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ABSTRACT 

 

Kinematic and Mechanical Reconstruction of Walker Ridge Structures, 

        Deepwater Gulf of Mexico. (December 2009)        

Oluwatosin Eniola Majekodunmi, B.S., Florida International University                         

Chair of Advisory Committee: Dr. David V. Wiltschko 

Recent high-resolution seismic imaging has allowed detailed reconstruction of 

the relationship between fold development and crestal faulting of the Chinook and 

Cascade folds in the deepwater Gulf of Mexico. Using 3-D seismic and biostratigraphic 

data, we have found that (1) short wavelength (~2300m), small amplitude folds (~540m) 

within the upper Cretaceous and upper Jurassic stratigraphic sequences took place no 

later than the late Jurassic, (2) large wavelength and amplitude fold growth, starting in 

the early Cretaceous, was produced by salt withdrawal, and (3) periods of increased 

sedimentation, fold growth, and fault slip occurred during the middle Miocene and late 

Miocene. Although the dominant stage of long wavelength, large amplitude fold growth 

started around early Cretaceous, the development of the Cascade and Chinook structures 

was continuous, punctuated by episodes of accelerated growth during the middle 

Miocene at rates of 337 and 235 m/Ma in the Cascade and 203 and 230 m/Ma in the 

Chinook. A later event of accelerated growth occurred during the late Miocene at rates 

of 1038 m/Ma in the Cascade and 1189 m/Ma in the Chinook. Accompanying fold 

growth was sedimentation, which was highest at 1949 m/Ma in the Cascade and 2585 

m/Ma in the Chinook.  Although limb tilt rates varied through fold growth, the highest 
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rates also occurred during the middle Miocene at 0.330 and 0.196 º/Ma for the Cascade 

and Chinook, respectively with the development of crestal faults at maximum slip rates 

of 88 and 90 m/Ma. 
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INTRODUCTION 

Folding theory has been successful in predicting the fold wavelength, shape and 

evolution of layered sequences (e.g., Biot, 1961, 1965; Johnson and Fletcher, 1994). For 

instance, it is well known that folding is a wavelength selective process in that some 

wavelengths are amplified faster than others. For the simple case of a single viscous 

layer embedded in an infinite less viscous medium, there is a dominant wavelength that 

grows faster than all others. The value of this wavelength depends primarily on the 

competent layer thickness and to a lesser extent on the viscosity contrast between the 

competent layer and its surrounding medium. However, the rate at which the fold grows 

depends more directly on the viscosity contrast. The shape of the resulting fold deviates 

from a simple sine function if the media or layer are non-linear (e.g., power law viscous 

or plastic).  

Most direct tests of folding theory have matched model results to wavelength 

spectra (e.g., Sherwin and Chapple, 1968), strain distributions (e.g., Groshong, 1972; 

Chapple and Spang, 1974) or fold shape. Timing of fold growth is rarely known, and 

therefore, it is not possible to discriminate among time-dependent rheologies. If timing 

information were available, it would be possible to use either fold amplification rate or 

fold shape change, or both, to estimate rheology. My purpose is to develop such a data 

set. Modelling these data to extract rheology I reserve for the next study.  

 
_____________ 
This thesis follows the style of the American Association of Petroleum Geologists 
Bulletin. 
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Past attempts in estimating rates of fold growth have indicated that fold growth is not 

steady. Rowan (1997) found that thrust faulting corresponded with rapid shortening that 

occurred at an estimated rate of 80m/Ma in the Mississippi Fan foldbelt. Detachment 

folds first grew slowly followed by folding and thrusting as a result of increased rate of 

regional shortening. A later stage of slow shortening occurred and was marked by fold 

growth with little or no faulting.  

Holl and Anastasio (1993) determined the Eocene growth, sedimentation and 

limb tilt rates of a fold in the southern Pyrenees using polarity reversal stratigraphy, 

(Figures 1 and 2). Angular and progressive unconformities on fold limbs within 

sediments eroded from moving thrust sheet was used to indicate rapid and slow limb tilt 

rates respectively. Fold growth was generally slow and constant with limb tilt rates of 

2.2°- 4.2°/Ma (Figure 1), attributed to sediment-load driven salt deformation. The 

interval of slow growth was punctuated by periods of rapid growth with limb tilt 

estimated at 10°- 40°/Ma (Figure 1) due to tectonic compression from the episodic, 

westward advance of the Cotiella-Montsec thrust sheet (Figure 2, site1). 

Masaferro et al. (2002) combined seismic reflection and biostratigraphic data 

from growth strata to document fold growth rates of the Santaren anticline in the 

Bahamas foreland (Figure 3). Allowing for compaction, they observed that 

sedimentation rates obtained for the anticline were not constant through time. High 

sedimentation rates occurred at 340 and 290 m/Ma during the Early Miocene and Late 

Miocene respectively. These periods of high sedimentation rate were separated by a long 

period of low sedimentation rates of 21 to 81 m/Ma. As with sedimentation rates, 
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Masaferro et al. (2002) calculated higher uplift rates of 340 and 290 m/Ma for the early 

Miocene and late Miocene. Between these periods of relatively rapid uplift, the fold 

experienced either slow or no uplift indicated by beds of constant or variable thickness 

and that thickness variation depended upon the surface topography. Masaferro et al. 

(2002) used the point of onlap/offlap to determine the degree of difference between 

sedimentation and uplift. A point of onlap/offlap closer to the anticlinal crest indicates a 

lesser difference between sedimentation and uplift. With these results, Masaferro et al, 

(2002) interpreted the Santaren anticline to be a detachment fold formed with possible 

subsidence of the adjacent synclines. Masaferro et al. (1999) propose that convergence 

of the North and South American plates during the Cenozoic led to slow fold growth of 

the Santaren anticline from the Eocene up until present day.  

Other studies have also used growth sediments to work out fold growth rates 

(Poblet and Hardy 1995, Verges et al. 1996). Poblet and Hardy (1995), estimated 

deformation rates for the Pico del Aguilla anticline, South Central Pyrenees. 

Verges et al. (1996) studied the growth of the Can Juncas fold, located in the Ebro 

foreland basin of the southern Pyrenees. The Can Juncas fold is interpreted to be a 

detachment anticline whose early fold growth occurred when sedimentation rates were 

high. Despite accelerated sedimentation, subsequent growth produced offlap in which 

uplift rates exceeded sedimentation rate. The fold is the result of south east-directed 

thrustinng in the Oliana anticline. The results of this study suggest that critical kinematic 

data necessary to model material properties at the scale of an entire fold may be 

extracted from detailed timing of structures. 
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The goal in this research is to use well-dated growth strata to produce a detailed 

kinematic history of the two folds from the Gulf of Mexico. The two structures studied 

are Cascade and Chinook folds, in the Walker Ridge protraction area of the Gulf of 

Mexico (Figure 4). The ultimate goal of the larger study is to place constraints on the 

rheology of the sediments through time. 

Background 

The evolution of the Gulf of Mexico has been differentiated into four phases by 

Salvador, (1991) which we briefly summarise here. The Early rift phase occurred from 

the Late Triassic to Middle Jurassic and was characterised by extension from the 

breakup of the supercontinent Pangaea, creating normal fault bounded grabens filled 

with non-marine sediments and volcanics. Together with continued rifting during the 

Middle Jurassic, the Gulf of Mexico region experienced crustal attenuation that yielded 

basement highs and lows and salt deposition. Gradual subsidence possibly in the later 

part of the rift phase was suggested to have occurred in order to accommodate thick salt 

deposition. In the late Jurassic, emplacement of the oceanic crust from mantle upwelling 

occurred, followed by thermal subsidence. Marine transgression occurred in the initial 

stage of cooling and subsidence of the Gulf of Mexico basin. Together with 

sedimentation induced subsidence of the oceanic crust during the Late Jurassic and Early 

Cretaceous, the Gulf of Mexico basin began to take a configuration that is synonymous 

with present day. Between the Late-Middle Jurassic to Early Cretaceous, sedimentary 

depocenters developed along the margin as a result of basinward tilting of the 

continental margin (Rowan et al, 2000).  
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The Chinook and Cascade folds are located in the Farnella Canyon area (Bryant 

et. al, 2001) in the western Mississippi Fan Fold belt. They are basinward of the frontal 

allochthonous salt of the Sigsbee escarpment in the Walker Ridge protraction area as 

defined by the Mineral Management Service (Figure 4). These folds lie about 300 km off 

the Louisiana coast of the United States and below water depths of around 2500 - 2700 

m. The Cascade fold is about 24 km north of the Chinook fold with both folds and 

associated structures covering an area of approximately 120 km². 
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METHODS 

Dataset 

The seismic dataset used for this study was acquired by WesternGeco LLP. It 

consists of 979 km² of high resolution, pre-stack depth-migrated 3D data with bin 

dimensions of 5 m and 7.5 m in the inline (NE-SW) and crossline (NW-SE) directions, 

respectively. The ages of the sediments imaged on the seismic were determined from 

fossils from wells WR 425#2 and WR 469 #1 shown in Figure 5 (see Stratigraphy, 

below). Synthetic seismograms and ties between proprietary well logs and the available 

seismic data provide additional constraints on both ages and horizon picks on the 

seismograms (Figure 1).  

Seismic Interpretation 

Interpretation of the seismic reflection dataset was performed using 

Schlumberger IESX Geoframe software®. Twelve horizons, ten of which were tied to the 

two wells and 112 large and small displacement faults were interpreted (Figure 6). Fault 

and horizon interpretations around the Cascade and Chinook structures were picked at 

every 10th and 40th inline and crossline, respectively of the seismic survey. Every 5th 

arbitrary line was interpreted in areas of stratigraphic and structural intricacy, whereas 

every 20th arbitrary line was interpreted elsewhere. The resulting depth structure maps 

for each horizon were then used to create isopachs. Isopachs between adjacent horizons 

that we term “interval isopachs” were produced by subtracting successive depth structure 

maps from each other.  
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The Cascade and Chinook folds are elliptical domes in map view (Figure 5). 

These folds trend NE-SW and contain mostly NW-SE striking conjugate normal faults. 

The fault pattern around the Chinook structure is somewhat radial. In cross section, the 

structures are open and asymmetric salt cored anticlines (Figure 7 and 8). Both anticlines 

and the intervening syncline are underlain by deformed Mid Jurassic Louann salt. The 

salt is thinner beneath the syncline relative to the anticlines. Syn-kinematic interval I 

displays small wavelength and amplitude folds. The Syn-kinematic II sequences thicken 

from the anticlinal axial surface towards the intervening syncline. Sedimentary intervals 

are displaced by normal faults around the anticlines and are thicker in the hanging wall 

relative the footwall of the fault. A few of these faults displace Post-kinematic strata.  

Stratigraphy 

Thirteen horizons were mapped on seismic and used to define twelve 

stratigraphic intervals (Figure 6). The top of a non-reflecting interval below horizon K 

was taken top of the salt. Ages of A to J (Early Eocene) were determined by Hess 

Corporation from biostratigraphic indicators in wells WR 425 #2 and WR 469 # 1. 

Because the remaining two horizons, K and Top salt, were not penetrated by these two 

wells, we have followed the regional correlations of Feng and Buffler (1991) based on 

the seismic character of extensive, continuous, high amplitude reflectors to define K and 

Top salt. Pairs of horizons define stratigraphic intervals that we have numbered from 1 

to 12, oldest to youngest (Figure 6).  
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We have defined intervals as Pre-kinematic, Syn-kinematic (both I and II, see 

Figure 6) and Post-kinematic based on the presence of growth strata (Syn-kinematic) and 

involvement in the folding (pre- or post-kinematic). Interval 1, is the interpreted pre-

kinematic interval, 2 to 12 are syn-kinematic and all units younger than 12 are largely 

post-kinematic. 

The Pre-kinematic interval is characterized by high amplitude and relatively 

parallel seismic reflectors. This interval ranges in thickness between 0.3-1.5 km. Low 

amplitude, random seismic reflectors of the deformed Middle Jurassic salt overlie the 

Pre-kinematic interval and pinches out between the Pre-kinematic and Syn-kinematic I 

intervals. The Syn- kinematic interval I is characterized by small wavelength and 

amplitude folds with dimensions of 2300 m and 540 m, respectively, with thickness 

ranging between 0.5-1 km. High amplitude seismic reflectors mark the upper boundary 

of this interval.  

The Syn-kinematic II interval accounts for most of the thickness of units making 

up the Chinook and Cascade folds. These sequences exhibit sedimentary expansion 

away from the hinge of the anticlines with thickness ranging between 3.5km at the 

anticlinal axial surface to 5km in the syncline. Middle to upper Miocene strata (intervals 

7 to 12) show significant increase in thickness to the SW and NW of the Cascade and 

Chinook, respectively (Figure 7 and 8). Intervals 3 to 6 between the lower Cretaceous 

and Oligocene appear relatively constant in thickness but still exhibit thickening on the 

western limb of Chinook. Older units within interval 3 onlap against horizon K (Insert 

Figure 7b). Additionally, interval 3 shows greater thickness on the SE limb relative to 
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the NW limb (Figure 7), opposite to the general trend of greater thickness on the NW 

limbs for all other syn-kinematic intervals. The Post-kinematic interval ranges in 

thickness between 3.2-3.5 km and displays seismic reflectors that onlap against horizon 

A. (Figure 9). 

The lithologic descriptions below are based on interpretations from well data 

from Weimer and Buffler (1992) for stratigraphic sequences in the Mississippi Fan 

foldbelt. The Challenger sequence (Figure 6) is interpreted to overlie the basement, 

containing sediments of middle Jurassic to lower Upper Cretaceous. This sequence is 

interpreted to contain salt near the base followed by shallow marine carbonates, deep 

marine carbonates and shale. Separating the Challenger and Campeche sequence is the 

Middle Cretaceous Sequence Boundary (MCSB). The Campeche sequence contains 

deposits of upper Cretaceous to lower Tertiary age with lithology interpreted to consist 

of mostly deepwater shales and chalk.  

The Lower Mexican Ridges sequence consists of deepwater shales and chalks of 

lower Tertiary to upper Oligocene whereas the middle Mexican Ridges sequence 

consists of Upper Oligocene to Middle Miocene deepwater shales and marls. Weimer 

and Buffler (1992), report that the Upper Mexican Ridges sequence is composed of 

unchannelized, coarse grained deepwater turbidites of middle to upper Miocene age. 

Lastly, the Mississippi Fan sequence is interpreted to consist of upper Miocene to 

Quaternary age channel levee deposits. 
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Reconstruction 

Decompaction 

The seismic interpretation is the starting point for reconstructing the kinematics 

of the folds. To accurately represent the fold geometry at each stage of development, the 

interval thicknesses must be returned to their values at each stage in the folds’ 

development. 

Present day porosities were measured from well log data together with formation 

tops containing depths at which the well penetrated horizons which we obtained from 

Hess Corporation. Since our well data contained bulk density curves, we assumed the 

densities for the matrix and fluid in our intervals and calculated porosities ( d) using the 

relationship below: 

 
fm

bm
d 







      (1) 

ρb: bulk density from log curve, ρf : fluid density which we assigned to be 1 gcm-3,  and 

ρm: density of matrix containing mostly shale with an assumed value at 2.68 gcm-3. 

Figure 10 shows the plot of porosity measured every 0.5 feet (0.15 metres) within 

the folded units. By averaging porosities between successive formation tops 

corresponding to our horizons, we were able to derive an average porosity for intervals 4 

to 12. Because no well data exist for intervals 2 and 3, we use formation tops to 

extrapolate their porosities from the porosity vs. depth plot for intervals 4 to 12 (Figure 
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11). Factors that may limit porosity such as mineral transformations, cementation and 

fluid expulsion (Petersen, 1991) were not considered. 

The process of decompaction was performed using the porosity and depth 

relationship based on Sclater and Christie (1980):   

  =  Oe    (2)    -cy

 where  is present day porosity at depth y (See Table 1),  O is the surface porosity 

derived from the intercept of the slope on the porosity axis which gives a value of 0.5 

and c is porosity-depth coefficient which is the slope (0.17 km-1) of the line in Figure 11. 

2D restoration 

Each interval was sequentially restored by (1) decompacting intervals and those 

below, (2) unfolding using flexural slip and (3) reversing displacements along fault 

surfaces. Interval geometries and structures were digitised from seismic sections shown 

in Figure 7 and 8 to perform a two dimensional restoration of folded structures. Twelve 

stages of restoration, each for intervals 1 to 12, were performed for the Cascade and 

Chinook folds. 

The restorations in Figure 12 and 13 show pre-existing sediments over the 

basement prior to the arrival of salt. Salt was not considered to be compactable material 

during the process of restoration and assumed to have moved into the area of section.  
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Fault slip 

We selected faults that displaced at least three horizons. The fault slip of an 

interval was assigned as the measured displacement of its lower bounding horizon along 

the plane of the fault (Figure 14). Since we are concerned with rates, all displacements 

measured were divided by the time period within an interval displaced by a fault to 

derive the slip rates within intervals.  

Rates in most faults showed higher fault slip rates for intervals 7 and 10 relative 

to other intervals. The highest rates calculated occurred within intervals 7 and 10 at 

maximum rates of 88 and 90 m/Ma, respectively.  

Fold growth 

The rate of fold growth for the Chinook and Cascade was estimated from each 

stage of the sequential restoration. The amplitude of the uppermost folded horizon at 

each level of fold growth is the vertical distance from the level of the abyssal plain 

(towards A’ and B’ in Figure 7 and 8), to the anticlinal crest. The amplitudes (A) derived 

for each interval of fold growth is then divided by the corresponding time period (t) to 

get the rates (Figure 15).  

The rates in the Cascade fold steady from intervals 1 to 6, followed by major 

increases within intervals 7 and 10 at estimated rates of 337 and 235 m/Ma respectively. 

The Chinook fold also experienced a comparatively low and steady rate from intervals 1 

to 6, followed by a similar jump in intervals 7 and 10 at rates of 203 and 230 m/Ma. The 

highest rates for both Cascade and Chinook occurred in interval 12, at rates of 1038 and 
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1189 m/Ma, respectively (Table 2). The high rates derived for interval 12 suggests there 

was considerable increase in fold amplitude within a short period of time (0.26 Ma).  

Limb tilt 

           An estimation of limb dip measurements was made by measuring the dip 

of a line joining the anticlinal and synclinal hinges. (Figure 16). While this an incorrect 

measure of  limb dip, this measured proved more convenient than estimating the location 

of the inflection point which lies near the synclinal hinge. The results are in Table 2.  

Figure 17 c shows variation in tilt rates for the Cascade and Chinook folds. Limb 

tilt rate in the Chinook is highest at ~0.33°/Ma in interval 7 while tilt rate in the Cascade 

is highest at ~0.20°/Ma in interval 10.  

Sedimentation 

Sedimentation rates were estimated to assess how sedimentation kept pace with 

fold growth. These calculations were performed on abyssal plain sediments (right ends 

of sections in Figures 7 and 8 respectively) because they are undeformed. The 

decompacted thicknesses were divided by the time represented by the interval to yield 

the sedimentation rate.  

Figure 17d shows that higher sedimentation rates correspond to accelerated 

growth of the Cascade fold. The intervals of highest sedimentation rate are 427, 256 and 

1949 m/Ma in intervals 7, 10 and 12 respectively. The peak sedimentation rates in the 

Chinook fold also occurred in intervals 7,10 and 12 (522, 419 and 2585 m/Ma, 

respectively; see Table 3).  
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Area and depth to detachment 

We applied the area-depth to detachment method by Epard and Groshong (1993) 

to section A-A’ and B-B’ to understand the depth of folding and growth kinematics of 

the Cascade and Chinook folds. The reference for the calculation was the base of salt 

observed on seismic about 11.5 km depth. For each sedimentary horizon above salt, we 

used the horizon’s abyssal plain level as its reference line (Figure 18 and 19). The depth 

to detachment for each horizon was then measured as the vertical distance between the 

base salt level and the horizon’s reference. Fold area for each horizon in the anticlines 

and synclines measured for horizons A to K were treated as positive and negative 

respectively (Tables 4 and 5). Anticlinal areas were halved to correspond with half 

synclines measured from the seismic cross sections.  

The anticlinal fold area decreases up section (Figure 20a, b). Causes for such 

trend could be related to cumulative of fold growth by limb lengthening. In figure 20a, 

the synclinal fold area appears to decrease from K to J and then increase in I before 

gradually decreasing in younger horizons up to A. The synclinal fold area increases from 

intervals K to J and gradually decreases to H indicating movement of salt volume into 

the syncline before the onset of salt withdrawal towards the anticline at the time of H 

(Figure 20b).  

Paleostructure 

 Structural maps through time were created for horizon K. The average depth of 

the abyssal plain in the structural map of horizon K, located at the south eastern edge of 

our study area was used as reference. The average depth of K was then subtracted from 
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the structural map values of each successive horizon (A-J). For example, the difference 

between the present day structural map value of horizon J and the average value of the 

abyssal plain from the structural map of horizon K would yield a palaeostructural map of 

horizon K at the time of J (49.9 Ma). The resulting paleostructure, displayed for sections 

A-A’ (Figure 21) and B-B’ (Figure 22), depicts the growth of horizon K from the time of 

horizon J during the early Eocene up to the time of horizon A (5.54 Ma) in the late 

Miocene. Although limb tilt rates varied (Figure 17c), Figures 21 and 22 show 

increasing limb dip and lengthening of horizon K through fold growth. Additionally, a 

significant increase in structural relief of the synclines takes place within both folds from 

the Eocene (horizon J) to the Oligocene (horizon I).  
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EVOLUTION 

Pregrowth and Salt Deposition (Triassic- L. Middle Jurassic) 

Following the late Triassic rifting of the Gulf of Mexico basin was the deposition 

of interval 1. This interval is characterised by continuous, roughly parallel seismic 

reflectors. Each reflector does not appear to intersect or meet adjacent reflectors. The 

bottommost reflector is assumed to overlay the basement. This event was capped by the 

deposition of salt (Figure 12(m) and 13(m)).  

Syn-Deposition/Fold Growth (Late Jurassic- Early Pliocene) 

 The syn-kinematic stage was characterized by the several phases of deposition 

and deformation within the period of intervals 2-12. Interval 2 was deposited and 

deformed into small amplitude and wavelength folds (Figure 12(l) and 13(l)), possibly a 

result of down dip contraction induced by up dip extension.  

The deposition of interval 3 was followed by fold growth that occurred from 65.5 

to 49.9 Ma (Early Cretaceous to the Late Eocene). We tied this event to the observation 

of significant thickness in interval 3 on the eastern limb relative to the western limb of 

the Chinook fold, where older units within interval 3 onlap against horizon K. We 

propose that the start of deposition of interval 2 caused deformation of salt that in turn 

yielded a structural high just NW of the abyssal plain (Figure 12(m) and 13(m)). An 

occurrence of non-deposition towards the abyssal plain is indicated by local onlap 

(Figure 7b insert). It was during this time of relative sediment starvation that faulting 

began. Accompanying the arrival of interval 4 was a decrease in the rate of fold growth 
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and faulting. As with succeeding intervals, fold growth was accomplished by salt motion 

from the synclines into the anticlines. 

The deposition of interval 5 marked increased rates of folding and faulting 

relative to the previous units (Figure 12(i) and 13(i)). While fault and fold rates 

increased through interval 6, both peaked during interval 7. The accelerated rates of fold 

growth in the Chinook and Cascade folds corresponded with an increase in the number 

of crestal faults displacing units within the interval.  

The Chinook and Cascade folds continued to develop through the Miocene with 

the deposition of intervals 8 through 12 although folding and faulting peaked again 

during the middle and late Miocene at intervals 10 and 12. Intervals of higher 

sedimentation were synchronous with accelerated folding and major faulting. Although 

fault slip and limb rotation rates slowed during interval 12, periods of accelerated fold 

growth, fault slip, limb tilt and sedimentation coincide, suggesting the deformation of the 

underlying salt played a major role. 

Post Kinematic Deposition (Early Pliocene - Present) 

Rapid sedimentation began between the late Miocene and early Pliocene with 

erosion signalling the end of the folding. As a result, units onlap above interval 12 

(Figure 9 insert), showing parallel seismic reflectors above hinges of both folds. 

Moreover, crestal faults that dominated the syn-kinematic intervals did not displace 

strata younger than the Early Pliocene. 
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DISCUSSION 

Weimer and Buffler (1992) suggest that the present limit of the Mississippi Fan 

foldbelt is located at the basinward limit of salt. In this view, shifts in sediment load 

distribution had controlled positions of depocentres and consequently the location of 

folding. Wu and Bally (1990) further suggest that shifts in the drainage systems that 

supplied sediments to the Gulf of Mexico controlled the timing of extension, salt 

deformation and down-slope contraction. Specifically, deformation of salt caused lateral 

displacement of Mesozoic-middle Miocene units toward the basinward limit of salt. The 

pre-existing salt deposition pattern therefore controlled the locations of subsequent 

folding. 

 From the analysis of growth sequences on fold limbs and sequential restoration 

of frontal folds in the Mississippi fan foldbelt, Rowan (1997) proposes the following 

growth stages: (1) An early stage of detachment folding over pre-existing salt pillows 

from the late Oligocene to early Miocene, (2) thrust faulting through fold forelimbs 

during the middle Miocene and (3) fold amplification from the late Miocene to Pliocene 

during which faults did not develop further.  

Likewise, Grando and McClay (2004) propose for the Frampton anticline in the 

Gulf of Mexico the following events: (1) Salt swells and ridges associated with basement 

rifting, (2) small wavelength salt pillows during the L. Jurassic-Cretaceous, (3) salt 

diaprism, followed by fold growth during the L. Miocene- E. Pliocene, (4) burial of the 

fold by Mississippi fan sediments between L. Pliocene-Pleistocene. 
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Vendeville and Jackson (1992) suggest that the difference between salt-cored 

anticlines and diapirs is the thickness and strength of the overburden. To prevent 

diapirism the overburden must both exceed a critical thickness and be strong enough to 

prevent salt diapir penetration. Mechanisms that reduce the strength or thickness of the 

overburden such as faulting and erosion could favour diapirism. Although the 

mechanism is not entirely clear, several studies of fold kinematics have demonstrated 

that folding is accompanied by, and perhaps caused by, increased sedimentation. 

Verges et.al (1996) demonstrated for the Can Juncas anticline of the Ebro 

foreland basin that onlap during early fold growth (36.38- 35.37 Ma) resulted from 

sedimentation rates (~80 m/Ma) exceeding uplift (~50 m/Ma). Despite accelerated 

sedimentation (160 m/Ma), offlap occurred between 35.37 and 34.96 Ma because of 

higher uplift rate (220 m/Ma) during which most of the fold height was achieved by 

forelimb rotation at the rate of 8 x10-4 °/Ma. From 34.96 to 34.67 Ma, rapid shortening 

(460 m/Ma), limb rotation increased (2 x10-3 °/Ma) and uplift of growth strata exceeding 

sedimentation occurred to produce offlap.  

Poblet and Hardy (1995) assumed fold growth model by limb rotation and 

estimated thrust displacement together with fold amplification rates to determine the 

kinematic evolution of the Pico del Aguila anticline, the South Central Pyrenees. 

Constant shortening (350 m/Ma) during growth of constant limb length folds would 

yield decreasing uplift rates, adding that beds deposited at the later stage of fold growth 

will show little thickness variations due to low uplift. With variable limb length fold 

model, estimated shortening rates decreased from a maximum of 990 m/Ma and a 
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decrease in uplift from an initial rate of about 310 m/Ma. With these trends, Poblet and 

Hardy (1995) proposed that during folding, constant limb folds accommodate shortening 

by limb rotation while variable limb length folds accommodate shortening by limb 

rotation and lengthening.  

Cartwright et al. (1998) concluded that faulting within recent Gulf of Mexico 

deposits (late Pleistocene to Holocene) are driven by sedimentary loading. Analysis of 

fault slip versus depth for the faults studied showed cycles activity which they attributed 

to cyclicity in sedimentation. However, the periodicity of some individual faults was out 

of phase with adjacent faults, suggesting local differences in sediment loading. 

The crestal normal faults that characterise the Cascade and Chinook folds may 

have developed from bed extension during salt motion into the anticlines. Although two 

periods of increased sedimentation and fault slip occurred in the middle Miocene, the 

same did not occur in the late Miocene where fault activity lessened while sedimentation 

rates were highest. From palaeostructural analysis in Figure 21 and 22, we have shown 

that the present day bed lengths are much longer than their original lengths and propose 

that faulting ceased when the salt underlying the syncline was effectively depleted. 

It is apparent that the present geometry of the Cascade and Chinook folds 

developed during periods of more rapid sedimentation. Despite variation in rates, 

sedimentation in the Cascade and Chinook exceeded fold growth rates during deposition 

with all units within the Syn-kinematic intervals exhibiting overlap across the anticlinal 

hinge. The higher rates occurred in the mid Miocene (427, 256 m/Ma in the Cascade, 

522 and 419 m/Ma in the Chinook), while rates were highest in the late Miocene (1949 
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and 2585 m/Ma) for the Cascade and Chinook folds, respectively. Previously suggested 

rates in the deepwater Gulf have varied, i.e., 50-280 m/Ma in Pleistocene sediments 

(Elston, 2005) and 160- 910 m/Ma between the Late Oligocene and Late Miocene (He 

et.al, 2006). The only exception is the onlap of older units of interval 3 against horizon K 

(Figure 7b insert). Horizon K in our data was represented as the Mid Cretaceous 

Sequence Boundary by Addy and Buffler, (1984) while Wu et al. (1990) indicated that 

the Mid Cretaceous Sequence Boundary may have represented a flooding surface in the 

deep Gulf of Mexico Basin. As a result, the observed onlap might indicate renewed 

sedimentation after flooding. 

The progressive decrease in the dip of successively younger horizons of the 

present day Cascade and Chinook folds imply continued fold growth (Figure 21 and 22). 

Two distinct episodes of accelerated limb tilt occurred during the middle Miocene with 

the highest rates at 0.20 and 0.18 °/Ma in the Cascade and 0.33 and 0.24 °/Ma in the 

Chinook before gradually decreasing towards the late Miocene (Figure 17 c). Overlap 

geometry displayed in the Syn-kinematic units (Figure 7 and 8) suggest that sediment 

thickness exceeded the existing structural high throughout fold growth, particularly in 

interval 12, regardless of limb tilt rate variations. 
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CONCLUSIONS 

 The Cascade and Chinook are NE trending asymmetric anticlines that are cored by 

Middle Jurassic Louann salt and contain normal faults within the crests. Both folds 

are separated by a syncline that is underlain by tectonically thinned salt.  

 An early phase of small wavelength and amplitude fold growth took place no later 

than the late Jurassic. At this time the sedimentary overburden over the salt was 

approximately 700 metres. 

 A later phase of increased fold growth rate occurred with the deposition of growth 

sediments that thinned over the crest of anticlines and were displaced by normal 

faults. 

 Fold growth and fault slip are not steady. Two events of accelerated growth occurred 

in the middle at 337 and 235 m/Ma for the Cascade, while rates were at 203 and 230 

m/Ma in the Chinook fold. A later event of accelerated fold growth occurred in the 

late Miocene at 1038 and 1189 m/Ma for the cascade and Chinook folds, 

respectively. Fold growth eventually ceased during the early Pliocene. The periods of 

fastest fault motion occurred in the middle Miocene at rates of 88 and 90 m/Ma. 

 Accelerated fold growth coincided with intervals of more rapid sedimentation in the 

Cascade fold (427 and 256 m/Ma in the middle Miocene and 1949 m/Ma in the late 

Miocene). For the Chinook fold, accelerated sedimentation occurred at 522 and 419 

m/Ma in the middle Miocene and 2585 m/Ma in the late Miocene.  
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 Tilt rates varied during fold growth. Accelerated tilt rates occurred in separate 

periods during the middle Miocene at maximum rates approximately 0.181 and 0.196 

°/Ma in the Cascade, and 0.330 and 0.243 °/Ma in the Chinook.  

 The Cascade and Chinook anticlinal hinges were fixed very early in the folds’ 

evolution with no substantial change in position with continued deformation. 
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APPENDIX A 

Table 1. Depth and porosity calculated for intervals 2-12. 
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Table 3. Sedimentation rates calculated for the Cascade and Chinook folds. 
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Table 4. Area and depth to detachment calculation for section A-A’. H is the depth to detachment, A is 
the anticlinal fold area, -A is the synclinal fold area and ΣA is the net area. 
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Table 5. Area and depth to detachment calculation for section B-B’. H is the depth to detachment, A is the 
anticlinal fold area, -A is the synclinal fold area and ΣA is the net area. 
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Table 6. Dips of horizons A-J measured from figures 21 and 22. 
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APPENDIX B 

Figure 1. Graph adapted from Holl and Anastasio (1993) of favored and minimum deformation rates 
for the Mediano anticline, Southern Pyrenees. Geomagnetic reversal time scale is shown on the 
horizontal axis; angular unconformities are identified by circled numbers.  
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Figure 2. Summary of the evolution of the Mediano anticline, Southern Pyrenees, after Holl and Anastasio 
(1993). Circled numbers represent events and average rates in fold growth and surrounding structures. (1) 
Westward continental facies progradation at 500 m/Ma. (2) Westward component of thrust sheet motion (200 
m/Ma). (3) Southward component of thrust-sheet motion (900 m/Ma). (4) Crestal uplift: (250 m/Ma). (5) 
Horizontal shortening of anticline (500 m/Ma). (6A) Sedimentation rate for westward fold limb (200 m/Ma). 
(6B) Sedimentation rate for eastward fold limb (70 m/Ma). (7A) Westward limb tilt (6.5°/Ma). (7B) Eastward 
limb tilt (7.5°/Ma). 
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Figure 
for each 

3. (a) Overlapping growth strata, (b) Onlapping growth strata, (c) Sedimentation and fold uplift rates 
growth bed in the Santaren anticline, Bahamas foreland. C, C1, D....etc are lithologic units as defined 

by Masaferro et al., (2002). 
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Figure 4. Location of the Cascade and Chinook folds, Green knoll diapir and Frampton anticline with 
surrounding MMS (Mineral Management Service) protraction areas  (Walker Ridge and Green Canyon) 
in the Deepwater Gulf of Mexico. Modified after Grando and McClay (2004).
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Figure 5. Structural map of the Cascade and Chinook folds on the mid-Miocene (Horizon E, see Figure 6). 
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Figure 8. Profile B-B’ through the Chinook fold. (a) Uninterpreted, (b) Traced seismic section and (c) 
Interpreted. See figure 5 for location. 
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Figure 10. Plot of porosity values calculated from bulk density log data for every 0.15 m depth.   
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Figure 11. Porosity vs. depth plot extrapolated for intervals 2 and 3. 
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Figure 13. Sequential restorations of section B-B’ through the Chinook fold. Interval 1 (Dashed) is kept 
constant throughout restoration. 
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Figure 13, con’t. 
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Figure 13, con’t. 
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Figure 14. Method for measuring fault displacements (S1, S2 and S3) across respective intervals (1, 2 and 3). 
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Figure 15. Method for measuring amplification (A2 and A4) of intervals during fold growth. Dividing by the 
corresponding time period (t2, t4) yields the fold growth rates for the Cascade and Chinook folds. (See table 
2).   
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Figure 20. Fold area and depth to detachment plot for (a) section A’A’, (b) section B-B’.  
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