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ABSTRACT

A Comparative Study of Kalman Filter

Implementations for Relative GPS Navigation. (December 2009)

Matthew Peyton Fritz, B.S, Texas A&M University

Chair of Advisory Committee: Dr. Srinivas Rao Vadali

Relative global positioning system (GPS) navigation is currently used for au-

tonomous rendezvous and docking of two spacecraft as well as formation flying ap-

plications. GPS receivers deliver measurements to flight software that use this infor-

mation to determine estimates of the current states of the spacecraft. The success

of autonomous proximity operations in the presence of an uncertain environment

and noisy measurements depends primarily on the navigation accuracy. This thesis

presents the implementation and calibration of a spaceborne GPS receiver model, a

visibility analysis for multiple GPS antenna cone angles, the implementation of four

different extended Kalman filter architectures and a comparison of the advantages

and disadvantages of each filter used for relative GPS navigation. A spaceborne GPS

model is developed to generate simulated GPS measurements for a spacecraft located

on any orbit around the Earth below the GPS constellation. Position and velocity

estimation algorithms for GPS receivers are developed and implemented. A visibility

analysis is performed to determine the number of visible satellites throughout the

duration of the rendezvous. Multiple constant fields of view are analyzed and results

compared to develop an understanding of how the GPS constellation evolves during

the proximity operations. The comparison is used to choose a field of view with ade-

quate satellite coverage. The advantages and disadvantages of the relative navigation

architectures are evaluated based on a trade study involving several parameters.

It is determined in this thesis that a reduced pseudorange filter provides the best
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overall performance in both relative and absolute navigation with less computational

cost than the slightly more accurate pseudorange filter. A relative pseudorange archi-

tecture experiences complications due to multipath rich environments and performs

well in only relative navigation. A position velocity architecture performs well in

absolute state estimation but the worst of the four filters studied in relative state

estimation.
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CHAPTER I

INTRODUCTION

A. Precursors of GPS Navigation

For many centuries, explorers have faced the need to be able to determine their cur-

rent location on the surface of the Earth. For directional navigation, the magnetic

compass has been used for many centuries. The invention of the compass allowed

for navigators to no longer have to rely solely on the stars for directional navigation.

The magnetic compass was first developed by the Chinese around 200 BC. Mariners

took advantage of Earth’s magnetic field and began to commonly use the magnetic

compass for navigation around 900 AD [1]. While the compass gave the navigators

knowledge of the general direction they were traveling, it did not give them their cur-

rent location on the Earth’s surface. One of the earliest navigation tools that allowed

for a general knowledge of the current position was the astrolabe. The astrolabe

determined latitude by determining the altitude of the sun and stars. Another com-

monly used navigation tool for latitude determination was the sextant. The sextant

was capable of providing more accurate latitude measurements by determining the

altitude between the horizon and celestial bodies [2].

Although latitude was easily determined using celestial navigation, an accurate

measurement of longitude could not be made using celestial navigation. A clock-

maker by the name of John Harrison developed a device that became known as the

chronometer in the mid 1700s.

The journal model is IEEE Transactions on Automatic Control.
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The chronometer kept an accurate measure of the current time of home port at any

point on the surface of the globe. Using the home port time and current local time

on the vessel, a longitude determination within 30 nautical miles was achieved [3].

Celestial navigation and chronometers were used for navigation until the early

20th century. Gyroscopic compasses replaced magnetic compasses in the early 20th

century. Gyroscopic compasses are not influenced by Earth’s magnetic field and

always point to true north. In 1935, radar was introduced allowing for vessels as

well as aircraft to locate other vessels, land or any obstruction during instances of

decreased visibility [4]. Radar technology uses radio waves to determine location.

A radar set transmits radio waves and determines an accurate location of an object

based on the time it takes the echo to return and the Doppler shift in that echo. It

also has the capability to measure the speed of an object based on the Doppler shift.

Long range navigation, developed shortly after radar, uses pulsed radio transmissions

from two stations to determine the location of a vessel or aircraft. A disadvantage to

long range navigation is its limited coverage.

B. Global Position System

In the 1950s, the space race that ensued between the United States and former So-

viet Union paved the way for present day navigation. The Navy Navigation Satellite

System (NNSS), also known as TRANSIT, was the first operational satellite system

launched in 1972. The NNSS allowed for position determination based on satellites or-

biting at an altitude of 600 nautical miles. Doppler shift was measured in a frequency

constantly transmitted from the satellites. Aircraft applications of the system proved

not useful since corrections had to be made based on vehicle velocity. In addition,

the number of satellites were limited to five worldwide, resulting in signal blackouts
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that would last as long as 100 minutes [5]. In 1973, the idea of a satellite constella-

tion capable of providing a user with an accurate position anywhere on the surface

of the Earth began to become a reality. A Joint Program Office was formed and

the development of the global positioning system (GPS) began. Although an initial

design was disapproved by the Department of Defense (DoD), the DoD approved a

proposed system developed from the synthesis of previous designs in December 1973.

The initial approval was for 24 GPS satellites, with the first phase consisting of four

satellites. In February 1978, the first satellite was launched into orbit. Over the

course of the next 15 years, the GPS constellation was expanded to the approved 24

satellites. The GPS constellation became fully operational in July 1995 [6]. Today the

constellation consists of 32 satellites, and 12 new Block IIF GPS satellites currently

being developed and built by Boeing [7].

GPS operates on a system similar to long range navigation and the TRANSIT

system. The GPS consists of a space, control, and user segment. The space segment

consists of the GPS satellites and the transmission of the ranging signal. The satellites

transmit the ranging signal which is acquired by a GPS receiver, the user segment.

The receiver calculates the distance between itself and the satellite based on the time

difference between time of transmission and time of reception. The receiver uses the

computed distance to calculate its latitude, longitude and altitude in addition to a

correction to the user’s clock. At least four satellites are needed in order for the

receiver to accurately approximate its current location. If any of the four parameters

approximated by the receiver are known to the receiver, less than four satellites

can be used to determine the current location. The control segment updates the

current position and clock corrections of the GPS satellites. Predicted future positions

and clock corrections are periodically uploaded to the GPS satellites which are then

transmitted as part of the navigation message [8].
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The GPS constellation is located at an altitude of approximately 20200 kilo-

meters. The orbital period of each satellite is approximately 12 hours. The GPS

satellites are distributed among six circular orbits inclined at 55◦ from the equator

and separated by a right ascension angle of 60◦ to allow for greatest coverage [9].

The system broadcasts updated ephemeris data once every 30 seconds to GPS re-

ceivers. GPS receivers gather new ephemeris data every 30 minutes while each set of

ephemeris data is valid for the next four hours. Using the GPS satellites visible to

the GPS receiver, pseudorange measurements are calculated and used to approximate

the current location of the spacecraft. The accuracy of the position approximation is

directly influenced by the geometric delusion of precision (GDOP). GDOP is based on

the geometry between the satellites in view and the GPS receiver, or in other words

the direction the signals transmitted by the GPS satellite travel to the receiver. The

most optimal satellite configuration resulting in low GDOP values and accurate posi-

tion estimates is one GPS satellite located directly above the receiver and three GPS

satellites located approximately 120◦ apart along the horizon line of the antenna field

of view [5].

GPS satellites are commonly used for ground based and aircraft navigation. The

system has also been used for space applications. GPS navigation can only be used

for vehicles orbiting at altitudes lower than the current altitude of the constellation.

The GPS constellation was not developed to include the ability for position deter-

mination above its current orbiting altitude. The Space Shuttle currently has GPS

receivers located on-board for GPS navigation [10]. Absolute and relative GPS navi-

gation has been performed on the European Space Agency’s ATV [11], [12]. Relative

GPS navigation is currently being implemented on the Japanese H-II Transfer Vehicle

(HTV) [13], [14]. The NASA Constellation Project currently under development will

make use of GPS navigation on the Crew Exploration Vehicle (CEV) [15], [16]. In
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addition to governmentally sponsored projects, developing commercial transportation

systems will also use GPS to assist in space navigation. With the emergence of forma-

tion flying in the past decade, multiple studies have been performed on the use GPS

and differential GPS for relative spacecraft navigation for formation flying [17], [18].

Studies have been performed comparing the performance of inertial state esti-

mators to relative state estimators [19]. Inertial navigation using a relative state

estimator, assuming Lambert targeting, requires the implementation of an additional

inertial state filter to estimate the absolute inertial states. Lambert targeting deter-

mines the transfer between two positions given the two position vectors and time of

flight between them [20]. Errors arise from the sole use of an absolute filter when the

relative position is known very well and the absolute position is poorly known due to

an ill-conditioned estimation error covariance matrix.

C. Thesis Focus

Methods for relative GPS navigation are explored in this thesis by examining the

performance of four different Kalman filter architectures. Relative navigation for two

spacecraft is the process of determining estimates of both the position, velocity and

attitude of a single spacecraft with respect to the other spacecraft [21]. Relative

GPS navigation requires the processing of raw GPS measurements. Multiple possible

architectures can be used for relative navigation. The four architectures considered

in this thesis are similar in that all are dual inertial state filters, but differ in the

measurements each processes. A dual inertial filter estimates the inertial position

and velocity states of the two vehicles. The relative states for all four Kalman filters

are found by differencing the chaser and target inertial states. The four architectures

that are focused upon in this work are a position-velocity (PV) extended Kalman
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filter (EKF), a relative pseudorange (RGPS) EKF, a pseudorange (GPS) EKF, and

a reduced GPS EKF.

The PV EKF uses GPS measurements to estimate the inertial position and veloc-

ity vectors of the two spacecraft. The GPS receiver provides the filter with estimates

of its current three-dimensional position and velocity vectors. The PV filter is thought

to be the simplest filter and easiest to implement since it takes advantage of all the

computations done by the receiver. One disadvantage is the inability of the filter

to determine the size and direction of the error. Since the filter processes estimated

position and velocity measurements, the filter cannot determine which satellites are

used to calculate the estimated measurements and therefore cannot determine error

directionality. Specifications on the size of the position and velocity errors are given

as overall error values instead of individual error values of each axis. When designing

the PV EKF, the overall error values of both the position and velocity errors are

assigned to all three directions causing conservative predictions of the estimation er-

rors by the estimation error covariance matrix. In order to determine the size of the

errors in each direction, the computations taking place inside the GPS receiver need

to be recalculated, hence voiding the advantage of using GPS position and velocity

measurements. This uncertainty increases the uncertainty in the relative information

obtained from the PV EKF.

Perhaps the most commonly used relative GPS filter is the RGPS EKF [12], [13].

The RGPS EKF processes relative pseudorange measurements. While the filter per-

forms well for relative position and velocity estimation, the filter does not provide

accurate estimates for inertial position and velocity. Knowledge of inertial position

and velocity is still desired despite the main focus of relative navigation. Space-

craft that have implemented a RGPS EKF in the past relied on an external absolute

navigation filter in order to acquire accurate estimates of inertial states [12]. Both
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filters use the same GPS measurements to perform the state estimation. Since the

same measurements are processed, the same measurement noise corrupts the mea-

surements. Although this is the case, the two filters approximate the measurement

noise independently and assume no correlation between the measurements being pro-

cessed. As a result, this procedure is less theoretically sound as opposed to a single

filter that performs well in inertial and relative state estimation.

The GPS EKF processes pseudorange measurements to estimate the inertial po-

sition and velocity of each spacecraft. The GPS EKF is often more complex due to

an addition of numerous states in an attempt to estimate the common measurement

noise. Much of the noise corrupting the pseudorange measurements is common be-

tween satellites due to the domination of the ionosphere error. By correctly modeling

the common error, accurate relative information can be obtained. However, the GPS

EKF has a higher computational cost.

The reduced GPS EKF attempts to take advantage of the performance of a GPS

EKF without the complexity of the filter. As is the case for the GPS EKF, the reduced

GPS EKF processes pseudorange measurements in order to estimate the inertial po-

sition and velocity of the spacecraft. The difference in the filters is in the states

estimated. The reduced GPS EKF includes the additional states for measurement

noise estimation but does not estimate the additional states. Although the additional

states are not estimated, entries in the estimation error covariance corresponding to

the additional states are allowed to evolve with time thus influencing the state esti-

mation of the inertial position and velocity of the spacecraft. The covariance of the

white sequence is increased to the steady state standard deviation of the common

measurement noise. Bookkeeping of which satellites are being processed is avoided.

A trade study is performed on the four Kalman filters to determine and outline

the advantages and disadvantages of using each filter for relative GPS navigation.
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D. Thesis Approach and Outline

The primary focus of this thesis is an assessment of the advantages and disadvantages

of different Kalman filter designs used for relative GPS navigation. This thesis devel-

ops a mathematical model of a GPS sensor for an orbiting spacecraft. Based upon

the measurements from the GPS sensors, a trade study is performed on four Kalman

filter designs in order to determine the pros and cons of each filter used for relative

GPS navigation.

Chapter II explores the development of the mathematical model of the GPS sen-

sor. An error budget for the GPS model is presented along with algorithms used

for position and velocity determination based upon GPS measurements. Chapter IV

documents a GPS satellite visibility analysis performed for variable receiver fields of

view. Chapter V describes the theory behind the Kalman filter along with the param-

eters used during the implementation of the four Kalman filters. Design specifications

of the four Kalman filters are documented and the theory behind the development of

each is explored. Chapter VI presents the results and analysis of Monte Carlo runs

performed on each filter. Conclusions from the trade study performed are documented

in Chapter VII.
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CHAPTER II

GPS SENSOR MODEL

A mathematical model for the GPS sensor onboard the chaser and target vehicles are

developed in this chapter. The measurements from the GPS model are pseudoranges,

deltaranges, estimated position, estimated velocity, GPS satellite identification num-

bers and position delusion of precision (PDOP) values. An error budget is performed

on the developed sensor model is also included.

A. Pseudorange Errors

A measured pseudorange is needed to approximate the current position of the receiver.

The pseudorange is defined as the distance between a particular GPS satellite at the

time of signal transmission and the GPS receiver at the time of signal reception.

Due to the nature of the atmosphere, clock drifting and data transmission, the exact

pseudorange cannot be accurately calculated. There are six primary sources of error

that affect the calculation of the pseudorange: ionosphere, troposphere, receiver clock

noise, GPS satellite clock bias, multipath and ephemeris. Ionosphere, troposphere and

multipath errors are all the result of time delays and therefore are always positive.

Receiver clock noise, GPS satellite clock bias and ephemeris errors are due to data

and clock drifting resulting in both positive and negative values. In addition to these

six error sources, there is also a bias in the onboard clock of the GPS receiver. The

measured pseudorange is modeled by the following equation [9]:

ρi = ‖rrec − rgpsi‖+ c(εionoi + εtropi + εmulti + εrcb + εscbi) + εephi + εη (2.1)
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rrec : position of receiver at time of signal reception (m)

rgpsi : position of the ithGPS satellite at time of signal transmission (m)

c : speed of light = 2.99792458 · 108 m
s

εionoi : error due to ionosphere time delay of the ithGPS satellite (s)

εtropi : error due to troposphere time delay of the ithGPS satellite (s)

εmulti : error due to multipath time delay of the ithGPS satellite (s)

εrcb : error due to receiver clock bias (s)

εscbi : error due to GPS satellite clock bias of the ithGPS satellite (s)

εephi : error due to ephemeris data variations of the ithGPS satellite (m)

εη : error due to receiver clock noise (m)

The speed at which transmitted data travels through space is approximately

the speed of light. Since the distance between two satellites is measured in units of

length and time delays are measured in units of time, the speed of light is used to

ensure consistency of units. For each GPS satellite in view of the receiver, a separate

corresponding pseudorange is calculated.

1. Receiver Clock Bias

Each receiver clock differs in the accuracy built into it. The accuracy of the receiver

clock is substantially less than the accuracy of the GPS satellite clocks, since the

receiver clock is not atomic and the offset of the clock is unknown. As a result, the

“random walking” of the receiver clock will result in an error in the calculation of the

current position of the receiver. The continuous time model for the 2nd order random

walk used to simulate the inaccuracies of the receiver clock producing the errors is

given by Equation 2.2.
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ẋ(t) =

0 0

1 0

x(t) + w(t) (2.2)

where the vector w(t) is a zero-mean white noise process and the state vector x(t)

comprises the clock bias and drift. The corresponding discrete form of 2nd order

random walk model found by sampling the continuous model at a time interval of ∆t

is given by the following equations [9].

xk = Φ(∆t)xk−1 + Qwk−1 (2.3a)

xk = [ bk fk ]T (2.3b)

where bk is the receiver clock bias given as εrcb in Equation 2.1 and fk is the clock

drift. The vector wk−1 is a zero-mean white noise sequence. The discrete sample time

is ∆t. Φ and Q are given as the following matrices.

Φ =

 1 ∆t

0 1



Q =

 Sb∆t+ Sf
∆t3

3
Sf

∆t2

2

Sf
∆t2

2
Sf∆t


Sb = 4× 10−19 (s)

Sf = 16π2 × 10−20 (1
s
)

Sf and Sb are white noise spectral density coefficients for a compensated crystal

clock [22]. For receiver clock errors given in meters, the spectral density coefficients

are multiplied by the speed of light for consistent units.
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2. Ionosphere Model

The ionosphere is a layer of ionized particles that extends from 50 to 1000 kilometers

above the surface of the Earth. GPS satellites are located at an altitude of approx-

imately 20,000 km above the surface of the Earth therefore the transmitted signals

from the GPS satellites frequently pass through the ionosphere. The Klobuchar model

is used to approximate the effects of the ionosphere [23]. Coefficients needed in the

Klobuchar model are broadcast in the GPS ephemeris and are received every 30 min-

utes. Three cases are considered when calculating the time delay due to the presence

of the ionosphere. Since the ionosphere has finite limits the time delay will vary if

the receiver is below the lower level of the ionosphere, inside the ionosphere, or above

the upper level of the ionosphere. This research applies to any satellite in lower earth

orbit (LEO). The orbit of the ISS is located approximately 250 kilometers above the

surface of the Earth placing the ISS and chasing spacecraft inside the ionosphere.

The model used during this research is that of Reference [24]. Appendix A contains

a detailed derivation of the ionosphere time delay.

3. Troposphere Model

The troposphere is the lowest and densest portion of the atmosphere. The troposphere

ranges from sea level to approximately 50 kilometers above the surface of the Earth.

As a result, the troposphere has little to no impact on the for LEO satellites. For

completeness and validation purposes, the troposphere model is included in the overall

GPS model. Hopfield’s troposphere model is used to approximate the time delay due

to GPS signals passing through the troposphere [25]. As is the case for the ionosphere,

multiple cases are considered during the calculation of the troposphere delay. The

troposphere is separated into two layers - wet and dry. The wet layer extends from
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sea level to eleven kilometers and the dry layer extends from 11 to 50 kilometers.

Depending on the location of the spacecraft, the appropriate equation is used to

calculate the troposphere delay. A detailed derivation of the time delay due to the

presence of the troposphere is given in Appendix B.

4. Satellite Clock Error

GPS satellites have four built in atomic clocks - two cesium and two rubidium. The

redundancy of multiple clocks in each GPS satellite results in a high stability of one

part in 1013 per day. Although the atomic clocks are highly accurate, GPS satellite

clocks cannot remain synchronized with one another. As a result, an error of 10−8

seconds or 3.5 meters per day due to clock drift is expected [5].

For modeling purposes, a discrete Gauss-Markov process is used to model the

satellite clock drift, shown by Equation 2.4 [22].

xk+1 = e−
∆t
τsce xk + wk (2.4)

where the vector wk is a zero mean white sequence with length equal to the number

of active GPS satellites. The number of active satellites varies from 24 to 32 due

to the deactivation and re-activation of satellites over time. As a result, the model

is designed to accept a variable number of active satellites. Since the clock bias is

represented by a discrete model, k represents the current time step. The covariance

matrix corresponding to the white noise is given by

E
{
wkw

T
j

}
=

 0 k 6= j

Qk k = j
(2.5)

The covariance, Qk, as defined in Equation 2.5 is given by Equation 2.6. The

steady state standard deviation of the satellite clock error is given by σscess and the
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time constant τsce is modeled to be 30 minutes since this is the rate at which GPS

ephemerides information is received [5].

Qk = σ2
scess(1− e

− 2∆t
τsce ) (2.6)

Since errors in the satellite clock are essentially the same for spaceborne and

ground based GPS receivers, the error corresponding to the satellite clock error for a

ground based receiver of 1-2 meters given in Reference [5] is used as a guideline for

calibrating the satellite clock error of the GPS sensor model. The initial variance is

set equal to the square of the average error given of 1.75 meters with the final variance

being twice the initial variance. The resulting value from the discrete Gauss-Markov

process is in the form of a time delay hence the multiplication of the value by the

speed of light in Equation 2.1.

5. Receiver Clock Noise

In addition to the low frequency error, there is also a high frequency receiver clock

error. A first order Gauss-Markov process identical to the Gauss-Markov process

described for the error due to the satellite clock bias is used to model the receiver

noise. Since pseudoranges arrive at different times from each visible satellite, the

receiver noise corrupting each pseudorange measurement is different. The variance of

the receiver noise, σ2
n, is modeled as 0.5 square meters corresponding to the receiver

clock error for a ground based GPS receiver [25]. The time constant of the receiver

noise, τn, is modeled as 0.1 seconds therefore the modeled error is essentially a white

noise with a variance of 0.5 square meters. The variance and time constant of the

receiver noise are substituted into Equation 2.4 and Equation 2.6 in place of the

variance and time constant corresponding to the satellite clock error.
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6. Multipath Error

Multipath error is a result of the broadcast signal bouncing off adjacent objects and

interfering with the direct path of the signal to the receiver’s antenna resulting in

a delay. Multipath errors are difficult to accurately model due to the complexity

in geometric shapes of the surrounding environment and the irregularity and unpre-

dictability of the signal bouncing. Each GPS satellite results in an entirely unique

multipath error due to the varying geometry and signal path from GPS satellite to

receiver. Multipath error models exist requiring individual frequencies relating to

each GPS satellite that include a Doppler shift as well as each GPS satellite signal

power coming into the receiver, both of which proved difficult to approximate [26].

As a result, an alternate model of the multipath time delay is implemented.

A first order Gauss-Markov process is used to model the multipath time delay.

The Gauss-Markov process implemented is identical to the Gauss-Markov process

used to model the GPS satellite clock bias, Equations 2.4-2.6. In this thesis, cali-

brations are performed on the multipath error in order to achieve errors within the

range of References [5], [27], [25], [9]. A steady state standard deviation of 0.5 meters

for the chaser and 2.0 meters for the target vehicle is implemented and held con-

stant over the entire simulation. The time constant of the Gauss-Markov processes

for both vehicles is 200 seconds. The steady state standard deviation of the target

vehicle is chosen to be four times higher due to the complexity in geometry of the

target vehicle’s structure.

7. Ephemeris Error

Every 30 seconds, GPS satellites broadcast a set of ephemeris data and the GPS

receivers update their ephemeris data approximately every 30 minutes. There are
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slight errors in the ephemeris parameters transmitted in the ephemeris data. Due to

these errors, the resulting calculations of the GPS satellite positions do not represent

the exact current location of the GPS satellites. The median position errors in Local

Vertical Local Horizontal (LVLH) frame over a 12 hour period are 1.2 meters radially,

4.5 meters along track and 3.2 meters cross track [5]. Figure 1 shows the LVLH frame

with respect to the Earth Centered Inertial (ECI) where the x-axis of the LVLH frame

is aligned with the direction of motion (into the page).

Fig. 1. LVLH Frame

In order to model the ephemeris errors, an integrated Gauss-Markov process is imple-

mented. Equation 2.7 is implemented with parameters defined by successive vector

and matrix definitions [22].

xlvlhk+1 = Φkx
lvlh
k + wk (2.7)

xlvlhk = [ex ey ez eẋ eẏ eż]
T
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Φk =

 I3x3 I3x3 · τeph(1− e
− ∆t
τeph )

03x3 I3x3 · e
− ∆t
τeph


where the vector wk is a zero mean white noise sequence. The covariance matrix

corresponding the the Gauss-Markov process described in Equation 2.7 is as follows:

E
{
wkw

T
j

}
=

 0 k 6= j

Qk k = j

where

Qk =

 Q11 Q12

Q21 Q22


The covariance matrix Qk is populated by the smaller covariance matrices given by

Equations 2.9-2.10 [22].

Q11 = 2σ2τeph(∆t− 2τeph(1− e
− ∆t
τeph ) +

τeph
2

(1− e−
2∆t
τeph ))I3×3 (2.8)

Q12 ≡ Q21 = σ2τeph(2(1− e−
∆t
τeph )− (1− e−

2∆t
τeph ))I3×3 (2.9)

Q22 = σ2(1− e−
2∆t
τeph )I3×3 (2.10)

As previously mentioned, the median ephemeris error is known for 12 hour pe-

riods of time. In order to implement the Gauss-Markov process, initial conditions

are needed on the initial error vectors as well as the initial covariance matrix. Using

the given median daily position errors, the final covariance matrix representing the

uncertainty in the position errors is chosen to be two times the square of the median

standard deviation as shown in Equation 2.11 while the initial covariance matrix is

chosen to be one fourth of the final covariance matrix.
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Q11k(tf ) = 2


4.52 0 0

0 3.22 0

0 0 1.22

 (2.11)

Equating Equation 2.11 to Q11 as defined by Equation 2.9 while setting ∆t to

be the final time of 12 hours and choosing τeph to be 30 minutes (the frequency of the

reception of ephemeris data), it is possible to solve for the variance corresponding to

each position error. The resulting variance vector is defined by Equation 2.12.

σ2 = 1e−6


0.1405

0.2778

0.0198

 (2.12)

The vector squaring notation in Equation 2.12 represents the squaring of each

individual term of the vector σ. Once the variance is determined, the covariance

matrix Qk at each time step is determined using Equations 2.9-2.10 during the sim-

ulation using ∆t equal to the simulation time step and holding τeph constant at 30

minutes.

B. Delta Range and Range Rate

Range rate is defined as the rate of change of the distance between a GPS receiver

and a single GPS satellite. The range rate is used to compute the deterministic

velocity solution. Delta range is defined as the difference between two consecutive

pseudorange measurements taken within a given time interval. The pseudorange is

calculated using Equation 2.1. Let the acquisition time interval be defined as δt. The

acquisition time interval varies based on the receiver but is 0.1 seconds for the study

performed in this thesis. The true range rate is defined by Equation 2.13.
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ρ̇i =
ρi · ρ̇i
ρi

(2.13)

where

ρi = rgpsi − rrec

ρ̇i = vgpsi − vrec

While range rate measurements from Doppler effects exist, delta range measure-

ments from integrated carrier phase are more common. Two first order Gauss-Markov

processes are used to approximate the range rate error. The Gauss-Markov processes

model the portion of the error unique to each satellite and the portion of the the

error unique to the receiver. The overall steady state standard deviation of the range

rate error is 0.1 meters per second [27]. There is a contribution to the range rate

from the receiver and GPS satellite. In order to model each of these contributions,

two first order Gauss-Markov processes are used with the variance of each process

equal to half of the total variance. The time constant corresponding to the receiver

contribution is 1 second while the time constant corresponding to the GPS satellite

contribution is 60 seconds. The total range rate error is depicted by Equation 2.14

and the Gauss-Markov process model is given by Equation 2.15.

xtot = xsat + xrec (2.14)

xk+1 = e−
∆t
τ xk + wk (2.15)

Equation 2.15 is used to model both contributions to the total range rate model
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with a corresponding covariance value Q for each modeled contribution given by

Equation 2.16. The steady state standard deviation and time constant differ for each

contribution.

Qcont = σ2
cont

(
1− e

−2∆t
τcont

)
(2.16)

Although the contribution from the GPS receiver is unique to a single receiver,

the time of reception of GPS satellite signals by the receiver varies. Therefore, the

noise contribution from the GPS receiver for each range rate corresponding to different

GPS satellites differs for each time interval due to the slight variation in reception

time. Since the two contributions to the range rate error are not correlated, the total

covariance is the sum of the individual covariances as shown in Equation 2.17.

Qtot = Qsat + Qrec (2.17)

C. GPS Satellite Position and Velocity

The position and velocity of each GPS satellite are calculated via GPS ephemerides

which are transmitted from the GPS satellites once every 30 seconds and received

by the GPS receiver once every 30 minutes on-board the spacecraft. The broadcast

GPS ephemerides are valid for up to four hours after the time of transmission to

allow for instances when the GPS ephemerides are not acquired by the receiver during

successive data transmissions. In order to calculate the position of the GPS satellites,

a step by step process is followed [5]. In the process, the position is initially defined in

a body frame and is then transformed into an Earth Centered Earth Fixed (ECEF)

frame. The position is also needed in the Earth Centered Inertial (ECI) frame. The

position of the GPS satellites in both ECEF and ECI frames [2] is given as
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rlvlh = [xk yk zk]
T

recef = Clvlh
ecef

T
rlvlh

reci = Ceci
ecefrecef

rlvlh : position of spacecraft in LVLH frame (m)

recef : position of spacecraft in ECEF frame (m)

reci : position of spacecraft in ECI frame (m)

where

θk = fk + ωk

θ̃k = θk + ζcorrk

xk = rk cos(θ̃k)

yk = rk sin(θ̃k)

zk = 0

rk : distance from receiver to center of earth (m)

fk : true anamoly (rad)

ωk : argument of periapsis (rad)

ik : inclination (rad)

Ωk : longitude of ascending node (rad)

ζcorrk : correction term determined from GPS ephemeris (rad)

and the transformation matrices Clvlh
ecef

T
rlvlh and Ceci

ecefrecef are given as follows:
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Clvlh
ecef = R1(ik)R3(Ωk)

Ceci
ecef = R3(Ω0 + Ω̇Etk)

ΩE : angular velocity of the earth ∼ 7.2921151467× 10−5 rad
s

Ω0 : initial angle of longitude of ascending node (rad)

The rotation matrices R1 and R3 are defined as

R1(ik) =


1 0 0

0 cos ik sin ik

0 − sin ik cos ik



R3(Ωk) =


cos Ωk sin Ωk 0

− sin Ωk cos Ωk 0

0 0 1


The velocity of each GPS satellite is computed by taking the time derivative of

the position vector. The following equations give the velocity of the GPS satellites in

the LVLH and ECEF frames taking into account a time varying orbit radius. [28]

vxk = ṙkcos(θ̃k)− yk ˙̃θk

vyk = ṙksin(θ̃k) + xk
˙̃θk

vzk = 0

vlvlh = [vxk vyk vzk ]
T
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Ẋk = (vxk − ykΩ̇k cos(ik)) cos(Ωk)− (yk sin(ik)i̇k − vyk cos(ik)− xkΩ̇k) sin(Ωk)

Ẏk = (vxk − ykΩ̇k cos(ik)) sin(Ωk) + (xkΩ̇k + vyk cos(ik)− yk sin(ik)i̇k) cos(Ωk)

Żk = vyk sin(ik) + yk cos(ik)i̇k

vecef = [Ẋk Ẏk Żk]
T

The velocity of the GPS satellites in the ECI frame is:

veci = Ceci
ecefvecef + (Ω̇E × recef )

The × symbol denotes the cross product between the two given vectors.

D. GPS Receiver Position Estimation

Position estimates of the GPS receiver are determined using a deterministic solution

to the GPS problem. The algorithm, known as Bancroft least squares [29], requires

knowledge of position vectors of the visible GPS satellites (easily calculated from

transmitted ephemeris data) and the corresponding pseudorange measurements. Be-

ing a deterministic solution, Bancroft least squares requires at least four GPS satellites

in order to approximate the position and time error of the receiver.

1. Bancroft Least Squares

The following derivation can be found in depth in Reference [29]. Measurements

are sampled at a fixed sample period specified for the GPS receiver. Let ρi be the

pseudorange measurements taken by the receiver for the ith GPS satellite. Let N be

the total number of pseudorange measurements of the visible satellites. It is assumed

the pseudorange measurements have included errors due to receiver clock bias. Define
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the vectors α to be

αi = [sTi ρi]
T , for i = 1...N (2.18)

where sTi is the position coordinates of the ith GPS satellite given in ECI coordinates

and ρi is the corresponding measured pseudorange. The Minkowski function for four

dimensional space is defined by Equation 2.19.

〈ξ,η〉 = ξ · η − 2 ξ4 η4 (2.19)

Making using of Equation 2.19 allows for the definition of the auxiliary variable χi.

χi =
〈αi,αi〉

2
(2.20)

Once all α and χ have been assembled, define the following matrix and vectors for

future use.

A = [α1 α2 α3 · · · αN ]T (2.21a)

γ = [1 1 1 · · · 1]T (2.21b)

χ = [χ1 χ2 χ3 · · · χN ] (2.21c)

where A is an N × 4 matrix and γ and χ are [N x 1] column vectors. The inclusion of

the weighting matrix, W, allows for scaling when desired. In this thesis, W is chosen

to be the identity matrix. In general, W is a symmetric positive definite matrix.

B = (ATWA)−1ATW (2.22)

Define vectors u and v as
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u = Bγ (2.23)

v = Bχ (2.24)

Compute the coefficients to be used with the quadratic defined by Equation 2.26.

X = 〈u,u〉 (2.25a)

Y = 〈u,v〉 − 1 (2.25b)

Z = 〈v,v〉 (2.25c)

Solving the quadratic for λ

Xλ2 + 2Y λ+ Z = 0 (2.26)

results in two solutions. Two position and clock bias estimates are calculated by

substituting the solution to Equation 2.26 into Equation 2.27.

yest = λu + v = [rrece − be]T (2.27)

The estimated position vector rrece is given in the ECI reference frame. Only one

of the two solutions calculated from Equation 2.27 provides a correct position estimate

of the GPS receiver. In order to distinguish the extraneous solution from the actual

solution, the estimated position and clock bias is substituted into the pseudorange

equation given by Equation 2.28 and compared with the measured pseudorange. The

pseudorange calculated with the extraneous solution will not match the measured

pseudorange whereas the pseudorange calculated via the actual solution will be nearly
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identical.

ρiest = ‖si − rrece‖+ c · be (2.28)

E. GPS Receiver Velocity Estimation

The deterministic velocity solution is simpler than the position deterministic solution

since velocity enters the range rate equation linearly. The velocity estimate algorithm

is the least squares solution. It requires knowledge of estimated receiver position,

position and velocity of each GPS satellite, and range rate measurements. A similar

algorithm is derived in Reference [30] where the velocity vector is determined using

the same required variable knowledge, except the algorithm did not provide a solution

for the clock drift. The algorithm below is developed from the time derivative the

the pseudorange equation and includes a solution to the clock drift not given in

Reference [30] along with the velocity of the GPS receiver.

1. Algorithm Derivation

To begin, determine the distance di between the receiver and each GPS satellite

where i denotes the ith satellite. Then take the time derivative of the distance to get

a distance rate.

d2
i = xTx− 2sTi x + sTi si

d

dt
(d2
i ) =

d

dt
(xTx− 2sTi x + sTi si)

diḋi = (x− si)
T ẋ + (si − x)T ṡi (2.29)
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where the vector x is the estimated position of the receiver, si is the position of the ith

GPS satellite, ẋ is the velocity of the receiver to be estimated, and ṡi is the velocity

of the ith single GPS satellite.

Taking the time derivative of the pseudorange equation results in

d

dt
(ρi) =

d

dt
(di + cb)

ρ̇i = ḋi + cḃ (2.30)

Note that ρi is the pseudorange for each GPS satellite, di is the distance to each

satellite, c is the speed of light, and b is the receiver clock bias. In addition, ρ̇i is the

range rate corresponding to each GPS satellite, ḋi is the rate at which the distance is

changing between the receiver and the GPS satellite and ḃ is the receiver clock drift.

Solving Equation 2.30 for ḋi and substituting into Equation 2.29 leads to

di(ρ̇i − Ḃ) = (x− si)
T ẋ + (si − x)T ṡi (2.31)

Let B be defined as the product of c and b. Define Ri = si − x. Implementing the

definition and rearranging, Equation 2.31 becomes

RT
i ẋ− diḂ = RT

i ṡi − diρ̇i (2.32)

Let

z = [ẋT Ḃ]T



28

Making use of the definition of z, Equation 2.32 can be rewritten as

[RT
i − di]z = RT

i ṡi − diρ̇i (2.33)

If ai and βi, where i refers to each GPS satellite, are defined as

ai = [RT
i − di]T

βi = RT
i ṡi − diρ̇i

the matrices A and y can be formulated as

A = [a1 a2 a3 · · · an]T

y = [β1 β2 β3 · · · βn]T

Equation 2.33 can be rewritten in a recognizable and easily solvable linear form.

Az = y (2.34)

Matrix A has dimensions of m × 4. A weighted least squares algorithm is used to

solve for z. Omitting the derivation of the least squares methodology [31], the solution

to Equation 2.34 is

z = (ATWA)−1ATWy (2.35)

The weight matrix W is defined to be an identity matrix, Im×m. If A is a square

matrix, then Equation 2.35 reduces to a more familiar form.

z = A−1y

Using the above algorithm, the receiver velocity can be estimated using the estimated
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position of the receiver and known position and velocity of the GPS satellites in

addition to the range rate measurements.

F. GPS Satellite Visibility Validation

For this thesis, the orbit of the International Space Station (ISS) is used as a reference

for validation purposes and analysis due to the availability of orbital information

pertaining to the ISS. Orbital information for the ISS is updated daily and found in

Reference [32]. A validation of the 6 DOF model used to determine the position and

velocity of the GPS satellites is performed using initial conditions and parameters

corresponding to the ISS. A GPS receiver has an allotted field of view in which

transmitted signals from GPS satellites can be received. The antenna field of view

is specified by the half cone angle of the antenna. The half cone angle is the angle

between the antenna cone and the boresight, as shown in Figure 2.

Fig. 2. Antenna Half Cone Angle

A range of half cone angles between 55◦ - 65◦ are examined with the two extremes

presented. The chaser vehicle is assumed to be on the same orbit as the ISS with
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initial conditions as given below.

r0 = 106 ·


3.395964921

3.604875629

4.548220882

m

v0 = 103 ·


−6.645263099

2.415260514

3.047389154

m
s

A two day period of time is considered during which the chaser’s orbit and orbits

of the GPS satellites are simulated. The orbit of the chaser vehicle is propagated

using a simple two body approach assuming no external accelerations acting upon

the system. The orbits of the GPS satellites are propagated via an orbit propagation

algorithm [5]. Select orbital elements corresponding to the orbit of the ISS are given

as follows:

iISS = 51.39979◦

ΩISS = 349.81214◦

ωISS = 156.31946◦

Using the above initial conditions, the orbit of the chaser vehicle is propagated

for two days and the number of visible GPS satellites is recorded every ten seconds.

In addition to the 6 DOF simulation of the GPS orbits, Satellite Tool Kit (STK)

is also used to propagate the orbits of both the chaser vehicle and GPS satellites.

Providing the same initial conditions and epoch time (date and time) as used in the
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6 DOF simulation, a comparable data set is extracted from STK for comparison.

First a half cone angle of 55◦ is analyzed. The number of GPS satellites visible for

both simulations is given by Figure 3. As can be seen upon inspection of Figures 3, the

results from the 6 DOF and STK simulations are similar. The maximum difference

between the two data sources is approximately 5%.

Fig. 3. Comparison of Simulations - Total Number of GPS Satellites Visible for 65◦

Half Cone Angle

Since four GPS satellites are needed in view to approximate the position of

the GPS receiver, percentages pertaining to four GPS satellites in view are given in

Table I. The comparisons given in Figure 3 and Table I show the orbit propagation

of the 6 DOF simulation resembles the STK simulation.
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Table I. Percentage of GPS Satellites Visible - 55◦ Half Cone Angle

Simulation Percentage

Method < 4 ≥ 4

6 DOF 21.2674 78.7326

STK 21.7778 78.2222

To ensure the 6 DOF satellite propagation orbit will produce accurate results at

multiple antenna half cone angles, a 65◦ half cone angle is also analyzed. The number

of satellites visible for both simulations is given by Figure 4. Although there is a

slight discrepancy in the number of satellites visible determined by each simulation

method in Figure 4, the percentage of satellites less than the required four needed to

determine receiver position is once again less than 1%.

Fig. 4. Comparison of Simulations - Total Number of GPS Satellites Visible for 65◦

Half Cone Angle
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Table II. Percentage of GPS Satellites Visible - 65◦ Half Cone Angle

Simulation Percentage

Method < 4 ≥ 4

6 DOF 1.0938 98.9063

STK 1.3977 98.6023

Comparing the two half cone angles analyzed, the resulting percentages of less

than four GPS satellites visible over the duration of the 2 days orbit given in Table II

are within less than a percentage point of each other. The 6 DOF simulation for both

cone angles closely resembles the STK simulation results. As a result, this confirms

the GPS satellite orbit propagation method used for the 6 DOF simulation properly

calculates the position of the GPS satellites given a set of GPS ephemerides.

G. Pseudorange Error Budget

The purpose of this section is to describe the methodology and process taken to val-

idate the error sources affecting the calculated pseudoranges and approximate range

rates. The expected total error in the pseudorange for a ground based GPS receiver

is approximately 5-15 meters(1σ) [5],[27]. The main contribution to the pseudorange

error is the ionosphere error. During months of high solar activity, the time delay due

to the presence of the atmosphere increases, while the time delay will decrease during

months of low solar activity. The position of the GPS receiver on the Earth affects

the time delay since there is a higher total electron count (TEC) located equatorially

about the Earth and low amounts of TEC around the poles [23].

Time delays due to the ionosphere and troposphere are both governed by physics
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and restricts error alteration without some form of alternate position location. How-

ever, the spacecraft will almost exclusively be located outside the troposphere and

will not experience a time delay due to signal passage through the troposphere. Any

drift in the GPS satellite clocks will be experienced in the same manner regardless of

the location of the GPS receiver.

Table III gives error data corresponding to the ground based GPS sensor [5]

and the GPS receiver located on-board the orbiting spacecrafts assuming the coarse-

acquisition (C/A) code is used. Note that each error source has units of meters. The

total error values given in Table III are the RSS values calculated using all of the

error sources corresponding to each sensor.

Table III. GPS Error Sources

Active Expected Chaser Sensor Target Sensor

Error Error Error Error

Sources Reference [5], [27], [25], [9] (Simulation)

Ionosphere 2.0-15.0 6.9 7.2

Troposphere 0.0-1.0 0.0 0.0

Ephemeris 2.0-2.5 2.1 2.1

Receiver Noise 0.0-0.7 0.7 0.7

Satellite Clock 1.0-2.0 1.8 1.8

Multipath 0.0-1.0 0.5 2.0

Total Error (RMS) 3.0-15.4 7.3 8.7

The total RMS error does not include the range rate error since the range rate
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error does not contribute to the pseudorange error. The expected range rate error is

<0.2 meters per second and is determined to be 0.1 meters per second for both vehicles

from simulation results. Also, the time delay due to the presence of the troposphere is

non-existent for the trajectory considered. The RMS value for the total pseudorange

error for the chaser vehicle is approximately seven meters one sigma. The RMS value

for the total pseudorange error for the target vehicle is approximately nine meters

one sigma. The difference between the two values is attributed to the steady state

standard deviation of the multipath error for the target vehicle being four times

greater than that of the chaser vehicle as well as a slight difference in the ionosphere

error. As previously discussed, the multipath error of the target vehicle is modeled

to be higher due to the complexity in the target vehicle’s structure as opposed to the

more simplistic chaser vehicle structure. Since the ionosphere time delay is associated

with latitude location, the two vehicles being located at different latitudes results in

a difference in the ionosphere error.

The following figures are the time history of the RMS values of each error for all

100 Monte Carlo simulations. The time history of the RMS values is determined using

Equation 2.36 where N is the total number of recorded errors for one simulation. For

each of the figures, errors for both vehicles are included allowing for a comparison

between the errors experienced by each vehicle. The total error due to the troposphere

is zero for the entire simulation and is therefore not included.

εerrrmsj
=

√√√√ 1

100

100∑
i=1

ε2erri for j = 1 ... N (2.36)

Figure 5 shows the time history of the RMS values of the ionosphere error for all

100 Monte Carlo simulations. Although the initial Ω0 and initial GPS time are varied

for each Monte Carlo simulation, the rotation of the GPS constellation and receiver
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positions in ECEF coordinates is about the z-axis of the ECI frame. Since only a

single trajectory is considered, the latitude of both the constellation and receiver

positions remain unchanged resulting in a similar error time history for each Monte

Carlo simulation. In order to shift the cosine behavior of the error left or right, the

latitudes of the receiver positions must change.

Fig. 5. RMS Ionosphere Error - 100 Monte Carlo Runs

Figure 6 gives the RMS values of the ephemeris errors for all 100 Monte Carlo

simulations. The ephemeris error is modeled as a second order Gauss-Markov process

modeling errors on both position and velocity components of the GPS satellites as

opposed to errors on each ephemeris data component. Figure 6 shows the growing

error as time progresses as is modeled by defining the initial and final process noise

covariance matrices over a 12 hour period. During the error analysis, a single broad-

cast ephemeris data file is used since ephemeris data is valid for four hour periods.
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If the ephemeris data is updated, the error will reset to the initial covariance value

defined and a linear growth of the error attributed to the new ephemeris data will

begin from the time of ephemeris data acquisition.

Fig. 6. RMS Ephemeris Error - 100 Monte Carlo Runs

Figure 7 gives the RMS values of the multipath error for both vehicles for all 100

Monte Carlo simulation. A first order Gauss-Markov process is used to model the

error with steady state standard deviations of the chaser and target vehicles given as

0.5 meters and 2.0 meters respectively. Both plots in Figure 7 fluctuate about the

steady state standard deviations defined.
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Fig. 7. RMS Multipath Error - 100 Monte Carlo Runs

Figures 8-9 give the RMS values for the error due to receiver noise and satellite

clock error for all 100 Monte Carlo simulations. While both plots in each figure

are very similar the plots are not identical due to different random numbers being

used for each error source. Although both vehicles see many of the same satellites,

especially as the relative distance between the two vehicles nears zero, each receiver

will receive the GPS data at different times resulting in the differences in the plots

in Figure 9. Since each receiver is independent from the other receiver, the receiver

noise experienced by each receiver is unique to each respective receiver resulting in

the difference in the plots in Figure 8.
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Fig. 8. RMS Error Due to Receiver Clock Noise - 100 Monte Carlo Runs

Fig. 9. RMS Satellite Clock Error - 100 Monte Carlo Runs

Figure 10 shows the total RMS value of the total pseudorange error for all 100

Monte Carlo simulations. It is obvious from Figure 10 that the ionosphere error
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dominates the total error present in the pseudorange measurements which is to be

expected considering the values given in Table III. Note that for each plot, the curve

is shifted upwards by approximately the value of the multipath error of each vehicle.

The upward shift is due to both ionosphere and multipath errors being calculated

from time delays which are positive. All other errors, with the exception of the non-

existent error due to the troposphere for the current trajectory, are not constrained

to positive real numbers.

Fig. 10. RMS Total Pseudorange Error - 100 Monte Carlo Runs

Figure 11 is the RMS for corresponding to the range rate error for all 100 Monte

Carlo simulations. The range rate error affects the velocity estimation and clock drift

calculations as opposed to the pseudorange errors effect on the position estimation

and clock bias calculations. Figure 11 shows the two combined first order Gauss-

Markov processes assumed for the range rate error produce an error of 0.1 meters per
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second.

Fig. 11. RMS Range Rate Error - 100 Monte Carlo Runs
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CHAPTER III

ADDITIONAL SENSOR MODELS

Details on the development of the mathematical models for a star tracker, gyroscope,

and accelerometer are presented in this chapter. The star tracker provides attitude

measurements. The gyroscopes and accelerometers provide the change in attitude

angle and change in translational velocity respectively. The changes in attitude and

velocity are used to compute the angular velocity and translational acceleration of

the spacecraft by implementation of the mean value theorem.

A. Star Tracker

1. Principle of Operation

The star tracker takes advantage of technologically advanced imaging sensors to mea-

sure the relative orientation of the vehicle it is located on by tracking stars. The

sensor detects the location of the stars in a two dimensional plane. With the location

of the stars and the focal length associated with the sensor, the star tracker is able

to determine the stars in the two dimensional image from an almanac. Once the

stars are identified, the information acquired from almanac allows the star tracker to

determine its orientation with respect to an inertial coordinate system.

2. Mathematical Model

The mathematical model used to describe the star tracker is given by Equation 3.1 [33].

q̄sti =
((

q̄stb ⊗ q̄error
)
⊗ q̄bi

)
⊗ q̄η (3.1)

where
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q̄sti : inertial to star tracker quaternion

q̄stb : body to star tracker quaternion

q̄error : quaternion derived from alignment error

q̄bi : inertial to body quaternion

q̄η : quaternion derived from tracker noise and bias, random walk

The scalar first definition of the quaternion is used. Let ā and b̄ be defined as:

ā =

 α

ξ3x1

 b̄ =

 β

γ3x1


Using the above definition of ā and b̄, the following equation defines the quater-

nion product as seen in Equation 3.1 [34].

c̄ = ā⊗ b̄ =

 2αβ − ξ · γ

αγ + β ξ − ξ × γ


The star tracker returns an attitude parameter set that allows the user to know

its current orientation relative to a fixed inertial frame. The derivation of Euler angles

from quaternions is given by Equations 3.2-3.4 [34]. The estimated orientation of the

chaser vehicle is defined in terms of Euler angles as opposed to quaternions.

ψ = arctan

(
2q1q2 + 2q0q3

2q2
0 + 2q2

1 − 1

)
(3.2)

θ = arcsin (2q0q2 − 2q1q3) (3.3)

φ = arctan

(
2q2q3 + 2q0q1

2q2
0 + 2q2

3 − 1

)
(3.4)
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where

q̄ =

[
q0 q1 q2 q3

]T
(3.5)

3. Performance

The errors present in the star tracker model is given in Table IV [33].

Table IV. Star Tracker Model Error Parameters

Parameters Values Notes

Misalignment Error, q̄error

σerror 0.1◦ 1σ standard deviation

Attitude Noise, q̄η

σηφ 0.0002 rad 1σ standard deviation, roll

σηθ 0.0002 rad 1σ standard deviation, pitch

σηψ 0.0002 rad 1σ standard deviation, yaw

mη 0.1 ◦ mean for all attitude states

B. Gyroscopes

1. Principle of Operation

The rate gyroscopes on-board the spacecraft measure the angular velocity of the

vehicle and integrate the measured value to determine the change in angle measured

by the gyroscope. Three-axis gyroscopes are used.
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2. Mathematical Model

The mathematical model used to describe the rate gyroscopes mounted on-board the

spacecraft is given by Equation 3.6 [35].

∆θb =

∫ t+∆t

t

{
ωb + ηv + wmv

}
dτ (3.6)

ωb = [Tb
i(q̄

b
i)]ω

i (3.7)

where

θb : angle vector given in body coordinate system

ωb : angular velocity vector in body coordinate system

Tb
i : transformation matrix from inertial to body coordinate system

ηv : noise and bias vector associated with angular velocity, random walk

wmv : first-order Markov process vector associated with angular velocity

The sample time, ∆t, is 0.1 seconds. The resulting angular measurement is given

in the body coordinate system and is used to describe the motion and orientation of

the spacecraft.

3. Performance

Table V gives the error parameters present on the gyroscopes of the IMU [36], [37].
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Table V. Gyroscope Model Error Parameters

Parameters Values Notes

IMU Body Misalignment Error

σIMUmis 0.05 ◦ 1σ standard deviation

Markov error, wmv

σmv
0.3◦

hr
1σ standard deviation

τmv 3600 sec time constant

Gyroscope Noise, ηv

σηv
0.025◦√

hr
1σ standard deviation

mηv
0.5◦

hr
error mean

C. Accelerometer

1. Principle of Operation

The mathematical model used to represent the accelerometer and the performance

specifications of the accelerometers used onboard the spacecraft is documented in this

section. The accelerometer located on-board the spacecraft measures the change in

the translational velocity. The maneuvers applied during the rendezvous operation

are recorded by the accelerometer.

2. Mathematical Model

The mathematical model used to describe the accelerometer mounted on-board the

spacecraft is given by Equation 3.8 [35].
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∆vimu =

∫ t+∆t

t

{aimu + ηa + wma} dτ (3.8)

where

aimu : translational acceleration vector in IMU coordinate system

∆vimu : velocity vector in IMU coordinate system

ηa : noise and bias vector associated with acceleration, random walk

wma : first-order Markov process vector associated with acceleration

The sample time, ∆t, is 0.1 seconds. The vector aimu is the translational accel-

eration as defined in the IMU coordinate system. All values entering into the IMU

sensor are given in a body frame therefore transformations are performed on incoming

parameters to redefine the parameters in the IMU coordinate system. Equation 3.12

transforms position and velocity (both translational and rotational) vectors into the

IMU coordinate systems from the body coordinate system [34].

q̄bodyimu = [q0 q1 q2 q3]T = [q0 q] (3.9)

xbody = [x1 x2 x3]T (3.10)

ω = q× xbody (3.11)

ximu = xbody − 2 (q0ω + q× ω) (3.12)

Euler parameters given in the body coordinate system are transformed to the

IMU coordinate system. The sensor accepts the angular velocity, angular velocity

rate, Euler parameter set from inertial frame to IMU frame, acceleration due to non-

gravitational forces and IMU location onboard the spacecraft with respect to the CG

location of the spacecraft. Using these parameters, the translational acceleration aimu
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as shown in Equation 3.8 is calculated by summing the acceleration due the offset of

the IMU from the CG of the spacecraft with the acceleration due to non-gravitational

forces.

3. Performance

The error parameters present in the accelerometer of the IMU model are given in

Table VI. The values given in Table VI are typical values for accelerometers used for

space applications [38]. The bias value given in reference [38] is a start up bias and

is assumed to be compensated internally by the IMU. The bias present on the mea-

surements of the accelerometer is in the form of the one-year composite repeatability.

This value is used to model the mean and standard deviation of the bias affecting the

accelerometer measurements.

Table VI. Accelerometer Model Error Parameters

Parameters Values Notes

IMU Body Misalignment Error

σIMUmis 0.05 ◦ 1σ standard deviation

Markov error, wma

σma 7 µg 1σ standard deviation

τma 3600 sec time constant

Accelerometer Noise, ηa

σηa 40 µg 1σ standard deviation

mηa 40 µg error mean
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CHAPTER IV

GPS SATELLITE VISIBILITY

The number of satellites a GPS receiver can receive data transmissions from is limited

by the field of view of the antenna. In addition to field of view limitations, there may

also be objects in the line of sight of the receiver to a satellite that interfere with the

signals being transmitted by the satellite. Any obstruction in the antenna field of

view results in signal loss from satellites obscured by the obstruction.

Half cone angles of 55, 65, and 75 degrees are analyzed to determine the number

of satellites in view over the course of the proximity operations. Both chaser and

target vehicles are analyzed. The target vehicle is the ISS for this analysis. The

same half cone angles are investigated while propagating a single orbit of a vehicle

at the ISS altitude at various longitudes of the ascending node. For the cases under

examination in this thesis, the antenna located onboard the chaser vehicle is oriented

in the zenith direction while the ISS antenna is oriented a -15 degree pitch from zenith

as defined in the LVLH reference frame. Two configurations of the GPS satellite

constellation are examined, with 24 and 32 active satellites. There are six different

GPS satellite orbits with at least four satellites active on each orbit at any given

time. Currently there are 32 satellites in orbit that are capable of being active at

one time therefore the case when all satellites are active is examined. In order to

select which 24 of the 32 satellites should be used to allow for greatest constellation

coverage, the right ascension of each GPS satellite is examined to determine which

satellites are on each of the six previously mentioned orbits. With the orbits of each

satellite determined, the satellites are chosen based on the four largest differences

in the argument of perigee of each satellite. Although the sum of the argument of

perigee and mean anomaly should be used for satellite selection, it is assumed the
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mean anomaly of each satellite is zero therefore leaving the argument of perigee on

which to base the satellite selection. With this determined, the analysis is performed

with time durations for certain numbers of visible satellites recorded and analyzed.

A. Proximity Operations

The duration of the rendezvous is assumed to be 13000 seconds, although GPS nav-

igation is only used during approximately 6600 seconds of the rendezvous, for the

chaser vehicle located 23 kilometers to 500 meters downrange of the ISS. The follow-

ing analysis is performed up to the chaser vehicle being 500 meters downrange during

which GPS navigation is used. Although GPS navigation is only used for 6600 sec-

onds, a total of 9000 seconds are examined to allow for a larger sample space. The

number of satellites visible is influenced solely by the antenna field of view. For the

rendezvous, the antenna field of view of the chaser vehicle may encounter an area of

obstruction due to the presence of the ISS as a result of the location of the receiver

onboard the chaser vehicle. The obstruction area within the field of view will contin-

uously grow as the chaser vehicle nears the ISS until the entire field of view of the

antenna is obstructed by the ISS. By the time the GPS antenna is rendered useless

due to the obstruction, navigation of the chaser vehicle will have switched from GPS

based navigation to another navigation method which has a higher fidelity at close

proximity than GPS navigation. The probability that the ISS will experience an ob-

structed view due to the chaser vehicle is low, since the antenna onboard the ISS will

be directed away from the approaching chaser vehicle. The chance of either vehicle

experiencing an obstructed view due to the presence of satellites at higher altitudes

is minuscule and therefore neglected from the analysis.
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Fig. 12. Antenna Field of View Obstruction

Figure 12 gives a two-dimensional view of the manner in which satellite visibility

is determined when an object obstructs the field of view of the GPS antenna. The

gray circle represents the ISS with a diameter of 100 meters with the center of the

circle located at the center of gravity of the ISS. It should be noted that the current

maximum length of the ISS is approximately 100 meters hence the reason for choosing

the dimensions of the sphere. For any angle Ψ > Φ, the direct signal path between

the GPS satellite and vehicle is not blocked; therefore, the satellite remains in view of

the vehicle. On the contrary, any angle Ψ ≤ Φ results in an interference of the direct

signal path due to the obstruction. Therefore, the satellite is not seen by the GPS

receiver located onboard the chaser vehicle, although it may be seen by the receiver

onboard the ISS.

The ISS does not obstruct the view of the chaser GPS receiver until the chaser

vehicle is less than 500 meters downrange of the ISS. As aforementioned, a relative

navigation method will be used from the time at which the chaser vehicle is approxi-

mately 1300 meters downrange of the ISS until rendezvous with the ISS. Although a

relative navigation method will be used beginning when the chaser vehicle is approx-

imately 1300 meters downrange, GPS navigation will remain active until the chaser

is approximately 500 meters downrange at which point the chaser vehicle will be
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navigated solely by the relative navigation method.

The following analysis is performed by repeating the rendezvous trajectory 12

times, each starting with the GPS constellation rotated one hour forward since the

orbital period of the GPS constellation is 12 hours. The number of satellites visible to

both the chaser spacecraft and ISS is analyzed in addition to common satellites seen

by both vehicles. Statistical information corresponding to the amount of time various

numbers of satellites are visible are calculated to better understand the visibility of the

GPS constellation over the duration of the rendezvous during which GPS navigation

is implemented. In addition, the percentage of satellites visible over the course of the

rendezvous is presented.

1. 55 Degree Half Cone Angle

Figures 13 shows the percentage of satellites visible over the duration of the ren-

dezvous with a 24 GPS satellite constellation configuration for the ISS oriented at

the 0-0-0 LVLH attitude. Figures 14 gives the percentage of visible satellites during

the course of the rendezvous when GPS navigation is implemented assuming a 32

active GPS satellites constellation for the ISS positioned in the 0-0-0 LVLH attitude.

The number of satellites defined does not correspond to occurrences during which

the number of satellites is exactly the number specified but instead refers to the cir-

cumstances during which the number of satellites visible is equal to or greater than

the number specified. For example, the percentage given for 6 satellites visible cor-

responds to the the total number of occasions during the course of the rendezvous in

which 1-6 satellites are in view of the receiver. As can be inferred from Figure 13, the

maximum number of satellites visible over the entire duration of rendezvous for a 24

GPS satellite constellation configuration does not exceed 6 satellites for either vehicle

or 5 commonly shared satellites of both vehicles. Comparing Figures 13 and 14 veri-
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fies that more satellites active in the GPS constellation results in higher percentages

of satellites visible for all amounts of GPS satellites shown in the figures.

Fig. 13. Percentage of Occurrences When at Least the Number of Satellites Given Are

Visible - ISS at 0-0-0 LVLH Attitude, 24 GPS Satellites, 55◦ Half Cone Angle

Fig. 14. Percentage of Occurrences When at Least the Number of Satellites Given Are

in View - ISS at 0-0-0 LVLH Attitude, 32 GPS Satellites, 55◦ Half Cone Angle

Table VII gives statistical information of the time interval quantities correspond-

ing to the cases when strictly less than the number of satellites are visible over the

duration of the rendezvous. In order to determine an estimated position and velocity
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from GPS measurements, information from at least four GPS satellites is needed.

Information from five GPS satellites is required to detect faulty pseudorange mea-

surements and six or more GPS satellites are needed to correctly identify and detect

the faulty pseudorange measurements.

Table VIII accounts for the statistical data corresponding to the time interval

quantities during which at least the number of satellites are visible. Notice in both

Table VII and Table VIII there are standard deviation values higher than the average

value of the time intervals although the value for all time intervals is greater than

zero. The large standard deviation is a result of one or two outlying data points that

dominate the calculation of the standard deviation and raise the value above that of

the given average. Due to the large standard deviations that are seen occasionally

in Tables VII-VIII, minimum and maximum time intervals are given as well as the

median value of the time interval quantities.
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Table VII. Statistics of Time Interval Data for Instances When Strictly Less than the

Given Number of Satellites Are Visible - ISS at 0-0-0 LVLH Attitude, 55◦

Half Cone Angle

Vehicle
Statistical 24 Satellites 32 Satellites

Variables < 4 < 5 < 6 < 4 < 5 < 6

ISS

# of Entries 122.0 80.0 21.0 113.0 152.0 84.0

Max (s) 1851.0 6308.0 9000.0 994.0 3119.0 7960.0

Min (s) 3.0 5.0 303.0 2.0 3.0 3.0

Median (s) 328.5 531.5 4662.0 144.0 258.5 615.0

Average (s) 486.0 1177.4 5085.0 192.2 394.4 1082.2

Std Dev (s) 457.0 1371.1 3361.5 184.5 428.3 1448.7

Chaser

# of Entries 134.0 75.0 20.0 123.0 155.0 79.0

Max (s) 1853.0 6539.0 9000.0 1005.0 3165.0 8022.0

Min (s) 2.0 5.0 361.0 2.0 3.0 10.0

Median (s) 283.0 582.0 5565.5 139.0 273.0 565.0

Average (s) 462.2 1271.0 5351.9 199.3 404.5 1161.0

Std Dev (s) 470.0 1457.0 3342.6 189.9 448.9 1509.7

Common

# of Entries 103.0 40.0 14.0 158.0 96.0 43.0

Max (s) 4349.0 9000.0 9000.0 2012.0 5770.0 9000.0

Min (s) 2.0 47.0 3187.0 2.0 10.0 9.0

Median (s) 487.0 1468.5 9000.0 239.5 559.0 1725.0

Average (s) 817.5 2601.4 7700.9 333.7 896.8 2363.7

Std Dev (s) 849.5 2637.9 2200.8 326.2 987.1 2434.8
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Table VIII. Statistics of Time Interval Data for Instances When at Least the Given

Number of Satellites Are Visible - ISS at 0-0-0 LVLH Attitude, 55◦ Half

Cone Angle

Vehicle
Statistical 24 Satellites 32 Satellites

Variables ≥ 4 ≥ 5 ≥ 6 ≥ 4 ≥ 5 ≥ 6

ISS

# of Entries 121.0 70.0 9.0 118.0 152.0 74.0

Max (s) 1496.0 685.0 324.0 2928.0 1580.0 1265.0

Min (s) 11.0 2.0 15.0 4.0 1.0 2.0

Median (s) 280.0 141.5 125.0 527.0 212.0 165.5

Average (s) 402.7 197.4 136.3 731.3 316.2 231.2

Std Dev (s) 364.5 180.1 102.7 683.8 321.5 266.7

Chaser

# of Entries 128.0 65.0 8.0 128.0 150.0 70.0

Max (s) 1392.0 638.0 348.0 2939.0 1361.0 1208.0

Min (s) 8.0 2.0 9.0 4.0 2.0 6.0

Median (s) 256.5 146.0 112.0 477.5 203.0 161.5

Average (s) 360.0 195.2 121.6 652.3 302.1 232.8

Std Dev (s) 336.8 176.8 109.0 643.1 305.5 263.7

Common

# of Entries 94.0 28.0 2.0 154.0 87.0 32.0

Max (s) 1144.0 311.0 128.0 1438.0 1125.0 985.0

Min (s) 1.0 9.0 60.0 1.0 7.0 1.0

Median (s) 198.5 104.5 94.0 268.5 191.0 94.5

Average (s) 253.2 140.8 94.0 358.9 251.8 198.8

Std Dev (s) 228.2 100.1 48.1 322.2 259.4 227.0
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2. 65 Degree Half Cone Angle

Figures 15-16 depict the percentage of satellites visible over the duration of the ren-

dezvous when GPS navigation is used for 24 and 32 active GPS satellites configuration

for the ISS oriented at an attitude of 0-0-0 LVLH. For the 65 degree half cone angle

under consideration, the maximum number of satellites seen over the entire time pe-

riod does not exceed 8 satellites for all cases assuming 24 active GPS satellites and

10 satellites for both vehicles with 32 active GPS satellites.

Fig. 15. Percentage of Occurrences When at Least the Number of Satellites Given Are

in View - ISS at 0-0-0 LVLH Attitude, 24 GPS Satellites, 65◦ Half Cone Angle
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Fig. 16. Percentage of Occurrences When at Least the Number of Satellites Given Are

in View - ISS at 0-0-0 LVLH Attitude, 32 GPS Satellites, 65◦ Half Cone Angle

Table IX gives statistical information of the time intervals corresponding to oc-

casions during which the number of GPS satellites visible is less than the number of

given satellites over the duration of the rendezvous. As additional satellites signals

are received or lost, the time interval corresponding to the new number of visible

satellites resets and time accumulates until more satellites signals are received or

lost at which time the current time interval is recorded for the previous number of

satellites in view.
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Table IX. Statistics of Time Interval Data for Instances When Strictly Less than the

Given Number of Satellites Are Visible - ISS at 0-0-0 LVLH Attitude, 65◦

Half Cone Angle

Vehicle
Statistical 24 Satellites 32 Satellites

Variables < 4 < 5 < 6 < 4 < 5 < 6

ISS

# of Entries 74.0 133.0 98.0 7.0 59.0 157.0

Max (s) 791.0 1935.0 4201.0 552.0 663.0 1036.0

Min (s) 6.0 2.0 4.0 19.0 5.0 2.0

Median (s) 151.5 282.0 541.5 110.0 114.0 184.0

Average (s) 207.0 403.0 908.4 189.7 154.3 252.2

Std Dev (s) 206.1 406.7 999.4 214.4 144.7 218.4

Chaser

# of Entries 82.0 141.0 91.0 10.0 70.0 166.0

Max (s) 775.0 1913.0 3986.0 559.0 646.0 1141.0

Min (s) 5.0 2.0 1.0 11.0 3.0 1.0

Median (s) 135.0 273.0 553.0 99.0 79.5 161.5

Average (s) 213.2 396.3 989.8 153.0 144.0 253.0

Std Dev (s) 209.4 415.6 1080.5 188.4 152.8 241.3

Common

# of Entries 127.0 107.0 48.0 74.0 151.0 131.0

Max (s) 1579.0 3769.0 9000.0 870.0 1314.0 3139.0

Min (s) 3.0 4.0 6.0 2.0 1.0 5.0

Median (s) 172.0 413.0 1493.5 90.0 146.0 270.0

Average (s) 310.0 744.4 2144.8 127.7 225.2 557.8

Std Dev (s) 344.8 837.7 2161.8 142.9 236.7 646.4

Table X accounts for the statistical information corresponding to the time inter-
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vals during which at least the given number of satellites in view.

Table X. Statistics of Time Interval Data for Instances When at Least the Given Num-

ber of Satellites Are Visible - ISS at 0-0-0 LVLH Attitude, 65◦ Half Cone

Angle

Vehicle
Statistical 24 Satellites 32 Satellites

Variables ≥ 4 ≥ 5 ≥ 6 ≥ 4 ≥ 5 ≥ 6

ISS

# of Entries 84.0 132.0 90.0 19.0 68.0 161.0

Max (s) 4545.0 2322.0 1459.0 9000.0 8905.0 2759.0

Min (s) 1.0 2.0 3.0 288.0 1.0 1.0

Median (s) 671.0 243.0 193.5 5957.0 836.5 203.0

Average (s) 1103.5 412.3 211.0 5614.9 1454.5 425.0

Std Dev (s) 1120.2 450.8 248.8 3215.9 1904.3 536.4

Chaser

# of Entries 90.0 141.0 82.0 22.0 79.0 166.0

Max (s) 4426.0 2246.0 1084.0 9000.0 9000.0 3004.0

Min (s) 2.0 1.0 4.0 48.0 1.0 1.0

Median (s) 604.0 188.0 139.0 4347.5 627.0 178.5

Average (s) 1005.9 369.8 218.8 4840.1 1239.6 397.6

Std Dev (s) 1092.8 445.8 212.6 3118.4 1589.0 522.6

Common

# of Entries 128.0 100.0 37.0 81.0 152.0 125.0

Max (s) 2076.0 1416.0 462.0 5411.0 2677.0 1394.0

Min (s) 1.0 1.0 2.0 1.0 1.0 1.0

Median (s) 371.5 183.0 79.0 887.0 307.5 203.0

Average (s) 536.2 283.5 136.4 1216.7 486.8 279.4

Std Dev (s) 517.5 288.9 131.8 1243.5 517.5 282.5
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3. 75 Degree Half Cone Angle

Figures 17 - 18 show the percentage of satellites visible over time for the ISS oriented

at 0-0-0 LVLH with a 24 and 32 active GPS satellites constellation configuration

respectively when GPS navigation is implemented during the rendezvous. For both

GPS constellation configurations, Figures 17 - 18 reveal that the maximum number of

satellites seen over the entire rendezvous exceeds 10 satellites but more importantly,

the minimum number of satellites seen for all three categories is greater than 4 except

for approximately 3% of the duration of the rendezvous. Recall from the previous

chapter that at least four GPS satellites must be in view in order to approximate

the position of the receiver using absolute navigation. Since at least four are in

view for both vehicles, absolute navigation can be performed over the duration of

the rendezvous without measurement rejection due to the a lack of satellites. At the

same time, this does not suggest that measurements will always be accepted since

poor geometry can lead to a poor quality of measurements.

Fig. 17. Percentage of Occurrences When at Least the Number of Satellites Given Are

in View - ISS at 0-0-0 LVLH Attitude, 24 GPS Satellites, 75◦ Half Cone Angle
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Fig. 18. Percentage of Occurrences When at Least the Number of Satellites Given Are

in View - ISS at 0-0-0 LVLH Attitude, 32 GPS Satellites, 75◦ Half Cone Angle

Table XI presents the data related to a statistical analysis of time interval quanti-

ties corresponding to cases when strictly less than the number of satellites mentioned

are in view over the time in which GPS navigation is used throughout the course of

the rendezvous.

Table XII gives the statistical information of the time interval quantities corre-

sponding to occurrences during which at least the number of satellites are in view

over the time period during which navigation with respect to position and velocity

is done solely using GPS measurements. Navigation with respect to orientation is

performed with the help of a star tracker. Table XI communicates that for more than

90% of the duration of the rendezvous, at least six satellites are visible to each vehicle

for a GPS constellation of 32 active satellites and five satellites for a 24 active GPS

satellites configuration.
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Table XI. Statistics of Time Interval Data for Instances When Strictly Less than the

Given Number of Satellites Are Visible - ISS at 0-0-0 LVLH Attitude, 75◦

Half Cone Angle

Vehicle
Statistical 24 Satellites 32 Satellites

Variables < 4 < 5 < 6 < 4 < 5 < 6

ISS

# of Entries 8.0 57.0 129.0 0.0 4.0 15.0

Max (s) 238.0 396.0 1730.0 0.0 202.0 246.0

Min (s) 9.0 2.0 3.0 0.0 9.0 2.0

Median (s) 88.5 73.0 215.0 0.0 92.0 110.0

Average (s) 92.1 125.6 293.4 0.0 98.8 115.8

Std Dev (s) 68.4 109.0 301.8 0.0 81.0 77.6

Chaser

# of Entries 10.0 67.0 130.0 1.0 3.0 22.0

Max (s) 261.0 469.0 1724.0 7.0 236.0 261.0

Min (s) 12.0 1.0 2.0 7.0 138.0 4.0

Median (s) 59.5 107.0 199.5 7.0 168.0 80.5

Average (s) 103.3 142.2 317.0 7.0 180.7 108.4

Std Dev (s) 84.0 122.3 342.2 0.0 50.2 88.5

Common

# of Entries 33.0 122.0 135.0 2.0 13.0 94.0

Max (s) 457.0 755.0 2356.0 132.0 437.0 483.0

Min (s) 6.0 1.0 7.0 17.0 6.0 2.0

Median (s) 106.0 164.5 334.0 74.5 50.0 102.0

Average (s) 153.3 237.9 516.9 74.5 121.5 149.0

Std Dev (s) 127.8 200.6 535.2 81.3 152.6 128.6
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Table XII. Statistics of Time Interval Data for Instances When at Least the Given

Number of Satellites Are Visible - ISS at 0-0-0 LVLH Attitude, 75◦ Half

Cone Angle

Vehicle
Statistical 24 Satellites 32 Satellites

Variables ≥ 4 ≥ 5 ≥ 6 ≥ 4 ≥ 5 ≥ 6

ISS

# of Entries 20.0 67.0 130.0 12.0 16.0 26.0

Max (s) 9000.0 4224.0 2986.0 9000.0 9000.0 9000.0

Min (s) 43.0 9.0 3.0 9000.0 43.0 415.0

Median (s) 6526.0 932.0 323.5 9000.0 9000.0 3306.0

Average (s) 5363.8 1505.2 539.7 9000.0 6726.1 4087.5

Std Dev (s) 3475.1 1332.8 614.9 0.0 3227.5 2558.9

Chaser

# of Entries 22.0 78.0 135.0 13.0 15.0 34.0

Max (s) 9000.0 4125.0 2767.0 9000.0 9000.0 9000.0

Min (s) 191.0 21.0 3.0 1156.0 1126.0 161.0

Median (s) 4781.5 679.0 300.0 9000.0 9000.0 2822.5

Average (s) 4862.7 1262.6 494.8 8308.1 7164.7 3106.7

Std Dev (s) 3295.4 1262.6 554.2 2172.8 2770.2 2214.6

Common

# of Entries 45.0 127.0 132.0 14.0 25.0 103.0

Max (s) 6330.0 2971.0 1700.0 9000.0 9000.0 5656.0

Min (s) 20.0 2.0 3.0 448.0 28.0 2.0

Median (s) 2151.0 302.0 169.0 9000.0 3568.0 483.0

Average (s) 2287.6 621.9 289.5 7703.6 4256.8 912.5

Std Dev (s) 1766.4 727.5 325.5 2970.3 3208.4 1026.8

For this particular case, all standard deviations with a value of zero in Table XI
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correspond to a zero value time interval while zero standard deviations in Table XII

correspond to a single time interval value. Although for Table XI there are at least

five visible satellites at all times for all three categories, the manner in which data is

recorded allows for the time interval to be zero due to there always being more than the

number of satellites specified for the zero quantity entries. There are also cases present

where there are zero quantities for one or both vehicles but a value for the commonly

shared satellites case and vice versa. This is attributed to the position difference

between the target and pursuing chaser vehicle resulting in different satellites viewed

by each vehicle. Although each vehicle may see two or more satellites, this does not

mean that the overlapping field of view of these satellites contains as many satellites

as seen by each individual vehicle satellites.

The visibility analysis suggests that uses of 55◦ and 65◦ fields of view could

affect relative navigation. There are time intervals of 1005 seconds for a 55◦ field

of view and 559 seconds for a 65◦ field of view when there are less than 4 satellites

visible to each vehicle. The time intervals corresponding to occurrences when less

than 4 common satellites are visible is worse at 2012 and 870 seconds for 55◦ and 65◦

fields of view respectively. The maximum time interval corresponding to less than 4

satellites visible for a 75◦ receiver field of view is 7 seconds for the chaser vehicle and

132 seconds for common satellite visibility. Since the maximum time interval of less

than 4 satellites visible is substantially lower for 75◦ field of view compared to 55◦

and 65◦ fields of view, a field of view of 75◦ is used during the analysis of the four

Kalman filters.
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CHAPTER V

KALMAN FILTER DEVELOPMENT

The development of the various Kalman filter architectures is presented in this chap-

ter. The theory behind the extended Kalman filter (EKF) is also outlined. The four

Kalman filters developed are 1) position-velocity EKF, 2) relative pseudorange EKF,

3) pseudorange EKF and 4) reduced pseudorange EKF. The four filters estimate the

position and velocity of both the chaser and target vehicles as well as the attitude

of the chaser vehicle. In addition to the states of each vehicle, additional states esti-

mated vary with each filter. Each filter processes different GPS measurements except

for the pseudorange and reduced pseudorange filters.

A. Extended Kalman Filter

The purpose of this section is to develop the equations and methodology of the EKF.

The EKF utilizes a discrete update logic with a continuous time propagation of the

system dynamics. The model for the states and measurements corrupted by noise is

given by Equations 5.1-5.2.

ẋ(t) = f(x(t),u(t), t) + G(t)w(t) (5.1)

ỹk = h(xk) + νk (5.2)

where

x : true value

x̂ : estimated value

ỹ : measured value
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and the vector w(t) is a zero mean white process. The matrix G(t) is an identity

matrix with size equal to the length of the state vector. The measurement model is

corrupted by a zero mean white sequence νk [31]. The process noise w(t) and the

measurement noise νk are assumed to be uncorrelated to each other. The spectral

density of the process noise is given by Q(t) while the covariance matrix corresponding

to the measurement noise is given by Rk. The covariances of the zero mean white

process and white sequence are found as follows where E denotes the expected value.

E
{
w(t)wT (τ)

}
= Q(t)δ(t− τ)

E
{
νkν

T
j

}
=

 0 k 6= j

Rk k = j

where δ(t− τ) is the Dirac delta function defined by Equations 5.3 [39].

δ(t− τ) =

∞, t = τ

0, t 6= τ
(5.3)

Given an initial state vector and error covariance matrix

x̂(t0) = x̂0

e = x− x̂

P0 = E
{
e0e

T
0

}
the Kalman gain at a given time step, Kk, can be computed using Equation 5.4.

Kk = P −
k HT

k (x̂ −k )[Hk(x̂
−
k )P −

k HT
k (x̂ −k ) + Rk]

−1 (5.4)
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where

Hk(x̂
−
k ) ≡ dh

dx x̂ −k
(5.5)

After the gain and measurement sensitivity matrices are calculated, the discrete

update process is followed. The update process uses the residual between the mea-

sured and estimated values multiplied by the Kalman gain to produce a correction

vector which is then added to the a priori state vector, as shown in Equation 5.6. In

addition to updating the state vector, the estimation error covariance matrix is also

updated at this point using Equation 5.7.

x̂ +
k = x̂ −k + Kk[ỹk − h(x̂ −k )] (5.6)

P +
k = (In×n −KkHk(x̂

−
k ))P −

k (In×n −KkHk(x̂
−
k ))T + KkRkK

T
k (5.7)

After the update process has been completed, the system can be propagated

for a single time step in order to determine the next estimate of the state vector.

Integration techniques such as a 4th order Runge Kutta method or Euler’s method

can be used to determine the next state estimate. The equations to be propagated

are given by Equations 5.8-5.10.

˙̂x(t) = f(x̂(t),u(t), t) (5.8)

Ṗ(t) = F(x̂(t), t)P(t) + P(t)FT (x̂(t), t) + G(t)Q(t)GT (t) (5.9)

F(x̂(t), t) ≡ df

dx
x̂(t) (5.10)
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It is also possible to propagate the error covariance matrix using a discrete prop-

agation process. In order to do so, the state model is discretized about a sample

time, ∆t. Equation 5.11 gives the conversion from continuous to discrete time given

a sample time ∆t.

x(tk+1) = Φ(tk+1, tk)x(tk) +

∫ tk+1

tk

Φ(tk+1, τ)G(τ)w(τ) dτ (5.11)

which can be simplified to

xk+1 = Φkxk + wk (5.12)

The vector wk is a zero mean white sequence with a corresponding covariance given

by Equation 5.13.

E
{
wkw

T
j

}
=

 0 k 6= j

Qk k = j
(5.13)

where Qk is given by Equation 5.14.

Qk =

∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1, ζ)G(ζ)E [w(ζ)w(ϑ)] GT (ϑ)ΦT (tk+1, ϑ)dζdϑ (5.14)

The matrix Φk is the state transition matrix which is found by propagating Equa-

tion 5.15 where F(t) retains the same definition as in Equation 5.10.

Φ̇(t, tk) = F(t)Φ(t, tk) Φ(tk, tk) = I (5.15)

Making use of Equations 5.11-5.15, the discrete propagation of the error covari-

ance matrix is given by Equation 5.16 where P−k+1 refers to the current update of the

error covariance matrix and P+
k is the error covariance matrix of the previous time
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step.

P−k+1 = ΦkP
+
k ΦT

k + Qk (5.16)

Equation 5.7 and Equation 5.16 are used to update and propagate the estimation

error covariance matrix for the four Kalman filters. The above process is continued

at a chosen sample time until the final time is reached. Figure 19 summarizes the

equations used during the implementation of the EKF.

Fig. 19. Summary of EKF Procedure

B. Propagation Model

The state model used during the propagation portion of the four Kalman filters is

described in this section. The state model is a propagation of the two body problem
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including accelerations due to the oblateness of the Earth, atmospheric drag, and

thruster firings. The state model for both the chaser and target vehicles is given by

the following equations.

˙̂r = v̂ (5.17)

¨̂r = g (r̂) + â (5.18)

where

r̂ : estimate of spacecraft position, m

v̂ : estimate of spacecraft velocity, m
s

â : estimate of acceleration, m
s2

The gravitational acceleration is given by g (r̂) and includes effects due to the

oblateness of the Earth. The gravitational acceleration is defined as [40]:

g1 (r̂) = ur + k1

(
1− 5U2

)
ur + 2k1Uup

g2 (r̂) = g1 (r̂) + 5k2U
(
3− 7U2

)
ur − 3k2

(
1− 5U2

)
up

g3 (r̂) = g2 (r̂) + 3k3

(
1− 14U2 + 21U4

)
ur + 4k3U

(
3− 7U2

)
up

g (r̂) =
−µ
r̂ · r̂

g3

where
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k1 =
3

2
J2

(
Re

r̂ · ur

)2

k2 =
1

2
J3

(
Re

r̂ · ur

)3

k3 = −5

8
J4

(
Re

r̂ · ur

)4

U = (ur · up)

ur =
r̂

‖r̂‖
up = [0 0 1 ]T

and perturbation coefficients J# and parameters are defined as follows.

J2 : J2 perturbation coefficient, 1.08263× 10−3

J3 : J3 perturbation coefficient, −2.56× 10−6

J4 : J4 perturbation coefficient, −1.58× 10−6

Re : radius of the Earth, 6378.1363 km

µ : gravitation constant

The estimated acceleration of the chaser vehicle during thruster firings is given

by Equation 5.19. Equation 5.20 gives the acceleration each vehicle experiences due to

atmospheric drag. When thruster firings occur, the acceleration due to atmospheric

drag is assumed to be negligible. Therefore, Equation 5.20 is used during instances

of free drift only.

âc = âimu (5.19)
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âc,t = −Dc,t
v̂c,t
‖v̂c,t‖

(5.20)

where

Dc : chaser atmospheric drag

Dt : target atmospheric drag

It is assumed that the target is significantly larger than the chaser vehicle. As

a result, the target vehicle is modeled to experience twice the drag of the chaser.

The atmospheric drag on the chaser vehicle is modeled as 6.2× 10−6 m
s2

with the drag

acting upon the target modeled as 12.4× 10−6 m
s2

.

The state matrix for the chaser vehicle is given by Equation 5.21. There is a

relation between the angular velocity and translational acceleration that is accounted

for.

Fc =



03×3 I3×3 03×3 03×3

J2 03×3 â× Ti
imu

03×3 03×3 −ω̃× 03×3

03×3 03×3 03×3 03×3


(5.21)

The matrices â× and ω̃× are the skew symmetric matrices of the estimated

acceleration and measured angular velocity vectors respectively. The transformation

matrix Ti
imu is derived from q̄iimu. The matrix J2 is given as

J2 =


−m
r3 + 3r2

x

r2

(
m
r3 + Λ(p− 1)

) 3rxry
r2

(
m
r3 + Λ(p− 1)

)
3rxrz
r2

(
m
r3 + Λ(p+ 4)

)
3rxry
r2

(
m
r3 + Λ(p− 1)

) −m
r3 +

3r2
y

r2

(
m
r3 + Λ(p− 1)

) 3ryrz
r2

(
m
r3 + Λ(p+ 4)

)
3rxrz
r2

(
m
r3 + Λ(p+ 4)

) 3ryrz
r2

(
m
r3 + Λ(p+ 4)

)
−(J2(1, 1) + J2(2, 2))





74

where

Λ =
µJ2R

2
e

r5

m = µ

(
1 +

3J2R
2
ep

4r2

)
p = 2

(
1− 5r2

z

r2

)
with the perturbation coefficient J2 and parameters definitions defined the same as

above. Equation 5.22 gives the state matrix of the target vehicle.

Ft =

03×3 I3×3

J2 03×3

 (5.22)

The spectral density corresponding to the zero mean white process noise w(t)

on the position and velocity states of both vehicle as well as for the chaser attitude

is Qx(t). Since the estimation error covariance is propagated using Equation 5.16,

the discrete form of the spectral density is needed. Using Equation 5.14, the spectral

density Qx(t) becomes covariance matrix Qxk and is given by the following.

Qxk =



Qpck
Qpvck

03×3 Qpctk
Qpvctk

Qpvck
Qvck

03×3 Qpvctk
Qvctk

03×3 03×3 Qqk 03×3 03×3

Qpctk
Qpvctk

03×3 Qptk
Qpvtk

Qpvctk
Qvctk

03×3 Qpvtk
Qvtk


The definition of each individual covariance matrix in Qxk remains the same

for all four Kalman filters studied. The individual covariance matrices are given as

follows [40].
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Qpck
=

1

3
Qvck

∆t2

Qpvck
=

1

2
Qvck

∆t

Qvck
= Ti

lvlhQcv(t)T
lvlh
i ∆t

Qθk = Qθ(t)

Qptk
=

1

3
Qvtk

∆t2

Qpvtk
=

1

2
Qvtk

∆t

Qvtk
= Ti

lvlhQtv(t)T
lvlh
i ∆t

Qpctk
=

19

20
Qptk

Qpvctk
=

19

20
Qpvtk

Qvctk
=

19

20
Qvtk

Table XIII gives the spectral densities corresponding to each individual covari-

ance matrix for each Kalman filter studied. The matrix I3 denotes a 3 × 3 identity

matrix.

Table XIII. Spectral Density Values for all Kalman Filters

Spectral
Value Units

Density

Qcv(t) 9× 10−6 I3

(
m
s1.5

)
Qθ(t) 1× 10−11 I3

(
rad√
s

)
Qtv(t) 9× 10−6 I3

(
m
s1.5

)
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C. Position Velocity Kalman Filter

In this section the development of a position velocity (PV) EKF will be discussed. The

PV EKF is a filter that approximates the absolute position and velocity of the chaser

and target vehicles. The state vector includes both the position and velocity vectors of

each vehicle as well as the orientation angle set (three angles) of the chaser. The theory

presented in the previous section is assumes the process and measurement noises are

white. However, the process noise, measurement noise or both are occasionally colored

noise. The Bancroft and velocity estimation algorithms as defined in Chapter II are

utilized to determine the position and velocity of each vehicle which are corrupted

by non-white noise. The equations developed for an EKF in section A assumed the

process and measurement noise are zero mean white noise. In order to compensate

for colored measurement noise, additional states are augmented to the state vector.

In this thesis, any augment states are modeled by first order Gauss-Markov processes

with variable time constants and standard deviations equal to the expected value of

the error resulting from the colored measurement noise. GPS measurements are used

to calculate an estimated position and velocity that is outputted by the GPS sensor.

The estimated position and velocity vectors supplied by the GPS sensor are then used

as the measurements processed by the PV filter.

The state and measurement vectors are given as follows.

x =
[
rTc vTc θT rTt vTt

]T
ỹ =

[
r̃Tc ṽTc r̃Tt ṽTt

]T
In addition to the state and measurement vectors, a bias present in the accelerom-

eter states that are used to calculate the position and velocity during the propagation
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portion of the Kalman filter is modeled. The accelerometer bias states are modeled as

first order Gauss-Markov processes with the steady state standard deviation of 40µg

and time constant τa of 1 hour [38]. The accelerometer bias states are given by:

ab =
[
abx aby abz

]T
Since the state vector can be represented as a linear combination of the mea-

surement vector and the accelerometer bias is not present in either the state or mea-

surement vectors, the EKF measurement equation is simplified from a non-linear to a

linear form. The PV EKF state and measurement equations are given by the following

set of equations.

ẋ(t) = f(x(t),u(t), t) + G(t)w(t) (5.23)

ỹk = Hkxk + ξk (5.24)

where the vector w(t) is a zero mean white process and the vector ξk is a zero mean

white sequence. The matrix G(t) is an identity matrix. As previously mentioned,

additional states are needed to model the colored measurement noise. The augmented

state vector and model for the PV Kalman filter is given as follows:

x ′ =
[
rTc vTc θT rTt vTt ξTrc ξ

T
vc ξ

T
rt ξ

T
vt aTb

]T

ẋ′(t) = f ′(x′(t),u′(t), t) + w′(t) (5.25)

ỹk = Hk
′xk

′ + ξk
′ (5.26)

where f ′(x′(t),u′(t), t) contains the new state equations excluding the white sequence
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for the correlated random variables in addition to the original state equations for the

position and velocity. The new white process w′(t), measurement sensitivity matrix

Hk
′, and white sequence ξk

′ are given by Equations 5.27-5.29.

The measurement sensitivity matrix is modified to include the contribution of

the correlated random variables. Since the random variables are used to model the

colored noise present on the measurements, an identity matrix is inserted for the

derivative of the measurements with respect to the random variables. The zero mean

white process noise vector is augmented to include the noise present in the correlated

random variable states. With the measurement noise being modeled as a first order

Gauss-Markov process, there is no longer a white sequence present in the measurement

equation hence ξ′k becomes a vector of zeros.

Hk
′ = [Hk I12×12 012×3] (5.27)

w(t) ′ = [wx(t) ν(t) wa(t) ]T (5.28)

ξk
′ = 012×1 (5.29)

Note that I refers to an identity matrix of size n x n and 0 refers to a zero matrix of

vector of size m x p or m x 1.

The colored noise is modeled as a first order Gauss-Markov process for all 12

states with 1σ values equal to the standard deviation for either the position or ve-

locity depending on which state the noise affects. Equation 5.30 gives the continuous

time representation of the correlated random variables while Equation 5.31 gives the

discrete time representation of the Gauss-Markov first order process used to propagate

the correlated random variables [22].
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ξ̇(t) = − 1

τpv
ξ(t) + ν(t) (5.30)

ξk+1 = ξk e
− ∆t
τpv + νk (5.31)

where the time constant τpv is 50 seconds, ν(t) is a zero mean white process and νk

is a zero mean white sequence. The steady state standard deviations used for the

correlated random variables are 20 meters for chaser position, 0.3 meters per second

for chaser velocity, 15 meters for target position, and 0.2 meters per second for target

velocity. The standard deviations for the correlated random variables are used to

determine the process noise spectral density corresponding to the random variables

given by Equation 5.33. Equation 5.31 can be re-written as:

ξk+1 = Υkξk + νk (5.32)

where the matrix Υk is

Υk = e
− ∆t
τpv I12×12

With the definition of a new augmented model, the spectral density of the white

process noise and covariance matrix of the measurement noise are modified to include

the spectral density and variance of the colored noise and accelerometer bias. The

new spectral density, Q′(t), contains the previously known spectral density Qx(t)

corresponding to the original state vector, the spectral density corresponding to the

colored noise and the spectral density of the accelerometer bias.
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Q ′(t) =


Qx(t) 015×12 015×3

012×15 Qξ(t) 012×3

03×15 03×12 Qa(t)


where Qx(t) is the known spectral density corresponding to the white process noise

present on the position, velocity and attitude states, Qξ(t) is defined as the spec-

tral density of the colored noise, and Qa(t) is the spectral density relating to the

accelerometer bias states. The spectral density corresponding to the white noise pro-

cess present on the correlated random variables used to model the colored noise is

given as follows:

Qξ(t) =



Qpc(t) 03×3 03×3 03×3

03×3 Qvc(t) 03×3 03×3

03×3 03×3 Qpt(t) 03×3

03×3 03×3 03×3 Qvt(t)


The first subscript defines the measurement, either position or velocity, and the

second subscript defines the vehicle, either chaser or target. The spectral density of a

first order Gauss-Markov process assuming a steady state standard deviation, σpvss , is

given by Equation 5.33 where the subscript pv denotes position or velocity depending

upon which error state is being modeled. Equation 5.33 is used to determine the

spectral density of the correlated random variable states by replacing σpvss and τpv

with the corresponding values.

Qpv(t) =
2

τpv
σ2
pvss · I3×3 (5.33)

The spectral density Qa(t) corresponds to the process noise present in the ac-

celerometer bias states and is found by substituting the corresponding values for the
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time constant and steady state standard deviations of the accelerometer bias into

Equation 5.33. It is assumed that steady state deviation and time constant of the

accelerometer bias is the same in every direction therefore the resulting value from

Equation 5.33 is multiplied by an identity matrix of size three.

In order to make use of Equation 5.16, the spectral density matrix Q′(t) is trans-

formed into the covariance matrix of a white sequence, Q′k, using Equation 5.14. The

colored noise being modeled as a first order Gauss-Markov process is the measurement

noise resulting from the pseudorange errors. As a result, the steady state values of

the errors being modeled are known. The steady state values are used to determine

the covariance matrix, Qξk . Although the noise in each position and velocity state

is correlated to one another the covariance matrix, Qξk , is modeled to be a diagonal

matrix with each diagonal entry calculated by Equation 5.34.

Qξkii
= σ2

pvss

(
1− e−

2∆t
τpv

)
for ii = 1, ..., 12 (5.34)

Note the subscript, s, refers to the current measurement being considered, either

position or velocity and the subscript, ii, refers to the entry corresponding to the

ith column and row. The steady state standard deviations, σpvss , corresponds to the

errors present on the position and velocity measurements. The covariance matrix,

Qak , corresponding to the accelerometer bias is given by Equation 5.35.

Qak = σ2
a

(
1− e

−2∆t
τa

)
· I3×3 (5.35)

As for the new measurement covariance matrix Rk, the covariance matrix is a square

zero matrix the size of the measurement vector due to the definition of ξ′.

The PV EKF estimates the position and velocity of each vehicle as well as the

noise present in the measurements. Equations 5.36-5.38 define the error between the
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true and estimated states.

eps = rs − r̂s (5.36)

evs = vs − v̂s (5.37)

eξs = ξp/vs − ξ̂p/vs (5.38)

where

ξps = r̃s − rs (5.39)

ξvs = ṽs − vs (5.40)

In order to analyze the performance of the designed PV Kalman filter, the error

values resulting from Equations 5.36-5.38 are graphed along with 1σ covariance de-

rived from the estimation error covariance, P in Equation 5.7 and Equation 5.16. Over

the course of the simulation, the filter does not process certain measurements due to

fewer than four visible satellites or poor geometry resulting in bad measurements.

As a result, the 1σ covariance increases, relaying the message that the uncertainty

in the estimated state has increased. When the measurement quality is once again

acceptable and measurements are processed the 1σ covariance will decrease, often

rapidly, due to the ability of the filter to accurately estimate the state and reduce the

uncertainty in the estimated state.
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D. Relative Pseudorange Kalman Filter

The purpose of this section is to discuss the development of a relative pseudorange

(RGPS) EKF. One difference between the RGPS EKF and PV EKF is the measure-

ments being processed. The PV EKF processes position and velocity measurements

while the RGPS EKF processes relative pseudorange measurements. The state vec-

tor differs in the additional states being modeled. For the RGPS EKF, the relative

clock bias and clock drift are modeled adding only two additional states (∆b, ∆f) as

compared to 12 for the PV EKF. Even though more than six GPS satellites may be

visible at a given time, only six relative pseudorange measurements are processed dur-

ing each update of the estimate. By omitting additional measurements, the speed at

which the filter performs increases. The measurement vector is populated by relative

pseudoranges, δρ, found by differencing the chaser and target pseudoranges corre-

sponding to the same GPS satellite. The communication time delay between the two

vehicles is neglected from this analysis. The state and measurement vectors for the

RGPS EKF are defined as follows.

x =
[
rTc vTc θT rTt vTt ∆b ∆f aTb

]T
ỹ = [δρi · · · δρn]T

Note that n is the total number of processed pseudorange measurements and

cannot exceed six. The accelerometer bias is modeled in the same manner as is

described in Section C. The relative clock bias and drift are modeled using the same

random walk process given by Equation 2.3 with the relative clock bias and drift

substituted for the clock bias and drift of a single receiver. Under the assumption that

the bias and drift of the two receivers are uncorrelated to each other, Equation 5.41
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gives the covariance matrix Q∆bfk .

Q∆bfk = Qbf1 + Qbf2 (5.41)

The spectral density matrix corresponding to the zero mean white process present

in the state model is transformed into the covariance matrix of a white sequence by

Equation 5.14. The covariance matrix Qk is needed since the propagation of the

estimation error covariance is performed using Equation 5.16. The covariance matrix

Qk is given as follows.

Qk =


Qxk 015×2 015×3

02×15 Q∆bfk 02×3

03×15 03×2 Qak


The covariance matrix Qxk is given for the position, velocity and attitude states.

The covariance matrix corresponding to the clock bias and drift, Q∆bfk , is defined in

Equation 5.41 and the covariance matrix corresponding to the accelerometer bias is

given by Equation 5.35.

Since the same satellites must be seen by both the target and chaser vehicles in

order to calculate relative pseudoranges, the number of measurements vary between

sampling times. Due to the number of measurements differing from time step to time

step, a method known as sequential measurement processing is utilized to analyze

the data. Sequential measurement processing allows for the processing of one mea-

surement at a time. The method repeats the update process as defined in Section A

for a single time step until all measurements are processed before proceeding to the

propagation of states. The primary assumption made during the implementation of

the modified method is the measurement noise covariance matrix Rk is block diag-

onal meaning no correlation between measurement errors at time tk. In the current
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case of study, the measurement noise covariance matrix is block diagonal. If Rk is

not block diagonal, i.e. correlated error measurements, a linear combination of the

measurements can be formed in such a way that the resulting set of measurements

contains uncorrelated errors [22]. The measurement noise covariance matrix is given

as:

Rk = 2σ2
δρIn×n

where σδρ is 7 meters. The steady state standard deviation is high due to the re-

maining measurement noise being colored instead of white. Since the measurements

are relative pseudoranges, the measurement noise covariance matrix corresponding to

each pseudorange is added together hence the factor of two.

The measurement sensitivity matrix, Hk, varies with each measurement pro-

cessed. As defined in Section A, the measurement sensitivity matrix is populated

with the partials of the measurements with respect to the corresponding states. For

the RGPS EKF, the measurements are the difference between the pseudoranges of

each vehicle defined by Equation 5.42.

ρsi = ‖rgpsi − rs‖ (5.42)

The difference between the pseudoranges of each vehicle results in relative pseu-

doranges. Common satellites shared by both vehicles are determined using the pseudo

random numbers assigned to the GPS satellites. Once the common satellites are de-

termined, the relative measurements are computed by differencing the corresponding

pseudoranges of each vehicle. Equation 5.43 is used to calculate the measurement

data.
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δρi = ρti − ρci (5.43)

The gradient of the relative pseudorange measurement with respect to the state

vector is given by Equations 5.44-5.47.

dδρi
drc

=
(rgpsi − rc)

T

ρc
(5.44)

dδρi
drt

= −(rgpsi − rt)
T

ρt
(5.45)

dδρi
dvc

= [0 0 0] (5.46)

dδρi
dvt

= [0 0 0] (5.47)

Line of sight vectors can be defined via Equations 5.48-5.49.

lci =
(rgpsi − rc)

ρc
(5.48)

lti =
(rgpsi − rt)

ρt
(5.49)

The derivatives of the relative pseudorange measurements with respect to the

attitude angles of the chaser vehicle involves a knowledge of the location of the GPS

receiver antenna. Given the location of the GPS receiver antennas as rac and rat , the

velocities are given by:
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vac = ωc × rac

vat = ωt × rat

Let the skew matrix, [u ×], be defined by Equation 5.50.

[u ×] =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (5.50)

where u is an arbitrary 3x1 column vector. The matrix that transforms one frame to

another frame, derived from Euler parameters (quaternions) relating the two frames,

is given by Equation 5.51 [41].

T(q̄ ) = I3×3 − 2q0[qv
×] + 2[qv

×]2 (5.51)

where the Euler parameter set is defined scalar part first.

q̄ =

 q0

qv


Making use of Equations 5.50 and 5.51, the partial derivatives of the position

and velocity of the chaser and target vehicles with respect to the chaser attitude

parameters are defined by Equations 5.52-5.55.

drc
dθ

= [(TT (q̄c)rac)
×] (5.52)
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dvc
dθ

= [(TT (q̄c)vac)
×] (5.53)

drt
dθ

= [(TT (q̄t)rat)
×] (5.54)

dvt
dθ

= [(TT (q̄t)vat)
×] (5.55)

The gradient of the relative pseudorange with respect to chaser attitude param-

eter set is computed via Equation 5.56.

dδρi
dθ

= lci
drc
dθ
− lti

drt
dθ

(5.56)

With the gradients of the measurements with respect to the original states de-

fined, the remaining partial derivatives needed to fully populate the sensitivity matrix

are those with respect to the clock bias and drift. The partial derivatives of the rel-

ative pseudorange with respect to the relative clock bias and drift, ∆b and ∆f, are

given by Equations 5.57-5.58.

dδρi
d∆b

= 1 (5.57)

dδρi
d∆f

= 0 (5.58)

With the knowledge of the required gradients, the sensitivity matrix is con-

structed using Equation 5.59.

Hki =

[
dδρi
drc

dδρi
dvc

dδρi
dθ

dδρi
drt

dδρi
dvt

dδρi
d∆b

dδρi
d∆f

01×3

]
(5.59)

The sensitivity matrix is rebuilt every time a new measurement is processed,
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which is shown in Equation 5.59 by the subscript i. The subscript, k, denotes the

current time step when the measurements are acquired. After the sensitivity matrix is

computed, the Kalman gain is computed followed by the updating of the state vector

and covariance matrix. After all measurements have been processed and the updates

completed, the final updated estimates for the states and error covariance from the

current time step are propagated and the process is repeated until the final time is

reached.

eprel = (rt − rc)− (r̂t − r̂c) (5.60)

The estimation errors are determined in a similar manner as is given for the

PV EKF given by Equations 5.36-5.37. The relative estimation error is determined

by differencing the inertial position and velocity of both vehicles as shown in Equa-

tion 5.60. Monte Carlo runs are performed and estimation errors plotted against the

corresponding error covariances. Since relative measurements are being processed,

the RGPS EKF is expected to perform well with respect to relative state estimation

and poorly with respect to absolute state estimation.

E. Pseudorange Kalman Filter

A pseudorange (GPS) EKF is derived in this section. The GPS EKF estimates the

position and velocity vectors and clock bias and drift of both vehicles as well as com-

mon pseudorange errors based upon pseudorange measurements. Additional states

are augmented onto the existing state vector to estimate the common pseudorange

errors unique to each GPS satellite. The GPS EKF can process up to six pseudorange

measurements. Measured pseudoranges from common GPS satellites are processed

first. If there are less than six common satellites, pseudorange measurements from
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non-common satellites are processed. In cases when one or both vehicles see four or

less satellites, less than six pseudorange measurements are processed.

The state and measurement vectors used for the GPS EKF are given as follows.

x =
[
rTc vTc θT bc fc rTt vTt bt ft aTb ξTρ

]T
ỹ = [ρc1 ρc2 · · · ρcn ρt1 ρt2 · · · ρtn ]T

The accelerometer states are modeled using a first order Gauss-Markov process

with a steady state standard deviation of 40 µg and a time constant of one hour [38].

The common pseudorange errors are modeled using a first order Gauss-Markov pro-

cess with a steady state standard deviation, σξρ , of 6 meters and a time constant, τξρ ,

of 100 seconds. Equation 5.61 is used during the propagation of the common pseudor-

ange errors. Since the estimation error covariance is propagated using Equation 5.16,

the covariance matrix Qξρk is given corresponding to the common pseudorange errors.

ξ̇(t) = − 1

τξρ
ξ(t) + η(t) (5.61)

Qξρk = σ2
ξρ

(
1− e

−2∆t
τξρ

)
· I6×6 (5.62)

The covariance matrix, Qk, is given as follows:
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Qk =



Qcpvk
06×3 06×2 Qc/t 06×2 06×3 06×6

03×6 Qcθk
03×2 03×6 03×2 03×3 03×6

02×6 02×3 Qcbfk
02×6 02×2 02×3 02×6

Qt/c 06×3 06×2 Qtpvk
06×2 06×3 06×6

02×6 02×3 02×2 02×6 Qtbfk
02×3 02×6

03×6 03×3 03×2 03×6 03×2 Qak 03×6

06×6 06×3 06×2 06×6 06×2 06×3 Qξρk


where the covariance matrix corresponding to the accelerometer bias Qak is given by

Equation 5.35. The covariance matrix corresponding to the pseudorange error states

Qξρk
is given by Equation 5.62. The process noise covariance matrices Qcpv , Qcθ ,

Qtpv , Qt/c, and Qc/t are known. The two covariance matrices corresponding to the

clock bias and drift of the GPS receiver onboard each vehicle are modeled assuming

a second order random walk and coefficients corresponding to a compensated crystal

time standard [22]. The discrete version of a second order random walk given in

Chapter II for the receiver clock bias is used to propagate the states of the clock bias

and drift during the propagation portion of the Kalman filter process.

Qsbfk
=

 h0

2
∆t+ 2h−1∆t2 + 2

3
π2h−2∆t3 h−1∆t+ π2h−2∆t2

h−1∆t+ π2h−2∆t2 h0

2∆t
+ 4h−1 + 8

3
π2h−2∆t


where the subscript s denotes vehicle and the coefficients h# are defined as

h0 : 2× 10−19 (s2)

h−1 : 7× 10−21 (s)

h−2 : 2× 10−20
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For instances when less than six satellites are visible, the row and column of

the estimation error covariance matrix corresponding to the common pseudorange

error of the missing satellite are zeroed out and the steady state variance of the

common pseudorange error is placed in the diagonal. For example, if the fifth and

sixth satellites are missing, the 27th and 28th row and column on the estimation

error covariance matrix are set to zero and the diagonal term of each is set to 36

square meters. The estimation error covariance matrix and estimated pseudorange

error state are also restructured every time new satellites are acquired, lost or both. If

a new satellite comes into view, the corresponding row and column of the estimation

error covariance matrix and estimated pseudorange error state are zeroed out and

the diagonal of the estimation error covariance matrix replace with the variance of

common pseudorange error. The portions of the state vector and covariance matrix

are set to zero since each satellite has a unique pseudorange error.

The pseudorange error not accounted for by the common pseudorange error is

modeled as a white sequence with covariance matrix, Rk, given as follows.

Rkc = 15 · In×n m2

Rkt = 30 · In×n m2

The variance of the uncommon pseudorange error is 15 square meters for the

chaser and 30 square meters for the target due to the remaining error in the total

pseudorange error not accounted for by the 6 meter estimated common pseudorange

error. Sequential processing of the pseudorange measurements is used therefore the

measurement covariance matrix is scalar. The measurement sensitivity matrices are

given by Equation 5.63-5.66.
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Hkc =

[
r̂c

ρc(r̂c)
01×6 1 01×18

]
(5.63)

Hkc(i+ 22) = 1 (5.64)

Hkt =

[
01×11

r̂t
ρc(r̂t)

01×3 1 01×10

]
(5.65)

Hkt(i+ 22) = 1 (5.66)

where i is the current pseudorange measurement being processed. With the covariance

matrices and measurement sensitivity matrix defined, the states are estimated over

the entire duration of the rendezvous. The estimation errors of the position and

velocity of both vehicles are found in the same manner as defined for the PV filter

in section C. The relative estimation errors are determined using Equation 5.60.

Equations 5.67 and 5.68 are used to determine the errors in the estimated clock bias

and clock drift compared to the true state values.

eps = bs − b̂s (5.67)

evs = fs − f̂s (5.68)

The subscript s refers to which spacecraft.

F. Reduced Pseudorange Kalman Filter

The derivation of a reduced pseudorange (GPS) EKF is addressed in this section.

Frequently in addition to position, velocity, clock bias and clock drift states, other

states are included in a GPS EKF as is the case in Section E. By choosing to
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not estimate states in the GPS EKF, the reduced GPS EKF is formed reducing

the complexity of both the state model as well as the Kalman filter at little cost

in the means of filter performance. Although the common pseudorange error states

are no longer estimated, the states are still considered. The effects of the common

pseudorange error states on the other states are considered but not compensated for.

As a result, the reduced GPS EKF is slightly more conservative in state estimation

compared to the GPS EKF. In addition, bookkeeping is no longer performed. The

bookkeeping can be omitted since the common pseudorange error states are no longer

being estimated. If the states were still being estimated, bookkeeping must still be

performed otherwise the filter would fail. By removing the bookkeeping from the

reduced GPS filter, more conservatism is also added to the state estimation errors.

The state vector used for the reduced GPS EKF is comprised of chaser position

and velocity, target position and velocity, chaser attitude parameters, accelerometer

bias, common pseudorange errors unique to each GPS satellite, and clock bias and

drift of both GPS receivers (one onboard the chaser and one onboard the target).

Although the pseudorange errors are included in the state vector, the reduced GPS

EKF does not estimate the states. Instead, the states are set to zero while the

process noise covariance and state transition matrix entries corresponding to the

additional states are allowed to evolve with time. By allowing the process noise

covariance and state transition matrices to evolve with time, the entries corresponding

to the pseudorange error in the estimation error covariance matrix also evolve with

time affecting the estimation of the states being estimated. The measurement vector

consists of pseudoranges from no more than six satellites per receiver. The number of

pseudorange measurements available during every update process will vary depending

upon the number of GPS satellites in view of the receiver. The state and measurement

vectors are as follows.
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x =
[
rTc vTc θT bc fc rTt vTt bt ft aTb ξTgps

]T
ỹ = [ρc1 ρc2 · · · ρcn ρt1 ρt2 · · · ρtn ]T

The subscript n denotes the nth and final visible satellite. The maximum values

for n is six at any given time. If more than six GPS satellites are in view at any time,

the GPS satellites corresponding to the first six signals received are used. The state

and measurement models used are the same as given in Section A.

Unlike to the PV filter, the state and measurement models both experience cor-

ruption in the states or measurements due to the presence of white noise. Using the

definition of the state model in Equation 5.1, the zero mean white process noise has

a spectral density Q(t). However, the discrete propagation of the estimation error

matrix is used therefore the covariance matrix corresponding to the zero mean white

process noise is needed. The covariance matrix corresponding to the discrete version

of the zero mean white process noise, Qk, is found using Equation 5.14 and is the

same as given for the full state GPS EKF.

The measurement covariance matrix, Rk, is given by the following equation.

Rk = σ2
ρssIn×n (5.69)

The scalar value for Rk conveys the use of sequential processing of the measure-

ments. The steady state standard deviation, σρss , is 5 meters. In a similar manner as

is performed for the relative pseudorange relative deltarange EKF, a single measure-

ment is processed at a time updating the covariance with each processed measurement

and adding error corrections to the state error correction vector.

Since there are pseudorange measurements for both the chaser and target vehi-
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cles, the sensitivity matrix Hk will differ depending upon the pseudorange measure-

ment being processed. The sensitivity matrix corresponding to measured pseudor-

anges from the chaser vehicle is given by Equations 5.63-5.64 while Equations 5.65-

5.66 give the sensitivity matrix for pseudorange measurements from the target. The

sensitivity matrices are found by taking the derivative of the pseudorange correspond-

ing to a vehicle with respect to the state vector. With the sensitivity matrices defined,

the EKF process defined in Section A is implemented and an estimation of the states

over the duration of the rendezvous operation is determined. The position and veloc-

ity estimation errors are found using Equations 5.36-5.38 while Equations 5.67-5.68

are used to calculate the estimation errors in the clock bias and drift.
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CHAPTER VI

RESULTS AND COMPARISONS

The results for the four Kalman filters are presented in this chapter. For the following

results, 100 Monte Carlo runs are performed. Each filter experiences the same error

for a given Monte Carlo simulation. The estimation errors of the inertial position and

velocity of both vehicles as well as the relative position and velocity are presented.

The sample standard deviation is determined and presented alongside the predicted

standard deviation of all 100 Monte Carlo runs. The sample standard deviation of the

four filters are compared with advantages and disadvantages of each filter determined.

The relative trajectory over which the rendezvous operation is performed is given.

A. Results

1. Proximity Operations Trajectory

For the current study, GPS navigation is implemented during the rendezvous of a

chaser vehicle with a target vehicle. The range over which GPS navigation is imple-

mented is from 23 kilometers to 500 meters. The true trajectory used for this study

is generated off-line and includes information about the position, velocity, attitude

and angular velocity of each vehicle. The nonimal trajectory consists of two altitude

adjust maneuvers. Over the course of the rendezvous, four primary burns are trig-

gered to initiate and end each of the altitude adjustments. The first burn initiates

the altitude adjust with the second burn ending the adjustment. The vehicle coasts

and gains ground on the target vehicle from behind before approach initiation occurs

with the third burn. The fourth burn occurs when the chaser vehicle is radially un-

derneath at a distance of approximately 500 meters at which point GPS navigation
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is deactivated.

The estimation errors resulting from the 100 Monte Carlo runs are plotted against

their respective 3σ predicted standard deviations of all 100 runs. In order to determine

the overall performance of the four filter, the sample standard deviations derived from

the 100 estimation errors are computed using Equation 6.1 and compared to the 1σ

predicted standard deviations from the Monte Carlo simulation.

Ssamj =

√√√√ 1

n

100∑
i=1

(ei)
2 for j = 1, ..., N (6.1)

The total number of estimation errors for one Monte Carlo run is denoted by N .

For a properly tuned filter, the estimation error should closely follow the 1σ predicted

standard deviation over the entire simulation.

2. Position-Velocity Extended Kalman Filter

The following results pertain to 100 Monte Carlo simulation of a single trajectory

of both the target vehicle and chaser vehicle. Measurement rejection is based upon

satellite visibility and geometry, determined by the position delusion of precision

(PDOP). PDOP is calculated using Equation 6.3. For the current case of study, any

measurement of PDOP > 8 is rejected.

Gdop = (Hdop
THdop)−1 (6.2)

PDOP =
√
trace(Gdop(1 : 3,1 : 3)) (6.3)

where Gdop is the design matrix and is defined as follows. Note the subscript n refers

to the nth pseudorange measurement and the last column is the derivative of the

pseudorange with respect to the clock bias.
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Gdop =


dρ1

dx
dρ1

dy
dρ1

dz
1

...
...

...
...

dρn
dx

dρn
dy

dρn
dz

1


Figure 20 gives the position estimation errors of 100 Monte Carlo runs with the

corresponding 3σ predicted standard deviation for the chaser vehicle. Figure 21 gives

the position estimation errors of the target vehicle for 100 Monte Carlo runs with

the 3σ predicted standard deviation of all 100 Monte Carlo runs. The growth of

the predicted standard deviation relates to one of two things, inadequate satellite

visibility or poor geometry. As previously mentioned, in order for the GPS sensor to

compute an approximate position and velocity at least four GPS satellites must be

visible at any given time. When the number of visible satellites decreases to less than

four or a PDOP value of greater than eight is calculated, the current measurement

is rejected and only the estimated state is propagated. There is a single case that

does not lie within the 3σ predicted standard deviations in Figure 21. The occurrence

of a single violation is expected over 100 runs with the measurements corrupted by

colored noise and is therefore of no major concern. In addition, the error violates the

predicted standard deviations by a few meters, a relatively small violation based on

the size of the predicted standard deviations.
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Fig. 20. Chaser Inertial Position Estimation Error - PV EKF

Fig. 21. Target Inertial Position Estimation Error - PV EKF

Figures 22-23 correspond to the velocity estimation errors of the chaser and

target vehicles respectively for 100 Monte Carlo runs with the 3σ predicted standard
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deviation of each run. As for the velocity of the target vehicle, Figure 23 shows the

estimation error remaining within the predicted standard deviations of all 100 runs.

Once again, any growth in the predicted standard deviations is due to propagation

only of the estimated state resulting from measurement rejection. Since only a single

trajectory is being used, the errors are similar for all 100 runs due to the process noise

being the essentially the same for every run performed. Using a single trajectory does

not allow for the dispersion in the errors which occurs when multiple trajectories are

used. As a result of using a single trajectory, the dynamics are visible in Figure 20-23.

Fig. 22. Chaser Inertial Velocity Estimation Error - PV EKF
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Fig. 23. Target Inertial Velocity Estimation Error - PV EKF

Figure 24 is the estimation error in the relative position between the chaser and

target vehicles while Figure 25 is the estimation error in the relative velocity between

both vehicles, each representing 100 Monte Carlo runs. The relative position estima-

tion error is computed by calculating the difference between the position estimation

error of chaser vehicle and that of the target vehicle. The relative velocity estimation

error is computed in the same fashion. The covariance of the relative position and

velocity estimation error is calculated based on the covariance of the position and

velocity of the two vehicles throughout the simulation as shown in Equation 6.4.

Prel = Pc + Pt −Pt/c −Pc/t (6.4)

where P is the estimation error covariance. The estimation error covariance matrix

can be divided as follows assuming 12 states, the first 6 corresponding to the position

and velocity of the chaser and the final 6 corresponding to the target’s position and
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velocity.

P =

 Pc Pc/t

Pt/c Pt


The subscript t/c refers to the correlation of the estimation errors between the target

and chaser vehicles and vice versa for the subscript c/t.

(a) Nominal (b) Zoomed

Fig. 24. Relative Position Estimation Error - PV EKF

(a) Nominal (b) Zoomed

Fig. 25. Relative Velocity Estimation Error - PV EKF
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In order to determine the performance of the PV EKF, the sample standard

deviation for each state is compared to the 1σ predicted standard deviations of the

respective state. Figure 26 gives the sample standard deviations pertaining to the

chaser position and velocity for all 100 Monte Carlo simulations plotted against the

100 predicted standard deviations. The sample standard deviation of the position is

frequently smaller than the 100 predicted standard deviations. The sample standard

deviation of the velocity matches the predicted standard deviations for the first 0.3

hours before shrinking less than 100 predicted standard deviations. The sample stan-

dard deviation is higher over the first portion due to the lag in the accelerometer bias

estimate. As a result, there is an increase in the uncertainty of the estimation errors

resulting in an increased sample standard deviation.

(a) Position (b) Velocity

Fig. 26. Chaser Position and Velocity Sample Standard Deviation - PV EKF

Figure 27(a) shows the sample standard deviation of all 100 Monte Carlo es-

timation errors for the inertial position of the target vehicle. Figure 27(b) conveys

the sample standard deviation of the estimation errors for the inertial velocity of the
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target vehicle for all 100 Monte Carlo simulations. The predicted standard devia-

tions are slightly smaller compared to the predicted standard deviations of the chaser

vehicle. The dynamics are visible in both the position and velocity. The lag in the

accelerometer bias estimate does not affect the velocity estimate of the target vehicle

as it does the chaser vehicle.

(a) Position (b) Velocity

Fig. 27. Target Position and Velocity Sample Standard Deviation - PV EKF

In Figures 26-27, there are multiple instances where the sample standard devi-

ation is much small than the predicted 1σ standard deviations in one direction but

in another direction the sample standard deviation matches the predicted standard

deviation. This is due to inability of the PV filter to determine error directionality

and is also attributed to the use of a single trajectory.

Figures 28-29 correspond to the sample standard deviation of all 100 estimation

errors for relative position and velocity plotted against all 100 1σ predicted standard

deviations. The sample standard deviation for both the relative position and velocity

lie along the predicted standard deviations for all 100 Monte Carlo runs.
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Fig. 28. Relative Position Sample Standard Deviation - PV EKF

Fig. 29. Relative Velocity Sample Standard Deviation - PV EKF

The growths in the sample standard deviation correspond to thruster firings that
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influence all of the errors in the same manner. Although there are instances in Fig-

ures 26-27 when the sample standard deviation does not match the predicted standard

deviations, the lack of error directionality explains a number of these instances.

3. Relative Pseudorange Extended Kalman Filter

The RGPS EKF is simulated for 100 Monte Carlo runs and the results analyzed in

the following section. A dual inertial state filter is used with the relative pseudor-

ange measurement processed. Although there are multiple approaches to the design

and implementation of relative GPS filters, the dual inertial state filter is used for

consistency between the four filters being compared. Both the inertial position and

velocity of each vehicle along with the relative position and velocity between the two

vehicles is presented. The predicted standard deviations are 3σ standard deviations

for the time history of all 100 estimation errors and 1σ standard deviations for the

time history comparison of the sample standard deviation.

Figure 30(a) gives the estimation errors of the position of the chaser vehicle for

all Monte Carlo runs. The figure also gives the predicted standard deviation for all

Monte Carlo runs. Figure 30(b) shows the estimation error for the position of the

target for all the Monte Carlo runs in addition to the predicted standard deviations.

Since the RGPS filter processes relative measurements, the performance in estimating

the position of each vehicle diminishes as can be seen by the substantial growth of

the errors and corresponding predicted standard deviations as time progresses.
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(a) Chaser (b) Target

Fig. 30. Inertial Position Estimation Error - RGPS EKF

Figure 31 shows the estimation errors and corresponding predicted standard

deviations of the chaser and target velocities. Similar to the position estimation

errors, the velocity estimation errors and covariances for each vehicle progressively

grow throughout time. As aforementioned, since relative measurements are being

processed, the RGPS filter ensures the relative position and velocity between the two

vehicles remain low while the inertial position and velocity errors grow with time.

(a) Chaser (b) Target

Fig. 31. Inertial Velocity Estimation Error - RGPS EKF
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The relative position estimation errors and error covariances are given by Fig-

ure 32. Although there appears to be many instances when the error estimates do

not match the predicted predicted standard deviations, the majority of the errors

remain within the corresponding predicted predicted standard deviation for each re-

spective run. There are two instances where the estimation error ventures past the

corresponding 3σ predicted standard deviation. This is a result of poor geometry in

addition to a low number of visible satellites. While the estimation errors do grow

past the covariance, the estimation errors are on the order of less than a meter outside

of the covariance and is expected over the course of 100 Monte Carlo runs.

Fig. 32. Relative Position Estimation Error - RGPS EKF

The relative velocity estimation errors and covariances are shown in Figure 33.

Contrary to the relative position errors, the relative velocity estimation errors re-

main within the predicted standard deviations. The jumps in the estimation errors

correspond to thruster firings performed by the chaser vehicle.
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Fig. 33. Relative Velocity Estimation Error - RGPS EKF

The increase and decrease of the predicted standard deviations with the esti-

mation error in Figures 32-33 relay the ability of the RGPS filter to determine the

direction in which the error is present. As a result, the predicted standard deviations

more accurately predict the actual estimation errors for the relative states.

Sample covariance plots corresponding to the inertial position and velocity es-

timation errors are omitted. It is evident how the sample standard deviations will

evolve with time by inspection of Figures 30-31. Figure 34 and Figure 35 gives the

sample standard deviation of the relative position and velocity plotted against all

100 Monte Carlo predicted standard deviations. The sample standard deviation lies

among the 100 predicted standard deviations. Figure 35 shows the sample standard

deviation pertaining to the relative velocity estimation errors remaining within nearly

all 100 Monte Carlo simulation. The sample standard deviation again lies along the

100 predicted standard deviations with the exception of the growths in the sample

standard deviations. The spikes in the velocity sample standard deviation are due to
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the thruster firings which affect the velocity state estimation of all 100 Monte Carlo

runs the same.

Fig. 34. Relative Position Sample Standard Deviation - RGPS EKF

Fig. 35. Relative Velocity Sample Standard Deviation - RGPS EKF

While the RGPS EKF has the disadvantage of not being capable of estimating the



112

inertial position and velocity, it does have the advantage of performing exceptionally

well with respect to relative state estimation. The filter also allows for more accurate

prediction of the estimation errors since it is capable to determine the magnitude

of the error in each direction. The RGPS EKF processes non-linear measurements

resulting in a slightly more complex architecture than the PV EKF.

4. Psuedorange Extended Kalman Filter

The time history of 100 estimation errors as well as the sample standard deviation

determined from the 100 estimation errors is presented in the following section for

the GPS EKF. The GPS EKF has the advantage of performing well in both inertial

state and relative state estimation. The 3σ predicted standard deviations are plotted

against the 100 estimation errors while the sample standard deviations are plotted

against the 1σ predicted standard deviation. Common satellites are processed first

followed by satellites uniquely visible to each vehicle until 6 total satellites have been

processed. Since the pseudorange error is unique to each GPS satellite, the predicted

standard deviation changes when the visible satellites change.

Figure 36 gives the inertial position estimation error of the chaser for all 100

Monte Carlo runs and Figure 37 gives the inertial estimation errors corresponding to

the position of the target vehicle. As is the case for the PV filter, the dynamics of the

system are visible over the course of the rendezvous in the position of both vehicles.

This is attributed to only a single reference trajectory being used during the Monte

Carlo runs. Comparing the X direction with the Y and Z directions, it is evident that

the GPS EKF allows for more accurate predictions of the estimation error since the

predicted standard deviations of all three grow and decrease differently. The growth

in the predicted standard deviation is contributed to poor geometry, lack of satellite

visibility or a combination of both.
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Fig. 36. Chaser Inertial Position Estimation Error - GPS EKF

Fig. 37. Target Inertial Position Estimation Error - GPS EKF

The time history of all 100 velocity estimation errors is given by Figures 38-39.

The covariance grows and shrinks with the increase and decrease in the estimation
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errors. The estimation errors remain within the predicted standard deviations for all

100 Monte Carlo runs.

Fig. 38. Chaser Inertial Velocity Estimation Error - GPS EKF

Fig. 39. Target Inertial Velocity Estimation Error - GPS EKF
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The relative position estimation error is given by Figure 40. Although it appears

there are numerous cases that venture outside of the covariance, the estimation error

for all but two cases remain within their predicted covariance. The two instances

that go outside the covariance venture less than a meter outside and return within

the covariance rather quickly.

Fig. 40. Relative Position Estimation Error - GPS EKF

Figure 41 shows the estimation errors corresponding to 100 Monte Carlo runs.

The relative velocity errors remain within the 3σ covariances for all 100 runs.



116

Fig. 41. Relative Velocity Estimation Error - GPS EKF

In order to examine the performance of the GPS EKF, the sample standard de-

viation of each estimation error is determine and plotted against the 100 1σ predicted

standard deviations. Figures 42-43 give the position and velocity sample standard

deviations for the chaser vehicle and target vehicle respectively. As is the case in the

PV filter, the sample standard deviation corresponding to the chaser velocity closely

matches the predicted standard deviation for the first 0.3 hours. This is attributed to

the lag in the estimation of the accelerometer bias. The sample standard deviation

for each inertial state consistently lies along the 100 covariances. The velocity sample

standard deviations are occasionally less than the 100 predicted standard deviations

which is attributed to the repeatability of the estimation error due to the presence of

a single trajectory.
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(a) Position (b) Velocity

Fig. 42. Chaser Position and Velocity Sample Standard Deviation - GPS EKF

(a) Position (b) Velocity

Fig. 43. Target Position and Velocity Sample Standard Deviation - GPS EKF

The sample standard deviation of both the relative position and velocity estima-

tion errors are given in Figure 44 and Figure 45. The sample standard deviation of

each lies along the 100 predicted standard deviations. Since only 100 Monte Carlo

runs are considered, it is easy to see a correlation between substantially larger pre-

dicted standard deviations and growths in the sample standard deviation.
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Fig. 44. Relative Position Sample Standard Deviation - GPS EKF

Fig. 45. Relative Velocity Sample Standard Deviation - GPS EKF

The GPS EKF performs well in inertial state estimation and maintains a low

error in the relative distance and velocity between the two vehicles.
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5. Reduced Pseudorange Extended Kalman Filter

The results from 100 Monte Carlo runs for the reduced GPS filter is presented in

the following section. Inertial position and velocity estimation errors of each vehicle

in addition to relative position and velocity estimation errors are analyzed. All 100

Monte Carlo estimation errors as well as the sample standard deviations of the relative

states are presented. The estimation errors are presented with 3σ predicted standard

deviations while the sample standard deviations are presented with 1σ predicted

standard deviations. The reduced GPS EKF no longer estimates additional states

corresponding to common pseudorange errors but does keep the states in the state

vector. As a result, there are correlation terms in the predicted standard deviation

between the common pseudorange error states and the remaining states that are

allowed to evolve with time. Therefore, the covariances in the following section include

affects resulting from the common pseudorange error states not estimated.

Figure 46 shows the inertial estimation errors for the position of the chaser vehicle

for all 100 Monte Carlo runs with the corresponding 3σ covariances. Figure 47 gives

the inertial estimation errors for the position of the target vehicle with the predicted

standard deviation of all 100 Monte Carlo runs.
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Fig. 46. Chaser Inertial Position Estimation Error - Reduced GPS EKF

Fig. 47. Target Inertial Position Estimation Error - Reduced GPS EKF

The estimation errors for each vehicle remain within the covariance for all Monte

Carlo runs. Increases in the covariance correspond to poor geometry or inadequate
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satellite coverage. The GPS filter is equipped with the ability to reject a measurement

if the measurement residual is five times greater than the corresponding measurement

covariance. The measurement residual is found using Equation 6.5.

∆y = ỹ − h(x̂) (6.5)

The measurement covariance is given by Equation 6.6.

Wmeas = HkPkHk + Rk (6.6)

Figures 48-49 give the inertial velocity estimation errors of each vehicle for the

100 Monte Carlo runs. The estimation errors remain within the 3σ predicted standard

deviations for both vehicles. Once again, the estimation errors remain withing all 100

Monte Carlo predicted standard deviations.

Fig. 48. Chaser Inertial Velocity Estimation Error - Reduced GPS EKF
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Fig. 49. Target Inertial Velocity Estimation Error - Reduced GPS EKF

Figure 50 shows the estimation errors in the relative position between the two

vehicles while Figure 51 gives the estimation error in the relative velocity between

the two vehicles, both with respect to the covariance of all 100 Monte Carlo runs.

Although it may appear that some of the estimation errors venture outside of the

predicted standard deviations in Figure 50, the estimation errors do remain within

their respective 3σ covariances except for two instances. During these instances, the

estimation errors go beyond the predicted standard deviation by approximately 1

meter which is explained by a sudden loss of satellites resulting in a less accurate

state estimation due to less measurements processed. Although the estimation errors

do not match the predicted standard deviations at these instances, the presence of

the two small outlying estimation errors is acceptable and hence of no major concern.
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Fig. 50. Relative Position Estimation Error - Reduced GPS EKF

Fig. 51. Relative Velocity Estimation Error - Reduced GPS EKF

Figures 52-53 give the sample standard deviations derived from the 100 estima-

tion errors for the position and velocity of the chaser vehicle and target vehicle respec-
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tively. The position sample standard deviation of both vehicles matches the predicted

standard deviations for the entire duration when GPS navigation is implemented. The

velocity sample standard deviation follows the predicted standard deviations but are

slightly smaller than the predicted standard deviations at instances. The chaser ve-

locity sample standard deviation once again follows the predicted standard deviations

over the first 0.3 hours due to the lag in the accelerometer bias estimation.

(a) Position (b) Velocity

Fig. 52. Chaser Position and Velocity Sample Standard Deviation - Reduced GPS

EKF

(a) Position (b) Velocity

Fig. 53. Target Position and Velocity Sample Standard Deviation - Reduced GPS EKF
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Figures 54-55 give the sample standard deviation corresponding to all 100 esti-

mation errors along with the 1σ predicted predicted standard deviations for all 100

Monte Carlo runs. Upon inspection of Figure 54, the sample standard deviation ap-

pears to be larger than a number of predicted predicted standard deviations. The

larger sample standard deviations occur around larger predicted predicted standard

deviations conveying the accuracy of the estimates corresponding to the elevated pre-

dicted standard deviations has diminished. As a result, estimation errors over the

interval of increased predicted standard deviations are more likely to be higher hence

the sample standard deviation is larger since the sample standard deviation is deter-

mined from the estimation errors. On the other hand, the velocity sample standard

deviation shown in Figure 55 follow along the inside of all 100 predicted standard

deviations after the first 0.2 hours. The sample standard deviation is elevated during

0.2 hour due to randomness in the initial starting velocity of both the chaser and

target vehicles therefore resulting in more dispersed estimation errors.

Fig. 54. Relative Position Sample Standard Deviation - Reduced GPS EKF
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Fig. 55. Relative Velocity Sample Standard Deviation - Reduced GPS EKF

B. Comparisons of Architectures

A comparison of the four Kalman filters examined for relative GPS navigation is per-

formed in the following section. The root sum square (RSS) of the inertial position

and velocity estimation errors of both vehicles are given. The estimation errors cor-

responding to the relative position and velocity are given for all three directions as

well as a compilation of all errors in terms of the RSS error.

Figure 56 gives the RSS values of the sample standard deviations corresponding

to the chaser vehicle for the PV, GPS, and reduced GPS EKFs. The RSS of the

sample standard deviations pertaining to the target vehicle is given by Figure 57 for

the same three EKFs. The RGPS EKF sample standard deviation is omitted from

all inertial absolute plots due to the magnitude of the sample standard deviation

compared to the other three filters. It is obvious from the discussion in Section 3 that
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the RGPS filter performs significantly worse in absolute state estimation compared

to the other three filters due to the measurements processed by the RGPS EKF.

Fig. 56. Chaser Position RSS Sample Standard Deviation Comparison

Fig. 57. Target Position RSS Sample Standard Deviation Comparison
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The PV and GPS EKFs perform better than the reduced GPS EKF in position

estimation for the majority of the proximity operations. It is evident from Figure 56

that the lag in the accelerometer bias estimation influences the state estimation of

the PV filter more than the two GPS EKFs. The GPS filters allow for slightly more

accurate state estimates but at a higher computational cost. Although the PV filter

performs slightly worse for the first 0.3 hours in the chaser position compared to the

GPS EKFs, the PV EKF performs as well as the GPS EKF and better than the

reduced GPS EKF over the remainder of the proximity operations.

Figure 58 gives a comparison of the sample standard deviations of the PV, GPS

and reduced GPS EKFs for the chaser velocity while Figure 59 gives a similar com-

parison for the target velocity. The PV filter is more sensitive to the thruster firings

of the chaser vehicle than the two GPS filters. In addition, the lag in estimation of

the accelerometer bias affects the PV filter more than the GPS EKFs. Comparing

the sample standard deviations in Figure 59, it is concluded that all three filters per-

form essentially the same in absolute velocity estimation. The three filters perform

similarly in the estimation of the chaser velocity with the exception of the first 0.3

hours where the PV filter performs worse than the two GPS filters. The presence of

the thruster firings and accelerometer bias affects the absolute state estimation of the

PV filter more so than the two GPS EKFs due to the simplicity of the PV filter. The

non-linearity of the GPS filters allows for a better estimation of the absolutes states

than does the PV filter.
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Fig. 58. Chaser Velocity RSS Sample Standard Deviation Comparison

Fig. 59. Target Velocity RSS Sample Standard Deviation Comparison

Figure 60 is a comparison of the sample standard deviation for all four filters

corresponding to the relative position between the two vehicles. The two GPS EKFs



130

and relative GPS EKF maintain an estimation error of approximately 2 meters in all

directions over the entire duration of the proximity operations with the exception of

the elevated sample standard deviations at the beginning due to the range of initial

position errors. On the other hand, the PV filter consistently maintains an error of

5 meters in all direction except at the beginning when the error is on the order of

10 meters. By comparison, it is evident that the PV filter does not provide relative

position information as well as the relative and two GPS EKFs.

Fig. 60. Relative Position Sample Standard Deviation Comparison

Figure 61 provides a comparison of the total sample standard deviation of all

four EKFs for the relative position between the two vehicles. Similar findings are

concluded from Figure 61 as was from Figure 60. The difference in the sample stan-

dard deviations between the three filters that process some form of a pseudorange

measurement is a matter of a few centimeters. On the other hand, the difference

between the sample standard deviations of the three forms of GPS filters and the PV
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filter is on the matter of at least 4 meters with some differences during the course

of the proximity operations as high as 10 meters. This is expected since the PV fil-

ter is designed to perform well in absolute state estimation opposed to relative state

approximation.

Fig. 61. Relative Position RSS Sample Standard Deviation Comparison

A comparison of the sample standard deviations for all four filters corresponding

to the relative velocity between the two vehicles is given by Figure 62. The two GPS

filters perform better than the PV and RGPS EKFs in terms of approximating the

relative velocity. The PV and RGPS EKFs are more sensitive to the thruster firings

of the chaser vehicle than are the GPS and reduced GPS EKFs.
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Fig. 62. Relative Velocity Sample Standard Deviation Comparison

Figure 63 gives the RSS of the sample standard deviations for all four filters

for the relative velocity between the chaser and target vehicles. While the perfor-

mance between the two GPS filters does not differ much, the performance of the

PV and RGPS filters are worse. The spikes in the sample standard deviations refer

to thruster firings performed by the chaser vehicle. The PV and RGPS filters are

more sensitive in the accelerometer bias estimation hence the slightly elevated sample

standard deviation of the two filters. The sensitivity of the PV filter with respect to

the accelerometer bias is particularly evident over the first 0.3 hours of the proximity

operations.
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Fig. 63. Relative Velocity RSS Sample Standard Deviation Comparison

Although the RGPS EKF is designed to perform well in relative state approxi-

mation, it actually performs worse than both GPS filters that are able to accurately

estimate the absolute position and velocity states. The RGPS EKF performs worse

due to the presence of high multipath error corresponding to the ISS. Currently the

uncommon pseudorange errors are modeled as white noise. However, the pseudorange

errors are a result of colored noise. Although the standard deviation of colored noise

is approximately 2.5 meters, the standard deviation of the white noise is required

to be approximately two times higher for the filter to properly estimate the relative

states. Modeling the colored noise as white noise results in a performance decrease.

One advantage of the RGPS EKF is it removes all common pseudorange errors by

processing relative measurements and provides good relative information without the

addition of extra states. However, due to the size of the multipath error, additional

states are needed. Since the uncommon colored noise is modeled as white noise and

no additional states are included, the performance of the RGPS EKF is worse in rel-
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ative state estimation as compared to the two other GPS filters. In order to achieve

a similar performance, additional states are needed which voids one of the advan-

tages of the RGPS EKF. If additional states are omitted, it is then more beneficial

to implement a GPS EKF opposed to a RGPS EKF.

Table XIV summarizes the advantages and disadvantages of each Kalman filter

architecture analyzed. The values corresponding to the absolute and relative perfor-

mance are the average of the sample covariances.

Table XIV. Kalman Architecture Comparison

PV RGPS GPS
Reduced

GPS

Error
No Yes Yes Yes

Directionality

Computational
Medium Low High Medium

Cost

Relative 7.7 m 3.3 m 3.2 m 3.3 m

Performance 0.044 m/s 0.032 m/s 0.023 m/s 0.025 m/s

Absolute 11 m 1000 m 11 m 11 m

Performance 0.049 m/s 2 m/s 0.045 m/s 0.047 m/s

Comments

Similar antenna

None

4+ visible orientation of Bookkeeping

GPS satellites both vehicles and of internal

required measurement states estimated

synchronization
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CHAPTER VII

CONCLUSIONS

A GPS sensor model for an orbiting spacecraft has been developed and error sources

calibrated based on specifications of a GPS sensor typically used in space applications.

An algorithm has been developed that estimates the GPS receiver’s velocity and clock

drift based upon pseudorange and range rate measurements as well as an estimated

position of the GPS receiver. A visibility analysis has been performed to determine

the half cone angle of a GPS receiver on an orbiting spacecraft that allows for the

visibility of four GPS satellites during the proximity operations. The theory behind

the extend Kalman filter architecture has been outlined and implemented in the four

Kalman filter architectures analyzed. The advantages and disadvantages of each

architecture are discussed in this section in addition to a more in-depth comparison

of the architectures.

The PV EKF processes position and velocity estimates supplied by the GPS

sensors. The algorithms used for position and velocity estimation calculate absolute

position and velocity estimates from pseudoranges determined from the C/A code.

As a result, the errors in the estimated position can be 1-100 meters which then

appear in the velocity estimate [9]. Pseudoranges can also be calculated by measuring

the received phase of the transmitted GPS frequencies. By processing carrier phase

pseudoranges, the accuracy of the position estimate increases by as much as two orders

of magnitude which in turn increases the accuracy of the velocity estimation. This

increase in accuracy is due to the short period of the carrier waveform. However,

since the phase is measured in terms of 2π, additional measurements, frequently

code pseudoranges, are needed to effect ambiguity resolution [42]. With relative

navigation the main focus of this thesis, relative position is of more importance than
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absolute position. A direct relative position estimation algorithm has been developed

allowing for an increased accuracy in relative position estimation by an order of

magnitude compared to relative position calculated by differencing absolute position

estimates [43]. This algorithm is similar to the approach taken in the RGPS EKF.

The increase in accuracy is due to less multipath on the measurements (<1 m) in

addition to the higher orbiting altitude of the satellites. For the current analysis, the

GPS signals pass through an additional 250 kilometers of the atmosphere compared

to the satellites in reference [43] which results in more disperse ionosphere errors on

the measurements. When differenced, less atmosphere errors cancel than compared

to satellites at higher altitudes contributing to higher errors in the relative position

estimation. Although relative states are key to relative navigation, absolute state

information is also desired for the analysis performed in this thesis. As a result,

a dual inertial filter is the basis for the four Kalman filter architectures. While

carrier phase pseudoranges have been combined with code pseudoranges in Kalman

filter architectures [44], code pseudoranges are solely used in this thesis for position

estimation by the GPS sensors to reduce complexity. The higher errors are accounted

for during state estimation performed by the Kalman filters.

One advantage of the PV EKF is in the measurements being processed. The PV

EKF processes approximate position and velocity measurements computed by the

GPS sensor. The measurements correspond to the inertial states of the vehicle. By

processing inertial position and velocity measurements, the complexity of the filter is

significantly reduced. Additional computations are avoided and the relation between

the measurements and estimated states are linear. The addition of extra states to

model errors present in the position and velocity measurements add little complexity

to the PV EKF.

One disadvantage of the PV EKF is it does not assign directionality to the po-
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sition and velocity errors. Therefore, if there is a 10 meter error in the X direction

but only a 1 meter error in the Y and Z direction in position, the predicted standard

deviation for all three directions corresponds with the 10 meter error. The predicted

standard deviation for the directions with the smaller errors is too conservative for

the size of the errors. In order to account for the directionality of the error, similar

calculations performed by the GPS sensor to get the approximate position and veloc-

ity need to be performed. The advantage of acquiring the approximate position and

velocity is nullified by performing the same calculations as performed by the GPS

receiver. Due to the inability of the PV filter to assign error directionality, the esti-

mation errors are slightly larger in terms of relative position and velocity as compared

with an RGPS or GPS filter. The inability of the filter to remove common state errors

from the pseudorange measurements also contributes to the larger relative estimation

errors. When the estimated position and velocity measurements are calculated inside

the GPS sensor, the errors present on each pseudorange measurement become em-

bedded in the position and velocity estimation. As a result, the errors can no longer

be canceled out and therefore contribute to the larger estimation errors.

An advantage of the RGPS EKF is its ability to perform well in terms of ap-

proximating relative states from inertial state estimation. By processing relative

pseudoranges, the RGPS filter is capable of maintaining significantly lower errors in

the approximation of relative states from the estimated inertial states compared to

the PV filter. In addition, less states are estimated therefore the RGPS EKF has a

lower computational cost.

While the RGPS EKF performs well with respect to relative state approxima-

tion, it cannot accurately estimate the current absolute position and velocity of either

vehicle. The RGPS filter experiences this disadvantages due to the processing of rel-

ative measurements. Since only relative measurements are being processed, there is
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no knowledge of the current inertial position and velocity states. Without any knowl-

edge, the uncertainty in the estimation grows triggering the growth in the predicted

standard deviations. The inertial states of each vehicle is essentially propagated over

the duration of the proximity operations when the RGPS filter is used. As previously

mentioned, there are multiple designs for a RGPS EKF. One design involves estimat-

ing the relative position, velocity, clock bias and drift between the two vehicles [11].

By estimating eight states, the computational cost of the filter is low. However, no

absolute information is received from the relative filter therefore an external absolute

filter is needed. By using two filters, the correlation between the measurements pro-

cessed and states estimated is neglected resulting in less accurate state estimation.

In this thesis, a dual inertial state filter is used for the four filters to allow for a direct

comparison. Therefore, inertial information is received but the filter essentially only

propagates the inertial position and velocity of each vehicle. More accurate inertial

information can be obtained by processing different measurements (pseudorange or

estimated position and velocity of both vehicles) but the complexity of the filter in-

creases as a result. In addition, the RGPS EKF cannot properly model the multipath

error as white noise therefore resulting in worse performance when compared to both

GPS filters. Additional states are needed to properly model the multipath errors

due to the elevated multipath error of the ISS but the addition of states results in a

more complex filter. The increase in the complexity due to the processing of different

measurement or addition of error states results in an increase in the computational

cost nullifying one advantage of the RGPS EKF.

The GPS EKF is an advantageous filter in terms of its ability to perform well in

both absolute state estimation and relative state approximation from the estimated

absolute states. This advantage arises from the ability of the filter to determine error

directionality. Since pseudorange measurements are being processed, performance in
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absolute state estimation is similar to the PV filter as opposed to the performance

of the RGPS filter. By processing an absolute distance from GPS satellites opposed

to a relative distance between the two vehicles, the accuracy of the absolute state

estimation increases. Error directionality is another advantage to the GPS EKF. The

pseudorange measurements processed allow for error directionality since the GPS

satellites are oriented at varying elevation angles. As a result, larger error appear in

one direction for one satellite and appear in another direction for another satellite.

Combining the variation of these errors, the GPS EKF is capable of better determining

the magnitude of the errors in each direction.

The GPS EKF does have a disadvantage that arises from the non-linearity in

the pseudorange measurements processed. Due to the measurements, the complex-

ity of the filter is higher compared to the PV filter since non-linear equations are

included to calculate an estimated pseudorange from the estimated states. As a re-

sult of the higher complexity, the GPS EKF also comes with a higher computational

cost. In addition to the complexity due to the non-linearity of the measurements, the

GPS EKF also accounts for additional states to model common pseudorange errors

present in each satellite being processed. Since the common pseudorange error is

unique to each satellite, the six additional states added to model these errors need

to be closely monitored during the implementation of the GPS EKF. Bookkeeping

of previous satellites corresponding to processed pseudorange measurements is per-

formed in order to accurately model the common pseudorange errors. When satellites

are lost, acquired, or rearranged in order, the appropriate pseudorange error from the

previous update and propagation is shifted to the new position of the corresponding

pseudorange error. This bookkeeping adds even more complexity to the filter in turn

raising the computational costs of the GPS filter.

The reduced GPS EKF attempts to take advantage of the GPS EKF while min-
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imizing the disadvantages. While the reduced GPS EKF cannot escape the non-

linearity in the pseudorange measurements, the reduced GPS EKF significantly min-

imizes the complexity of the GPS EKF by not estimating the additional states cor-

responding to the common pseudorange errors. While the states are not estimated,

the states are considered and therefore remain part of the state vector. By doing so,

the remaining states being estimated are influenced by the states not estimated by

the presence of correlation terms in the estimation error covariances corresponding

to the pseudorange errors not estimated. The rows and columns of the estimation

error covariance corresponding to the common pseudorange error states are allowed

to evolve with time therefore influencing the states being estimated. The advantage

of good performance in both absolute state estimation and relative state approxi-

mation is retained as is the ability to determine error directionality. However, the

resulting estimation errors are more conservative compared to the GPS EKF since

the common pseudorange error states are only considered and the bookkeeping of the

common pseudorange error states is removed.

The complexity and computation costs of the reduced GPS EKF is still higher

than the PV filter but less than the GPS EKF since the bookkeeping of GPS satellites

is avoided. Since it is avoided, the evolution of the estimation error covariances does

not involve rearranging rows and columns based upon the acquisition, loss, or rear-

rangement of satellites from which pseudorange measurements are being processed.

The estimation error covariance is allowed evolve assuming the correlation between

the estimated states and common pseudorange error states vary little from satellite to

satellite. In addition, the covariances and correlations of the six common pseudorange

errors are assumed to vary little from satellite to satellite as well.

In conclusion, there are advantages and disadvantages to each filter. While the

PV filter performs well in absolute state estimation, its lacks in the ability to supply
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small errors in relative position and velocity. The RGPS EKF is capable of providing

small errors in the relative position and velocity between the two vehicle but cannot

provide the user with any usable inertial state information. In addition, complica-

tions arise in the presence of multipath rich environments. The GPS EKF provides

the best of both worlds by being able to perform similar to the PV filter in terms

of absolute state navigation and similar to the RGPS EKF in terms of relative state

approximation. While the all around performance is better, the higher complexity of

the filter results in the highest computational cost of the four Kalman filters studied.

The reduced GPS EKF combines the advantages of the GPS EKF while minimizing

the disadvantages of the GPS EKF. While the complexity and computational cost of

the filter are still higher compared to the RGPS EKF, the complexity and computa-

tional cost are less than the GPS EKF since satellite bookkeeping is avoided. The

overall performance in both absolute and relative navigation provided by the reduced

GPS EKF is nearly equivalent to that of the GPS EKF.
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APPENDIX A

IONOSPHERE MODEL DERIVATION

The ionospheric modeled used during the development of the GPS measurement

model is the Klobuchar model. The Klobuchar model assumes a cosine representation

of the diurnal curve which varies in amplitude and period based on the latitude

location of the GPS receiver. The model for a spaceborne GPS receiver [24] is derived

from the Klobuchar model as given for a ground based GPS receiver [23]. The primary

difference between a spaceborne receiver and ground based receiver is the immediate

point (IP) of the ionosphere. Figure 64 shows the difference in how the location of the

IP is determined based upon the location of the GPS receiver. The two red triangles

denotes the IP corresponding to each receiver.

Fig. 64. Intermediate Point for Ionospheric Error Calculation
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Three cases must be considered for a spaceborne receiver dependent on the lo-

cation of the receiver; below, inside or above the ionosphere. Recall the ionosphere

has a basement of 50 kilometers and ceiling of 1000 kilometers, both measured as

altitude above sea level. The derivation of the ionospheric model for a spaceborne

GPS receiver is as follows. Many angles will be defined in the following derivation

that deal with the geometry between vectors from the center of the Earth to cross-

ing of the ionosphere basement or ceiling with that of the line of sight (LOS) vector

defined from the receiver to the GPS satellite. A visual representation of the angles

determined below can be found in Reference [24].

Determine the azimuth, A, the elevation, E, and the geodetic coordinates (lat,log,alt),

(φ, λ, h) given the position of the GPS receiver r and current GPS satellite rgpsi from

the center of the Earth. The LOS vector is computed by taking the cross product

of the position of the receiver and satellite. Compute the zenith and Euler axis of

rotation using Equations A.1-A.3.

Z =
pi

2
− E (A.1)

rlos = rgpsi × r (A.2)

ê =
rlos

‖rlos‖
(A.3)

The radius of the earth at the given latitude is computed using Equation A.4 and

the basement and ceiling of the ionosphere defined. Define ζ1 to be the angle between

the LOS and the vector from the center of the Earth to the point of intersection of

the LOS vector with the ceiling of the atmosphere.
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Rn =
aE√

1− e2
E sin2(φg)

(A.4)

rImax = Rn + hImax (A.5)

rImin = Rn + hImin (A.6)

ξ = π − Z (A.7)

ζ1 = arcsin

(
‖r‖ sin(ξ)

rImax

)
(A.8)

CASE 1: GPS receiver located below the ionosphere.

Compute the following angles in order to determine the radius to the IP as given

in Equation A.13.

ζ3 = arcsin

(
‖r‖ sin(ξ)

rImin

)
(A.9)

ν = π − ζ3 (A.10)

γ = π − ζ1 − ν (A.11)

pI =
sin(γ)

sin(ν)
rImin (A.12)

dip =
1

2

√
2(r2

Imax
+ r2

Imin
)− p2

I (A.13)
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CASE 2: GPS receiver located inside the ionosphere.

The following angle and distance between the GPS receiver and intersection of

the ceiling of the ionosphere are used to determine the distance from the center of the

Earth to the IP ad defined by Equation A.16. It is assumed in the implementation

of the ionosphere model that the floor of the ionosphere will not be intersected by a

LOS vector for a spacecraft inside or above the ionosphere.

γ = π − ζ1 − ξ (A.14)

pI =
sin(γ)

sin(ξ)
rImax (A.15)

dip =
1

2

√
2(‖r‖2 + r2

Imax
)− p2

I (A.16)

The following equations are common for a GPS receiver location either below

or inside the ionosphere. The solution to Equation A.21 is used to determine the

geodetic coordinates of the IP (φip, λip, hip) which are used in the calculation of the

ionospheric time delay.

ζ2 = arcsin

(
‖r‖ sin(ξ)

dip

)
(A.17)

υ = π − ζ2 − ξ (A.18)

r̂ =
r

‖r‖
(A.19)

d̂ip = T(ê,−υ)r̂ (A.20)
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dip = d̂ip · dip (A.21)

where T is the transformation matrix defined by Equation A.22 where [û×] denotes

the skew symmetric matrix of the principle axis of rotation.

T (û, θ) = cos θI3×3 + (1− cos(θ))ûûT − sin(θ)
[
û×
]

(A.22)

CASE 3: GPS receiver located above the ionosphere

For a receiver located above the ionosphere, the only ionospheric delay will result

from LOS vectors that intersect the ceiling of the ionosphere meaning GPS signals

passing into and back out of the ionosphere. In order for the signal from the GPS satel-

lite to intersect the ionosphere, the elevation corresponding to the LOS vector must

be less than the elevation of the top of the ionosphere, found using Equation A.23.

EI = − arccos
Rn + hImax
Rn + h

(A.23)

For the current case, an effective calculation point (ECP) and corresponding el-

evation angle must be calculated at the point where the LOS vector first intersects

the ceiling of the ionosphere. Using this point, the effective ionosphere delay can be

found. The following equations are used to determine the ECP where the transfor-

mation matrix T is found using Equation A.22.

ζ = π − arcsin

(
‖r‖ sin ξ

Rn + hI

)
(A.24)

ψ = π − ζ − ξ (A.25)
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Eecp =
pi

2
− ζ (A.26)

d̂ecp = T (ê,−ψ)r̂ (A.27)

decp = d̂ecp · decp (A.28)

Contrary to the case of a GPS receiver located below or inside the ionosphere, the

the geodetic coordinates are found using decp instead of dip. With the determination

of the geodetic coordinates of either the IP or ECP, the following set of equations are

used to determine the ionospheric time delay.

Define the geomagnetic pole coordinates to be φp = 78.3◦ for latitude and 291.0◦

for longitude. Combining the geodetic coordinates of the intermediate point (or ECP)

with those of the geomagnetic pole, the quantity φip
m is defined by Equation A.29.

φmip = arccos (sin(φip) sin(φp) + cos(φip) cos(φp) cos(λip − λp)) (A.29)

The broadcast ephemeris transmit correction terms to be used during the calcu-

lation of the ionosphere error. These correction terms are common to all satellites

and included in the common portion of the ephemeris data. The correction term

coefficients as given by the broadcast ephemeris are combined with φmip to produce

the following coefficients used in the calculation of the ionospheric time delay.

C1 =
3∑

n=0

αn φ
m n

ip (A.30)
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C2 =
3∑

n=0

βn φ
m n

ip (A.31)

The coefficient C1 refers to the amplitude of the cosine function while C2 defines the

period. The ionosphere time delay should always be a positive scalar value therefore

if the amplitude as calculated by Equation A.30 is calculated to be less than zero,

the amplitude is then defined to be zero. With the definition of the amplitude and

period of the cosine function, the ionospheric time delay is defined by the following

equation.

∆Tiono = SF ·
(
C3 + C1 cos

(
2π(t− C4)

C2

))
(A.32)

Equation A.32 can also be rewritten as a fourth order Taylor series expansion of

the cosine function. C3 is a constant time delay of 5 × 10−9 (ns) and C4 is defined to

be a constant of 14 hours given in seconds. The current local time, t, is found using

Equation A.33.

t =
λip
15

+ tut (A.33)

The time value, tut refers to the universal time and is broadcast in the ephemeris

data. Since the GPS satellite seen by the receiver is not often directly above, the

time delay due to the presence of the ionosphere is multiplied by a scale factor, SF.

The scale factor is found using Equation A.34. The angle z’ is defined as the satellite

zenith angle at the IP.

SF =
1

cos(z′)
(A.34)
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z′ = arcsin

(
Rn

Rn + hip
sin(Z)

)
(A.35)

The total error as contributed by the ionosphere in meters is determined by

multiplying the computed time delay by the speed of light.
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APPENDIX B

TROPOSPHERE MODEL DERIVATION

There are two regions of the troposphere which are addressed in the derivation

of the tropospheric time delay [25]. It is assumed that knowledge of the elevation,

azimuth, geodetic coordinates and radius of the Earth at the current position of the

vehicle, the tropospheric is known in the following derivation. Let T0 be 288.16 K

and the ceiling of the wet portion of the troposphere be 11 km. The ceiling of the

troposphere is found using Equation B.1.

hdry = 40136 + 148.72 · (T0 − 273.16) (B.1)

Define an elevation mapping function, M.

Mdry =

 Mdry = 1√
E2+6.25

E > 0

Mdry = 0.4 E ≤ 0

Mwet =


1√

E2+2.25
E > 0

2
3

E ≤ 0

where E is the elevation in radians. The Hopfield troposphere model is used to

calculate the time delays resulting from the presence of the troposphere. Let P0 and

e0 be defined as 1013.25 mb and 0.085 mb. The refractive indices of the wet and dry

portions of the atmosphere are given by Equations B.2 and B.3 respectively.

Nwet = (−12.96T0 + 3.718× 105)
e0

T 2
0

(B.2)

Ndry = 77.64
P0

T0

(B.3)
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The time delay resulting from the wet and dry portions of the troposphere is

given by the following equations.

∆Twet =
10−6

5 c
Nwet

(hwet − h)5

h4
wet

Mwet h > hwet (B.4)

∆Tdry =
10−6

5 c
Ndry

(hdry − h)5

h4
dry

Mdry (B.5)

Note that for an altitude of a receiver greater than the ceiling of the wet portion

of the troposphere, the time delay resulting from the wet portion of the troposphere is

zero. The total error due to the troposphere in meters is computed by Equation B.6

with SF defined as a scale factor.

E = SF · (∆Twet + ∆Tdry) (B.6)

There are three cases that are considered for the time delay resulting from the

presence of the troposphere. The three cases are as follows.

1. Receiver inside troposphere with positive elevation

2. Receiver inside troposphere with negative elevation

3. Receiver outside of troposphere

For the case of a user inside with a positive elevation, all above derived equations

hold true and the scale factor is 1. For a user inside with a negative elevation, an

intermediate point (IP) is determined such that the elevation angle with respect to

this point is zero. The altitude of the IP is calculated using Equation B.7.

hip = cos(β)(Rn + h)−Rn (B.7)
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The quantity β is equal to the original negative value of the elevation angle. The

solution to Equation B.7 is used in place of h during the calculation performed in the

Hopfield troposphere model. The scale factor is defined by Equation B.8.

X =
√

(Rn + ha)2 − (Rn + hip)2

Y =
√

(Rn + h)2 − (Rn + hip)2

where ha is replaced by the ceiling of the portion of the atmosphere the receiver is

located in.

SF = 1 +
Y

X
(B.8)

For a receiver located outside of the troposphere, there is a slim chance for which

a signal may pass through the troposphere. For this case, an effect calculation point

(ECP) is calculated in a similar manner as for the ionosphere time delay. An elevation

of the ceiling of the troposphere with respect to receiver is calculated by Equation B.9

and compared with the elevation of the GPS satellite. If the calculated elevation is

greater than the elevation of the GPS satellite, the ECP point is calculated and the

process described for a negative elevation angle is followed with the ECP replacing

the IP. The resulting scale factor for this case is 2.

Eecp = arccos

(
Rn + ha
Rn + h

)
(B.9)
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APPENDIX C

NOMENCLATURE

DOF Degree of Freedom

ECEF Earth Centered Earth Fixed

ECI Earth Centered Inertial

ECP Effect Calculation Point

EKF Extended Kalman Filter

GDOP Geometric Delusion of Precision

GPS Global Positioning System

IP Intermediate Point

ISS International Space Station

J2000 Julian 2000 Epoch

LOS Line of Sight

LVLH Local Vertical Local Horizontal

PDOP Position Delusion of Precision

PV Position-Velocity

RGPS Relative Global Positioning System

RMS Root Mean Square

RSS Root Sum Square

STK Satellite Tool Kit

TEC Total Electron Count
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