, 18, 20, 16, 20, 21,
12, 8, 4, 0, 0]

13 11.2.6.1 ABCG, ABDH, ACDI, ABEJ ,
ACEK, ADEL, BCDfm

[0, 25, 13, 27, 25, 10,
23, 1, 3, 0, 0]



151

Table 16. 128-run minimum aberration 2-level regular fractional factorial split-plot

designs with resolution ≥ 4

n1 + n2 n1.n2.k1.k2 defining words word length pattern

8 1.7.0.1 Abcdefgh [0, 0, 0, 0, 1]
8 2.6.0.1 ABcdefgh [0, 0, 0, 0, 1]
8 3.5.0.1 ABCdefgh [0, 0, 0, 0, 1]
8 4.4.0.1 ABCDefgh [0, 0, 0, 0, 1]
8 5.3.0.1 ABCDEfgh [0, 0, 0, 0, 1]
8 6.2.0.1 ABCDEFgh [0, 0, 0, 0, 1]
9 1.8.0.2 Abcdeh, Abcfgi [0, 0, 3, 0, 0, 0]
9 2.7.0.2 ABcdeh, ABcfgi [0, 0, 3, 0, 0, 0]
9 2.7.0.2 ABcdeh, Acdfgi [0, 0, 3, 0, 0, 0]
9 3.6.0.2 ABCdeh, ABCfgi [0, 0, 3, 0, 0, 0]
9 3.6.0.2 ABCdeh, ABdfgi [0, 0, 3, 0, 0, 0]
9 3.6.0.2 ABdefh, ACdegi [0, 0, 3, 0, 0, 0]
9 4.5.0.2 ABCDeh, ABCfgi [0, 0, 3, 0, 0, 0]
9 4.5.0.2 ABCDeh, ABefgi [0, 0, 3, 0, 0, 0]
9 4.5.0.2 ABCefh, ABDegi [0, 0, 3, 0, 0, 0]
9 4.5.1.1 ABCH, ABdefgi [1, 0, 0, 2, 0, 0]
9 5.4.0.2 ABCDfh, ABCEgi [0, 0, 3, 0, 0, 0]
9 5.4.0.2 ABCDfh, ABEfgi [0, 0, 3, 0, 0, 0]
9 5.4.1.1 ABCDH, ABefgi [0, 1, 1, 1, 0, 0]
9 6.3.0.2 ABCDgh, ABEFgi [0, 0, 3, 0, 0, 0]
9 6.3.1.1 ABCDEH, ABCfgi [0, 0, 3, 0, 0, 0]
9 7.2.1.1 ABCDEH, ABCFgi [0, 0, 3, 0, 0, 0]
10 1.9.0.3 Abcdh, Abefi, Acegj [0, 3, 3, 1, 0, 0, 0]
10 1.9.0.3 Abcdh, Abefi, bcegj [0, 3, 3, 1, 0, 0, 0]
10 1.9.0.3 Abcdh, bcefi, bdegj [0, 3, 3, 1, 0, 0, 0]
10 2.8.0.3 ABcdh, ABefi, Acegj [0, 3, 3, 1, 0, 0, 0]
10 2.8.0.3 ABcdh, Acefi, Bcegj [0, 3, 3, 1, 0, 0, 0]
10 2.8.0.3 ABcdh, Acefi, Adegj [0, 3, 3, 1, 0, 0, 0]
10 2.8.0.3 ABcdh, Acefi, cdegj [0, 3, 3, 1, 0, 0, 0]
10 2.8.0.3 ABcdh, cdefi, ABcegj [0, 3, 3, 1, 0, 0, 0]
10 2.8.0.3 Acdeh, Bcdfi, Bcegj [0, 3, 3, 1, 0, 0, 0]
10 2.8.0.3 Acdeh, Bcdfi, cefgj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABCdh, ABefi, ACegj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABCdh, ABefi, Adegj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABCdh, Adefi, Bdegj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABCdh, Adefi, ABCegj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABCdh, Adefi, BCdegj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABdeh, ACdfi, BCdgj [0, 3, 3, 1, 0, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

10 3.7.0.3 ABdeh, ACdfi, ACegj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABdeh, ACdfi, Cdegj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABdeh, ACdfi, Aefgj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABdeh, ACdfi, defgj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABdeh, Cdefi, Adfgj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABdeh, Cdefi, ABCdgj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 ABdeh, Cdefi, ABdfgj [0, 3, 3, 1, 0, 0, 0]
10 3.7.0.3 Adefh, Bdegi, Cdfgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ABDfi, ACDgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ABDfi, ADegj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ABDfi, Aefgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ADefi, BDegj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ADefi, ABfgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ADefi, Befgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ADefi, ABCDgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ADefi, BCDegj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ADefi, ABCfgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, ADefi, BCefgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABCeh, Aefgi, ABCDfj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABefh, CDefi, ACegj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABefh, CDefi, ABCegj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABefh, CDefi, ABCDegj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABefh, ACegi, ADfgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABefh, ACegi, Defgj [0, 3, 3, 1, 0, 0, 0]
10 4.6.0.3 ABefh, Cefgi, ABDegj [0, 3, 3, 1, 0, 0, 0]
10 4.6.1.2 ABCH, ABdefi, ACdegj [1, 0, 6, 0, 0, 0, 0]
10 5.5.0.3 ABCfh, ADEfi, ABDgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ADEfi, BDfgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ADEfi, ABCDgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ADEfi, BCDfgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ADEfi, ABCDEgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ADEfi, BCDEfgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ABDgi, AEfgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ADfgi, BEfgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ADfgi, ABCEgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABCfh, ADfgi, BCEfgj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABfgh, CDfgi, ABCEfj [0, 3, 3, 1, 0, 0, 0]
10 5.5.0.3 ABfgh, CDfgi, ABCDEfj [0, 3, 3, 1, 0, 0, 0]
10 5.5.1.2 ABCDH, ABefi, ACegj [0, 3, 3, 1, 0, 0, 0]
10 6.4.0.3 ABCgh, ADEgi, BDFgj [0, 3, 3, 1, 0, 0, 0]
10 6.4.0.3 ABCgh, ADEgi, BCDFgj [0, 3, 3, 1, 0, 0, 0]
10 6.4.0.3 ABCgh, ADEgi, BCDEFgj [0, 3, 3, 1, 0, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

10 6.4.1.2 ABCDH, ABEfi, ACEgj [0, 3, 3, 1, 0, 0, 0]
10 6.4.1.2 ABCDH, ABEfi, ACfgj [0, 3, 3, 1, 0, 0, 0]
10 6.4.1.2 ABCDEH, ABCfi, ADfgj [0, 3, 3, 1, 0, 0, 0]
10 6.4.2.1 ABCH, ABDI, ACDefgj [3, 0, 0, 4, 0, 0, 0]
10 7.3.1.2 ABCDH, ABEgi, ACFgj [0, 3, 3, 1, 0, 0, 0]
10 7.3.1.2 ABCDEH, ABCgi, ADFgj [0, 3, 3, 1, 0, 0, 0]
10 7.3.1.2 ABCDEFH, ABCgi, ADEgj [0, 3, 3, 1, 0, 0, 0]
10 7.3.2.1 ABCH, ABDEI, ACDfgj [1, 2, 2, 2, 0, 0, 0]
10 8.2.2.1 ABCDH, ABEFI, ACEgj [0, 3, 3, 1, 0, 0, 0]
11 1.10.0.4 Abcdh, Abefi, Acegj, bdfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 1.10.0.4 Abcdh, bcefi, bdegj, Aefgk [0, 6, 6, 2, 1, 0, 0, 0]
11 2.9.0.4 ABcdh, ABefi, Acegj, Bdfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 2.9.0.4 ABcdh, Acefi, Bcegj, Adfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 2.9.0.4 ABcdh, Acefi, Adegj, Befgk [0, 6, 6, 2, 1, 0, 0, 0]
11 2.9.0.4 Acdeh, Bcdfi, Bcegj, Adfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 2.9.0.4 Acdeh, Bcdfi, cefgj, ABcdgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABCdh, ABefi, ACegj, Bdfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABCdh, ABefi, Adegj, Cefgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABCdh, Adefi, Bdegj, Cefgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABdeh, ACdfi, BCdgj, Aefgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABdeh, ACdfi, ACegj, BCfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABdeh, ACdfi, ACegj, Bdfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABdeh, ACdfi, BCegj, Bdfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABdeh, ACdfi, Aefgj, ABCdgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 ABdeh, Cdefi, ACfgj, Bdfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 3.8.0.4 Adefh, Bdegi, Cdfgj, ABCefgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ABDfi, ACDgj, Befgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ABDfi, ADegj, BCfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ABDfi, ADegj, CDfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ABDfi, Aefgj, ABCDgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ADefi, BDegj, ACfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ADefi, BDegj, CDfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ADefi, ABfgj, CDfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ADefi, ABfgj, ACDegk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ADefi, BDfgj, Cefgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABCeh, ADefi, Befgj, ACDegk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABefh, CDefi, ACegj, BDfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABefh, CDefi, ACegj, BDefgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABefh, CDefi, ABCegj, ACDfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABefh, ACegi, ADfgj, BCDefgk [0, 6, 6, 2, 1, 0, 0, 0]
11 4.7.0.4 ABefh, ACegi, ADfgj,

ABCDefgk

[0, 6, 6, 2, 1, 0, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

11 4.7.1.3 ABCH, Adefi, Bdegj, Cdfgk [1, 4, 6, 4, 0, 0, 0, 0]
11 5.6.0.4 ABCfh, ADEfi, ABDgj, BCEgk [0, 6, 6, 2, 1, 0, 0, 0]
11 5.6.0.4 ABCfh, ADEfi, ABDgj, CEfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 5.6.0.4 ABCfh, ADEfi, ABDgj, ACEfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 5.6.0.4 ABCfh, ADEfi, BCDgj, BEfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 5.6.0.4 ABCfh, ADEfi, BDfgj, ACEfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 5.6.0.4 ABCfh, ADEfi, ABCDgj,

ABEfgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 5.6.0.4 ABCfh, ABDgi, AEfgj,
BCDEfgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 5.6.0.4 ABCfh, ABDgi, AEfgj,
ABCDEfgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 5.6.0.4 ABCfh, ADEgi, BDfgj, CEfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 5.6.0.4 ABCfh, ADEgi, BDfgj, ACEfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 5.6.0.4 ABCfh, ADfgi, BEfgj,

ABCDEgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 5.6.0.4 ABfgh, CDfgi, ABCEfj,
ACDEgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 5.6.1.3 ABCDH, ABefi, ACegj, BDfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 6.5.0.4 ABCgh, ADEgi, BDFgj,

ACEFgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 6.5.0.4 ABCgh, ADEgi, BDFgj,
ABCDEFgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 6.5.1.3 ABCDH, ABEfi, ACEgj, BDfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 6.5.1.3 ABCDH, ABEfi, CDEgj, ACfgk [0, 6, 6, 2, 1, 0, 0, 0]
11 6.5.1.3 ABCDEH, ABCfi, ABDgj,

AEfgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 6.5.2.2 ABCH, ABDI, ACDefj, BCDegk [3, 0, 11, 0, 0, 0, 1, 0]
11 7.4.1.3 ABCDH, ABEgi, ACFgj, DEFgk [0, 6, 6, 2, 1, 0, 0, 0]
11 7.4.1.3 ABCDH, ABEgi, ACFgj,

ADEFgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 7.4.1.3 ABCDEH, ABCgi, ADFgj,
ABEFgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 7.4.1.3 ABCDEFH, ABCgi, ADEgj,
BDFgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 7.4.2.2 ABCH, ABDEI, ACDfj, DEfgk [1, 5, 6, 2, 0, 1, 0, 0]
11 7.4.3.1 ABCH, ABDI, ACDJ , BCDefgk [7, 0, 0, 7, 0, 0, 0, 1]
11 8.3.2.2 ABCDH, ABEFI, ACEgj,

BDFgk

[0, 6, 6, 2, 1, 0, 0, 0]

11 8.3.3.1 ABCH, ABDI, ACDEJ , ABEfgk [3, 4, 3, 4, 0, 0, 1, 0]
11 9.2.3.1 ABCH, ABDEI, ACDFJ ,

DEFgk

[1, 5, 6, 2, 0, 1, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

12 1.11.0.5 Abch, Adefi, bdegj, cdfgk, Abcefgl [1, 8, 12, 8, 1, 0, 0, 0,
1]

12 1.11.0.5 bcdh, Abefi, Acegj, Adfgk, bcdefgl [1, 8, 12, 8, 1, 0, 0, 0,
1]

12 2.10.0.5 ABch, Adefi, Bdegj, cdfgk,
ABcefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 2.10.0.5 Acdh, ABefi, Bcegj, Bdfgk,
Acdefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 2.10.0.5 cdeh, ABcfi, ABdgj, Aefgk,
Bcdefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 2.10.0.5 cdeh, Acfgi, Bdfgj, ABcefk,
ABdegl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 3.9.0.5 ABdh, ACefi, BCegj, Cdfgk,
ABdefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 3.9.0.5 Adeh, ABCfi, BCdgj, Befgk,
ACdefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 3.9.0.5 Adeh, BCdfi, BCegj, ABfgk,
ACdefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 3.9.0.5 Adeh, ABfgi, Cdfgj, ABCefk,
BCdegl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 3.9.0.5 defh, ABCdi, ABegj, ACfgk,
BCdefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 3.9.0.5 defh, ABdgi, ACegj, ABCdfk,
BCefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 ABeh, ACDfi, BCDgj, Cefgk,
ABDefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 ABeh, ACDfi, CDegj, BCfgk,
ABDefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 ABeh, CDefi, ACfgj, BDfgk,
ABCDegl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 ABeh, ACfgi, BDfgj, ACDefk,
BCDegl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 Aefh, BCDei, ABCgj, BDfgk,
ACDefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 Aefh, ABCgi, BDegj, ABCDfk,
CDefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 efgh, ABCei, ABDfj, ACDgk,
BCDefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 efgh, ABCei, ABDfj, ACDegk,
BCDfgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 4.8.0.5 ABefh, CDefi, ACegj, BDegk,
ABCDefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

12 4.8.1.4 ABCH, Adefi, Bdegj, Cdfgk,
ABCefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 5.7.0.5 ABfh, CDEfi, ACDgj, BCEgk,
ABDEfgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 5.7.0.5 ABfh, ACDgi, BCEgj, ACDEfk,
BDEfgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 5.7.0.5 Afgh, BCDfi, BCEgj, ABDEfk,
ACDEgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 5.7.0.5 ABCfh, ADEfi, ABDgj, ACEgk,
ABCDEfgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 5.7.1.4 ABCH, ADefi, BDegj, CDfgk,
ABCefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 5.7.1.4 ABCDH, Aefi, BCegj, BDfgk,
ACDefgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 6.6.0.5 ABgh, CDEgi, ACDFgj,
BCEFgk, ABDEFgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 6.6.0.5 ABCgh, ADEgi, BDFgj, CEFgk,
ABCDEFgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 6.6.1.4 ABCH, ADEfi, BDEgj, CDfgk,
ABCEfgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 6.6.1.4 ABCH, ADfgi, BEfgj, ACDEfk,
BCDEgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 6.6.1.4 ABCDH, AEfi, BCEgj, BDfgk,
ACDEfgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 6.6.1.4 ABCDH, Afgi, BCEfj, BDEgk,
ACDEfgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 6.6.1.4 ABCDEH, ABfi, ACDgj,
CEfgk, BDEfgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 6.6.2.3 ABCH, ABDI, ACefj, BCegk,
Defgl

[3, 6, 11, 8, 0, 2, 1, 0,
0]

12 7.5.1.4 ABCH, ABDgi, ACEgj, BCFgk,
ADEFgl

[1, 10, 10, 5, 4, 0, 0, 1,
0]

12 7.5.1.4 ABCDH, ABgi, ACEgj, BCFgk,
DEFgl

[1, 10, 10, 5, 4, 0, 0, 1,
0]

12 7.5.1.4 ABCDEH, ABgi, ACDgj,
CEFgk, BCDFgl

[1, 10, 10, 5, 4, 0, 0, 1,
0]

12 7.5.1.4 ABCDEFH, ABCgi, ADEgj,
BDFgk, CEFgl

[1, 10, 10, 5, 4, 0, 0, 1,
0]

12 7.5.2.3 ABCH, ABDEI, ACDfj, BCDgk,
AEfgl

[1, 10, 10, 5, 4, 0, 0, 1,
0]

12 7.5.3.2 ABCH, ABDI, ACDJ , ABefk,
BCDegl

[7, 4, 7, 8, 0, 4, 1, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

12 8.4.2.3 ABCH, ADEFI, BDEgj, CDFgk,
ABCEFgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 8.4.2.3 ABCH, ABDEFI, ADEgj,
CDFgk, BCEFgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 8.4.2.3 ABCDH, ABEFI, CEgj, ADFgk,
BCDEFgl

[1, 8, 12, 8, 1, 0, 0, 0,
1]

12 8.4.3.2 ABCH, ABDI, ACDEJ , ABEfk,
ACDfgl

[3, 8, 11, 4, 0, 4, 1, 0,
0]

12 8.4.4.1 ABCH, ABDI, ACDJ , BCDK,
ABefgl

[14, 0, 4, 0, 9, 0, 4, 0,
0]

12 9.3.3.2 ABCH, ABDEI, ACDFJ ,
BCDgk, AEFgl

[1, 10, 10, 5, 4, 0, 0, 1,
0]

12 9.3.4.1 ABCH, ABDI, ABEJ , ACDEK,
BCDEfgl

[6, 8, 4, 8, 1, 0, 4, 0, 0]

12 10.2.4.1 ABCH, DEFI, ABDEJ ,
ACDFK, BCDEgl

[2, 10, 10, 4, 1, 2, 2, 0,
0]

13 1.12.0.6 Abch, defi, Abdej, Acdgk, bcfgl,
Abefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 1.12.0.6 Abch, defi, Abdej, Adfgk, cefgl,
bcdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 1.12.0.6 bcdh, efgi, Abcej, Abdfk, cdegl,
Acdfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 1.12.0.6 bcdh, Abcei, Abcfj, Abdgk, befgl,
Abcdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 ABch, defi, ABdej, Acdgk, Bcfgl,
ABefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 ABch, defi, ABdej, Adfgk, cefgl,
Bcdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 ABch, defi, Acdej, ABdgk, Bcfgl,
Acefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 ABch, defi, Acdej, Adfgk, Befgl,
Bcdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 Acdh, Befi, ABcej, ABdgk, cdfgl,
Acefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 Acdh, efgi, ABcej, ABdfk, cdegl,
Bcdfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 Acdh, efgi, ABefj, Acegk, Bdfgl,
Bcdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 Acdh, efgi, Acefj, Bcegk, Bdfgl,
ABdefm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 Acdh, ABcei, ABcfj, ABdgk,
Aefgl, ABcdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 2.11.0.6 Acdh, ABcei, ABcfj, Adegk, cdfgl,
Befgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 cdeh, ABcdi, Acefj, Acegk, Bcfgl,
ABcdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 cdeh, ABcdi, Acefj, Bcegk, cdfgl,
ABdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 2.11.0.6 cdeh, ABcdi, Acfgj, Befgk,
ABcefl, ABdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, Cefi, ABCej, ACdgk,
Bdfgl, ABefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, Cefi, ABCej, ACfgk,
defgl, BCdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, Cefi, ACdej, ABCgk,
Bdfgl, Adefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, Cefi, ACdej, BCdgk,
ABfgl, Adefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, Cefi, ACdej, ACfgk,
Befgl, BCdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, efgi, ABCej, ACdfk,
Bdegl, BCdfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, efgi, ACdej, BCdfk,
ABegl, ABCfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, efgi, ABefj, ACegk, Cdfgl,
BCdefm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, efgi, ACefj, BCegk, Adfgl,
BCdfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, efgi, ACefj, Adegk,
ABCegl, ABCdfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, efgi, Adefj, Cdegk,
BCdefl, ABCdfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, ABCei, ABCfj, ACdgk,
Aefgl, ABCdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, ABCei, ABCfj, Adegk,
Bdfgl, Cefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, ABCei, ACdfj, ACdgk,
Aefgl, ABCdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 ABdh, ACdei, ACdfj, ABegk,
Bdfgl, Cefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, Bfgi, ABCdj, ABefk,
Cdegl, ACefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, Bfgi, ABdfj, ACefk, Cdegl,
ABCdgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 3.10.0.6 Adeh, ABCdi, ABdfj, ABegk,
ACfgl, ABCdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABCdi, ABefj, ABegk,
ACfgl, ABCdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABCdi, ABefj, ABegk,
Cefgl, BCdfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABCdi, ABefj, ACegk,
Adfgl, BCdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABCdi, ABfgj, Cefgk,
ABCefl, BCdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABCfi, ABCgj, Adfgk,
ABefgl, Cdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABdfi, ACefj, ABdgk,
Cdegl, BCfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABdfi, ACefj, ACdgk,
ABegl, BCdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABdfi, ACefj, BCdgk,
defgl, BCefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 Adeh, ABdfi, ACefj, defgk,
ABCfgl, ABCdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 defh, ABdei, ACdfj, BCdgk,
Aefgl, ABCdefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 defh, ABdei, ACdfj, Cdegk, Bdfgl,
ABCefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 3.10.0.6 defh, ABCgi, Adegj, Bdfgk,
BCdegl, ACefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, CDfi, ACDej, ABCgk,
Befgl, ADefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, CDfi, ACDej, BCegk,
ABfgl, ADefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, CDfi, ACDej, ACfgk,
BDfgl, BCDegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, CDfi, ACefj, ABCgk,
BDegl, ADefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, Cfgi, ACDej, ABCfk,
BDegl, ABDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, Cfgi, ACDej, ABDfk,
BCegl, BDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, Cfgi, ABCfj, ADefk,
BDegl, ABCDgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, Cfgi, ABCfj, ACDgk,
Defgl, BCDefm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 4.9.0.6 ABeh, Cfgi, ABDfj, ACefk,
BDegl, ACDegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, Cfgi, ABDfj, ACegk,
BDegl, ACDefm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, Cfgi, ACDfj, BCDgk,
Aefgl, BDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, Cfgi, ACDfj, ACegk,
ABCDgl, ABDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, Cfgi, ACefj, CDegk,
BCDefl, ABDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, ABCfj, ABCgk,
ADfgl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, ABCfj, ABDgk,
Aefgl, BCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, ABCfj, ACegk,
ADfgl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, ABCfj, BCegk,
ADfgl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, ABCfj, ADegk,
CDfgl, Befgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, ACefj, BDegk,
ABfgl, CDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, BCefj, BDegk,
ABfgl, ACDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, ACfgj, BDfgk,
ABCDfl, BCDegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDei, ACfgj, BDfgk,
BCDefl, BCDegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ABCfi, ADefj, ABCgk,
BDegl, CDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ABCfi, ADefj, ABDgk,
ACegl, BCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ABCfi, ADefj, ACDgk,
Befgl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ABCfi, ADefj, BCegk,
ADegl, CDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ABCfi, ADefj, CDegk,
Befgl, BCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACDfi, ACDgj, ABfgk,
ACefgl, BDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 ABeh, ACefi, BDefj, BCegk,
ADegl, ABCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 4.9.0.6 ABeh, ACefi, BDefj, CDegk,
ABfgl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDfj, ACDgk,
ABegl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDfj, ACDgk,
Befgl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDfj, ABegk,
CDegl, BCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDfj, ADegk,
ACfgl, BCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDfj, ADegk,
Cefgl, ABCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDfj, CDegk,
Befgl, BCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDfj, Befgk,
ABCDgl, ACDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDgj, CDfgk,
ABCDfl, BCefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABDgj, CDfgk,
BCDefl, ABCfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ADegj, ABfgk,
ABCDfl, CDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, BDegj, CDfgk,
ABCDfl, BCefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, ABCei, ABfgj, Defgk,
ABCDfl, ACDegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 Aefh, BCDgi, ABegj, ACfgk,
ACDegl, BDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 efgh, ABefi, CDefj, ACegk,
BDegl, ABCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.0.6 efgh, ABefi, ACegj, ACDefk,
ABDegl, ABCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.1.5 ABCH, defi, ABdej, ACdgk,
BCfgl, ABefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 4.9.1.5 ABCH, defi, ABdej, Adfgk,
Cefgl, BCdegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, CDgi, ACDfj, BCEfk,
ABEgl, ADEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, CDgi, ACDfj, ACEgk,
BDEgl, BCDEfm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, CDgi, ACDfj, CEfgk,
BCDEfl, ABDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 5.8.0.6 ABfh, CDgi, ACEfj, ABEgk,
BDfgl, BCDEfm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, CDgi, CDEfj, ACfgk,
BCEfgl, ABDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, ACEfj, ABCgk,
ADEgl, ABCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, BCEfj, ABCgk,
ADEgl, BCDEgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, BCEfj, ABCgk,
ADEgl, CDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, BCEfj, ABCgk,
DEfgl, ABCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, BCEfj, ABDgk,
CDEgl, BEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, BCEfj, ABDgk,
AEfgl, BCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, BCEfj, BDfgk,
AEfgl, ABCDEgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, ABCgj, CDEgk,
BCDEfl, ACEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, ABCgj, CDEgk,
BCDEfl, BCEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, ABEgj, BCfgk,
BCDEfl, ADEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, ACEgj, BDEgk,
BCDEfl, ABCDgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, ACEgj, BDEgk,
BCDEfl, BCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, BCfgj, AEfgk,
BCDEfl, ABDEgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ACDfi, CEfgj, BCDEfk,
ABCDgl, ABDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, CDEfi, ABCgj, ADEgk,
ACDfgl, BCEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, CDEfi, ABCgj, ADfgk,
BEfgl, ABCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ABCgi, CDEgj, ADfgk,
ABDEgl, BCEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABfh, ABCgi, CDEgj, ADfgk,
ACEfgl, BDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 Afgh, ABCfi, ADEfj, ABDgk,
ACEgl, BCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 5.8.0.6 Afgh, ABCfi, ADEfj, ABDgk,
ABCEgl, CDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 Afgh, ABCfi, BDEfj, ACDgk,
CEfgl, BCDEgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 Afgh, ABCfi, ABDgj, ABDEfk,
ABCEgl, BCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.0.6 ABCfh, ADEfi, BDfgj,
BCDEfk, ACEfgl, ABCDEgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCH, Defi, ABDej, ACDgk,
BCfgl, ABefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCH, Defi, ABDej, ADfgk,
Cefgl, BCDegm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCH, efgi, ABDej, ACDfk,
BCegl, BCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCH, efgi, ABefj, ADegk,
CDfgl, BCDefm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCH, ABDei, ABDfj, ACDgk,
Aefgl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCH, ABDei, ABDfj, ACegk,
BCfgl, Defgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCDH, ABei, CDfj, ACegk,
Befgl, ABDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCDH, ABei, Cfgj, ACefk,
BDegl, ADefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 5.8.1.5 ABCDH, ABei, ACefj, ACegk,
ADfgl, ABCDefgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.0.6 ABgh, ACDgi, ACEgj, BCFgk,
DEFgl, ABCDEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.0.6 ABgh, ACDgi, BCEgj, BDFgk,
ACEFgl, ADEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCH, DEfi, ABDfj, ACDgk,
BCEgl, ABEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCH, DEfi, ABDfj, ADEgk,
CEfgl, BCDfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCH, Dfgi, ABDfj, ACEfk,
BCEgl, ABDEgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCH, Dfgi, ABDfj, ADEgk,
CEfgl, BCDEfm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCH, ABDfi, ACEfj, ABDgk,
BCEgl, DEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCH, ABDfi, ACEfj, ACDgk,
ABEgl, BCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 6.7.1.5 ABCH, ABDfi, ACEfj, ADEgk,
BCfgl, ABCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDH, ABfi, CDgj, ACEfk,
BEfgl, ABDEgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDH, ABfi, CEgj, ACEfk,
BDfgl, ADEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDH, ABfi, CEgj, ADEfk,
BCfgl, BDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDH, ABfi, ACEfj, ABEgk,
ADfgl, BCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDH, ABfi, ACEfj, ADEgk,
ACfgl, ABCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDH, ABfi, ACEfj, ADEgk,
BCfgl, ABCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDH, ABfi, ACEfj, CDEgk,
BDfgl, AEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDEH, ABfi, CDgj, ACDfk,
ACEgl, ABDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDEH, ABfi, ACDfj,
ABCgk, AEfgl, BDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.1.5 ABCDEH, ABfi, ACDfj,
ACEgk, BCDfgl, ABDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 6.7.2.4 ABCH, ABDI, ABefj, ACegk,
ADfgl, ABCDefgm

[3, 15, 15, 13, 12, 1, 1,
3, 0, 0]

13 7.6.1.5 ABCH, DEgi, ABDgj, ACFgk,
ABEFgl, BCDEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 7.6.1.5 ABCH, ABDgi, ACEgj, DEFgk,
ACDFgl, BCEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 7.6.1.5 ABCDH, ABgi, ACEgj, BCFgk,
DEFgl, ABCDEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 7.6.1.5 ABCDEH, ABgi, ACDgj,
BCFgk, AEFgl, BDEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 7.6.1.5 ABCDEFH, ABgi, ACDgj,
BCEgk, BDFgl, AEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 7.6.2.4 ABCH, ABDEI, DEfj, ACDgk,
BCfgl, ABEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 7.6.2.4 ABCH, ABDEI, DEfj, ADfgk,
CEfgl, BCDEgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 7.6.2.4 ABCH, ABDEI, Dfgj, ACDfk,
BCEgl, ACEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 7.6.2.4 ABCH, ABDEI, ACDfj, ACDgk,
AEfgl, ABCDEfgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]
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Table 16 Continued

n1 + n2 n1.n2.k1.k2 defining words word length pattern

13 7.6.3.3 ABCH, ABDI, ACDJ , ABefk,
ACegl, ADfgm

[7, 12, 9, 16, 12, 4, 3,
0, 0, 0]

13 8.5.2.4 ABCH, ADEFI, DEgj, ABDgk,
CEFgl, BCDFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 8.5.2.4 ABCDH, ABEFI, ABgj, ACEgk,
ADFgl, BCDEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 8.5.2.4 ABCDH, ABEFI, ACgj, ADEgk,
ADFgl, ABCDEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 8.5.3.3 ABCH, ABDI, ACDEJ , ABEfk,
ABEgl, ACDfgm

[4, 12, 22, 8, 3, 12, 2,
0, 0, 0]

13 8.5.4.2 ABCH, ABDI, ACDJ , BCDK,
ABefl, ACegm

[14, 8, 4, 16, 9, 8, 4, 0,
0, 0]

13 9.4.3.3 ABCH, DEFI, ABDEJ , ACDgk,
BCFgl, ABEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 9.4.3.3 ABCH, ABDEI, ACDFJ , DEgk,
BCFgl, ABEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 9.4.3.3 ABCH, ABDEI, ACDFJ , EFgk,
BCEgl, BCDFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 9.4.3.3 ABCH, ABDEI, ACDFJ ,
ABDgk, AEFgl, ABCDEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 9.4.3.3 ABCH, ABDEI, ACDFJ ,
BCDgk, AEFgl, ABCDEFgm

[2, 16, 18, 10, 9, 4, 2,
2, 0, 0]

13 9.4.4.2 ABCH, ABDI, ABEJ , ACDEK,
ACfgl, BCDEfm

[6, 16, 12, 8, 9, 8, 4, 0,
0, 0]

13 10.3.4.2 ABCH, DEFI, ABDEJ ,
ACDFK, ACDEgl, BCDFgm

[2, 16, 20, 8, 5, 8, 4, 0,
0, 0]

13 10.3.5.1 ABCH, ABDI, ABEJ , ACDEK,
BCDEL, ACfgm

[10, 18, 4, 6, 13, 6, 4,
2, 0, 0]

13 11.2.5.1 ABCH, ABDI, ACDEJ ,
ACDFK, ABEFL, BCDEFgm

[4, 16, 18, 8, 3, 8, 6, 0,
0, 0]
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