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ABSTRACT 

 
 

Analysis of Data from the Barnett Shale with Conventional Statistical and Virtual 

Intelligence Techniques. (December 2009) 

Obadare Olusegun Awoleke, B.Sc., University of Ibadan, Nigeria 

Chair of Advisory Committee: Dr. Robert Lane 

 

 Water production is a challenge in production operations because it is generally 

costly to produce, treat, and it can hamper hydrocarbon production. This is especially 

true for gas wells in unconventional reservoirs like shale because the relatively low gas 

rates increase the economic impact of water handling costs. Therefore, we have 

considered the following questions regarding water production from shale gas wells: (1) 

What is the effect of water production on gas production? (2) What are the different 

water producing mechanisms? and (3) What is the water production potential of a new 

well in a given gas shale province. 

The first question was answered by reviewing relevant literature, highlighting 

observed deficiencies in previous approaches, and making recommendations for future 

work. The second question was answered using a spreadsheet based Water-Gas-Ratio 

analysis tool while the third question was investigated by using artificial neural networks 

(ANN) to decipher the relationship between completion, fracturing, and water 

production data. We will consequently use the defined relationship to predict the average 

water production for a new well drilled in the Barnett Shale. This study also derived 
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additional insight into the production trends in the Barnett shale using standard statistical 

methods.  

The following conclusions were reached at the end of the study: 

1) The observation that water production does not have long term 

deleterious effect on gas production from fractured wells in tight gas 

sands cannot be directly extended to fractured wells in gas shales because 

the two reservoir types do not have analogous production mechanisms. 

2) Based on average operating conditions of well in the Barnett Shale, liquid 

loading was found to be an important phenomenon; especially for vertical 

wells. 

3) A neural network was successfully used to predict average water 

production potential from a well drilled in the Barnett shale. Similar 

methodology can be used to predict average gas production potential. 

Results from this work can be utilized to mitigate risk of water problems in new 

Barnett Shale wells and predict water issues in other shale plays. Engineers will be 

provided a tool to predict potential for water production in new wells.  
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1. INTRODUCTION 

 

1.1 Statement of Problem 

Some work has been done on the effect of hydraulic fracture load water production on 

gas production in tight gas reservoirs. However, in all these publications, the potential 

effects water from other sources was not considered. Work has also been done on 

characterizing water production mechanisms in conventional hydrocarbon reservoirs on 

the basis of the analysis of Water-Oil-ratio (WOR) and Water-Gas-Ratio (WGR) data 

over time. This technique has not been applied to understanding the water production 

mechanisms in unconventional gas reservoirs. We have also noted that large bodies of 

data relating to fracturing operations in gas shales exist in public databases. These 

databases also contain production data. In this work, firstly, we examine production 

figures from the Barnett Shale using conventional statistical techniques. Secondly, we 

also extend Chan’s work (1995) on water control diagnostic plots to unconventional gas 

reservoirs. Lastly, it is pertinent to note that few attempts has been made to investigate 

the relationship between water production from shale gas reservoirs and well / reservoir 

and fracturing treatment data. This is not surprising because this relationship is very 

complex. Therefore, we attempt to use neural networks to decipher the relationship 

between water production and parameters related to the well, completion, reservoir and 

the hydraulic fracture. This method was chosen because of the proven ability of neural 

networks to model complex relationships between variables. 

 
 
____________ 
This thesis follows the style of SPE Journal. 
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1.2 Background and Literature Review 

 
We will be tackling a broad spectrum of issues in this research work. It is only 

expedient that an independent literature review be conducted for each facet of our 

investigation. Therefore, this section of the thesis is sub-divided into three parts: 

(a) Literature review on the effect of water production on gas production in 

shale gas reservoirs. 

(b) Literature review on the determination on water production mechanisms in 

unconventional gas reservoirs. 

(c) Literature review on the application of artificial neural networks in 

petroleum engineering.  

1.2.1 Literature review on the effect of water production on gas production in shale gas 

reservoirs 

There is a paucity of papers in technical literature of the effect of water 

production on shale gas production. In order to have some understanding of this issue, we 

surveyed literature on the effect of water production in tight gas sands. These two 

reservoir types are not analogous, but a study of one might give us some insight into the 

behavior of the other. 

Tannich (1975) investigated the process of liquid removal from hydraulically 

fractured gas wells using a numerical model. He modeled four physical processes that 

were coupled to illustrate the clean-up problem. The processes include: (1) two-phase 1-

D flow of fluid in the tubing, (2) fluid behavior in the fracture, (3) flow in the liquid 

invaded region, neglecting capillary and gravitational forces, and (4) single phase flow of 

gas in the un-invaded portions of the reservoir. Regarding this issue, he concluded that: 
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(1) clean-up efficiency is greatest when the fracture is short and highly conductive (2) 

permanent productivity damage is not likely if the fracture conductivity is high relative to 

the formation permeability. 

Holditch (1979) evaluated the factors affecting water and gas flow from 

hydraulically fractured gas wells. He concluded that the most important criteria include 

the mobility of water in the reservoir, the total pressure drawdown, extent/depth of 

formation damage and the magnitude of the capillary discontinuity between the fracture 

and the reservoir. The short and long term behavior of gas wells in tight gas reservoirs is 

governed primarily by these factors. The main difference between Holditch and 

Tannich’s work is that Holditch includes the effect of capillary pressure in the invaded 

zone in his model. The effect of a water block is negligible if the pressure drawdown is 

large compared to the capillary pressure end effects in the formation or if the water 

mobility is high. This ensures the fluid bank is easily imbibed into the reservoir enabling 

optimum gas production. The converse is the case if the pressure drawdown and the 

capillary pressure in the reservoir are comparable. The effect of capillary pressure in the 

invaded zone is exacerbated by the presence of skin.  

Soliman et al. (1985) contributed to this discourse by using a reservoir simulator 

to emphasize the importance of fracture conductivity to the clean up process. They 

concluded that at low conductivities, the gas breakthrough into the fracture occurs near 

the wellbore. This phenomenon impacts negatively on clean-up efficiency. As fracture 

conductivity increases, the saturation distribution around the fracture in the invaded zone 

becomes more uniform with a resulting increase in clean-up efficiency. They noted that 

for a hydraulic fracture, there exists an optimum dimensionless conductivity for the back-
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production of fracturing fluid. This optimum conductivity is usually more than what is 

required for peak gas production. They also concluded that in some cases, the clean up of 

fracturing fluids might largely be controlled by the magnitude of difference between the 

capillary pressure and the drawdown. Soliman et al. focused on the short term effect of 

these parameters on gas production and water recovery. 

Iqbal (1998) developed a multi-phase and multi-dimensional simulator to evaluate 

the liquid cleanup performance of hydraulically fractured wells with consideration of skin 

effect caused by clay swelling and migration of fines. He agreed with Holditch’s 

conclusions as stated above. 

Montgomery et al. (1990) simulated the fluid invasion by injecting water in an 

open high conductivity fracture. The hydraulic fracture treatment is simulated in three 

stages, namely: (1) an injection period to simulate fracturing leak-off and imbibition into 

the formation, (2) a shut-in period to simulate fracture pressure bleed-off and fracture 

closure, (3) a production period to simulate flow back of fracturing fluids and gas 

production. According to them, the parameters that determine whether poor fracturing 

fluid recovery reduces the productivity of hydraulically fractured wells are: (1) fracture 

conductivity (2) formation damage to fracture face (3) relative permeability hysteresis in 

the invaded zone. 

Friedel et al. (2007) took a panoramic view of the clean up process in fractured 

gas wells. They characterized the causes of sub-optimal production to two broad 

subdivisions – (a) those artificially induced as a result of the fracturing process and (b) 

natural process independent of fracturing like stress related permeability reduction. The 

artificial causes included productivity impairment due to the presence of a load water 



 5

invasion zone. The focus of their work was to investigate the effect of all these factors 

using a single simulator because of the interdependence of the causes of sub-optimal 

production. One of their conclusions is that hydraulic damage due to the load water does 

not impair productivity on the long term. The reservoir pressure used for their simulations 

is however very high (9000 psi). They did not consider a low – pressure case. Possible 

mechanisms of impairment include but are not limited to; (1) 3-phase flow (2) formation 

of a load-water invasion zone accompanied by hydraulic and mechanical damage in the 

fracture vicinity (3) filter cake build up and erosion (4) proppant pack conductivity 

reduction due to gel residue (5) unbroken fracturing fluids in the proppant pack (f) 

inertial or non-Darcy flow (6) geo-mechanical effects. 

1.2.2 Literature review on the determination of water production mechanisms in 

unconventional gas reservoirs 

There is a paucity of work on the different mechanisms of water production in 

unconventional gas reservoirs. In the same vein, the body of literature on determining the 

mechanism of water production using production data is virtually non-existent. The 

paucity of information in this area of petroleum engineering may be due to the highly 

non-unique nature of most proposed solutions. The possible mechanisms of water 

production in conventional reservoirs were investigated by Seright et al. (2003). For 

characterizing water production mechanism using production data in conventional 

reservoirs, Chan (1995) in his seminal paper on the subject matter classified these 

mechanisms based on the shapes of the WOR and WOR’ curves. Seright (1997) 

emphasized that Chan’s methodology should not be used in isolation. The shape of the 

WOR and WOR derivative curves are dependent on the degree of vertical communication 
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and permeability contrast among layers, saturation distribution, pressure gradient in the 

reservoir, relative permeability / capillary pressure curves and vertical to horizontal 

permeability ratio. He concludes no particular trend is unique to either the coning or 

channeling problem. His conclusions do not vitiate Chan’s work; it only implies the 

diagnostic plots developed by Chan should used with caution. 

1.2.3 Literature review on the use of artificial neural networks in petroleum engineering 

 
Virtual Intelligence techniques in general and Artificial Neural Networks (ANN) 

in particular have been used to solve problems in the various branches of petroleum 

engineering. Shelley et al. (2008) used a self – organizing map to analyze the reservoir 

and stimulation data of Barnett shale wells fractured with either slick-water or cross-

linked gels. They also attempted to develop a predictive model for well productivity by 

training a neural net. This attempt was unsuccessful. They speculated that this failure was 

caused by a lack of information necessary to fully describe reservoir quality or 

stimulation effectiveness. A detailed summary of the applications of artificial intelligence 

in petroleum engineering from SPE literature is shown in Table 1.1. 
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Table 1.1- APPLICATION OF ARTIFICIAL NEURAL NETWORK S IN PETROLEUM 
ENGINEERING LITERATURE 

Summary Papers  
 

Mohaghegh (2000a, 2000b, 
2000c) 
 

General Reservoir Engineering  
• Prediction of equilibrium ‘k’ values for light 

hydrocarbon mixtures; prediction of 2 or 3-phase 
relative permeabilities. 

 

 
Habiballah et al. (1996); 
Silpngarmlers (2002). 
 
 
 
 
 

Well Test Interpretatio n 
• Well test interpretation modeling. 

 
Al-Kaabi et al. (1993), 
Athichanagorn et al. (1995), 
Kumoluyi et al. (1994, 
1995). 
 
 
 

Geostatistics, Reservoir Simulation and Data 
Integration. 

• Optimization of well placement. 
 
 

• Data Integration. 
 
 

• Geostatistics. 
•  
• Neuro-simulation. 

 
 
 
 
 
 
 
 
 
 

• Upscaling 

 
 
Guyaguler et al.(2000), 
Yeten et al. (2002). 
 
Srinivasan et al. (2000), 
Arpat et al. (2001). 
 
Caers et al. (1998, 1999) 
 
Doraisamy (1998a), 
Doraisamy et al. (1998b), 
Centilmen et al.(1999), 
Chang et al. (2000), Ayala 
et al. (2005), Ayala et al. 
(2007), Gorucu et al. 
(2005), Ramgulam et al. 
(2007), Srinivasan et al. 
(2008), Artun et al. (2008), 
Demiryurek et al. (2008). 
 
Chawanthe et al. (1997). 
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Table 1.1 - CONTINUED 
Formation Evaluation and Reservoir Characterizat ion.  
 

• Prediction of permeability, porosity and deep 
resistivity from well logs. 

 
 
 

• Generation of synthetic Magnetic Resonance 
Imaging (MRI) logs from conventional well logs. 

 
• Application of ANN in Reservoir Characterization. 

 
• Development of Surrogate Reservoir Models for 

analysis of complex reservoirs. 
 

• Permeability prediction in carbonate reservoirs. 
 

• Fractured Reservoir Characterization; correlation 
of seismic attributes to reservoir properties. 

 
 
Chawanthe et al. (1994); 
Mohaghegh et al. (1995a, 
1995b, 1997); Wo et al. 
(2000); Basbug et al. (2007) 
 
Mohaghegh et al. (1998a, 
2000e). 
 
Aminian et al. (2002, 2003a, 
2003b) 
Mohaghegh et al. (2006a); 
Mohaghegh (2006b) 
 
Lee Sang Heon et al. (2002) 
 
Ouenes et al. (1994, 1995); 
Zellou et al. (1995); Balch et 
al. (1999); Kaviani et al. 
(2008). 
 

Water-flooding  
• Optimizing water flood performance 

 
Garg et al. (1996); Aminian 
et al. (2000) 
 

Drilling  
• Prediction of Rate of Penetration (ROP) values. 

 
Bilgesu et al. (1997, 2000); 
Balch et al. (2002). 
 
 

Hydraulic Fracturing  
• Hydraulic Fracture Treatment design 

 
• Selection of stimulation / re-stimulation candidates 

 
Mohaghegh et al. (1996a, 
1996b). 
Mohaghegh et al. (1998b, 
1999, 2000d); Reeves et al. 
(1999a, 1999b)  
 

Production  
• Pumping Unit Optimization; prediction of liquid 

hold up; identification of work-over candidates; 
water shut off candidate selection. 

 
Hosn et al. (2001), 
Mohaghegh et al. (2002); 
Shippen et al. ; (2004); 
Popa et al. (2005); Saeedi 
et al. (2007). 
 

Production Forecasting  
• Forecasting natural gas production 

 
Al-Fattah et al. (2003), 
Garcia et al. (2004) 
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Table 1.1 - CONTINUED  
Data Mining  

• Identification of contaminated data in a dataset; 
identification of production drivers. 

 
Popa et al. (2003), 
Mohaghegh (2003), Wei et 
al. (2004); Shelley et al. 
(2009). 
 

Data Analysis in the Barnett Shale  Shelley et al. (2008) 
 

 
 

1.3 Objectives of Research 

 
The objectives of this research work are as follows: 

� Analyze gas and water production data from the Barnett Shale 

using simple statistical relations. 

� Use the methodology developed by Chan (1995) to study water 

production data from the Barnett Shale to attempt to identify water 

production mechanism. 

� Use Artificial Neural Networks (ANN) to investigate the 

relationship between water production and various fracturing and 

well parameters. This is necessary in order to be able to predict 

water production for a new well. 

1.4 Outline of Thesis 

 
As opposed to conventional thesis outlines that show a progression of work from 

model development to the presentation of results, this work will focus on different themes 

in each section. 

In Section 2, we analyzed production and fracturing data from the Barnett Shale. 

As a matter of interest, we calculated the flow rate versus the minimum gas rate profile 
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required for the prevention of liquid loading in the Barnett Shale. We also summarized 

conclusions from previous work on the effect of water production on gas production.  

In Section 3, we applied Chan’s methodology for water influx mechanism 

determination to production data from the Barnett Shale. We identified some interesting 

trends and we proposed reasonable explanations for these trends. However, the 

development of a general conceptual framework to interpret these trends is recommended 

to be the focus of some future work. 

In Section 4, we developed a neural network based tool that can be used to predict 

water production from a new well completed in the Barnett Shale. 

In Section 5, we detail our conclusions from this study and recommendations for 

future work. 
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2 ANALYSIS OF PRODUCTION DATA IN THE BARNETT SHALE 

 

2.1 Geological Overview of the Barnett Shale 

 
The Fort Worth basin is an elongated wedge shaped basin in North Central Texas. 

At present, the Barnett Shale is one of the most sought after plays in the Fort Worth 

Basin. As shown in Fig. 2.1, the Barnett Shale is not the only exploration target in the 

Fort Worth basin. However, it is the only shale gas play. Detailed consideration of the 

geologic history of the Barnett Shale is presented by Pollastro et al. (2007). Nevertheless, 

we want to note the following: 

1. Based mainly on stratigraphy, thermal maturity and Total Organic Carbon 

(TOC), the Barnett Shale is divided into the Core Area and the Non-Core Area 

(Pollastro et al. 2007). See Fig. 2.2. 

2. All the wells are hydraulically fractured; most commonly with large volumes 

of proppant laden slick-water, (Martineau 2007). 

3. In some areas, the Barnett Shale is enclosed in between dense and 

impermeable limestone (Core Area), while in some areas, one or both of the 

limestone barriers are absent (Non-Core Area). These limestone layers act as 

barriers to excessive hydraulic fracture height development. The limestone 

layer above the Barnett Shale is called the Forestburg limestone, while the one 

below the shale is called the Viola Limestone. 

4. In the Fort Worth basin, a water bearing layer exists below the Barnett Shale. 

This layer can either lie directly below the Barnett Shale (Non-Core Area) or a 
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limestone barrier separates the shale and the water bearing layer (Core Area). 

The water bearing layer is called the Ellenburger formation.   

 

Figure 2.1- Generalized stratigraphic column, Fort Worth basin. Expanded section 
shows more detailed interpretation of Mississippian  stratigraphy. V-S refers to 

Viola-Simpson interval (from Montgomery et al., 200 5). 
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Figure 2.2– (A) Area determined where Viola Limesto ne or Simpson Group is present. Dotted rectangle re presents area 
shown in (B). (B) Map showing subcrop geology of th e Barnett Shale (modified from Pollastro et al., 20 07). 

 

Non-Core Area 
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Core 
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Martineau (2007) identified five stages in the development of the Barnett 

shale play with regards to completion strategy; they include; 

1. Drill a vertical well and fracture the lower Barnett with 150,000-300,000 gal of 

water based liquid usually nitrogen assisted, pumping rate was 40 barrels per 

minute. 

2. Drill a vertical well and fracture the lower Barnett with 400,000 – 600,000 gal of 

cross-linked fracture fluid usually nitrogen assisted, pumping rate was 40 barrels 

per minute. 

3. Drill a vertical well and fracture the upper and lower Barnett separately with 

500,000 gal and 900,000 gal of water respectively, pumping rate was 50-70 

barrels per minute. 

4. Re-fracturing of previously gel-fractured wells with water. 

5. Drill horizontal wells in the lower Barnett with laterals ranging from 1000 to 3500 

ft fractured with 2,000,000 – 6,000,000 gals of water, pumping rate was 50-100 

barrels per minute. 

He also stated that the Barnett shale is over-pressured in the core area (0.54 psi/ft). 

Reservoir permeabilities in the Barnett Shale range from 0.00007 to 0.0005 md (milli-

darcy). 

2.2 General Analysis of Data from the Barnett Shale 

 
As of December 31st, 2008, there were a total of 10,777 wells drilled to access 

reserves in the Barnett Shale. The distribution of these wells per county is shown in 

Table 2.1.  Approximately 90% of deviated of the deviated and vertical wells exhibit 

continuous production of water as compared to 53% of the horizontal wells. 
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Table 2.1- DISTRIBUTION OF WELLS IN THE NON-CORE AN D CORE COUNTIES 
OF THE BARNETT SHALE AS AT DECEMBER 31ST, 2008 

  
Counties  

 
Number of Wells  

 
Number of water 
producing wells  

 

Non-Core Counties 

 *D **H ***V *D **H ***V 

Eastland  0 11 8 0 0 1 

Erath  0 121 18 0 33 13 

Hood  0 545 11 0 250 9 

Jack  0 92 55 0 51 43 

Palo Pinto  0 38 23 0 6 15 

Parker  6 864 159 4 483 129 

Somervell  0 46 0 0 21 0 

Bosque  

 

0 9 0 0 5 0 

Core Counties 

Denton  156 758 1629 139 462 1533 

Johnson  10 2138 68 7 1113 43 

Tarrant  182 1478 291 166 765 265 

Wise 160 478 1423 141 282 1266 

* ‘D’ means deviated, ** ‘H’ means horizontal , ***  ‘V’ means vertical  

 
 
 

For the purposes of clarity, most of the deviated wells are oriented vertically 

across the Barnett shale pay. Fig. 2.3 shows a break-down of the wells in the Barnett 

Shale based on well type. These wells are usually stimulated using hydraulic fracturing. 

Water is usually the base for the stimulation fluid. We began our analysis of data from 

this province by plotting the cumulative gas production (Mcf) against cumulative water 

production (bbls) for completions in the unconventional reservoirs of the Barnett Shale 

(Fig. 2.4) and for completions in the conventional reservoirs of the Fort Worth Basin 

(Fig. 2.5). Based on visual inspection, there is little correlation between these parameters 

in both Fig. 2.4 & Fig. 2.5. However, as expected, vertical / horizontal wells drilled in 
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the core area of the Barnett shale are generally more productive than wells drilled in the 

non-core area (Figs. 2.6 and 2.7).  

  

 
Figure 2.3– Percentage breakdown of wells in the Ba rnett Shale based on well 

type (data from HPDI). 
 
 
 

This phenomenon is attributed to (1) greater thickness of the Barnett Shale in the 

core area, (2) greater Total Organic Carbon (TOC) and/or vitrinite reflectance in the core 

area and, (3) the presence of a fracture barrier between the shale and the underlying water 

bearing layer. We now look at average water and gas production data from the Barnett 

Shale on a county by county basis. We evaluate gas recovery from these completions 

using the cumulative gas produced normalized by the length of time the well has 

produced. For all of the statistical evaluation, we use the P50 value for the data under 

consideration. The P50 value of a variable is the value below which 50% of the 

observations may be found. The P50 value will serve as our measure of central tendency 



 

 

17

 

or will represent the performance of the average well. We present an analysis of water 

and gas production data for deviated, vertical and horizontal wells in the Barnett Shale. In 

Fig. 2.8A, we see average gas production for deviated wells in the Barnett Shale.  

 
 

 
Figure 2.4– Relationship between cumulative gas and  water production in 

conventional reservoirs of the Fort Worth basin. 
 
 
 

 
Figure 2.5– Relationship between cumulative gas and  water production in 

unconventional reservoirs of the Fort Worth basin. 
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Figure 2.6– Relationship between cumulative gas and  water production in Core 

Area of the Barnett Shale. 
 
 
 

 
Figure 2.7– Relationship between cumulative gas and  water production in Non-

Core Area of the Barnett Shale. 
 
 
 

Based on the data we have, deviated wells were drilled mainly in the Core Area of 

this gas province. In the same vein, Fig. 2.8B and Fig. 2.8C show average gas 

production for horizontal and vertical wells. We can conclude from these bar charts that 
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we have better gas production averages from counties in the Core Area of the Barnett 

Shale. This supports the notion that the location of a well in the Barnett Shale is a key 

predictor of productivity. Figs. 2.9A, B&C show average water production for 

completions in the Barnett shale. In Fig. 2.9B, we see that wells drilled in the Non-Core 

Area show little to no water production. This can be attributed to the use of horizontal 

wells and the careful design of hydraulic fracturing treatments to prevent unrestrained 

fracture height development. However, these water production trends do not necessarily 

translate to increased gas productivity when compared to wells in the Core Area. In Fig. 

2.9B, Jack County in the Non-Core Area seems to have abnormally high water 

production. This goes against the trend in the Non-Core Area as stated above. However, 

most wells in the Jack county are older compared to other wells in the NCA. Therefore, it 

is possible the hydraulic fracturing treatments were more aggressive. Also for vertical 

wells, Fig. 2.9C supports the hypotheses that the average water production for counties in 

the NCA is smaller compared to average water production for counties in the CA. It is 

also worthy to note that Jack and more starkly, Hood counties buck the aforementioned 

trend. Appendix A contains the raw data from which these charts were constructed. 

However, for the purpose of clarity and subsequent analysis, Tables 2.2A and 2.2B show 

the average production data for Denton County (CA) and Parker County (NCA). We 

choose to highlight data from the Denton and Parker Counties because (1) they have good 

spread of deviated, vertical and horizontal wells and, (2) Geology can be considered to be 

consistent over the entire county, at least, on a macro-scale in the Core and Non-Core 

Area respectively. 
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Figure 2.8A – P50 values for gas production (deviat ed wells). 

 
 
 
 

 
Figure 2.8B  – P50 values for gas production (horiz ontal wells). 
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Figure 2.8C – P50 values for gas production (vertic al wells). 

 
 
 

 
Figure 2.9A – P50 values for water production (devi ated wells). 
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Figure 2.9B – P50 values for water production (hori zontal wells). 

 
 
 

 
Figure 2.9C – P50 values for water production (vert ical wells). 
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Table 2.2A – STATISTICAL ANALYSIS OF DATA FROM DENT ON COUNTY 
 Gas (Mcf/mth)  Water (bbls/mth)  WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Deviated  3535 6427 11898 0 99 293 50 200 356 

Horizontal  7053 20716 39689 0 229 1540 0 180 328 

Vertical  2244 5184 10430 45 132 566 90 220 405 

 
 

Table 2.2B – STATISTICAL ANALYSIS OF DATA FROM PARK ER COUNTY 
 Gas (Mcf/mth)  Water (bbls/mth)  WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Horizontal  2986 11926 27712 0 0 4312 0 103 300 

Vertical  424 2295 5165 0 112 704 0 150 400 

 
 

Fig. 2.9B suggests that the average horizontal well in the Parker County produces 

minimal amount of water. This might as well be the case, but as seen in Table 2.2A, the 

P90 value for water production in Parker County is a lot higher than the P90 value for 

water production in Denton County. Another interesting data trend is reflected in the 

number of deviated, vertical and horizontal wells completed in the Barnett shale as a 

function of time (Figs. 2.10 and 2.11). This trend shows that horizontal wells are the 

completion of choice in the Barnett Shale as at present. An interesting question is the 

following; what is the most important predictor of gas well productivity in the Barnett 

Shale; is it time of completion / hydraulic fracturing technology or is it well location? 

Figs 2.12 and 2.13 show that average gas productivity for the worst performing year 

(2005) in Denton County is the equivalent of the best performing year (2007) in Parker 

County. Therefore as expected, based on these data, location is a more important factor 
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than time of completion. We note that the time of completion will be related to the 

hydraulic fracturing technique used to stimulate the well.  

 

 

Figure 2.10- Number of wells completed in Denton Co unty by type per year. 
 
 
 

 
Figure 2.11 - Number of wells completed in Parker C ounty by type per year. 
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Figure 2.12 - P50 values for average gas production  every year in Denton County 
(horizontal wells). 

 
 
 

 
Figure 2.13- P50 values for average gas production every year in Parker County 

(horizontal wells). 
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It is also of interest to show that water production from both Denton and Parker Counties 

(Figs. 2.14 and 2.15) seem to decrease with time. This decrease can be a reflection of 

three possible factors; (a) reduced fracturing fluid volume (not likely) (b) more fracture 

 

 

Figure 2.14 - P50 values for average water producti on every year in Denton County 
(horizontal wells). 

 
 

 
Figure 2.15 - P50 values for average water producti on every year in Parker County 

(horizontal wells). 
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fluid retention by the rock and, (c) the induced fractures do not propagate excessively and 

connect to the underlying Ellenburger formation. 

 We did not make detailed statistical analysis of reservoir parameters like the 

Barnett Shale pay thickness or the thickness of the fracture barriers. This is because these 

data were not available for these wells especially in a spatial sense. These kinds of data 

are usually part of the records kept by operating companies. We tried to request access to 

these data, but we had no success. 

2.3 Effect of Water Production on Gas Well Productivity 

 
Given the water production characteristics of the Barnett shale wells seen in the 

previous section, we decided to ascertain whether liquid loading had the potential to limit 

gas well productivity in this shale province. Table 2.3 shows the data we used to 

investigate this phenomenon. These data reflect to the best of our ability the actual 

conditions prevailing in the Barnett Shale. 

 

 
Table 2.3– PARAMETERS USED TO INVESTIGATE LIQUID LO ADING IN THE 

BARNETT SHALE 
 

Parameter  
 

Value  
 

Ω, interfacial tension (dynes/cm) 60 

ρL,, density of water (lbs/cu.ft) 67 

Specific gravity of gas 0.6 

Wellhead Flowing temperature (Rankine) 580 

Wellhead Flowing pressure (psi) 200-2200 

Flow area of conduit (sq.ft), for 2.375” tubing 0.021708 
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We used equations developed by Turner et al. (1969) to develop a graph of 

wellhead pressure versus the minimum flow rate required to prevent liquid loading as 

shown in Fig. 2.16. The data used to construct this figure shows that the average vertical 

well in Denton and Parker counties of the Barnett Shale currently experience liquid 

loading. For horizontal wells, because of the higher gas rates, liquid loading is less 

important especially in the CA. We would like to note that though liquid loading is a less 

important phenomenon in horizontal completions, some of the horizontal wells in the 

NCA produce at relatively low rates and might therefore be susceptible to liquid loading. 

Also, the Turner equations do not take into consideration well deviation. Therefore, it is 

likely that the average horizontal well in Parker County is also susceptible to liquid 

loading, given the close proximity of its plotted data point to the liquid loading region. 

In the last section, we reviewed literature pertaining to the effect of load-water on 

gas well productivity in gas shales. We would like to note that the references based their 

conclusions on the simulation of wells in tight gas reservoir models. Tight gas reservoirs 

are not analogous to shale gas reservoirs. In a general reservoir engineering sense, 

capillary pressure curves used for tight gas reservoirs might not be applicable to shale gas 

reservoirs. 

Also, specific to the Barnett Shale, all these simulations failed to consider the 

effect of an ‘external water source’ like the Ellenburger formation. Therefore, the 

conclusion that water production does not have long term deleterious effect on gas well 

productivity in tight gas sands should only be applied to shale gas systems in light of 

these limitations. 
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Figure 2.16– Predictive Chart for onset of liquid l oading in the Barnett Shale. 

 
 
2.4 Section Summary 
 

Based on the data analyzed, we conclude the following: 

• In general, wells in the Core Area of the Barnett Shale are better producers. For 

wells with the same completion type, location is more important than time of 

completion or hydraulic fracturing strategy. If time of completion or hydraulic 

fracturing strategy was more important, one would expect more recent wells to 

have better productivity more regardless of location. 

• On the average, wells in the Non-Core area of the Barnett Shale produce less 

water. 

• The average vertical well in Denton and Parker Counties of the Barnett Shale 

currently experience liquid loading. Because the Turner equations do not take into 
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consideration well deviation, it is likely that the average horizontal well in Parker 

County or even Denton County is also susceptible to liquid loading. 
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3 ANALYSIS OF WATER PRODUCTION MECHANISMS IN THE BARNETT 

SHALE 

3.1 Water-Hydrocarbon Ratio and Water-Hydrocarbon Ratio Derivative Analysis in 

Conventional Reservoirs 

 
Using reservoir simulation models of a conventional reservoir, Chan (1995) 

discovered that the Water-Hydrocarbon ratio and the derivative of the Water-

Hydrocarbon ratio show characteristic signatures depending on the water producing 

mechanism. Figs. 3.1A, B & C, reproduced from Chan’s paper, summarize his findings. 

 

 
Figure 3.1A – Water coning and channeling WOR compa rison plot. 
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Figure 3.1B – Multi-layer channeling WOR and WOR de rivative plot. 

 

 
Figure 3.1C – Bottom water coning WOR and WOR deriv ative plot. 

 
 

Seright (1997) determined that these curves are not unique. We agree with 

Seright, only with the caveat that the curves proposed by Chan are still useful as an initial 
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screening tool. They can also offer insight into the likely source of water production from 

an interval when used in conjunction with other tools. 

3.2 Water-Hydrocarbon Ratio and Water-Hydrocarbon Ratio Derivative Analysis in 

Unconventional Reservoirs 

Chan applied his diagnostic plots to production data from conventional reservoirs. 

The main mechanisms of water production assuming wellbore integrity was coning and 

channeling. We decided to apply his methodology to the production data we have from 

the Barnett shale. It is logical to assume that it is not likely water coning would be a 

significant mechanism in gas shales because of the ultra-low permeabilities encountered. 

Therefore, the most logical mechanism of water production apart from load water would 

be channeling. In this case, we refer to small fractures connecting the main hydraulic 

fracture to an underground water bearing layer and / or karst. Wellbore integrity is also 

assumed. Specifically for the Barnett shale, we anticipate that there will be the following 

sources of water: 

1. Load water 

2. Underlying water bearing layer – Ellenburger formation 

3. Water bearing layers in gross shale as reported in literature 

However, our analysis of water production data from the Barnett shale might be 

compromised because some of the data might be allocated values based on a constant 

WGR. With this limitation in mind, we will present a conceptual framework to explain 

the WGR and WGR’ behavior seen in the data analyzed. This framework is hypothetical 

and will be subject to further refinement or overhaul. One characteristic we notice while 

analyzing water and gas production data from the Barnett shale was that water production 
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increase did not necessarily accompany gas production decrease as might be suggested by 

classical relative permeability theory. This might suggest both water and gas flow 

through different pathways with possibly different depletion mechanisms. An alternative 

explanation for this trend is if water production was computed by applying a constant 

WGR to gas production data. Figs 3.2A, B, C & D summarizes our understanding of the 

data analyzed. We think Fig. 3.2A represents the period of water production after the 

fracturing treatment, that is, after gas rate stabilization. This period is identified by a 

constant WGR. The length of this period is determined by the amount of liquid pumped 

into the reservoir and the effect of factors like external water sources, reservoir depletion 

and liquid loading. 

 

 
Figure 3.2A – WGR plots in Barnett Shale (Type 1). 

 
 

We think Fig. 3.2B represents a period of either pressure depletion or liquid 

loading. This leads to a drop in WGR. The drop we have seen in WGR data from the 

Barnett shale is analogous to a shock front. One would think that the WGR decrease 
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would be gradual and approximate a smooth function. This abruptness may be due to 

allocated data or it may be due to gas displacement of water in a channelized network of 

fractures in an unconventional reservoir. 

 

 
Figure 3.2B – WGR plots in Barnett Shale (Type 2). 

 
 

We contend that if a sudden increase in WGR is seen from initial stabilized 

conditions especially for a reasonable period of production, this would be most likely due 

to an external source of water (Fig.3.2C). If we assume that the production pathways for 

water and gas are different, a sudden increase in water production is not likely to be 

related to relative permeability effects. Lastly, we noticed some wells in which some part 

of the WGR trend was analogous to repeating rectangular functions. We attribute this 

period especially when associated to oscillatory gas production behavior to liquid 

loading. Dousi et al. (2003) presented reasoning for understanding the process of liquid 

loading. Solomon et al. (2008) adapted their explanation and used Fig. 3.3 to illustrate the 

process. 
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Figure 3.2C – WGR plots in Barnett Shale (Type 3). 

 
 

 
Figure 3.2D – WGR plots in Barnett Shale (Type 4). 
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Figure 3.3– Liquid loading mechanisms description. 

3.3 Load Water Recovery Factor in Denton and Parker Counties of the Barnett Shale 

 
Figs. 3.4 A, B & C show the cumulative distribution function (CDF) for load 

water recovery factor in deviated, horizontal and vertical wells in the Denton County 

(representing the Core Area) of the Barnett Shale respectively. Also, Figs. 3.5A & B 

show the CDF for load water recovery factor in Parker County (representing the Non-

Core Area) of the Barnett Shale. We define the Load Recovery Factor (LRF) as the ratio 

of the cumulative water produced to the fracturing treatment volume. Fig. 3.4A implies 

that most deviated wells do not produce back all of the load water. This conclusion is 

drawn based on the sample analyzed and might not generalize. However, approximately 

15% of the vertical and horizontal wells in the Denton County have LRF’s >1 (Figs. 3.4 
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B&C). Also, 15% / 35 % of the horizontal / vertical wells respectively in the Parker 

County produce with a LRF>1 (Figs. 3.5A&B). 

 

 
 

Figure 3.4A – CDF plot of Load Recovery Factor (LRF ) for deviated wells in Denton 
County. 

 
 
 

 
 

Figure 3.4B– CDF plot of Load Recovery Factor (LRF)  for horizontal wells in 
Denton County. 
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Figure 3.4C – CDF plot of Load Recovery Factor (LRF ) for vertical wells in Denton 

County. 
 
 
 

 

 
Figure 3.5A – CDF plot of Load Recovery Factor (LRF ) for horizontal wells in 

Parker County. 
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Figure 3.5B – CDF plot of Load Recovery Factor (LRF ) for vertical wells in Parker 

County. 
 
 

3.4 Section Summary 

 
We achieved the following in this section: 

• Reviewed previous work on the use of diagnostic plots in the production data 

analysis of conventional reservoirs. 

• Developed a hypothesis to explain the WGR behavior of wells producing from 

unconventional reservoirs.  
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4 PRODUCTION DATA ANALYSIS USING NEURAL NETWORKS 

4.1 Introduction 

 
 This section describes the use of neural network (NN) theory to estimate water 

production from a new well given certain well and hydraulic fracturing parameters. As 

shown from the literature review in Section 1, neural networks have been used to 

decipher non-linear relationships between variables in almost all facets of petroleum 

engineering. However, the use of this technique still remains controversial, especially for 

petroleum engineers. This is because the architectural design of a neural network to solve 

a problem is still essentially an art-form.  There is a lot of uncertainty regarding the 

determination of the most relevant input vectors, the choice of the type of network 

architecture, the size of the network (number of layers), the connectivity between neurons 

and the number of neurons in each layer. In some problem domains, there is also a lot of 

concern as to whether the results from neural network runs honor the underlying physics 

of the problem.  

 However, for challenges that involve complex relationships between various 

disparate variables, neural network – based tools offer another way, or sometimes the 

only way, of deciphering these relationships. As a part of this section, we will look at the 

philosophical and statistical justifications for the use of machine learning and neural 

networks. Finally, we will describe the design and implementation of a neural network 

system used to predict average water production in the Denton County of the Barnett 

Shale. 
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4.2 Machine Learning Concepts 

 
The discipline of machine learning involves the investigating how computers 

learn. This invariably means the study of classes of learning problems and algorithms. 

Since these problems are drawn from disparate domains, machine learning is a 

interdisciplinary field and it builds on the work of researchers from computer science, 

statistics, philosophy, psychology, neuro-sciences and engineering. There are many 

challenges in petroleum engineering that require the use of machine learning. Petroleum 

engineering is both a model and data intensive discipline. We use models that are based 

on our understanding of a physical process and solve these models using either analytical 

or numerical means. However, since most of our best models are develop under 

restricting assumptions, they do not generalize to all scenarios that might be encountered 

in real life. Also, because of improvements in computing and digital technology, a lot of 

well monitoring data is collected in real time. What would be the use of all these data if 

they cannot be used as a basis for further understanding of the systems which we operate? 

Hence, it is our opinion that machine learning will become a more important part of a 

petroleum engineers’ toolbox because we need to improve our models. This is especially 

true in scenarios where data is not scarce. We will look at certain machine learning 

concepts and connect them to the problem at hand, which is, the prediction of average 

water production from an unconventional reservoir using well and hydraulic fracturing 

parameters. All the machine learning concepts described in this work are from Mitchell 

(1997) and Haykin (2005).  
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A Well-Defined Learning Problem – A learning problem is said to be well-

defined if we can identify the following features. 

1. The class of tasks 

2. The measure of performance to be improved 

3. The source of experience. 

Learning is defined as the process by which a computer program improves its 

performance at some task through experience. Therefore, learner refers to the computing 

paradigm or algorithm by which learning is accomplished. Specifically, in our case, the 

task is to predict average water production from a new well drilled in an unconventional 

reservoir. The measure of performance is the accuracy of the prediction when compared 

to actual water production values. This implies we have to do some type of error analysis 

on the results from the learner. The source of the training information is from public 

databases. 

 Machine learning as function approximation – Petroleum engineers are quite 

familiar with the concept of function approximation. It is quite common-place to utilize 

linear regression techniques to find a polynomial fit relating input and output variables. 

However, if regression techniques fail to provide acceptable solutions to problems from 

certain domains because of their inherent non-linearity and complexity, machine learning 

paradigms can be used to approximate the relationship between input and output 

variables. For this case, we use neural networks as proxy for the function approximator. 

Fig. 4.1 shows the input and output vector for the neural network. The function, f , is 

approximated by the neural network. The output of the neural network is the LHS while 

the input to the neural network is the RHS. 
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Figure 4.1– Neural network as a function approximator, f between input and 

output parameters. 
 
 

Machine learning as hypotheses space search – machine learning can also be seen 

as a search in hypotheses space for a hypotheses that best matches the data. In this work, 

the tunable parameters are the weights of the neural network connections. The magnitude 

of these weights is varied to map the input and output parameters. This implies the 

hypotheses space of neural networks is actually infinite because each weight can take on 

infinite values. 

Inductive bias in machine learning – The fundamental assumption upon which 

most machine learning algorithms are based is the Inductive Learning hypotheses. 

Informally, it states that “any hypotheses found to approximate the target function well 

over a sufficiently large set of training examples will also approximate the target function 

well over unobserved examples” (Mitchell, 1997). The caveat is that both the training 
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sample and test examples should come from a population with similar statistics. In this 

work, the case for using the inductive learning hypotheses is that the primary production 

drivers for wells in the Core Area of the Barnett Shale are comparable. Therefore, a 

neural network trained using data from Denton County in the Barnett Shale can 

approximate the water production potential from other wells drilled in other areas of 

Denton County or other areas of the Barnett Shale. 

Machine Learning and Occam ’s razor – one of the forms of Occam’s razor is as 

follows, “prefer the simplest hypotheses that fits the data” (Mitchell, 1997). There is a lot 

of argument as to the validity of the logic behind the above expression, but an exposition 

on these arguments is not our aim. In order to build a generalizable neural network, we 

chose the simplest network architecture and topology with the best performance given 

that data available. Performance would be evaluated over training, validation and test 

data sets. A more complex network would fit better with the training dataset but might fit 

test or validation datasets poorly. To reduce the chances of fitting the noise in our dataset, 

we would use the philosophy behind Occam’s razor as one of our justifications for using 

the simplest network possible; hereby striking a balance between accuracy and 

generalization. 

Learning Paradigms - There are two main types of learning paradigms. They are 

(1) Learning with a teacher or supervised learning (2) Learning without a teacher 

(reinforcement learning or self-organized learning). In supervised learning, the teacher 

has knowledge of the physical system in the form of input-output data pairs (labeled data, 

input is labeled to an output). For neural networks, the learning process is as follows; A 

training vector is applied to the neural network. The response of the neural network is 
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measured against the desired output. The network parameters (weights) are adjusted such 

that the neural network emulates the teacher. The main goal of this kind of network is to 

minimize a cost function that is related to true error surface averaged over all the input-

output examples. Therefore, given an algorithm that can minimize the cost function, an 

adequate set of input-output examples and ample training time, a supervised learning 

system is usually able to approximate a highly non-linear function. We used average 

water production data from public databases as the teacher. Learning without a teacher 

can either be reinforcement learning or unsupervised/self-organized learning. However, 

in summary, for both paradigms, there is no teacher to oversee the learning process. The 

algorithm usually optimizes the free parameters of the network. Once the network has 

learnt the statistical nature of the input data, it has developed the ability to form internal 

representations that encode features of the input and create new classes automatically. 

4.3 Neural Network Theory 

 
The discussion above centered on machine learning theory, with some allusions to 

the application of neural networks. Neural networks are one of the tools used by machine 

learning researchers for function approximation. In this section, we will summarize 

neural network theory. This summary is based on the work of Haykin (2005). Neural 

networks have some interesting properties that are central to their use for machine 

learning. These include: 

Nonlinearity - An artificial neuron can be linear or non-linear. If the network is 

made up of non-linear neurons, then it is a non-linear network. For solving problems in 

petroleum engineering, it is essential that the network is non-linear because the 

relationship between the input and output data is usually highly non-linear. 
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Input-output mapping - Neural networks learn the physics of a given system by 

constructing an input-output mapping of the problem at hand. No prior assumptions are 

made on a statistical model for the input data. Without this ability, no neural networks 

would be based on supervised learning. 

Adaptivity - Neural networks need to be able to change their synaptic weights 

based on changes in the physical system. This implies a neural network trained to operate 

in a reservoir with 4 wells should be easily retrained to handle 5 wells. Also, a neural 

network can be designed to change its synaptic weights in real time when it is operating 

in a non-stationary environment. For example, in the limit, neural networks should be 

able to handle changes in reservoir conditions over time. 

Contextual Information - Knowledge is represented by the structure and activation 

state of a neural network. It is assumed that contextual information is dealt with naturally 

by the neural network because of its inherent inter-connectivity. It would be a pertinent 

argument to state that neural networks cannot handle the complex physics of petroleum 

reservoirs. Also, a concern is how results from neural networks can be constrained to 

honor mass balance and geology of the reservoir. These are areas certainly worthy of 

further research. 

Fault tolerance - Neural networks are capable of robust computation or are fault 

tolerant because their performance degrades gracefully under extreme operating 

conditions.  

Uniformity of analysis and design - Most neural network architectures are 

basically information processors. Therefore, they all have neurons as their basic unit. 

This makes it possible to share theories and learning algorithms in different applications 
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of neural networks. Also, this implies modular networks can be built through a seamless 

integration of modules. 

The three basic elements of a neuronal model are as follows: 

(a) A set of synapses each of which is represented by a weight of its own, wkj, where 

k refers to the neuron and j refers to the synapse as shown in Fig. 4.2. 

(b) An adder for summing up the input signals. 

(c) An activation function for limiting the amplitude of the output of a neuron. 

∑
=

=
m

j
jkjk xwu

1

    (4.1) 

)()( kkkk vbuy ϕϕ =+=   (4.2) 

 

where kkk buv +=    (4.3) 

where wk1..wkm are synaptic weights of neuron k, x1…xm is the input vector, uk is the 

linear combiner output from the neuron, bk is the bias and )(•ϕ is the activation function. 

The model described above is a description of the basic unit of most networks including 

multi-layer networks.  
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Figure 4.2- Representation of non-linear model of a  neuron (modified from Haykin, 

2005). 
 
 
 

The activation function used for a given problem depends on the functional 

relationship between the input and output. It makes sense to conclude that to decipher 

relationships between non-linear variables, a non-linear activation function is required. 

For completeness, We mention that there are three basic types of activation functions. 

These include the (a) Threshold function (b) Piecewise –linear function and (c) Sigmoid 

function. The sigmoid function is more applicable to our problem because of its ability to 

model non-linear behavior. It is the most common activation function used in the 

construction of artificial neural networks. It can be defined in the two forms shown 

below: 

)exp(1

1
)(1 av

v
−+

=ϕ    (4.4) 

)tanh()(2 vv =ϕ    (4.5) 
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)(1 vϕ is the log-sigmoid function while )(2 vϕ  is the hyperbolic tangent function. The 

shapes of the sigmoid and tangent function are as shown in Fig. 4.3A and B. A threshold 

function can only have value of 0 or 1 whereas a sigmoid function assumes a continuous 

range of values from 0 to 1. The sigmoid function is also differentiable. This is very 

important because the error back-propagation would not be possible if the function was 

not differentiable. 

 

 

 
Figure 4.3A - Log-sigmoid function plot (Haykin, 20 05). 

 
 

 
The choice of neural network architecture is linked with the learning algorithm 

used to train the network. For the prediction of average water production from a well, we 

used multi-layered feed forward networks with error back propagation.  

 



 

 

51

 

 

 
Figure 4.3B - Hyperbolic tangent function plot (Hay kin, 2005). 

 
 

There are three different classes of network architecture. They are: 

(a) Single Layer Feed forward Networks - This consists of an input layer of source nodes 

projected onto an output layer of neurons. The input layer is discounted because no 

computations occur there (Fig. 4.4A). 

(b) Multi-layer Feed forward networks - In this kind of network, there is at least one layer 

(called the hidden layer) between the input and output layers. The purpose of the hidden 

layer is to extract useful features from the input layer. It has been postulated that it would 

be possible to extract higher order statistics from the network because of the hidden layer 

(Fig. 4.4B). 

(c) Recurrent Neural Networks - The main difference between a feed forward network 

and a recurrent network is the presence of at least a feed-back loop from one of the 

neurons to itself or other neurons (Fig. 4.4C). 
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Figure 4.4A -  Representation of a 
Single Layer Feed forward Network 

(Haykin, 2005). 
 

Figure 4.4B -  Representation of a 
Multi-layer Feed forward network 

(Haykin, 2005). 
 

 

 

Various learning rules are associated with these network architectures. The five 

basic learning rules include (a) Error-correction learning (b) Memory-based learning (c) 

Hebbian learning (d) Competitive learning (e) Boltzmann learning. Let us define the 

following terms (see Fig. 4.5); x(n) is the input vector (in our case, that would be the 

observations), n is the time-step of an iterative process involved in adjusting the synaptic 

weights of the neuron k. yk(n) is the output signal, dk(n) is the desired response, ek(n) is 

the error signal and )(nΕ is the cost function. 

For one neuron, we have the following: 

ek(n) = dk(n) - yk(n); 

)(nΕ = 0.5 )(2 nek    (4.6) 
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The objective of error back-propagation is to minimize the cost function stated above 

using the delta rule (eqn. 4.6). The delta rule states that the adjustment made to a synaptic 

 

 

 
Figure 4.4C – Representation of a recurrent Neural Networks (Haykin, 2005). 

 
 
 

 

 
Figure 4.5- Block diagram of a neural network, high lighting the only neuron in the 

output layer (Haykin, 2005). 
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weight of a neuron is proportional to the product of the error signal and the input signal 

of the synapse in question. This rule can be modified for use in multi-layer networks. 

Error back propagation can be applied to single-layer feed-forward networks. It can also 

be applied to multi-layer feed forward networks with some modifications. Details of the 

mathematical derivation of these rules can be seen in Mitchell (1997) and Haykin (2005). 

4.4 Determination of Training Set Size 

 
The input and output of the neural network for average water prediction is as 

shown in Fig. 4.1. We already decided to use a feed- forward neural network with error 

back propagation. However, we still had to decide on the network topology (number of 

hidden layers) and the amount of training examples we required. We decided to start with 

a network with one hidden layer. This is because every bounded continuous function can 

be approximated with arbitrarily small error by a network with two layers, that is, 

networks with a sigmoidal hidden layer and unthresholded linear units at the output layer 

(Cybenko 1989; Hornik et al. 1989). We had no reason to assume the function between 

our input and output was not continuous. From the above, the only structure we varied in 

our network topology was the number of hidden units in the hidden layer. Next, we had 

to determine the minimum number of training examples required to train a two-layer 

neural network to a pre-determined accuracy. However, before we continue our 

discussion of this issue, we need to define the following terms; (1) Dichotomy (2) 

Shattering (3) Vapnik-Chevronenkis (VC) dimension. The term dichotomy refers to a 

binary classification function or decision rule (a function that can split a given training 

data set into two distinct parts), Haykin (2007). A set of instances, S is shattered by 

hypothesis space H if and only if for every dichotomy of S there exists some hypothesis 
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in H consistent with this dichotomy (Mitchell, 1997). This implies a given training set is 

shattered by a neural network (which has an infinite hypotheses space) if for every 

partition of the training set, there exists a neural network topology that can represent this 

partition. The VC dimension of a hypotheses space, VC (H), defined over instance space 

X is the size of the largest finite subset of X shattered by H. This implies the VC 

dimension of a given neural network topology is the largest training dataset size that can 

be shattered or partitioned by the given neural network topology. Based on a review of 

neural network literature by Haykin (2005), we see that the VC dimension of a feed-

forward neural network is of the order of W2, where W is the total number of free 

parameters in the neural network. W is determined by the number of weights and bias 

connections in the neural network. For example, the hypothetical network in Fig. 4.4B 

has 10 input nodes, 4 neurons in the hidden layer and 2 neurons in the output layer. 

Therefore it has a total of 48 neural connections and 6 bias connections. This implies 

W=54 for this system. If the VC dimension is of the order of W2, then the system has a 

VC dimension of ~ 2916. Therefore, the more complex the networks, the higher the VC 

dimension. Also, from literature, we know that the number of training examples 

sufficient to learn with probability of at least (1-δ) any function to within error ε increases 

with increasing VC dimension, where δ and ε are small. Therefore for this work, let us 

assume that our initial network has 16 input nodes, 1 hidden layer containing 5 sigmoidal 

units and 1 output neuron. Table 4.1 is a summary of the components of the network. It is 

reported by Haykin (2005) that there is a constant K such that a sufficient size of training 

set, N, for any algorithm is defined by eqn. 4.7 
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Fig. 4.6 shows the relationship between training set size and error parameter given 

constant values of K and δ using eqn. 4.7. The above analysis was done so that we could 

investigate the relationship between the parameters in Fig. 4.6. However, the results have 

limited practical significance. We assumed arbitrary values for K, ε and δ (confidence 

parameter). 

 

Table 4.1– NEURAL NETWORK COMPONENT SUMMARY 
 

Number of input nodes 

 

16 

Number of neurons in hidden layer 5 

Number of neurons in output unit 1 

Neural connections 80 

Number of bias connections in hidden layer 5 

Number of bias connections in output unit 1 

Number of free parameters, W 91 

VC dimension, O(W2) ~8281 

K 0.01 

ε 0.05 – 0.5 

δ 0.05 

 
 
 

 

  
Figure 4.6- Dependence of training set size on erro r bounds. 
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This is because (1) We do not have a reliable estimate for K and (2) the 

theoretical analysis used to derive eqn. 4.7 assume worst case scenario, making the 

results to be pessimistic. Nonetheless, it is interesting to note the exponential drop in 

training set size requirement as the error bounds are relaxed. The number of training sets 

used to train the network was dependent mainly on time constraints and on our ability to 

collate the required data from several public databases. The wells from which the training 

dataset was complied were selected randomly from the Denton and Parker Counties. 

4.5 Determination of Hidden Structure in Data 

 
Because of the multi-dimension nature of our dataset, it is impossible to 

determine the inner structure by visual inspection. Therefore, Hebbian and competitive 

learning based algorithms were considered in order to achieve this objective. We note 

that Hebbian learning algorithms are in general related to principal component analysis 

(PCA). The end point of principal component analysis is to determine eigenvalues and 

associated eigenvectors with a dimensionality less than that of the input vector. These 

eigenvalues represent the information content of the input dataset. For example, the 

straight line that fits the input-output mapping in Fig. 4.7 is approximated by the 

eigenvector. However, we decided against using Hebbian learning based algorithms 

because as with PCA, these algorithms worked best when there is a linear relationship 

between input and output. We know that this is not likely to be the case for our dataset. 

We are aware that non-linear PCA techniques exist, but to the best of our knowledge, 

these algorithms have not been implemented generally in commercially available 

software like MATLAB. Therefore, as a matter of efficiency, we concentrated on the use 



 

 

58

 

of competitive learning based algorithms, some of which are considered non-linear 

generalizations of principal components analysis. In competitive learning, the Euclidean 

distance between an input vector and the weight vector of a set of neurons is computed. 

The neuron whose weight matrix minimizes this distance wins and its weight connections 

are adjusted according to the learning rule in eqn. 4.8. The weight connection of all other 

neurons is unaffected. 

 

 

 
Figure 4.7– Two dimensional distribution produced b y a linear input-output 

mapping (Haykin, 2005). 
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  (4.8) 

η  is the learning rate parameter. ‘k’ refers to the kth neuron and ‘j’ refers to the size of 

the input vector. Eqn. 4.8 has one constraint. The sum of all weights connecting a input 

vector to each neuron is unity. This constraint is expressed mathematically in eqn. 4.9. 
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1 =∑
j

kjw         (4.9) 

The net effect of this learning rule is that input vectors with similar location in j-

dimensional space will cluster around a specific neuron defined by its weights. Thus, 

ideally the number of neurons should equal the number of clusters in the data. It is 

important to note that the internal disarray within each cluster must be less in magnitude 

than the distance between different clustering for effective clustering. Therefore, the 

primary driver for clustering in competitive learning is competition between neurons, 

where the ‘winning’ neuron’s weight is adjusted according to a learning rule. One 

important method of internal organization based on competitive learning is a self-

organized map (SOM). According to Haykin (2005), “A self organized map is 

characterized by the formation of a topographic (surface configuration) map of the input 

patterns in which the spatial locations (i.e., coordinates) of the neurons in the lattice are 

indicative of the intrinsic statistical features contained in the input patterns...”. The main 

process in competitive learning is competition between neurons. In a self-organized map, 

the main processes are (1) competition (2) co-operation and (3) synaptic adaptation. The 

process of competition between neurons has been described above. In self –organizing 

maps (and in contrast to ‘pure’ competitive learning), the connection weights of the 

winning neuron and some neighboring neurons are adjusted. The neighboring neurons 

whose weights are adjusted are determined according to a neighborhood function. The 

process by which the connection weights of the winning / neighboring neurons are 

adjusted is called synaptic adaptation. Synaptic adaptation in self-organized maps is 

based on the learning rule described in eqn. 4.10. 

))(()( )(, jxijj wxnhnw −=∆ η       (4.10) 
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where jw∆  is the weight connection adjustment for every jth neuron in the self-organized 

map, )(nη  is the time dependent learning rate parameter, )()(, nh xij  is the time dependent 

neighborhood function and )( jwx − is the misfit, in an Euclidean sense between the input 

vector and the weight vector of the jth neuron (see Fig. 4.8). Our ability to successfully 

use a SOM to identify the underlying structure in the dataset would depend on our choice 

of the learning rate parameter and the neighborhood function. 

 

 
Figure 4.8– Kohonen model of a self-organized map ( modified from Haykin, 2005). 
 
 

 
Denton County has about 2500 wells drilled to access the Barnett Shale. We 

randomly sampled about 450 wells (containing deviated, vertical and horizontal wells) 

from this population. Each well was represented by a input vector containing about 18 

parameters – see Table 4.2. In order to determine the structure in this dataset (if any), we 
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used a self organizing map to analyze the data. We used a 10-by-10 array of 100 neurons 

with rectangular grid-block typology. Fig. 4.9 shows the topology of the self-organized 

map. This network was implemented in MATLAB. After 100 iterations, we can observe 

in Fig. 4.10 that the data has been clustered into at least two groups.  

 
 

Table 4.2– PARAMETERS IN INPUT VECTOR FOR DENTON AN D PARKER 
COUNTIES 

 

Input 

 

Description 

1 Rank 

2 Perforation Interval (feet) 

3 Fracturing fluid Volume (barrels) 

4 Proppant quantity (pounds mass) 

5 Number of fracture stages 

6 Tubing depth (feet) 

7 Casing depth (feet) 

8 Flowing Tubing Pressure –FTP (pounds per square inch) 

9 Choke size (1/64”) 

10 Shut in Tubing Head Pressure – SITHP (pounds per square inch) 

11 Specific gravity of gas (dimensionless) 

12 Well Type (deviated =’1’, horizontal = ‘2’, vertical = ‘3’) 

13 Latitude 

14 Longitude 

15 Gas Production per month (Million standard cubic feet / month) 

16 Number of months completion produced 

17 Acid pumped or not (Acid not pumped =’1’, Acid pumped =’2’) 

18 Water production per month (Barrels / month) 
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Figure 4.9– 2D SOM topology using 10x10 neurons wit h rectangular grid block 

typology. 
 
 

In order to interpret Fig. 4.10, it is important to note the following as explained in 

the MATLAB technical documentation:  

(a) The blue rectangles represent the neurons. 

(b) The red lines connect neighboring neurons. 

(c) The colors in the regions containing the red lines indicate the distances between the 

neurons. The darker colors represent larger distances while the lighter colors represent 

smaller distances. We note that there is a gradual lightening in color from the lower 

triangular section of Fig. 4.10 to the upper triangular section of the same figure. There is 

some internal scatter even in the clustered portions of the dataset as seen in the darker 

parts of the upper triangular section and the lighter parts of the upper triangular section. 

This result suggests the dataset can be clustered into at least two subsets. The physical 

properties of these clusters is however unknown. 
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Figure 4.10 – Color-coded representation of self or ganized map neighbor weight 
distances for deviated, horizontal and vertical wel ls, number of iterations = 100. 

 
 

In other to investigate the physical basis on which the SOM clusters this dataset, 

we tried the following. Using the input vectors from 20 high water producing wells; a 

SOM produced the results seen in Fig. 4.12 & 4.13. If Fig. 4.12 was examined in 

isolation, it would seem that the map classified the data into 2 main regions. However, a 

plot of the SOM layer showing the number of input vectors classified by each neuron in 

the map shows otherwise (Fig. 4.13). The presence of the distinct boundary in Fig. 4.12 

is because the neurons in the upper right triangular part of the map did not ‘capture’ any 

input vectors. 
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Figure 4.11 – 2D SOM layer for all wells with each neuron showing the number of 
input vectors that it classifies, number of iterati ons = 100, number of examples = 

450. 
 
 
 

 

 
Figure 4.12 – Color-coded representation of self or ganized map neighbor weight 

distances for 20 high water producers, number of it erations = 100. 
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Figure 4.13 – 2D SOM layer for wells with high wate r production with each neuron 
showing the number of input vectors that it classif ies, number of iterations = 100, 

number of examples = 20. 
 
 
 

Based on Figs. 4.10, 4.11, 4.12 & 4.13, we can hypothesize that the high water 

producing wells are clustered in the lower left triangular part of Fig. 4.10 while the low 

water producing wells are clustered in the upper right triangular part of the same figure.  

 In summary, we have used the SOM to do the following: 

a) Identify the fact that the dataset is divided into 2 main clusters. Cluster 1 is 

defined by the darker colored sections in Fig. 4.10 and Cluster 2 by the lighter 

colored sections in Fig. 4.10. 

b) It is our hypothesis based on the comparison of Figs. 4.10, 4.11, 4.12 and 4.13 

that the dark colored sections in Fig. 4.10 depict neurons representing the high 

water producers in the dataset while the light colored sections depict neurons 

representing the low water producers. 
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Another way to visualize the data is to use the k-means algorithm. This objective 

of this algorithm is to define partition(s) such that data points in each cluster are as close 

together as possible and are far away from data points in other clusters as possible. We 

used the implementation of this algorithm in MATLAB to investigate the structure in our 

dataset. In order to visualize the degree of separation between the resulting clusters, we 

used the Silhouette plot. This plot displays a measure of how close data points in different 

clusters are. This measure ranges from +1 to -1. A value close to 1 indicates data points 

that are very distinct from neighboring clusters, silhouette values close to zero indicate 

data point can be easily mis-classified while values less than zero indicate data points that 

may have been assigned to the wrong cluster. As input in the k-means algorithm in 

MATLAB, we need a guess as to the number of clusters we expect in the data set. The 

optimum number of clusters is one that maximizes separation between individual 

clusters. Well defined clusters are expected to have higher average silhouette values 

when compared to less defined clusters. Fig. 4.14 shows the Silhouette plot for our 

dataset. We analyzed our data with the k-means algorithm assuming 2, 3 and 4 clusters. 

Table 4.3 shows the mean silhouette value for each run. We see that the average 

silhouette value is maximized when the number of clusters is equal to 2. 
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Figure 4.14– Silhouette plot for data set. 

 
 
 

We therefore conclude that the data set under consideration can be partitioned into 

at least 2 clusters. There is also some potential for mis-classification as seen the region 

specified by the red oval circle in Fig. 4.14. 

 

Table 4.3 – AVERAGE SILHOUETTE VALUES FOR INCREASIN G NUMBER OF 
CLUSTERS 

 
Number of Clusters  

 
Average Silhouette value  

 
2 0.7462 

3 0.6711 

4 0.5106 

 
 
 
 



 

 

68

 

4.6 Determination of Whether A Well Drilled in Denton County of the Barnett Shale Will 

Produce water 

The first question we would try to provide an answer to is whether we can 

determine the water production potential of a new well given the data input specified by 

Table 4.2. Actually, the question is binary in nature and it goes as follows; will a new 

well produce water or not? This implies the wells in the data set that we have acquired 

must be classified into two classes namely, (1) class of water producers (2) class of non-

water producers. We can attempt to answer these questions using (1) supervised (feed-

forward neural network architecture, (2) unsupervised networks based on competitive 

learning and (3) supervised version of networks based on competitive learning called 

vector quantization networks. We analyzed the dataset from Denton County using feed 

forward neural network architecture. Fig. 4.15 shows the input and output of the neural 

network. The input vector to the neural network is the RHS of Fig. 4.15 while the 

expected output is on the LHS. The neural network was a 2-layer network and the 

number of neurons in the hidden node was varied between 5 and 20. Increasing the 

number of neurons reduced training sample misfit as expected. However, with this 

increase, the general neural network performance degraded on the application of the 

testing dataset. The results were inconclusive and are shown in Fig. 4.16. We note that if 

the neural network outputs a number equal or close to ‘1’, the well is deemed as a 

potential water producer and if the neural network outputs equal or close to‘2’, the well is 

deemed as a potential non-water producer. We also note that the output from this network 

can be potentially any real number. Therefore, based on the fore-going, one of the 
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challenges we faced was to define a threshold based upon which we could decide when a 

well was likely to be a water producer and vice versa.   

 

 

 
Figure 4.15– Output and input of feed-forward neura l network for water production 

potential classification. 
 
 

For example, as shown by the dotted horizontal line in Fig. 4.16, if we chose our 

threshold to be 1.4, the network would misclassify a lot of water producers as non-water 

producers and vice versa. The red oval shapes in Fig. 4.16 are the misclassified data 

points based on our arbitrary threshold of 1.4. Also, computing the misclassification 

potential of this network could be cumbersome to implement (because it is dependent on 

the definition of an arbitrary threshold value). As a result of these complications, we 

decided to try out our second option, that is, the use of unsupervised networks based on 

competitive learning. We undertook a brief description of competitive learning in Section 

4.5. Here, we apply this algorithm to our dataset. The input vector into the competitive 
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neural network is as shown in Fig. 4.15. In order to ensure certain elements in the input 

vector are not weighted heavily compared to other elements, we ensured the values of the 

elements of the input vector were normalized to between 0 and 1. This was done by 

dividing the parameters by their maximum value. The number of neurons used in 

competitive networks is dependent on the number of classes the dataset is classified into. 

In our case, the number of classes was 2 (see LHS of Fig. 4.15). We used cross-validation 

to ensure our estimate of misclassification error was representative of the dataset. Cross-

validation is a process by which a network is trained repeatedly using different versions 

of the same dataset. The different versions are generated by randomizing the dataset 

using a random number generator. The end result is an error estimate that is averaged 

over a series of runs; in this case, we made 10 runs. 

 

 
 

Figure 4.16– Results of feed-forward neural network  for classification purposes. 
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Table 4.4 summarizes the results from these runs. We can see that the 

misclassification error estimate is very high (it can be interpreted to mean that we have a 

50:50 chance of misclassifying a water producer as a non-water producer and vice versa). 

This result is surely not good enough. The input vector in the RHS of Fig. 4.15 does not 

contain any indication that we have prior knowledge about the water production potential 

of a well.  

 
Table 4.4– SUMMARY OF RESULTS FOR COMPETITIVE NEURA L NETWORK 

 Average misclassification 

error  

Misclassification error 

standard deviation  

Vertical Wells  0.4934 0.0292 

Horizontal Wells  0.5152 0.0483 

All Wells (vertical, 

deviated and horizontal) 

0.4830 0.0262 

 
 

Based on the above results, we can intuitively state that we can improve our 

results by incorporating our prior knowledge of water production potential of a well into 

our algorithm. This reasoning led us to consider the use of our third option; vector 

quantization, which is a supervised form of competitive learning. Fig. 4.17 is a block 

diagram that describes the vector quantization algorithm. 

 

 

Figure 4.17- Block diagram of adaptive pattern clas sification, using a SOM and a 
learning vector quantizer (Haykin, 2005). 
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The input in Fig. 4.17 is the RHS of Fig. 4.15. The basic competitive network acts 

as a self-organized map. It classifies the dataset into different sets; each set is called a 

Voronoi cell. Each Voronoi cell has a center called the Voronoi vector. The ‘teacher’ is a 

vector that contains a representation of our prior knowledge regarding the system. The 

learning vector quantizer compares the class assignment of the SOM to that of the 

teacher. If they match, the Voronoi vector is moved in the direction of the input vector. If 

they do not match, the Voronoi vector is moved away from the input vector. At the end of 

training, the misclassification error of the algorithm is minimized. We also used the 

cross-validation technique to obtain a reliable estimate of classification error. We trained 

the quantizer with 80% of the dataset and validated the results with 20% of the dataset. 

Table 4.5 summarizes the results of these runs. 

 
 

Table 4.5– SUMMARY OF RESULTS FOR VECTOR QUANTIZER 
  

Average misclassification 
error  

 
Misclassification error 

standard deviation  
 

Vertical - 273 Wells  0.1036 0.0193 

Horizontal – 125 Wells  0.4160 0.0280 

All – 446 Wells (deviated, 

vertical and horizontal) 

0.0910 0.0036 

 
 
 

We can see that our results are much better and that we can reliably predict if a 

well would produce water or not based on the input data represented by the RHS of Fig. 

4.15. The misclassification error for horizontal wells is higher compared to that of a 

vertical well. We observe that the mis-classification error increases with increasing 
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proportion of non-water producers in the data-set. We will suggest a reason for this trend 

in the next section. 

4.7 Prediction of Average Water Production for A New Well Drilled in the Denton and 

Parker Counties of the Barnett Shale 

In this section, we develop a neural network that will predict a value for average 

water production from a new well in Denton County. For previous analysis, we have used 

an input vector containing 18 parameters (see Table 4.2). The first input in Table 4.2 is 

called the ‘rank’. For each category of wells, that is, vertical or horizontal, the wells 

located in Denton / Parker Counties were sorted in the order of decreasing water 

production. Consequently, each well was assigned a particular rank; from 1 to n based on 

its average water production data; where n is size of the dataset. The other parameters in 

the input vector are self-explanatory and are collated from government and public 

databases. Preliminary runs were made using a 2-layer neural network with 5 hidden 

neurons. A dataset consisting of vertical wells from Denton County was used. Using the 

mean prediction error (average over 100 network runs; error distribution was 

exponential) between the network output and the target water production values as the 

performance measure, we found out the following for both vertical and horizontal wells: 

(1) The ‘rank’ is an important variable for the prediction of average water 

production (compare Figs. 4.18 and 4.19; Table 4.6). 

(2) Better network performance is obtained if the output is the natural 

logarithm of water production as opposed to ‘raw’ water production data 

(compare Figs. 4.18 and 4.20; Table 4.6). Using the logarithm of the 
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average water production also increases the consistency of the network 

performance. 

The rank is not a variable the engineer would have for a new well. Whether the rank can 

be predicted using available data is a question that would be answered in a later part of 

this section. However at first, we decided to train a neural network using data from both 

Denton and Parker Counties (inputs 1-7, 8, 11, 13-14, 17 of Table 4.2) with the aim of 

predicting water production (row 18). Some parameters in the input vector were omitted 

because the engineer might not have a reasonable estimate of their value. Different 

networks were trained for vertical and horizontal wells in both counties. We used the 

Levenberg-Marquardt algorithm implementation in MATLAB in order to minimize the 

error function. Table 4.7 and Fig. 4.21-4.24  summarizes results from these runs. 

 

 

 
Figure 4.18– Influence of ‘rank’ on neural network performance; performance on 

training, testing and validation datasets (rank in input vector, target is logarithm of 
water production). 
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Figure 4.19– Neural network performance, rank not in input vector (target is 

logarithm of water production). 
 
 
 

 

 
Figure 4.20– Neural network performance (rank in input vector, target is ‘raw’ 

water production). 
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Table 4.6– INFLUENCE OF RANK ON NETWORK PERFORMANCE  
  

Average Prediction Error  
 

95% confidence interval  
 

Rank in input vector, 

logarithm of water 

production as output 

 

0.1443 [0.1279;0.1639] 

Rank not in input vector, 

logarithm of water 

production as output  

 

1.1993 [1.0635;1.3630] 

Rank in input vector, raw 

water production data as 

output 

0.6985 [0.6194;0.7938] 

 
 

 
Therefore, we see that in order to be able to predict water production potential of 

a well, we need to have a good idea of its rank. A way of predicting the rank for a new 

well would be to find an input vector in the dataset that is closest in distance to the input 

vector for the new well. The rank of the input vector in the dataset can be used as the 

‘expected value’ of the rank for the new well.  However, we noted that a limitation of this 

approach is that the results we get might not be unique. This is because the input vectors 

in our dataset are quite similar (based on their dot product). We also think that the 

similarity between the input vectors is the reason why it is difficult for the neural network 

to predict average water production to a reasonable degree of accuracy without 

introducing the rank.  
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Table 4.7 - SUMMARY OF NEURAL NETWORK RESULT RUNS 
 

County  

 

Well Type  

 

Number of 

neurons in 

hidden 

layer  

 

Average 

Prediction 

error over 

100 runs  

 

95% confidence 

interval  

Denton, 

dataset size = 

250 

 

 

 

Vertical  2 

5 

10 

15 

20 

0.1768 

0.1183 

0.1098 

0.1117 

0.1154 

[0.1568,0.2010] 

[0.1049,0.1344] 

[0.0974,0.1248] 

[0.0991,0.1270] 

[0.1023,0.1311] 

Denton, 

dataset size = 

62 

 

 

 

Horizontal  2 

5 

10 

15 

20 

0.4461 

0.3008 

0.2628 

0.2787 

0.3308 

[0.3530,0.5819] 

[0.2380,0.3923] 

[0.2080,0.3428] 

[0.2205,0.2787] 

[0.2617,0.4314] 

Parker, 

dataset size = 

58 

 

 

Vertical  2 

10 

15 

20 

0.3387 

0.2595 

0.2309 

0.2933 

[0.2660,0.4460] 

[0.2038,0.3418] 

[.1813,0.3040] 

[0.2303,0.3862] 

Parker, 

dataset size = 

219 

Horizontal  2 

5 

15 

20 

0.2091 

0.1947 

0.2111 

0.2085 

[0.1840,0.2398] 

[0.1713,0.2233] 

[0.1856,0.2420] 

[0.1835,0.2392] 
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Figure 4.21– Network output versus target for verti cal wells in Parker County, rank 

included. Dataset size =58 (number of hidden layers  =1; number of neurons in 
hidden layer =8). 

 
 
 

 

 
Figure 4.22– Network output versus target for horiz ontal wells in Parker County, 

rank included. Dataset size =219 (number of hidden layers =1; number of neurons 
in hidden layer =5). 
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Figure 4.23 – Network output versus target for vert ical wells in Denton County, 

rank included. Dataset size =250 (number of hidden layers =1; number of neurons 
in hidden layer =10). 

 
 
 

 

 
Figure 4.24– Network output versus target for horiz ontal wells in Denton County, 
rank included. Dataset size =219 (number of hidden layers =1; number of neurons 

in hidden layer =5). 
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4.8 Prediction of Well Rank Using Parameters Contained in Neural Network Input 

Vector 

 
In the previous section, we predicted the water production potential of wells 

drilled in both Denton and Parker Counties. A requirement of the input vector required to 

train the neural network was the rank. As previously stated the engineer would not have a 

value for the rank. We describe in this section, a procedure for determining the rank for a 

new well using the training dataset. To illustrate this point, we will use the training data 

set we complied for horizontal wells in the Parker County.  

Let us assume we want to predict the rank of one of the wells in the training 

dataset. The first step would be to compute the dot product between the normalized 

version of the input vector represented by this well and all the other input vectors in the 

dataset. This is to ascertain their similarity; the assumption being that similar input 

vectors would have similar rank. For example, in Fig. 4.25, Column 1 is the dot product 

of the input vector of well 1 and 218 other wells in the data set. Based on the results 

specified in Fig. 4.25, the engineer would make a determination as to the vectors that are 

closest to the new well vector. This is analogous to the definition of a neighborhood 

function in unsupervised learning. Using the rank associated with the chosen vectors, we 

define P10, P50 and P90 values of rank for the new well. These values define the low, 

medium and high rank predictions for the new well. The values for rank can be used as 

input part of the input vector into a neural network in order to predict P10, P50 and P90 

values for average water production. Repeating this process for all the wells in our 

training set yields Fig. 4.26. Fig. 4.26 is a plot of P10, P50 and P90 values for water 

production for the 219 wells in our training database from Parker County. 



 

 

81

 

 

 
Figure 4.25– Dot product of normalized input vector s in training dataset. 

 

The reasoning applied to water production data in Sections 4.7 & 4.8 can be 

extended to gas production data. Fig. 4.27 is a plot of P10, P50 and P90 values for gas 

production for the 215 wells in our training database from Parker County.  

 We note that the prediction made by the neural network is very much dependent 

on the quality or otherwise of the data. In Section 3, we made mention of the possibility 

that some of the data might be allocated. If this is the case, the predictions from this 

model would not be correct. However, the methodology used to solve the problem at 

hand would still be applicable once quality data can be accessed. 

Column 1 
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Figure 4.26 – P10, P50 and P90 predictions of water  production for horizontal 

wells drilled in the Parker County of the Barnett S hale. 
 
 
 

 

 
Figure 4.27 – P10, P50 and P90 predictions of gas p roduction for horizontal wells 

drilled in the Parker County of the Barnett Shale. 
 

P10 value 

P50 value 

P90 value 

P10 value 

P50 value 

P90 value 
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4.9 Section Summary 

 
We achieved the following in this section: 

• Reviewed general machine learning and neural network theory. 

• Investigated the structure of data from the Denton County of the Barnett shale and 

developed learning algorithms to predict water production potential from a new 

well drilled in the Denton or Parker County of the Barnett Shale. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 
Based on a statistical analysis of production data from the Barnett Shale, we 

found that wells in the Core Area of the Barnett Shale are better producers. Also, for 

wells with the same completion type (vertical, deviated or horizontal), location is more 

important than time of completion or hydraulic fracturing strategy. 

On the average, wells in the non-core area produce less water.  The average 

vertical well in Denton and Parker Counties of the Barnett Shale currently experience 

liquid loading. Because the Turner equations do not take into consideration well 

deviation, it is likely that the average horizontal well in Parker County or even Denton 

County is also susceptible to liquid loading. 

Based on analysis of data from the Denton County (in the Core area) of the 

Barnett shale, we found that 15% of the vertical and horizontal wells produce with a load 

recovery factor (LRF) of greater than unity. This implies 15% of these wells produce 

water from an ‘external’ source. This statistic might not be generalizable to the whole of 

the Barnett Shale. For the Parker County, we found that 15% of the horizontal wells 

produce water with a LRF greater than unity while 35% of the vertical wells produce 

water with a LRF greater than unity. A reasonable explanation of the results from Parker 

County is that the horizontal well fractures in Parker County tend to contained despite the 

absence of a fracture barrier. 

A neural network was developed to predict average water production for wells in 

both the Denton and Parker Counties. With rank in the input vector, the neural network 
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predicted average water production to within 10-26%. Also, we note that poor results are 

obtained if ‘rank’ is not used as a key parameter in the neural network input vector. 

5.2 Recommendations 

 
We note that petroleum engineering is a model and data intensive discipline. The 

models we use describe the system, whereas the system speaks, albeit in a metaphorical 

sense through data. We have in this work, focused on the use of data to extract 

information from shale gas reservoirs primarily because of the absence of numerical 

models that take the following into account; (1) the presence of an ‘external’ water source 

in the Barnett Shale, (2) capillary end effects peculiar to shale gas reservoirs and, (3) 

static and dynamic liquid loading. However, if such a model is developed, the data gained 

from model runs can be used to initialize a neural network. Actual production can 

thereafter be used to modify the network weights. 

The dataset used in this study contained completion and production data. 

Important reservoir information that could provide the variability required in the dataset 

were not available. Hence, the development of a database with completion, production 

and reservoir variables would go a long way in reducing the mean error associated with 

the productivity predictions using virtual intelligence techniques.  
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APPENDIX A 

 
 

TABLE A-1 – STATISTICAL ANALYSIS OF DATA FROM DENTO N COUNTY 
 

  
Gas (Mcf/mth)  

 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Deviated  3535 6427 11898 0 99 293 50 200 356 

Horizontal  7053 20716 39689 0 229 1540 0 180 328 

Vertical  2244 5184 10430 45 132 566 90 220 405 

 

 
TABLE A-2 – STATISTICAL ANALYSIS OF DATA FROM TARRA NT COUNTY 

 
  

Gas (Mcf/mth)  
 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Deviated  2827 8267 16841 29 102 565 0 263 366 

Horizontal  9789 29996 62205 0 95 2574 0 0 300 

Vertical  1912 7792 15485 29 127 527 0 250 420 

 
 

TABLE A-3 – STATISTICAL ANALYSIS OF DATA FROM WISE COUNTY 
 

  
Gas (Mcf/mth)  

 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Deviated  4393 8815 15062 0 66 270 130 190 304 

Horizontal  6107 22703 41445 0 148 1481 0 112 296 

Vertical  2017 6431 13188 0 109 567 55 185 310 
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TABLE A-4 – STATISTICAL ANALYSIS OF DATA FROM ERATH  COUNTY 

 
  

Gas (Mcf/mth)  
 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Horizontal  1980 6793 14593 0 0 1642 0 0 126 

Vertical  291 646 6906 0 57 1723 0 40 188 

 
 

 
TABLE A-5 – STATISTICAL ANALYSIS OF DATA FROM HOOD COUNTY 

 
  

Gas (Mcf/mth)  
 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Horizontal  4841 13134 24669 0 0 3548 0 0 320 

Vertical  247 432 3650 0 981 2862 0 0 62 

 
 

 
TABLE A-6 – STATISTICAL ANALYSIS OF DATA FROM JACK COUNTY 

 
  

Gas (Mcf/mth)  
 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Horizontal  3093 8331 14977 0 338 7105 0 54 176 

Vertical  213 1799 4265 0 158 1966 0 55 201 

 
 

TABLE A-7 – STATISTICAL ANALYSIS OF DATA FROM JOHNS ON COUNTY 
 

  
Gas (Mcf/mth)  

 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Horizontal  9208 25155 54852 0 258 3621 93 136 256 

Vertical  770 4724 38152 0 161 3568 0 103 314 
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TABLE A-8 – STATISTICAL ANALYSIS OF DATA FROM PALO PINTO COUNTY 
 

  
Gas (Mcf/mth)  

 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Horizontal  2082 9016 15227 0 0 4989 0 0 170.5 

Vertical  380 1315 2065 0 93 2739 0 45 202 

 
 

TABLE A-9 – STATISTICAL ANALYSIS OF DATA FROM PARKE R COUNTY 
 

  
Gas (Mcf/mth)  

 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Horizontal  2986 11926 27712 0 0 4312 0 103 300 

Vertical  424 2295 5165 0 112 704 0 150 400 

 
 

TABLE A-10– STATISTICAL ANALYSIS OF DATA FROM SOMER VELL COUNTY 
 

  
Gas (Mcf/mth)  

 

 
Water (bbls/mth)  

 
WHP (psi)  

 P10 P50 P90 P10 P50 P90 P10 P50 P90 

Horizontal  2964 10011 25565 0 0 3395 0 93.5 183.8 
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