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ABSTRACT 

 

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a 

Transportation Fuel in Refuse Trucks. (December 2009) 

Stephen M. Sprague, B.S., University of South Carolina at Columbia 

Chair of Advisory Committee: Dr. Mark Burris 

 

Approximately 136,000 refuse trucks were in operation in the United States in 2007.  

These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing 

almost 27 billion pounds of greenhouse gases. In addition to contributing to global 

climate change, diesel-fueled refuse trucks are one of the most concentrated sources of 

health-threatening air pollution in most cities.  The landfills that they ultimately place 

their waste in are the second largest source of human-related methane emissions in the 

United States, accounting for approximately 23 percent of these emissions in 2007. At 

the same time, methane emissions from landfills represent a lost opportunity to capture 

and use a significant energy resource.  

 

Many landfill-gas-to-energy (LFGTE) projects are underway in an attempt to curb 

emissions and make better use of this energy.  The methane that is extracted from these 

landfills can be converted into a transportation fuel, sold as a pipeline-quality natural 

gas, operate turbines for electricity, or be flared.  The unique relationship that occurs 

between refuse trucks’ constant visits to the landfill and the ability of the landfill itself to 

produce a transportation fuel creates an ability to accomplish emissions reduction in two 

sectors with the implementation of using landfill gas to fuel refuse trucks.  

 

Landfill owners and operators are very reluctant to invest in large capital LFGTE 

projects without knowing their long-term feasibility.  The costs and benefits associated 

with each LFGTE project have been presented in such a way that owners/operators can 

make informed decisions based on economics while also implementing clean energy 
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technology.  Owners/operators benefit from larger economic returns, and the citizens of 

the surrounding cities benefit from better air quality. 

 

This research focused on six scenarios: 

 converting landfill gas (LFG) to liquefied natural gas (LNG) for use as a 

transportation fuel, 

 converting LFG to compressed natural gas (CNG) for use as a transportation fuel, 

 converting LFG to pipeline-quality natural gas, 

 converting LFG to electricity, 

 flaring LFG, and 

 doing nothing. 

 

For the test case of a 280-acre landfill, the option of converting LFG to CNG for use as a 

transportation fuel provided the best benefit-cost ratio at 5.63.  Other significant benefit-

cost findings involved the LFG-to-LNG option, providing a 5.51 benefit-cost ratio.  

Currently, the most commonly used LFGTE option of converting LFG to electricity 

provides only a 1.35 benefit-cost ratio while flaring which is the most common 

mitigation strategy provides a 1.21, further providing evidence that converting LFG to 

LNG/CNG for use as a transportation fuel provides greater economic benefits than the 

most common LFGTE option or mitigation strategy.
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CHAPTER I 

INTRODUCTION 

 

The first chapter of this thesis is an introduction to landfill gas to energy (LFGTE) 

projects.  Numerous landfill-gas-to-energy (LFGTE) projects are appearing across the 

nation, but the most common types of projects being implemented may not be 

accomplishing their main purposes, which are profitability and energy conservation.  This 

chapter outlines the overall economics and reasoning behind various LFGTE projects. 

 

Volatile energy prices, growing concern over America’s energy security, and global 

climate change have caused numerous municipalities to look for alternative solutions to 

solve their energy demands while appeasing citizens’ requests for “greener” lifestyles.  

Landfills, once thought to be the problem, now play a role in the solution.  LFGTE 

projects have been popping up across the nation due to new engineering designs that 

allow the once-harmful methane gas emitted from landfills to become a source of energy.  

A majority of the LFGTE projects focus on converting methane, a byproduct of waste 

decomposition, into electricity (U.S. EPA 2009a).  Other methods focus on converting 

the methane into pipeline-grade natural gas or flaring it, yet very little research has 

explored the use of landfill gas as a transportation fuel. 

 

Landfill gas is a major source of air pollution throughout the United States, including in 

the state of Texas, which is home to 246 landfills (Table 1) (TCEQ 2007).  With 

international political pressure to lower global greenhouse-gas emissions in an aim to 

curb the effects of global warming; engineers, scientists, entrepreneurs, and businessmen 

alike are all looking for feasible, innovative solutions that can not only solve the problem 

but provide a return that is worthy of  their investment. 

 

 

 

This thesis follows the journal style of the American Society of Civil Engineers (ASCE): 

Journal of Transportation Engineering. 
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Table 1: Texas Landfill Activity Status in 2007 (TCEQ 2007) 

Activity Status Open or Closed Count 

Active Open 188 

Inactive—yet to receive waste Open 11 

Inactive—previously received waste Open 16 

Post-closure care Closed 31 

Total  246 

 

Financial feasibility is the largest deterrent for most politicians and corporations to 

invoking stricter air-quality emissions standards in their respective jurisdictions or 

companies.  Politicians feel that their constituents will be hindered through these stricter 

standards, with companies looking to cut costs in the form of job losses and company 

relocation in order to mitigate costly pollutant issues.  Others argue that global warming 

is not an issue at all and that it has not been proven beyond a reasonable doubt in order to 

pass legislation that will require cleaner emissions from both municipalities and 

corporations.  The globalization of all industries and services has created another 

deterrent in the fight against global warming.  Many feel that there is no need to hinder 

their economic advancement with stricter regulations and emissions standards when 

global warming is a global issue.  If it costs a private company more money to produce 

their product due to these regulations, there will always be another city, state, or country 

with more relaxed regulations that will produce the same product cheaper.  Supporters in 

this camp feel a global initiative is the only true mitigation strategy. 

 

People appear to be most interested in LFGTE projects when the costs of traditional fossil 

fuels reach a “tipping point.”  A survey by the Automotive Aftermarket Industry 

Association sets a tipping point at $4 per gallon for gasoline, the point where 65 percent 

of American drivers said they would change their driving behavior.  Some analysts 

believe that $4 prices at the pump must be sustained for a long period in order to yield 

significant changes (HybridCARS 2008).  For many alternative-energy projects this 

tipping point is directly correlated with the feasibility of numerous alternative-energy 

projects.    
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The most popular alternative fuels are biodiesel and ethanol.  Biodiesel is produced from 

“feedstock,” which is comprised of various vegetable oils, such as soybean, canola, and 

palm.  Ethanol is primarily comprised of corn or sugar cane.  When the starches are 

refined, they produce ethyl alcohol, or “grain alcohol.”  Both the biodiesel and ethanol 

are then refined and sold as fuels.  It is important to look at the overall or total energy 

balance when looking at various energy solutions.  For each unit of gasoline that is 

produced (gallon, liter, etc.), 1.22 units of energy are needed to produce that unit of 

gasoline (Table 2).   

 

Table 2: Energy Balance 

Fuel Units Needed to Produce 1 Unit of Fuel 

Gasoline 1.22 

Diesel 0.83 

Ethanol 0.76 

Biodiesel 2.5-4.5  

 

Based on energy balance, ethanol appears to be the most efficient fuel source, needing 

only 0.76 units of energy to produce 1 unit of fuel.  Numerous economic factors make 

ethanol and biodiesel unable to currently compete with gasoline and diesel, which are 

derived from crude oil.  Ethanol can be competitive with oil-based fuels if oil is greater 

than $30 per barrel (bbl) with current government subsidies or $50 without subsidies 

(EFC 2007).  Biodiesel needs to have oil at the $43/bbl mark to make it a competitive 

option (Timmerman 2007).  This value can vary greatly depending on the feedstock 

components that produce it.  A tax credit of $0.051/gallon is provided to ethanol 

suppliers.  Whether ethanol is comprised of either corn or sugar cane is dependent upon 

those crops.  If there is a bad crop, then the price of those commodities will naturally rise; 

thus the cost of oil would to need to be higher in order for ethanol to be cost-effective.  

One caveat for ethanol is that it is processed or refined by heating it with natural gas.  

Natural gas prices vary, and thus so does the price of ethanol vary accordingly 

(EFC 2007).  For the purposes of using natural gas as a fuel, very little additional 
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processing or refining is needed to clean the methane gas from landfills into precipitate-

free, dry natural gas. 

 

Infrastructure and accessibility to alternative fuels via fueling stations as well as changing 

human behavior are all unknowns when attempting to quantify the feasibility of various 

projects.  If LFGTE projects were 100 percent economical at all landfills, they would 

already be implemented.  LFGTE projects can be feasible, yet the public as well as 

owners and operators know very little about them. With so much propaganda, literature, 

and biased press releases, how can owners/operators figure out which LFGTE project is 

best for them?  This thesis answers some of those questions. 

 

One of the most promising reduction technologies for greenhouse gases (GHGs) appears 

to come from landfills.  Since the passage of the Resource Conservation and Recovery 

Act (RCRA) of 1976, the U.S. Environmental Protection Agency (EPA) has placed strict 

regulations on the design and construction of landfills within the United States.  Because 

of this, a new era of landfill gas collection is possible.  Landfills must now be designed 

with various geotextile, geomembrane, and liner systems in order to prevent leachate 

from percolating into the surrounding soil(s) or groundwater and contaminating valuable 

potable water supplies (see Figure 1)
 
(Qian et al. 2002).  Leachate includes liquid that 

builds in landfills from rainwater and excess fluids in municipal solid waste (MSW), such 

as soft drinks, detergents, household cleaners, etc.   
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Figure 1: Basic Engineered Landfill Schematic (Qian et al. 2002) 

 

The liners at the base of the landfill create an impermeable layer to stop leachate from 

flowing downward, ultimately acting as a giant trash bag to contain all waste and 

pollutants.  More than 150 different gases, mostly in the parts per million (ppm) range, 

have been identified in landfill gas.  The most common emissions come in the form of 

carbon dioxide (CO2) and methane (CH4), and trace amounts come from other gases, 

including hydrogen sulfide (H2S) and non-methane organic content (NMOC), which all 

escape from a landfill and are released into the atmosphere (Table 3).   
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Table 3: Typical Constituents of MSW Landfill Gas (Qian et al. 2002) 

Component Percent  

Methane (CH4) 45-58 

Carbon dioxide (CO2) 35-45 

Nitrogen (N2) <1-20 

Oxygen (O2) <1-5 

Hydrogen (H2) <1-5 

Water vapor (H2O) <1-5 

Trace constituents* <1-3 

*NMOCs are among the trace constituents. 

 

The hydrogen sulfide is typically what is associated with the distinctive odor of landfill 

gas (Qian et al. 2002).  In cases where these emissions cannot escape into the atmosphere, 

they act in the same manner as any other fluid, moving in the path of least resistance.  

Before the days of engineered or sanitary MSW landfills, this would include not only 

atmospheric pollution but also contamination of the soil(s) and groundwater.  Since the 

liner systems created in today’s engineered landfills prevent downward leakage of all 

fluid (gas and liquid) pollutants, gaseous emissions are forced to travel upwards, which 

creates an opportunity to harvest these emissions when a landfill is capped.   

 

A landfill is traditionally capped once it is closed or has ceased accepting waste.  

Landfills are capped in an attempt to dramatically reduce air pollution (primarily smell) 

and provide a “green” area typically in the form of parks and recreation space from a 

once-intrusive, unwelcome trash heap.  Caps consist of similar liner systems that are used 

to trap MSW and its leachate from contaminating soil(s) and groundwater.  The top layer 

is traditionally grass since its root system will not negatively impact the integrity of the 

liners below it, causing the system as a whole to fail.  Typical layers of a landfill cap can 

be seen in Figure 2. 
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Figure 2: Layers of a Landfill (Waste Management Siam 2006) 

 

Recently, many municipalities have chosen to recapture the methane from their nearby or 

local landfills through landfill-gas-to-electricity projects.  This process uses widely 

available technology to produce electricity from the extracted methane gas (Figure 3).  

Although this method has been the most frequently used LFGTE process, recent research 

has shown that converting landfill methane gas to liquefied natural gas (LNG) or 

compressed natural gas (CNG) for use as a transportation fuel in refuse trucks is the most 

beneficial way to maximize emissions benefits and financial returns (Zietsman et al. 

2008). 
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Figure 3: LFG-to-Electricity Plant (TCEQ 2007) 

 

With the recent creation of carbon credit trading platforms in the United States, Europe, 

India, and China, carbon credits have provided a new financial benefit for LFGTE 

projects.  These carbon credits, currently valued anywhere from $1 in the United States to 

$25 (U.S. dollars [USD]) in Europe, will give landfill owners and operators another 

reason to extract LFG from their landfills—financial profit (CCX 2009).  Landfill 

operators can now profit from each ton of emissions that is captured and either create 

another form of energy (i.e., fuel) or flare (i.e., burn off) the harmful emissions. 

 

Study Objectives 

The purpose of this thesis is to develop a methodology that can be used to evaluate the 

economic feasibility of using landfill gas as a natural gas fuel source (CNG/LNG) for 

refuse trucks.  The methodology considers the various characteristics that comprise the 

creation of LFG and the quantity that is available for capture based on a landfill’s size, 

waste composition, age, and climate.  The methodology differs from other research in 

that it incorporates landfill-gas generation rates with monetary dollar amounts for the 

emissions that result (assuming 50 percent of both CO2 and CH4) by incorporating carbon 

credit prices with these emissions.  Interested parties, such as landfill owners/operators, 
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municipalities, refuse truck vendors, environmental agencies, and researchers, can all 

consider this methodology in order to make informed decisions as to which LFGTE 

project may be best for them depending on the characteristics of the landfill they are 

studying.  A feasibility tool (spreadsheet) included with the thesis aims to make this 

process even easier by allowing the user to input values stated in the 

methodology/analysis section into the spreadsheet to receive an output that explicitly 

states the feasibility of the six scenarios studied, providing a benefit-cost ratio.  This tool 

allows users to view the pre-feasibility of implementing LFGTE projects at their landfill.  

Based on the results, users can decide to look into the various options that are deemed 

profitable or desirable in greater detail.  The specific objectives of this thesis include: 

 prepare a review of relevant literature; 

 prepare a methodology to provide the feasibility of various LFGTE projects based 

on critical factors, such as: 

o carbon credit pricing (based on current and future potential market 

conditions); 

o cost of diesel, natural gas, LNG, and electricity; 

o cost of each LFGTE option; 

o modeling of LFG emissions; and 

o tax benefits; 

 evaluate the difference in emissions from CNG versus diesel refuse trucks; and 

 apply the methodology to a Texas landfill to obtain benefit-cost ratios for various 

LFGTE scenarios. 

Thesis Organization 

This thesis is divided into six chapters.  Chapter I provides an introduction to the research 

presented in this thesis and the overall goals of the research.  Chapter II provides a review 

of the literature on various topics related to landfill gas creation, LFGTE projects, and 

carbon credit trading.  Chapter III takes the reader through a step-by-step process 

describing the methodology used in this analysis along with any assumptions used.  

Chapter IV goes into greater detail about the analysis and provides an estimate of the 

benefits derived from each of the six scenarios examined using the Clint landfill in El 



10 

 

 

1
0 

Paso as a case study.  Chapter V describes the costs that would be incurred from each of 

the various options as well as the findings from the analysis of the benefits and costs.  All 

conclusions and recommendations are reported in Chapter VI.  Appendix A contains 

additional information on the CO2 WASH
TM

 process.  Appendix B is a spreadsheet that 

enables the user to input information and receive a pre-feasibility output based on the 

calculations stated in the methodology section of this thesis.  Appendix C provides the 

output tables of the spreadsheet in Appendix B. 
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CHAPTER II 

LITERATURE REVIEW 

  

This chapter provides a review of published literature on topics related to MSW 

generation, landfill-gas creation, landfill design, methods of landfilling, and landfills that 

have the potential to become energy producers in Texas.  The definition of natural gas is 

explained, as well as how LFG collection systems are created and how the gas is 

processed.  Background information on existing LFGTE projects as well as the growing 

market for carbon credit trading provides detailed information on LFGTE projects. 

  

Solid Waste Management 

According to the U.S. EPA, the amount of MSW generated by residents, businesses, and 

institutions in the United States in 2007 was 254 million tons, or 4.62 pounds per person 

per day.  Our trash is made up of the things we commonly use and then throw away. 

These materials range from packaging, food scraps, and grass clippings to old sofas, 

computers, tires, and refrigerators. These are the materials generally disposed of in 

landfills along with some other materials not classified as MSW such as construction 

debris, municipal waste treatment sludge, and non-hazardous industrial waste although 

construction and demolition debris (C&D) typically has its own landfill. The solid waste 

materials are classified under Subtitle D of the Resource Conservation and Recovery Act. 

A breakdown of the composition of waste can be seen in Figure 4. 
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Figure 4: Materials Generated in MSW, 2007 (U.S. EPA 2008a) 

 

There has recently been a decrease in the amount of refuse that Americans produce.  

Despite this decrease there is still a high level of waste generation and with rising levels 

of recycling or waste recovery, optimal levels of methane can be generated (Table 4).  

The “recovery for recycling” row in Table 4 provides evidence that greater quantities of 

recyclable materials are indeed being recycled.  Recyclable items include various items 

such as plastic bottles, rubber tires, paper, aluminum cans, glass bottles, and scrap metal.  

The removal of these items will enable organic materials to occupy a greater percentage 

of the landfill space.  These items degrade much more quickly than non-organic 

materials.  Methane is generated in higher concentrations from the decomposition of 

organic matter than from inorganic items (i.e., car batteries).  A greater proportion of a 

landfill’s volume being taken up by food scraps, compost, and yard clippings will 

enhance the decomposition rate, creating a higher level of methane output and leading to 

greater methane recovery volumes and feasibility for LFGTE projects. 
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Table 4: Generation, Materials Recovery, Composting, Combustion with Energy 

Recovery, and Discards of MSW, 1960-2007 (in Millions of Tons) (U.S. EPA 2008a) 

Activity 1960 1970 1980 1990 2000 2004 2005 2006 2007 

Generation 88.1 12.1 151.6 205.2 239.1 249.8 250.4 254.2 254.1 

Recovery for recycling 5.6 8.0 14.5 29.0 52.9 57.5 58.8 61.4 63.3 

Recovery for composting* Neg. Neg. Neg. 4.2 16.5 20.5 20.6 20.8 21.7 

Total materials recovery 5.6 8.0 14.5 33.2 69.4 78.0 79.4 82.2 85.6 

Combustion with energy 

recovery** 

0.0 0.4 2.7 29.7 33.7 31.5 31.6 31.9 31.9 

Discards to landfill, other 

disposal*** 

82.5 112.7 134.4 142.3 136.0 140.3 139.4 140.1 137.2 

*Includes composting of yard trimmings, food scraps, and other MSW organic material but does not include backyard composting.    

**Includes combustion of MSW in mass burn or refuse-derived fuel farm and combustion with energy recovery of source-separated 

materials in MSW (e.g., wood pallets and tire-derived fuel). 

***Includes discards after recovery minus combustion with energy recovery.  Discards include combustion without energy recovery.   
 

Texas Potential 

About 22 million tons of trash are landfilled in Texas each year. That trash, in turn, 

creates approximately 70 billion cubic feet of methane. That quantity is equivalent to 

1 percent of the natural gas produced in Texas each year and 7 percent of the gas used by 

Texas’ electric utility companies. If the 70 largest landfills in Texas were fully developed 

for energy use, approximately 40 billion cubic feet of methane now drifting into the 

atmosphere or being wasted in flares would be utilized. It is estimated that nearly 

200 megawatts (MW) of electricity could be generated from this LFG, meeting the 

electricity needs of more than 100,000 Texas homes. Nationwide, more than 339 LFG 

utilization projects are in operation, and perhaps 600 additional projects are feasible. In 

Texas, 11 LFGTE projects were in service by the end of 2002. At least 55 more LFGTE 

projects have the potential to be feasible based on their size and waste composition 

(TCEQ 2007) (Table 5). 
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Table 5: Candidate Landfills for Energy Recovery in Texas (TCEQ 2007) 
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Methods of Solid Waste Management 

There are different methods of managing MSW. The integrated waste management 

(IWM) technique developed by the EPA is one such methodology in which different 

practices are used to safely and effectively handle the solid waste. The EPA’s 1989 

Agenda for Action identifies the hierarchy of the following basic components of IWM as 

(U.S. EPA 1996a): 

 recycling, 

 composting, 

 waste combustion with energy recovery, and 

 landfilling. 

 

Figure 5 is a graphical representation of the IWM process (U.S. EPA 2003). The figure 

illustrates that there are several sources of waste and several processes to handle the 

waste. These waste management options can be performed in a specific order, or they can 

be implemented simultaneously with effective coordination between them. However, the 

final purpose of the process should be to effectively handle the solid waste and increase 

the efficiency of energy recovery. Currently, 33.4 percent of the solid waste generated in 

the United States is recovered, recycled, or composted; 12.6 percent is incinerated; and 

the remaining 54 percent is disposed of in landfills (U.S. EPA 2008a). 
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Figure 5: Integrated Waste Management of Municipal Solid Waste (U.S. EPA 2003) 

 

Landfills 

Land disposal has always been and continues to be the most common form of handling 

and disposing of various types of waste and can occur in numerous different forms.  The 

most common is the shallow burial vault in soil, commonly known as a landfill.   

 

Landfill Composition 

Landfills are most commonly classified into three different categories based on the type 

of waste that is placed into them.  The classifications include: 

1. MSW or sanitary landfill: This type of landfill is comprised of MSW classified as 

RCRA Subtitle D (non-hazardous waste) as well as non-hazardous sludge (sludge 

from waste-water treatment plants). 
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2. Construction and demolition debris landfill: C&D materials consist of the debris 

generated during the construction, renovation, and demolition of buildings, roads, 

and bridges. C&D materials often contain bulky, heavy materials, such as 

concrete, wood, metals, glass, and salvaged building components. 

3. Hazardous waste landfill: These landfills are comprised of wastes classified as 

hazardous in accordance with RCRA Subtitle C (petroleum byproducts, acids, 

etc.) (U.S. EPA 1999). 

 

For efficient and safe operations, the landfill should adhere to specific regulations and 

design standards. It should be designed to prevent the migration of LFG and leachate to 

the surrounding areas, especially groundwater reservoirs, and should have systems that 

would facilitate the collection of LFG. The following are the general components of a 

landfill. These components would maintain the sanitary conditions at a landfill and 

improve its gas collection efficiency (U.S. EPA 1995). 

 Primary and secondary liners: These layers surround the base of the landfill and 

are anchored by anchor trenches that hold them in place (simply trenches with soil 

backfill). This layer is designed to prevent the flow of the leachate from migrating 

to the surrounding areas and the ground below the landfill. Typically the liner 

systems have:  

o Soil drainage layer: This layer acts as the primary defense against leachate 

migration and helps to soak up any leachate that builds on the liner 

system. 

o Geotextile: A geotextile liner helps to provide strength and stability to the 

liner system as a whole.  Its main purpose is for reinforcement.  The 

strength of the geotextile keeps the soil above it separated from the 

geonets and geomembranes below it. 

o Geonet: A geonet acts as a drainage liner.  Any leachate or liquid that has 

reached this point needs to be filtered down to the geomembrane below it 

to be removed and recycled to the leachate collection and removal system 

(if possible). 
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o Geomembrane: The geomembrane is the first and one of the last lines of 

defense against leachate migration.  The geomembrane is essentially a 

large trash bag that has next to zero permeability. 

o Compacted clay liner (CCL)/geosynthetic clay liner (GCL): This is the last 

defense against leachate migration.  Clay has a very low permeability, and 

manufactured liners with the same mechanical properties act to soak up 

any remaining leachate or liquid that gets to this point. 

o Secondary liner system: The system consists of another round of all these 

liners.  

 Leachate collection system: The system consists of a network of pipes or 

geosynthetic material placed to transmit leachate to various collection points 

where it can be treated or re-injected into the landfill to enhance biodegradation 

rates. Depending on the classification of the landfill, additional liners and leachate 

collection systems may be required. 

 Cover: A typical landfill has two covers.  One is placed after the daily 

operations—primarily soil or in some instances a large geosynthetic cover.  The 

second is also referred to as a cap and is placed at the end of the landfill’s design 

capacity.  It is comprised of many of the layers listed previously in order to make 

sure emissions are controlled after the landfill ceases accepting waste and that no 

additional rainwater or contaminants get into the landfill. 

  Gas collection system: The system consists of a network of pipes placed to 

collect LFG and transmit it to a central location. 

 Gas monitoring probe system: The system consists of a network of probes placed 

at several points across the landfill to detect the flow of gas throughout the 

landfill. 

 Groundwater monitoring well system: The system consists of monitoring wells 

placed at selected points around the landfill but typically downstream from the 

landfill to ensure that the byproducts of the landfill do not enter the local 

ecosystem. This is especially critical if the surrounding geomembrane is ruptured. 
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Landfill Development 

There are several ways to develop a sanitary landfill. The selection of a particular method 

may be based on the topographic conditions and the ease of operations at a landfill. The 

following are some of the methods that might be used for developing a landfill.  

1. Trench method: Solid waste is filled in a series of deep and narrow trenches for 

this type of landfill.  It is generally used only for small waste quantities.  This 

method is still used for hazardous waste landfills in some states. See Figure 6. 

 

 

Figure 6: Trench Method of Landfilling (Qian et al. 2002) 

 

2. Area or ramp method: The landfill progresses with little or no excavation.  

Normally this type of landfill is used in areas with high groundwater or where the 

terrain is unsuitable for excavation. See Figure 7. 

 

 

Figure 7: Area or Ramp Method of Landfilling (Qian et al. 2002) 

 

3. Above- and below-ground fill: This type of landfill is a combination of the two 

previously mentioned types, trench fill and area fill.  However, the excavation 

area is much larger than in a trench fill landfill.  The depth of excavation normally 

depends on the depths of the natural clay layer and the groundwater level. See 

Figure 8. 
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Figure 8: Above- and Below-Ground Fill (Qian et al. 2002) 

 

4. Canyon, valley, or ravine method: This method, as its name suggests, is most 

appropriate in a canyon, valley, or ravine. The solid waste is placed in lifts from 

the bottom of the ravine to the top. The first lift is normally placed a short length 

from the head of the ravine across its width. Succeeding lifts are placed by 

trucking the solid waste on the top of the first lift toward the head of the ravine. 

This is performed until the final grade is reached, after which the length of the 

first lift is extended further. See Figure 9. 

 

 

Figure 9: Valley Fill (Qian et al. 2002) 

 

In these methods, the waste is placed in a specific order in the form of cells or units 

(Figure 10). The densities of these cells or units are important in evaluating the overall 

economics of the landfill. This is due to the fact that the amount of waste that can be 

placed in a specific area is dependent on its density and the geotechnical capabilities of 

the surrounding soils, and the overall economics of a landfill is dependent on the amount 

of waste the landfill can accommodate.  The average density of the waste present in a 

landfill should be 800 pounds/cubic yard to make it economically competitive with other 
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means of disposal such as composting, recycling, and energy recovery (Salvato et al. 

2003). 

 

 

Figure 10: Placement of Waste to Form Cells (Qian et al. 2002) 

 

A solid waste landfill can be conceptualized as a relatively long-term biochemical 

reactor, with solid waste and water as the major inputs, and with landfill gas and leachate 

as the principal outputs.  MSW can generate tremendous quantities of gas during its 

decomposition.  The decomposition phase can take anywhere from 10 to 80 or more 

years.  The lower number is indicative of bioreactor landfills (today’s traditional MSW 

engineered landfills), and the higher number is indicative of conventional landfill 

practices (Salvato et al. 2003). 

 

Landfill gas goes through five phases from the point at which it is placed in the landfill 

until it decomposes.  The various phases and their characteristics are listed below. 

 

Phase 1: Aerobic Decomposition Phase 

Aerobic decomposition begins soon after the waste is placed in a landfill and continues 

until all of the entrained oxygen is depleted from the voids in the waste and from within 

the organic material itself.  Aerobic bacteria produce a gaseous product characterized by 

relatively high temperatures (130 to 160° Fahrenheit [F], or 51 to 71° Celsius [C]), high 

carbon content, and no methane content.  Other byproducts include water, residual 

organics, and heat.  Aerobic decomposition may continue from 6 to as long as 18 months 
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in the case of waste placed in the bottom of the landfill although it may last only 3 to 

6 months in the upper lifts if methane-rich landfill gas from below flushes oxygen from 

voids in the disposed waste (Qian et al. 2002). 

Phase 2: Aerobic/Acid Generation 

After all entrained oxygen is depleted, decomposition enters a transitional phase in which 

acid-forming bacteria begin to hydrolyze and ferment the complex organic compounds in 

the waste. 

 

Phase 3: Transition to Anaerobic  

This phase typically occurs within 3 months to 3 years at a landfill and is signified to be 

ending when methane and carbon dioxide concentrations stabilize and no nitrogen 

remains in the landfill gas. 

 

Phase 4: Anaerobic (Methane) Generation Phase 

Methane-forming bacteria, which thrive in an oxygen-deficient environment, become 

dominant.  Studies have shown that anaerobic gas production is typified by somewhat 

lower temperatures (100 to 130°F, or 38 to 54°C), significantly higher methane 

concentrations (45 to 57 percent), and lower CO2 concentrations (40 to 48 percent).  

Anaerobic gas production will continue until all of the carbonaceous material is depleted 

or until oxygen is re-introduced into the waste, which would then return the 

decomposition process to aerobic conditions.  A return to aerobic decomposition does not 

stop landfill gas production, but it will retard the process until anaerobic conditions 

resume. 

 

Phase 5: Transition to Stabilization 

In this phase the phases of decomposition have run their course and begin to stabilize 

back to aerobic digestion. 
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Phases of LFG Generation 

Figure 11 illustrates graphically the formation of various gases during each phase of the 

decomposition process (Qian et al. 2002). The figure shows that generation of CO2 peaks 

in the third phase, whereas the generation of CH4 peaks during phase 4 and remains more 

or less constant during this phase of decomposition. This phase is also the most important 

phase for energy recovery. The figure also indicates that the overall composition of the 

LFG changes from phase to phase. Hence the amount and content of the LFG from a 

particular landfill depends upon the age of the landfill and the current phase of 

decomposition. 

 

 

Figure 11: Phases of Landfill Gas Generation (Qian et al. 2002) 

 

Landfill Gas Recovery  

Landfill gas recovery may be the ultimate in recycling.  It taps one of society’s least-

desirable items—garbage—and turns it into useful, high-value energy products such as 

electricity and natural gas. Turning hazardous LFG into marketable energy enhances 

landfill safety. It also reduces odors and greenhouse gases while generating revenue. 

Therefore, cities should carefully evaluate their LFG potential because “the dump” could 

be a cost-effective and reliable energy resource. 
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Each Texan discards about 2,000 pounds of trash per year. Most trash is biomass, 

meaning it is derived from plants or animals. Methane, which typically makes up half of 

all the gases emitted by a landfill, is the main component of natural gas and a valuable 

energy product. Therefore, LFG is considered a renewable form of natural gas. Although 

methane is a marketable commodity, methane is also a destructive “greenhouse gas,” and 

landfill operators are required by federal law to control it.   

 

Methane currently accounts for about 24 percent of America’s total greenhouse-gas 

emissions. Landfill operators are required to trap the methane and other gases.  If the 

landfill volume is over 1 million tons, the methane produced can be captured, purified, 

and sold to gas utility suppliers or used to generate electricity on the spot. Since the 

methane must be captured anyway, turning it into a commercial product can help defray 

the landfill’s operating costs while reducing pollution (U.S. EPA 2003). 

 

Natural Gas 

Natural gas in its pure form is colorless, odorless, and highly combustible. It is clean 

burning, gives off a great deal of energy, and has lower levels of harmful byproducts than 

other fossil fuel sources. Natural gas, which occurs in various natural sources, is 

composed primarily of methane. Its composition varies, and the typical components are 

listed in Table 6.  LFG (when purified and cleaned of toxins) and CO2 can be sources of 

natural gas (U.S. EPA 1996b).
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Table 6: Composition of Natural Gas (NaturalGas.org 2004) 

Component Chemical Symbol Composition 

Methane CH4 70-90% 

Ethane C2H6 

0-20% Propane C3H8 

Butane C4H10 

Carbon dioxide CO2 0-8% 

Oxygen O2 0-0.2% 

Nitrogen N2 0-5% 

Hydrogen sulfide H2S 0-5% 

Rare gases A, He, Ne, Xe Trace 

 

LFG Collection Systems 

The gases generated by the decomposition of solid waste flow throughout the landfill and 

must be collected efficiently to avoid leaking into the atmosphere or spreading into the 

surrounding areas. (Figures 12 and 13 show LFG collection wells.) This is very critical 

since the gases contain CH4 in large quantities, which when present in concentrations 

between 5 to 15 percent can be highly explosive (NaturalGas.org 2004). The collection of 

the gases should be performed in such a way that air intrusion into the landfill is 

prevented. This normally occurs if gases are extracted from the landfill at a high rate. Air 

intrusion leads to the development of aerobic pockets, which might be detrimental to the 

process of CH4 generation and can affect the viability of the landfill as a long-term CH4 

generator (Qian et al. 2002). Air intrusion can be controlled by maintaining the spacing of 

the collection wells in a landfill. It is, however, important to understand the design of a 

collection well before understanding its spacing. 
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Figure 12: Drilling of LFG Collection Wells in Landfill (New Cure 2007a ) 

 

 

Figure 13: LFG Collection Well Drilling Rig (New Cure 2007b) 

 

A typical collection well is developed by drilling a 12- to 36-inch diameter trench 

through the waste to the bedrock or water table. Then a 3 to 8 inch pipe, with the top two 

thirds of its length perforated, is placed vertically inside the trench. This pipe is placed on 

a thin layer of gravel and is backfilled with gravel around the perforations. The gravel is 

capped with a thick layer of concrete or bentonite slurry, which prevents any ingress of 

air into the landfill. Thus the gases developed in the landfill travel through the perforated 

pipe and can be collected at the top of the pipe. Typically a butterfly valve is used to 

regulate the flow of gas from the landfill. The gas is then transferred to a network of 

pipes established to collect gases from several collection wells around the landfill and 

transfer the gases to a central location. A slight suction pressure may be applied at the 

central location to facilitate the movement of gases to the central location.  Figure 14 

shows a typical collection well (Qian et al. 2002). 
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Figure 14: Gas Collection Well at a Landfill (Qian et al. 2002) 

As discussed, well spacing is very important and is normally determined by using the 

“radius of influence” concept. According to this concept the radius of influence of a 

particular extraction well depends upon the extraction rate (i.e., well flow rate), depth of 

landfill, in-place refuse density, CH4 production rate, and fractional CH4 concentration. 

This relationship is determined by using Equation 1 (Qian et al. 2002). 

)30(*2 Cos

x
r

 

(1) 
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Where: 

 r = specified or desired radius of influence, meters or feet; and 

 x = distance between triangulated wells, meters or feet. 

  

Thus the well should be placed in such a way that the “radii of influence” of the 

neighboring wells just overlap each other. This would ensure that gas from the entire 

landfill is collected. The collection wells should also be placed in a pattern that 

maximizes the efficiency of gas collection. Figure 15 shows an equilateral triangle 

pattern that might be an efficient method of collecting the gas, considering uniform 

conditions throughout the landfill. 

 

 

Figure 15: Equilateral Pattern of Gas Collection Wells (Qian et al. 2002) 

 

The pattern shown in Figure 15, however, is not always possible, and hence the patterns 

must be modified depending upon the local landfill conditions. The spacing of wells is 

also dependent upon their location in a landfill. If they are located in the central part, the 

spacing may be large since higher well flow rates are desired. However if the wells are 

located at the periphery, then lower spacing would be favorable since lower well flow 

rates are desired. In addition, the location of the wells in a landfill is governed by the 

purpose of gas collection. If the gas is collected only to prevent it from migrating to 

neighboring areas, then the wells may be located at the periphery of the landfill. If energy 

recovery is the purpose of gas collection, then wells may be located at the center of the 
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landfill. The wells may be located both at the center and on the periphery if gas is 

collected for the dual purpose of migration control and energy recovery (Qian et al. 

2002). 

 

Landfill Economics 

Economic analysis of landfills is important to minimize the cost of waste disposal and 

maximize the benefits of energy recovery. It can also assist the owner/operator in 

selecting the best possible option for waste disposal from the different waste management 

options. 

 

A typical economic analysis includes the costs and benefits of developing a landfill site. 

The costs of landfills can be subdivided into the development costs and operating costs. 

The primary development cost is the cost of land required for the development of a 

landfill. This cost may vary from region to region but is normally higher in metropolitan 

areas. Landfills near the metropolitan area tend to result in lesser hauling cost but higher 

cost of land and health-related costs. Hence, a trade-off must be made on the location of a 

landfill near a metropolitan area.  

 

The operating costs for the landfills include labor costs, operation and maintenance costs 

of the equipment, and costs associated with the purchase and hauling of cover material. 

The labor costs generally account for half of the operating and maintenance costs. 

 

The benefits of developing a landfill site might include societal benefits, such as general 

hygiene of the local municipality via the removal of harmful waste, improved air quality 

post-closure, parks and golf courses post-closure, and potential cost savings that could 

ultimately affect the everyday citizen if corporations are making enough of a profit.  

Nearly all other benefits come in monetary form.  All private landfills are privately run to 

make money.  Earnings from dumping/tipping fees, garbage collection contracts, and 

various other fees are what sustain the financial feasibility of the landfills themselves.   
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LFG Cleaning Process 

As previously mentioned, LFG is primarily composed of CH4 and CO2 along with some 

quantities of N2 and O2. A few trace compounds may also occur in LFG. The 

composition of the gas depends upon various factors such as the type of waste in a 

landfill, climatic conditions at the landfill, age of the landfill, etc. The composition of the 

gas may also vary by location within the landfill, i.e., if it is collected at the center or at 

the periphery (Qian et al. 2002).  

 

The various applications of the LFG require some of the components of the gas to be 

removed, which is referred to as cleaning. The degree of cleaning depends on the 

intended application of the LFG (Qian et al. 2002). Each energy-recovery project, 

therefore, has a unique requirement for processing the gas. The LFG typically has heating 

values that range between 450 and 600 British thermal units per thousand cubic feet 

(Btu/mcf) and is mostly saturated with water (U.S. DOE 2009a). The various medium- to 

high-Btu applications of the gas demand removal of moisture from the gas, and the cost 

of such preprocessing is high and could have a significant impact on the overall economic 

feasibility of the project (ACS 1978). 

 

The gas can be directly utilized, but it may have some detrimental long-term effects such 

as inefficient operations and deterioration of the equipment. There are several cleaning 

processes that can remove the contaminants for different applications of LFG. An integral 

part of all these processes is the removal of condensate, particulates, and hydrogen 

sulfide, irrespective of the application for which the gas is used. This is due to the fact 

that these elements can cause heavy corrosion to the equipment.  

 

CO2 WASH™ Process 

As previously mentioned, LFG is saturated with water vapor at atmospheric temperature 

and pressure, which is typically considered to be 70°F and 1 atmosphere. The water 

vapor is removed in a knockout chamber by the process of condensation. In this process, 

the water vapor is condensed after it contacts a surface that is below its saturation 
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temperature (Cook et al. 2005). This gas is passed on to a blower, which increases the 

pressure of the gas from negative to positive. 

 

The gas then enters a reciprocating three-stage compressor that gradually increases the 

pressure to 400 pounds-force per square inch gauge (psig). After each stage of 

compression the gas is cooled down. This helps remove the condensate from the gas at 

every stage of compression. The gas is further passed into a chamber filled with iron-

based solid granular material that specifically absorbs H2S. This removes the odor from 

the gas and reduces its corrosive ability. The gas is further allowed to flow into the drying 

chamber, which is composed of alumina beads. The gas at high pressure is absorbed by 

the alumina beads in one vessel, and then another vessel regenerates the gas at 

atmospheric pressure. These vessels operate on a cyclic basis (Cook et al. 2005). 

 

After the H2S removal and drying of the gas, the gas enters the bottom of the CO2 

WASH™ absorber. The inner surface of this 6-inch diameter vessel is designed in such a 

way that it promotes better contact between the LFG and liquid CO2 absorbent. The LFG 

is refrigerated as it moves upward, causing the CO2 to liquefy. This chilled liquid CO2 

flows down the chamber, and as it moves down, it further strips the upward-moving LFG 

of its contaminants, thus purifying it further. There is a valve at the bottom of the 

absorber that helps maintain the level of liquid CO2 in the chamber. A tray may also be 

provided to withdraw the liquid CO2 from the chamber for commercial purposes (Cook et 

al. 2005). 

 

The cleaner LFG (70 percent CH4 and 30 percent CO2) is electrically heated to 70°F 

before it is allowed to enter a chamber with two membranes. The pressure of the gas is 

also lowered to 200 psig. The membranes separate the CO2 and O2 from CH4, providing 

clean LFG with a high CH4 content that can be liquefied and used as an LNG fuel (Cook 

et al. 2005). 

 

Figure 16 shows this process (Cook et al. 2005). The figure shows that pre-treatment of 

the gas before it enters the CO2 WASH™ chamber is extremely essential and constitutes 
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a substantial part of the entire process. The figure also shows that the impurities obtained 

from the CO2 WASH™ chamber are eliminated through flaring. The output of the 

process is natural gas that can either be liquefied for use as a vehicle fuel or can be 

directly introduced into a natural gas pipeline network.  Additional information can be 

seen in Appendix A. 

 

Figure 16: CO2 WASH™ Process (Cook et al. 2005) 
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Need for Landfill Gas Collection Mechanisms 

In addition to the increasing importance of alternative sources of energy that makes LFG 

an important potential source of natural gas, there are other reasons for collecting LFG 

rather than allowing it to escape into the atmosphere. Methane is a greenhouse gas with a 

global warming potential (GWP) that is 21 times that of CO2. The formation of methane 

and other potentially toxic gases at landfills is also tied to increased health risks and the 

risk of fire due to combustibility.   

 

The broad classification of action steps that can be taken at a landfill in terms of LFG 

collection are as follows:  

 Do nothing: Landfill is capped but LFG is allowed to escape into the atmosphere. 

 Flaring: LFG is collected and burnt off in a controlled combustion process. This 

converts the methane into CO2.  

 Conversion to an energy source: This could include converting the LFG into 

natural gas, heat, electricity, or vehicle fuel.  

 

Of these, the do-nothing option is generally considered to be the most environmentally 

harmful, due to the risks discussed previously and the release of greenhouse gases with a 

high GWP.  The true do-nothing scenario in which a landfill owner/operator does not 

place a cap on the landfill post-closure is legal in the United States for landfills that 

receive less than 20 tons of waste per year, yet other monitoring procedures must be in 

place at these sites to earn an exemption status from the EPA under the Land Disposal 

Program Flexibility Act of 1996 (LDPFA) (U.S. EPA 1996a).  The landfills that would 

consider the option of methane or energy recovery would not meet this requirement.  

 

All landfills that do not meet this exception are regulated by the U.S. EPA in accordance 

with their state governing agency.  For Texas, the Texas Commission on Environmental 

Quality (TCEQ) is the governing body that decides what landfill design standards and 

emission standards are required for each individual landfill based on the landfill’s impact 

on the surrounding community and ecosystem.  The TCEQ and EPA work together to 

meet both federal and state goals that are constantly changing.  The do-nothing scenario 
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is provided strictly as a baseline for emissions generation. Creating a methodology to use 

at all landfills is extremely difficult since each landfill has very different characteristics.  

Most landfills are required to regulate their emissions based on the air quality needs of 

the surrounding regions; therefore, it must be noted that for the purposes of this analysis 

the cost placed on the do-nothing scenario may be higher if air quality mitigation 

strategies are currently in place at a given landfill.  The do-nothing option for this thesis 

is assumed to be equal to the total costs of capping the landfill, operation and 

maintenance costs, and the purchasing of diesel refuse trucks that would have been 

purchased. 

 

Flaring is a better option because it converts the methane into CO2, which is less harmful 

than methane. However, the collection and conversion of LFG into a source of energy is 

the most preferred option from an environmental standpoint. While this study is 

specifically concerned with the feasibility of converting LFG into LNG for fueling refuse 

trucks or buses, the range of possible options for dealing with LFG are all presented in 

further detail in this report.  

 

The simplest method of collecting and disposing of LFG is through the use of a flare. 

This technique was common 50 years ago for disposing of the explosive casing head gas 

that came along with the oil from oil wells. But the oil industry eventually developed 

markets and infrastructure to sell the valuable natural gas rather than wasting it. In a 

similar fashion, landfill operators are developing markets for LFG, which can be used for 

many applications (Spaulding 1997).  

 

A Call to Action 

Energy consumption across the transportation sector is expected to grow by 10 percent 

from now (2009) until 2030 (U.S. DOE 2009a).  With increasing political pressure to 

reduce greenhouse-gas emissions to curb the potential effects of global warming, the 

federal government, as well as many other governing agencies, is considering ways to 

reduce its carbon footprint via new laws or policy changes.   
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The Energy Policy Act (EPAct) of 1992 requires certain federal agency fleets to acquire a 

percentage of alternatively fueled vehicles (AFVs) each year.  The EPAct of 2005 

requires federal fleets to use alternative fuels in dual-fuel vehicles the majority of the 

time if alternative fuel is available within 5 miles or 15 minutes of the garaged location of 

the vehicles unless an exemption has been given.  Federal agency fleets must also comply 

with Executive Order (E.O.) 13423, signed by then-President George W. Bush in January 

2007. E.O. 13423 requires agencies to decrease petroleum consumption by 2  percent per 

year (relative to their fiscal year 2005 baseline) through fiscal year 2015. In addition, the 

mandate requires agencies to increase alternative fuel use by 10 percent, compounded 

annually and based on their fiscal year 2005 baseline use (U.S. DOE 2009b). 

The American Reinvestment and Recovery Act of 2009 stipulates numerous tax benefits 

and grants for alternative-energy projects including LFGTE.  Under these rules 

alternatively fueled vehicles can receive a $0.50 per gallon equivalent tax credit as well 

as a 30 percent grant of low- to zero-interest bonds to finance prospective LFGTE 

projects (Obey, D. and 111
th

 U.S. Congress 2009). 

 

In addition to federal bills, laws, and mandates, two programs have been created to 

promote LFGTE projects within the United States and abroad, with the overall goal being 

a reduction in greenhouse-gas emissions as well as increased economic development. 

 

Landfill Methane Outreach Program (LMOP) 

One program created by the U.S. EPA, the Landfill Methane Outreach Program, is a 

voluntary assistance and partnership program that promotes the use of landfill gas as a 

renewable, green energy source. LMOP helps businesses, states, energy providers, and 

communities protect the environment and build a sustainable future through the 

development of landfill gas energy projects (U.S. EPA 2009a). 

 

Methane to Markets 

The U.S. EPA in 2004 created a program called Methane to Markets (M2M).  This 

program committed the United States, along with 13 other countries, to advancing cost-
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effective, near-term methane recovery and use as a clean energy source.  It enables both 

public- and private-sector organizations from around the world to work together with 

government agencies to facilitate project development of agricultural operations, coal 

mines, landfills, and oil and gas systems. This collaboration is yielding important 

benefits, including enhanced economic growth and energy security, improved air quality 

and industrial safety, and reduced greenhouse-gas emissions. 

 

To date, M2M resources have been used in creating the foundation for future project 

development as well as advancing near-term methane recovery and use opportunities. 

The United States supports technology demonstrations and pre-feasibility and feasibility 

studies at potential project sites; addressing market, institutional, and other barriers to 

project development; and building capacity through technology transfer and training. 

These efforts are directly leading to the future implementation of full-scale projects in 

numerous countries, which, if fully implemented, will result in estimated annual emission 

reductions of approximately 5 million metric tons of carbon dioxide equivalent 

(MMTCO2E).  

 

In the landfill sector, the U.S. government is developing a global database of LFG project 

opportunities to help countries and project developers from around the world identify 

potential project sites. In addition, the United States has trained Russian professionals in 

LFG project development and provided seed funding for LFG projects in Mexico and 

Brazil. These projects are expected to reduce emissions by 45,000 and 500,000 MTCO2E 

per year, respectively.  

 

Sustained effort and focus on methane recovery and use by the U.S. government, partner 

countries (see Figure 17), and the project network will lead to significant, near-term 

progress in reducing emissions. By working collaboratively with the public and private 

sectors, proponents can reduce global methane emissions while developing new sources 

of clean energy that provide economic, environmental, and health benefits. 
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Figure 17: Methane to Markets Partner Countries (U.S. EPA 2009a) 

LFGTE Projects 

As of 2008, more than 480 landfill gas energy projects were operational in the United 

States. Those landfills have transformed their decaying garbage into a renewable energy 

resource. In doing so, the sites are helping to generate 12 billion kilowatt-hours (kWh) of 

electricity per year and deliver 255 million cubic feet per day of LFG to direct-use 

applications.  An additional 520 landfills still present attractive opportunities for project 

development (see Figure 18) (U.S. EPA 2009b).  
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Figure 18: LFGTE Projects and Candidate Landfills (U.S. EPA 2009b) 

 

Texas Projects 

In 1996, Browning-Ferris Industries began generating electricity from LFG at its Sunset 

Farms Landfill in Austin (Figure 19).  The installation uses three 1,500-horsepower 

engines fueled directly by LFG without any cleaning process. The engines that are used 

are similar to large diesel engines and are relatively expensive at $1,200 per kWh, which 

is three times the cost of an ordinary natural-gas-fueled power plant.  The company 

offsets these costs by using the LFG.  The savings earned by not purchasing natural gas 

allows the electricity to be extremely cost-competitive versus natural gas. Landfill-gas-

powered units are highly reliable, producing full power for 90 to 95 percent of the year, 

which is more efficient than fossil fuels or nuclear power.  Due to its size, the Sunset 

Farms project can distribute electricity directly to the local power grid whenever it 

produces a surplus of electricity (SECO 2006). 
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Figure 19: Landfill-Gas-to-Electricity Plant (SECO 2006) 

 

San Antonio CNG Refuse Fleet 

The Environment News Service published an article in January 2009 praising the City of 

San Antonio for incorporating CNG refuse trucks into their fleet.  The City of San 

Antonio and Clean Energy Fuels Corporation in a cooperative effort designed and 

constructed a new refuse truck fueling station located at the Northeast Service Center.  

Clean Energy was co-founded by T. Boone Pickens, who has been an advocate for 

natural gas vehicles in the United States, receiving his greatest attention when gasoline 

prices reached $4 in the summer of 2008.  The fleet currently has 30 CNG-powered 

refuse trucks with plans to purchase more, making it the largest refuse fleet comprised of 

CNG vehicles in Texas.  The $0.50 per gallon tax credits as well as additional federal 

funding helped to assist with vehicle and fueling station costs, while a grant from TCEQ 

helped to offset station construction costs.  It is estimated that two-thirds of the nation’s 

700 refuse trucks operate using LNG, while the rest operate on CNG (Environment News 

Service 2009). 
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Natural Gas Vehicles (NGVs) 

NGVs can be refueled either by quick fill or timed fill.  Quick fill is used when vehicles 

need to be refueled in a time period similar to that of gasoline vehicles, about 3 to 

7 minutes.  At a quick-fill station, a compressor stores natural gas in a high-pressure tank.  

Refueling is done at the tank while the compressor replenishes the tank’s supply. The 

system shuts off when the cylinder capacity of the vehicle is reached, or at whatever point 

the user desires. 

 

A time-filled system eliminates the need for a high-pressure storage tank at the station.  

Natural gas is pumped by the compressor directly into the onboard cylinders over the 

course of 6 to 8 hours.  Timed fill is usually for fleet vehicles that return to a specific 

location at the end of a working day. 

 

While natural gas stations are still few and far between compared to gasoline stations, 

natural gas suppliers are proving themselves more accommodating in meeting the needs 

of their users.  If a home or business already has a natural gas hook-up (for heating, 

cooking, etc.), the local gas utility can install an on-site refueling system, making the user 

independent of outside filling stations.  There are also a variety of portable fuel delivery 

systems that use over-the-road transportation of CNG in tube trailers.  For interstate 

travel, the NGV Coalition offers a free booklet, “The Pocket Guide to NGV Fueling 

Stations in the U.S.,” for planning purposes (Spaulding 1997). 

 

Safety 

NGVs have a remarkable safety record.  In 1992, an American Gas Association (AGA) 

survey of more than 8,000 fleet-based vehicles found that in 278.3 million miles driven, 

NGV injury rates per vehicle miles traveled were 37 percent lower than the rate for 

gasoline fleet vehicles and 34 percent lower than the rate for the entire nation, and were 

without a single fatality as opposed to 2.2 fatalities per 100 million miles for gasoline 

vehicles. 
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This safety record is due at least in part to the chemical properties of natural gas.  Leaked 

natural gas dissipates into the atmosphere, instead of pooling on the ground.  Its ignition 

temperature is 1,200°F, as opposed to 600°F for gasoline. It will burn only when the 

proper air-to-fuel ratio is reached.  It will not ignite when the air concentration is below 

5 percent or above 15 percent.  Natural gas contains only trace amounts of toxic 

substances and is neither carcinogenic nor caustic.  Another reason may be the stringent 

standards for onboard storage cylinders. 

 

Susan Jacobs, a representative of the NGV Coalition, in 1997 stated that ever since the 

early 1990s, the federal government has been offering money and incentives at all levels 

of the industry.  The two main reasons for this are that natural gas is friendly to the 

environment and can play a major role in reducing U.S. dependence on foreign oil. 

 

Factory-built dedicated NGVs have the potential to reduce exhaust emissions of CO by 

70 percent, NMOCs by 89 percent, nitrogen oxides (NOx) by 87 percent, and CO2 by 

20 percent.  Natural gas qualifies as a “clean fuel” under the Clean Air Act Amendment 

of 1990.  Provisions of this same amendment require fleet operators of 10 or more 

automobiles or light duty trucks and vans to begin purchasing clean-fuel vehicles by 

model year 1998 (Spaulding 1997). 

 

Carbon Credit Trading 

Carbon credit trading has also become an issue to consider when looking at potential 

benefits for LFGTE projects.  Legislators in the U.S. government have discussed the idea 

of placing a cap-and-trade program for industries within the country.  Under this 

scenario, all manufacturing plants and some municipalities would be given a specific 

allocation of carbon credits (metric tons of CO2 equivalent) that they would be allowed to 

pollute per year.  If they were to exceed this limit, they would be forced to purchase 

carbon credits either from the government, from another company, or through a market 

system (like buying a stock).  The idea is that these credits would become more valuable 

as time goes on because the government would allocate fewer and fewer credits to each 

company and municipality in order to decrease total nationwide emissions over time.  
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Recipients would be forced to purchase cleaner (“greener”) equipment or buy more 

carbon credits.  Companies that took an initiative and spent the money to reduce their 

overall emissions would be able to sell their additional certified emission reduction 

(CER) credits to others for profit.   

 

Two markets within the United States have already begun to proactively trade CER 

credits, the Regional Greenhouse Gas Initiative (RGGI) and the Chicago Climate 

Exchange (CCX).  The RGGI is a semi-voluntary cooperative by 10 Northeast and Mid-

Atlantic States (Connecticut, Delaware, Maine, Maryland, Massachusetts, New 

Hampshire, New Jersey, New York, Rhode Island, and Vermont) to limit greenhouse-gas 

emissions.  These 10 states will cap CO2 emissions from the power sector and then 

require a 10 percent reduction in these emissions by 2018.  Regulations in these 10 states 

require the power companies to lower their emissions based on their given allotment or 

purchase additional credits, with the RGGI being the sole intermediary party of credit 

trading (RGGI 2009a). The CCX is a global market platform that sells CERs as well as 

European Union Allowances (EUAs) (CCX 2009).  Futures prices for carbon financial 

instruments (CFIs), which are equal to CERs, are much lower on the CCX because of the 

low volume of trading in the United States due to no true federal regulations or cap-and-

trade programs.  When viewed on June 1, 2009, the CCX was selling futures for 

December 2009 at $1/metric tonne, while the RGGI was selling the same futures for 

$3.51/U.S. ton ($3.87/metric tonne). 

 

The European Union and India each have their own carbon credit markets.  The European 

Union has capped emissions and provides EUAs to various industries, with credits 

averaging roughly $25/metric ton.  India’s market is called the Multi-Commodity 

Exchange (MCX), where carbon credits sell for roughly $15/metric ton (MCX 2009a).   
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CHAPTER III 

METHODOLOGY 

 

This chapter outlines the methodology that is the framework behind the feasibility 

analysis of choosing which LFGTE project may be best for the person using it.  The 

integral equations that act as the framework for methane generation rates are provided in 

this section along with various scenarios. 

 

 

The introductory section of this thesis discussed in general terms the most common 

options for collecting and disposing of or making use of landfill gas. For conducting a 

pre-feasibility analysis that involves looking at costs and benefits, a total of six scenarios 

were chosen to examine which option is most financially viable, and to compare the LFG 

to natural gas for transportation fuel options versus other possibilities.  

 

Landfill-Gas-to-Energy Scenarios 

The six scenarios considered are as follows: 

1. convert the LFG to LNG to use as a transportation fuel (LFG  LNG), 

2. convert the LFG to CNG to use as a transportation fuel (LFG  CNG), 

3. convert the LFG to pipeline-grade natural gas (LFG  pipeline), 

4. convert the LFG to electricity (LFG  electricity), 

5. cap the landfill and flare the LFG (closed flare), and 

6. do nothing (nothing). 

 

Numerous costs and benefits are associated with each option, and some of them are 

common to more than one scenario. Table 7 summarizes the types of benefits and costs 

associated with each of the scenarios. The analysis period considered for all the scenarios 

was 20 years.  
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Table 7: Summary of Costs and Benefits Associated with Each Scenario 
Description Scenario 

LFG  

LNG 

LFG  

CNG 

LFG  

Pipeline 

LFG  

Electricity 

Closed 

Flare 

Nothing 

Benefits 

Diesel or natural gas 

savings 

X X X    

Electricity conversion    X   

Carbon credits X X X X X  

Fleet turnover 

emissions reduction 

X X     

Costs 

Landfill capping costs X X X X X X 

CNG/LNG facility 

and operation cost 

X X     

Pipeline natural gas 

facility and operation 

cost 

  X    

Electricity plant and 

operation cost 

   X   

Flaring system and 

operation costs 

    X  

Fleet Turnover X X X X X X 

 

The reasons to consider each of these costs and benefits, and the methods used to 

calculate them, are provided in the following benefits and costs sections.  Before 

considering individual costs and benefits, it is necessary to estimate the quantity of gas 

generated for each landfill since this forms the basis for all other calculations.  

 

Estimating Landfill Biogas Generation 

Estimating landfill gas production from landfills and the methane potential from that LFG 

quantity is extremely difficult.  The methodology for acquiring an estimate of the landfill 
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gas potential was developed using the U.S. EPA’s 1997 modeling equation for closed 

landfills (Equation 2).  

 

  (2) 

 

Where: 

Qt  = expected gas generation rate in the t
th

 year, meters
3
/year; 

Lo = methane generation potential, meters
3
/year; 

mo = constant or average annual solid waste acceptance rate, Megagrams/year; 

k = methane generation rate constant, year
-1

; 

t  = age of the landfill, year; and 

ta = total years of active period of the landfill, year. 

 

The equation for closed landfills was chosen because all of the LFGTE options require 

the landfill to be capped or closed.  A large societal cost is incurred if landfills are not 

capped, which is why it is mandatory for most U.S. landfills to be capped.  For the 

purposes of this thesis it was assumed that construction for the capping and landfill gas 

collection systems would occur after the landfill or a portion of it has been closed.  

 

The methane generation potential, Lo, is typically available after sufficient pump test data 

have been collected at a landfill (Figure 20).  In order to obtain this value, LFG is 

extracted from a test well at a steady-state flow rate.  This value is then adjusted based on 

the landfill depth and the radius of influence.  The radius of influence is the volume of 

waste surrounding the extraction well that is contributing to the LFG generation on site 

(Qian et al. 2002).  Therefore, if you have results on the quantity of gas that is coming out 

of the area you are extracting it from, you can estimate the volume of gas that will be 

present over time. 
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Figure 20: Operator Performing a Pump Test 

(World Bank 2002)    

 

The methane generation rate constant, k, is derived based on the composition of the waste 

in place (WIP) and average climate at the landfill.  The composition of the waste has a 

dramatic effect on how much methane can be produced as well as how quickly it can 

break down.  For example, food waste will decompose much faster than a tire over time.  

Likewise, the climate has an effect on how quickly those items degrade.  In an arid, dry 

climate at high altitude, food waste will not decompose as quickly as it would in a hot, 

humid area at sea level.  The elevation above sea level of a landfill impacts the oxygen 

level that will be naturally present at a landfill.  The absence of oxygen requires the 

aerobic microbial digestion of the food waste to occur at a slower pace than would be 

possible in an oxygen-rich location.  The presence of moisture or rainwater at a landfill 

typically settles at the bottom of the liner system and is referred to as leachate.  Leachate 

aids in decomposition in that fully saturated waste decomposes quicker than dry waste.  

For these reasons, moisture and oxygen affect the methane generation rate constant very 

differently based on the location and waste composition of the selected landfill.  Typical 

ranges of Lo and k values can be seen in Table 8. 
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Table 8: Range and Suggested Values for Lo and k (Qian et al. 2002) 

Parameter Range Suggested Values 

Lo (feet
3
/pound) 0 ~ 5 2.25 ~ 2.88 

Lo (meter
3
/Mg) 0 ~ 310 140 ~ 180 

k (year
-1

) 0.003 ~ 0.40 

Wet Climate                         0.10 ~ 0.35 

Medium Moisture Climate  0.05 ~ 0.15 

Dry Climate                         0.02 ~ 0.10 

 

The average acceptance rate per year, mo, is calculated by taking the measured WIP and 

dividing by the number of years the landfill has been in existence.  This method is 

preferred when waste acceptance values for each year of the landfill’s life are not 

available.  For convenience, this method was used with its corresponding equations as 

opposed to finding the gas generation rate for each individual year based on that 

corresponding year’s waste acceptance rate in metric tons (Mg).   

 

Based on all these components, the U.S. EPA gas generation modeling equation can be 

applied to estimate the potential gas generation for each year (post-closure) for a landfill. 

This equation estimates the total amount of landfill gas that will be generated from the 

site itself.  In most instances, when a landfill gas collection system is installed, the 

collection system will not be 100 percent efficient in collecting the emitted LFG.   

 

A 75 percent landfill gas collection efficiency was assumed in the calculations for this 

report, which is the standard used by the EPA (Leatherwood 2004).  An additional report 

by Huitric and Kong states that LFG collection systems frequently operate at efficiencies 

of 95 to 100 percent.  Huitric and Kong also state that the EPA uses the 75 percent value 

to be conservative in their LFG assessments.  If the EPA is wrong in their assessment and 

the collection systems do operate at 95 to 100 percent, then no harm is done to the 

environment.  Using the 75 percent value is thought to skew data toward the side of 

caution at the expense of the landfill owner/operator when conducting pre-feasibility 

analysis, yet the standard U.S. EPA value of 75 percent was used for all calculations 

(Huitric and Kong 2006). Taking the landfill gas generated each year and multiplying by 



48 

 

 

4
8 

the landfill gas collection efficiency gives the total amount of landfill gas that can be 

captured in a given year, as shown in Equation 3.  

 

   (3) 

 

Estimating Natural Gas/Methane Recovery  

From the recoverable biogas (LFG captured by the collection system) estimated for each 

year, the quantity of natural gas equivalent to this can be calculated.  Landfill biogas is 

considered to have an energy content of approximately 500 Btu per cubic foot due to the 

consensus that LFG is typically comprised of 50 percent methane. Natural gas (i.e., 

natural gas from petroleum engineering) has a Btu value of 1,028 per cubic foot 

(U.S. EIA 2008).  This value was used because it is the standard when selling natural gas 

commodities on the New York Stock Exchange (NYSE) floor.  It is assumed that when 

one purchases 1 mcf of natural gas, he or she is receiving approximately 1,000,000 Btu of 

energy.  The approximate nomenclature is because 1 mcf of natural gas is not exactly the 

same from well to well.  The U.S. EPA has set the energy use equivalent from 1 mcf of 

natural gas to be 1,028,000 Btu, and therefore that was the Btu value selected for 

comparing 1 mcf of natural gas with other natural gas prices shown on the stock 

exchange. The abbreviation mcf is the equivalent of 1,000 feet
3
 of gas.  The use of the 

letter M instead of K, which is typically used for 1,000 units of something, has been 

common practice in the oil fields and sequentially on the trading floor of that commodity 

for years.  By equating the energy content of LFG and natural gas, and using simple unit 

conversions, an equivalent mcf (1,000 feet
3
) of natural gas produced can be calculated 

(see Equation 4).  

 

   (4) 

 

The need for the unit conversion from cubic meters to cubic feet could be avoided if LFG 

generation values are calculated in cubic feet rather than cubic meters.  Cubic meters 
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were used in this instance because the use of cubic meters is more commonly used as a 

measure of volume when referring to landfill gas.   

 

The LFG produced has been equated to natural gas in terms of Btu values. Methane 

comprises more than 80 percent of the total composition of natural gas (typically more 

than 95 percent), which allows the use of both terms with relatively equal values and 

terminology in this study.  It should also be stated that natural gas in pipelines that lead 

directly to your home for cooking and the operation of various appliances is typically 

100 percent methane, which is why this conversion was completed (Spaulding 1997). 

Thus, the pure methane gas that is being produced is considered equivalent to natural gas 

and is the sole comprising component in LNG and CNG. By placing a cost on each mcf 

of natural gas produced, based on market conditions, the value of the natural gas 

produced per year can be estimated as shown in Equation 5. This calculation for the value 

of natural gas produced will be considered while looking at the benefits of the various 

scenarios in the pre-feasibility analysis.  

 

                 (5) 
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CHAPTER IV 

ANALYSIS 

 

This chapter includes an analysis, including costs and benefits, of the six LFGTE 

scenarios under investigation.   Background information pertaining to the case study 

being used, the Clint landfill, is provided.  An example of each calculation was provided 

using the Clint landfill data for explanatory purposes.  

 

Study Location 

The Clint landfill, which is located in El Paso, Texas, and operated by the City of El 

Paso’s Solid Waste Management (SWM) Department, was used for collecting data on 

drive cycles. It is a large landfill with WIP of approximately 5 million U.S. tons and an 

annual waste acceptance rate (WAR) of 500,000 U.S. tons. The landfill is considered 

fairly typical, with El Paso being the sixth largest city in Texas (City of El Paso 2009). 

Operations at Clint Landfill 

The SWM Department at the Clint landfill performs residential as well as commercial 

collection of municipal waste. The residential collection is performed over four 8-hour 

days. It has 46 daily routes using fully automated refuse trucks and nine daily routes 

using semi-automated refuse trucks. These routes change by day of the week, covering 

the entire city during a week. The average route size for a fully automated residential 

route is approximately 800 containers. This falls perfectly within the industry range of 

700 to 900 containers. The average route size for a semi-automated residential route is 

645 containers, which is also within the industry range of 600 to 800 containers. The 

commercial collection service is provided between 1 to 7 days per week. The service is 

provided to commercial customers (55 percent) and governmental customers 

(45 percent). The SWM Department has to compete with private operators for providing 

commercial collection services. The collection service is provided with fully automated 

as well as semi-automated refuse trucks. The collection service provided by the SWM 

Department of the City of El Paso is consistent with other cities in Texas (R. W. Beck, 

Inc. 2004). 
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Sampling for Data Collection 

The fleet operated by the SWM Department consists of side loaders (53), rear loaders 

(31), front loaders (5), and roll-off compactors (5). The fleet make includes 

manufacturers such as Peterbilt and International. The manufacturing date of the fleet 

varies from 1995 to 2005. All the trucks operated by the SWM Department are currently 

fueled by diesel.  

 

Clint Landfill Site Characteristics 

The Clint landfill located 26 miles east of downtown El Paso, Texas, was selected as a 

pilot landfill for feasibility of LFG-to-LNG/CNG conversion in refuse trucks due to the 

city’s interest in cutting operating costs in conjunction with the closure of a portion of the 

landfill (R. W. Beck, Inc. 2004).  Two new phases of the landfill have begun to be used 

for new refuse collection, while the pre-existing phase is considering various 

closure/capping options.  The Department of Environmental Services in El Paso has not 

conducted pump tests on the landfill but estimates the methane generation potential, Lo, 

to be 100 m
3
/Mg.  This value is much lower than the 140 to 180 m

3
/Mg that is assumed to 

be the average range for methane generation potential but is appropriate based on the 

average climate conditions for El Paso.  Since El Paso is a dry, arid region, the absence of 

humidity or rainwater will not allow the leachate to build and aid in the decomposition of 

the existing waste, therefore creating a lower quantity of methane gas than in a region 

with high rainfall or moisture.  Likewise, the methane generation rate constant is the most 

conservative value available for a dry climate at 0.02 year
-1

.  The portion (phase) of the 

landfill that has been closed and is being considered for this analysis measures 280 acres 

in size, accepted over 290,000 U.S. tons annually (265,604 Mg/year), and was opened in 

1983 (see Table 9).    
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Table 9: Clint Landfill Input Values 

Name of Value Value 

Methane generation potential 100 m
3
/Mg 

Methane generation rate constant 0.02 year
-1

 

Landfill opening date 1983 

Average waste acceptance rate per year 265,600 Mg/year (calculated from WIP) 

Landfill size (Ha) 113 

Methane content 50% (assumed) 

Waste in place 6,905,704 Mg 

 

Do-Nothing Scenario 

In this analysis, the baseline is considered to be the “do-nothing” scenario. The do-

nothing scenario assumes that all landfills will have to be capped due to EPA regulations 

once they reach the end of their design life or reach capacity.  This is the point at which 

landfill owners/operators consider various post-closure strategies via LFGTE projects or 

just capping the landfill.  The capping costs, operation and maintenance costs, and yearly 

purchasing of new vehicles for the landfill totals $94 million for the Clint landfill.  This is 

the base case or “do-nothing” scenario against which all other benefits and costs are 

measured. 

 

Estimation of Benefits for Pre-feasibility Analysis  

The scenarios considered for this analysis include a variety of LFGTE projects. The 

benefits of such projects include reduced emissions, reduced costs from fuel savings, or 

earnings from energy production and carbon credits. The monetization of these benefits is 

discussed here. Since many of the benefits occur on an annual basis over the 20-year 

analysis period, the total net present value (NPV) of these is generally of interest for 

analysis purposes.  It should be noted here that for all estimates, the values are brought to 

NPV for the year the landfill is to be closed (in this case 2009) by discounting each year 

by a 3.05 percent inflation rate. Since 1988, the U.S. Bureau of Labor Statistics has 

estimated an average inflation rate of 3.05 percent (U.S. BLS 2009). 
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Natural Gas Generation for Landfills 

Based on the methodology presented in Chapter III, the quantity of methane or dry 

natural gas that can be extracted from a landfill was calculated for a 20-year period after 

closure. Technically, the analysis is for 21 years, with year 0 being the first year of 

closure (assumed as 2009, although any year that is input as the closure date into the 

calculator provided with this thesis will update automatically).  The calculator described 

in Appendix B provides a summary of the calculated LFG generation, recoverable LFG, 

and methane equivalent which can all be seen in Appendix C. These values can be 

equated with monetary values to decide upon feasibility for the various LFGTE projects.  

For example, if LNG is used as a transportation or trucking fuel source, the first benefit 

received would be the cost savings from no longer needing to purchase an equivalent 

amount of diesel fuel over the next 20 years.   

 

Equations 2 and 3 are used to determine the quantity of recoverable dry natural gas.  

They are used below to estimate recoverable dry natural gas for the Clint landfill. 

 

  

 

  

 

When these calculations are summed over a 20-year period, only changing the t value 

(for time from Equation 2), the Clint landfill will accumulate 4,805,818 mcf of 

recoverable dry natural gas over its 20-year analysis period.  
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Diesel Savings 

When the natural gas recovered from LFG is used as a transportation fuel (scenarios 1, 2, 

and 3), the savings due to either not purchasing diesel or through the sale of natural gas 

can be estimated as benefits. Since future energy prices are hard to predict, historical 

rates for natural gas and diesel were sought for guidance. The price associated with each 

mcf of gas and each gallon of diesel should be estimated based on the average cost of that 

commodity over the next 20 years.  Based on historical market prices for natural gas and 

diesel, an average price of $4.57 per mcf for gas and $2.60 per gallon of diesel was used 

(U.S. EIA 2009a, 2009b).  The natural gas price was chosen because it has been the 

average U.S. market price for 1 mcf of natural gas since 1994 (U.S. EIA 2009a).  

Likewise, $2.60 has been the average market price of all types of diesel over the past 

5 years (U.S. EIA 2009b).  Market conditions can change dramatically and should be 

cautiously considered when selecting appropriate commodity prices.  The user can adjust 

these values in the feasibility tool (spreadsheet) that is included with this thesis. 

 

In order to calculate the savings from not purchasing diesel, natural gas was equated to 

diesel quantities in terms of energy equivalency. One mcf of natural gas was thus 

estimated to produce the equivalent of 7.39 gallons of diesel since 1 gallon of diesel 

equals 139,000 Btu while 1 mcf of natural gas equals 1,028,000 Btu (U.S. EIA 2008) (see 

Equation 6).  

 

  

 (6) 
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Using the present-value Equation 7, the savings from not purchasing diesel over 20 years 

are summed.  

 

  (7) 

 

Where: 

n = number of time periods, 

i = rate of inflation (3.05 percent), 

t = number of years, and 

FV = future value. 

 

 

 

The savings in not purchasing diesel fuel for the Clint landfill when brought to NPV at 

3.05 percent (the 20-year U.S. Bureau of Labor Statistics average inflation) over 20 years 

is $71,091,615 (in 2009 dollars). 

 

Tax Credits from Alternative Fuels 

The 2008 Omnibus Financial Rescue Package extended a tax credit until the end of 2009 

on alternative fuels, specifically propane, which provides a $0.50 per gallon equivalent 

fuel tax credit.  President Obama has extended this credit indefinitely under the American 

Recovery and Reinvestment Act of 2009.  Under the provisions as they are currently 

written, landfill gas that is converted into natural gas (not propane) will still qualify for 

this tax credit until stated otherwise by the federal government (NPGA 2009).  Because 

of this, the additional tax credit benefit was included in this feasibility analysis.  For the 

Clint landfill the tax benefits will enable an additional $13.67 million (in 2009 dollars) 

adjusted for NPV over the 20-year feasibility period (if the tax credit remains in place 

over the life of the project).  
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Pipeline Natural Gas 

For the alternative of selling natural gas, as stated previously, the value associated with 

1 mcf of natural gas was taken as $4.57.  This value was used to calculate earnings from 

an LFGTE project in which the LFG was sold as pipeline-grade natural gas. This is also 

presented in a detailed table in Appendix C. The NPV of the earnings for the Clint 

landfill over the entire analysis period was $16.90 million (in 2009 dollars).  

 

 

 

 

Tax Credit from Pipeline-Grade Natural Gas 

The Resource Conservation and Recovery Act of 2009 also provides a $1 per mcf 

production tax credit when produced from LFGTE facilities.  Earnings from the quantity 

of natural gas that could be produced were $3.70 million (in 2009 dollars). 

 

 

 

 

Earnings from Electricity Conversion  

Conversion of landfill gas to electricity is also a possible LFGTE project solution. As in 

the previous case for calculating diesel/natural gas equivalencies and costs, the Btu 

values were equated to estimate electricity generation. One cubic foot of LFG was 
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equated to 500 Btu, and 1 Btu equals 0.000293 KWh of electricity. By assuming a price 

of $0.1 per KWh of electricity, the value of the electricity generated was calculated (U.S. 

EIA 2009c). Again, these calculations were performed for a 20-year period, and the NPV 

calculated for the Clint landfill was found to be $103.34 million (in 2009 dollars).  

 

 (8) 

 

 

 

 

 

 

 

Tax Credits for Electricity 

The same American Recovery and Reinvestment Act of 2009 that provides a $0.50 per 

gallon tax benefit for alternative fuels also provides a $0.01 per kilowatt-hour tax credit 

for landfill-gas-to-electricity projects.  This tax benefit can apply for landfill owners until 

2013.  Once approved, landfill owners will be able to receive this credit for the first 

10 years of the LFGTE project’s life (U.S. Government 2009).  Again, a disclaimer must 

be placed with this tax credit because laws and regulations are constantly changing based 

on various political decisions.  If it is assumed that the Clint landfill receives 10 years of 

this credit, the total tax credit received would total $7.73 million (in 2009 dollars). 
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Carbon Credits 

Due to emerging political and societal requests for a reduction in global greenhouse 

emissions, carbon credit trading has emerged as a potential solution to this global issue.  

Thousands of tons of various emissions, most notably carbon dioxide, methane, and 

nitrogen oxides, are emitted from landfills each year.  Some countries have passed cap-

and-trade legislation that requires their industries to limit the amount of emissions that 

they produce each year.  The implication this has on industries is very simple: either 

purchase new scrubbing equipment or new technology that is more environmentally 

friendly, or purchase offset emissions credits for the number of tons that you expect to 

exceed your imposed limit by.  A company is essentially faced with which option is most 

economical, and in many instances, buying credits is the best option.   

 

The positive side of those same regulations is that if an owner decides to upgrade his 

facilities and equipment and therefore is producing fewer emissions than he was 

originally allocated by the government, he can sell his additional emissions credits, 

typically known as carbon credits, to whomever he pleases.  Based on traditional 

concepts of supply and demand, the price of these carbon credits will increase over time 

as the regulations and allotted carbon credits decrease.  The ability to cap a landfill and 

sell its carbon credits creates an economic return for landfill owners wishing to curb their 

greenhouse-gas emissions and immeasurable societal benefits for the local communities.   

 

The United States currently has two markets for carbon credit trading, the Regional 

Greenhouse Gas Initiative and the Chicago Climate Exchange.  Both markets hold 

auctions and sell certified emission reduction credits.  One certified emission reduction 

credit is equivalent to 1 metric ton of CO2 equivalent (RGGI 2009a; CCX 2009).  

Therefore, contaminants that are much more detrimental to the environment such as 

methane would trade at their global warming potential (United Nations 1995).  Global 

warming potential is considered to be the standard for converting other pollutants such as 

methane into a carbon equivalent.  Methane’s GWP is 21, meaning that it is 21 times 

more harmful than CO2.  The RGGI in its most recent auction (March 18, 2009) sold its 

CO2 credits for $3.51 per ton (RGGI 2009b).  It is important to mention the differences in 
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the unit systems being used.  The RGGI sells its credits based on a ton, which is 2,000 

pounds, where all other trading platforms sell their credits based on a metric ton or tonne, 

2,204.6226 pounds.  To convert the price to a metric ton, the given price was interpolated 

to provide a value of $3.87 to equate 1 CER credit with each ton of pollution that comes 

from a landfill.  For the purposes of this analysis it was assumed that 50 percent of the 

emissions were from methane and the other 50 percent were from CO2.  Much more in-

depth analysis would be required in order to give more accurate estimates, but these 

values provide a conservative estimate of the earnings that would be produced from an 

LFGTE project.  

 

In order to convert the estimated LFG into potential emitting metric tons to calculate the 

CER equivalent, principles of basic chemistry were used. The density of CO2 and CH4 at 

standard temperature and pressure (1 atmosphere at 25°C) are 1.799 and 0.656 kg/m
3
, 

respectively.  The calculations are shown in Equations 9 and 10 below. 

 

    

 

   

 

      (9) 

 

 

 

 

               (10) 

                                              

Splitting the volume of carbon dioxide and methane into two equal halves (since it was 

assumed that the composition was 50 percent methane and 50 percent CO2) enables the 

landfill gas generated (cubic meters per year) to be multiplied by the densities of CO2 and 
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CH4 and then divided by 1,000 to provide the megagrams (Mg) of emissions per year 

(Equations 11 and 12).  

      

 (11) 

 

(12) 

 

Based on the methodology outlined here, the NPV earnings from carbon credits over a 

20-year period for the Clint landfill was $7.48 million. The detailed results are presented 

in Appendix C.  

 

    

 

 

 

 in year 1 

 

 

The tool included with this thesis allows the user to change the percentage of methane at 

the landfill.  The rest of the emissions from the landfill are all assumed to be carbon 

dioxide, but the equations will be computed according to the user’s input methane 

percentage. 



61 

 

 

6
1 

Using LNG/CNG as Transportation Fuel—Fleet Turnover Emissions Reduction 

In the scenario where the landfill gas is captured and converted to LNG/CNG for use as 

transportation fuel, there would also be emissions benefits from the replacement of older, 

higher-emitting refuse trucks with more efficient (and lesser-emitting) LNG or CNG 

vehicles.  Miguel Parra, Engineering Division manager with the City of El Paso, is in 

charge of the Clint landfill and stated that refuse trucks were replaced by the city on a 

need basis; therefore, if five trucks needed to be replaced, then five new trucks would be 

purchased and put into service to replace the older trucks.  He stated that if the landfill 

were to convert its fleet to LNG/CNG, it would be able to do so at a rate of five refuse 

trucks per year based on current budget constraints.  The five refuse trucks per year is the 

same number of diesel trucks he would be able to purchase if needed during a given year.  

Since five refuse trucks could be purchased per year, this was the fleet turnover number 

used.   

 

In order to estimate the emissions benefit due to the fleet turnover from older trucks to 

new LNG trucks, a baseline emissions estimate is needed for the existing refuse truck 

fleet, as well as an estimate of emissions from CNG or LNG trucks.  

 

Natural Gas Refuse Truck Emissions 

With the emissions data for each of the refuse trucks being used for collection, the total 

annual emissions from the city refuse trucks that operate the Clint landfill were 

generated.  These emissions were then converted to a dollar value based on CER values. 

For this analysis, carbon monoxide (CO) was given the same GWP as CO2 because it is 

not a greenhouse gas but does hinder the breakdown of methane in the atmosphere.  

Through natural courses it will eventually turn into CO2.  “Oxides of nitrogen” is a 

generic term given to all pollutants that are solely comprised of nitrogen and oxygen.  

NOx were equated with a global warming potential of 310 in this study as designated by 

numerous environmental regulatory agencies for the compound N2O (United Nations 

1995).  Although not all of the NOx that will be formed is N2O, the GWP of N2O was 

paired with those pollutants.  Hydrocarbons and particulate matter were not given global 

warming potential factors since they are not pollutants that can be traded, nor do they 
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have consistent estimated GWP values.  Since they were unable to meet these criteria, no 

true value can be associated with them, and therefore they were not given a cost.  

 

In order to estimate the cost savings from emissions due to using natural gas refuse trucks 

instead of a diesel trucks, emissions results from a test completed by the Texas 

Transportation Institute (TTI) in conjunction with the Texas State Energy Conservation 

Office (SECO) were used.  These results were preliminary results from a study to be 

published by Dr. Zietsman of TTI and SECO in January of 2010.  CNG vehicle emissions 

are nearly identical in every way to those of LNG vehicles, which is why LNG and CNG 

refuse trucks are given the same emissions benefits in this analysis.   

 

For the SECO/TTI testing, five diesel and five CNG refuse trucks were equipped with 

portable emissions measurement systems (PEMSs) while completing various tasks that 

were simulated at the Northeast Service Center in San Antonio, Texas.  This site was 

chosen because the City of San Antonio, in conjunction with Clean Fuel Technologies (a 

Boone Pickens company), installed a CNG fueling station for all of its newly purchased 

refuse trucks.  The City of San Antonio was still utilizing some of its diesel refuse trucks 

with the exact same dimensions, engine size, etc., except for the fuel injection systems 

and fuel type used, which provided equal testing subjects to determine emissions 

differences.  Standard daily operations including collection, high-speed driving, and 

compaction were simulated using both the CNG and diesel trucks at the same locations.  

Two refuse trucks were also used to collect real-world data.  This occurred while a 

researcher from TTI rode along with a solid waste department employee during his daily 

route to record the emissions from a single service route.  This was done with one CNG 

and one diesel truck.   

 

The preliminary results from this test are shown in Tables 10 and 11. 
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Table 10: Diesel Emissions Based on 2009 SECO Testing 

 DIESEL 

 Nox CO2 CO HC PM 

 Average of Emissions from All 5 Trucks 

(grams/second) 

HIGH-SPEED DRIVING           

Driving—empty 0.1200 26.2000 Ng* Ng* Ng* 

Driving—loaded 0.1400 30.8000 Ng* Ng* Ng* 

Average of driving 0.2766 26.7600 Ng* Ng* Ng* 

COLLECTION  

Uphill—empty 0.2100 43.4000 0.0140 Ng* Ng* 

Uphill—loaded 0.2000 43.6000 Ng* Ng* Ng* 

Short-dist. accel.—empty 0.2400 34.3000 0.0150 Ng* Ng* 

Short-dist. accel.—loaded 0.2300 37.0000 Ng* Ng* Ng* 

35 steady—empty 0.8300 15.2000 Ng* Ng* Ng* 

35 steady—loaded 0.0930 18.0000 Ng* Ng* Ng* 

Compaction & idle 0.1100 8.2000 Ng* Ng* Ng* 

Collection—stretch 0.1038 8.0209 0.0037 0.0000 0.0003 

Collection—dummy 0.0966 7.6476 0.0034 0.0000 0.0000 

Collection—loaded      

Average of collection 0.2348 23.9298 0.0090 0.0000 0.0002 

 

Table 11: CNG Emissions Based on 2009 SECO Testing 

 CNG 

 Nox CO2 CO HC PM 

 Average of Emissions from All 5 Trucks (g/s) 

HIGH-SPEED DRIVING      

Driving—empty 0.0017 22.4000 0.1300 0.0110 Ng* 

Driving—loaded 0.0025 26.2000 0.1700 0.0330 Ng* 

Average of driving 0.0021 24.3000 0.1500 0.0220 Ng* 

COLLECTION  

Uphill—empty 0.0026 31.9000 0.3200 0.0440 Ng* 

Uphill—loaded 0.0029 32.1000 0.3800 0.0310 Ng* 

Short-dist. accel.—empty 0.0034 31.0000 0.3900 0.0560 Ng* 

Short-dist. accel.—loaded 0.0037 31.0000 0.4400 0.0480 Ng* 

35 steady—empty 0.0026 13.8000 0.0530 0.0047 Ng* 

35 steady—loaded 0.0032 15.2000 0.0570 0.0056 Ng* 

Compaction & idle 0.0016 7.3000 0.0230 0.0044 Ng* 

Collection—stretch 0.0019 6.3911 0.0317 0.0043 Ng* 

Collection—dummy 0.0019 5.7527 0.0237 0.0051 Ng* 

Collection—loaded      

Average of collection 0.0026 19.3826 0.1909 0.0226 Ng* 
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The actions listed in Tables 10 and 11 are broken into both high speed driving and 

collection for the purpose of taking a weighted average of emissions based on the 

percentage of the total time that is spent on that specific action.   

 

The driving portion of service was broken into various situations that would occur during 

a typical route.  “High speed driving” reflects the emissions results when the refuse truck 

was traveling at 55+ mph on an urban arterial; “35 steady” reflects driving at 35 mph.  

“Uphill” is the emissions results from driving the refuse truck up a steep incline, roughly 

more than 3.5°.  “Empty” and “loaded” listed after each of the actions reflect the refuse 

truck being completely empty or loaded with roughly 14,600 pounds of concrete.  During 

testing this was kept consistent with pallets of concrete, with bales of hay acting as a 

protective barrier, but 20,000 pounds was recorded from the weight ticket of the refuse 

truck once it made its first trip to the collection site.  The collection site acted as a 

transfer station between the refuse trucks and the landfill so that the refuse trucks 

themselves did not have to travel directly to the landfill. 

 

Collection was broken into six actions: street driving (35 steady), uphill driving, 

collection-empty, collection-stretch, collection-dummy, and short distance acceleration.  

For testing purposes, 14- to 80-gallon refuse containers were placed along an abandoned 

road with a level grade.  The spacing of the refuse containers varied from 15 to 90 feet to 

recreate the spacing that would be apparent in residential neighborhoods.  The refuse 

truck picked up empty containers, which provided the results for the empty designation.  

The stretch emissions were obtained from the refuse truck extending its mechanical arm 

to pick up the containers.  “Dummy” consisted of the refuse truck just stopping at each 

container but not picking up any of them.  “Loaded” reflected the picking up of loaded 

containers, filled with bags of mulch and sand to consistently weigh roughly 200 pounds.  

This weight was chosen because the solid waste department stated that it was the average 

weight collected from each residential household from its estimates.  During testing 

researchers felt that this value was much too dense for an average household, but the 

testing parameters had already been set.  The results proved that the weight of the 

containers was never truly a factor since use of the mechanical arm created nearly the 
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same quantity of emissions whether the container was loaded or empty.  “Compaction & 

idle” provides the emissions results from operating the refuse compactor that is inside the 

refuse truck itself.  This compaction pushes the refuse together to create less void space 

in order to pick up more refuse.  The “short-distance acceleration” designation reflects 

the actions of a refuse truck traveling at 20 mph and stopping abruptly as one would 

while driving during collection from one refuse container to the next or from one street to 

another. 

 

Emissions savings were calculated on the premise that each of the driving actions occurs 

the same percentage of time for other sanitation department vehicles as was observed 

during the SECO testing.  In the testing, a scientist rode along with a sanitation 

department employee as he worked his collection route.  These observations were 

conducted for both a diesel and CNG refuse truck.  The scientist observed that the only 

two actions that needed to be recorded were high-speed driving and collection.  The 

scientist noted that a typical daily route consisted of the driver getting into the refuse 

truck, checking his equipment, filling out a few forms, and leaving the station for 

collection.  The drivers typically make one trip to a transfer station or dump and then 

continue the rest of their route, which will last around 6 hours.  The scientist found that 

driving (without collection) consisted of 30 percent of the daily route, while the other 

70 percent was spent on the collection itself.  Based on this information a weighted 

average of the emissions found from the SECO testing can be used to produce the 

emissions benefits of using a CNG refuse truck versus a diesel truck over the course of a 

year.  The calculations are outlined below. 

 

For CO2: 

The difference in CO2 emissions from a diesel refuse truck versus a CNG refuse truck is 

roughly 4.44 g/s (see Table 12).  Assuming that the refuse truck is operated for 7 hours a 

day (routes typically run from 7 a.m. to 2 p.m.) for 260 days per year (5 days per week), 

using a CNG refuse truck produces a reduction of 33.45 Mg of CO2 per truck per year.  If 

carbon credits are selling for $3.87/metric ton of CO2, then this is an emissions savings of 

over $112 per year per truck for the pollutant CO2 alone.   
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Table 12: Difference in CNG versus Diesel Emissions in Refuse Trucks 

 DIFFERENCE 

 Nox CO2 CO HC PM 

 Average of Emissions from All 5 Trucks (g/s) 

HIGH-SPEED DRIVING      

Driving—empty -0.1183 -3.8000 N/A N/A N/A 

Driving—loaded -0.1375 -4.6000 N/A N/A N/A 

Average of driving -0.1279 -4.2000 N/A N/A N/A 

COLLECTION  

Uphill—empty -0.2074 -11.5000 0.3060 N/A N/A 

Uphill—loaded -0.1971 -11.5000 N/A N/A N/A 

Short-dist. accel.—empty -0.2366 -3.3000 0.3750 N/A N/A 

Short-dist. accel.—loaded -0.2263 -6.0000 N/A N/A N/A 

35 steady—empty -0.8274 -1.4000 N/A N/A N/A 

35 steady—loaded -0.0898 -2.8000 N/A N/A N/A 

Compaction & idle -0.1084 -0.9000 N/A N/A N/A 

Collection—stretch -0.1019 -1.6298 0.0280 0.0043 N/A 

Collection—dummy -0.0947 -1.8949 0.0203 0.0051 N/A 

Collection—loaded      

Average of collection -0.2322 -4.5472 0.1823 -0.0047 N/A 

 

 (13) 

 

 

 

 (14) 

 

An example for the first estimation of CO2 is shown in Equations 13 and 14. 

 

 

 

This analysis was also preformed for CO and NOx since they are the only tradable 

pollutants (i.e., the only ones that can be sold) and then summed for the total number of 

CNG refuse trucks in the fleet, which can be seen in Appendix C. 
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For CO: 

 

 

 

 (15) 

 

An example for the first estimation of CO is shown in Equation 15. 

 

 

 

It is shown that CO is increased through the use of CNG refuse trucks, but the impact is 

only $4.57 per truck per year if 1 ton of CO is assumed to be equal to 1 ton of CO2. 

 

For NOx: 

 

 

 

 (16) 

 

An example for the first estimation of CO is shown in Equation 16. 

 

 

 

The benefit in the reduction of NOx is shown to be $1,571.61 per truck if the global 

warming potential associated with NOx is assumed to be 310, as indicated by the Kyoto 

Protocol.  It must be mentioned again that NOx is not N2O, which is what the 310 GWP 

multiplier is added into the calculations for.  The N2O that would be present in NOx 
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would be very small, yet as stated previously no research has shown the GWP of NOx as 

a whole; therefore, the 310 GWP multiplier for N2O was applied to NOx as a whole. 

This methodology was used for each pollutant.  The cost savings from using a CNG/LNG 

vehicle versus a diesel vehicle were then calculated. The emissions cost savings from 

switching from diesel to LNG vehicles exceeds $1.32 million when brought to NPV over 

the course of 20 years.  

 

Societal Benefits 

Additional societal benefits that are difficult to quantify occur from reduced emissions. 

Many of these benefits are indirect benefits that will ultimately have monetary effects, 

but they were not considered in looking at the overall financial return or benefit-cost 

analysis.   

 

A study conducted by Mark A. Delucchi in 2000 categorized all environmental damages 

that are incurred from motor vehicles as externalities.  He felt that air quality should be 

considered an externality because individual air molecules are not owned or bought and 

sold in markets.  Ten years later this thought is beginning to come closer to fruition with 

the idea of carbon credit trading.  Delucchi and McCubbin placed a monetary value on 

the major pollutants from motor vehicles including CO, NO2, ozone, and PM (McCubbin 

and Delucchi 1996).  The value of these emissions was found from a valuation of health 

effects from lung-related illness.  The total cost that was incurred from lung-related 

illnesses (i.e., lost work time, direct illness costs, etc.) due to motor-vehicle emissions at a 

given source was divided by emissions produced from that source.  Extensive research 

was placed into answering all questions that could arise about the estimation of these 

values, giving extensive reasoning behind dismissing many of their results based on 

outlying events that could skew data.  They stated that CO, NOx, sulfur oxide (SOx), and 

ozone appear to have much smaller effects than PM does.  Aside from their contribution 

to particulate formation, emissions of NOx, SOx, and volatile organic compounds (VOCs) 

are relatively unimportant to lung-related illness.  The explanation of this is the truly 

unknown effects of the formation of ozone through the interaction of NOx and VOCs 
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(Delucchi 2000).   

 

Delucchi’s results are presented in Table 13.  The values are presented in dollars per 

kilogram.  This thesis refers to pollutants valued by megagram; therefore, the prices 

provided by Delucchi must be multiplied by 1,000.  Adjusting for inflation as well would 

require the user to multiply by 1,549 (not 1,000), in order to convert the pollutants to 

2009 dollars.  With present carbon credit prices, assuming that CO is considered 

equivalent to CO2, then CO is undervalued by $75 according to U.S. trading.  NOx on the 

other hand would be equivalent to $1,088 today since it is 310 times more harmful and 

yet is quoted by numerous state agencies as being valued around $10,000 to $15,000.  

The $10,000 to $15,000 cost per ton of NOx is the mitigation cost associated with NOx 

and not the associated price that is given to 1 ton of the pollutant.  The correct value that 

should be associated with each value will only be what the market chooses it to be if and 

only if emissions trading platforms are made commonplace in the economic trading of 

everyday operations in order for the decision-making tool included with this thesis to 

provide a relatively accurate pre-feasibility analysis. 

 

It should also be noted that for the Clint landfill case, as with any other landfill, there will 

be societal costs incurred through the do-nothing scenario.  By the landfill 

owner/operator not reducing the pollutants that are being emitted by the landfill, there is a 

societal cost that is being incurred by the surrounding communities.  This cost was 

assumed to equal the cost of the total CO2 equivalent tons being emitted times the market 

price of a carbon emission reduction credit.  For the Clint landfill this societal cost 

amounted to just less than $13 million over the 20-year analysis period.  This cost was 

not implemented into the benefit-cost analysis because it is only a societal cost.  It does 

not cost the landfill owner/operator any amount of money to do nothing (unless he or she 

were fined); therefore, this cost was not included in the benefit-cost analysis.   
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Table 13: Health Care Costs per Kilogram of Emissions 

(McCubbin and Delucchi 1996) 
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Estimation of Costs for Pre-feasibility Analysis  

In general, the costs associated with LFGTE projects vary greatly and are based on size 

and need of the municipality or owner/operator.  In the case of the six scenarios identified 

for this study, each scenario entails unique costs as indicated in Table 7. Each of these 

costs is described in this section. A majority of costs (such as capping, investment in 

LNG/electric conversion facilities, etc.) involve one-time investments for which the 

present value can be considered. Other costs may occur over the analysis period, and their 

present value is considered for discussion purposes. Thus, all costs mentioned here refer 

to their present value when considered over the total 20-year analysis period.   

 

Landfill Capping Costs  

All of the six analysis scenarios considered involve capping the landfill.  Capping of a 

landfill is a necessity in the United States when a landfill has reached the end of its 

design life.  Capping the landfill dramatically reduces the odor that is present as well as 

controls the emission of harmful gases.  The capping process involves covering the entire 

landfill with geosynthetic liners, membranes, and topsoil.  Throughout this covering or 

capping process, contractors may also drill gas extraction wells directly into the face of 

the landfill in order to extract the landfill gases that are below.  This process not only 

helps to eliminate the harmful gases that would otherwise be emitted but also helps to 

keep the integrity of the landfill cap intact.  If too much methane or any other gas builds 

up underneath the landfill cap, the cap could eventually tear, rip, or burst, defeating the 

purpose of the cap.  Typically, the gas from each of these extraction wells is collected and 

flared, therefore removing more harmful pollutants from the atmosphere by just 

producing CO2 and heat. Other approaches to using the collected gas include conversion 

to CNG/LNG, electricity, or natural gas. Data were obtained from various contractors in 

the United States that estimate landfill capping costs and collection system installation for 

a landfill the size of Clint’s, as shown in Table 14.  
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Table 14: Estimated Clint Landfill Capping Costs 

No. Item Description Cost ($ Million) 

 Of Clint 

Landfill 

(Area=113.3 Ha) 

1 Landfill cap  54.6 

2 Gas and leachate collection wells 

and collection system  

22.4 

3 Operation and maintenance      

(for 20 years) 

3 

 Total 80 

 

Cost of LFG-to-LNG Conversion System 

An LFG-to-LNG conversion system can be used to filter the LFG in order to produce 

LNG and food-grade CO2.  The harmful pollutants from the LFG are disposed or 

recycled back into the landfill, and the methane from the LFG ultimately produces a 

transportation fuel. While there is technology already in place to fuel vehicles on CNG, 

the biggest hindrance to the advancement of this technology has been the fuel storage 

tanks.  LNG solves this issue since it takes up 1/600 the volume that natural gas (at 

standard temperature and pressure) does for the same energy output and is very similar to 

CNG in terms of overall fuel efficiency and emissions, taking only 1/6 the volume of 

CNG (Tusiani and Shearer 2007).   

 

The Acrion Technologies, Inc., CO2 WASH
TM 

(described in Appendix A) has been 

chosen as the technology of choice for cleaning landfill gas and ultimately converting it 

to liquefied natural gas.  A pilot project in Burlington, New Jersey, proved the 

technology’s reliability and functionality (see Figure 21).  The study took landfill gas 

from the Burlington County landfill and converted it into liquefied natural gas, which 

then fueled refuse trucks (Cook et al. 2005).  
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Figure 21: Acrion System at Burlington, New Jersey, Testing Facility 

(Cook et. al 2005) 

 

The costs associated with the installation of an LFG-to-LNG conversion system include 

the capping costs and LFG collection system costs (from Table 14), the cost of the Acrion 

CO2 WASH
TM

 technology and the purchase of new fleet vehicles (both shown in Table 

15). An additional cost to be considered is the purchase of LNG vehicles in phases over 

time.  The Acrion system is estimated to cost roughly $12 million according to 

correspondence between Dr. Joe Zietsman of TTI and Dr. Bruce Smackey of Mack 

Trucks and Acrion Technology.  Since this process is a refining process, prices will 

fluctuate based on market conditions for refining materials.  

 

Fleet turnover from the purchase of new LNG/CNG refuse trucks versus the purchase of 

traditional diesel refuse trucks is also a cost incurred.  The difference in operation and 
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maintenance costs is also accounted for.  Table 15 shows the marginal costs of installing 

the LNG conversion system and the fleet turnover costs.  Any mathematical differences 

are a result of rounding. 

 

 

 

 

 

 

 

 

 

For LNG: 

 

 

 

 

For CNG: 
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Table 15: Marginal Cost of Acrion System plus Fleet Turnover 

Landfill Clint 

Acrion system cost ($ millions) 12 

Marginal cost of LNG trucks 2.7 

Marginal cost of CNG trucks 2.4 

Total with LNG trucks ($ millions) 14.7 

Total with CNG trucks ($ millions) 14.4 

 

Cost of Conversion of LFG to Pipeline-Grade Natural Gas 

Converting LFG into pipeline-grade natural gas is a difficult task that requires almost as 

many resources as the LFG-to-LNG conversion.  The CO2 WASH
TM

 process must be 

used in order to truly rid the LFG of all contaminants in order to sell the LFG to a natural 

gas provider.  Adding a lower grade of natural gas such as direct LFG, at 50 percent 

methane, would not only devalue the price of the natural gas but cause an extensive 

amount of corrosive damage to the existing pipeline.  The additional contaminants that 

are contained within LFG along with the CO2 would cause extensive corrosion and 

potential scaling within the pipe walls.  Because of these reasons, the CO2 WASH
TM

 

process was chosen as the filtering process to convert LFG into pipeline-grade natural 

gas.  Pure methane is produced from the CO2 WASH
TM

 process. 

 

The cost to convert LFG to pipeline-grade natural gas includes $12 million for the CO2 

WASH
TM

 process.  There is also an operational cost of $2 per mcf associated with the 

treatment process as well, causing this scenario to total to the amounts seen in Table 16 

for each of the landfills (SECO 2002). 
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Table 16: Cost of LFG to Pipeline-Grade Natural Gas 

Landfill Clint 

Acrion system cost ($ millions) 12 

Operational costs ($ millions) 9.61 

Total ($ millions) 21.61 

 

It should also be noted that the CO2 WASH
TM

 process does not necessarily have to be 

used in order to use LFG as a heating fuel source.  The reason the CO2 WASH
TM 

process 

was selected as opposed to other, cheaper options (typically costing $2 million to $5 

million) was due to the lack of reliability of these systems.  Literature has shown that the 

capital costs for these projects are much less since the LFG is not cleaned of 

contaminants, but based on engineering principals from petroleum and mechanical 

engineering, CO2 and moisture/water are the two biggest concerns for pipeline-grade 

natural gas.  Carbon dioxide and water are extremely corrosive when present in a 

pipeline, which is why these elements are taken out of natural gas when it is transmitted 

to the end user through the pipeline.  Petroleum engineers typically combat this 

corrosiveness by using stainless steel pipelines, which are extremely costly.  Depending 

on the distance needed to connect the LFG with existing natural gas pipelines, costs could 

vary dramatically, which is why the CO2 WASH
TM

 process was selected for its high level 

of contaminant removal.  Literature is unavailable to discuss the maintenance costs of 

using direct LFG as a fuel/gas source, which is why this cheaper option was left out of 

the analysis. 

 

Cost of Conversion of LFG to Electricity 

The costs associated with converting LFG to electricity included the cost of the facility 

and the operational costs.  The cost of the facility was determined first by the size of 

facility that could accommodate the landfill gas. In order to estimate electricity 

production capability from the landfill gas, the British thermal unit equivalent of the LFG 

produced was converted to kilowatt-hours using the conversion factor of 1 Btu = 

0.000293 kWh. The kilowatt-hours that would be produced from the first year (the 
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greatest LFG generation year) divided by the conversion factor of 8,928,000 gives the 

megawatts of electricity that could be produced at a given time. 

 

This allows us to estimate the electricity generation needed based on the megawatt 

output.  For this study, $1.5 million was used per megawatt to determine the cost of the 

electric generation facility.  An operational cost of $0.05 per kilowatt was used (SCEC 

2002).
  
Based on these assumptions the cost at each of the landfills for an electricity 

generation facility is shown in Table 17.  

 

Table 17: Cost of Conversion of LFG to Electricity 

Landfill Clint 

Facility cost ($ millions) 14.25 

Operational costs ($ millions) 72.38 

Total ($ millions) 86.63 

 

Cost of Flaring LFG from Capped Landfill 

The cheapest option of the capped landfill scenarios falls upon the use of a flaring 

system.  With this scenario, the landfill is still capped, extraction wells are put in place, 

and the landfill gas is flared once collected.  This action allows more of the pollutant 

emissions such as methane to be burned off as CO2 and heat, instead of being emitted 

into the atmosphere with 21 times the GWP as CO2 (John Zink Co. 2005).  The 

equipment needed for this mitigation strategy is very simple.  A flaring system collects 

the LFG from the landfill gas collection system and flares it (Figure 22). The costs of the 

flaring system and its operational costs are shown in Table 18.  
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Figure 22: Schematic of LFG Flaring System with Blower (Qian et al. 2002) 

 

Table 18: Cost of Flaring System for Capped Landfill 

Landfill Clint 

Flaring system cost ($) 2,500,000 

Operational costs ($) 1,800,000 

Total ($) 4,300,000 

 

The costs of flaring systems are nearly equal at all landfills because there is no real 

difference in total or operational costs.  The total cost assumes the same size flare is good 

enough for all landfills, and the operational costs are equal because the time of operation 

on an equal size flare will also be equal.  These values can be changed on the feasibility 

tool that is included with this thesis, but for conceptual analysis these were the values that 

were used.   
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Cost of the Do-Nothing Scenario 

The cost of the do-nothing scenario includes capping, operation and maintenance, and 

fleet turnover costs. These are the costs associated with taking no action based on current 

landfill practices and represent the economic implications of capping and maintaining the 

capped landfill.  An assumption that a cost of $150,000 per year for general operation 

costs (i.e., employees, electricity, etc.) is where the $3 million over 20 years originates. 

The cost of fleet turnover is also included in the do-nothing scenario.  For the Clint 

landfill it was stated that five new refuse trucks replace five older trucks each year.  The 

do-nothing scenario assumes that five diesel refuse trucks are being purchased each year.  

The present value of purchasing five new diesel trucks per year totals over $3.51 million.  

The values for each landfill are presented in Table 19.  

 

 

 

Table 19: Cost of Do-Nothing Scenario 

Landfill Clint 

Capping $77 million 

Operation and maintenance costs 

(assumed: $150,000/year) 

$3 million 

Fleet turnover cost $14 million 

Total $94 million 

 

The cost of the fleet turnover is also included in the do-nothing scenario.  For the Clint 

landfill it was stated that five new refuse trucks replace five older trucks each year.  The 

do-nothing scenario assumes that five diesel refuse trucks are being purchased each year.  

The present value of purchasing five new diesel trucks per year totals over $14 million.   

 

Estimating the Benefit-Cost Ratio for Each Scenario 

The costs and benefits described in this section of the report need to be combined and 

evaluated for each scenario. As indicated in Table 20, each scenario will incur a different 
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set of costs and benefits. Depending on the efficiency of the LFGTE process under 

consideration and other details, different proportions of the costs and benefits may be 

considered to apply to a particular scenario. The estimation of the benefit-cost ratio for 

each of the scenarios is evaluated as shown in Equation 17.   

 

  -   (17) 

 

Table 20: Monetary Summary of Marginal Costs and Benefits Associated with Each 

Scenario 

Description 

Scenario 

LFG 

LNG 

LFG  

CNG 

LFG  

Pipeline 

LFG  

Electricity 

Closed 

Flare 

Nothing 

Benefits 

Diesel or 

natural gas 

savings 

71,091,615 71,091,615 16,895,962    

Electricity 

conversion 

   103,341,657   

Carbon 

credits 

7,484,850 7,484,850 6,162,648 5,718,937 5,191,264  

Tax subsidy 

earnings 
13,671,464 13,671,464 3,697,147 7,730,248   

Fleet turnover 

emissions 

reduction 

1,322,203 1,322,203     

Costs 

CNG/LNG 

facility and 

operation cost 

14,000,000 14,000,000     

Fleet turnover 

cost 
2,731,754 2,366,792     

Pipeline 

natural gas 

facility and 

operation cost 

  

27,611,636 

   

Electricity 

plant and 
operation cost 

   86,626,575   

Flaring 

system and 

operation 

costs 

    6,300,000  

All values are in 2009 dollars based on the 20-year analysis period. 
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The details of the costs and benefits considered for each scenario are summarized in the 

following subsections.  

 

Scenario 1: Conversion of LFG to LNG for Use as a Transportation Fuel 

In this scenario, the costs incurred for each landfill include the cost of the Acrion system 

as shown in Table 15. In addition to this, the operational cost of the LNG facility, as well 

as the NPV of the cost of investing in new trucks (fleet turnover), is also considered. In 

terms of the benefits, these include the NPV of savings due to not purchasing diesel, 

carbon credits (assuming 95 percent efficiency), and the emissions benefits due to the use 

of LNG trucks instead of diesel.  

 

Scenario 2: Conversion of LFG to CNG for Use as a Transportation Fuel 

The costs incurred with this scenario are equal to scenario 1 except for the cost of the 

refuse trucks.  The CNG refuse trucks were slightly cheaper than the LNG trucks. 

 

Scenario 3: Conversion of LFG to Pipeline-Grade Natural Gas  

The costs for this scenario include the facility and operational costs as listed in Table 16. 

The benefits considered include the NPV of earnings from the natural gas sales and 

carbon credits, assuming 95 percent conversion efficiency.  

 

 Scenario 4: Conversion of LFG to Electricity  

The costs for this scenario include the electricity plant cost and operational costs (as 

shown in Table 17). The benefits considered for this scenario include the NPV of benefits 

from the sale of electricity and carbon credits.  Efficiency losses in electricity lines are 

known to exist and were assumed to be 7.2 percent from a report by the U.S. Climate 

Change Technology Program (U.S. CCTP 2003); therefore, 7.2 percent of the electricity 

produced was assumed to be lost, which caused that percentage of earnings from carbon 

credits and electricity to be reduced. 
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Scenario 5: Flaring of Capped Landfill 

The costs of this scenario include the costs of installing and operating the flaring system 

(shown in Table 18).  The only benefit for this scenario comes from the NPV of carbon 

credit earnings, for which 95 percent efficiency is assumed.  

 

Scenario 6: Do Nothing 

The costs associated with the do-nothing scenario assume that the landfill must be capped 

due to EPA regulations once it has reached the end of its design life or its maximum 

capacity.  In the do-nothing scenario the landfill capping costs, fleet turnover costs for 

diesel vehicles that would have been purchased and operational and maintenance costs 

that will be incurred throughout the 20-year lifetime of the project analysis are included.  

A cost of $150,000 per year was assumed to be the operation and maintenance cost.   The 

total cost of the do-nothing scenario amounts to $94 million.  These are real costs and 

benefits but are included in all scenarios.  Therefore the marginal costs and benefits of all 

scenarios are relative to this, which is why the do-nothing scenario has no benefit-cost 

ratio. 
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CHAPTER V 

RESULTS 

 

This chapter details the results of the benefits and costs analyses, providing additional 

information on the outputs that were created. 

 

 

Using the methodology in the analysis section, all of the benefits and costs were 

accumulated for each scenario (see Table 7).  The results can be calculated quickly using 

the feasibility tool included with this thesis.  The tool is a Microsoft Excel
®

 spreadsheet 

that enables the user to input all of the discussed values needed for LFGTE analysis and 

create an output with relative ease (see Appendix B).  The output will provide the user 

with the return on investment as well as a benefit-cost ratio according to the various input 

values placed into the tool. 

 

For the Clint landfill, the tool was used to create the output shown in Table 21.  The 

analysis shows that LNG to CNG is the best option with a 5.63 benefit-cost ratio.  The 

worst option appears to be selling the landfill gas as pipeline-grade natural gas with a 

benefit-cost ratio of just less than 1.0 (0.97).  The initial hypothesis stated that conversion 

of LFG to CNG/LNG has been found to be more economically viable than other LFGTE 

projects, and in this case study, that hypothesis has been confirmed.  This option provides 

promising results when compared to the other available options.   

 

Landfill capping requires enormous capital upon closure of the landfill.  As stated in 

Table 21, the landfill capping costs for this landfill are assumed to be $77 million, 

operation and maintenance $3 million, and the purchase of refuse trucks over the 20-year 

lifetime $14 million. The costs associated with each of the options shown assume that 

they are marginal costs.  The landfill must be capped no matter what happens once the 

landfill reaches the end of its design life or reaches full capacity.  For this reason, the do-

nothing scenario was assumed to equal the cost of capping the landfill, operation and 

maintenance, and fleet turnover (for 20 years) ($94 million).  If owners/operators have 

the available capital, they should carefully consider LFGTE projects, specifically LFG to 
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natural gas for use in refuse trucks.  The emissions benefits of each truck over the course 

of the truck’s lifetime provide a minimal financial return and will lose money over the 

course of their lifetime, but the fuel savings from using natural gas at roughly $3 to $5 

per mcf will offset diesel prices.  With 1 mcf producing over 7 gallon equivalents of 

diesel based on Btu, each gallon of fuel of natural gas roughly costs $0.40 to $0.70 per 

gallon.  This is a $2 savings for each gallon of fuel that is used.  These trucks use roughly 

100 gallons of diesel per day.  With $200 per day being saved, these trucks could pay for 

themselves depending on how many and how quickly the CNG trucks are phased into the 

fleet.  Apart from landfill gas collection, this method should be investigated by all 

municipal solid waste management departments.  When used in conjunction with solid 

waste collection and disposal at landfills, methane collection for use as a transportation 

fuel appears to create an environmentally, financially, and economically sound 

investment.   

 

Landfill-gas-to-electricity conversion is the option most commonly read about in 

newspaper and journal articles, yet in this analysis it appears to yield a 1.35 benefit-cost 

ratio.  This shows that conversion of LFG to electricity is still a viable option for those 

that are using it, but for a landfill the size of the Clint landfill (approximately 280 acres); 

projects that incorporate savings from using refuse trucks with natural gas from landfills 

provide the greatest financial return. 

 

Flaring of landfill gas is typically used as a mitigation strategy to destroy harmful 

pollutants such as PM, HC, NOx, and SOx, which are much more harmful that CO2 or 

CH4 and are therefore regulated by the U.S. EPA.  Flaring is also the cheapest method of 

the scenarios examined.  The main issue with flaring is that although it is conducted at 

various landfills, the gas is being flared only because there is no other use for it.  With the 

CO2 WASH
TM

 process, the methane that would also be destroyed during this flaring can 

be used for positive purposes such as its conversion to a transportation fuel.  The CO2 

WASH
TM

 process fills the gap in landfill-gas-to-energy projects. It provides a scrubbing 

system to rid pollutants from landfill gas and provides a useful end product in clean, dry 

natural gas. 
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Table 21: Results from Feasibility Tool for All Six Scenarios 

 

Scenarios Cost** 
Diesel/Natural 

Gas/Electricity 

Carbon 

Credit 
Tax Credits Net 

B/C 

Ratio 

1 LFG to LNG refuse trucks $16,731,754 $71,091,615 $7,387,626 $13,671,464 $75,418,952 5.508 

2 LFG to CNG refuse trucks $16,366,792 $71,091,615 $7,387,626 $13,671,464 $75,783,914 5.630 

3 LFG to pipeline-grade natural gas $27,611,636 $16,895,962 $6,162,648 $3,697,147 $(855,879) 0.969 

4 LFG to electricity $86,626,575 $103,341,657 $5,718,937 $7,730,248 $30,164,267 1.348 

5 Cap landfill & flare $4,300,000 - $5,191,264 - $891,264 1.207 

6 Do nothing* $94,050,646 - - - $(94,050,646) N/A* 

 

*Do-nothing scenario is baseline for all scenarios; benefits = 0, costs = landfill capping cost + operation and maintenance (over 
20 years) 

 
**All costs are marginal costs above the do-nothing scenario 
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CHAPTER VI 

CONCLUSIONS 

  

The goal of this research was to create a methodology that landfill owners/operators could follow 

to examine the feasibility of various landfill-gas-to-energy projects.  This research created a 

useful feasibility tool in the form of a Microsoft Excel
® 

spreadsheet that computes all of the 

equations in this thesis using the explained methodology.  Users need to input only the values 

that are indicated by yellow cells.  Cells indicated in pink provide average values to use if input 

values are unknown.  All results are computed in the spreadsheet in a results section that looks 

similar to Table 21. 

 

The methodology created is the most important achievement of this thesis.  It combines 

emissions values from refuse trucks and landfill gas modeling equations created by the EPA with 

monetary values that are pivotal to decision makers who are looking to make informed decisions 

based on fiscal values in combination with environmentally conscious ideology.  If LFGTE 

projects can be proven to be economically viable, more of them will be placed into service, 

which benefits the environment, society, and the operating company or municipality.  Without 

providing evidence of their economic benefit,  the stereotypes that are labeled with most 

alternative-energy projects that they are expensive and do not provide any true benefits will be 

placed with these scenarios as well.  Providing evidence in the form of facts and economics, as 

this thesis does, can not only further the science but the implementation of LFGTE projects 

across the nation and across Texas.   

 

It should be noted that the conclusions are based on numerous assumptions.  Those assumptions 

are as follows: 

 Cap and trade legislation will be passed in Congress: Once laws, rules, and regulations 

are put into place to assess the emissions from various companies, a finite number of 

carbon credits will be purchased and sold on numerous commodity trading platforms 

based on economic supply and demand principles.   

 U.S. EPA LFG modeling equations accurately represent LFG generation volumes: This 

thesis assumes that the 1997 U.S. EPA equations, still used in practice, continue to 
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accurately represent the quantity of landfill gas that can be created at a landfill.  Since 

very little research is available on landfill gas estimation rates over time (modern-day 

landfills have only existed a short period of time, approximately 30 years), it is difficult 

to accurately predict LFG generation rates.   

 Tax benefits that are currently indefinite will remain indefinite: As of October 2009, 

there have been two major economic stimulus bills that have been signed into law.  

Within each of them lie numerous tax credits and benefits that are also associated within 

this thesis.  This thesis makes the assumption that the tax credits that are in effect 

indefinitely will remain that way, while the benefits that are definite will terminate on 

their set dates.   

 

Both LFG-to-LNG and LFG-to-CNG conversions are extremely feasible options, with benefit-

cost ratios over 5.5 each.  LFG-to-LNG conversion provided a 5.51 B/C ratio, while LFG-to-

CNG conversion provided a 5.63 B/C ratio.  In comparison to the other options that were 

presented, converting LFG to natural gas (LNG or CNG) for use as a transportation fuel proves 

to yield the highest economic returns.  The two most common forms of LFGTE projects, LFG to 

electricity and LFG to flaring, yielded modest 1.35 and 1.21 B/C ratios, respectively.  The only 

scenario in which costs exceeded benefits was the conversion of LFG to pipeline-grade natural 

gas, which provided a B/C ratio of 0.97.   

 

The Texas State Energy Conservation Office testing conducted in San Antonio, Texas, provided 

extremely promising results.  Very few studies have shown the emissions difference between 

natural gas vehicles and diesel or gasoline vehicles.  This research may be the first to test these 

vehicles using real-world data.  The data included in this thesis are only preliminary data, but 

when the final SECO/TTI report is published, researchers at the Texas Transportation Institute 

say the reduction in emissions for NOx could be as much as 95 percent.  The ability to reduce 

NOx from heavy-duty diesel vehicles (HDDVs) by using compressed natural gas could mark an 

important turning point in how municipalities operate their vehicles in order to meet air quality 

regulations. 
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This research has created a platform from which to study in greater detail the economics of 

various LFGTE projects.  This thesis is merely a pre-feasibility study to assess the various 

LFGTE options that are available to a landfill owner/operator.  Future research will be able to 

build upon this research by expanding upon the existing feasibility tool and methodology.  In 

time more knowledge and research will be gathered on landfills in order to have a more accurate 

landfill gas generation rate.  More landfills are implementing LFGTE projects, and future 

researchers will be able to assess the pros and cons associated with each of the options that have 

been implemented.  Transportation-related emissions (via refuse trucks) will also change over 

time as the technology becomes more refined with more municipalities and landfill owners using 

compressed or liquefied natural gas over their fossil-fuel counterparts.  The carbon credit market 

will have evolved based on legislation passed around the world or nationally, which will also 

influence the results of this thesis.  International researchers have the ability to modify this thesis 

for use in their country where carbon credit trading may already be in place, such as in European 

countries or India.  Numerous options are available for advancing the science in this field, yet 

this thesis is the first to lay the groundwork for combining the benefits and costs associated with 

various landfill-gas-to-energy projects. 
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APPENDIX A 

CO2 WASH
TM

 PROCESS DETAILS 

 

The CO2 wash process developed by Acrion Technologies is used to clean landfill gas of its 

contaminants to produce clean methane as well as food-grade CO2. The wash process has been 

used with success to produce clean gas that can be used for various purposes. Further details 

about this process are available at http://www.acrion.com/ . The schematic diagram below shows 

the CO2 wash process. 

 

 

Source: http://www.acrion.cobm/ 

  

http://www.acrion.com/
http://www.acrion.cobm/
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APPENDIX B 

LANDFILL-GAS-TO-ENERGY FEASIBILITY CALCULATOR 

 

Included with this thesis is the landfill-gas-to-energy feasibility calculator that has produced the 

results found within this thesis based on the methodology presented.  The user may follow the 

methodology section of this thesis to input the selected values needed to produce a feasibility 

summary.   

 

The cells colored yellow are cells that need to have information input into them.  These values 

are based on the specific attributes of the landfill being evaluated.  Values in the pink-colored 

cells are suggested default values that can be used if no input value is available.  Green cells are 

summary cells that provide a sum of the various values being viewed (i.e., total emissions 

reduced, NPV of each option, etc.).  The summary of all results is also colored green.  This 

summary provides the overall costs and benefits of each option as well as the overall benefit-cost 

ratio.   

 

The additional tabs that are placed in this spreadsheet provide some values that are referenced in 

the main spreadsheet, including the emissions savings from using CNG/LNG refuse trucks 

versus diesel refuse trucks. 

 

(See Microsoft Excel
®

 spreadsheet.) 
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APPENDIX C 

CALCULATION OF SPREADSHEET 

 

The inputs that were placed into the calculator are shown below for reference.  They can also be 

found in the methodology section of this thesis. 

 

Lo  100 m
3
/Mg Methane generation potential 

k 0.02 year
-1

 Methane generation rate 

constant 

t Time in years  

mo Average waste acceptance rate 

per year 

Mg/year 

mo 265604.0132 Mg/year 

i.e., 6,905,704.342 Mg/(2009-

1983) 

Found by WIP/life of landfill 

(i.e., WIP/(closing date-

opening date) 

Landfill opening date 1983  

Landfill closing date 2009  

Methane content 50% Assumed value by consensus 

Landfill size 113.3118 Ha 280 acres * 0.404685 Ha/acre 

1 CER $3.87/metric tonne $3.51/U.S. ton * (2204.6226 

(pounds/metric ton)/2000 

(pounds/U.S. ton)) 

1 kWh $0.10 Assumed value 

1 mcf of natural gas $4.57 *See thesis for explanation 

1 gallon of diesel $2.60 *See thesis for explanation 

Recoverable LFG 75% *See thesis for explanation 

(U.S. EPA value) 
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The total recoverable LFG must first be evaluated; the evaluation used the equations stated in 

this thesis, which are provided by the U.S. EPA landfill gas generation models.  The results of 

those equations are outlined below. 
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Landfill Age           

(t) 
Year 

Landfill Gas 

Generated Post-

closure               

(m
3
/Year) 

m
3
/Minute 

m
3
 Recoverable 

LFG/Minute 

m
3
 Recoverable 

LFG/Year 

Total 

Reduction in 

Emitting 

Tonnes after 

Recovery     

LFG/Year 

CO2 

Equivalent 

(Tonnes) 

Time since 

Closure 

Date 
        

0 26 2009 21,539,393.94 40.98 30.74 16,154,545.46 19,829.70 125,803.52 

1 27 2010 21,112,885.37 40.17 30.13 15,834,664.02 19,437.05 123,312.45 

2 28 2011 20,694,822.23 39.37 29.53 15,521,116.67 19,052.17 120,870.70 

3 29 2012 20,285,037.29 38.59 28.95 15,213,777.97 18,674.91 118,477.30 

4 30 2013 19,883,366.64 37.83 28.37 14,912,524.98 18,305.12 116,131.29 

5 31 2014 19,489,649.60 37.08 27.81 14,617,237.20 17,942.66 113,831.73 

6 32 2015 19,103,728.68 36.35 27.26 14,327,796.51 17,587.37 111,577.72 

7 33 2016 18,725,449.51 35.63 26.72 14,044,087.13 17,239.12 109,368.33 

8 34 2017 18,354,660.77 34.92 26.19 13,765,995.57 16,897.76 107,202.69 

9 35 2018 17,991,214.13 34.23 25.67 13,493,410.60 16,563.16 105,079.94 

10 36 2019 17,634,964.22 33.55 25.16 13,226,223.17 16,235.19 102,999.21 

11 37 2020 17,285,768.54 32.89 24.67 12,964,326.40 15,913.71 100,959.69 

12 38 2021 16,943,487.39 32.24 24.18 12,707,615.54 15,598.60 98,960.56 

13 39 2022 16,607,983.86 31.60 23.70 12,455,987.89 15,289.73 97,001.01 

14 40 2023 16,279,123.74 30.97 23.23 12,209,342.81 14,986.97 95,080.26 

15 41 2024 15,956,775.49 30.36 22.77 11,967,581.62 14,690.21 93,197.54 

16 42 2025 15,640,810.17 29.76 22.32 11,730,607.63 14,399.32 91,352.11 

17 43 2026 15,331,101.38 29.17 21.88 11,498,326.03 14,114.20 89,543.21 

18 44 2027 15,027,525.23 28.59 21.44 11,270,643.92 13,834.72 87,770.14 

19 45 2028 14,729,960.29 28.03 21.02 11,047,470.22 13,560.77 86,032.17 

20 46 2029 14,438,287.54 27.47 20.60 10,828,715.65 13,292.25 84,328.62 

  
SUM 373,055,996.00 709.77 

 
279,791,997.00 343,445 2,178,880 
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Scenario 1: LFG  LNG 

This scenario required calculating the cost of purchasing new refuse trucks and phasing 

them in over time.  It was assumed that five trucks would be purchased each year at a 

cost of $147,824/truck
1
.  Operational costs were assumed to be $20,000 per year, which 

was added into the cost of the vehicles, therefore providing the $839,120 value shown.  

The cost of the trucks is assumed to increase at the inflation value used throughout this 

thesis (3.05 percent), which is why the NPV of the vehicles never changes. The cost of 

the diesel trucks was included within this analysis to show the difference in replacement 

costs, which is more than an additional $2.7 million dollars over 20 years (assuming five 

vehicles are purchased per year).  The emissions reduced follow the formulas seen in the 

benefits section of the methodology.  Any minor differences in the output versus the 

results in the benefits sections are because of rounding.   

  

                                                   
1
 City of Dallas, Texas. <www.ci.dallas.tx.us/cso/caps/A17a.pdf> (April 5, 2009). 
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LNG Trucks 

Cost of New 

Trucks 
NPV 

Cost of 

Diesel 

Trucks 

NPV 
Emissions 

Reduced 
NPV 

      $839,120 $839,120 $702,532 $702,532 2,182 $8,443 

$864,713 $839,120 $723,960 $702,532 4,363 $16,387 

$891,087 $839,120 $746,040 $702,532 6,545 $23,853 

$918,265 $839,120 $768,795 $702,532 8,727 $30,862 

$946,272 $839,120 $792,243 $702,532 10,909 $37,436 

$975,133 $839,120 $816,406 $702,532 13,090 $43,594 

$1,004,875 $839,120 $841,307 $702,532 15,272 $49,354 

$1,035,524 $839,120 $866,966 $702,532 17,454 $54,735 

$1,067,107 $839,120 $893,409 $702,532 19,636 $59,755 

$1,099,654 $839,120 $920,658 $702,532 21,817 $64,429 

$1,133,193 $839,120 $948,738 $702,532 23,999 $68,774 

$1,167,756 $839,120 $977,674 $702,532 26,181 $72,806 

$1,203,372 $839,120 $1,007,493 $702,532 28,363 $76,539 

$1,240,075 $839,120 $1,038,222 $702,532 30,544 $79,987 

$1,277,897 $839,120 $1,069,888 $702,532 32,726 $83,163 

$1,316,873 $839,120 $1,102,519 $702,532 34,908 $86,082 

$1,357,038 $839,120 $1,136,146 $702,532 37,089 $88,755 

$1,398,428 $839,120 $1,170,799 $702,532 39,271 $91,195 

$1,441,080 $839,120 $1,206,508 $702,532 41,453 $93,412 

$1,485,033 $839,120 $1,243,307 $702,532 43,635 $95,418 

$1,530,326 $839,120 $1,281,227 $702,532 45,816 $97,224 

$22,662,496 $16,782,400 $18,973,610 $14,050,646 458,164 $1,224,979 

  

Difference -$2,731,754 

  

      

  

Reduction (Mg of CO2 Equiv.) 503,981 
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Scenario 2: LFG  CNG 

This scenario also required calculating the cost of purchasing new refuse trucks and 

phasing them in over time.  It was assumed that five trucks would be purchased each year 

at a cost of $144,174/truck
2
.  Operational costs were assumed to be $20,000 per year, 

which was added into the cost of the vehicles, therefore providing the $820,872 value 

shown.  The cost of the trucks is assumed to increase at the inflation value used 

throughout this thesis (3.05 percent), which is why the NPV of the vehicles never 

changes.  The cost of the diesel trucks was included within this analysis to show the 

difference in replacement costs, which is nearly an additional $2.4 million dollars over 

20 years (assuming five vehicles are purchased per year).  The emissions reduced follow 

the formulas seen in the benefits section of the methodology.  Any minor differences in 

the output versus the results in the benefits sections are because of rounding.   

 

  

                                                   
2
 City of Dallas, Texas. 

<www.dallascityhall.com/committee_briefings/briefings0309/TEC_upcoming_agenda_032309.pdf> (April 

5, 2009). 
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CNG Trucks 

Cost of New 

Trucks 
NPV 

Cost of Old 

Trucks 
NPV 

Emissions 

Reduced 
NPV 

      $820,872 $820,872 $702,532 $702,532 2,182 $8,443 

$845,908 $820,872 $723,960 $702,532 4,363 $16,387 

$871,709 $820,872 $746,040 $702,532 6,545 $23,853 

$898,296 $820,872 $768,795 $702,532 8,727 $30,862 

$925,694 $820,872 $792,243 $702,532 10,909 $37,436 

$953,928 $820,872 $816,406 $702,532 13,090 $43,594 

$983,022 $820,872 $841,307 $702,532 15,272 $49,354 

$1,013,004 $820,872 $866,966 $702,532 17,454 $54,735 

$1,043,901 $820,872 $893,409 $702,532 19,636 $59,755 

$1,075,740 $820,872 $920,658 $702,532 21,817 $64,429 

$1,108,550 $820,872 $948,738 $702,532 23,999 $68,774 

$1,142,361 $820,872 $977,674 $702,532 26,181 $72,806 

$1,177,203 $820,872 $1,007,493 $702,532 28,363 $76,539 

$1,213,108 $820,872 $1,038,222 $702,532 30,544 $79,987 

$1,250,107 $820,872 $1,069,888 $702,532 32,726 $83,163 

$1,288,236 $820,872 $1,102,519 $702,532 34,908 $86,082 

$1,327,527 $820,872 $1,136,146 $702,532 37,089 $88,755 

$1,368,016 $820,872 $1,170,799 $702,532 39,271 $91,195 

$1,409,741 $820,872 $1,206,508 $702,532 41,453 $93,412 

$1,452,738 $820,872 $1,243,307 $702,532 43,635 $95,418 

$1,497,047 $820,872 $1,281,227 $702,532 45,816 $97,224 

$22,169,661 $16,417,438 $18,973,610 $14,050,646 458,164 $1,224,979 

  

Difference -$2,366,792 

  

      

  

Reduction (Mg of CO2 Equiv.) 503,981 
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Scenario 3: LFG  Pipeline-Grade CNG 

This scenario is unique in that it requires all of the same refining processes as LFG-to-

CNG conversion as a transportation fuel, yet is only sold back to a utility provider.  The 

reason it is unique is that major fuel savings can be received from natural gas (1 mcf ~ 

7.4 gallons of diesel).  The mcf of methane that can be obtained and its value are all 

explained in the methodology section of this thesis.  A summary derived from the input 

values discussed above is listed below.  Any minor differences in the output versus the 

results in the benefits sections are because of rounding.  

  

Earnings from LFG If Upgraded to Pipeline-Grade NG  

Mcf of 
Methane/Year 

Earned/Year Tax Credit NPV of Tax Credit *NPV (2009) 

     277,476.85 1,268,069.20 $277,477 $277,477 1,268,069.20 

271,982.44 1,242,959.75 $271,982 $263,932 1,206,171.51 

266,596.83 1,218,347.49 $266,597 $251,049 1,147,295.21 

261,317.85 1,194,222.60 $261,318 $238,795 1,091,292.82 

256,143.41 1,170,575.41 $256,143 $227,139 1,038,024.04 

251,071.44 1,147,396.46 $251,071 $216,052 987,355.44 

246,099.89 1,124,676.49 $246,100 $205,505 939,160.11 

241,226.78 1,102,406.40 $241,227 $195,474 893,317.32 

236,450.17 1,080,577.29 $236,450 $185,933 849,712.23 

231,768.15 1,059,180.43 $231,768 $176,857 808,235.61 

227,178.83 1,038,207.25 $227,179 $168,224 768,783.57 

222,680.39 1,017,649.37 $222,680 $160,013 731,257.29 

218,271.02 997,498.56 $218,271 $152,202 695,562.76 

213,948.96 977,746.77 $213,949 $144,773 661,610.58 

209,712.49 958,386.08 $209,712 $137,706 629,315.68 

205,559.91 939,408.77 $205,560 $130,984 598,597.18 

201,489.55 920,807.23 $201,490 $124,590 569,378.13 

197,499.79 902,574.02 $197,500 $118,509 541,585.33 

193,589.03 884,701.86 $193,589 $112,724 515,149.18 

189,755.71 867,183.59 $189,756 $107,222 490,003.43 

185,998.29 850,012.20 $185,998 $101,988 466,085.12 

4,805,818 $21,962,587 $4,805,818 $3,697,147 $16,895,962 
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Scenario 4: LFG  Electricity 

The LFG-to-electricity option uses the methodology discussed in the thesis to formulate 

the results listed below.  Any minor differences in the output versus the results in the 

benefits sections are because of rounding.   

 

Electricity 

Btu 

Present 

kWh 

Equivalent 
Tax Credits 

NPV of Tax 

Credits 
NPV 

     2.85E+11 83,577,135 $835,771 $835,771 $8,357,713.49  

2.80E+11 81,922,197 $819,222 $794,975 $7,949,752.23  

2.74E+11 80,300,029 $803,000 $756,170 $7,561,704.60  

2.69E+11 78,709,981 $787,100 $719,260 $7,192,598.56  

2.63E+11 77,151,419 $771,514 $684,151 $6,841,509.53  

2.58E+11 75,623,719 $756,237 $650,756 $6,507,558.04  

2.53E+11 74,126,269 $741,263 $618,991 $6,189,907.58  

2.48E+11 72,658,471 $726,585 $588,776 $5,887,762.44  

2.43E+11 71,219,736 $712,197 $560,037 $5,600,365.78  

2.38E+11 69,809,491 $698,095 $532,700 $5,326,997.68  

2.34E+11 68,427,171 $684,272 $506,697 $5,066,973.37  

2.29E+11 67,072,222 $670,722 $481,964 $4,819,641.51  

2.24E+11 65,744,103 $657,441   $4,584,382.54  

2.20E+11 64,442,282 $644,423   $4,360,607.17  

2.16E+11 63,166,240 $631,662   $4,147,754.84  

2.11E+11 61,915,464 $619,155   $3,945,292.37  

2.07E+11 60,689,456 $606,895   $3,752,712.61  

2.03E+11 59,487,724 $594,877   $3,569,533.16  

1.99E+11 58,309,788 $583,098   $3,395,295.17  

1.95E+11 57,155,177 $571,552   $3,229,562.17  

1.91E+11 56,023,429 $560,234   $3,071,919.03  

4.94E+12 1,447,531,504 $14,475,315 $7,730,248 $111,359,544 
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Scenario 5: LFG  Flare Closed Landfill 

Flaring of LFG for a closed landfill assumes that 50 percent of the LFG is methane and 

the remaining emissions are all CO2 (unless input otherwise by the user).  The carbon 

credit earnings are earned based on the recoverable landfill gas generation.  These 

calculations assume that the flaring of 1 metric ton of CO2 produces 1 metric ton of CO2.  

One metric ton of CH4 that is flared will produce 1 metric ton of CO2 as opposed to the 

21 metric tons of CO2 equivalent that methane would produce by being emitted into the 

atmosphere.  Therefore, flaring enables CO2 to still be emitted into the atmosphere, but to 

a lesser degree since it is burning off CH4.  Twenty carbon credits can be earned for every 

ton of CH4 that is disposed of.  Any minor differences in the output versus the results in 

the benefits sections are because of rounding.   

 

 NPV 

Carbon Credit Earnings   

(Flaring + Capped Landfill) 

$410,118.68 $410,118.68 

$401,997.78 $390,099.74 

$394,037.69 $371,057.98 

$386,235.22 $386,235.22 

$378,587.25 $345,956.90 

$371,090.72 $329,069.87 

$363,742.64 $313,007.13 

$356,540.05 $297,728.45 

$349,480.08 $283,195.57 

$342,559.91 $269,372.07 

$335,776.77 $256,223.34 

$329,127.95 $243,716.43 

$322,610.78 $231,820.01 

$316,222.66 $220,504.28 

$309,961.03 $209,740.91 

$303,823.39 $199,502.92 

$297,807.28 $189,764.68 

$291,910.30 $180,501.78 

$286,130.09 $171,691.03 

$280,464.34 $163,310.35 

$274,910.77 $155,338.76 

$7,103,135 $5,617,956 
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Scenario 6: Do Nothing 

The U.S. EPA model for active landfills was used to estimate the emissions for the open 

or active landfill.  The do-nothing scenario is assumed to cost $80 million based on 

capping costs and operational and maintenance costs over the 20-year period, but there 

are still societal costs from doing nothing in the form of emissions.  The value of those 

emissions is listed below. 

 

Do-Nothing Scenario: Societal Cost of Emissions 

Year 

Landfill Gas 

Generated without 

Closure             

(m
3
/Year) 

m
3
/Minute 

Total Potential 

Emitting 

Tonnes 

LFG/Year 

CO2 Equivalent NPV of Emissions 

2009 21,539,393.94 40.98 26,439.61 167,738.03  $           649,146  

2010 22,164,747.73 42.17 27,207.23 172,607.97  $           648,222  

2011 22,777,718.69 43.34 27,959.65 177,381.48  $           646,433  

2012 23,378,552.01 44.48 28,697.17 182,060.47  $           704,574  

2013 23,967,488.03 45.60 29,420.09 186,646.81  $           660,066  

2014 24,544,762.33 46.70 30,128.70 191,142.34  $           655,958  

2015 25,110,605.84 47.78 30,823.27 195,548.84  $           651,218  

2016 25,665,244.90 48.83 31,504.09 199,868.09  $           645,902  

2017 26,208,901.37 49.86 32,171.43 204,101.82  $           640,062  

2018 26,741,792.72 50.88 32,825.55 208,251.71  $           633,747  

2019 27,264,132.11 51.87 33,466.72 212,319.43  $           627,002  

2020 27,776,128.49 52.85 34,095.20 216,306.60  $           619,870  

2021 28,277,986.66 53.80 34,711.23 220,214.82  $           612,392  

2022 28,769,907.38 54.74 35,315.06 224,045.65  $           604,605  

2023 29,252,087.41 55.65 35,906.94 227,800.63  $           596,543  

2024 29,724,719.64 56.55 36,487.09 231,481.25  $           588,240  

2025 30,187,993.12 57.44 37,055.76 235,089.00  $           579,727  

2026 30,642,093.18 58.30 37,613.17 238,625.30  $           571,031  

2027 31,087,201.44 59.15 38,159.54 242,091.58  $           562,179  

2028 31,523,495.98 59.98 38,695.09 245,489.22  $           553,197  

2029 31,951,151.30 60.79 39,220.04 248,819.59  $           544,106  

  568,556,104.30 

 
SUM 4,427,631  $       12,994,218  
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