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ABSTRACT 

 

 Analysis of Haplotype Structure in the Bovine Major                                                  

Histocompatibility Complex. (December 2009) 

Krista L. Fritz, B.S., University of Illinois  

Chair of Advisory Committee: Dr. Loren C. Skow 

 

 The goal of this project was to identify and characterize polymorphic markers 

spanning regions of the bovine major histocompatibility complex (BoLA) to analyze 

patterns of genetic variation and haplotype structure across diverse cattle breeds with 

various breed histories and selection pressures.  Genetic markers that demonstrated 

sufficient levels of polymorphism, locus specificity, Mendelian inheritance, and the 

accurate typing of alleles across diverse haplotypes were chosen to define separate 

haplotype structures for the BoLA IIb and BoLA IIa-III-I regions and to evaluate 

breakpoints in linkage disequilibrium within the regions surrounding BoLA IIa-III-I.  A 

total of 23 microsatellites, two SNPSTRs, 62 SNPs, and the alleles of three class IIa 

genes were selected for use in this study.  These markers revealed eleven recombination 

events, low levels of recombination in BoLA IIa-III-I, a sharp break in haplotype 

structure in the region centromeric to class IIa, prolonged linkage disequilibrium in the 

extended class I region, strong conservation of BoLA IIa-III-I haplotype structure, BoLA 

IIa-III-I homozygous haplotype identity across seven different breeds of cattle, and a 

small number of common BoLA IIa-III-I haplotypes within the Angus and Holstein 

breeds.  This work demonstrated that 52 SNPs from the Illumina 50K SNPchip could 

accurately predict BoLA IIa-III-I haplotypes.  These 52 SNPs represent tagSNPs that can 

predict BoLA IIa-III-I genetic variation and could offer a cost-effective means for 

screening large sample sizes for haplotype/disease association studies in the future.   
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CHAPTER I 

INTRODUCTION 

 

Project Rationale 

 The major histocompatibility complex (MHC) is associated with more human 

diseases than any other region of the genome, and genetic variation within this region 

explains a substantial proportion of differential immune responsiveness between 

individuals (Graham et al. 2007; Ovsyannikova et al. 2006).  Likewise, genetic variation 

in the bovine MHC (BoLA) has been associated with numerous disease susceptibilities 

and immune responses in cattle (Glass et al. 2000; Juliarena et al. 2008; Maillard et al. 

2003) and represents an important genomic target for manipulation to improve the health 

and productivity of cattle.  The goal of this project is to identify and analyze polymorphic 

markers spanning regions of BoLA to augment the markers discovered by the bovine 

genome sequencing project and provide for a rigorous characterization of the patterns of 

genetic variation and haplotype structure across diverse cattle breeds with various breed 

histories and selection pressures.  Knowledge of BoLA haplotype structure will enable 

selection of tagSNPs to predict common genetic variation and will offer a cost-effective 

means for screening large sample sizes for haplotype/disease association studies.  This 

should prove especially valuable in cattle, where the nature of polymorphisms has made 

the typing of classical BoLA genes laborious and time consuming.  This work will 

ultimately aid future marker-assisted selective breeding programs for animals with 

superior disease resistance and productivity, as well as providing for improved vaccine 

development in livestock.   

 

The Major Histocompatibility Complex 

Discovery of the MHC and Its Functional Properties 

 The major histocompatibility complex (MHC) was discovered at a time when 

scientists were investigating the biological basis of tissue graft rejection.  Little and 

____________ 

This dissertation follows the style of Mammalian Genome. 
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Tyzzer (Little and Tyzzer 1916) demonstrated that several dominant Mendelian factors 

influenced the resistance of mice to tumor grafts, suggesting for the first time that a 

genetic basis was responsible for transplant rejection.  This hypothesis was further 

supported in 1927 when Bover (Bover 1927) demonstrated that skin transplants between 

identical twins were not rejected, and in the 1950s when a patient with end stage renal 

failure recovered after a successful kidney transplant from his identical twin (Hume et al. 

1955). 

Around the same time that properties of the human MHC were being discovered, 

studies in mice were demonstrating a similar genetic system controlled tissue 

transplantation in rodents.  Peter A. Gorer, a young pathologist working at the Lister 

Institute for Preventative Medicine in London, identified the first major 

histocompatibility complex in 1936 while performing transplantation studies in mice 

(Gorer 1936).  Around the same time, George Snell working at the Jackson Laboratory in 

Bar Harbor, Maine also discovered the mouse MHC in his own transplantation studies 

using strains of congenic mice (Snell 1948; Snell and Higgins 1951).  Gorer had referred 

to the MHC as “Antigen II” while Snell had called it the “Histocompatibility Locus” or 

the “H locus.”  The terms were combined, and the mouse MHC was given the name 

“Histocompatibility Two,” abbreviated as “H-2” (Gorer et al. 1948).  The H-2 

designation is still used for the mouse MHC today (Ellis et al. 2006).   

The MHC has since been subdivided into three regions - class I, class II, and class 

III - based on gene content and function.  Serological typing of MHC class I molecules in 

mice began late in the 1930s (Gorer 1936), and similar research in the human MHC 

began decades later (Van Rood et al. 1968).  The name of the human major 

histocompatibility complex, the human leukocyte antigen (HLA), was derived from the 

observation that human white blood cells, leukocytes, became agglutinated after the 

transfusion of blood from one person to another (Chalmers et al. 1959; Dausset et al. 

1954).  Hence human leukocyte antigens were originally identified as donor antigens that 

were rejected by transplant recipients.   

Jean Dausset first described an MHC antigen, “MAC”, which is known today as 

HLA-A2 (Dausset 1958), and Baruj Benacerraf linked the role of immune response genes 

to the MHC (Benacerraf 1981).  The HLA-A2 allele identified by Dausset was later used 
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to describe the three-dimensional structure of a class I molecule (Bjorkman et al. 1987b) 

and the interaction of class I molecules with T cells (Bjorkman et al. 1987a).  It was 

subsequently discovered that the cytotoxic function of CD8+ T cells is restricted by MHC 

class I molecules (Zinkernagel and Doherty 1975), and similar MHC restriction occurs 

with CD4+ T cells and MHC class II molecules (Stern et al. 1994; Swierkosz et al. 1978).  

“MHC restriction” means that a T cell cannot recognize and appropriately respond to an 

antigen unless the antigen is bound to an MHC molecule that matches the T cell receptor.   

The discovery of MHC restriction was an important milestone in MHC research 

because it broadened the understanding of the role of the MHC from transplantation to a 

critical part of the acquired immune response (Doherty and Zinkernagel 1975b).  

Nonetheless, realizing of the role of the MHC in rejection of transplants has made a 

significant impact in modern medicine.  Beginning the 1960s, doctors have been 

matching HLA alleles in donors and recipients for successful organ transplantation 

(Terasaki 1991).  For their accomplishments contributing to the understanding of 

histocompatibility, Snell, Dausset, and Benacerraf were awarded the Nobel Prize in 

Medicine or Physiology in 1980. 

 

The Evolution of the Major Histocompatibility Complex 

It is probable that the MHC emerged with the adaptive immune system during 

vertebrate evolution.  The MHC is not found in the primitive chordate amphioxus, the 

closest living invertebrate relative of vertebrates (Castro et al. 2004).  However, human 

orthologs of MHC genes without adaptive immune functions were found in the 

amphioxus species, Branchiostoma floridae (Abi-Rached et al. 2002; Vienne et al. 2003).  

These well-conserved genes between the human MHC and amphioxus are referred to as 

“anchor genes.”  Amphioxus cosmids containing anchor genes were mapped to a single 

chromosome, indicating only one set of anchor genes preceded the origin of vertebrates 

(Castro et al. 2004).  Curiously, nine MHC anchor genes have paralogs at three other 

chromosomal locations on human chromosomes 1, 9, and 19 (Abi-Rached et al. 2002).  

These MHC paralogs may be ancestral remnants of vertebrate segmental, chromosomal, 

or genome duplications.  Phylogenetic analysis suggests that all duplication events would 

have occurred over the same period of time, between 528 and 766 million years ago 
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(Vienne et al. 2003).  It is plausible that the ancestor of jawed vertebrates experienced 

major duplication events or was even a polyploid.  Ohno proposed that one or more 

whole genome duplications took place in the evolutionary lineage leading to mammals 

(Ohno 1970).  The en bloc duplications probably occurred in several genomic regions, 

including the region containing the MHC anchor genes, before the evolution of jawed 

vertebrates (Abi-Rached et al. 2002).  This implies that the MHC arose from ancient 

chromosomal duplications in a common ancestor of jawed vertebrates.   

It is hypothesized that the MHC originated with relatively few genes that 

subsequently duplicated, diversified, and recruited other nearby genes to function in ways 

that work coherently with the MHC.  The high levels of linkage disequilibrium observed 

in the MHC (Chen et al. 2009) may have resulted after genes within the MHC region 

evolved to coherently function with each other.  Some genes may have been directly co-

opted for a new function, whereas others may have acquired the new function in one 

duplicated copy and retained the original function in the second copy.  The vertebrate 

immune system appears to have recruited proteasomes toward a new biochemical 

pathway that generates MHC class I epitopes (Niedermann et al. 1997).  Proteasomes 

homologous to the proteasome utilized by the MHC can be found in Drosophila and yeast 

(Niedermann et al. 1997).  Phylogenetic analysis demonstrates that the duplication of 

PSMB5-8-like, PSMB6-9-like, and PSMB7-10-like ancestral genes gave rise to PSMB5 

and PSMB8, PSMB6, and PSMB9, PSMB7, and PSMB10 genes after the separation of 

jawed and jawless vertebrates (Abi-Rached et al. 2002; Clark et al. 2000).  After the 

duplication, PSMB5, PSMB6, and PSMB7 may have retained their ancestral function of 

protein degradation, while the PSMB8, PSMB9, and PSMB10 genes evolved a more 

specialized function that produces specific peptides for MHC presentation (Danchin et al. 

2004).  Several cathepsins seem to have also been co-opted multiple times throughout 

evolution for the MHC class II peptide presentation process (Uinuk-ool et al. 2003). 

A TAP-family gene, ABCB9, is found in the lamprey genome (Uinuk-ool et al. 

2003).  The lamprey ABCB9 gene is probably co-orthologous to vertebrate antigen 

processing genes TAP1/TAP2 and ABCB9 genes.  An ancestral ABCB9-like gene 

duplication could have given rise to a gene that retained the ancestral function, ABCB9, 

and a second mutated copy with a new function, TAP1/2.  A second duplication event 
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would have been required to generate TAP1 and TAP2 (Danchin et al. 2004).  A third 

duplication event would have occurred in the bovine MHC where another TAP gene, 

TAP2.1, seems to have arisen by duplication of TAP2 (Childers et al. 2006).  The 

ABCB9-like gene duplication event would have occurred after the separation of jawed 

and jawless vertebrates, at a time when large-scale duplication events are described for 

the whole genome (Abi-Rached et al. 2002).  It is also possible that ABCB9 was not 

linked to proteasome function until after the duplication event when the protein molecule 

behavior shifted (Danchin et al. 2004).  In either case, this is an example of MHC genes 

obtaining a new function by duplication and divergence. 

 

Comparative Arrangement of MHCs in Divergent Species 

The arrangement of genes within the MHC varies among different vertebrate 

species.  The genes of the MHC are usually clustered together, but their functions do not 

appear to be altered when their grouping is disrupted. The previously described 

amphioxus MHC anchor genes correspond to the current positions of eutherian MHC 

class II and class III genomic regions.  The MHC class I genes were translocated recently 

in eutherian evolution away from their ancestral position (Ohta et al. 2002) to be arranged 

as class I-III-II regions along a single chromosome.  The chicken has a 92 kb “minimal 

essential MHC” with the class III region positioned outside of the class I and II regions 

(Kaufman et al. 1999).  In fact, the class I and II regions are adjacent to one another in all 

non-mammalian species with the exception of teleost fish whose class I and II regions are 

on separate chromosomes (Sato et al. 2000).  The MHC structure of teleost fish 

demonstrates that a specific organization of the class II and class I regions is not 

necessary for the normal function of class I and class II loci.  The MHC class I and class 

II genes of sharks are located together, though they are evolutionarily older than teleost 

fish (Ohta et al. 2002) indicating that the organization of the teleost fish MHC is a 

derived characteristic.  Comparison among three teleost species - the medaka, zebrafish 

and pufferfish - revealed that MHC class I gene content is conserved, while gene order 

and transcriptional orientation is not.  This suggests that a strong selective pressure exists 

to conserve the linkage of certain MHC class I genes despite recurrent genetic 

rearrangements (Matsuo et al. 2002).   
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The bovine, swine, monotreme, and marsupial MHCs also lend support to the idea 

that class I and class II genes can vary in arrangement without compromising their 

functions.  An ancestral inversion transposed a large portion of the BoLA class II region 

to a pericentric location approximately 20 Mb away from the remainder of BoLA 

(Childers et al. 2006).  The transposed region, termed BoLA IIb, is about 450 kb in length 

and contains genes homologous to the HLA classical class II and extended class II 

regions with some exceptions (Childers et al. 2006).  The centromere of swine 

chromosome 7 separates the class II region of the swine leukocyte antigen complex from 

the remainder of the MHC (Smith et al. 1995).  Characterization of the marsupial 

Monodelphis domestica has shown that class I genes are interspersed within the class II 

region, as opposed to the class II and class I regions being distinctly separated by the 

class III region as in eutherians (Belov et al. 2006).  An extreme exception to this 

marsupial arrangement is the tammar wallaby, whose class I genes are spread across six 

different chromosomes (Deakin et al. 2007).  The MHC of monotremes shares a region of 

interspersed class I and II loci with the marsupial, although the monotreme MHC has 

been reported to lie within the pseudoautosomal region of two different pairs of sex 

chromosomes (Dohm et al. 2007).  The class I and class II genes were probably located 

close together in a common mammalian ancestor of eutherians, monotremes, and 

marsupials.  In support of this idea, class I pseudogenes are found in the human class II 

region and both functional and non-functional class I genes are found in the rodent class 

II region (Hurt et al. 2004). 

The opossum class I region has “framework genes” that are present in 

homologous locations in eutherians (Belov et al. 2006).  But whereas eutherian MHC 

class I loci expand and diversify around these framework genes, the opossum MHC class 

I loci are not interspersed among them (Amadou 1999; Belov et al. 2006).  Class I 

framework genes have not been identified in non-mammalian species, with the exception 

of some homologous eutherian class I framework genes found near the MHC of teleost 

fish (Clark et al. 2001; Matsuo et al. 2002).  This suggests that the establishment of a 

block of class I framework genes occurred prior to the translocation of the MHC class I 

genes from their ancestral position to the class I framework region.   
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The MHC class II region of eutherians contains antigen processing genes - TAP1, 

TAP2, PSMB8, and PSMB9 - that process and transport endogenous peptides for 

presentation on MHC class I molecules.  Homologous antigen processing genes are found 

in the class I region of non-mammals (Kaufman et al. 1999; Ohta et al. 2002).  The 

adjacent class I and II regions of the ancestral MHC may have promoted the antigen 

processing genes to co-evolve with class I genes, and eventually led to the translocation 

of both the class I genes and the antigen processing genes to a new location in eutherians 

(Ohta et al. 2002).  The positioning of antigen processing genes TAP and PSMB near 

class I loci in Monodelphis domestica may have restricted the diversification of the class I 

genes, as evidenced by the presence of a single classical class I gene in Monodelphis 

domestica (Belov et al. 2006).   

Genes within the class I region seem to undergo a more rapid birth-and-death 

process than genes within the class II region (Wan et al. 2009).  Shared class I lineages 

have not been observed between mammals belonging to different orders, but the basic 

organization of mammalian class II genes most likely became established prior to the 

divergence of mammalian orders (Takahashi et al. 2000).  The DR, DQ, and DP class II 

genes are common to placental mammals and encode classical class II molecules 

responsible for presenting exogenous peptides to helper T cells (Wan et al. 2009).  Most 

eutherian class II regions have a single DRA gene, but the feline MHC contains four 

possible functional DRA genes (Yuhki et al. 2008).  The feline MHC also lacks a 

functional DQ region and has only pseudogene homologs of DP genes (Yuhki et al. 

2008).  Ruminant MHCs have a functional DYA and DYB gene pair and one or two 

functional DQ gene pairs (Ballingall et al. 2004a; Sigurdardóttir et al. 1992).  Horses may 

have two or three functional DQ gene pairs, and the giant panda has two functional DQ 

gene pairs (Fraser and Bailey 1998; Horin and Matiasovic 2002; Wan et al. 2009).  

The giant panda contains a class II gene cluster -  DOB, TAP2, PSMB8, TAP1, 

PSMB9, DMB, DMA, BRD2, DOA - that shows conserved gene order with other 

sequenced mammalian class II regions including humans, cats, dogs, cattle, pigs, and 

mice (Wan et al. 2009).  Genes within this conserved class II region include DO and DM 

genes, non-classical class II molecules that assist in the loading of peptides onto classical 

class II molecules; PSMB, a proteasome subunit involved in the cleaving of peptides for 
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presentation by class I molecules; TAP, a transporter for antigen processing; BRD2, a 

mitogen-activated nuclear kinase; and BTNL2, a member of the immunoglobulin 

superfamily (Wan et al. 2009).  The human MHC has multiple DR, DQ, and DP genes, 

and to date the HLA is the only species with two functional DPA and DPB genes (Wan et 

al. 2009).   

The DM genes are the only class II cluster shared between mammals, birds, frogs, 

and bony and cartilaginous fishes (Kaufman et al. 1999; Kumanovics et al. 2003).  The 

MHC class II DR, DP, DO, and DM genes appear to have arisen before the divergence of 

marsupials and placental mammals ~150 million years ago (Wan et al. 2009).  The DY 

genes are not specific to ruminants, as a DYB pseudogene has been identified in the giant 

panda (Wan et al. 2009).  It is probable that the MHC class II loci of DY and DQ evolved 

after the divergence of marsupials and mammals, around 130 million years ago, and the 

DY genes were subsequently lost in mouse and human lineages (Wan et al. 2009).  

Orthologous class II loci were not detected between marsupial DCA, DBA, and DBB 

class II genes and eutherian DPA, DOA, DRB, DQB, and DYB class II genes (Wan et al. 

2009).  It is assumed that these genes diverged from a common mammalian ancestor, and 

the orthologous genes have been lost. 

The most conserved region of the MHC, the MHC class III region, is found in all 

mammalian species to date, as well as having homology in echinoderms like the sea 

urchin (Smith et al. 1998) and protosomes like D. melanogaster and C. elegans (Danchin 

et al. 2003; Trachtulec and Forejt 2001).  This suggests that genes of the class III region 

were the original inhabitants of the MHC genomic region and were entrapped by chance 

during the development of the adaptive immune system.  Class I and II MHC genes 

positioned themselves in the class III region and subsequently duplicated, diversified, and 

recruited other nearby genes to create the present-day mammalian MHC.        

 

Organization and Function of the HLA as a Model for MHC Research  

The human major histocompatibility complex (HLA) is a collection of genes 

spanning more than 4 Mb on human chromosome 6p21.3 and represents one of the most 

gene dense and polymorphic regions of the human genome (Mungall et al. 2003; 

Robinson et al. 2003).  Many genes within the HLA play a critical role in the innate and 



 9
 

adaptive immune response by conferring the ability to identify foreign pathogens and 

distinguish between self and non-self (Ovsyannikova et al. 2006).  Accordingly, more 

diseases have been associated with the HLA than any other genomic region including 

most known autoimmune conditions (Baschal et al. 2009).  Sequence variation within the 

MHC can influence susceptibility or resistance to disease and underlies disparate levels 

of immune responsiveness between individuals (Graham et al. 2007; Ovsyannikova et al. 

2006).  For all of these reasons, the HLA is a prime candidate region for disease 

association studies and one of the most extensively studied regions in the human genome.  

The vast amount of HLA research has made the human MHC an excellent comparative 

resource for the studies of the MHCs in other species.  

The HLA has historically been divided into three regions based on function: class 

II, class III, and class I .  All of these regions contain disproportionately high levels of 

genes with immune function that are often clustered together in functional groups 

(Traherne 2008) (Figure 1).  It may be advantageous for HLA genes to cluster by 

functional similarity to facilitate coordinated gene expression and rapid diversification by 

recombination and sequence exchange.  However, the clustering of polymorphic genes 

may also result in an increased level of linkage disequilibrium across the region if 

particular combinations of alleles function well together and as a result, rarely become 

separated over evolutionary time (Traherne 2008). 

 The more centromeric MHC class II region spans about 0.7 Mb and contains the 

classical class II genes, HLA -DQ, -DR, and -DP (Yuhki et al. 2007).  These classical 

class II genes encode glycoproteins expressed on the surface of antigen presenting cells, 

such as macrophages and dendritic cells.  The primary function of the classical class II 

molecules is to present short exogenous peptides to CD4+ helper T cells to initiate the 

humoral immune response (Hughes and Nei 1990).  The class II classical and 

nonclassical genes are found in α / β gene pairs, wherein each gene encodes an alpha or 

beta chain that forms a heterodimeric α / β protein (Wan et al. 2009).  Amino acids 

encoded in the second exons of α / β pairs of class II molecules line the antigen binding 

site and are highly polymorphic in classical class II genes.  The HLA also contains a 

single monomorphic DRA gene and variable numbers of DRB genes among different 

HLA haplotypes (Hughes and Nei 1990). The nonclassical HLA -DM and -DO genes are 
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involved in the proper loading of peptides onto classical class II molecules (Wan et al. 

2009).  The HLA class II region also contains several pseudogenes; TAP1 and TAP2 

transporter genes associated with class I molecules; PSMB8 and PSMB9 proteasome 

genes; a TAPBP gene encoding tapasin, a chaperone molecule associated with class I 

antigen presentation; and BTNL2, a member of the immunoglobulin superfamily (Rhodes 

et al. 2001; The MHC Sequencing Consortium 1999; Wan et al. 2009).   

 The HLA class III region is sandwiched between the class I and II regions and 

includes a heterogeneous collection of genes with roles in both innate and acquired 

immunity as well as genes that encode proteins of no apparent immunologic function 

(The MHC Sequencing Consortium 1999).  The gene content and organization of the 

class III region is the most conserved of all MHC regions across different species (Xie et 

al. 2003).  The human class III region includes genes involved in the complement 

cascade, C2, CFB, C4A, and C4B; hormonal synthesis, CYP21; inflammation and cell 

stress, NFKBIL1, LTA, TNFα, LTB, LST1, NCR3, AIF1; heat shock proteins HSPA1A, 

HSPA1B, HSPA1L; extracellular matrix organization, TNX; regulatory receptors 

NOTCH4 and AGER; and the immunoglobulin superfamily, LY6G5B and LY6G6C 

(Carroll et al. 1984; The MHC Sequencing Consortium 1999).   The HLA class III region 

is the most gene dense section of the entire human genome, containing 60 genes spanning 

700 kb, which is about one gene every 12.9 kb (The MHC Sequencing Consortium 1999; 

Xie et al. 2003).  In contrast to other regions of the HLA, pseudogenes are virtually 

absent from the class III region (The MHC Sequencing Consortium 1999; Xie et al. 

2003).  The complement genes are the most polymorphic of the class III region, and the 

number of C4 genes in HLA haplotypes can vary from two to six copies (Schneider et al. 

1986; Yang et al. 2007).   

 

 

 

 

 

 



 11
 

 

Figure 1.  Reduced Gene Map of the Human MHC.  Clusters of genes with immune function 
in the HLA class I, III, and II regions are highlighted.  Genes with functional similarity are 
depicted by boxes of the same color.  This figure was reprinted with permission from Blackwell 
Publishing Ltd: International Journal of Immunogenetics (Traherne 2008), copyright 2008. 
 

 

The more telomeric HLA class I region covers approximately 2 Mb and contains 

many pseudogenes in addition to protein-coding genes (Geraghty et al. 1992; Shiina et al. 

1999; The MHC Sequencing Consortium 1999).  The HLA class I molecules are 

subdivided into class Ia (classical) molecules and class Ib (non-classical) molecules 

(Shiina et al. 1999; The MHC Sequencing Consortium 1999).  Class Ib nonclassical 

molecules, HLA-E, HLA-F, and HLA-G, present conserved microbial epitopes to T cells, 

exhibit limited tissue expression, and are not very polymorphic (Geraghty et al. 1990; 

Koller et al. 1988; McMaster et al. 1995).  Both classical class Ia and nonclassical class 

Ib genes may serve as ligands for natural killer cells (Braud et al. 1998; Sivori et al. 

1996).  Class Ia classical molecules are very polymorphic and are ubiquitously expressed 

on the surface of virtually every nucleated cell in the body (Daar et al. 1984).  The class 

Ia molecule forms a heterodimer with the non-MHC encoded β2 microglobulin (Figure 2) 
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and presents endogenous antigens to CD8+ T cells to illicit a cytotoxic immune response 

(Bjorkman et al. 1987b).  Class Ia molecules play a crucial role in the intrinsic adaptive 

immune response to viral diseases and cancers by distinguishing recognizing self vs. non-

self peptides (Bjorkman et al. 1987b).  HLA contains three classical class Ia loci, HLA-A, 

HLA-B, and HLA-C, that are each present on all haplotypes (Cao et al. 2001; Horton et 

al. 2008).  Other translated genes located within the class I region include MOG, a 

component of the myelin sheath that mediates the complement cascade (Zai et al. 2004), 

and MICA and MICB, MHC class I chain-related genes that are considered markers of 

stress in the epithelia (Bahram et al. 1994).  The extended class I region contains HFE, a 

gene involved in regulating iron levels (Feder et al. 1996), and butyrophilin (BTN) genes, 

members of the immunoglobulin superfamily that may help stimulate T cells (Rhodes et 

al. 2001).  

 A single MHC class I gene encodes an alpha chain, also known as the class I 

heavy chain, consisting of three extracellular alpha domains, a transmembrane region, 

and a cytoplasmic domain (Bjorkman et al. 1987b).  The class I molecule noncovalently 

binds with the product of a β2 microglobulin gene, which is located outside the MHC on 

human chromosome 15 (Goodfellow et al. 1975).  The MHC class II molecule is a 

heterodimer of an alpha chain and a beta chain encoded by one alpha gene and one beta 

gene (Stern et al. 1994).  Both the alpha and beta chains of class II molecules contain 

extracellular, transmembrane, and cytoplasmic regions (Stern et al. 1994).  Although the 

protein components of class I and II molecules differ, both have similar molecular 

shapes, including an antigen binding site where peptides are loaded and presented to T 

cells (Brown et al. 1993).   

 The antigen binding site may also be referred to as the peptide-binding region, the 

peptide-binding groove, the peptide-binding site, the antigen recognition site, or the 

antigen presentation site (Figure 2).  The peptide composition of the antigen binding site 

determines what epitopes are bound and presented to T cells to effectively illicit an 

immune response (Doherty and Zinkernagel 1975b; Stern et al. 1994).  The exons that 

encode the antigen binding sites represent the regions of class I and II genes with the 

highest levels of nucleotide diversity (Hughes et al. 1994; Hughes et al. 1990).  The 

antigen binding site of class I molecules is encoded by exons 2 and 3 of a single class I 



 13
 

gene, and the antigen binding site of class II molecules is encoded by exon 2 of an alpha 

gene and exon 2 of a beta gene.  Peptide epitopes presented by class I molecules are 

usually nine amino acids long, while peptide epitopes presented by class II molecules can 

vary from 11 to 17 amino acids in length (Brown et al. 1993).  A peptide presented by a 

class I molecule is limited in size because the ends of the peptide are tucked into the 

antigen binding site, but length requirements are not as stringent for peptides presented 

by the class II molecules because the peptides ends can freely extend from both sides of 

the class II antigen binding site  (Brown et al. 1993).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  The Structure of MHC Class I and II Molecules.  The color blue represents  alpha 
chains, red depicts beta chains, the β2 microglobulin is green, the transmembrane  and cytoplasmic 
regions are yellow, and the cell membrane is denoted by the two  horizontal black lines. 
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The Nature of Selection at the MHC 

 Aside from its immunological role, the MHC has also been implicated in mate 

choice, kin recognition, and reproductive success (Wedekind et al. 1995).  Pathogen-

driven selection and sexual selection are thought to be the major forces in maintaining 

MHC polymorphism (Hedrick 2002; Penn and Potts 1999).  Zinkernagel and Doherty 

first proposed a hypothesis for MHC polymorphism suggesting that heterozygosity at the 

MHC would be advantageous, specifically heterozygosity at the antigen presenting sites, 

because the individual could recognize a wider variety of pathogens (Doherty and 

Zinkernagel 1975a).  This hypothesis is referred to as the overdominance model and is 

considered a type of balancing selection (Takahata et al. 1992).  Another type of 

balancing selection is negative frequency dependence, the theory that rare MHC alleles 

are maintained in a population because pathogens are least likely to evade recognition 

from rare MHC alleles (Clarke and Kirby 1966).   

 These models of balancing selection have traditionally been used to explain why 

species such as the San Nicolas Island Fox (Aguilar et al. 2004), the African Buffalo 

(Wenink et al. 1998), the North American Bison (Mikko et al. 1997), the Arabian Oryx 

(Hedrick et al. 2000), the White Tailed Deer (Van Den Bussche et al. 2002), the Asiatic 

Lion (Sachdev et al. 2005), and the Chinese River Dolphin (Yang et al. 2005) have 

maintained high levels of MHC diversity despite possessing otherwise low genetic 

variability.  However, it seems probable that there may be additional forces of selection 

acting upon the MHC.  According to the balancing selection models of overdominance 

and negative frequency dependence, it is unlikely that these species would have 

maintained high levels of MHC polymorphism if they had experienced insignificant 

pathogen challenge or had small populations with few mate options (Van Oosterhout 

2009).  A computer simulation study found that the overdominance model required near-

lethal selection against MHC homozygotes (selection coefficient > 0.8) in the bottleneck 

generations of the San Nicolas Island Fox to account for the observed levels of MHC 

polymorphism (Van Oosterhout 2009).    

 Van Oosterhout (2009) faulted the traditional models of balancing selection for 

disregarding the influence of linkage disequilibrium and epistatic gene-gene interactions.  

The HLA has markedly high levels of linkage disequilibrium extending beyond the 



 15
 

boundaries of the MHC, and SNPs within the extended regions of the human MHC have 

been associated many human diseases (De Bakker et al. 2006).  The extended linkage 

disequilibrium of the HLA may promote epistatic interactions between different 

combinations of alleles at multiple loci to alter disease phenotypes (Gregersen et al. 

2006) and facilitate the genetic hitchhiking of nearby functional genes that potentially 

contain recessive deleterious mutations (Shiina et al. 2006).  The MHC may undergo 

balancing selection on genes with immune function, as observed in overdominant 

selection, in addition to purifying selection on MHC-linked recessive deleterious 

mutations (Van Oosterhout 2009).  Hence, the increased frequency of haplotypes 

containing immune genes that confer disease resistance would be counterbalanced by the 

reduced frequency of haplotypes containing deleterious recessive mutations.  This 

counterbalance may explain why there have been so few demonstrations of host-parasite 

co-evolution (Woolhouse et al. 2002). 

  Another model of MHC evolution originated from the discovery that plants 

sharing the same alleles at the self-incompatibility locus (S-locus) exhibit high levels of 

seed abortion (Stone 2004).  These abortions are triggered by the expression of a 

“sheltered load” of deleterious homozygous alleles that are otherwise unexpressed due to 

enforced heterozygosity and recombination suppression around the S-locus (Stone 2004; 

Uyenoyama 1997).  Van Oosterhout (2009) proposed that recessive deleterious mutations 

accumulate within and around the HLA region, but the characteristically large amount of 

genetic diversity at the HLA rarely allows for these harmful recessive variants to be 

expressed as homozygotes.  Consequently, the deleterious mutations are not removed 

through the processes of natural selection and remain preserved within HLA haplotypes.  

A computer simulation of this hypothesis revealed that haplotypes with relatively few 

deleterious recessive mutations had the greatest selective advantage and appeared at the 

highest frequency within a population (Van Oosterhout 2009). 

 Van Oosterhout (2009) also proposed that recessive deleterious mutations within 

the same HLA haplotype reinforce linkage disequilibrium and reduce the effective rate of 

recombination.  It is detrimental for recessive deleterious mutations to appear in the 

homozygous state, so it is selectively advantageous for multiple mutations to remain in 

the same haplotype rather than spreading throughout many haplotypes and increasing the 
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probability of homozygosity.  This promotes the creation of divergent blocks of DNA 

with elevated levels of linkage disequilibrium since recombinant haplotypes would have 

a lower fitness value than non-recombinants because recombinants would combine the 

deleterious mutations from both parental haplotypes.  Consistent with this model, deeply 

diverged haplotypes of the HLA class II region have been preserved by linkage 

disequilibrium over tens of millions of years (Raymond et al. 2005).  It follows that 

“recombination  hotspots” would be selectively maintained over random recombination 

events, which would shuffle deleterious recessive mutations throughout the HLA region 

(Van Oosterhout 2009).  The suppression of randomly distributed recombination events 

would generate high levels of linkage disequilibrium within the HLA. 

 Computer simulations demonstrated that lower selection coefficients were 

required in the model proposed by Van Oosterhout than in the overdominance model 

(Van Oosterhout 2009).  Van Oosterhout’s model also showed novel haplotypes 

coexisting with parental haplotypes for a very short period of time before the novel 

haplotypes became eliminated.  If a new haplotype did replace another haplotype, it 

would replace its own parental haplotype so all of the recessive deleterious alleles shared 

between the new haplotype and its parental haplotype would remain conserved.  This is 

directly opposed to overdominant or negative frequency dependent selection, wherein 

haplotypes with higher disease resistance quickly become dispersed within a population 

and have equal opportunity to eliminate any other haplotype (Van Oosterhout 2009).  

Haplotypes within the overdominance model demonstrate a higher turnover rate and a 

reduced maximum persistence time, but new haplotypes generated in Van Oosterhout’s 

model do not eliminate or reduce the persistence time of divergent haplotypes (Van 

Oosterhout 2009).  The haplotype lineages evolve virtually independent of population 

genetic processes like genetic drift, mutation, and selection.  This results in the 

maintenance of divergent haplotypes with long genealogical branch lengths, similar to 

what is seen in trans-species polymorphism (Bos and Waldman 2006; Van Oosterhout 

2009).  Trans-species polymorphism, where alleles are shared between long-diverged 

species, has frequently been noted within the MHC (Figueroa et al. 1988; Graser et al. 

1996; Lawlor et al. 1988; Mayer et al. 1988; McConnell et al. 1988). 
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Gene Maps and Haplotypes of the Human MHC 

The relationship between polymorphism, selection, and linkage disequilibrium at 

the HLA can be further understood through the maps and sequences available from 

various HLA haplotypes.  Campbell and Trowsdale (1993) compiled a map of the HLA 

by using a combination of physical mapping and DNA sequence data.  This map included 

established HLA genes and many previously undescribed genes and pseudogenes 

(Campbell and Trowsdale 1993).  In 1999, the first contiguous 3.6 Mb sequence-based 

map of HLA was published (The MHC Sequencing Consortium 1999).  The annotated 

sequence described 224 genes within the 3.6 Mb region of HLA, and 128 (57%) of them 

were thought to be expressed.  Unfortunately this sequence was derived from a number of 

individuals and represented a mosaic MHC haplotype, so the composite sequence does 

not represent a true MHC haplotype. 

Five years later, approximately 4.75 Mb of two common HLA haplotypes, HLA-

A3-B7-Cw7-DR15-DQ6 from the PGF cell line and HLA-A1-B8-Cw7-DR3-DQ2 from 

the COX cell line, were sequenced in homozygous individuals (Stewart et al. 2004).  

Each of these haplotypes is estimated to exist in 10% of the northern European 

population and is associated with common diseases, such as type 1 diabetes and multiple 

sclerosis (Stewart et al. 2004).  These were the first two haplotypes to be sequenced and 

annotated for the MHC Haplotype Project, which later sequenced an additional six 

homozygous HLA haplotypes (Horton et al. 2008).  Comparison of the eight homozygous 

HLA haplotypes revealed over 44,000 sequence variations, including nucleotide 

substitutions, deletions, and insertions (Horton et al. 2008).  Coding substitutions were 

identified in 122 genes, and 97 of these were non-synonymous (Horton et al. 2008).  The 

haplotype derived from the PGF cell line was designated as the reference sequence and 

incorporated into the human genome assembly (Horton et al. 2008).  The haplotype, 

HLA-A26-B18-Cw5-DR3-DQ2, sequenced from the QBL cell line shared 158 kb of the 

class II region containing DQ and DR genes with the otherwise divergent haplotype from 

the COX cell line (Traherne et al. 2006b).  Another study analyzed the same HLA class II 

region containing DQ and DR genes in 21 HLA haplotypes and found deeply divergent 

class II haplotypes that demonstrated high levels of linkage disequilibrium (Raymond et 

al. 2005).  It was estimated that these class II haplotypes have been independently 
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evolving for tens of millions of years.  Such a high level of haplotype divergence is 

unprecedented in the human genome and is greater than the divergence of human and 

primate sequences (Raymond et al. 2005). 

 The first description of linkage disequilibrium extending beyond the 3.6 Mb 

boundaries of the HLA was reported by Malfroy et al. (1997).  The regions surrounding 

the previous 3.6 Mb boundaries of the HLA are referred to as the extended human MHC 

(Horton et al. 2004; Malfroy et al. 1997) (Figure 3).  The extended class I subregion 

(Yoshino et al. 1997) and class II subregion (Stephens et al. 1999) were found to have 

conserved synteny in the human and mouse. The extended human MHC spans 7.6 Mb 

and was sequenced concurrently with human chromosome 6 (Mungall et al. 2003).  

About 33% of the loci within the extended HLA, 139 loci in total, were classified as 

pseudogenes based on similarity to known proteins and the presence of a premature stop 

codon.  At least four of the pseudogenes, PPP1R2P1 and three oldfactory-receptor genes, 

appear to be functional genes in other haplotypes (Ehlers et al. 2000; Stewart et al. 2004).  

Within the extended HLA, 252 (60%) of the 421 genes are classified as expressed on the 

basis of cDNA and/or EST evidence, and approximately 28% of the expressed transcripts 

have a potential role in immunity (Horton et al. 2004).  According to Horton et al., the 

28% of expressed transcripts with immune function fall into the following categories: 

antigen processing/presentation, immunoglobulin superfamily, inflammation, leukocyte 

maturation, complement cascade, non-classical MHC class I receptor family, immune 

regulation, and stress response (Horton et al. 2004).   
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Figure 3.  Extended Gene Map of the Human MHC.  This figure is color-coded to show the 
gene content of the five subregions of the extended HLA.  Linkage disequilibrium extends 
throughout these five subregions.  Reprinted by permission from Macmillan Publishers Ltd: 
Nature Reviews. Genetics (Horton et al. 2004), copyright 2004. 
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The extended HLA encompasses immune system genes as well as large families 

of olfactory receptor genes, zinc-finger genes, tRNA genes, and histone genes (Horton et 

al. 2004).  One of the human genome’s longest blocks of linkage disequilibrium spans 

about 540 kb and is located within the extended class I olfactory-receptor gene cluster 

(Miretti et al. 2005).  The largest clusters of histone and tRNA genes in the entire human 

genome are found in the extended HLA (Horton et al. 2004).  It may be beneficial for 

histone and tRNA genes to cluster together to facilitate rapid transcription, as many 

transcripts of tRNA and histone genes are needed for normal cellular function.  

Transcription of tRNA genes accounts for about 80% of all cellular eukaryotic 

transcription (Horton et al. 2004).  Genes of the MHC may be promoting increased levels 

of their own transcription by hitchhiking with tRNA and histone gene clusters (Horton et 

al. 2004).  At least eight genes within the HLA have splice site variation among different 

haplotypes, which may affect their expression at the post-transcriptional level (Horton et 

al. 2008; Královicová et al. 2004; Traherne et al. 2006a).  A more complete 

understanding of the HLA transcriptome may provide new insights into the causal 

elements of diseases associated with the HLA. 

Transcriptional repression is associated with DNA methylation, a type of 

epigenetic modification.  The methylation profile for about 2.5% of HLA regions was 

investigated as a pilot study for the Human Epigenome Project (Rakyan et al. 2004).  The 

HLA exhibited a bimodal pattern of methylation with regions of DNA being either 

hypomethylated or hyerpmethylated, and methylation profiles varied between different 

tissues and individuals (Rakyan et al. 2004).  Methylation-associated SNPs from the 

Human HapMap Project demonstrated a positive correlation with human meiotic 

recombination at a regional level (Sigurdsson et al. 2009).  Methylated sites may be 

preferential for recombination events, or the methylation of DNA after a recombination 

event may be used to hinder future recombination in the region (Sigurdsson et al. 2009).   

 

Recombination at the MHC 

 It is estimated that 80% of all recombination events in the human genome occurs 

within only 10-20% of the DNA sequence (Myers et al. 2005).  Regions of DNA with 

high recombination frequencies typically span less than 4 kb and are known as 
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“recombination hotspots” (Crawford et al. 2004).  One centimorgan corresponds to a 

meiotic recombination rate of 1% per hundred meioses, and the sex averaged human 

recombination rate is 1.1 centimorgans (cM) per megabase (Mb) (Kong et al. 2002).  A 

recombination hotspot is identified when the rate of recombination is significantly higher 

than the genome average rate and is fivefold higher than the rate of recombination within 

10 kb of the flanking sequence (Myers et al. 2005).  More than 25,000 recombination 

hotspots have been defined in the human genome, yielding approximately one 

recombination hotspot every 50 kb (Myers et al. 2005).   

 Interestingly, the number of defined recombination hotspots in the human genome 

is analogous to the number of protein-coding genes (Myers et al. 2005).  Recombination 

hotspots appear to preferentially occur within 50 kb of the open reading frames of 

protein-coding genes (Myers et al. 2005).  In the human, mouse, and rat genomes, 

recombination rates increase with GC and gene content (Spencer et al. 2006).  However, 

human chromosome 19 has the highest gene density and exhibits a relatively low number 

of recombination hotspots (Myers et al. 2005).  Recombination events in the human 

genome show greater variability on fine-scales than large-scales (Myers et al. 2005).  

Recombination hotspots vary between human populations and individuals, and they are 

not conserved between humans and chimpanzees (Myers et al. 2005; Winckler et al. 

2005).  Humans and chimpanzees share about 99% of their nucleotide sequence, so it 

appears that recombination hotspots are evolving at a faster rate than the nucleotide 

sequence (Winckler et al. 2005).   

 Recombination hotspots are considered to be breakpoints of linkage 

disequilibrium.  Low linkage disequilibrium within the HLA class II region was shown to 

be predictive of recombination hotspots (Jeffreys et al. 2001).  Familial recombination 

events have been identified in the HLA class II region between the intervals of DPB1-

TAP1-TAP2 and DOB-DQB1 , but no recombination was observed between the DRB1 

and DQB1 genes (Cullen et al. 1997).  A recombination hotspot has been localized to 

intron 2 of the human TAP2 gene (Cullen et al. 1995; Jeffreys et al. 2000).  Female 

meiosis more frequently demonstrated recombination events at the TAP2 hotspot than 

male meiosis (Jeffreys et al. 2000).  The homologous region of the human TAP2 gene did 

not contain a recombination hotspot in chimpanzees (Ptak et al. 2004).  A total of 48 
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polymorphic markers spanning 3.3 Mb of the HLA were used to identified 325 

recombinant chromosomes in 20,031 sperm from 12 individuals (Cullen et al. 2002).  

Recombination rates and distributions across the HLA were discovered to vary 

significantly between individuals, but intense recombination hotspots were observed at 

least every 0.8 Mb.  The intervals from DRB1-DRA and CAT75X-RNF9 showed only 

rare instances of recombination, but high frequencies of recombination were observed in 

the intervals from DPB1-BRD2, DQB3-DQB1, BAT2-LTA, and the region telomeric to 

HLA-F, which led to the hypothesis the HLA consists of many strongly associated 

haplotype blocks that are smaller than 100 kb in length (Cullen et al. 2002).   

 Since Cullen et al. (2002), the Human HapMap Project and the MHC Haplotype 

Project have increased the number of polymorphic markers within the HLA to exceed 

36,000 SNPs (Miretti et al. 2005).  This dense SNP coverage, averaging about one SNP 

every 1.9 kb, has been used to generate a map of HLA linkage disequilibrium within U.S. 

pedigrees of northern and western European ancestry (Miretti et al. 2005).  Linkage 

disequilibrium was shown to be higher in the extended class I region than the region 

encompassing the classical class I genes (Miretti et al. 2005).  Little linkage 

disequilibrium was identified within the class II region (Miretti et al. 2005), which is 

consistent with previous descriptions of recombination hotspots in the HLA class II 

region (Cullen et al. 1997; Jeffreys et al. 2001; Jeffreys et al. 2000).  Miretti et al. (2005) 

confirmed the class II recombination hotspots previously identified by sperm-typing 

experiments (Cullen et al. 2002; Jeffreys et al. 2001) to be located within TAP2, DMB, 

and BRD2-DOA and also discovered novel hotspots in the class I and II regions.  A total 

of 29 recombination hotspots were identified, averaging one hotspot every 150 kb across 

the HLA (Miretti et al. 2005).  Approximately 90% of the recombination hotspots 

correlated with breakpoints in linkage disequilibrium.  

 Excluding the extended HLA class I and II regions, the average recombination 

rate for HLA was calculated to be 0.7852 cM / Mb (Miretti et al. 2005).  This was lower 

than the human genome average recombination rate of 1.1 cM / Mb (Kong et al. 2002); 

however, recombination rates within the HLA region varied up to four orders of 

magnitude between individuals (Miretti et al. 2005).  Evolutionarily successful HLA 

recombination events spanning multiple pedigrees apparently occur infrequently, hinting 
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that specific combinations of MHC genes are under strong selection pressures over long 

periods of time.  Various explanations may be offered for why specific combinations of 

alleles at HLA genes have been maintained over evolutionarily long periods of time 

(Raymond et al. 2005), as opposed to allowing recombinant haplotypes to persist.  

Divergent HLA haplotypes may suppress recombination events and promote the 

extension of haplotypes, especially if sequence inversions have occurred (Traherne 

2008).  Alternatively, specific allelic combinations may be maintained to confer an 

immunological advantage, deter the expression of deleterious recessive alleles, or they 

may have undergone recent positive selective sweeps that have not yet had time to 

degrade (De Bakker et al. 2006; Miretti et al. 2005; Traherne 2008).   

 Recombination rates have also been researched within the MHCs of other species.  

The mouse MHC contains at least two recombination hotspots located within the class III 

region and four within the class II region (Cullen et al. 1997).  Recombination events in 

the mouse MHC were found to be influenced by their MHC haplotype and gender, with 

elevated recombination rates in female meiosis (Cullen et al. 1997).  A linkage study of 

BTA23 identified a reduced rate of recombination across the BoLA IIa-III-I region 

(Schnabel et al., in prep) in comparison to the rest of the chromosome (Figure 4). 
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Figure 4.  Reduced Recombination Rate in BoLA IIa-III-I (Schnabel et al., in prep).  Blue 
dots display the level of recombination observed within the regions surrounding BoLA on 
BTA23, yellow represents the region centromeric to class IIa, red depicts class IIa and class III 
regions, and the class I region is black.  The more vertical slant along the class IIa-III-I region is 
indicative of a reduced rate of recombination.  Note that the regions centromeric to class IIa 
(yellow) and class IIb (bold light blue) exhibit a slope similar to the rest of BTA23 (blue), 
indicating there is not a reduced recombination rate within these regions. 
 

 One study reported an increased rate of recombination within the bovine MHC 

(BoLA), but the conclusions that were reached may not be reliable as the BoLA marker 

order was incorrect and at least one of the microsatellite primer pairs was not locus 

specific (Weimann et al. 2003).   It is critically important to have correct marker order 

and locus specific primers when evaluating recombination rates and haplotype structure.  

The recent release of the bovine genome assembly has helped improve BoLA marker 

order, sequence placement, and gene annotation (Brinkmeyer-Langford et al. 2009; The 

Bovine Genome Sequencing and Analysis Consortium et al. 2009).  The human MHC 

has also been a useful reference for characterizing the bovine MHC, but the organization 

and gene content of the bovine MHC is different than the human MHC in several 

respects.   
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The Bovine Major Histocompatibility Complex 

 The bovine genome assembly has predicted 154 genes within the BoLA regions 

located on chromosome 23 (The Bovine Genome Sequencing and Analysis Consortium 

et al. 2009).  These include 60 genes within the class I region, 38 within the class IIa and 

class IIb regions, and 56 within the class III region (The Bovine Genome Sequencing and 

Analysis Consortium et al. 2009).  A distinguishing organizational feature of BoLA in 

comparison to HLA is the transposition of a large portion of the BoLA class II region to a 

pericentric location approximately 20 Mb away from the remainder of BoLA (Childers et 

al. 2006).  The transposed class II region, termed BoLA IIb, is about 450 kb in length and 

contains genes homologous to the HLA classical class II and extended class II regions, 

with the exception of a single histone H2B gene (Childers et al. 2006).  The BoLA IIb 

region also contains divergent class II loci DYA and DYB, a novel DSB gene, a DPB 

fragment, and a duplicated transporter 2 gene designated TAP2.1 (Childers et al. 2006).  

It is likely that the gene content and location of the class IIb region is characteristic of all 

Pecoran ruminants (Childers et al. 2006).  The other class II genes, notably the DQ genes 

and DR genes, are found in the remainder of BoLA within a region known as BoLA class 

IIa (Brinkmeyer-Langford et al. 2009).  Genes of the BoLA class III region are located 

between the class IIa and class I regions and seem well conserved in organization and 

function with class III genes of the HLA (Brinkmeyer-Langford et al. 2009).   

 Within the BoLA class IIa region, cattle have three very polymorphic classical 

class II genes - DQB, DQA, and DRB3 (Sigurdardóttir et al. 1988).  At least 104 alleles 

have been described for the DRB3 gene, 49 for the DQB gene, and 47 for the DQA gene 

(Glass 2007).  The DRB3 gene pairs with the relatively monomorphic DRA gene, and the 

gene products of DQA and DQB join to form functional heterodimeric class II molecules 

(Sigurdardóttir et al. 1988; Zhou et al. 2007).  The number of BoLA class II DQ genes 

differs among haplotypes in both number and composition (Glass et al. 2000).  About 

half of the common BoLA class II haplotypes appear to have duplicated DQ genes in 

which both sets of DQ genes are expressed.  Functional intrahaplotype and interhaplotype 

pairings can occur between the proteins encoded by duplicated DQA and DQB and may 

provide an immunological advantage by recognizing a wider variety of pathogens (Glass 

et al. 2000; Norimine and Brown 2005).  Duplicated DQ genes have also been found in 
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the North American bison (Traul et al. 2005), the Chinese river dolphin (Yang et al. 

2005), the baleen whale (Baker et al. 2006), the finless porpoise (Xu et al. 2007), the 

horse (Horin and Matiasovic 2002), and the giant panda (Wan et al. 2009).  However, 

research has not yet shown that the DQ gene duplications are expressed and functional in 

all of these species.  The basic organization of the mammalian MHC class II genes is 

thought to have been established prior to the divergence of mammalian orders (Takahashi 

et al. 2000), so it is possible that duplicated DQ genes were derived from a common 

mammalian ancestor.   

 In contrast to humans, cattle are thought to have six or more classical class I loci 

(Birch et al. 2006).  The number and composition of BoLA classical class I genes varies 

between haplotypes, and there does not appear to be a single class I gene consistently 

expressed on all haplotypes (Birch et al. 2006).  Cattle also show more potentially 

functional NK receptors, which may be capable of binding to MHC class I molecules, 

than other species (Birch and Ellis 2007; Dobromylskyj and Ellis 2007).  Taking into 

account the variable nature of cattle MHC class I haplotypes, this may reflect a system 

that ensures sufficient NK receptor/ligand interaction in all individuals.  Products of MIC 

genes may also serve as a ligands to activate natural killer cells (Birch et al. 2008b).  

Three MIC genes have been identified in cattle, and at least one MIC gene has been 

found on all the class I haplotypes that have been analyzed (Birch et al. 2008b).  A 

number of class I pseudogenes exist within the class I region of cattle, as well as 

nonclassical class I genes (Birch et al. 2008a).  Three nonclassical class I genes have 

been identified in cattle near MIC genes and one nonclassical class I gene was identified 

near a class I gene (Birch et al. 2008a).  The number of nonclassical class I genes also 

varies depending on the BoLA haplotype (Birch et al. 2008a).   

  Splice variants were identified within class IIb for TAP2, PSMB8, and RXRB 

genes (The Bovine Genome Sequencing and Analysis Consortium et al. 2009).  

Pseudogenes and gene duplications within the reference sequence of L1 Dominette made 

the class I and IIa regions difficult to annotate.  Nevertheless, the annotated reference 

haplotype shows three classical class I loci and three MIC genes within the class I region 

(The Bovine Genome Sequencing and Analysis Consortium et al. 2009).  The class IIa 

region was annotated with the following gene order: DQA2, DQA2-1, DQB, DQA, 
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DRB3, DRA, and the reference animal, L1 Dominette, was identified as homozygous for 

the DRB3*1002 allele (The Bovine Genome Sequencing and Analysis Consortium et al. 

2009).  The results of the BoLA sequence annotation hypothesized that L1 Dominette 

may be heterozygous at the MHC (The Bovine Genome Sequencing and Analysis 

Consortium et al. 2009), but work done for this project strongly suggests that she has a 

homozygous Hereford haplotype that spans the MHC and extended MHC regions (see 

results section).   

 The two most recent bovine genome assemblies, Btau3.1 and Btau4.0, differ 

considerably in their sequence organization of the BoLA regions (Brinkmeyer-Langford 

et al. 2009).  The Btau4.0 assembly was produced with the intention of improving the 

previous Btau3.1 assembly by integrating data from fingerprint contig maps and BAC 

end sequences (The Bovine Genome Sequencing and Analysis Consortium et al. 2009).  

A high resolution radiation hybrid map of BoLA was generated to independently validate 

the improved accuracy of the Btau4.0 assembly over the Btau3.1 assembly (Brinkmeyer-

Langford et al. 2009).  Mapping was performed on the 12,000rad radiation hybrid panel by 

amplifying the following regions of BoLA with seventy-seven primer pairs: 14 primers 

amplified within the class I and extended class I regions, 19 primers within the class III 

region, 27 primers within the class IIa and class IIa extended regions, and 17 primers 

within the class IIb region (Brinkmeyer-Langford et al. 2009).  Homologous sequences 

were identified in the HLA for all but two markers used on the 12,000rad radiation hybrid 

panel (Brinkmeyer-Langford et al. 2009).  Gene order appears to be conserved between 

the HLA and BoLA, which supports the hypothesis that a single ancestral inversion 

created the BoLA class IIb region (Brinkmeyer-Langford et al. 2009). 

 The BoLA radiation hybrid map revealed problems with the Btau3.1 assembly 

that included sequence inversions within the class IIb region and the incorrect placement 

of markers within the class I, class IIa, and extended class IIa regions (Brinkmeyer-

Langford et al. 2009).  The Btau4.0 assembly retained the same BoLA IIb sequence 

inversion as the Btau3.1 assembly when compared to the radiation hybrid map.  An 

independent BoLA IIb sequence assembly (Childers et al. 2006) validated the correct 

positioning of the BoLA IIb sequence within the Btau4.0 assembly and the incorrect 

placement of BoLA IIb markers in the radiation hybrid map (Brinkmeyer-Langford et al. 
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2009).  Overall, the radiation hybrid map and the Btau4.0 assembly were in strong 

agreement for the assembly of all other BoLA regions.  There were some minor 

discrepancies, but skimmed BAC sequences validated the placement of the markers in the 

Btau4.0 assembly over their order in the radiation hybrid map (Brinkmeyer-Langford et 

al. 2009).  Some markers that were positioned within BoLA regions on the radiation 

hybrid map resided in the unassigned contigs of the Btau4.0 assembly (Brinkmeyer-

Langford et al. 2009).  Regardless of this, Btau4.0 is clearly the superior BoLA assembly 

and was used in this study of BoLA haplotype structure.  An alternate assembly is 

available for the bovine genome (Zimin et al. 2009), but the UMD assembly of BoLA 

was also found to be inferior to the Btau4.0 assembly.  The Btau4.0 assembly should 

prove useful for future BoLA disease association studies.  Disease association studies are 

critical to understand the role genetic variants play in disease outbreaks within the 

modern cattle industry. 

 

The Value of MHC Disease Association Studies 

The Importance of Cattle Disease Resistance 

Today the cattle industry is an important part of United States agriculture and 

economy.  As of January 1, 2008, the United States had 96.7 million head of cattle 

(http://www.ers.usda.gov/news/BSECoverage.htm 2008).  The United States is also the 

world’s leading beef producer with a total retail equivalent value of beef amounting to 

$74 billion in 2007, including $2.175 billion generated from beef exports 

(http://www.ers.usda.gov/news/BSECoverage.htm 2008).  As of June 2, 2008 there were 

995,838,000 cattle distributed across the world 

(http://www.cattlenetwork.com/Content.asp?contentid=226025 2009) (Figure 5).   
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Figure 5.  The Worldwide Cattle Population.  This graph illustrates the distribution of  cattle 
across the world.  India has the most cattle with over 281 million, followed by  Brazil with over 
187 million, China with over 139 million, and the United States with over 96 million 
(http://www.cattlenetwork.com/Content.asp?contentid=226025 2009).   

 

Disease outbreaks in cattle affect animal welfare and productivity, increase the 

demand for antibiotic use, place the food supply at risk, and have negative international 

trade implications (Thompson et al. 2002).  Such diseases include those caused by 

bacteria and viruses, internal and external parasites, feed-borne toxins, and genetic 

disorders.  The outbreak of infectious disease has increasingly become an international 

concern as the large-scale growth of livestock production and trade has diminished 

previously local boundaries that would have limited the spread of infectious disease. 

Drug treatments are generally effective in preventing disease outbreaks, but 

alternate methods have been pursued as consumers are becoming increasingly concerned 

about animal products retaining chemical residues and pathogens acquiring resistance to 

commonly used drugs.  Selectively breeding cattle to be genetically resistant to disease 

would help create a “chemical free” environment.  It is estimated that 50% of all 
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antibiotics administered in the world are used for veterinary purposes (Teuber 2001).  

Antibiotics are used in the cattle industry to treat infections and increase overall health, 

growth, and feed efficiency (Teuber 2001).  There is a growing public fear that antibiotic 

resistance will evolve in bacteria of livestock and spread to the human population, 

ultimately rendering antibiotics ineffective in treating human disease (Teuber 2001).  In 

addition to bacteria, some parasites of livestock are becoming resistant to traditional drug 

treatments.  Nematodes have become resistant to anthelmintics in sheep, and it has been 

reported that nematodes of cattle are becoming resistant to the same drugs (Anziani et al. 

2001).  It has also been reported that the cattle tick, Boophilus microplus, has developed a 

resistance to acaricide (Li et al. 2005).   

Many non-genetic factors may influence the strength of an animal’s immune 

response including herd management, animal husbandry, administration of vaccinations 

and veterinary care, temperature of environment, and quality of diet (Frisch 1981).  

However, a considerable portion of variability in response to pathogen challenge is 

genetically inherited.  According to the Online Mendelian Inheritance in Animals 

(http://omia.angis.org.au/ 2009), there are 379 heritable disorders and traits in cattle, and 

80 of these disorders are linked to a single causative locus (http://omia.angis.org.au/ 

2009).  Genes within the MHC have been associated with many diseases in vertebrates, 

and more MHC disease associations have been researched in humans than in any other 

species (Stewart et al. 2004).  Conclusions from research on HLA-linked diseases may be 

used to improve the design of BoLA disease association studies. 

 

HLA Disease Association Studies 

 The HLA maintains some of oldest recognized genetic associations with disease, 

and one of the first diseases to be associated with the HLA was Hodgkin’s lymphoma in 

1967 (Amiel 1967).  The list of diseases linked to the HLA continues to grow (Shiina et 

al. 2004), as evidenced by more than 20,000 papers published in the last 30 years 

describing diseases associated with the HLA (Stewart et al. 2004).  Disorders associated 

with the HLA region encompass immune, cardiovascular, neurodegenerative, psychiatric, 

metabolic, infectious, dermatological, and ontological diseases (Shiina et al. 2004).  

Addictive behaviors, such as smoking, have also been linked to specific haplotypes of the 
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HLA region (Santos et al. 2008).  The classical class I and II genes alone are implicated 

in more than 100 human diseases, including diabetes, rheumatoid arthritis, psoriasis, 

asthma, and nearly all autoimmune conditions (Shiina et al. 2004).   

 A strong association was observed between alleles of polymorphic HLA genes 

and SNPs throughout the HLA region (De Bakker et al. 2006).  It is feasible that a subset 

of SNPs, or tagSNPs, could capture common HLA variation across multiple loci and 

offer a cost-effective means of screening large sample sizes for disease association 

studies (De Bakker et al. 2006).  The use of tagSNPs carries some loss of power for 

detecting rare variants, but many genetic risk variants at the MHC have been identified 

within common haplotypes (Traherne 2008).  Many individuals appear to have genetic 

risk factors for complex diseases within their HLA haplotypes, but most people remain 

healthy because the expression of deleterious alleles occurs at a low frequency (Traherne 

2008).  The infrequent expression of diseases associated with the HLA may be attributed 

to their complex etiologies, which involve multiple genetic, epigenetic, and 

environmental factors (Vyse and Todd 1996).   

 Although many diseases have been associated with the HLA region, it has been 

difficult to identify the specific casual genetic elements that contribute to disease 

phenotypes (Stewart et al. 2004).  The characteristic features of the HLA - high levels of 

polymorphism, noted linkage disequilibrium, and clustering of genes with similar 

function - tend to convolute the correlation of disease phenotypes with specific genetic 

elements, so it is difficult to distinguish whether a genetic variant is casual or merely 

segregating with the casual genetic element (Fernando et al. 2008).  Most published HLA 

disease association studies have limited the amount of genetic variation in their research 

projects by investigating less than 20 HLA genes within small cohorts of individuals that 

have been predominantly European in origin (Fernando et al. 2008).   

 Most HLA disease association studies have analyzed a subset of the following 

HLA genes: the classical HLA class I and II loci, HLA-A, HLA-B, HLA-C, DRB, DQA, 

DQB, DPA, DPB, the TAP genes, the MIC genes, and the class III genes TNF, LTA, 

LTB, C2, C4, and CFB (Fernando et al. 2008).  These experimental designs may have 

overlooked potential disease associations within the 421 annotated genes and 252 

expressed genes of the extended HLA (Horton et al. 2004).  Epistatic interactions among 
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HLA loci, where the function of one HLA locus is altered or masked by another, may 

also hinder the search for susceptible alleles (Traherne 2008).  Such epistatic interactions 

will be better understood by sequencing and characterizing the genetic content of entire 

HLA haplotypes.  Further analysis of epigenetic modifications and regulatory elements, 

such as microRNAs, within the HLA will also shed light on the factors contributing to 

HLA-linked diseases (Traherne 2008). 

 

BoLA Disease Association Studies 

 Similar to the human major histocompatibility complex, the bovine MHC is a 

candidate region for many disease association studies.  Genetic polymorphisms of BoLA 

have been investigated for associations with several infectious diseases of cattle.  

Examples of these diseases include mastitis (Park et al. 2004), dermatophilosis (Maillard 

et al. 2003), and persistent lymphocytosis (Juliarena et al. 2008).  Polymorphisms of 

BoLA have also been implicated in host resistance to the Lone Star tick (Untalan et al. 

2007) and vaccination response to epitopes of various infectious diseases (Garcia-Briones 

et al. 2000). 

 Mastitis, or inflammation of the mammary gland, is the most common infectious 

disease of dairy cattle, and it presents a major economic problem for the dairy industry 

(Heringstad et al. 2000).  Mastitis is a multi-factorial disease with a complex etiology that 

involves both genetic and non-genetic factors (Heringstad et al. 2000).  Many 

management practices can influence an animal’s susceptibility to mastitis including 

hygiene, housing, climate, milking equipment and procedures, treatment of teat injuries, 

and quality of feed (Hameed et al. 2008).  Mastitis infections range from mild sub-

clinical to severe clinical and may be caused by a variety of microorganisms.  Clinical 

infections alter the composition and quantity of milk, increase somatic cell counts, and 

have the potential to become fatal (Heringstad et al. 2000).  Contagious pathogens 

usually establish mild clinical infections that last for long periods of time (Hameed et al. 

2008).  The major contagious pathogens causing mastitis are Staphylococcus aureus, 

Streptococcus agalactiae, Corynebacterium bovis, and Mycoplasma bovis (Hameed et al. 

2008).  The major environmental pathogens that cause mastitis are gram-negative 

bacteria, typically coliforms, that include Escherichia coli, Klebsiella sp., Enterobacter 
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sp., Citrobacter sp., Seratia, Pseudomonas sp., Proteus; and environmental streptococci 

that include Streptococcus uberis, Streptococcus dysgalactiae, and Streptococcus equines 

(Hameed et al. 2008).  Environmental pathogens lead to varying degrees of clinical 

infections and are relatively short in duration (Hameed et al. 2008).   

 The relationship of BoLA gene variants and mastitis susceptibility has been the 

focus of many bovine disease association studies.  Little association was found between 

BoLA class I haplotypes and sub-clinical mastitis (Aarestrup et al. 1995), but mastitis 

resistance may be strengthened by increasing the number of DQ alleles through 

heterozygosity and copy number.  Cows with only one pair of DQ genes were more 

susceptible to mastitis (Park et al. 2004), and the homozygosity of DQA1*0101 and 

DQA1*10011 alleles increased susceptibility to mastitis caused by Streptococci and 

Escherichia, respectively (Takeshima et al. 2008).  The polymorphic classical BoLA 

class II gene, DRB3, has been a candidate gene for many mastitis disease association 

studies.  A significant (P<0.05) association was found between DRB3*2701-2707 and 

susceptibility to severe clinical mastitis, predominantly caused by coliforms (Sharif et al. 

1998).  Susceptibility was shown to be associated with amino acids at a specific position 

within the antigen binding site of the DRB3 gene (Sharif et al. 2000).  No relationship 

was identified between the alleles DRB3*1501-1502 and DRB3*2701-2707 and sub-

clinical mastitis caused by Staphylococcus aureus, but an association was found between 

DRB3*2701-2707 and increased susceptibility to sub-clinical mastitis caused by 

Streptococcus dysgalactiae (Hameed et al. 2008).  Low somatic cell count, implying 

mastitis resistance, was significantly associated (P<0.05) with DRB3*1501-1502 in 

Holstein cows (Sharif et al. 1998); however, conflicting reports have been published 

about the association of DRB3*1501-1502  with resistance to clinical mastitis (Dietz et 

al. 1997; Kelm et al. 1997; Sharif et al. 1998; Starkenburg et al. 1997).  Such 

contradictions may be resolved by sampling larger populations, taking the species of the 

causal microorganism into account, and considering the entire BoLA haplotype rather 

than the alleles of a single locus.   

 Dermatophilosis is an infection of the skin caused by Dermatophilus congolensis, 

a type of actinomycete bacteria associated with Amblyomma variegatum ticks (Maillard 

et al. 2003).  Cattle afflicted with dermatophilosis usually live in tropical environments, 
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show reduced productivity, and have a 15% average mortality rate (Maillard et al. 2003).    

A BoLA class II haplotype containing the alleles DRB3*0301-0302 / DRB3*3401-3402 

and DQB*1804 was strongly associated with susceptibility to dermatophilosis 

(P<0.0001) in a Brahman cattle population (n=568) living on Martinique Island in the 

French West Indies (Maillard et al. 2003).  The cattle were all raised under the same 

environmental conditions with the same exposure to ticks and regular treatment with 

acaricide, but infections of dermatophilosis within the herd ranged from benign to fatal 

(Maillard et al. 2003).  Regardless of the severity of their dermatophilosis infection, cattle 

with the susceptible class II haplotype, DRB3*0301-0302 / DRB3*3401-3402 and 

DQB*1804, were systematically culled (Maillard et al. 2003).  The dermatophilosis 

disease prevalence had reached 0.76 before the cattle were selectively culled, and the 

disease prevalence was reduced to 0.2 two years later (Maillard et al. 2003).  Four years 

after the animals had been culled, the disease prevalence had fallen to 0.02 (Maillard et 

al. 2003).  At the end of this five year period, a dermatophilosis-specific ELISA test 

detected the average antibody prevalence within the population to be 0.98, indicating that 

the cattle were still being challenged by the dermatophilosis disease (Maillard et al. 

2003).  This cattle population continued to maintain the low 0.02 level of disease 

prevalence for at two more years, up until the publication of this research study (Maillard 

et al. 2003).  By selecting against susceptible BoLA haplotypes within a population of 

cattle, individuals at the highest risk of contracting the disease were eliminated.  These 

results may not have been as successful if the authors had chosen to select against an 

allele of a single locus rather than a BoLA class II haplotype. 

 The Bovine Leukemia Virus (BLV) is an oncogenic retrovirus of cattle that 

infects B lymphocytes of blood and milk (Udina et al. 2003).  About 30% of all BLV 

infections lead to the benign sub-clinical stage of proliferating BLV-infected B cells, 

known as persistent lymphocytosis (PL).  Only about 10% of BLV infections develop to 

the fatal clinical stage of lymphosarcoma, but the frequency of lymphosarcoma is about 

1/3 higher in cattle with PL than cattle that are merely carriers of BLV (Juliarena et al. 

2008).  There is no vaccine available for BLV, so the retrovirus continues to spread from 

animal to animal through the transmission of bodily fluids containing infected 

lymphocytes (Udina et al. 2003).  It is estimated that half of all cows belonging U.S. 
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cattle breeds are infected with BLV (Udina et al. 2003), and they have consequently 

become lifelong carriers of the retrovirus (Juliarena et al. 2008).  The spread of BLV 

could be controlled if genetically resistant animals were identified and selectively bred 

within populations (Juliarena et al. 2009).  Early PL disease association studies identified 

a correlation with BoLA classical class I alleles, but these were later discovered to be 

weak associations across breeds and at the population level (Juliarena et al. 2008).  The 

association with alleles of classical class I genes was attributed to prolonged BoLA 

haplotypes that spanned the entire length of the MHC into the class II region (Udina et al. 

2003).  After considering allele segregation and BoLA haplotype structure, PL disease 

association was investigated in genes of the BoLA class II region (Juliarena et al. 2008).  

Haplotypes were subsequently defined at the class II region for associations with PL 

susceptibility and resistance in Holstein cattle (Zanotti et al. 1996).  The DRB3*0902 and 

DRB3*1701 alleles have been associated with PL resistance and the DRB3*1501 or 

DRB3*1503 allele has been correlated with PL susceptibility (Juliarena et al. 2009).  

Ayrshire and Black Pied cattle from Russia showed an association between PL resistance 

the allele DRB3*0201, which has a deletion of codon 65 in DRB3 exon 2 that changes 

the conformation of the antigen binding site (Udina et al. 2003).  Polymorphisms in the 

promoter region of the BoLA class III TNFα gene may also contribute to the progression 

of BLV infection (Konnai et al. 2006).  

 The susceptibility of cattle to tick infestations is thought to have a heritable 

component, as different breeds of cattle are known to be inherently more resistant to ticks 

than others, but the causal genetic elements remain unknown (Untalan et al. 2007).  Tick 

infestations can expose cattle to many disease causing-pathogens and decrease their 

production value, so understanding the casual genetic basis for tick resistance would aid 

in breeding hosts for parasite resistance and developing effective vaccines (Untalan et al. 

2007).  Untalan et al. analyzed three BoLA microsatellites and exon 2 of DRB3 for 

association with tick resistance in a herd of cattle that had been phenotyped for 

susceptibility to the Lone Star tick, Amblyomma americanum (Untalan et al. 2007).  The 

herd of cattle was comprised of three sires - Bull 12, Bull 13, and Rogers bull – and 72 

dams including five F1 progeny, and 117 calves including five F2 progeny (Untalan et al. 

2007).  Bulls 12 and 13 are full siblings from an embryo transfer that used Simmental 
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semen and Red Poll oocytes (Untalan et al. 2007).  The Rogers bull belonged to the 

Simbrah breed, and the dams were bred with Bos indicus and Bos taurus influence 

(Untalan et al. 2007).  Calves with a second engorgement weight larger than 13.646g 

were designated susceptible, and calves with a second engorgement weight less than 

4.302 were considered resistant (Untalan et al. 2007).  All of the 25 most resistant claves 

and 16 of the 25 most susceptible claves were sired by Bull 12 or Bull 13 (Untalan et al. 

2007).  Bulls 12 and 13 had identical BoLA haplotypes and BoLA recombination events 

were rarely seen in their progeny; however, an association was made between tick 

resistance and the class II region, particularly the DRB3*4401 allele shared by Bulls 12 

and 13 (Untalan et al. 2007). 

 The BoLA region is a candidate for the genetic basis of variation between 

individuals in vaccine response.  BoLA class I genes are important for responding to 

intracellular pathogens like bovine respiratory syncytial virus (Gaddum et al. 2003), 

Brucella abortus (Newman et al. 1996), Theileria annulata (Preston et al. 1999), and 

Theileria parva (McKeever et al. 1999).  Effective vaccines for intracellular pathogens 

require epitopes that can be successfully presented by class I molecules and recognized 

by cytotoxic T cells; however, the extreme variability of BoLA class I genes makes the 

design of epitopes challenging (Glass 2007).  BoLA class II genes may provide a better 

alternative.  Cattle with alleles DRB3*0201 and DRB3*3301, which both have a deletion 

of codon 65 in exon 2 of the DRB3 gene, have shown a higher response to the 

commercial cattle tick vaccine (TickGARD) (Sitte et al. 2002).  A vaccine for Theileria 

parva was successful in cattle with the DRB3*2703 allele (P = 0.027), and unsuccessful 

in protecting against Theileria parva in cattle with the DRB3*1501 allele (P = 0.013) 

(Ballingall et al. 2004b).  The effectiveness of vaccines developed from the Foot and 

Mouth Disease virus (FMDV) was shown to correlate with DRB3 polymorphisms 

(Garcia-Briones et al. 2000), and FMDV peptides were also successfully presented by 

DQA allele 22021 and DQB allele 1301 (Gerner et al. 2009).  Glass et al. has 

demonstrated that FMDV peptides may be presented by DR and DQ molecules, and the 

number of FMDV peptides an animal may present is increased by the interhaplotype 

pairing of duplicated DQA and DQB genes (Glass et al. 2000).  In conclusion, BoLA 

haplotypes have been correlated with resistance and susceptibility to a variety of 
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pathogens.  A thorough understanding of the genetic history of various cattle breeds will 

determine if specific BoLA haplotypes have been selectively maintained or are simply a 

consequence of population history. 

 

The Genetic History of Domestic Cattle 

The Influence of Cattle Domestication on Human Cultural and Genetic Evolution 

Cattle domestication is closely associated with the transition of human 

civilizations from the nomadic practice of hunting and gathering to a more settled way of 

life sustained by agriculture.  Around the time of the last ice age, as the climate became 

warmer and more seasonal, human agricultural practices appear to have emerged 

independently in nine areas of four continents between the years of 8500 and 2500 B.C. 

(Diamond 2002).  The domestication of animals, including cattle, occurred early in this 

period.  The development of agriculture during this short 6,000 year time span in human 

history is attributed to technological advances that allowed for the processing and storage 

of wild food, competition between different human societies, and the need to feed and 

sustain an increasing population size (Diamond 2002).   

Domestic cattle provided products such as meat, dairy, and leather, maintained 

grasslands, and served as draft animals for many human societies.  In addition to 

influencing the transformation of human culture, the domestication of cattle has also 

placed certain selective genetic pressures on human populations.  The human diet has 

changed considerably since the emergence of agriculture and cattle domestication 10,000 

years ago, and it is probable that humans are still evolving to adjust to dietary changes 

such as an increased quantity of red meat with a higher fat content (Naughton et al. 1986) 

and the adult consumption of milk (Tishkoff et al. 2007). 

Virtually all humans are born with the ability to digest lactose, the primary 

carbohydrate of milk, into glucose and galactose because the enzyme lactase is expressed 

at high levels in the small intestine (Tishkoff et al. 2007).  Levels of this enzyme 

normally decrease as an infant matures and no longer needs to digest milk from their 

mother.  Evidence suggests that the convergent evolution of two different haplotypes in 

human populations in Europe and Africa prolonged the expression of the lactase enzyme 

and, therefore, gave adults the ability to digest lactose (Tishkoff et al. 2007).  The 
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haplotypes conferring the ability to digest lactose throughout adulthood were found in 

highest frequency in human populations that had a history of raising domestic dairy cows 

and lowest frequency in the non-pastoralist populations of Asia and Africa (Beja-Pereira 

et al. 2003; Tishkoff et al. 2007).  The observance of high levels of linkage 

disequilibrium surrounding the lactase-persistent alleles is consistent with the notion of 

selective sweeps in human populations at the time when cattle domestication was 

incorporated into their culture (Tishkoff et al. 2007).   

 

The Domestication of Wild Aurochs 

The now extinct wild auroch, Bos primigenius, is considered the founder of 

modern cattle breeds.  Aurochs depicted in Paleolithic rock and cave paintings show that 

they were an important source of food for humans and may have also played a role in 

rituals (Gotherstrom et al. 2005).  The auroch was aggressive and much larger than 

modern domestic cattle.  Julius Caesar contributes the following description of the 

aurochs he encountered within the Hercynian (Black) Forest of Germany in 53 B.C., 

“They are a little below the elephant in size, and of the appearance, color, and shape of a 

bull.  Their strength and speed are extraordinary; they spare neither man nor wild beast 

which they have espied.  These the Germans take with much pains in pits and kill them.  

The young men harden themselves with this exercise, and practice themselves in this kind 

of hunting, and those who have slain the greatest number of them, having produced the 

horns in public, to serve as evidence, receive great praise (Caesar 1869).” 

Fossil evidence suggests that aurochs evolved about 1.5 to 2 million years ago in 

India from a precursor species, Bos acutifrons, and later spread to Europe and North 

Africa (Hassanin and Douzery 1999; Pilgrim 1939; Pilgrim and Hopwood 1947).  

Analysis of genetic variation among modern cattle breeds suggests that aurochs had a 

very large effective population size (Gibbs et al. 2009).  Three genetically discrete 

subspecies of aurochs have been identified across diverse geographical areas including 

Europe, Asia, and Africa: Bos primigenius primigenius, Bos primigenius namadicus, and 

Bos primigenius opisthonomus (Loftus et al. 1994).  Bos primigenius primigenius 

survived the longest, living into the Medieval times in Europe and allegedly dying in 

Poland in 1627 (Gotherstrom et al. 2005).  Most large mammalian species survived on 
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the continent of Eurasia after the Late-Pleistocene extinctions in Australia and the 

Americas, and Eurasia subsequently became the primary location of mammalian 

domestication (Diamond 2002).  

Because aurochs covered such a large geographical area over a considerably long 

period of time, it is plausible that they were domesticated in more than one time and 

place.  It is widely believed that there were at least two separate domestication events that 

occurred in two different auroch subspecies that gave rise to modern Bos indicus and Bos 

taurus cattle (Loftus et al. 1994).  Bos indicus and Bos taurus cattle are often described as 

two subspecies because they are able to hybridize and produce fully fertile male and 

female offspring (Gray 1972).  Bos indicus cattle are also referred to as “zebu” and have 

characteristic humps over the top of their shoulders and neck that probably evolved to 

adapt to the arid climate during a time when their ancestors lived on the edge of the Great 

Salt Desert of Iran (Loftus et al. 1994).  Bos indicus cattle often have horns that turn 

upward, large ears that hang downward, dewlaps with a large amount of excess skin, and 

well-developed sweat glands that freely perspire to increase their tolerance for heat and 

their ability to repel insects (OSU 1995).  Bos indicus and Bos taurus diverged at least 

100,000 ago and possibly as long as one million years ago (Bradley et al. 1996; Loftus et 

al. 1994; MacHugh et al. 1998).  This means that the ancestors of Bos indicus and Bos 

taurus separated long before the occurrence of any livestock domestication events.  More 

insight into the complex history of modern domestic cattle has been achieved through 

evolutionary genetic research. 

 

Mitochondrial DNA Analysis of Domesticated Cattle and Aurochs 

Mitochondrial DNA (mtDNA) is ideal for evolutionary studies because it is 

maternally inherited, non-recombining, generally has a higher mutation rate than nuclear 

DNA, and each mammalian cell contains up to 10,000 copies of mtDNA as opposed to 

one or two copies of nuclear DNA (Robin and Wong 1988).  The increased copy number 

of mtDNA is especially useful when studying ancient DNA that has been degraded and 

consequently has lost much of its original material, such as mtDNA extracted from the 

bones of extinct aurochs.  The mitochondrial displacement loop, or the D-loop, is 

frequently used in evolutionary studies because it has the highest rate of nucleotide 



 41
 

divergence (Excoffier and Yang 1999).  Analysis of mitochondrial D-loop variation has 

been particularly useful in characterizing the early events of cattle domestication. 

With the exception of a few observations of European aurochs transmitting their 

mtDNA haplotypes to Bos taurus cattle (Achilli et al. 2008), mitochondrial D-loop 

sequences from the extinct European auroch were found to cluster separately from those 

of modern cattle (Edwards et al. 2007; Troy et al. 2001).  Maternal lines of European Bos 

taurus cattle are thought to have come from a lineage of auorchs in the Near East (Troy et 

al. 2001).  The earliest archeological remains of domesticated cattle date to 5800 B.C. 

and were found in Anatolia, a cultural center of the Near East known to be the largest 

preliterate site in Asia in the 6th and 7th millennium B.C. (Perkins 1969).  A 

comparatively large amount of ancestral variation is expected to be retained in the area 

where cattle domestication first occurred, and it was demonstrated that breeds within the 

Middle East and Anatolia show higher mitochondrial haplotype diversity than breeds 

outside the area (Troy et al. 2001).  This data supports the widely held view that Bos 

taurus cattle were domesticated from the auroch subspecies Bos primigenius primigenius 

in civilizations of the Near East about 8,000 - 10,000 years ago.   

A scientific consensus has not yet been reached regarding the total number and 

location(s) of cattle domestication events.  It is speculated that the domestication of the 

auroch subspecies, Bos primigenius namadicus, occurred in modern-day Pakistan and 

gave rise to Bos indicus cattle (Loftus et al. 1994; MacHugh et al. 1998).  Bradley et al. 

demonstrated that Bos indicus mitochondrial sequences were distinct from both European 

and African Bos taurus breeds (Bradley et al. 1996).  Analysis of mtDNA in cattle breeds 

native to Japan, Mongolia, Korea, and China prompted the suggestion of another 

independent cattle domestication event in East Asia (Lai et al. 2006; Mannen et al. 2004).  

The origins of African cattle are complex as they have emerged from nomadic 

and pastoral migrations and consecutive introductions of animals from the Middle East, 

Arabia, and the Indian subcontinent (Loftus et al. 1994).  Bos indicus cattle were 

probably brought to Africa about 4,000 years ago and became widespread around 700 

A.D. with Arabic migrations to North and East Africa (MacHugh et al. 1998). It is 

possible that there was an additional domestication event in Africa that created modern 

African Bos taurus cattle (MacHugh et al. 1998).  In support of this hypothesis, variations 
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in mtDNA were identified and associated with population expansions in Europe in 5000 

B.C. and Africa in 9000 B.C. that would have followed two separate domestication 

events and the advent of cattle herding (Bradley et al. 1996).  It was also noted that 

mitochondrial DNA sequences from most African Bos taurus cattle breeds cluster around 

a haplotype that is absent from European Bos taurus breeds (Troy et al. 2001).   

Mitochondrial sequences analyzed by Loftus et al. fell into two distinct lineages 

that did not correspond to the Bos taurus and Bos indicus classification, but all European 

and African Bos taurus and Bos indicus breeds belonged to one lineage, and all Indian 

Bos indicus breeds belonged to the other (Loftus et al. 1994).  One explanation for 

absence of Bos indicus mtDNA in African cattle is that rare mitochondrial lineages were 

lost in the frequent famines and epidemics that have afflicted Africa.  It has been 

demonstrated that populations that have gone through bottlenecks can lose extensive 

mitochondrial genetic diversity while retaining their nuclear variability (Wilson et al. 

1985).   

A more popular explanation for why Loftus et al. found only taurine 

mitochondrial genomes in the surveyed African breeds is that male Bos indicus cattle 

crossbred with their female Bos taurus ancestors, and the male Bos indicus influence is 

therefore not detected in maternally inherited mtDNA (Loftus et al. 1994).  A study using 

genomic microsatellites to evaluate the admixture of African cattle populations concluded 

that there had been male introgression of zebu-specific alleles in African Bos taurus 

cattle (MacHugh et al. 1998).  This would explain why many African Bos taurus breeds 

share morphological similarity with Bos indicus cattle.  African Bos taurus breeds also 

demonstrate a greater tolerance to heat and disease than European Bos taurus breeds 

(Bradley et al. 1996; Freeman et al. 2004).  The tsetse fly is a large biting fly of mid-

continental Africa that is also a vector for trypanosomes and is responsible for the spread 

of trypanosomiasis, also known as sleeping sickness, among most cattle breeds.  

However, West African Bos taurus breeds can thrive in tsetse fly-infested areas because 

they have developed a resistance to trypanosomiasis (Freeman et al. 2004).  This unique 

inherent resistance, known as trypanotolerance, is not found in any of the Bos indicus or 

European Bos taurus breeds (MacHugh et al. 1998).  So although African cattle have 
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more mtDNA similarity to European Bos taurus breeds than Bos indicus breeds, modern 

African Bos taurus breeds are distinguishable from European Bos taurus breeds.   

 

Y Chromosome DNA Analysis of Domesticated Cattle and Aurochs 

Since evolutionary studies utilizing mtDNA are not informative for male 

inheritance, the Y chromosome is useful for phylogenetic studies because it is paternally 

inherited and undergoes a limited amount of recombination.  Despite fewer cellular 

copies of the Y chromosome in comparison to mtDNA, analysis of markers on the Y 

chromosome has been possible on ancient DNA samples (Gotherstrom et al. 2005). 

Two Y chromosome haplotypes were identified in modern European cattle that 

exhibited a distinct geographical north-south boundary (Gotherstrom et al. 2005).  The 

haplotype of Y chromosomes in Northern European cattle matched the Y chromosome 

haplotype of the ancient European auroch, Bos primigenius primigenius, while the Y 

chromosome haplotype in cattle from Southern Europe differed from the ancient 

haplotype but was found in cattle from the Near East (Gotherstrom et al. 2005).  Bos 

taurus and Bos indicus cattle had different Y chromosome haplotypes, supporting the 

theory that two genetically distinct auroch subspecies gave rise to modern Bos taurus and 

Bos indicus cattle (Gotherstrom et al. 2005). 

Analysis of Y chromosome haplotypes revealed that European aurochs left a 

paternal imprint on modern cattle by mating with early domesticated female cows.  It is 

unlikely that a genetic imprint would remain from a female auroch crossed with a 

domestic bull because the calf would not have stayed with the domestic herd.  

Interbreeding may have been difficult to prevent because wild aurochs co-existed with 

early domesticated cattle.  Another possibility is that cross-breeding with wild ancestors 

was encouraged by early cattle owners to improve their domestic stock.  In any case, 

studies of Y chromosome haplotypes have proven that the origins of domestic cattle are 

far more complicated than what was shown by mtDNA studies alone.   

It is doubtful that the high level of bovine autosomal sequence diversity is fully 

accounted for by a small number of domestication events, so this also lends support to the 

idea of early domestic cattle locally backcrossing with wild ancestors (Vila et al. 2005).  

It seems that there were multiple cattle domestication events of different auroch 
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subspecies followed by continued backcrossing with wild ancestors.  It is unlikely that 

aurochs were the only feral bovids capable of successfully interbreeding with early 

domestic cattle, as modern domestic cattle are capable of hybridizing with various 

members of the Bovini Tribe (Gray 1972). 

 

Phylogeny of the Bovini Tribe 

 Ruminants are characterized by a specialized digestive system with three or four 

stomach compartments that employ microbial fermentation to effectively convert 

complex plant carbohydrates into volatile fatty acids, which are a major source of energy 

(Tellam et al. 2009).  Ruminants represent the largest group of ungulates, or hoofed 

mammals, with a history of expansion and diversification that has created over 190 

ruminant species distributed across the world (Hassanin and Douzery 2003).  The 

phylogenetic classification of ruminants has been challenging because different ruminant 

families have developed the same traits in parallel after several evolutionary radiations.  

Morphological similarities make it difficult to distinguish one divergent species from 

another in the fossil record.  However, genetic studies have substantiated the 

classification of families within the suborder Ruminantia to include Antilocapridae 

(pronghorns), Bovidae (cattle, bison, yaks, water buffalo, sheep, goats, gazelles, and 

antelopes), Cervidae (deer, elk, moose), Giraffidae (giraffes and okapis), Moschidae 

(musk deer), and Tragulidae (chevrotains) (Hassanin and Douzery 2003).   

The Bovidae family is comprised of 128 species and 45 genera that are further 

grouped into 14 tribes (Allard et al. 1992).  Domestic Bos taurus and Bos indicus cattle 

belong to the subfamily Bovinae and the tribe Bovini.  Other members of the Bovini tribe 

include Bos gaurus (wild gaur), Bos frontalis (domestic gaur known as gayal or mithan), 

Bos javanicus (banteng), Bos mutus (yak), Bos sauveli (kouprey), Bison bison (North 

American bison), Bison bonasus (European bison or wisent), Bubalus bubalis (domestic 

Asian water buffalo), Bubalus arnee (wild Asian water buffalo), Bubalus depressicornis 

(lowland anoa), Bubalus quarlesi (mountain anoa), Bubalus mindorensis (tamaraw), 

Syncerus caffer (African buffalo) and the extinct Bos primigenius (auroch) (Gallagher et 

al. 1999a; Hassanin and Douzery 1999; Hassanin and Ropiquet 2004; Nguyen et al. 2008; 

Ritz et al. 2000).   
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Mitochondrial studies demonstrate that bison, yak, gaur, and banteng are all more 

divergent than Bos indicus and Bos taurus are from each other (Loftus et al. 1994).  It is 

estimated that the Bubalus and Syncerus genera diverged 6.9 to 7.7 million years ago, 

while the Bos and Bison genera split between 3.3 and 4.8 million years ago (Hassanin and 

Douzery 1999).   Based on the sequencing results of 15 autosomal genes, these genera 

have been grouped into the following clades: 1) all buffalo in Bubalus and Syncerus, 2) 

all Bos excluding domesticated cattle and yak, 3) all domesticated cattle, and a possible 

fourth clade of bison and yak (Hassanin and Ropiquet 2004; MacEachern et al. 2009).  

The clustering of yak with bison prompted the suggestion that yak be removed from the 

Bos genus and reassigned to the Poephagus genus (Nijman et al. 2008).   

 Certain polymorphisms of bovine autosomal gene sequences were discovered to 

be highly conserved between the subtribes of Bubalina (Bubalus and Syncerus) and 

Bovina (Bos and Bison) (MacEachern et al. 2009).  The polymorphisms were not linked 

over long distances, so it is unlikely that they were introduced by recent introgression.  It 

is more likely that the polymorphisms were present in the last common ancestor of 

Bubalina and Bovina about 5-8 million years ago (MacEachern et al. 2009).  MacEachern 

et al. estimates that the split of Bubalina and Bovina subtribes occurred within a very 

large and extremely polymorphic population (MacEachern et al. 2009).  After the 

separation of the two subtribes, autosomal sequence polymorphisms probably underwent 

lineage sorting - the assortment of ancestral genetic variation into different lineages 

resulting in a biased distribution of alleles in descendant populations (MacEachern et al. 

2009).  Although specific polymorphisms and sequences may be conserved, there are 

characteristic karyotypic differences in diverse members of the Bovini tribe.   

A fundamental number of 56-58 autosomal chromosome arms is retained by most 

members of the Bovidae family, but the diploid chromosome number ranges from 2n = 

30 to 2n = 60 (Chaves et al. 2004; Gallagher and Womack 1992).  This variation in 

chromosome number is attributed to Robertsonian translocations, or centric fusions, that 

have joined acrocentric chromosomes to form metacentric or submetacentric 

chromosomes in different bovid species.  The species of Bos and Bison probably possess 

a set of autosomal chromosomes that is most similar to the ancestral Bovidae (Gallagher 

et al. 1999a).  Both Bos taurus and Bos indicus cattle have a diploid chromosome number 
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of 2n = 60 with 58 acrocentric autosomes (Gallagher et al. 1999a).  In contrast with the 

evolution of autosomal chromosomes, the evolution of sex chromosomes in the Bovini 

tribe is the result of more complex rearrangements.   

 The Y chromosomes of the Bovini tribe vary in both size and centromeric index 

(Gallagher et al. 1999a; Goldammer et al. 1997; Meo et al. 2005).  Bos taurus cattle, 

gaur, and banteng have metacentric Y chromosomes, whereas Bos indicus cattle, 

American bison, European bison, water buffalo, African buffalo, and the lowland anoa 

have acrocentric Y chromosomes (Gallagher et al. 1999a; Goldammer et al. 1997; Meo et 

al. 2005).  A close relationship between the Syncerus and Bubalus genera is suggested by 

the presence of X-specific repetitive DNA on both of their Y chromosomes (Gallagher et 

al. 1999a).  As observed in the Y chromosome, the placement of the centromere and the 

relative size of the X chromosome is variable within the Bovini tribe, though marker 

order on the X chromosome seems to be conserved (Chaves et al. 2004; Gallagher et al. 

1999a).  Bos and Bison genera share submetacentric X chromosomes, while water 

buffalo, lowland anoa, and African buffalo have acrocentric X chromosomes (Gallagher 

et al. 1999a; Meo et al. 2005).  Acrocentric X and Y chromosomes are considered to be 

the ancestral state of the Bovidae family (Gallagher et al. 1999a).   

Genetic and karyotypic similarity enables several of the domesticated and wild 

species of the Bovini tribe to interbreed.  Interbreeding between separate populations or 

species of bovids may be genetically advantageous because it reduces the detrimental 

effects of inbreeding depression and provides hybrids with an increased level of fitness 

(Frankham and Loebel 1992).  Within the Bovini Tribe, males are the heterogametic sex 

with XY sex chromosomes and females are the homogametic sex with XX sex 

chromosomes.  Haldane’s rule states, “When in the F1 offspring of two different animal 

races one sex is absent, rare, or sterile, that sex is the heterozygous [heterogametic] sex 

(Haldane 1922).”   In accordance with Haldane’s rule, crosses between different species 

of the Bovini tribe often result in fully fertile female offspring and sterile male offspring.  

However, future generations of the hybrid may become fully fertile and reproductively fit 

even if the F1 generation is not (Arnold and Hodges 1995).  Cattle are able to produce 

fully fertile female offspring and sterile male offspring by interbreeding with banteng, 

gaur, yak, and bison (Gray 1972).  
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Domestic bantengs are also referred to as Bali cattle and have largely hybridized 

with Bos indicus cattle in South-East Asia since as early as 500 A.D. (Bradshaw and 

Brook 2007; Nijman et al. 2003).  Hybridization with domesticated cattle is now 

considered a threat to the genetic purity of the endangered banteng.  Unlike the domestic 

bantengs of Asia, the feral banteng populations in northern Australia do not show any 

evidence of introgression with domestic cattle (Bradshaw and Brook 2007).  However, 

the wild banteng population has very low levels of genetic diversity because the founder 

population consisted of only 20 domestic bantengs that were released in 1849 from a 

failed British military outpost in Australia (Bradshaw et al. 2007).  The Madura zebu 

breed is a speculated to be a hybrid of banteng and Bos indicus cattle (Lenstra and 

Bradley 1999).   

The kouprey is now thought to be an extinct, but it previously occupied  

Cambodia and morphologically appeared to be a cross between zebu cattle and the 

banteng (Galbreath et al. 2006).  Mitochondrial haplotypes of the kouprey could be 

evolutionary derivatives of banteng mitochondrial haplotypes (Galbreath et al. 2006).  

The debate continues over whether the kouprey was a wild ox with some combination of 

banteng, Bos indicus, and Bos taurus ancestry (Galbreath et al. 2006), or a unique species 

of wild ox without any hybrid introgression (Hassanin and Ropiquet 2004, 2007).  

Though most accounts of the kouprey describe it as feral, there is evidence that the 

kouprey may have been domesticated in Cambodia (Hassanin et al. 2006).   

The wild gaur, Bos gaurus,  is the largest, heaviest, and most powerful member of 

the Bovini tribe (Choudhury 2002).  The three wild subspecies of gaur include the most 

endangered subspecies Bos gaurus laosiensis in Southeast Asia, the most populous 

subspecies Bos gaurus gaurus in India and Nepal, and the smallest subspecies Bos gaurus 

hubbacki in Thailand and Malaysia (Nguyen et al. 2007).  Wild gaurs were probably 

domesticated about 2500 years ago in India (Nguyen et al. 2007).  Today the domestic 

gaur, Bos frontalis, is commonly known as gayal or mithan and is completely interfertile 

with the wild gaur.  The gayal may be a derivative of a gaur-cattle cross as the gayal is 

able to breed with domestic cattle, although F1 females are usually the only fertile 

offspring of this cross (Nguyen et al. 2007).  The selembu cattle of Bhutan and India are 
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created from gayal–zebu crosses.  The fertile selembu females are used for dairy while 

the sterile males are draft animals (Lenstra and Bradley 1999).    

 Yaks primarily live on the Qinghai-Tibetan Plateau where they were 

domesticated about 5000 years ago from a single wild population, and both wild and 

domesticated yaks exist today (Gu et al. 2007; Guo et al. 2006).  The distinctive grunt of 

the yak inspired its scientific name Bos grunniens, and Bos mutus since wild yaks grunt 

only during mating season (Lenstra and Bradley 1999).  Hybrids of the yak and Bos 

taurus cattle are referred to as yakows and are usually crosses of taurine bulls and yak 

cows (Lenstra and Bradley 1999).  Like gaur-cattle hybrids, only female F1 yakows can 

produce viable offspring and male hybrids are always sterile (Lenstra and Bradley 1999).  

Introgression of yak mtDNA was identified in the Diqing cattle breed of China (Yu et al. 

1999) and in the Dwarf Lulu cattle breed of Nepal (Takeda et al. 2004). 

 Bison experienced their highest population level around 30,000 to 45,000 years 

ago.  The bison population size underwent a sharp decline about 10,000 years ago 

concurrent with dramatic changes in their climate and the first introduction of humans to 

their environment (Drummond et al. 2005; Shapiro et al. 2004).  Around this time, both 

humans and bison are believed to have crossed the Bering Land Bridge into North 

America (Shapiro et al. 2004).  Bison species that are now extinct include Bison antiquus, 

Bison latifrons, Bison occidentalis, and Bison priscus  (Pushkina and Raia 2008; Wilson 

et al. 2008; Wilson et al. 2009).  Two species of bison still exist today - the North 

American bison, Bison bison, and the European bison or wisent, Bison bonasus (Shapiro 

et al. 2004).    

 The plains bison, Bison bison bison, and the wood bison, Bison bison athabascae, 

were the only North American bison subspecies to survive a severe population bottleneck 

just 200 years ago (Shapiro et al. 2004).  North American bison may have been hunted to 

the point of extinction if it had not been for five private ranches in the U.S. that captured 

and raised no more than 100 feral North American bison in the late 1800s (Coder 1975).  

Nearly all contemporary North American bison can trace their ancestry to the bison of 

these five private herds or the approximately 30 wild bison that managed to survive in 

Yellowstone National Park (Halbert and Derr 2007). 
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 North American bison, Bison bison, and European bison, Bison bonasus, share 

similar Y chromosome sequences and AFLP patterns, and they interbreed to produce 

fully fertile male and female offspring (Verkaar et al. 2004).  However, studies of 

mtDNA show that the European bison is quite divergent from the North American bison, 

and the mitochondrial lineage of European bison may have been associated with Bos  

indicus cattle (Verkaar et al. 2004).  European bison underwent a severe population 

bottleneck and almost became extinct in 1922 (Lenstra and Bradley 1999).  The current 

population is thought to have come from only 12 founder individuals that began a rescue 

breeding program in 1924 (Perzanowski and Olech 2007).  Consequently, today’s 

European bison population maintains low levels of genetic diversity that are responsible 

for high levels of infertility and disease susceptibility (Wojcik et al. 2009). 

 Human-controlled breeding of Bos taurus and Bison bison has successfully 

created fertile female F1 offspring, and the subsequent backcrossing of F1 females to 

bison bulls generates fully fertile male and female bison-cattle hybrids (Dary 1974; 

Halbert and Derr 2007).  Hybrids of domestic cattle and bison have been referred to as 

cattalo or beefalo (Dary 1974).  The introgression of mitochondrial and nuclear cattle 

DNA has been identified in most North American bison herds (Halbert and Derr 2007; 

Halbert et al. 2004; Halbert et al. 2005; Vogel et al. 2007; Ward et al. 2001).  Like North 

American bison, European bison can also reproduce with domestic cattle.  A study by 

Ward et al. detected Bos indicus mtDNA in yak, and both African and European Bos 

taurus mtDNA in North American and European bison (Ward et al. 1999).  While 

members of the Bos and Bison genera can interbreed, karyotypic differences prevent 

modern domestic cattle from successfully reproducing with members of the Bubalus or 

Syncerus genera.   

The smallest buffalo in the world is the anoa, which has the approximate size and 

shape of a goat or deer (Iannuzzi and Di Meo 2009).  The anoa lives on the island of 

Sulawesi in Indonesia and is in danger of extinction (Iannuzzi and Di Meo 2009).  The 

two subspecies of anoa are the lowland anoa, Bubalus depressicornis depressicornis, and 

the mountain anoa, Bubalus depressicornis quarlesi (Schreiber et al. 1999).  The 

endangered tamarao, Bubalus mindorensis, lives on the Philippine islands and has been 

frequently confused with the anoa, but it is considered a separate subspecies of the water 
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buffalo (Kuehn 1986).  The domestic water buffalo, Bubalus bubalis, contains two major 

subspecies - river buffalo and swamp buffalo - which differ from each other in 

phenotype, behavior, and karyotype (Kumar et al. 2007).  Despite these differences, the 

swamp and river buffalo are able to successfully hybridize with each other, and there may 

even be a zone in Southeast Asia for hybrid buffalo (Kumar et al. 2007; Lei et al. 2007).  

Two different domestication events probably gave rise to the river and swamp buffalo 

subspecies (Kumar et al. 2007; MacEachern et al. 2009).  River buffalo are located on the 

Indian subcontinent, the Middle East, and Eastern Europe, while swamp buffalo are 

found across China, Bangladesh, Southeast Asia, and northeast India (Kumar et al. 2007).  

The wild Asian water buffalo, Bubalus arnee, still exists but is highly endangered 

(Flamand et al. 2003; Lenstra and Bradley 1999).   

The African buffalo is considered dangerous to humans and has never been 

domesticated (Lenstra and Bradley 1999).  The following are three subspecies of African 

buffalo: the Cape buffalo, Syncerus caffer caffer, located on the savannahs of eastern and 

southern Africa; the forest buffalo, Syncerus caffer nanus, living in the rain forests of 

western and central Africa; and the West African buffalo, Syncerus caffer brachyceros, 

found in the savannahs of Sudan (Van Hooft et al. 2002).  The subspecies may interbreed, 

but the F1 offspring often have reduced fertility due to unbalanced gametes (Iannuzzi and 

Di Meo 2009).  African buffalo populations have suffered from rinderpest epidemics and 

habitat fragmentation, but this does not appear to have affected their genetic diversity 

(Van Hooft et al. 2000).   

 

Formation of Diverse Cattle Breeds 

A distinct genetic history fashioned every modern cattle breed to acquire its own 

unique characteristics.  The earliest ancestors of each breed were derived from the 

domestication of a particular auroch subspecies that subsequently adapted to its 

environment and the artificial selection pressures imposed on it by man.  Each breed may 

have also been influenced by the crossing of their breed stock to ancient wild aurochs and 

any number of other local bovine species.  This has created a diverse array of cattle 

breeds with a large amount of genetic diversity.  A true cattle breed possesses 

distinguishing and uniform characteristics that are consistently passed on to their 
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offspring.  Most breeds have corresponding breed associations that determine whether or 

not an individual is qualified for registry within their breed.   

There are currently over 800 recognized cattle breeds in the world (OSU 1995).  

These breeds are commonly classified as Bos indicus, European Bos taurus, or African 

Bos taurus, and they may also be divided into groups based on their suitability to produce 

beef or dairy products.  Many European Bos taurus breeds such as Simmental, Hereford, 

Red Poll, White Park, Highland, Galloway, Angus, Red Angus, Dexter, Salers, Limousin, 

Charolais, Maine-Anjou, and Gelbvieh have been bred for quality beef production.  A 

selection of European Bos taurus cattle have been bred for excellence in dairy production 

and include Holstein, Shorthorn, Brown Swiss, Guernsey, Jersey, Normande, Norwegian 

Red, Kerry, and Ayrshire.  Bos taurus breeds developed elsewhere include the 

Romosinuano of Colombia, the Texas Longhorn of the United States, the N’Dama of 

Western Africa, and the Sheko of Eastern Africa.  The Brahman, Gir, Nelore, Sahiwal, 

and Tharparkar are Bos indicus cattle breeds that were formed in India and Pakistan.  The 

Brangus, Beefmaster, and Santa Gertrudis cattle breeds originated in the United States 

from crossbreeding Bos taurus and Bos indicus cattle. 

The breed formations of Hereford, Red Poll, White Park, and Shorthorn took 

place in England.  The Hereford breed was founded in England around 1750 with the 

purpose of efficiently and economically converting local grass to beef during the British 

industrial revolution (OSU 1995).  Today, Hereford cattle are renowned for reaching 

early maturity and are used across the world for beef production (Gibbs et al. 2009; OSU 

1995).  The Red Poll breed was created in England during the 18th century by crossing 

the now extinct Norfolk Red and Suffolk Dun, although Galloway and Devon cattle may 

have also influenced the development of the breed (OSU 1995).  Red Poll cattle are used 

for both beef and dairy production and are uniformly red in coat color and polled, 

meaning they are without horns (OSU 1995).  White Park cattle are horned and have 

white coats with darker colored points on their ears, nose, eyes, tongue, teats, and feet 

(OSU 1995).  White cattle with colored points were described 2,000 years ago in Irish 

sagas, and they were also mentioned in laws written by a series of Welsh rulers from 856 

A.D. to 1197 A.D. (OSU 1995).  The White Park breed may have been imported to 

Britain or directly descended from the “Wild White Bull” that inhabited the forests of the 
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British Isles, but it is genetically most similar to the Galloway and Highland breeds of 

Scotland (OSU 1995).  The Shorthorn breed originated on the northeastern coast of 

England as early as 1580, but accurate records of the breed were not kept until after 1750 

(OSU 1995).  Shorthorns bred for milking were brought to the United States in 1783 and 

were favored by pioneers in Virginia because of their meat, milk, and strength (OSU 

1995).  Today Shorthorn cattle are red, red-and-white, or roan in coat color and are found 

in greatest numbers on the British Isles, the United States, and Australia (OSU 1995). 

The Highland, Galloway, Angus, Red Angus, and Ayrshire cattle breeds were 

founded in Scotland.  Highland cattle have adapted to the harsh environment of the 

Scottish Highlands, and in 1884 they were the first cattle breed to be officially registered 

in a herd book (OSU 1995).  The Highland breed is horned, has long hair around its eyes, 

provides lean yet marbled meat, is docile in temperament, and is also very intelligent 

(OSU 1995).  Highland cattle are hardy and easy to maintain because they have 

developed the ability to resist disease and physically thrive in very hot or cold 

temperatures with low quality food and little to no shelter (OSU 1995).  Galloway cattle 

are described in a historical document of 1573 as large oxen living in southern Scotland 

(OSU 1995).  The Galloway breed has a dense hair coat consisting of a long outer coat 

that may be a range of different colors and a soft insulating and waterproofing undercoat 

(OSU 1995).  Galloway cattle have a long lifespan, calve easily, can utilize coarse 

grasses to create tender beef, and do not gain excessive layers of outside fat (OSU 1995).  

The formation of the Angus breed began in Scotland around the last half of the eighteenth 

century (OSU 1995).  Today Angus cattle are found around the world and are known for 

their black coat color and excellent meat quality (Gibbs et al. 2009).  The Red Angus 

breed was established in 1954 for the sake of Angus cattle that were not eligible for the 

Angus registry because they exhibited the recessive red coat color instead of the 

dominant black coloration (OSU 1995).  Red Angus cattle have the same ancestry as 

black Angus cattle and differ only in coat color.  The Ayrshire breed was founded in 

Scotland before the year 1800 and probably has genetic relationships with the Holstein 

and Shorthorn breeds (OSU 1995).  Ayrshire cattle are strong, adaptable, and medium-

sized cattle that have red and white coat colors and excel at grazing and producing milk 

with moderate levels of butterfat (OSU 1995). 
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Ireland is the native land of the Dexter and Kerry breeds.  The Dexter breed 

developed in southern Ireland where small land owners found Dexter cattle to be ideal 

because their hardiness and small size gave them the ability to survive on small plots of 

land with little shelter (OSU 1995).  Dexter cattle are usually black in color, 36 to 44 

inches tall at the shoulder, have high fertility rates, and may be used for beef or dairy 

production (OSU 1995).  Though the genetic origins are unclear, the Dexter breed may 

have been derived from a cross of Kerry or Devon cattle (OSU 1995).  It is probable that 

the Kerry breed descended from the Celtic Shorthorn, which was imported to Ireland as 

early as 2000 B.C (OSU 1995).  Kerry cattle are small, fine-boned dairy animals with a 

long life span and a black coat color (OSU 1995).  The Kerry breed is globally sparse, 

and as of 1983 there were only 200 Kerry cattle worldwide (OSU 1995). 

The Salers, Limousin, Charolais, Normande and Maine-Anjou cattle breeds 

originated in France.  The Salers breed was founded in central France and has been 

depicted in 7,000 year old cave paintings, making Salers one of the oldest and most 

genetically pure of all European breeds (OSU 1995).  Salers cattle have excellent carcass 

merit, demonstrate maternal efficiency, possess a dark red coat color and resemble 

ancient Egyptian red cattle (OSU 1995).  Another one of the oldest breeds of cattle is the 

Limousin, which also originated in France and is currently raised for beef in France, the 

United Kingdom, and North America (Gibbs et al. 2009).  Limousin cattle have a golden-

red coat color and are sturdy animals, as they have adapted to thrive in an area of rocky 

soil and harsh climate (OSU 1995).  The Charolais breed began in France as early as 878 

A.D. and now resides in France, North America, Brazil, and South America (Gibbs et al. 

2009; OSU 1995).  Charolais cattle are known for their white coat color, large size, 

substantial muscling, and rapid growth rate (OSU 1995).  Viking conquerors brought 

Normande cattle to Normandy in the 9th and 10th centuries, and the breed evolved to 

provide meat and milk to residents of northwestern France (OSU 1995).  The Normande 

breed was introduced to South America in 1890, and over four million purebred 

Normande cattle reside there today (OSU 1995).  Normande cattle have a medium sized 

frame with excellent body depth and a high mass of muscle that produces a quality 

carcass yield (OSU 1995).  They also reach sexual maturity early, have good fertility and 

mothering ability, and are ample milk producers (OSU 1995).  The Maine-Anjou breed 
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began in southern France early in the 18th century and is the largest of all breeds 

originating in France (OSU 1995).  Maine-Anjou cattle are used in the production of both 

beef and dairy, and they have characteristic dark red coloration with white markings that 

may appear on the head, belly, rear legs, and tail (OSU 1995).   

The Guernsey and Jersey dairy breeds began on the Channel Islands, located off 

the coast of France.  The Guernsey dairy breed originated around 960 A.D. on the 

Channel Islands and is now present throughout North America, the United Kingdom, 

Oceania, and South Africa (Gibbs et al. 2009).  Artificial insemination is frequently used 

in modern Guernsey breeding programs (OSU 1995).  Guernsey cattle do not require as 

much food as other breeds and are known to produce milk containing high amounts of 

protein, butter-fat, and beta-carotene from grazing on pasture grasses (OSU 1995).  The 

Jersey breed also came from the Channel Islands and is one of the oldest dairy breeds, as 

it is thought to have been established as a purebred breed for almost six centuries (OSU 

1995).  Jersey cattle are known for their small size and relatively high yield of milk with 

a large amount of butterfat (Gibbs et al. 2009; OSU 1995).   

The Simmental and Brown Swiss breeds were derived in Switzerland.  The 

Simmental breed is one of the oldest and most widely distributed breeds of cattle in the 

world (OSU 1995).  The breed originated in Switzerland and was exported to Italy as 

early as the 1400s (OSU 1995).  Simmental cattle are known for their rapid growth and 

development rates, red and white spotted coat color, and the production of beef and dairy 

products (OSU 1995).  The Brown Swiss breed began in Switzerland and became a 

prominent dairy breed about one hundred years ago (OSU 1995).  Brown Swiss cattle are 

now found throughout Alpine Europe and the Americas (Gibbs et al. 2009).   

The Piedmontese and Romagnola cattle breeds are descendants of early Bos 

taurus and Bos indicus hybridization events in Italy.  The early auroch ancestors of 

Piedmontese cattle lived in the Piedmonte region of Italy and interbred with Bos indicus 

cattle about 25,000 years ago (OSU 1995).  Today the Piedmontese breed is known for its 

muscularity, double-muscling, and grey-white coat color (Gibbs et al. 2009).  The 

Romagnola breed is thought to have been derived from the cross of the auroch subspecies 

living on the Italian peninsula, Bos primigenius podolicus, and the auorch subspecies that 

gave rise to Bos indicus cattle, Bos primigenius namadicus (OSU 1995).  Romagnola 
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cattle were used for draft work and the production of beef (OSU 1995).  Adult 

Romagnola cattle have ivory-grey colored coats, shaped horns, and are found today in 

Italy, the United States, and Australia (Gibbs et al. 2009).   

Other countries of Western Europe gave rise to Gelbvieh, Holstein, and 

Norwegian Red cattle.  The Gelbvieh breed was established in southern Germany during 

the late 18th or early 19th century (OSU 1995).  Gelbvieh cattle are red in coat color and 

are thought to have outstanding fertility, calving ease, mothering ability, and calf growth 

rate (OSU 1995).  The Holstein breed began in what is now the Netherlands and now has 

a large worldwide distribution (Gibbs et al. 2009).  Holstein cattle are known for having 

the highest milk yield of any breed, coat coloration of black-and-white or red-and-white, 

and the extensive use of artificial insemination in breeding programs (OSU 1995).  

Norwegian Red cattle were given a name designation in 1961, but they are not yet 

considered a true breed because they do not demonstrate external uniformity (OSU 

1995).  Norwegian Red cattle are dual purpose animals used in Norway for both beef and 

dairy, and they are usually red or red pied in coat color (Gibbs et al. 2009).   

Europe is the native homeland for many modern Bos taurus breeds, but there are 

plenty of additional Bos taurus breeds that have developed in different areas of the world.  

The Romosinuano breed originated during the late 1800’s in Colombia (OSU 1995).  

Romosinuano cattle are red-brown in coat color, small in size, docile in temperament, 

polled, and suitable for beef production (OSU 1995).  The Texas Longhorn breed arrived 

in the United States about 500 years ago (OSU 1995).  Texas Longhorn cattle survived on 

primitive ranges in the southwestern portion of the United States without any regulations 

or restraints by man, so the breed was truly fashioned by natural selection and adaptation 

to life in North America (OSU 1995).  Around 1865, Texas Longhorn cattle were moved 

to the western part of the United States to occupy the Great Plains after the almost 

complete destruction of the North American bison population (OSU 1995).  Intensive 

crossbreeding of Texas Longhorn cattle with more “improved” cattle nearly eliminated 

the Texas Longhorn breed by 1900, but it was saved in 1927 through preservation in 

wildlife refuges in Nebraska and Oklahoma (OSU 1995).  The Texas Longhorn breed 

possesses unique and untapped genetic variation that could be used in the future to 

maximize hybrid vigor in the beef industry.  
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African Bos taurus breeds include N’dama and Sheko.  The N’dama breed 

originated in the Fouta-Djallon highlands of Guinea and is currently the most 

representative Bos taurus breed in West Africa (OSU 1995).  N’Dama cattle are 

trypanotolerant, 100 to 120 cm tall at the shoulders with large heads and lyre-shaped 

horns, generally have fawn colored hair and skin, and are used for both beef and milk 

production (Gibbs et al. 2009; OSU 1995).  The Sheko breed was first identified in 1929 

in Ehiopia and is currently raised across East Africa for work and beef production (Gibbs 

et al. 2009).  Sheko cattle are also trypanotolerant, have no horns or only small horns, and 

possess a brown coat color that may have patches of black and white (Lemecha et al. 

2006).  The Sheko breed is considered to be endangered because it continues to 

interbreed with neighboring Bos indicus cattle (Dadi et al. 2008). 

Zebu, or Bos indicus, cattle breeds include the Brahman, Gir, Nelore, Sahiwal, 

and Tharparkar.  The Brahman cattle of India are considered sacred in the Hindu faith 

and cannot be eaten or sold, so it has been difficult to import them into the United States 

(OSU 1995).  The Brahman breed of the United States was primarily derived from the 

Guzerat, Nelore, and Gir breeds imported from India in the late 1800’s (OSU 1995).  The 

U.S. Brahman breed is intermediate in size, has adapted to a wide range of climates and 

types of feed, varies in coat color from white to red to black, has black pigmented skin, 

and demonstrates a high tolerance for heat (OSU 1995).  The Gir is major zebu breed of 

India that originated within the state of Gujerat in southwest India (OSU 1995).  Gir 

cattle have been used in India to locally improve the Red Sindhi and Sahiwal breeds 

(OSU 1995).  Gir cattle produce both dairy and beef, have a domed forehead, and their 

coat colors range from red to white (OSU 1995).  The Indian Ongole breed was the main 

contributor to the development of the Nelore breed (OSU 1995).  Brazil first recognized 

the Nelore breed in 1868, and today Brazil is the largest breeder of Nelore cattle (OSU 

1995).  Nelore cattle have a white to gray coat and loose black skin, can thrive in hot 

climates with low quality food and little water, have a natural resistance to various 

insects, produce lean meat, and show reproductive efficiency and good maternal 

disposition (OSU 1995).  The Sahiwal breed was founded in the Punjab region on the 

border of India and Pakistan (OSU 1995).  Sahiwal cattle were brought to Australia in the 

1950s and influenced the development of the Australian Milking Zebu and the Australian 
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Fresian Sahiwal (OSU 1995).  Sahiwal have the highest milk yield of all zebu breeds, are 

suitable for slow draft work, have a high resistance to ticks and parasites, are heat 

tolerant, and have a reddish brown coat color with occasional white markings (OSU 

1995).  The Tharparkar breed was developed in the Tharparkar district of Sindh in 

Pakistan and was influenced by the Kankrej, Red Sindhi, Gir and Nagori breeds (OSU 

1995).  Tharparkar cattle are used for milk production and draft work, have a medium 

size and strong build, are white or gray in coat color, and require frequent contact with 

humans to keep from becoming wild (OSU 1995).   

The crossbreeding of Bos taurus and Bos indicus cattle has utilized the principle 

of hybrid vigor, or heterosis, wherein the breeding value of the offspring is greater than 

that of their parents.  The Brangus, Beefmaster, and Santa Gertrudis cattle breeds were 

developed in the United States by crossbreeding Bos indicus and Bos taurus cattle.  The 

American Brangus Breeds Association was formed in 1949 (OSU 1995).  Brangus cattle 

are approximately 3/8 Brahman and 5/8 Angus, solid black in coat color, and polled 

(OSU 1995).  The breeding program for Beefmaster cattle began in 1908 on the Lasater 

Ranch, but the headquarters have since moved to Texas (OSU 1995).  Although the exact 

pedigree of the Beefmaster breed founders is unknown, it is estimated that modern 

Beefmaster cattle have less than one-half Brahman and more than one-fourth Hereford 

and Shorthorn breeding (OSU 1995).  The King Ranch of Texas began forming the Santa 

Gertrudis breed in 1910, and the United States recognized Santa Gertrudis as a purebred 

breed in 1940 (OSU 1995).  Santa Gertrudis cattle are a deep cherry-red color and have 

approximately 5/8 Shorthorn and 3/8 Brahman breeding (OSU 1995).   

The complex genetic history of modern cattle breeds has generated a wide range 

of diverse phenotypes.  Ongoing research continues to uncover the genetic basis 

underlying phenotypic traits of cattle like metabolism, lactation, fertility, conformation, 

and disease resistance.  Breed histories should be taken into account when designing 

association studies, as divergent breeds of cattle may have evolved different genetic 

variants resulting in the same phenotype.  The breed history and genetic structure of 

domestic cattle differs from that of the domestic dog, as all modern dog breeds are 

thought to have evolved from a single gene pool of grey wolves in East Asia about 

15,000 years ago (Savolainen et al. 2002).  Recent studies have revealed the gene content 
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and organization of the bovine genome, as well as levels of genetic variation present 

among different breeds of cattle. 

 

The Bovine Genome Project  

The Bovine Genome Sequence 

 Domestic cattle represent the first complete, high-coverage genome sequence of a 

eutherian mammal belonging to the order Cetartiodactyl (Tellam et al. 2009).  The bovine 

genome sequence is important for understanding the history of mammalian evolution and 

the relationship of genetic variants with complex phenotypic traits in cattle.  A 

comprehensive description of the Bos taurus genome sequence was published in 2009 

and was accompanied by many papers analyzing specific attributes of the bovine genome 

(The Bovine Genome Sequencing and Analysis Consortium et al. 2009).  Notably, the 

human genome was discovered to share a greater degree of protein similarity and 

chromosomal conservation with the cattle genome than with any of the sequenced rodent 

genomes.   

The bovine genome was sequenced at a coverage of 7.1x, and the primary source 

of DNA sequence was derived a single inbred Hereford cow, known as L1 Dominette 

(Tellam et al. 2009).  A combination of whole-genome shotgun sequences from L1 

Dominette and bacterial artificial chromosomes (BACs) from L1 Domino, the sire of L1 

Dominette, were used to generate the most recent genome assembly, termed Btau4.0.  

Cattle radiation hybrid maps, whole genome and chromosome-specific linkage maps, 

physical maps anchored by BAC end sequences, expressed sequence tags (ESTs), and 

full length cDNAs were all employed to accurately assemble sequences and orient 

scaffolds within the bovine genome (Tellam et al. 2009).  The Btau4.0 assembly placed 

and validated 90% of the entire Bos taurus genome sequence on all 29 autosomal pairs 

and the X chromosome (The Bovine Genome Sequencing and Analysis Consortium et al. 

2009).  The assembled contigs contained 95% of all available EST sequences, and the 

bovine genome was estimated to be 2.87 Gbp in size (The Bovine Genome Sequencing 

and Analysis Consortium et al. 2009).  The previous bovine genome assembly, Btau3.1, 

was the sequence source for the manual annotation of over 4,000 genes.  The cattle 

genome is estimated to contain at least 22,000 protein-coding genes, and 1,217 of those 
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genes appear to be unique to eutherian mammals (The Bovine Genome Sequencing and 

Analysis Consortium et al. 2009).  Compared to the human genome there is a significant 

reorganization of bovine genes that encode the proteins found in milk, but most of the 

genes involved in mammalian metabolic pathways are conserved in cattle.   

Regions encompassing cattle-specific evolutionary breakpoints were found to 

have a higher density of segmental duplications and repetitive elements, which implies 

that repetitive elements and segmental duplications fashioned the current Bos taurus 

karyotype by processes such as nonallelic homologous recombination (The Bovine 

Genome Sequencing and Analysis Consortium et al. 2009).  Segmental duplications were 

identified within 3.1% of the cattle genome, and 76% contained complete or partial gene 

duplications (The Bovine Genome Sequencing and Analysis Consortium et al. 2009).  

Many of these duplicated genes encode proteins that interface with the external 

environment, such as immune and sensory genes, and an additionally large number of 

duplicated genes are associated with expression in the ruminant placenta (The Bovine 

Genome Sequencing and Analysis Consortium et al. 2009).  Cattle-specific gene 

duplications may have been functionally important for the development of distinct 

ruminant physiology or for rapid adaptation to changes in the surrounding environment.  

The broad duplication and divergence of genes involved in innate immunity, such as β-

defensin and interferon genes, suggests that cattle needed to adapt to a variety of 

infectious disease agents throughout the course of their evolution.  Changes in immune-

related genes may also be related to the development of microbial fermentation or the 

transition to a herd environment with increased rates of disease transmission (The Bovine 

Genome Sequencing and Analysis Consortium et al. 2009). 

 An accurately assembled genome sequence provides future research studies with 

properly ordered genetic markers.  Correct marker order is crucial for studies of linkage 

disequilibrium and haplotype structure.  A haplotype is a stable combination of alleles at 

multiple loci inherited together in a population, and linkage disequilibrium is the 

underlying principle of haplotype structure.  Linkage disequilibrium is the non-random 

association of alleles at multiple loci on the same chromosome within a population.  If 

alleles at different loci are in linkage disequilibrium with one another, then they will 

occur together at a higher frequency than would otherwise be expected.  Polymorphic 
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markers, which are inherited characteristics that occur as two or more traits, are used to 

analyze linkage disequilibrium and haplotype structure.  Single nucleotide 

polymorphisms, microsatellites, SNPSTRs, and repeat elements are examples of different 

types of polymorphic makers. 

 

Single Nucleotide Polymorphisms 

Single nucleotide polymorphisms (SNPs) are sequence sites occupied by more 

than one of four nucleotide bases in different individuals.  The average nucleotide 

mutation rate in humans is estimated to be ~2.5 x 10-8 (Nachman and Crowell 2000).  

There are expected to be 9-10 million SNPs in the human genome with a minor allele 

frequency >0.05 (Frazer et al. 2007).  Over six million SNPs have been validated in the 

human genome, with approximately one SNP occurring every kilobase across the 

autosomes and the X chromosome (http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi 

2009).  SNPs are attractive as genetic markers because they are present in high 

abundance, have a low mutation frequency, and are easily converted to high throughput, 

automated genotyping on “SNP chips.”  A large proportion of haplotype diversity may be 

represented by a small number of SNPs, called tagSNPs, which may be selected for 

placement on a SNP chip (Montpetit et al. 2006).   

 The International HapMap Consortium was formed in 2002 with the intention of 

developing a haplotype map of the human genome that would describe patterns of 

common genetic variation (International HapMap Consortium 2005).  The HapMap 

project was based on the idea that the human genome is comprised of relatively short 

sections of DNA in strong linkage disequilibrium, known as haplotype blocks, which are 

separated by recombination hotspots.  Approximately 80% of all recombination events in 

the human genome occur within recombination hotspots, regions around 2 kb in length, 

that account for 10–20% of the genome (Myers et al. 2005).  In addition to recombination 

hotspots, haplotype blocks are also influenced by mutation, selection, and population 

history (Wang et al. 2002).  Individuals sharing a recent common ancestor are expected to 

have haplotype blocks that extend over longer distances and span multiple recombination 

hotspots.  Genomic regions that have undergone adaptive evolution and recent positive 

selection are also predicted to have extended blocks of linkage disequilibrium (Frazer et 
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al. 2007).   The extended block of linkage disequilibrium surrounding the HLA was 

identified as a region that has undergone adaptive evolution and recent positive selection 

(Frazer et al. 2007). 

The second phase of the human HapMap project genotyped over 3.1 million 

SNPs, approximately one SNP every 1 kb, across individuals belonging to four diverse 

populations including 30 parent-offspring trios from Yoruba in Ibadan, Nigera (YRI), 30 

trios of northern and western European ancestry living in Utah (CEPH), 45 unrelated Han 

Chinese individuals from Beijing (CHB), and 45 unrelated Japanese individuals from 

Tokyo (JPT) (Frazer et al. 2007).  The average human recombination rate is 1 cM per 

1,000 kb; however, recombination rates were discovered to vary on a fine scale across the 

human genome (Myers et al. 2005).  At least one recombination hotspot was identified in 

all human genomic regions larger than 200 kb (Myers et al. 2005).  An average block of 

linkage disequilibrium spanned many SNPs, but each block had a small number of 

common haplotypes.  It is estimated that 1.09 million tagSNPs in the YRI population and 

500,0000 tagSNPs in CEPH, CHB, and JPT populations are needed to capture human 

genome-wide variation (Frazer et al. 2007).  

The genome of the domestic dog, Canis familiaris, has been sequenced and was 

found to be approximately 2.41 Gb in size (Lindblad-Toh et al. 2005).  About 2.5 million 

SNPs were identified by comparing 6% of the reference boxer genome to ten different 

dog breeds (Lindblad-Toh et al. 2005).  Linkage disequilibrium extends over tens of 

kilobases across modern dog breeds and spans several megabases within breeds 

(Lindblad-Toh et al. 2005).  The long haplotype blocks observed in the genome of the 

domestic dog are probably attributed to domestication from a single gene pool and the 

genetic bottlenecks associated with modern dog breed formation (Savolainen et al. 2002).  

It is estimated that 10,000 SNPs would be sufficient to capture all the genetic diversity of 

domestic dogs (Lindblad-Toh et al. 2005).  The genetic diversity within and between 

breeds of cattle is greater than that of domestic dogs, as cattle show more similarity to 

human genetic diversity (Gibbs et al. 2009).   

The Bovine HapMap Project discovered SNPs across the cattle genome by 

comparing the Hereford reference sequence to random shotgun sequences from these six 

cattle breeds: Holstein, Angus, Brahman, Limousin, Jersey, and Norwegian Red (Gibbs et 
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al. 2009).  Only one Bos indicus breed, Brahman, was used in the SNP discovery phase, 

so it is not surprising that many of these SNPs are predominantly taurine and have a 

higher average minimum allele frequency in Bos taurus breeds than in Bos indicus breeds 

(Gibbs et al. 2009).  The Bovine HapMap Consortium analyzed more than 37,470 SNPs 

in 497 cattle from 19 diverse breeds (Gibbs et al. 2009).  A total of 12 European Bos 

taurus breeds were genotyped in the Bovine HapMap Project including Angus, Brown 

Swiss, Charolais, Guernsey, Hereford, Holstein, Jersey, Limousin, Norwegian Red, 

Piedmontese, Red Angus, and Romagnola (Gibbs et al. 2009).  Additionally genotyped 

were two African Bos taurus breeds, N’Dama and Sheko; three Bos indicus breeds, 

Brahman, Gir, and Nelore; and two Bos indicus x Bos taurus hybrid breeds, Beefmaster 

and Santa Gertrudis (Gibbs et al. 2009).  Each breed was represented by at least 24 

animals and one or two parent-offspring trios, with the exception of Red Angus which 

had only 12 animals (Gibbs et al. 2009).  Two anoa, Bubalus quarlesi, and two water 

buffalo, Bubalus bubalis, were genotyped for comparison as outgroups (Gibbs et al. 

2009).  The majority of the SNPs that gave a successful genotyping result in anoa and 

water buffalo were monomorphic (Gibbs et al. 2009). 

 The frequencies of SNP genotypes were analyzed with InSTRUCT (Gao et al. 

2007), and clusters from varying numbers of  presumed ancestral populations (K) were 

found to be consistent with what is known about cattle breed histories (Gibbs et al. 2009).  

At the presumed ancestral population of two (K=2), the Bos taurus and Bos indicus 

breeds were separated, which is consistent with a pre-domestication subdivision, and the 

crossbred breeds, Beefmaster and Santa Gertrudis, showed signatures of admixture 

(Gibbs et al. 2009).  The African Bos taurus breeds, N’Dama and Sheko, clustered 

separately from European Bos taurus breeds at K = 3 (Gibbs et al. 2009).  Higher levels 

of K separated breeds into their own clusters (Gibbs et al. 2009).  In addition to analyzing 

SNPs across the bovine genome, the Bovine HapMap Project sequenced PCR products 

from five genomic regions of two chromosomes in 18 Angus, 16 Holstein, and five 

Brahman animals (Gibbs et al. 2009).  The Holstein and Angus chromosomes were 

estimated to have one SNP every 714 bp, and the Brahman chromosomes were estimated 

to have one SNP every 285 bp (Gibbs et al. 2009).  The lower genetic diversity observed 

within taurine breeds could be the result of low diversity in their ancestral population or 
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strong genetic bottlenecks during their domestication and breed formation (Gibbs et al. 

2009).  Alternatively, this could be reflective of the SNPs being predominantly taurine in 

nature, and the Bos indicus animals were not more genetically diverse but simply showed 

different fixed alleles at those positions.  Overall, the Bovine HapMap Consortium 

concluded that the genetic diversity within cattle breeds is not low, despite the recent 

decline in effective population size (Ne) for all breeds (Gibbs et al. 2009).  This supports 

the idea of a large ancestral population with a vast amount of genetic diversity that 

maintained substantial levels of genetic diversity even after going through genetic 

bottlenecks associated with domestication and selective breeding (Gibbs et al. 2009).   

 Patterns of linkage disequilibrium varied among the breeds of cattle analyzed by 

the Bovine HapMap Consortium (Gibbs et al. 2009).  Hereford and Jersey breeds had the 

highest r2 values across a range of distances, and the N’Dama breed held the highest r2 

value at short distances and the lowest r2 value at long distances (Gibbs et al. 2009).  The 

explanation given for this was that the N’Dama breed came from a small ancestral 

population and has not been through narrow population bottlenecks (Gibbs et al. 2009).  

Patterns of linkage disequilibrium in Bos indicus breeds indicated that they originated 

from a larger and more genetically diverse pre-domestication population than the Bos 

taurus breeds (Gibbs et al. 2009).  Linkage disequilibrium declined much more rapidly 

when multiple breeds were analyzed together, and there was little evidence for the 

sharing of common haplotypes across breeds.  Only breeds with a recent common 

ancestor, such as Angus and Red Angus, Holstein and Norwegian Red, and Beefmaster 

and Santa Gertrudis, showed a correlation between SNP alleles separated by distances of 

100 – 250 kb.  The phase of SNP alleles was shared at distances up to 10 kb within Bos 

taurus and Bos indicus breeds, but SNP phases were not shared between Bos taurus and 

Bos indicus breeds (Gibbs et al. 2009).  This is consistent with the findings of Marques et 

al., which demonstrated that Angus and Holstein cattle do not share haplotypes at 

distances longer than 10 kb, and the strongest haplotypes within each breed are below 

100 kb (Marques et al. 2008). 
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Microsatellites, SNPSTRs, and Repeat Elements 

Microsatellites are also known as short sequence repeats (SSRs) or short tandem 

repeats (STRs), and they consist of 2-5 base pairs units of tandemly repeated DNA 

sequences.  Microsatellites are ubiquitously interspersed throughout the nuclear genome 

of eukaryotes and often demonstrate polymorphisms within a species by varying in the 

number of their repeat units (Schlotterer and Tautz 1992; Weber and May 1989).  Among 

the fully sequenced eukaryotic genomes, microsatellites are most common in mammalian 

species (Katti et al. 2001; Tóth et al. 2000).  Analysis of the initial draft sequence of the 

human genome found more than one million microsatellite loci that together make up 

approximately 3% of the genome (Lander et al. 2001).  Of the many possible 

microsatellite motifs, (AC)n repeats are the most polymorphic.  The proportion of AC 

repeats in humans is estimated to exceed 90% (Rockman and Wray 2002).   

The microsatellite mutation rate in humans has been estimated to be 10-2 – 10-5 

per generation (Tautz 1994), which is approximately 103 times higher than the mutation 

rate for single base substitutions (SNPs).  Additionally, microsatellites are more 

informative than SNPs because large numbers of alleles may occur at each microsatellite 

locus.  The primary mechanism of microsatellite mutation is slippage during DNA 

replication (Schlotterer and Tautz 1992).  In human AC repeats, the rate of slippage is 

highest at a length of ten repeats and then declines roughly linearly until reaching an 

apparent maximum at about 20 repeats (Sibly et al. 2003).  The frequency distributions of 

microsatellite lengths within a genome may represent a balance between the 

expansionary tendencies of slippage mutation and the contractions caused by point 

mutations breaking longer microsatellites into smaller units (Bell and Jurka 1997).  

Perfect uninterrupted AC microsatellite motifs with a repeat unit number near ten are 

most likely to be polymorphic in mammalian genomes (Sibly et al. 2003). 

Unfortunately, the mutability that makes microsatellites appealing as polymorphic 

markers also creates challenges in distinguishing between different microsatellite alleles.  

Homoplasy occurs when two variants are identical by state but not by descent (Estoup et 

al. 2002).  The concept of homoplasy was originally developed by evolutionists to 

describe a trait present in two species but not derived from a common ancestor, so  

homoplasy can describe events of convergence, parallelism, reversion, or features that 
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appear more than once in a cladogram (Sanderson and Donoghue 1989).  Genotyping by 

identifying size variants such as those found in microsatellites differing in repeat unit 

number is a common technique used in molecular genetics (Oetting et al. 1995), but 

genotyping can be complicated by size homoplasy, where two alleles are identical in size 

but not in composition (Ramakrishnan and Mountain 2004).  Size homoplasy is not 

detected by standard methods of genotyping and may result in a reduced number of 

observed alleles and a lower proportion of heterozygotes than expected.  Simulation 

studies estimate that the probability of two alleles being identical by state but not by 

descent is as high as 30%, and the highest levels of homoplasy are noted when there is a 

constraint on allele size (Estoup et al. 2002).   

The analytical problems posed by size homoplasy in microsatellite markers can be 

reduced by incorporating closely linked SNPs into the genotyping procedure.  A 

“SNPSTR” marker contains one or more single nucleotide polymorphisms (SNPs) and 

exactly one short tandem repeat (STR) within 500bp stretch of DNA (Mountain et al. 

2002).  These markers provide complementary evolutionary information because of their 

differing mutation rates.  Each independent SNPSTR combines slowly evolving 

polymorphic SNP(s) with a more rapidly evolving polymorphic microsatellite 

(Ramakrishnan and Mountain 2004).  SNPSTRs can be thought of as small, 

independently evolving compound haplotypes.  These haplotypes are unlikely to be 

broken up by recombination if their size is less than 500 bp (Mountain et al. 2002), and  

simulation studies have shown that SNPSTRs are more accurate and show lower levels of 

homoplasy than experiments solely based on STRs (Ramakrishnan and Mountain 2004).  

A database has been developed for SNPSTRs found in human, mouse, rat, dog, and 

chicken (Agrafioti and Stumpf 2007).  These SNPSTRs are inferred in silico from 

information available in the Ensembl database (Agrafioti and Stumpf 2007).   

During the development of SNPSTRs, the sequence encompassing the STR 

should be made as large as possible (up to 500bp) within the constraints of primer design 

and quality sequence reads to increase the likelihood of finding SNPs within the PCR 

amplicon.  Determining the gametic phase for double heterozygotes requires the cloning 

and sequencing of PCR products.  A SNP found in a cloned PCR sequence should be 

present in the same location on the direct PCR sequence (i.e. the original heterogeneous 
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PCR product).  This verifies the authenticity of the SNP and eliminates any errors caused 

by the Taq polymerase during the PCR reaction.  It has been demonstrated that 

conventional Taq polymerase creates an error in 30-70% of cloned PCR sequences with 

one error incorporated per 1421 nucleotides (Ennis et al. 1990).  The majority of errors 

found in cloned PCR products are point substitutions that can easily be misinterpreted as 

SNPs.  The constraints of primer design for SNPSTRs are the same as those for 

conventional microsatellite genotyping.  Primers should be specific within the thermally 

selected parameters, and variation underlying the primer sequences should be avoided to 

prevent the occurrence of false “null” alleles.  Pedigreed samples should be used 

whenever possible to verify the Mendelian inheritance of alleles, and placing PCR 

primers within highly repeated elements should be avoided to ensure locus-specific 

amplification.  Many microsatellite sequences are closely associated with repetitive DNA 

in mammalian genomes (López-Giráldez et al. 2006).   

Microsatellites associated with SNPSTRs and repeat elements have both been 

utilized in human population studies (Mountain et al. 2002).  Two SNPSTR systems were 

used to show that anatomically modern humans first migrated out of Africa relatively 

recently (Mountain et al. 2002).  Analysis of polymorphic Alu insertions linked to 

microsatellites produced similar conclusions about the time of human migration out of 

Africa (Tishkoff et al. 2000).  Polymorphic Alu insertions have shown potential value as 

lineage and linkage markers for the study of human population genetics, genomic 

diversity, evolution, and disease associations within HLA (Dunn et al. 2005).  Utilizing 

repeat element polymorphisms in addition to SNPs and microsatellites offers a range of 

mutation rates to draw from in haplotype studies.                                                                          

Particular microsatellite motifs are often associated with specific types of repeat 

elements.  The extension of retroposon 3’ polyadenylation repeats can lead to the 

generation of A-rich microsatellites (López-Giráldez et al. 2006).  The majority of the A-

rich tetranucleotide repeats in the BoLA IIb region are located within 40bp of the 

terminal end of a SINE or LINE.  Over 92% (25/27) of microsatellites with (AGTTC)n 

and (AACTG)n  motifs in the BoLA IIb region are associated with SINE-ART2 repeat 

elements.  Such pentanucleotide repeats are known to occur at the 3’ end of ART2 (Malik 

et al. 1998).  The bovid-specific Bov-A2 repeat element is usually found tailed with 
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(AGC)n or (ACG)n trinucleotide repeats (Kaukinen and Varvio 1992).  The microsatellite 

motif (AGC)n is 90- fold overrepresented in cattle compared with human and 142- 

overrepresented in cattle compared to dog (The Bovine Genome Sequencing and 

Analysis Consortium et al. 2009).  In accordance with that, over 94% (33/35) of 

microsatellites in the BoLA IIb region with (AGC)n or (ACG)n motifs are located on the 

ends of Bov-A2 repeat elements.  There are also over 273 Bov-A2 repeat elements with 

(AGC)n or (ACG)n microsatellite tails located in the BoLA IIa/III/I region. 

 Bov-A2 repeat elements are specific to ruminants and are widely distributed 

throughout the bovine genome (The Bovine Genome Sequencing and Analysis 

Consortium et al. 2009).  It is estimated that Bov-A2 repeats account for 1.8% of the 

cattle genome (Lenstra et al. 1993).  They usually consist of two monomers, called Bov-

A units, connected by a linker sequence (CACTTT)n  (Onami et al. 2007).  A unique 

feature of the Bov-A2 repeat element is that the number of Bov-A units at a particular 

locus in the bovine genome can vary between individuals (Onami et al. 2007).  PCR 

primers can be designed in the unique regions flanking both ends of the Bov-A2 repeat to 

detect allelic differences in Bov-A unit number that can easily be distinguished by gel 

electrophoresis because each Bov-A unit is ~120bp in length (Onami et al. 2007).  Onami 

et al. (2007) described five polymorphic Bov-A2 retroposons in domestic cattle, but not 

in Bongo, Arabian Oryx, Axis Deer, Reticulated Giraffe, Pronghorn, and Lesser Mouse 

Deer.  Onami et al. (2007) proposed that polymorphism in Bov-A unit number was a 

consequence genomic instability associated with cattle domestication.   

 Sequence analysis has revealed that elongation anywhere from two to six Bov-A 

monomers occurs by unequal crossing-over between the Bov-A units (Onami et al. 2007).  

It has also been reported that a higher mutation frequency exists in Bov-A2 sequences 

compared to other noncoding sequences (Damiani et al. 2000), perhaps due to unequal 

crossing-over between Bov-A units (Onami et al. 2007).  The Bov-A2 element usually 

ends with a 3’ (AGC)n or (ACG)n microsatellite that varies from 1-9 repeat units 

(Kaukinen and Varvio 1992), and these microsatellite tails have been used as 

polymorphic genetic markers in cattle (Band and Ron 1996).  Bov-A2 repeat elements are 

a rich source of SNPs, polymorphic microsatellites, and varying numbers of Bov-A units.  

Utilizing these different sources of polymorphism within Bov-A2 elements is 
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conceptually similar to utilizing the independently evolving compound haplotypes of 

SNPSTRs.   

  

Aims and Goals of This Project 

Evaluation of Polymorphic Markers in BoLA 

 Different types of genetic markers in the BoLA IIa/III/I region and the BoLA IIb 

region were evaluated for polymorphism across various breeds of cattle.  In addition to 

characterizing new polymorphic microsatellites throughout the BoLA regions, two 

published BoLA microsatellites were utilized in this study.  The amplified sequences 

surrounding BoLA microsatellites were analyzed for the presence of SNPs to determine if 

they may serve as SNPSTR markers.  Bov-A2 elements throughout the BoLA regions 

were evaluated for polymorphism in Bov-A unit number, and alleles of DRB3, DRA, and 

DQB were defined by comparing the exon 2 sequence to known BoLA alleles.  Much of 

the SNP data was obtained from genome-wide SNP chip typing performed in conjunction 

with the Bovine HapMap Project and the University of Missouri linkage study.  All 

BoLA markers were evaluated for correct order and reliable genotyping results within 

pedigreed samples.  Criteria for marker retention included locus specificity, consistent 

typing across all haplotypes (absence of null alleles), discrete alleles (absence of 

homoplasy), and a sufficient level of polymorphism, depending on marker type.  

 

Characterization of BoLA Haplotype Structure 

 The haplotype structure of BoLA IIb was analyzed separately from the haplotype 

structure of BoLA IIa/III/I, as the two are located on separate regions of chromosome 23.  

The alleles of most markers were phased by pedigree inference or haplotype 

homozygosity.  SNPs were analyzed by PHASE and fastPHASE to determine haplotype 

structure when it was not possible to do so by pedigree inference or haplotype 

homozygosity, and the accuracy of PHASE was assessed in a subset of pedigreed 

animals.  The high level of genetic diversity between different breeds of cattle confounds 

proper PHASE analysis, so PHASE and fastPHASE were performed within each breed 

rather than across multiple breeds.  A new method of haplotype inference was developed 

that determines heterozygous haplotypes from comparison to known homozygous 
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haplotypes present at high frequency.  Different subsets of SNPs were typed across 

various DNA samples, but the SNP data was made as consistent as possible for haplotype 

comparison purposes.   

 The heterozygosity of SNPs surrounding homozygous BoLA IIa/III/I haplotypes 

was used to assess breakpoints in linkage disequilibrium, and microsatellite markers were 

used to determine the locations and frequencies of recombination events in the BoLA IIb 

and BoLA IIa-III-I regions.  Frequencies of SNP-defined homozygous BoLA IIa-III-I 

haplotypes were calculated in breeds with the largest sample sizes, including Angus and 

Holstein.  The exon 2 sequence of the DRB3 gene was integrated with microsatellite-

derived BoLA IIa-III-I haplotypes to evaluate how predictive DRB3 alleles were of 

BoLA IIa-III-I haplotypes.  Additional microsatellites, SNPSTRs, and the exon 2 

sequence of DRB3, DQB, and DRA genes were typed on animals that were defined to be 

homozygous by 52 SNPs located within the BoLA IIa-III-I region to assess how 

predictive the SNPs were of BoLA IIa-III-I haplotypes. 

 

Phylogenetic Relationships of BoLA Haplotypes 

 BoLA IIb and BoLA IIa/III/I haplotypes were analyzed separately and 

investigated for conservation among animals with different breed histories and selection 

pressures, and separate phylogenetic trees were constructed for the BoLA class IIa-III-I 

haplotypes and BoLA class IIb haplotypes.  Points of divergence between different BoLA 

haplotypes were estimated based on the identity of alleles across the BoLA regions, and 

the clustering of BoLA IIa-III-I haplotypes within the phylogenetic tree was examined for 

evolutionary relationships between different breeds of cattle, as well as other bovids 

including bison, gaur, and Cape buffalo.  Finally, the linkage disequilibrium, 

recombination rates, frequencies, and conservation of BoLA haplotypes were compared 

to other regions of the bovine genome to determine if the phylogenetic history of BoLA 

is similar to the rest of the bovine genome.   
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CHAPTER II 

MATERIALS AND METHODS 

 

Sources of DNA  

 Many sources of DNA were used in this experiment to allow for analysis of 

BoLA haplotypes across a diverse range of cattle.  The pedigreed families of the 

International Bovine Reference Family Panel (Barendse et al. 1997) were helpful in 

determining marker polymorphism, null alleles, and recombination events.  The DNA 

samples from the Bovine HapMap Project (Gibbs et al. 2009) were valuable in 

calculating microsatellite allele frequencies across diverse breeds of cattle and providing 

BoLA SNP genotyping data.  BoLA homozygous DNA samples obtained from the 

University of Missouri were key in defining BoLA haplotypes and analyzing the 

boundaries of BoLA homozygosity.  Microsatellite-derived BoLA haplotypes were 

characterized in pedigreed animals of the Lone Star Tick study (Untalan et al. 2007) and 

Holsteins with defined DRB3 alleles.  Additional bovid DNA samples, such as 

Yellowstone National Park bison, were important because they served as outgroups for 

comparison with domestic cattle breeds. 

 

International Bovine Reference Family Panel 

 The International Bovine Reference Family Panel (IBRP) is a collection of DNA 

samples from pedigreed animals including full and half sibling progeny that represent 

diverse breeds of cattle from various parts of the world.  The IBRP was originally used to 

create a medium-density genetic linkage map of the bovine genome (Barendse et al. 

1997).  DNA samples from the following 210 IBRP individuals were contributed by Dr. 

James Womack of Texas A&M University for use in this study: 

 
CISRO Reference Families – 103 individuals 
101 (Sire: Brahman x Gir/Ind-Brazil) x 1102 (Dam: Brahman) = 19 offspring 
101 (Sire: Brahman x Gir/Ind-Brazil) x 1202 (Dam: Brahman) = 13 offspring 
101 (Sire: Brahman x Gir/Ind-Brazil) x 2102 (Dam: Brahman) = 14 offspring 
501 (Sire: Friesian x Sahiwal) x 502 (Dam: Friesian x Sahiwal) = 12 offspring 
501 (Sire: Friesian x Sahiwal) x 702 (Dam: Friesian x Sahiwal) = 14 offspring 
1401 (Sire: Friesian x Sahiwal) x 1402 (Dam: Friesian x Sahiwal) = 9 offspring 
1401 (Sire: Friesian x Sahiwal) x 1502 (Dam: Friesian x Sahiwal) = 12 offspring 
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Texas A&M University (Granada) Reference Families – 57 individuals  
5252 (Sire: Brangus) x 2308 (Dam: Brangus) = 19 offspring 
5252 (Sire: Brangus) x 1158 (Dam: Brangus) = 11 offspring 
5252 (Sire: Brangus) x 4046 (Dam: Brangus) = 10 offspring 
5191 (Sire: Brangus) x 0981 (Dam: Brangus) = 11 offspring 
 
BOVMAP Reference Family – 18 individuals 
8001 (Sire: Holstein) x 8032 (Dam: Holstein) = 9 offspring 
8301 (Sire: Charolais) x 8312 (Dam: Charolais) = 5 offspring 
 
USDA MARC Reference Family – 17 individuals 
896800 (Sire: Gelbvieh x Simmental)  x 861029 (Dam: Piedmontese x Hereford)   
        = 15 offspring 
ILRAD Reference Families - 15 individuals 
ND7 (Sire: N’Dama) x 1419 (Dam: N’Dama) = 5 offspring 
ND8 (Sire: N’Dama) x 1688 (Dam: N’Dama) = 6 offspring 

 

Bovine HapMap Project 

 The Bovine HapMap Consortium analyzed SNPs across 19 breeds of cattle (n = 

497) from diverse geographical areas (Gibbs et al. 2009).  A total of 412 DNA samples 

were contributed by Dr. Clare Gill of Texas A&M University with permission from the 

Bovine HapMap Consortium for use in this project (Table 1). 

 
Table 1.  Bovine HapMap DNA Samples.  The samples contributed by the Bovine HapMap 
Consortium represent 16 breeds of cattle, and the majority of the breeds are European Bos taurus.  
Trios consisted of one sire, one dam, and one offspring. 
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SNP Defined BoLA Homozygotes 

 Drs. Robert Schnabel and Jerry Taylor, Department of Animal Sciences, of the 

University of Missouri provided 102 DNA samples from cattle that were typed as 

homozygous for SNPs across the entire length of the BoLA IIa-III-I region.  These 

animals were part of a whole genome 50K SNP analysis and included DNA samples from 

42 Angus, 23 Holstein, 17 Limousin, six Simmental, four North American bison, three 

Shorthorn, two Gaur, two Hereford, one Finnish Ayrshire, one Romosinuano, and one 

Brahman.  In silico BoLA SNP data from additional animals were also made available for 

this project. 

 

Study of Host Resistance to the Lone Star Tick  

 DNA samples from a total of 176 pedigreed animals from a tick resistance 

experiment conducted at the US Livestock Insect Research Laboratory, USDA ARS, 

Kerrville, TX were contributed by Dr. Pia Untalan, USDA, and Drs. Pat Holman 

(Department of Veterinary Pathobiology) and Penny Riggs (Department of Animal 

Science) of Texas A&M University.  The research herd used in the tick experiment 

included two BoLA identical sires (Bull 12 and Bull 13) from a Red Poll x Simmental 

cross, a third sire (Rogers bull) of the Simbrah breed, 72 dams with a Bos taurus and Bos 

indicus influence, and 101 calves that were phenotyped for tick resistance or 

susceptibility (Untalan et al. 2007).  In that study, association was found between 

resistance to infestation by Amblyomma americanum, the Lone Star tick, and 

microsatellite markers within BoLA DRB*4401 (DRB3-174; P = 0.001) and DRB1 

(DRB1-118; P = 0.023) (Untalan et al. 2007).  Animals were previously genotyped by 

PCR-RFLP and by sequencing of Exon 2 of the DRB3 gene. 
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DRB3 Defined Holstein Samples 

 Dr. Waithaka Mwangi, Department of Veterinary Pathobiology, Texas A&M 

University, contributed DNA samples from 21 Holstein calves that had been genotyped at 

the DRB3 locus and phenotyped in vaccine response studies. All of these animals 

possessed at least one copy of the DRB3*1101 allele.  The Holstein animals and their 

respective DRB3 alleles are the following: 

 

 Calf ID # DRB3 Alleles 
 
 81288  DRB3*0101 / DRB3*1101 
 81821  DRB3*1101 / DRB3*1201 
 92334  DRB3*1101 / DRB3*1501 
 92085  DRB3*1001 / DRB3*1101 
 90549  DRB3*1101 / DRB3*1101 
 51379  DRB3*0101 / DRB3*1101 
 82550  DRB3*0201 / DRB3*1101 
 81803  DRB3*1101 / DRB3*1501 
 81841  DRB3*1001 / DRB3*1101 
 82598  DRB3*1101 / DRB3*1101 
 90625  DRB3*0101 / DRB3*1101 
 90183  DRB3*0301 / DRB3*1101 
 91721  DRB3*1101 / DRB3*1501 
 91054  DRB3*1101 / DRB3*1801 
 82591  DRB3*1101 / DRB3*1101 
 90170  DRB3*1101 / DRB3*14011 
 90180  DRB3*1101 / DRB3*1201 
 90380  DRB3*1101 / DRB3*1601 
 51407  DRB3*1101 / DRB3*1601 
 90175  DRB3*0902 / DRB3*1101 
 82736  DRB3*1101 / DRB3*1701 
 
 
Other DNA Samples 

 Dr. Derr of Texas A&M University provided DNA samples from 20 North 

American bison from Yellowstone National Park.  Additional samples available in Dr. 

Skow’s laboratory included L1 Domino and L1 Dominette, the Hereford source animals 

for the CHORI 240 BAC library and the bovine genome sequence, respectively, 23 

White-Tailed Deer, 20 domestic sheep, 17 elk, two gaur, two river buffalo, one domestic 

goat, one Slenderhorn gazelle, one Persian gazelle, one Dama gazelle, and one Arabian 
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Oryx.  These animals were important to understand the phylogeny and extent of BoLA 

haplotypes and polymorphism. 

 

Genotyping and Selection of BoLA Microsatellites 

 The Sputnik program (http://espressosoftware.com/sputnik/index.html) was used 

to mine the BoLA genomic sequences for microsatellites containing repeat motifs of two 

to five base pairs in length.  Preference was given to perfect dinucleotide AC motifs that 

had more than six repeats, as they were more likely to be polymorphic.  To avoid 

designing primers within repetitive regions, the “-cow” option within the RepeatMasker 

website (Smit et al. 1996-2004) was employed to identify any bovine interspersed repeats 

within the flanking sequences of microsatellites.  Primers were subsequently designed to 

amplify the microsatellites by using the Primer3 software (Rozen and Skaletsky 2000).  

Most of the default Primer3 design parameters were used, except that the primer GC 

content was set to a range of 45 – 55%, and PCR product size was set as close to 500bp 

as possible to  increase the likelihood of finding SNPs surrounding each microsatellite.  

Primers were designed within unique flanking sequences of each microsatellite to yield 

PCR products of 120-500 bp in length.  The primers were then screened against the 

Btau4.0 assembly by UCSC BLAT (Kent 2002) and NCBI GenBank by BLASTn 

(Altschul et al. 1990) to confirm uniqueness and locus specificity.  A total of 48 primer 

pairs were designed for the BoLA class IIb region (Table 2) and 28 primer pairs for 

BoLA IIa-III-I region (Table 3). 

 To allow for efficient and economical fluorescent genotyping, the forward primer 

was designed to include a 5’ M13 tag - 5’ TTTCCCAGTCACGACGTTG 3’ - 

complementary to a third PCR primer labeled with one of three fluorescent dyes - NED, 

6-FAM, or VIC (Oetting et al. 1995).  This eliminated the cost of labeling each specific 

forward primer with a fluorescent dye and further reduced the cost because three PCR 

products labeled with different dyes could be co-loaded within a single well and 

simultaneously resolved on the ABI-3730 Genetic Analyzer (Applied Biosystems; Foster 

City, CA).  A fourth PET dye available for this technique was not used because PCR 

products labeled with PET were consistently two base pairs longer than the PCR products 

generated with NED, 6-FAM, and VIC.  All PCR products were separated and analyzed 
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relative to an internal size standard (GS 500 LIZ®, Applied Biosystems; Foster City, CA) 

and manually scored using GeneMapper™ 3.5 (Applied Biosystems; Foster City, CA).   

 PCR reactions for genotyping were performed in a total volume of 20uL 

containing 25ng of DNA, 1.5U of clear Sigma JumpStart Taq Polymerase (Sigma-

Aldrich; St. Louis, MO), 0.8mM dNTPs, 1.5mM Epicentre MgCl2 Master AmpTM PCR 

Enhancer (Epicentre Biotechnologies; Madison, WI), Sigma 10x PCR Buffer (Sigma-

Aldrich; St. Louis, MO), 0.5mM of fluorescently labeled M13 complementary primer (6-

FAM, NED, or VIC (Applied Biosystems; Foster City, CA), 0.1mM of the microsatellite 

specific reverse primer, and 0.033mM of the M13-tailed microsatellite specific forward 

primer (Sigma-Aldrich; St. Louis, MO).  Annealing temperatures varied among the 

different primer pairs, but a typical PCR program had the following parameters: 5 

minutes at 95ºC, 30 seconds at 94ºC, 30 seconds at annealing temperature + 2ºC, 30 

seconds at 72ºC, followed by 35 cycles of 30 seconds at 94ºC, 30 seconds at annealing 

temperature, 30 seconds at 72ºC, and concluding with a final extension of 5 minutes at 

72ºC. Each primer pair was optimized for an annealing temperature at 1.5 mM MgCl2.  

Genomic DNAs and PCR products were quantified with NanoDrop ND-1000 

Spectrophotometer (Thermo Fisher Scientific; Wilmington, DE) and checked for proper 

amplification by electrophoresis on 1.0% agarose gels containing 0.36 µg/ml ethidium 

bromide prior to analysis on the ABI-3730.  
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Table 2.  BoLA IIb Microsatellite Primers.  All forward genotyping primers had a 19 base pair, 5' M13 tail (Oetting et al. 1995) denoted in this 
table by bold blue font.  Reference microsatellite motifs and allele sizes were derived from L1 Dominette.  The positions of BoLA IIb genes and 
microsatellites were provided by the Childers et al. annotation (Childers et al. 2006) and given relative positions in the Btau4.0 assembly (Kent 
2002). 
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Table 2.  Continued. 
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Table 2.  Continued. 
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Table 2.  Continued. 
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Table 3.  BoLA IIa-III-I Microsatellite Primers.  Most of the forward genotyping primers had a 19 base pair, 5' M13 tail (Oetting et al. 1995) 
denoted by bold blue font, with the exceptions of LA54 F/LA53 R (Ellegren et al. 1993) and DRBP1 F/DRBP1 R (Creighton et al. 1992).  These 
two primer pairs were ordered with the 6FAM dye directly attached to the 5’ end so allele sizes would be consistent with previously published 
alleles.  Reference microsatellite motifs and allele sizes were derived from L1 Dominette, and the positions of genes and microsatellites were 
derived from the UCSC genome browser Btau4.0 assembly (Kent 2002). 
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Table 3.  Continued. 
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Observed Recombination Events 

 Recombination events were detected by comparing parental microsatellite 

haplotypes to the microsatellite haplotypes of their offspring.  All recombination events 

were assigned to an interval between flanking microsatellite markers based on where the 

alleles of the offspring deviated from the expected parental haplotype.  The offspring 

found to have recombinant haplotypes were genotyped at least two times across all 

microsatellite markers to ensure the recombination events were identified accurately.  

Recombination events were investigated within the sample sets representing the largest 

number of meioses, including the sires and dams of the International Reference Families 

and the sires of the resistance to the Lone Star tick experiment. 

 

Additional Genetic Markers 

Identification and Characterization of SNPSTRs  

Polymorphic microsatellites can provide additional information if they are 

surrounded by single nucleotide polymorphisms (SNPs).  A “SNPSTR” contains one or 

more SNPs and exactly one polymorphic microsatellite, or short tandem repeat (STR), 

located within 500bp of each other (Mountain et al. 2002).  SNPSTRs in the BoLA 

region were initially discovered by sequencing amplicons from a small subset of diverse 

cattle breeds, including 26 parents from the International Bovine Reference Family Panel, 

and SNPSTRs with the highest minimum allele frequencies were chosen for analysis 

across a larger number of individuals.  Amplicons were cloned and sequenced in both the 

forward and reverse directions to determine the gametic phase in heterozygous animals.  

Each SNP identified in a cloned PCR sequence was validated by its presence at the same 

location in the direct PCR sequence (i.e. the original heterogeneous PCR product).  This 

verified that the SNP was real and not an artifact of Taq polymerase error during the PCR 

reaction (Ennis et al. 1990).   

PCR reactions were carried out with 25ng of genomic DNA as template, 1μL of 

Sigma 10x buffer (Sigma Aldrich), 0.3 pmol of each primer, 0.2 mM dNTPs, 1.5 mM 

MgCl2, 0.25 U JumpStart REDTaq DNA polymerase (Sigma Aldrich), and the reaction 

was brought to a total volume of 10μL with autoclaved double distilled water.  PCR 

products were cloned with the TOPO TA Cloning Kit for Sequencing (Invitrogen; 
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Carlsbad, CA).  Before PCR products were cloned into the TOPO vector, 1.5U of Sigma 

JumpStart Taq Polymerase (Sigma-Aldrich; St. Louis, MO) was added to the PCR 

product and incubated at 72ºC for 15 minutes to ensure single deoxyadenosine (A) were 

overhanging on the 3’ ends of PCR products.  The TOPO cloning reaction was performed 

with 4μL of fresh PCR product, 1μL of salt solution, and 1μL of TOPO vector.  The mix 

was incubated for 30 minutes at room temperature, placed on ice, and 2μL of the mix was 

added to one vial of chemically competent E.coli (Invitrogen; Carlsbad, CA) to be 

incubated on ice for 5 minutes.  The cells were heat shocked at 42ºC for 30 seconds, 

immediately placed on ice, given 250μL of S.O.C. medium, and then incubated with 

shaking at 200rpm for one hour at 37ºC.  A total of 50μL of the transformed cells were 

spread on prewarmed plates containing 50μg/mL kanamycin and incubated at 37ºC 

overnight.  Single well-isolated colonies were selected for analysis and grown for about 

one hour in LB media containing 50μg/mL kanamycin.  Cells pellets were collected by 

centrifugation and sent to SeqWright for plasmid purification and sequencing 

(SeqWright; Houston, TX). 

PCR products for direct sequencing were purified with QIAquick Purification Kit 

(Qiagen; Valencia, CA).  The purified PCR products were sequenced in reactions with 

2μL of Big Dye (Applied Biosystems, Foster City, CA), 2μL of Half Big Dye (Genetix; 

Boston, MA), 0.5μL of Master Amp PCR Enhancer (Epicentre; Madison, WI), 1μL of 

10μM forward or reverse microsatellite primer, the amplified PCR product, and the 

reaction was brought to a total volume of 10μL with autoclaved double distilled water.  

The amount of PCR product added to the reaction followed the rule of 10ng per every 

100bp of PCR product.  The sequencing reaction consisted of 2 minutes at 96ºC; 35 

cycles of 96ºC for 30 seconds, 50ºC for 15 seconds, and 60ºC for 4 minutes; and a final 

extension of 60ºC for 5 minutes.  Each sequencing reaction was then cleaned with Spin-

50 spin columns (BioMax; Odenton, MD) to remove excess primers and nucleotides, 

dried down, and eluted with formamide before sequencing on the ABI 3730 (Applied 

Biosystems; Foster City, CA) in the laboratories of Dr. Derr (Department of Veterinary 

Pathobiology) or Dr. Chowdhary (Department of Veterinary Integrative Biosciences) of 

Texas A&M University.  Some direct PCR products were also sequenced at SeqWright 

(SeqWright; Houston, TX).  All PCR products were resolved by electrophoresis on 1.0% 
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agarose gels containing 0.36 µg/ml ethidium bromide to ensure proper amplification 

before the sequencing reaction, and all sequences were analyzed with Sequencher 4.1 

(Gene Codes Corporation; Ann Arbor, MI). 

   

Sequencing of BoLA IIa Alleles  

One goal of this project is to generate genetic markers that will be predictive of 

alleles at BoLA genes.  Previous studies of the BoLA region defined alleles of class IIa 

genes by PCR amplification and sequencing across the polymorphic exon 2.  This project 

utilized published primers to sequence exon 2 of the BoLA class IIa genes DRB3 (Baxter 

et al. 2008; Miltiadou et al. 2003), DRA (Zhou et al. 2007), and DQB (Russell 2000).  

The alleles of class IIa genes will be investigated for their association with BoLA 

polymorphic genetic markers, including microsatellites, SNPSTRs, and SNPs.  The 

following primers were used for the direct PCR amplification of class IIa genes from 

genomic DNA: 

  
 DRB3FRW = 5’ - CGCTCCTGTGA (C/T) CAGATCTAT CC - 3’  
 DRB3REV = 5’ - CACCCCCGCGCTCACC - 3’ 
 DRA F = 5’ - TCTTCCTCTCCTGGTTCCCAC - 3’ 
 DRA R = 5’ - GCTACAATGCTACAAT - 3’ 
 DQBEX2fwd = 5’ - GGGCC (T/A) GTGTTA (C/T) TTCAC (C/T) AA - 3’  
 DQBEX2rev1 = 5’ - TTGT (G/T) TCTGCACACC (C/G) TGTCC - 3’ 
 DQBEX2rev2 = 5’ - TTGT (G/T) TCTGCACACC (C/G) TGTCC - 3’ 
 

The DRB3FRW/DRB3REV and DRAF/DRAR primers were used at 1.5mM 

MgCl2 and an annealing temperature of 58ºC, while DQBEX2fwd/DQBEX2rev primers 

were used with a concentration of 1.5mM MgCl2 and an annealing temperature of 60ºC.  

PCR reactions were performed with 25ng of genomic DNA as template, 1μL of Sigma 

10x buffer (Sigma Aldrich), 0.3 pmol of each primer (with the exception of DQBEX2rev 

consisting of 0.15pmol of DQBEX2rev1 and 0.15pmol of DQBEX2rev2), 0.2 mM 

dNTPs, 1.5 mM MgCl2, 0.25 U JumpStart REDTaq DNA polymerase (Sigma Aldrich), 

and the reaction was brought to a total volume of 10μL with autoclaved double distilled 

water.  The thermal profile was 5 minutes at 95ºC, 30 seconds at 94ºC, 30 seconds at 

annealing temperature +2ºC, 30 seconds at 72ºC, followed by 35 cycles of 30 seconds at 

94ºC, 30 seconds at annealing temperature, 30 seconds at 72ºC, and a final extension of 5 
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minutes at 72ºC.  All PCR products were resolved by electrophoresis on 1.0% agarose 

gels containing 0.36 µg/ml ethidium bromide to ensure proper amplification before 

sequencing.  All sequences were analyzed with Sequencher 4.1 (Gene Codes 

Corporation; Ann Arbor, MI).  Most PCR products were sent SeqWright for direct PCR 

product sequencing (SeqWright; Houston, TX), but some sequencing was done in house 

following the same sequencing protocol as described for SNPSTRs.  Sequencing primers 

were the same as PCR primers, and all PCR products were sequenced in both forward 

and reverse directions.  

 

Characterization of Bov-A2 Retroposons 

 Bov-A2 retroposons were investigated for their suitability as polymorphic 

markers in the BoLA regions.  Bov-A2 elements are prevalent in the bovine genome, and 

a subset of Bov-A2 retroposons are polymorphic in Bov-A unit number (Lenstra et al. 

1993).  These size polymorphisms vary in intervals of approximately 120 base pairs per 

Bov-A unit, so they are easily distinguished by PCR and gel electrophoresis (Onami et al. 

2007).  Bov-A2 retroposons were identified in the BoLA IIb and BoLA IIa-III-I regions 

by submitting genomic BoLA sequence into the “-cow” option within the RepeatMasker 

website (Smit et al. 1996-2004).  Primers were designed in locus specific regions 

flanking the Bov-A2 repeats using Primer3 software (Rozen and Skaletsky 2000).  Most 

of the default Primer3 design parameters were used, with exceptions of setting the range 

of the primer GC content to 45 - 55 %.  A total of 90 primers were used to investigate 

Bov-A unit number polymorphism (Table 4).   

In addition to analyzing Bov-A2 polymorphisms in BoLA, this study also 

investigated the phylogenetic history of Bov-A2 polymorphism.  Bov-A2 elements 

described in the Onami et al. 2007 study were used to evaluate Bov-A unit number 

polymorphism across domestic cattle and their phylogenetic relatives.  Primers from the 

Onami et al. 2007 study and three pairs of redesigned primers were used to amplify the 

five Bov-A2 elements in our study (Table 5). 
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Table 4.  BoLA Bov-A2 Primers.  Bov-A2 primers were developed around Bov-A2 retroposons located in the BoLA regions within the Btau4.0 
assembly.  The expected size listed for each Bov-A2 is the amplicon size created by the primers in UCSC Blat (Kent 2002).  Polymorphic Bov-A2 
retroposons will vary in size increments of approximately 120 bp. 
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Table 4.  Continued. 
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Table 4.  Continued. 
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Table 5.  Onami et al. 2007 Primers.  Primers used in the Onami study were CO1, BAAA21, 
BE1, Bf 6, and Basix.  Primers redesigned for this study were BE1-2, Bf 6-2, and BAsix-4.  
Annealing temperatures used in this study for CO1, BAAA21, BE1-2, Bf 6-2, BAsix-4 were 
64°C, 64°C, 68°C, 66°C, and 55°C respectively. 
 

 
 

 Bov-A2 retroposons were amplified in cycles of one 30 second denaturation step 

at 94°C; 1 cycle of 94°C for 30 sec, annealing temperature + 2°C for 30 sec, 72°C for 1 

min and 30 sec; 35 cycles of 30 sec at 94°C, 30 sec at annealing temperature, 1 min and 

30 sec at 72°C; and a final extension for 10 min at 72°C.  PCR products were resolved by 

electrophoresis in 1.0% agarose gels containing 0.36 µg/ml ethidium bromide.  Alleles 

were scored manually by comparison to 0.5ug of 100bp DNA Ladder (New England 

BioLabs) or 0.5ug of 1kb DNA Ladder (New England BioLabs).  Both direct PCR 

product sequencing and cloned PCR product sequencing was utilized to analyze 

polymorphisms in Bov-A2 retroposons.   

 

Analysis of BoLA Single Nucleotide Polymorphisms 

 Data from the genotyping of various breeds of cattle on genome-wide SNP chips 

(Matukumalli et al. 2009) in conjunction with the Bovine HapMap Project and University 

of Missouri linkage project was made available for use in this study.  Haploview was 

used for the visualization of linkage disequilibrium and haplotype blocks (Barrett et al. 

2005).  FigTree was used to construct phylogenetic trees from the SNP data 

(http://tree.bio.ed.ac.uk/software/figtree/ 2007).  Different subsets of BoLA SNPs were 

used in each of the projects, but the data was made as consistent as possible for the 

analysis in this study.  A total of 85 BoLA SNPs were analyzed in the Missouri samples, 

114 HapMap SNPs were analyzed by PHASE, and 59 HapMap SNPs by fastPHASE 

(Table 6).  The BoLA IIa region was represented by the smallest number of informative 

SNPs in all data sets. 
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Table 6.  BoLA SNP Positions.  Each SNP evaluated in an analysis is designated by an “X.”  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 91
 

Haplotypes Inferred from BoLA Heterozygotes 
 

Most SNPs from the University of Missouri were homozygous throughout the 

BoLA IIa-III-I region, but SNPs from the Bovine HapMap Project were both 

homozygous and heterozygous at BoLA.  The SNPs from the Bovine HapMap Project 

were analyzed with PHASE (Stephens et al. 2001) by Dr. John Huber, School of Rural 

Public Health, Texas A&M University, and fastPHASE (Scheet and Stephens 2006) by 

Dr. Clare Gill, Department of Animal Science, Texas A&M University to identify 

haplotypes.  Default parameters were used for PHASE, and animals were analyzed in 

PHASE groups by breed to increase the accuracy of haplotype inference.  The 

fastPHASE analysis was performed with the subpopulation option, and only samples with 

>90% completion rates and SNPs with >0.05 minimum allele frequencies were retained 

for analysis by fastPHASE.  Both PHASE and fastPHASE analyzed SNPs of BoLA IIb 

separately from those of BoLA IIa-III-I. 

 We have developed a method of matching all possible combinations of known 

BoLA haplotypes to identify the haplotypes present in unknown heterozygotes.  

However, unlike PHASE and fastPHASE, this method requires prior knowledge of BoLA 

haplotypes and the haplotype frequencies within breeds.  Common haplotypes are seen 

most frequently in homozygous BoLA haplotypes, so identifying and counting 

homozygotes is an easy method of quantifying common haplotypes.  The known BoLA 

haplotypes are listed in order according to their frequency within a particular breed.  For 

example, a cattle breed may be known to contain the following BoLA haplotype 

frequencies, and the BoLA heterozygote may have the following unphased SNP alleles: 

 

  SNP1 SNP2 SNP3 SNP4 SNP5 Haplotype Frequency   

Haplotype 1  A  G  T  A  A  25 % 
Haplotype 2  C  A  T  G  G  15 % 
Haplotype 3  C  G  T  A  A  10 % 
Haplotype 4  A  A  G  A  A  8 % 
Haplotype 5  C  G  G  G  A  2 % 
 
Unknown:  C/C A/G T/T G/A A/G 
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 The matching technique begins at the top of the known haplotype list with the 

most frequent haplotype, and the unknown haplotype is compared in the following order 

to these combinations of haplotypes: 

 

 1st comparison: Haplotype 1 and Haplotype 2 
 2nd comparison: Haplotype 1 and Haplotype 3 
 3rd comparison: Haplotype 1 and Haplotype 4 
 4th comparison: Haplotype 1 and Haplotype 5 
 5th comparison: Haplotype 2 and Haplotype 3 
 6th comparison: Haplotype 2 and Haplotype 4 
 7th comparison: Haplotype 2 and Haplotype 5 
 8th comparison: Haplotype 3 and Haplotype 4 
 9th comparison: Haplotype 3 and Haplotype 5 
 10th comparison: Haplotype 4 and Haplotype 5 
 

 The matching function collects all possible combinations of haplotypes that would 

create the unknown heterozygote’s allele combinations.  In this example, the only 

combination of known haplotypes that matches the unknown heterozygote is the 

combination of Haplotypes 2 and 3.  The program can be set to choose the most probable 

haplotype combination based on known haplotype frequencies, or the program can create 

an output of all possible haplotype combinations and allow the user to decide how to 

proceed.  In the case of no haplotype combination being found to match the unknown 

heterozygote, the program will search for a single haplotype match within the 

heterozygote.  For example, no suitable combination is found for the following unknown 

heterozygote:  

    SNP1 SNP2 SNP3 SNP4 SNP5 
Unknown Heterozygote  A/C G/G T/G T/A A/A 
 

 However, one of the unknown haplotypes matches Haplotype 1.  That would 

make the unknown second haplotype for SNP1 / SNP2 / SNP3 / SNP4 / SNP5 equal                         

C / G / G / A / A.  This new haplotype would be added to the bottom of the known 

haplotype list because it is present at the lowest frequency.  In this way, the list of known 

haplotypes grows as the analysis continues.   
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CHAPTER III 

RESULTS 

 

Genotyping and Selection of BoLA Microsatellites  

Genotyping Parents of the International Bovine Reference Family Panel 

 Microsatellites were characterized in this study to analyze the haplotype block 

structure, linkage disequilibrium, and recombination rates of the BoLA regions.  The high 

mutation rate of microsatellites makes them appealing as genetic markers; however, they 

must be developed carefully to ensure reliable scoring of alleles and successful 

amplification across divergent haplotypes.  BoLA microsatellites were initially genotyped 

on members of pedigreed families to evaluate polymorphism, locus specificity, and 

normal Mendelian inheritance.   

 The following parents of the International Bovine Reference Family Panel were 

used to characterize 76 BoLA microsatellites: 101 sire (Brahman x Gir/Indu), 1102 dam 

(Brahman), 1202 dam (Brahman), 2102 dam (Brahman), 501 sire (Friesian x Sahiwal), 

502 dam (Friesian x Sahiwal), 702 dam (Friesian x Sahiwal), 1401 sire (Friesian x 

Sahiwal), 1402 dam (Friesian x Sahiwal), 1502 dam (Friesian x Sahiwal), 5252 sire 

(Brangus), 2308 dam (Brangus), 1158 dam (Brangus), 4046 dam (Brangus), 5191 sire 

(Brangus), 0981 dam (Brangus), 8001 sire (Holstein), 8032 dam (Holstein), 8301 sire 

(Charolais), 8312 dam (Charolais), 861029 dam (Gelbvieh x Simmental), 896800 sire 

(Piedmontese x Hereford), ND7 sire (N'Dama), 1419 dam (N'Dama), ND8 sire 

(N'Dama), 1688 dam (N'Dama).  Microsatellites were genotyped across offspring of the 

International Reference Families only if they exhibited locus specificity and 

polymorphism among the parents.   

 Microsatellites were often closely linked with repetitive elements, so designing 

primers with robust locus specificity was a very important criterion for developing robust 

markers.  Null alleles were recognized by non-Mendelian inheritance of microsatellite 

alleles in the offspring, and homoplasy was discovered when more than one polymorphic 

element was present in the sequence of a microsatellite PCR product.  Null alleles usually 

occurred due to biased amplification in heterozygotes because SNPs at the primer binding 

site resulted in preferential amplification of specific alleles.  This problem was frequently 
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overcome by redesigning primers, but it was not always possible to redesign locus 

specific primers around microsatellites and avoid the problem of null alleles.  Null alleles 

can generate an inaccurate picture of haplotype structure because they make 

heterozygous individuals appear homozygous.  Polymorphic microsatellites with locus 

specific amplification were retained for use in this study only if they did not demonstrate 

homoplasy or null alleles.  Out of 76 microsatellites characterized, 53 did not meet the 

necessary criteria to be used in this study.  Of the 23 microsatellites used in this study, 

LA54 and DRBP1 have been characterized in previous studies of BoLA (Creighton et al. 

1992; Ellegren et al. 1993).  Although null alleles were found in both of these 

microsatellite primer pairs, the primers were retained in this study to make results and 

allele genotyping sizes consistent with the previous BoLA research.   

 Many different microsatellite motifs were investigated for polymorphism within 

the BoLA IIb region, but microsatellites containing (AC) motifs with more than five 

repeats were found to be the most polymorphic.  In light of this, most microsatellites 

selected for characterization in the BoLA IIa-III-I region were (AC)5+ motifs.  Perfect 

microsatellite motifs - microsatellite motifs without any nucleotide interruptions - were 

found to be more polymorphic than imperfect microsatellites.  Homoplasy was most 

often observed in compound microsatellites when the amplicon contained more than one 

polymorphic microsatellite motif.  None of the (AGC)n microsatellites associated with 

Bov-A2 retroposons were retained for use in this study for various reasons, including 

nonspecific primer amplification, too much size variation, or not showing any 

polymorphism in size.  Monomorphism, homoplasy, null alleles, and nonspecific 

amplification were the most common reasons why certain microsatellites were not chosen 

for use in this study (Table 7).  Of the BoLA microsatellites that were selected, nine were 

located in the BoLA class IIb region, three within the region centromeric to class IIa, four 

in the class IIa region, two in the class I region, and three in the extended class I region 

(Table 8).  
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Table 7.  BoLA Microsatellites Not Chosen for This Study.  This table lists the name of the 
microsatellite, the location of the forward microsatellite primer on BTA23 in the Btau4.0 genome 
`assembly, the BoLA class of the microsatellite position, the microsatellite reference motif from 
L1 Dominette, and the reason why the microsatellite was not selected for use in this study 
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Table 7.  Continued. 
 

 
 
 
 
Table 8.  Allele Ranges of Selected Microsatellites.  Nine microsatellites were selected within 
the BoLA IIb region, three within the region centromeric to class IIA, four within class IIa, two in 
class III, two in class I, and three in the extended class I region.  Most of these microsatellites 
were (AC)5+ motifs with more than four alleles. 
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Observed Recombination Events 

Recombination Events in BoLA IIb 

 In addition to providing valuable information about microsatellite polymorphism, 

genotyping pedigreed families also resolved recombination events.  Two recombination 

events were observed out of 368 total meioses within the BoLA IIb region in parents of 

the International Reference Families (Table 9).  One recombination event took place 

during male meioses and the other during female meioses. 

 
Table 9.  BoLA IIb Recombination Events.  The number of recombination events, 
microsatellite markers flanking the events, and examples of genes within the interval of 
recombination are given in this table.  Blue indicates that one recombination event took place 
during male meioses and pink shows the other occurred in female meioses. 
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 One of the BoLA IIb recombination events took place within an interval 

containing the genes DYA, DYB, DOB, TAP2.1, TAP2, PSMB8, TAP1, and PSMB9, 

while the other recombination event occurred near the DMB gene (Figure 6).  A total of 

two recombinants from 368 meioses over a distance of approximately 450 kb calculate to 

0.543 cM, which is consistent with the average rate of recombination in the bovine 

genome.  

 
Figure 6.  Intervals of BoLA IIb Recombination Events.  Arrows (yellow) indicate intervals 
where the BoLA IIb recombination events occurred in relation to the positions of genes (blue) 
and microsatellites (red).  The positions of BoLA IIb genes and microsatellites are listed on the 
left by their megabase position on chromosome 23.  
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Recombination Events in BoLA IIa-III-I 

 Nine recombination events were identified within the larger BoLA region out of 

406 total meioses in parents of the International Reference Families and sires of the Lone 

Star Tick resistance study (Table 10).  Four recombination events were observed in the 

region centromeric to BoLA class IIa, three within the BoLA IIa-III-I region, two in the 

extended class I region (Figure 7), and three took place during male meioses and six 

during female meioses.  All recombination events were observed within parents of the 

International Reference Families, and there were no recombinants among the 50 

informative meioses in the sires of the Lone Star Tick resistance study.   

 
Table 10.  BoLA IIa-III-I Recombination Events.  The number of recombination events and 
microsatellite markers flanking the events are given in this table.  Blue indicates three took place 
during male meioses and pink shows six occurred in female meioses. 
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Figure 7. Intervals of BoLA IIa-III-I Recombination Events.  Arrows (yellow) indicate 
intervals where the recombination events occurred in relation to the positions of BoLA classes 
(blue) and microsatellites (red).  The positions of genes and microsatellites are listed on the left 
by their megabase position on chromosome 23.  The arrows encompassed by a red circle are 
depicting the three recombination events that took place within the BoLA IIa-III-I region. 
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Haplotype Blocks of BoLA IIa-III-I 

 The number of observed recombination events within the BoLA IIa-III-I region 

was used to estimate a BoLA recombination rate.  Three recombinants out of 406 total 

meioses spanning about 4 Mb of the BoLA IIa-III-I region calculates to be about 0.18 cM 

/ 1 Mb.  This is a much lower rate of recombination compared to the bovine genome wide 

average of 1.25 cM / 1 Mb (Arias et al. 2009), but it is consistent with the reduced 

recombination levels of BoLA IIa-III-I observed by Schnabel et al. (unpublished results).  

A larger study is needed to validate the hypothesis of a lower recombination rate in 

BoLA, but this evidence suggests that large blocks of linkage disequilibrium exist within 

the BoLA IIa-III-I region and are infrequently fragmented by recombination.  In support 

of this, 21 Holsteins sharing at least one copy of the DRB3*1101 allele showed strong 

conservation of BoLA IIa-III-I microsatellite alleles.  Microsatellite 605, located in the 

centromeric to IIa region, exhibited a different allele in one Holstein animal that may be 

evidence of a recombination event centromeric to BoLA class IIa.  But out of  24 

haplotypes containing the DRB3*1101 allele, all animals genotyped to have identical 

microsatellite alleles across the BoLA IIa-III-I region.  When the Holstein animals were 

selected for the presence of the DRB3*1101 allele, they were inadvertently selected for a 

shared haplotype across the entire BoLA IIa-III-I region.  Animals that had been typed 

for BoLA microsatellites were also typed for DRB3 alleles to see if more instances could 

be observed of DRB3 alleles predicting entire BoLA haplotypes.  Parents of the 

International Reference Families were typed for DRB3 alleles to investigate whether their 

DRB3 alleles correlated with their microsatellite-derived haplotypes of BoLA IIa-III-I 

(Table 11).   
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Table 11.  Alleles of DRB3 and BoLA IIa-III-I Microsatellites.  Haplotypes sharing DRB3 alleles are highlighted in the same color, and breaks 
in allele identity are depicted by the disappearance of color.  The names of the microsatellites and their BoLA classes are listed at the top of the 
table.  Animals listed in this table are parents of the International Reference Families, and their microsatellite haplotypes were determined by 
genotyping offspring. 
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Table 11.  Continued.   
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 While some animals shared haplotypes across the entire BoLA IIa-III-I region, 

others showed strong haplotype blocks surrounding the DRB3 allele and extending only 

through the class IIa region.  It is clear that the DRB3 allele is not always predictive of 

the entire BoLA haplotype, as was the case with the DRB3*1101 Holstein animals.  The 

same DRB3 allele may appear on the background of different BoLA IIa-III-I haplotypes. 

The accurate identification of BoLA haplotypes will require markers to be genotyped 

across the entire BoLA IIa-III-I region.  Typing markers only within the class IIa region 

is not sufficient to predict the entire BoLA haplotype, but it may be predictive of alleles 

at class IIa genes.  It was previously demonstrated that alleles of the LA54 microsatellite 

are predictive of many alleles at the DRB3 gene, but the microsatellite cannot distinguish 

between all DRB3 alleles (Ellegren et al. 1993).  Adding additional markers may help to 

more accurately predict alleles of DRB3 and other important class IIa genes, such as 

DQA and DQB. 

 

Additional Genetic Markers 

Identification and Characterization of SNPSTRs 

 Additional polymorphic markers, including SNPSTRs and Bov-A2 retroposons, 

were sought in the BoLA IIa-III-I region to more comprehensively characterize 

breakpoints in BoLA linkage disequilibrium.  SNPSTRs were identified by sequencing 

BoLA microsatellite amplicons of parents of the International Reference Families, and 

several SNPs with minimum allele frequencies greater than 5% were identified within the 

amplicons of polymorphic BoLA microsatellites (Table 12).  The animals sequenced for 

the discovery of SNPSTRs belonged to the breeds of Brahman, Brahman x Gir/Indu, 

Friesian x Sahiwal, Holstein, Brangus, Charolais, Gelbvieh x Simmental, Piedmontese x 

Hereford, and N'Dama.  The SNPs found to have minimum allele frequencies below 5% 

among these breeds may exhibit higher minimum allele frequencies in other breeds.  Two 

of the SNPs found in microsatellite amplicons 605 and 415 were tri-allelic, and at least 17 

SNPs were identified within the 171 class IIa microsatellite amplicon.   
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Table 12.  BoLA SNPSTRs.  This table describes the total number of SNPs found within each 
microsatellite amplicon, the total number of individuals sequenced for each amplicon, the total 
number of observed SNPs, and the number of those with a minimum allele frequency higher than 
0.05.  The microsatellites with the highest number of surrounding SNPs are highlighted yellow.     
 

 
 

Characterization of Bov-A2 Retroposons 

 A typical Bov-A2 repeat element consists of two monomers, called Bov-A units, 

connected by a conserved linker sequence (CACTTT)n.  Bov-A2 retroposons are unique 

in that the number of Bov-A units at a particular locus can vary between individuals.  

Each Bov-A unit is approximately 120 bp in length, making segmental polymorphisms 

easily distinguishable by agarose gel electrophoresis (Figure 8).  Bov-A2 retroposons 

located in BoLA were investigated for polymorphism in Bov-A unit number across nine 

breeds of cattle and two North American Bison from Yellowstone National Park.  Out of 

90 Bov-A2 elements analyzed, only 11 were found to be polymorphic in Bov-A unit 

number.  It was difficult to design primers to amplify the polymorphic Bov-A2 elements 

across all breeds.  The increased nucleotide mutation rate of the repeat element probably 

hindered the binding of primers and created many null alleles.  This property does not 

make Bov-A2 markers suitable for use in characterizing BoLA haplotype structure; 

however, the discovery that North American Bison show polymorphism in Bov-A unit 

number was significant.  It contradicted the hypothesis that Bov-A unit number 

polymorphism arose because genome instability was instigated by the cattle 

domestication process (Onami et al. 2007).  Since the process which generates Bov-A 
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unit number polymorphism was found in bison and is not unique to domestic cattle, it 

was decided to further investigate Bov-A2 polymorphisms in additional species. 

 

Revisiting the Study of Onami et al. 2007 

 Onami et al. 2007 proposed that Bov-A2 length polymorphisms were a 

consequence of genomic instability resulting from the domestication and selective 

breeding of cattle.  Onami et al. 2007 analyzed five polymorphic Bov-A2 repeat elements 

in Bos taurus breeds of cattle, one bongo (Tragelaphus euryceros), one Arabian Oryx 

(Oryx leucoryx), one Axis deer (Axis axis), one Reticulated Giraffe (Giraffa 

cameloparadalis), one Pronghorn (Antilocapra Americana), and one Lesser mouse deer 

(Tragulus javanicus).  The limited sampling of distant cattle relatives was not a robust 

experimental design for the Onami et al. 2007 study.  The purpose of this experiment was 

to rigorously assess the hypothesis that polymorphisms in Bov-A unit number are specific 

to domestic cattle breeds by evaluating Bov-A2 polymorphisms within species more 

closely related to cattle.  Alleles of the five polymorphic Bov-A2 loci used by Onami et 

al. 2007 were evaluated in Yellowstone National Park bison, Texas Longhorn cattle, 

Florida Scrub cattle, and various other wild bovids and ruminants (Table 13).  The alleles 

were easily distinguishable by agarose gel electrophoresis, as each Bov-A unit is about 

120 bp in length (Figure 8).  Bov-A2 alleles were scored in gel electrophoresis and subset 

of the polymorphic Bov-A2 PCR products was sequenced.   

 The Bov-A2 retroposon CO1 was inserted in all bovines; BAAA21 exhibited up 

to three Bov-A monomers in domestic cattle, feral cattle, gaur, banteng, and bison; Bf6 

exhibited Bov-A3 in gaur, Bov-A4 in bison, and Bov-A5 in bison and Florida Scrub; BE1 

showed Bov-A3 in domestic and feral cattle, gaur, and bison, Bov-A4 in domestic and 

feral cattle and banteng, and Bov-A5 in banteng; Basix maintained Bov-A3 in domestic 

cattle and bison, Bov-A4 in gaur, Bov-A5 in Florida Scrub, and Bov-A6 in domestic 

cattle and Florida Scrub.  The results of this experiment demonstrate that polymorphisms 

in Bov-A unit number are present in both wild and feral bovids of the Bos and Bison 

genera (Table 14); therefore, Bov-A2 polymorphisms do not appear to be a consequence 

of genomic instability associated with domestication.   



 

 

107

 
 
Figure 8.  Agarose Gel Images of Bov-A2 PCR Products.   Five sets of primers were used to amplify the five Bov-A2 retroposons described by 
Onami et al. 2007.  There were two observed alleles for the primer pair CO1, three alleles for BAAA21, five alleles for Bf6, five alleles for BE1, 
and five alleles for Ba6.  “No insertion” of a Bov-A2 element was counted as an allele. 
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Table 13.  DNA Samples Used to Evaluate the Onami et al. 2007 Hypothesis.  A variety of DNA samples from domestic cattle breeds, feral 
cattle, wild bovines, bovids, and cervids were utilized to amplify Bov-A2 elements from the Onami et al. 2007 study.  Several trios (sire, dam, and 
offspring) were included in the analysis to ensure that the primers were amplifying properly without null alleles. 
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Table 14.  Polymorphisms of Onami et al. 2007 Bov-A2 Retroposons.  The columns of this table represent alleles of specific Bov-A2 
retroposons, and the rows represent the group of animals genotyped.  Each cell lists the number of individuals with an particular allele over the 
total number of individuals that successfully amplified with that Bov-A2 primer pair.  Cells with one or more alleles are highlighted with a color 
specific to the Bov-A2 primer pair, and cells without any allelic representation are without color.   
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 It is likely that domestic cattle maintain substantial levels of genetic diversity 

because they were derived from a large and genetically diverse ancestral population 

(Gibbs et al. 2009), and not because domestication and selective breeding have produced 

genomic instability.  Bov-A2 elements may be useful for phylogenetic studies of Bos and 

Bison, but they are not robust genetic markers for genotyping across different breeds of 

domestic cattle. 

 

Analysis of BoLA Single Nucleotide Polymorphisms 

Analyzing Homozygotes at the BoLA IIa-III-I-Extended I Region 

 During the course of this project, we were able to utilize data from a large whole 

genome SNP project (J. Taylor and S. Moore; USDA NRI 2006-35616-16697) that used 

the Illumina 50K SNPchip to genotype more than 13,000 animals from twenty six breeds 

of domestic cattle and three different species of ruminants (Gaur, Bison, and Cape 

buffalo).  One of the objectives of this project was to use dense whole genome SNP 

analysis as a linkage experiment to validate the different sequence assemblies of the 

bovine genome.  As such, all the domestic cattle are fully pedigreed for high resolution 

linkage mapping.  Among the thousands of animals genotyped, 796 animals were 

identified to be homozygous across the entire span of the BoLA IIa-III-I region.  This 

resource was extremely valuable in examining the relationships between BoLA 

haplotypes and the distribution of BoLA haplotypes among various breeds, and it allowed 

for the integration of SNP-defined BoLA haplotypes with the new polymorphic markers 

identified in this project.   

 We obtained 115 DNA samples representing 53 different haplotypes from Drs. 

Jerry Taylor and Bob Schnabel of the University of Missouri, Department of Animal 

Sciences. These samples represented a subset of the 109 haplotypes from the total 796 

animals typed as homozygous across 52 SNPs spanning about 3 Mb of the BoLA IIa-III-I 

region.  This was an excellent resource for characterizing BoLA haplotype structure 

because none of the SNPs required alleles to be phased, which is needed to identify 

haplotypes in heterozygous individuals.  Homozygous haplotypes avoided errors of 

incorrectly phasing SNP alleles and generating false haplotypes.   
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 The boundaries of BoLA homozygosity were analyzed by calculating the 

heterozygote frequency of SNPs flanking the homozygous BoLA regions in 796 animals 

(Figure 9).  Boundaries of homozygosity are important to identify because haplotype 

homozygosity can be predictive of linkage disequilibrium (Sabatti and Risch 2002).  

BoLA homozygosity expands through part of the extended class I region, but the 

homozygosity abruptly ends at the boundary of class IIa.  The region centromeric to 

BoLA IIa is relatively devoid of genes, whereas the extended class I region houses many 

gene families with homology to the extended class I region of HLA.  The linkage 

disequilibrium expanding into the HLA extended class I region may be attributed to 

genes of the extended class I region hitchhiking with genes of BoLA, or vice-versa.  

Linkage disequilibrium extending beyond the class I region has been observed in humans 

(Horton et al. 2004), and it is probable that cattle have similar patterns of linkage 

disequilibrium. 

 SNPs were selected for analysis of haplotype structure based on the boundaries of 

homozygosity observed in Figure 9.  There were no SNPs selected beyond the class IIa 

region, but several SNPs in the extended class I region were chosen for analysis with 

SNPs-derived haplotypes of the BoLA class IIa-III-I region.  A total of five SNPs in class 

IIa, 12 SNPs in class III, 26 in class I, and nine SNPs in the extended class I region were 

analyzed in homozygous haplotypes of 796 animals (Table 15).  These animals included 

cattle breeds Angus, Holstein, Hereford, Limousin, Simmental, Brahman, Brown Swiss, 

Belted Galloway, Dexter, Finnish Ayrshire, Gir, Guernsey, Jersey, Japanese Black, 

Kerry, Maine Anjou, MARC (representing many breeds used in a linkage study), Nelore, 

Norwegian Red, Red Poll, Romagnola, Romosinuano, Santa Gertrudis, Shorthorn, Salers, 

Scottish Highland, and White Park.  Also included in analysis of BoLA homozygous 

haplotypes are North American bison, gaur, and African buffalo. 
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Figure 9.  Breakpoints in BoLA Homozygosity.  The position of the region centromeric to class 
IIa is depicted by a red box, the position of the BoLA class IIa-III-I by a blue box, and the 
position of the extended class I region by a green box.  52 SNPs were analyzed in the region 
centromeric to IIa, five in class IIa, 12 in class III, 26 in class I, and 31 in the extended class I 
region.  SNPs are represented by black dots and plotted by their percent heterozygosity.  The 796 
individuals analyzed were all homozygous for SNPs within the BoLA IIa-III-I region, so the 
SNPs in that region are plotted at zero.  Yellow arrows indicate the approximate breakpoints of 
homozygosity.   
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Table 15.  Homozygous BoLA Haplotypes.  SNP positions are listed in the top row of this table and colored in accordance with their BoLA 
class.  All cattle breeds had successful allele calls for all SNPs, but a few SNPs within African (Cape) buffalo and gaur were not successfully 
genotyped.  Unsuccessful allele calls are designated with “N.”  The N designation was used throughout this analysis, rather than imputing the 
missing alleles.  Haplotypes that are shared across different breeds are color coded under the haplotype name column. 
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Table 15.  Continued. 
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Table 15.  Continued. 
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 One of the surprising results of this analysis was the observation that seven entire 

BoLA IIa-III-I haplotypes were conserved among different Bos taurus breeds of cattle 

(Table 16), indicating that these haplotypes have been stable over hundreds of years since 

cattle domestication.  All shared haplotypes were found among Bos taurus breeds in spite 

of significantly different breed histories and selection pressures.  We failed to find shared 

haplotypes among Bos indicus breeds, but this is likely an artifact of sampling as not 

many Bos indicus cattle were analyzed in the 50K SNP study.  One haplotype was shared 

between the crossbred Santa Gertrudis breed and the Bos taurus Maine Anjou breed, but 

this haplotype was assumed to be taurine in origin. 

 
Table 16.  BoLA Haplotypes Shared Across Breeds.  The haplotype name is listed in the first 
column of this table, followed by the breeds that were identified with that particular haplotype.  
Each row represents a different shared haplotype, and the rows are colored to correspond with the 
haplotypes of Table 15. 
 

 
 

 The SNP-defined BoLA IIa-III-I haplotypes are not clustered in similarity by 

breed or breed type.  Divergent haplotypes are found within and between breeds.  No 

clear distinction is seen between BoLA haplotypes derived from Bos indicus cattle and 

those derived from Bos taurus cattle.  A phylogenetic tree shows that Bos indicus BoLA 

haplotypes are intermingled with Bos taurus, but there is a clear separation of cattle 

haplotypes from African buffalo, bison, and to some extent gaur (Figure 10). 
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Figure 10.  Phylogenetic Tree of BoLA IIa-III-I Haplotypes.  Bison haplotypes are red in font, 
gaur are blue, and Cape buffalo are purple.  This tree was constructed with FigTree software 
(http://tree.bio.ed.ac.uk/software/figtree/). 
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 Of the 796 animals homozygous at the BoLA IIa-III-I region, 394 were also 

homozygous for haplotypes defined by ten SNPs in the BoLA class IIb region (Table 17).  

These homozygous BoLA IIb haplotypes were identified among various cattle breeds and 

North American bison. 

 
Table 17.  Genotypes of 27 Homozygous BoLA IIb Haplotypes.  The name of the BoLA IIb 
haplotype is listed in the first column, and the SNP positions are listed across the top. 
 

 
 

 A phylogenetic tree of BoLA IIb haplotypes (Figure 11) shows different a 

relationship among BoLA IIb haplotypes when compared to the relationships described 

by the BoLA IIa-III-I haplotype tree.  BoLA IIb haplotype relationships are more 

simplistic, and the haplotypes show less divergence from one another.  It is likely that 

each BoLA IIb haplotype arose from a series of stepwise point mutations, unlike the 

BoLA IIa-III-I region which has maintained divergent ancestral haplotypes. 
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Figure 11.  Phylogenetic Tree of BoLA IIb Haplotypes.  Bison haplotypes are red in font color 
and cattle breeds are black.  This tree was constructed by using FigTree software 
(http://tree.bio.ed.ac.uk/software/figtree/). 
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 The largest numbers of homozygous BoLA IIa-III-I haplotypes are represented in 

the Angus (Figure 12) and Holstein (Figure 13) breeds with 598 and 698 total 

homozygous haplotypes, respectively.  This makes the Angus and Holstein haplotypes 

ideal for estimating haplotype frequencies within breeds. 
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Figure 12.  Angus Homozygous BoLA Haplotype Frequencies.  A total of 598 homozygous 
Angus BoLA haplotypes were used to calculate BoLA haplotype frequencies within the Angus 
breed.  Each colored segment of the cylinder graph represents one Angus BoLA haplotype, and 
each haplotype frequency is listed to the right of the graph.   
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Figure 13.  Holstein Homozygous BoLA Haplotype Frequencies.  A total of 698 homozygous 
Holstein BoLA haplotypes were used to calculate BoLA haplotype frequencies within the 
Holstein breed.  As in the Angus graph, each colored segment represents one haplotype and the 
frequencies are listed in a table to the right.   
 

 

 The four most common Angus BoLA IIa-III-I homozygous haplotypes 

represented 84.61% of all Angus homozygous haplotypes, and the fourth and fifth most 

common Angus BoLA homozygous haplotypes are also shared with the Holstein breed.  

The six most common Holstein BoLA homozygous haplotypes represented 96.57 % of 

the total haplotype number, and two of the six most common Holstein homozygous 

haplotypes are shared with the Angus breed.  Angus and Holstein cattle have been 

selected for different traits (beef vs. dairy) for at least 200 years and are not interbred, so 

the prevalence of ANG_7/HOL_2 and ANG_4/HOL_5 haplotypes in both Angus and 

Holstein breeds suggests that the origin of the haplotypes predates the divergence of 

Angus and Holstein breeds more than 2,000 years ago (OSU 1995).  The retention of 

these shared BoLA haplotypes over such a long period of time and the appearance of the 

shared haplotypes at high frequencies in modern Angus and Holstein populations 

suggests that the haplotypes are being selectively maintained.  To more rigorously test the 

homozygosity indicated by the 50K SNPchip, we typed additional polymorphic markers 

over the homozygous BoLA haplotypes to determine if the identity of SNP-derived 

haplotypes across breeds would be further supported by the additional markers.   
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 The alleles of the DRB3 gene were typed in all homozygous haplotypes with 

available DNA samples (Table 18).  The DRB3 gene is extremely polymorphic, which 

makes DRB3 alleles more predictive of BoLA haplotypes than other less polymorphic 

BoLA genes.  The DRB3 gene is also attractive for this study because it exists as a single 

copy on all BoLA haplotypes, and PCR amplification of DRB3 exon 2 is reliably 

consistent across divergent BoLA haplotypes.  DRB3 alleles were always identical within 

a SNP-defined BoLA haplotype, and a considerable number of DRB3 alleles were shared 

across different BoLA haplotypes.  BoLA haplotypes with the same DRB3 allele also 

shared SNP alleles within the class IIa region.  The DRB3 alleles of bison have not been 

identified in cattle, but the DRB3 allele identified in gaur was identical to the 

DRB3*2201 allele of cattle.  One divergent novel DRB3 allele was discovered within a 

Limousin animal containing the LMS_3 BoLA haplotype (Figure 14), but all other DRB3 

alleles had been previously described. 
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Table 18.  DRB3 Alleles of BoLA Homozygotes.  This table shows the distribution of 23 
different DRB3 alleles among 46 different cattle haplotypes of BoLA IIa-III-I homozygous 
animals. DRB3 sequences are also included for bison and gaur homozygotes.  Rows are divided 
into sections by bold lines to show shared DRB3 alleles among animals of different breeds and 
haplotypes.  As many as six different haplotypes share the same DRB3 allele, a state consistent 
with diversification of BoLA by recombination. 
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Figure 14.  Phylogenetic Tree of DRB3 Exon 2 Sequences.  DRB3 alleles of bison are red in 
font color, the DRB3 allele of gaur is blue, and the novel DRB3 allele from a Limousin animal is 
green.  The novel DRB3 allele is highly divergent from the previously described alleles, and the 
DRB3 alleles of bison and gaur are not clustered together.  This tree was constructed with 
FigTree software (http://tree.bio.ed.ac.uk/software/figtree/). 
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 The BoLA IIa-III-I haplotypes defined by SNPs and DRB3 alleles were analyzed 

with a set of previously characterized BoLA microsatellites (Table 8) and SNPSTRs 

(Table 12) to further characterize BoLA haplotype structure (Table 19).  The second 

exons of the DRA gene and DQB gene(s) were sequenced within BoLA haplotypes to 

investigate the correlation of SNP-defined haplotypes with alleles of BoLA genes.  The 

DQB genes may be present in one or two copies on different BoLA haplotypes, but the 

DRA and DRB3 genes are always present in one copy.  Many alleles are possible at 

DRB3 and DQB loci, but the second exon of the DRA gene has only four possible alleles 

generated from three synonymous SNP mutations, so different selection pressures may 

operate on the DRA gene than on the DRB3 and DQB genes.    

 Characterizing the points of divergence within haplotypes that share the same 

DRB3 allele may provide insight into the phylogeny and evolutionary history of BoLA 

haplotypes.  In the following tables, haplotypes sharing the same DRB3 allele are listed 

together and the breakpoints in haplotype identity are highlighted in yellow.  Breakpoints 

in identity within the same SNP-defined haplotype are highlighted in blue.  If SNPs are 

truly predictive of BoLA IIa-III-I haplotypes, blue will only be seen in the terminal end 

of the extended class I region.  BoLA SNPs were not selected to define haplotype 

structure in the region typed by terminal extended class I microsatellites. 
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Table 19.  Additional Markers on BoLA Haplotypes with Defined DRB3 Alleles.  Additional markers, some developed in this project, were 
typed in DNA from BoLA homozygotes with specific DRB3 alleles to further assess homozygosity and test for diversity within homozygotes.  
Homozygous BoLA haplotypes are grouped according to shared DRB3 alleles, and the name of the shared DRB3 allele is listed at the top of each 
group.  The marker name, type (gene, microsatellite, or SNP), and BoLA class are listed at the top of each table.  Each table represents BoLA IIa-
III-I haplotypes sharing the same DRB3 allele.  The BoLA IIa-III-I haplotype designation and animal ID are listed in the first two columns. 
Yellow indicates a polymorphism between different BoLA haplotypes, blue indicates a polymorphism within the same BoLA haplotype, and grey 
means the marker was not typed on a particular animal.   
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Table 19 Continued.  BoLA Haplotypes with DRB3*0101. 
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Table 19 Continued.  BoLA Haplotypes with DRB3*1101. 
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Table 19 Continued.  BoLA Haplotypes with DRB3*0201. 
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Table 19 Continued.  BoLA Haplotypes with DRB3*1201. 
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Table 19 Continued.  BoLA Haplotypes with DRB3*1501. 
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Table 19 Continued.  BoLA Haplotypes with DRB3*1601. 
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Table 19 Continued.  BoLA Haplotypes with DRB3*1801. 
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Table 19 Continued.  BoLA Haplotypes with DRB3*2601. 
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Table 19 Continued.  BoLA Haplotypes with DRB3*2703. 
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 All haplotypes that were defined as homozygous by SNPs across BoLA IIa-III-I 

region were also homozygous for all additional markers genotyped in this region.  The 

only exceptions to this were microsatellites located in the terminal portion of the 

extended class I region.  Three BoLA haplotypes containing DRB3*0101 differed in the 

class I region but were identical in the class IIa and III regions.  Variation was identified 

within the extended class I region of the ANG_4/HOL_5 haplotype, but all alleles of the 

BoLA IIa-III-I region remained identical within the ANG_4/HOL_5 haplotype.  Four 

different haplotypes containing the DRB3*1101 allele exhibited differences in the BoLA 

IIa, III, and I regions, but no variation was observed within each haplotype.  All alleles 

were homozygous and identical within DRB3*1101 haplotypes, with the exception of 

one heterozygous microsatellite in the extended class I region of an ANG_7/HOL_2 

haplotype.  Two haplotypes with the DRB3*1201 allele showed allelic differences at the 

class I and extended class I regions, and a microsatellite in the extended class I region 

was heterozygous between two HOL_3 haplotypes.  Six haplotypes containing the 

DRB3*1501 allele exhibited variations from each other throughout the BoLA IIa-III-I-

Extended I region.  All of the alleles from HOL_1 haplotypes were identical and 

homozygous.  Four haplotypes containing the DRB3*1601 allele were identical in the 

class IIa region and divergent from each other in the class III, class I, and extended class I 

regions.  All markers were homozygous and conserved within each DRB3*1601 

haplotype.  Two haplotypes containing the DRB3*1801 allele began to diverge from each 

other at the DRA allele, but all alleles of the ANG_1 haplotype were homozygous and 

identical.  Only one haplotype containing DRB3*2601 was evaluated, but all markers on 

this haplotype were homozygous and identical within all individuals genotyped.   

There was also only one haplotype was analyzed that contained DRB3*2703, and all 

markers were homozygous and identical within this haplotype.  SNP-defined BoLA 

haplotypes seem to sufficiently account for all variation in the BoLA IIa-III-I region.  

The accuracy in defining the class IIa region was impressive considering only five class 

IIa SNPs were analyzed, and two of those five had very low minimum allele frequencies.  

The accuracy in defining the class IIa region is probably attributed to the linkage 

disequilibrium of class IIa with SNPs located in other regions of BoLA.   
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Haplotypes Inferred from BoLA Heterozygotes 

 While the homozygous BoLA haplotypes were extremely useful for the initial 

characterization of BoLA haplotype structure, it is necessary to define haplotype structure 

in animals that have heterozygous BoLA haplotypes.  Many of the cattle used in the 

Bovine HapMap Project were heterozygous for BoLA SNPs.  In collaboration with Dr. 

John Huber, School of Rural Public Health, at Texas A&M University, we analyzed a 

total of 15 SNPs in BoLA IIb, four SNPs in class IIa, 18 SNPs in class III, 43 SNPs in 

class I, and 34 SNPs in extended class I within animals of the Bovine HapMap Project.  

PHASE was used to identify BoLA haplotypes within BoLA heterozygotes by using the 

default PHASE parameters (Stephens et al. 2001).  Animals were dropped out of the 

PHASE analysis if they were missing too much data in a particular BoLA region, which 

resulted in some breeds having different numbers of animals analyzed for BoLA IIb and 

BoLA IIa-III-I.  Trios (sire, dam, and offspring) within the Bovine HapMap Project were 

used to assess the accuracy of PHASE predicted BoLA haplotypes in heterozygous 

animals.   

 We began PHASE analysis by grouping all breeds together, but this was 

analytically impossible because the diversity of haplotypes among different cattle breeds 

confounded the PHASE algorithms.  Cattle breeds were then categorized by Bos indicus, 

European Bos taurus, and African Bos taurus, but PHASE did not properly analyze these 

categories either.  Ultimately, none of the breeds were combined for PHASE analysis and 

SNPs were phased within individual breed groups.  This approach dramatically decreased 

the sample sizes and raised concern about the relatedness of samples within breeds, but 

did improve the accuracy of haplotype prediction.  BoLA IIb SNPs were phased in a 

group separately from the BoLA IIa-III-I SNPs.  A separate analysis of the Bovine 

HapMap data was performed with fastPHASE in collaboration with Dr. Clare Gill, 

Department of Animal Science, Texas A&M University using a different subset of BoLA 

SNPs than those in PHASE, but the results between PHASE and fastPHASE analyses 

were similar.   

 The Haploview program was used with the Haps format, the r2 linkage 

disequilibrium values, and r2 color scheme to graphically display linkage disequilibrium 

(LD) among haplotypes derived from PHASE (Barrett et al. 2005).  Strong LD 
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relationships are depicted in Haploview by black boxes (value of 100), no LD 

relationship is indicated by white boxes (value of 0), and varying shades of grey represent 

intermediate LD relationships (dark grey is stronger LD, and light grey is weaker LD).  

The approximate distance between SNPs is displayed at the top of the Haploview figures, 

and rows without boxes indicate that the SNPs were monomorphic within the breed.  A 

total of 15 SNPs in the BoLA IIb region (Figure 15) and 99 SNPs in the BoLA IIa-III-I 

region (Figure 16) were analyzed by PHASE and viewed in Haploview for 19 breeds of 

cattle used in the Bovine HapMap Project.  See the appendix for a complete list of 

haplotypes derived from PHASE and fastPHASE, as well as Haploview figures for all 

breeds of the Bovine HapMap Project. 

 

 
 
Figure 15.  BoLA IIb Haploview Output for Angus HapMap Animals.  BoLA IIb haplotypes 
were determined by PHASE within each HapMap breed and graphically displayed in Haploview. 
Fifteen markers and their relative positions are shown across the top. The breed and total number 
of animals analyzed (n) is listed in the left hand corner of the figure.  Low minimum allele 
frequencies of several SNPs in BoLA IIb rendered the alleles monomorphic in many breeds, and 
monomorphic alleles are seen as blank diagonals in the Haploview output.  The average distance 
between the 15 BoLA IIb SNPs was 31. 245 kb, although they were not positioned evenly from 
each other.  The r2 color scheme displayed pairs of SNPs in highest linkage disequilibrium 
(maximum number = 100) as black boxes, low linkage disequilibrium (minimum number = 0) as 
white boxes, and shades of gray represent intervening levels of linkage disequilibrium. 

Angus (n = 62) 
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Angus (n = 26Angus (n = 26)Angus (n = 26Angus (n = 26)
 

 
Figure 16.  BoLA IIa-III-I Haploview Output for Angus HapMap Animals.  BoLA IIa-III-I 
haplotypes were determined by PHASE within each breed and graphically displayed in 
Haploview.  A total of 114 SNPs and their relative positions are shown across the top.  The total 
number of animals analyzed (n) is listed in the left bottom corner of the figure.  SNPs that were 
monomorphic in the Angus animals are displayed as blank diagonals in the Haploview output, 
and SNPs with the highest levels linkage disequilibrium (maximum number = 100) are 
represented by black boxes, SNPs with lowest linkage disequilibrium (minimum number = 0) are 
white boxes, and shades of gray represent SNPs with intervening levels of linkage disequilibrium. 
Though the SNPs were not evenly distributed, the average distance between them was  65.653 kb.  
Overall, these figures show that SNPs positioned close together exhibited a higher level of 
linkage disequilibrium.  Given the small number of animals used in each breed analysis, linkage 
disequilibrium may have been influenced by the total number of animals analyzed (n) and their 
pedigree relationships.  
 
 
 In general, the Haploview figures showed that makers positioned closest together 

had the highest levels of linkage disequilibrium.  This is consistent with the findings of 

the Bovine HapMap Project where linkage disequilibrium was detected at distances of 

100 – 250 kb in breeds that shared a recent common ancestor, 10 kb within Bos taurus 

and Bos indicus breeds, and never between Bos taurus and Bos indicus breeds (Gibbs et 

al. 2009).  Linkage disequilibrium maps of bovine chromosome 14 revealed that Angus 

and Holstein breeds do not share haplotypes at distances greater than 10 kb, and the 

strongest haplotypes within each breed are below 100 kb (Marques et al. 2008).  
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Summary of Results 

 The goal of this project was to identify and characterize polymorphic markers 

spanning the BoLA IIb and BoLA IIa-III-I regions to provide sufficient markers to better 

analyze patterns of genetic variation and haplotype structure across diverse cattle breeds 

with different breed histories and selection pressures.  The haplotype structure of the 

BoLA IIb region was analyzed separately from the haplotype structure of the BoLA IIa-

III-I region, as the two regions are located on separate parts of chromosome 23.  Four 

different types of markers were evaluated for their suitability to define haplotype 

structure including 76 microsatellites, nine SNPSTRs, 90 Bov-A2 retroposons, and 62 

SNPs.  Markers that showed sufficient levels of polymorphism, locus specificity, 

Mendelian inheritance, and accurate typing of alleles across different haplotypes were 

chosen to define the haplotype structure of the BoLA IIb and BoLA IIa-III-I regions and 

to determine where breakpoints in linkage disequilibrium may occur in the regions 

surrounding BoLA IIa-III-I.  Out of all the markers evaluated for use in analyzing 

haplotype structure across the BoLA IIb and BoLA IIa-III-I regions, a total of 23 

microsatellites, two SNPSTRs, 62 SNPs, and the alleles of three class IIa genes were 

selected.  Polymorphisms of Bov-A2 retroposons were not chosen to be evaluated in 

BoLA haplotype structure because null alleles were prevalent and difficult to overcome, 

but this study presented the first report of polymorphisms in Bov-A unit number among 

wild and feral bovids belonging to the Bos and Bison genera. 

 Analysis of microsatellites in pedigreed families revealed two recombination 

events in BoLA IIb (~ 450kb), four in the region just centromeric to class IIa (~ 2 Mb) 

region, three in the BoLA IIa-III-I region (~ 4 Mb), and two in the extended class I region 

(~ 2Mb).  The recombination rate calculated for the BoLA IIa-III-I region (0.18 cM / 1 

Mb) was lower than the average recombination rate estimated for the bovine genome 

(1.25 cM / 1 Mb), but the recombination rate of the BoLA IIb region (1.21 cM / 1 Mb) 

was consistent with the genome average.  It was necessary to genotype markers across 

the entire BoLA IIa-III-I region to define BoLA IIa-III-I haplotypes, as the DRB3 allele 

alone was not always predictive of BoLA IIa-III-I haplotypes.  A total of  796 animals 

representing 26 breeds of cattle and three additional bovids (gaur, bison, Cape buffalo) 

were typed as homozygous for 52 SNPs spanning the BoLA IIa-III-I region, and analysis 
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of the boundaries of SNP-defined BoLA IIa-III-I homozygosity demonstrated a sharp 

break in homozygosity centromeric to class IIa and prolonged homozygosity through 

extended class I.  A small number of BoLA IIa-III-I homozygous haplotypes appeared at 

high frequencies and represented the majority of all BoLA IIa-III-I homozygous 

haplotypes within a breed; for example, four Angus haplotypes accounted for 84.61% and 

six Holstein haplotypes accounted for 96.57% of the BoLA IIa-III-I homozygous 

haplotype breed totals.  Seven SNP-defined BoLA IIa-III-I homozygous haplotypes were 

shared across different breeds of cattle, suggesting these haplotypes have been created 

and maintained since the divergence of the cattle breeds.  Additional markers with 

different mutation rates and selection pressures, including intergenic and intronic 

microsatellites and SNPSTRs and protein-coding class IIa genes, all appeared 

homozygous and identical within the SNP-defined BoLA IIa-III-I homozygous 

haplotypes, with the exception of microsatellites located in the terminal portion of the 

extended class I region.   

 The phase of markers in homozygous BoLA haplotypes was inherently known, 

but the phase of alleles in heterozygous haplotypes was unknown and required a method 

of haplotype inference.  PHASE, fastPHASE, and a novel approach based on known 

homozygote haplotype frequencies were used to infer BoLA heterozygous haplotypes 

within each cattle breed.  The PHASE results visualized with the Haploview program did 

not show strong linkage disequilibrium throughout the BoLA IIa-III-I region; however, 

consistent with other regions of the bovine genome, SNPs located close together showed 

the highest levels of linkage disequilibrium.  The major finding of this project was that 

BoLA IIa-III-I haplotypes are highly conserved and 52 SNPs from the Illumina 50K 

SNPchip were sufficient to predict BoLA IIa-III-I haplotypes.  This should offer a cost-

effective means for screening large sample sizes for bovine haplotype/disease association 

studies in the future.   
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 

Genotyping and Selection of BoLA Microsatellites 

Characterization of Microsatellites 

 Microsatellites, also known as short tandem repeats (STRs) or short sequence 

repeats (SSRs), were chosen as genetic markers for this study because of their highly 

polymorphic nature and prevalence throughout the BoLA IIa-III-I and BoLA IIb regions.  

Microsatellites are widely distributed throughout the nuclear genomes of eukaryotes and 

consist of 2-5 base pairs of tandemly repeated DNA sequences that can vary in repeat 

unit number (Schlotterer and Tautz 1992; Tautz 1994).  Slippage during DNA replication 

is considered to be the primary mechanism of microsatellite mutation, and a correlation 

has been demonstrated between defective DNA repair systems and an increased rate of 

microsatellite slippage (Lindahl et al. 1997; Strand et al. 1993).  The abundance of 

microsatellites in the BoLA regions is consistent with the observations that larger 

eukaryotic nuclear genomes generally have a higher percentage of microsatellites, with 

the exception of plants where the density of microsatellites is inversely related to genome 

size (Hancock 1996; Morgante et al. 2002), and that mammalian genomes have the 

highest density of microsatellites when compared to all available eukaryotic genome 

sequences (Tóth et al. 2000).  Over one million microsatellite loci have been identified in 

the human genome (Sachidanandam et al. 2001), and dinucleotide (AC)n repeats are the 

most common microsatellite motif in the human genome, followed by (AT)n, (GA)n, and 

(GC)n (Rockman and Wray 2002; Sachidanandam et al. 2001).  Microsatellite markers 

were also appealing because they carried more information than SNPs, as a larger number 

of possible alleles may occur at each microsatellite locus, and microsatellites have a 

faster mutation rate than SNPs.  Dinucleotide repeat polymorphisms have a mutation rate 

of approximately 1.5 x 10-3 per microsatellite per generation (Zhivotovsky et al. 2001), 

which is higher than the average human nucleotide mutation rate at about 2.5 x 10-8 

(Nachman and Crowell 2000).   

 The most polymorphic microsatellites identified in this study contained (AC) 

motifs with more than five perfect repeats, which are repeated units without any point 
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mutations.  This is consistent with findings in the human genome, where microsatellites 

with more than ten perfect (AC)n repeat units, or motifs uninterrupted by point mutations, 

exhibited the highest levels of polymorphism with frequencies estimated to exceed 90% 

(Macaubas et al. 1997; Rockman and Wray 2002).  The distribution of microsatellite 

lengths within a genome may represent a balance between the expansionary tendencies of 

slippage mutations with contractions caused by point mutations (Bell and Jurka 1997; 

Kruglyak et al. 1998).  The reason most polymorphic microsatellites in the BoLA regions 

had more than five repeated units is that the most important factor affecting microsatellite 

mutation rate is the number of repeated units, with mutation rates rising as the number of 

repeats increases (Goldstein and Clark 1995; Wierdl et al. 1997).  Other factors that have 

been reported to influence the extent of microsatellite polymorphism include the length 

and motif of the repeat unit (Chakraborty et al. 1997; Rockman and Wray 2002), the 

flanking sequence of the microsatellite (Glenn et al. 1996), nucleotide interruptions 

within the microsatellite (Kruglyak et al. 1998), mismatch-repair efficiency (Strand et al. 

1993), recombination rate (Begun and Aquadro 1992), transcription rate (Mellon et al. 

1996), and the age and gender of the organism (Brinkmann et al. 1998).  It would also 

stand to reason that the polymorphism of some microsatellites may be under functional 

constraints, such as microsatellites that are located within protein-coding sequences.  

Microsatellites have been reported to play additional functional roles that include altering 

nearby chromatin structure (Otten and Tapscott 1995), regulating gene expression and 

transcription factor binding (Martin et al. 2005), and stimulating homologous 

recombination and gene conversion (Wahls et al. 1990).   

 This study sought to characterize polymorphic microsatellites to analyze BoLA 

haplotype structure and identify markers that could potentially be in linkage 

disequilibrium with important BoLA genes.  The first polymorphic microsatellite shown 

to be in linkage disequilibrium with genes of the MHC was located near the tumor 

necrosis factor (TNF) genes of the mouse (Jongeneel et al. 1990), and the first description 

of linkage disequilibrium between microsatellites and HLA genes was also identified 

between microsatellites and the TNF genes of HLA (Jongeneel et al. 1991).  A total of 

389 microsatellite primer pairs targeting 281 regions of the extended HLA have been 

developed since the first discovery that microsatellites were in linkage disequilibrium 
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with HLA genes (Gourraud et al. 2006).  Out of a total 76 microsatellites investigated in 

the BoLA regions, 23 of the microsatellites were selected for use in this study, including 

the two previously characterized microsatellites LA54 (Ellegren et al. 1993) and DRBP1 

(Creighton et al. 1992).  The 23 chosen microsatellites were used to identify 

recombination events in BoLA IIb and BoLA IIa-III-I within pedigreed families, to 

characterize linkage disequilibrium across the BoLA regions, and to validate SNP-

defined haplotype block structure in individuals homozygous for BoLA IIa-III-I.  

 The availability of the bovine genome sequence allowed microsatellites to be 

identified and correctly positioned within BoLA IIb and BoLA IIa-III-I regions.  Correct 

marker order was critical for analyzing BoLA haplotype structure, so different BoLA 

assemblies were evaluated to choose the most accurate assembly for positioning BoLA 

markers.  Ultimately the Btau4.0 assembly was chosen to position all BoLA IIa-III-I 

markers, and BoLA IIb markers were positioned with an independent BoLA IIb sequence 

assembly (Childers et al. 2006).  The Btau4.0 assembly was chosen over the Btau3.1 and 

UMD assemblies because the gene order and content of the BoLA IIa-III-I region showed 

more homology to HLA in the Btau4.0 assembly, and a high resolution radiation hybrid 

map of BoLA independently validated the improved accuracy of the Btau4.0 assembly 

over the Btau3.1 assembly (Brinkmeyer-Langford et al. 2009).  After the BoLA 

microsatellites had been identified and positioned in the Btau4.0 assembly, microsatellite 

primers were designed and initially genotyped across pedigreed families to evaluate 

polymorphism, locus specificity, and normal Mendelian inheritance.  This approach 

identified problematic markers and helped to avoid complicating factors, such as null 

alleles, which inhibited accurate microsatellite allele scoring.  

Null alleles were commonly observed in our study, and each BoLA microsatellite 

primer pair was typically redesigned at least one time to eliminate the null alleles.  

Analyses of human (AC)n repeats revealed that null alleles were generated by nucleotide 

substitutions and deletions underneath the microsatellite primer binding sites (Callen et 

al. 1993; Koorey et al. 1993).  The null alleles resulted in preferential amplification of 

specific microsatellite alleles and the non-Mendelian inheritance of alleles at a single 

locus; however, the null alleles were successfully eliminated after the microsatellite 

primers were redesigned in the Koorey et al. 1993 study.  The polymorphic complexity 
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that is characteristic of the MHC may present a greater challenge in developing robust 

primers to amplify microsatellite alleles across many different MHC haplotypes because 

the increased level of polymorphism leads to a higher probability of designing a primer 

over a polymorphic site that will generate null alleles.  Null alleles are problematic 

because they create misleading data that could obstruct the accuracy of linkage 

disequilibrium and disease association studies.  The power to identify null alleles is 

dependent on the number of haplotypes that are analyzed with microsatellite markers in 

pedigreed individuals.   

This study analyzed microsatellites across pedigreed International Reference 

Families representing nine different breeds of Bos taurus and Bos indicus cattle with 33 

different BoLA IIa-III-I haplotypes and 43 different BoLA IIb haplotypes.  

Microsatellites were not retained for use in the analysis of BoLA haplotype structure if 

the null alleles persisted after the primers were redesigned multiple times, with the 

exception of two previously published microsatellites in the class IIa region -  LA54 

(Ellegren et al. 1993) and DRBP1 (Creighton et al. 1992).  Null alleles were found in 

LA54 and DRBP1, but they were retained for use in this study to connect these results to 

previous studies of BoLA.  Null alleles were prevalent in the microsatellites evaluated for 

this study, and they also appear to be common in human microsatellite studies.  Seven of 

the twenty-three (AC)n repeats analyzed by Callen et al. 1993 in the parents of forty 

Centre d’Etude du Polymorphisme Humain (CEPH) families were found to exhibit null 

alleles.   

Another challenge in characterizing microsatellites in BoLA was identifying size 

homoplasy, where microsatellite alleles were identical by size but not by descent (Estoup 

et al. 2002).  Microsatellites showed size homoplasy when they exhibited the same allele 

size in a genotyping reaction but had different internal sequence compositions.  This was 

most frequently seen in PCR amplicons that contained two different microsatellite motifs, 

although it was occasionally observed with polymorphic microsatellites amplified along 

with polymorphic stretches of mononucleotide (A)n or with larger insertion/deletion 

polymorphisms.  A commonly observed compound microsatellite, wherein two 

microsatellite motifs were present within three base pairs of each other, was (AC)n(AT)n.  

If both the (AC)n and (AT)n repeats were polymorphic, the size of one elongating motif 
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would be cancelled out by the contraction of the second motif.  For example, 

(AC)10(AT)6 would be genotyped to have the same allele as (AC)5(AT)11 because they 

both have the same total size of (AN)16.  Size homoplasy is unfavorable because it 

reduces the number of observed alleles, heterozygosity, and gene diversity, and it 

inaccurately infers population divergence times by making them appear more recent than 

they actually are (Ramakrishnan and Mountain 2004).  Size homoplasy was identified by 

sequencing a subset of microsatellite PCR products in parents of the International 

Reference Families representing diverse breeds of cattle with divergent BoLA 

haplotypes.  Amplicons demonstrating homoplasy were eliminated from this study, or if 

possible, the primers were redesigned to amplify only one polymorphic microsatellite. 

 

Characterization of SNPSTRs 

SNPSTRs were developed to reduce the analytical problems posed by size 

homoplasy in microsatellite markers.  One SNPSTR consisted of a single polymorphic 

microsatellite located within 500 bp of one or more SNPs (Mountain et al. 2002).  The 

differing mutation rates of the microsatellite and SNPs within a SNPSTR generated a 

small, independently evolving compound haplotype that was unlikely to be broken up by 

recombination.  SNPSTRs were identified in this study by designing microsatellite 

primers to amplify the largest possible segment that could be resolved in a genotyping 

reaction (max size standard = 500 bp) to increase the probability of finding SNPs in the 

sequence surrounding the microsatellite.  There may be a higher probability of 

identifying SNPs in sequences surrounding microsatellites, as some studies have 

suggested that there is an elevated nucleotide substitution rate in regions immediately 

flanking microsatellites (Brohede and Ellegren 1999; Vowles and Amos 2004). 

 SNPSTRs were characterized in the BoLA IIa-III-I region by sequencing 

microsatellite amplicons from parents of the International Reference Families, and 

priority was given to SNPSTRs containing the largest amount of SNPs with a minimum 

allele frequency greater than 0.05 because they were considered to be the most 

informative.  At least one SNP was identified in the flanking sequences of all nine BoLA 

IIa-III-I microsatellites investigated for SNPSTRs, eight out of the nine SNPSTRs 

contained SNPs with minimum allele frequencies greater than 0.05, and two of the SNPs 
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were tri-allelic.  The two SNPSTRs containing the largest number of SNPs were the 171 

microsatellite in the class IIa region (17 SNPs with MAF > 5%) and the 415 

microsatellite in the class I region (7 SNPs with MAF > 5%).  Analysis of SNPSTRs in 

different BoLA IIa-III-I haplotypes is likely to reveal additional SNPs and increased 

minimum allele frequencies of pre-defined SNPs.  About 25% of human microsatellites 

were found to have SNPs in the flanking sequences (Mountain et al. 2002), but 100% of 

the BoLA IIa-III-I microsatellites were found to have SNPs in the surrounding sequences.  

The high frequencies of SNPs identified around BoLA microsatellites may be reflective 

of highly divergent BoLA IIa-III-I haplotype sequences.   

Determining the phase of a heterozygous microsatellite with heterozygous SNPs 

in a SNPSTR required the cloning and sequencing of PCR products.  SNPs identified 

within cloned PCR sequences were validated by their presence in the direct PCR 

sequencing product to eliminate any errors caused by Taq polymerase during the PCR 

reaction as well as errors caused by in vitro recombinant PCR products (Grimaldi and 

Crouau-Roy 1997).  It has been estimated that conventional Taq polymerase creates one 

error, usually a nucleotide substitution, for every 1421 nucleotides amplified in a PCR 

reaction (Ennis et al. 1990).  Taq errors did not appear in the direct PCR product 

sequences because they were present at very low frequencies among many copies of 

alleles sequenced together, but the errors readily appeared in the single alleles of cloned 

PCR product sequences.  Previously published methods of typing SNPSTRs have utilized 

different colored dyes to bind to specific SNP alleles in the microsatellite genotyping 

reactions (Mountain et al. 2002).  The alternative approach of sequencing the entire 

SNPSTR amplicon was more conducive to the high density of SNPs present within the 

SNPSTRs selected for use in this study.                                                                          

 

Association of Microsatellites with Repeat Elements 

The association of microsatellites within or near retroposons created a challenge 

in designing BoLA microsatellite genotyping primers, because primers that were 

designed within a retroposon would often show weak amplification, high background, 

and non-locus specific amplification.  Pedigreed samples were used to verify the 

Mendelian inheritance of alleles, and whenever possible, placing PCR primers within 
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highly repeated elements was avoided to ensure locus-specific amplification.  It has been 

proposed that microsatellites arise from the expansion of pre-existing tandem repeats or 

from the conversion of sequences with high cryptic simplicity (López-Giráldez et al. 

2006).  Retroposons are an abundant source of such sequences in mammalian genomes, 

and a close association has been observed between retroposons and microsatellites in 

sheep (Buchanan et al. 1993), pigs (Alexander et al. 1995), cattle (Band and Ron 1996), 

primates (Arcot et al. 1995), humans (Nadir et al. 1996), horses (Gallagher et al. 1999b), 

and canines (López-Giráldez et al. 2006).  The 3’ polyadenylation of retroposons occurs 

before their incorporation into the genome, and their poly-A tails are thought to become 

the source of many A-rich microsatellite motifs (Arcot et al. 1995; Nadir et al. 1996).  In 

support of this, the most common tetranucleotide microsatellite motif in mammalian 

genomes is (AAAN)n (Katti et al. 2001), and human Alu sequences often generate 

microsatellites from point mutations and slippage events within the Alu poly-A tails 

(Arcot et al. 1995; Nadir et al. 1996).  The authors of López-Giráldez et al. 2006 

suggested that (AG)n and A-rich microsatellites coevolved in carnivore genomes with the 

pyrimidine rich “Poly-Y” region and the poly-A tail of tRNALys-derived SINEs. The 

coevolution of microsatellite motifs with retroposons may explain why particular 

microsatellite motifs are often associated with specific types of repeat elements. 

This study found that the majority of the A-rich tetranucleotide repeats in the 

BoLA IIb region were located within 40bp of the 3’ end of a SINE or LINE, and over 

92% (25/27) of microsatellites with (AGTTC)n and (AACTG)n  motifs in the BoLA IIb 

region were associated with SINE-ART2 repeat elements, which was a previously 

described microsatellite-retroposon association (Malik et al. 1998).  The bovid-specific 

Bov-A2 repeat element was usually found to be tailed with (AGC)n or (ACG)n 

trinucleotide repeats (Kaukinen et al. 1992), but none of the polymorphic (AGC)n 

microsatellites associated with Bov-A2 repeat elements were retained for use in this study 

because of non-specific primer amplification and too much size variation.  The 

association of the (ACG)n microsatellite motif with the ruminant-specific Bov-A2 

retroposon is an excellent example of how the coevolution of microsatellites with 

particular retroposons can create variable distributions of microsatellite motifs in 

different mammalian species.  The (ACG)n microsatellite motif occurs at a 90-fold higher 
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rate in cattle compared to humans and a 142-fold higher rate compared to dogs  (The 

Bovine Genome Sequencing and Analysis Consortium et al. 2009).   

Over 94% (33/35) of the (AGC)n or (ACG)n microsatellites in the BoLA IIb were 

associated with Bov-A2 repeat elements, and over 273 Bov-A2 repeat elements with 

(AGC)n or (ACG)n microsatellite tails were located in the BoLA IIa/III/I region.  

Ruminant-specific Bov-A2 retroposons are widely distributed throughout the bovine 

genome (The Bovine Genome Sequencing and Analysis Consortium et al. 2009), 

accounting for approximately 1.8% of the entire cattle genome (Lenstra et al. 1993).  The 

Bov-A2 retroposon consists of one to six Bov-A units connected by a linker sequences of 

(CACTTT)n  (Onami et al. 2007).  Polymorphisms in Bov-A unit number have been 

identified among domestic cattle breeds (Onami et al. 2007) and were identified in this 

study within wild and feral bovids belonging to the Bos and Bison genera.  The high 

mutation frequency of Bov-A2 retroposons (Damiani et al. 2000) made Bov-A 

polymorphisms poorly suited for use in this study because of the prevalence of null 

alleles; however, 11 of the 90 Bov-A2 retroposons evaluated within the BoLA regions 

were found to be polymorphic in Bov-A unit number among nine breeds of cattle and two 

North American Bison from Yellowstone National Park.  This was the first description of 

Bov-A unit polymorphism in ruminants outside of Bos taurus domestic cattle breeds. 

 

Microsatellite-Derived Haplotypes and DRB3 Alleles 

The exon 2 sequence of the BoLA class IIa DRB3 gene was used as an additional 

marker in this study (Baxter et al. 2008) because DRB3 alleles have been associated with 

several diseases of cattle including mastitis (Park et al. 2004), dermatophilosis (Maillard 

et al. 2003), persistent lymphocytosis (Juliarena et al. 2008), host resistance to the Lone 

Star tick (Untalan et al. 2007), and vaccination response to epitopes of infectious diseases 

(Ballingall et al. 2004b; Garcia-Briones et al. 2000).  The exon 2 sequence of the BoLA 

class IIa DRB3 gene is highly polymorphic and encodes the peptides lining the antigen 

binding site, which determine what exogenous antigens are bound and presented to helper 

T cells to illicit an effective humoral immune response (Doherty and Zinkernagel 1975b; 

Stern et al. 1994).  The large number of possible alleles at the DRB3 gene (at least 104 

alleles have been reported) makes it a stronger candidate than most genes to predict 
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BoLA IIa-III-I haplotypes, but this study identified same DRB3 allele on different 

microsatellite-derived haplotype backgrounds; therefore, DRB3 alleles were not found to 

be predictive of BoLA IIa-III-I haplotypes.  This finding has been previously alluded to 

in studies of the LA54 microsatellite, located within an intron of the DRB3 gene 

(Ellegren et al. 1993), where microsatellite alleles were predictive of some, but not all, 

DRB3 alleles.  The same DRB3 allele appearing on different BoLA IIa-III-I haplotype 

backgrounds is evidence for diversification by recombination at the time of BoLA IIa-III-

I haplotype generation.  Similar findings have been reported in the HLA class II region, 

as deeply divergent HLA class II haplotypes have demonstrated high levels of linkage 

disequilibrium (Raymond et al. 2005) and otherwise different HLA haplotype sequences 

shared 158 kb of class II sequence containing the DQ and DR genes (Traherne et al. 

2006b).  Recombination hotspots have been identified in the HLA class II region (Cullen 

et al. 1997; Jeffreys et al. 2001; Jeffreys et al. 2000), but there seems to be an 

evolutionary propensity to maintain ancestral class II haplotypes in human populations 

(Raymond et al. 2005).   

Since DRB3 alleles were not predictive of all BoLA IIa-III-I haplotypes, animals 

with the same DRB3 allele may had stable but divergent alleles throughout the remainder 

of BoLA IIa-III-I, even though the region had repressed recombination.  This is a very 

important factor to consider in disease association studies, especially since many BoLA 

disease association studies have been done with haplotype identification based solely on 

alleles of the DRB3 gene.  Additional variation, present as hichhiking genes, could 

confound disease association studies.  Considering the context of an allele on the 

background of the larger BoLA haplotype gives a clearer picture of the factors 

influencing a particular BoLA-associated phenotype.  This study used BoLA 

microsatellites to identify BoLA IIa-III-I haplotype identity in 21 Holstein animals 

selected for a study in vaccine response because they shared at least one copy of the 

DRB3*1101 allele (Mwangi et al., unpublished results), and BoLA IIa-III-I haplotype 

identity among the offspring of three sires implicated in differential response to the Lone 

Star tick (Untalan et al. 2007).  

The 21 Holstein animals with at least one copy of the DRB3*1101 allele also 

shared at least one copy of identical BoLA IIa-III-I microsatellite-derived haplotypes that 
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genotyped with the SNP-derived ANG_7/HOL_2 haplotype, which is completely 

conserved across Angus and Holstein breeds.  Given that the 21 Holstein animals had the 

same BoLA IIa-III-I haplotype; it is very likely that they all shared at least one copy of 

all of their BoLA genes.  This includes any number of genes that may have also played an 

important role in vaccine response including the alleles and copy number polymorphisms 

of DQB, DQA, and BoLA class I genes.  It is possible that one of the other shared BoLA 

genes was influencing vaccine response, or that additive effects of multiple alleles at 

BoLA genes were producing a specific phenotype.  Although all 21 of the Holstein 

animals shared identical DRB3*1101 alleles and entire BoLA IIa-III-I haplotypes, four 

homozygous BoLA IIa-III-I haplotypes in samples from the University of Missouri 

shared the same DRB3*1101 allele and showed differences in markers of the class IIa, 

class III, class I, and extended class I regions.  Therefore, the DRB3*1101 allele is not 

always predictive of the entire BoLA IIA-III-I haplotype, as it happened to be in the 21 

Holstein animals.  This indicates that markers spanning the entire BoLA IIa-III-I region 

are needed to accurately define BoLA haplotypes. 

Resistance to the Lone Star Tick was associated with the DRB3*4401 allele that 

calves inherited from their sire, Bull 12 or 13 (Untalan et al. 2007).  The DRB3*4401 

allele was also associated with alleles of microsatellites LA54 and DRBP1.  After 

genotyping additional microsatellites of BoLA IIa-III-I in the tick study samples, we 

found that the offspring inherited intact parental BoLA IIa-III-I haplotypes from their 

sires.  This was true for offspring that were the most susceptible and the most resistant to 

the Lone Star tick, but resistant animals received a statistically greater number of 

haplotypes containing DRB3*4401 alleles.  It seems counterintuitive that the BoLA IIa-

III-I region would be the sole factor implicated in Lone Star tick resistance if both 

susceptible and resistant animals had the same BoLA IIa-III-I haplotype.  The BoLA 

region may be a contributing factor in tick resistance (Regitano et al. 2008), but it seems 

unlikely that BoLA alleles or haplotypes are the only factor conferring tick resistance.  

The authors of Regitano et al. 2008 mapped quantitative trait loci (QTL) for 

Rhipicephalus (Boophilus) microplus tick load to bovine chromosomes 4, 5, 7, 10, 14, 18, 

and 23, out of a total of 20 chromosomes analyzed.  Tick load was also found to be 

influenced by coat color and hair type, as well as environmental factors, as different 
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QTLs were identified in the rainy and dry seasons.  The two QTLs explained 13.07% of 

the total phenotypic variation during the rainy season and 11.28% during the dry season.  

The complex mulitloci nature of tick resistance substantiates our finding that BoLA IIa-

III-I haplotypes are not the only determining factor of tick resistance.  Future studies 

should take the entire BoLA haplotype into account when investigating contributing 

factors to tick resistance, as many genes within the BoLA region have potential to 

contribute to this phenotype.   

 

Observed Recombination Events 

 No recombination was observed from analysis of BoLA IIa-III-I microsatellites 

within the sires and offspring of the Lone Star tick resistance study or within the 

DRB3*1101 haplotypes of the 21 Holstein animals used in a vaccine response study, but 

two recombination events were observed within the Bovine International Reference 

Families.  One male and one female recombination event were observed in BoLA IIb, the 

first within the region spanning DYA to PSMB9 and the second near the DMB gene.  

Two recombination events observed within 368 meioses over 450 kb of the BoLA IIb 

region is consistent with the average rate of recombination for the bovine genome, 

1.25cM / 1Mb (Arias et al. 2009).  Although recombination hotspots are not often 

conserved across species, it is interesting to note that the TAP2 gene – a recognized 

recombination hotspot in humans – is located within the BoLA IIb region.  The BoLA IIb 

region may have been unstable prior to its transposition ~20 Mb away from the remainder 

of BoLA.  The BoLA IIb region may have developed a recombination rate different than 

that of the larger BoLA IIa-III-I region because it retained a portion of the instability that 

lead to its transposition or because higher selection pressures operate to keep the BoLA 

IIa-III-I region in tact than those to keep the BoLA IIb region in tact.  Unpublished 

results from Schnabel et al. show the BoLA IIb region has the same rate of recombination 

as the rest of BTA 23 (Figure 4).    

Nine recombination events out of 406 meioses were observed within the BoLA IIa-

III-I region in samples from the Lone Star tick study and the International Bovine 

Reference Family Panel.  Of these nine recombination events, three occurred in male 

meioses and six occurred during female meioses.  The largest number of recombination 



 

 

153

events (four) took place in the ~2 Mb region centromeric to BoLA class IIa (~2 Mb), 

three in the BoLA IIa-III-I region (~4 Mb), and two within the extended class I region 

(~2 Mb).  The recombination rate of 0.18cM / 1Mb in the BoLA IIa-III-I region was 

much lower than the genome wide average of 1.25cM / 1Mb (Arias et al. 2009) and is 

consistent with a lowered recombination rate in the BoLA IIa-III-I region observed in the 

bovine chromosome 23 linkage study results by Schnabel et al. (unpublished results).  

Similar results have been reported in the HLA after excluding the extended HLA regions.  

The HLA was found to have a 0.7852 cM / Mb recombination rate, which is lower than 

the average human genome recombination rate of  1.1 cM / Mb (Kong et al. 2002).  

Evolutionarily successful HLA recombination events that span multiple pedigrees occur 

infrequently, so there seems to be an evolutionary advantage to maintaining high levels of 

non-recombinant HLA haplotypes at the population level. 

Various hypotheses have been offered to explain the lowered recombination rates in 

the MHC.  Recombination may be suppressed due to selection against offspring with 

recombinant haplotypes that would disrupt combinations of functionally well-coordinated 

alleles.  Van Oosterhout (2009) proposed that recessive deleterious mutations within 

MHC haplotypes reinforce linkage disequilibrium and reduce the effective rate of 

recombination because recombinants combine the deleterious mutations of both parental 

haplotypes.  Divergent blocks of DNA subsequently evolve with elevated levels of 

linkage disequilibrium.  Van Oosterhout’s model also showed that novel haplotypes did 

not coexist with parental haplotypes for very long before the novel haplotypes became 

eliminated, so there was clear evidence for selection against derived MHC haplotypes.  

Additionally, the higher rate of inbreeding in cattle may increase the frequencies of a 

small subset of BoLA haplotypes within a breed, and this reduction in heterozygosity 

may limit the production of novel haplotypes by recombination.  This would explain a 

reduced level of observed recombination events, but it would not explain the strong 

conservation of BoLA IIa-III-I haplotypes across long-diverged populations of cattle.  

Such strong conservation of BoLA IIa-III-I haplotypes supports the idea of strong linkage 

disequilibrium and reduced rates of recombination throughout the BoLA IIa-III-I region. 

Additional supporting evidence for an increased level of linkage disequilibrium 

across the BoLA IIa-III-I region is found in the region centromeric to class IIa.  Blocks of 
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linkage disequilibrium are usually marked by boundaries of recombination hotspots, and 

microsatellite analysis in this study revealed that largest number of recombination events 

occurred in the region centromeric to class IIa.  Analysis of heterozygosity surrounding 

SNP-defined homozygous BoLA haplotypes revealed an abrupt breakpoint in 

homozygosity centromeric to class IIa, and this may indicate a possible recombination 

hotspot directly centromeric to the class IIa region.  Markers in the extended class I 

region showed a moderate and gradual increase in heterozygosity and recombination 

compared to the centromeric to class IIa region.  However, there may be a recombination 

hotspot distal to the class I region that is located outside of the scope of marker placement 

for this study.   

While this work added supporting evidence to the idea of a reduced rate of 

recombination at BoLA IIa-III-I, the major finding of this study is the strong linkage 

disequilibrium and conservation of BoLA haplotypes within breeds of cattle.  Similar 

ancestral MHC haplotype conservation has been observed in humans (Degli-Esposti et al. 

1992b), and the knowledge of ancestral HLA haplotypes has been used to identify a 

region between HLA-B and BAT3 that contains genes involved in conferring 

susceptibility to insulin dependent diabetes mellitus (IDDM) (Degli-Esposti et al. 1992a).  

Understanding the content of BoLA haplotypes can be used in a similar way to identify 

haplotypes conferring susceptibility to specific diseases of cattle.  This study found that 

the conservation of BoLA class IIa-III-I haplotypes extended beyond the class I region, 

which is consistent with the finding that the human extended class I region is in strong 

linkage disequilibrium with the HLA (Malfroy et al. 1997).  Many of the genes present in 

the HLA extended class I region are also present in cattle, including large families of 

olfactory receptor genes, zinc-finger genes, tRNA genes, and histone genes (Horton et al. 

2004).  The HLA extended class I region is significant portion of the human genome  

because the extended class I olfactory-receptor gene cluster represents one of the largest 

blocks of linkage disequilibrium in the human genome (Miretti et al. 2005), and the 

largest cluster of histone and tRNA genes in the human genome is found in the extended 

HLA (Horton et al. 2004).  The clustering of histone and tRNA genes in both human and 

cattle extended class I regions may promote elevated levels of transcription, and genes of 
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the MHC may be hitchhiking with histone and tRNA gene clusters in the extended class I 

region to increase their own rates of transcription. 

 

Additional Genetic Markers 

 This study generated additional genetic markers to further characterize linkage 

disequilibrium within the BoLA IIa-III-I region.  These markers included SNPSTRs, 

exon 2 sequences of BoLA class IIa genes DRB3, DRA, and DQB, and Bov-A2 

retroposons.  We expected that BoLA IIa-III-I haplotypes would subdivide into smaller 

blocks of linkage disequilibrium as the density of BoLA makers increased.  Surprisingly, 

subdivisions were never observed as more markers were added to BoLA IIa-III-I 

haplotypes that were defined by 52 SNPs in the BoLA IIa-III-I region.  The markers that 

were added to the haplotypes had different mutation rates, with the microsatellites of 

SNPSTRs mutating more rapidly than SNPs and Bov-A2 repeat elements, and the class 

IIa genes mutating under different selection pressures than the other marker types 

because of their location in protein-coding regions.  The class IIa genes themselves were 

under different selection pressures, as the DRB3 gene is present in one copy with many 

alleles that alter the DRB3 peptide composition (Baxter et al. 2008), the DQB gene shows 

copy number polymorphism and allelic polymorphism at each DQB copy (Glass et al. 

2000), and the DRA gene is relatively monomorphic with only three possible 

synonymous SNPs reported in the second exon (Zhou et al. 2007).  None of the different 

marker mutation rates were reflected in the BoLA haplotypes because all of the different 

markers types had identical alleles on the same BoLA IIa-III-I haplotype.  This suggests 

that all of the different marker types have been fixed and maintained within BoLA IIa-III-

I haplotypes for a long period of time. 

The SNPSTR markers 171 and 415 were typed over animals homozygous for 52 

SNPs spanning the BoLA IIa-III-I region, and in all instances the SNPSTRs were 

homozygous and had identical alleles within the same BoLA IIa-III-I SNP-defined 

haplotypes. The independently evolving microsatellite and SNP(s) of SNPSTRs have 

been used in population genetics estimate the age of phylogenetic relationships, such as 

the time of the first human migration out of Africa (Mountain et al. 2002).  SNPSTRs 

were particularly compelling markers within this experiment because the sequence of 
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SNPSTRs 171 and 415 in BoLA IIa-III-I homozygotes revealed complete identity of all 

SNPs and each microsatellite within haplotypes defined by 52 SNPs of the Illumina 50K 

SNPchip.  This suggested that the SNPs and microsatellites have not undergone 

mutations since the establishment and divergence of breeds sharing the same BoLA IIa-

III-I haplotypes and implies that the haplotype structures observed in this study are 

relatively old. 

 The alleles of three BoLA class II genes were investigated for their identity within 

BoLA IIa-III-I haplotypes defined by SNPs, microsatellites, and SNPSTRs.  The second 

exon of class IIa genes, encoding the polymorphic antigen binding site, was sequenced 

with published primers for DRB3 (Baxter et al. 2008; Miltiadou et al. 2003), DRA (Zhou 

et al. 2007), and DQB (Russell 2000).  Although each of these genes was likely to have 

different selection pressures based on their varying rates of polymorphism, all of the 

sequenced class IIa alleles were found to be identical within BoLA IIa-III-I haplotypes.  

This suggests that the gene content of a BoLA IIa-III-I haplotype may be predicted by 

SNPs typed throughout the BoLA IIa-III-I, which would be particularly beneficial in the 

development of a SNPchip for the BoLA region.   

 This study also examined the variability in the ruminant Bov-A2 repetitive elements 

as a possible source of markers for BoLA analysis.  Bov-A2 retroposons may be 

polymorphic in Bov-A unit number, with each Bov-A monomer being about 120 bp in 

length, and retroposons with two to six Bov-A monomers have been reported in domestic 

cattle (Onami et al. 2007).  The Bov-A2 retrosposon appeared throughout the BoLA 

regions because it is one of the most common repeat elements in the bovine genome, and 

a total of 90 Bov-A2 retroposons located within the BoLA regions were analyzed for 

polymorphism in Bov-A unit number across nine breeds of cattle and two North 

American bison from Yellowstone National Park.  Eleven of the 90 Bov-A2 elements 

analyzed in this study showed polymorphism in Bov-A unit number, including one in 

class IIb, two centromeric to class IIa, three in class IIa, and five in class I.  Null alleles 

were common throughout the typing of Bov-A2 repeat elements, and it was difficult to 

design one primer pair to successfully amplify all BoLA haplotypes.  The increased 

nucleotide mutation rate in Bov-A2 retroposons (Damiani et al. 2000) and unequal 

crossing over between Bov-A units (Onami et al. 2007) may have inhibited the binding of 
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many Bov-A2 primers among different BoLA haplotypes, which did not make Bov-A2 

retroposons sufficiently robust markers for typing BoLA haplotypes.   

 However, the phylogeny of Bov-A2 repeat elements was investigated after 

polymorphism in Bov-A unit number was observed in domestic cattle and Yellowstone 

National Park bison.  Onami et al. 2007 proposed that Bov-A unit number polymorphism 

was unique to domestic cattle breeds, and the authors interpreted this to indicate that 

domestication and selective breeding of cattle have destabilized the bovine genome.  

Onami et al. did not investigate any members of the Bos or Bison genera, with the 

exception of several Bos taurus domestic cattle breeds.  Onami et al. 2007 analyzed five 

polymorphic Bov-A2 repeat elements in Bos taurus breeds of cattle, one bongo 

(Tragelaphus euryceros), one Arabian Oryx (Oryx leucoryx), one Axis deer (Axis axis), 

one Reticulated Giraffe (Giraffa cameloparadalis), one Pronghorn (Antilocapra 

Americana), and one Lesser mouse deer (Tragulus javanicus).  The experimental design 

of Onami et al. 2007 did not have the power to detect the evolution of Bov-A unit number 

polymorphism within the Bovini tribe.   

 This study investigated Bov-A unit number polymorphism within members of the 

Bovini tribe, and the Bov-A2 elements studied by Onami et al. 2007 were found to be 

polymorphic within domestic cattle, feral cattle, gaur, banteng, and bison.  Clearly Bov-A 

unit number polymorphism is not a consequence of domestication and selective breeding 

because it was observed in wild and domestic members of the Bos and Bison genera.  

Work in this study supports the idea that domestic cattle have maintained substantial 

levels of genetic diversity because they were derived from a large and genetically diverse 

ancestral population (Gibbs et al. 2009), and that the high levels of genetic diversity 

observed in cattle are not indicative of genome instability resulting from domestication.  

Bov-A2 markers seem useful for phylogenetic studies, and they may also be useful for 

studies of gene expression.  The CACTn (n = 3, 4, 3) Bov-A2 linker sequence has been 

suggested to play a role in post-transcriptionally regulating genes to increase their 

expression in response to environmental stresses or activation signals (Damiani et al. 

2008), so  the polymorphism of Bov-A unit number may have evolved in Bos and Bison 

genera as a way of diversifying their capability to respond to stress. 
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Although Bov-A2 retroposons were not used as markers in the characterization of 

BoLA haplotype structure, other markers including microsatellites, SNPSTRs, and the 

exon 2 sequences of class IIa genes were available for use in this study.  These markers 

demonstrated that all homozygous haplotypes defined by 52 SNPs spanning the BfoLA 

IIa-III-I region were continually typed as homozygous, regardless of how many 

additional markers were added to the region.  Not only were the haplotypes consistently 

homozygous, but every marker would exhibit the identical allele on the SNP-defined 

BoLA IIa-III-I haplotype.  This was even true for haplotypes shared across different 

breeds of cattle.  Seven entire BoLA IIa-III-I haplotypes were conserved among different 

Bos taurus breeds of cattle, including shared haplotypes between Angus and Simmental; 

Angus, Simmental, and Brown Swiss; Angus, Holstein, and Simmental; Angus and 

Holstein; Holstein and Finnish Ayrshire; Limousin, Kerry, and Shorthorn; and Maine 

Anjou and Santa Gertrudis.   

Although all of these shared haplotypes are considered to be Bos taurus in origin, 

these breeds have undergone divergent population histories and selection pressures.  

Angus cattle are bred for quality beef and originated in Scotland around the eighteenth 

century, while the Simmental breed came from Switzerland and is one of the oldest 

breeds in the world (OSU 1995).  The Brown Swiss breed also came from Switzerland, 

but the Brown Swiss breed is younger than Simmental and only became a prominent 

dairy breed in the last one hundred years (OSU 1995).  The Limousin originated in 

France and is another one of the oldest breeds of cattle (OSU 1995).  The Ayrshire breed 

was founded in Scotland before 1800 and probably has genetic relationships with the 

Shorthorn and Holstein breeds, the Holstein breed was founded in what is now the 

Netherlands, and the Shorthorn breed originated on the northeastern coast of England as 

early as 1580 (OSU 1995).  Santa Gertrudis cattle are crossbred Bos taurus x Bos indicus 

with approximately 5/8 Shorthorn and 3/8 Brahman breeding (OSU 1995).  The Kerry 

breed probably descended from the Celtic Shorthorn, which was imported to Ireland as 

early as 2000 B.C (OSU 1995), and the Maine-Anjou breed began in southern France 

early in the 18th century (OSU 1995).  The shared BoLA haplotypes must have predated 

the divergence of these breeds and been retained in tact over hundreds of years. 



 

 

159

 Some cattle shared haplotypes across the entire BoLA IIa-III-I region, while 

others showed strong haplotype blocks surrounding the DRB3 allele and extending 

through the class IIa region.  It is not surprising that strong linkage disequilibrium would 

exist within class II haplotypes.  Deeply divergent haplotypes of the HLA class II region 

have been preserved by linkage disequilibrium over tens of millions of years (Raymond 

et al. 2005), and class I genes generally undergo a more rapid birth-and-death process 

than class II genes (Wan et al. 2009).  BoLA haplotypes that are identical at alleles of the 

class II region but divergent at the alleles of their class III or I regions may have 

descended from an ancient recombination event between the class II and class I regions 

prior to domestication of cattle.  The identification of haplotype structure in additional 

breeds of cattle, within and among domestication clusters, will provide a test of this 

hypothesis.   

 Most of the homozygous BoLA IIa-III-I haplotypes analyzed in this study were 

from Bos taurus breeds of cattle.  The few Bos indicus samples that were analyzed 

showed strong linkage disequilibrium across the BoLA IIa-III-I region, as observed in the 

Bos taurus samples, but future analysis of additional Bos indicus BoLA IIa-III-I 

haplotypes will provide a more complete understanding of BoLA haplotype structure.  It 

is expected that Bos indicus BoLA haplotypes will be different than those of Bos taurus 

cattle because Bos taurus and Bos indicus cattle descended from two different subspecies 

of aurochs (Loftus et al. 1994), diverging at least 100,000 ago and possibly as long as one 

million years ago (Bradley et al. 1996; Loftus et al. 1994; MacHugh et al. 1998).  While 

their BoLA haplotypes may be different from each other, it is likely that the same 

mechanism of BoLA IIa-III-I haplotype conservation is operating on Bos taurus and Bos 

indicus cattle, so strong conservation of BoLA IIa-III-I haplotypes is likely to be found 

after analyzing more animals of Bos indicus breeds. 

 

Analysis of BoLA Single Nucleotide Polymorphisms 

 This project was able to utilize data from a whole genome SNP project that used the 

Illumina 50K SNPchip to type 13,914 animals from twenty six breeds of cattle and three 

additional bovid species including gaur, bison, and Cape buffalo.  Out of all of the 

animals typed on the 50K SNPchip, 796 of them had haplotypes that were homozygous 
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for 52 SNPs spanning BoLA IIa-III-I (Table 20).  Five of the 52 total SNPs were located 

in class IIa, 12 in class III, 26 in class I, and nine in the extended class I region.  Many of 

the SNPs typed as homozygous on non-cattle DNA samples, such as gaur, bison, and 

Cape buffalo.  It is likely that most of the SNPs in cattle were not maintained across 

different bovid species, so the cattle SNPs typed on other species often revealed fixed 

monomorphic nucleotides.  Many wild and feral bovid populations are endangered and 

have gone through genetics bottlenecks (Nguyen et al. 2007), so the overall 

homozygosity of their genomes could also be contributing to the monomorphism 

observed in SNP genotypes.  There were also many SNPs that did not successfully 

genotype at all on other species, which was probably due to surrounding nucleotide 

divergence. 

 Seven of the BoLA IIa-III-I homozygous haplotypes were found to be shared across 

breeds, but the majority of haplotypes analyzed were breed-specific.  The Angus and 

Holstein breeds were represented by the most individuals, and it is probable that 

additional shared BoLA IIa-III-I haplotypes would have been identified if there were 

larger numbers of animals analyzed within other breeds.  A total of eleven shared BoLA 

IIa-III-I haplotypes were identified, but four of these haplotypes were not counted 

because they were only shared between one specific breed and MARC animals.  Many 

different breeds comprise the MARC animal data set, but the breed of each MARC 

animal is unknown so it seemed likely that a MARC haplotype shared with one particular 

breed was actually an animal belonging to that breed.  Haplotypes of MARC animals that 

were not shared with other breeds were counted as breed specific haplotypes and retained 

for use in the phylogenetic tree, although the breed of the MARC haplotype remained 

unknown.   
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Table 20.  Summary of BoLA IIa-III-I Homozygous Haplotypes.  This table summarizes the BoLA IIa-III-I homozygous haplotypes that were 
identified in 796 individuals among a total of 13,914 animals representing 26 breeds of cattle and three wild bovids - gaur, bison, and Cape 
buffalo.  A total of 108 haplotypes, consisting of 97 breed-specific haplotypes and 11 haplotypes shared among breeds, were identified within 
individuals homozygous for BoLA IIa-III-I.  Data is presented according to the frequencies within each breed. 
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 There were 97 breed-specific BoLA homozygous haplotypes, giving a total of 108 

SNP-defined BoLA IIa-III-I homozygous haplotypes.  Holstein animals exhibited about 

29% more breed-specific haplotypes than Angus, as approximately 68% of all Angus 

BoLA IIa-III-I homozygous haplotypes were shared with other breeds.  The prevalence 

of ANG_7/HOL_2 and ANG_4/HOL_5 haplotypes in both Angus and Holstein breeds 

suggested that the origin of the haplotypes predated the divergence of Angus and 

Holstein breeds more than 2,000 years ago (OSU 1995). 

 Of the breeds with more than 100 homozygous BoLA IIa-III-I haplotypes, the 

average percent of homozygotes was 4.34%.  The Angus and Holstein breeds had the 

largest sample sizes (5,213 and 4,343 animals, respectively), so they were ideal for 

calculating homozygous haplotype frequencies.  The four most common Angus BoLA 

IIa-III-I homozygous haplotypes represented 84.61% of all Angus homozygous 

haplotypes, and the six most common Holstein BoLA homozygous haplotypes 

represented 96.57% of the total Holstein homozygous haplotype number.  Although there 

is not a large percentage of BoLA IIa-III-I homozygotes in the Angus and Holstein 

populations (5.74% and 7.52%, respectively), it is interesting that such a small number of 

haplotypes accounts for virtually all of the BoLA IIa-III-I homozygous haplotypes in the 

Angus and Holstein breeds.  According to the Hardy-Weinberg principle, the most 

frequent homozygous haplotypes will also be the most frequent haplotypes in 

heterozygotes, and this principle was used to infer haplotypes in animals heterozygous 

for BoLA IIa-III-I.   

 If the Holstein and Angus breeds are representative of all other cattle breeds, we 

project that about 16 common BoLA IIa-III-I haplotypes exist in every breed and four to 

six of these represent the majority of haplotypes for that breed.  The high frequencies of 

small number of BoLA IIa-III-I haplotypes within the Angus and Holstein breeds may be 

attributed to genetic drift and bottlenecks during the domestication and development of 

the breeds, selection against BoLA haplotypes that were susceptible to disease, or the 

artificial selection pressures imposed on domestic breeds such as inbreeding, extensive 

use of artificial insemination, husbandry practices that eliminate natural selection 

pressures like veterinary care for sick animals, large quantities of readily available food 

and water, reduced lifespans, and antibiotic administration for disease prevention.   



 

 

163

 Phylogenetic trees of SNP-defined homozygous haplotypes showed different 

relationships among BoLA IIb haplotypes than those among BoLA IIa-III-I haplotypes.  

BoLA IIa-III-I haplotypes are more divergent from each other, whereas the BoLA IIb 

haplotypes show more simplistic relationships that would be expected from a normally 

recombining region of the bovine genome.  Divergent BoLA IIa-III-I haplotypes are 

found within and between breeds and do not show clear clustering of BoLA IIa-III-I 

haplotypes by breed.  This may be attributed to the sharing of BoLA IIa-III-I haplotypes 

across divergent breeds.  Three Bos indicus BoLA IIa-III-I haplotypes, two from the 

Brahman breed and one from the Nelore breed, cluster together with haplotypes of two 

French Bos taurus breeds, Maine Anjou and Limousin.  The Maine Anjou haplotype, 

MAO_2, was also found to be shared with a crossbred Santa Gertrudis animal.  It was 

assumed that MAO_2 was a shared Bos taurus haplotype between Maine Anjou and 

Santa Gertrudis, but its clustering with three Bos indicus haplotypes may indicate that it 

is actually a BoLA IIa-III-I haplotype shared between Bos indicus and Bos taurus breeds.  

Increasing the number of samples typed from breeds other than Angus and Holstein will 

improve the conclusions that can be drawn about the phylogenetic relationships of BoLA 

haplotypes among domestic breeds of cattle.  Very few Bos indicus breeds were used in 

the evaluation of SNP-defined BoLA haplotypes, so the power of this study to detect 

shared haplotypes between Bos taurus and Bos indicus is limited.  There is a clear 

separation of cattle BoLA IIa-III-I haplotypes from African buffalo, bison, and to some 

extent gaur in the phylogenetic tree, and this most likely represents the ancestral SNPs 

BoLA IIa-III-I haplotypes. 

 The limited number of haplotypes observed within breeds and the sharing of 

haplotypes among divergent breeds suggests that the haplotypes of BoLA are genetically 

stable and have likely been fixed by a combination of reduced recombination, selection 

and inbreeding.  Modern domestic cattle breeds have originated from at least two centers 

of domestication, wherein Bos indicus and Bos tarurus cattle were domesticated from 

two different auroch subspecies (Loftus et al. 1994; Troy et al. 2001).  Additional 

domestication events may have occurred in Africa (Bradley et al. 1996) and East Asia 

(Lai et al. 2006; Mannen et al. 2004).  We propose that the multiple cattle domestication 

events from a large and genetically diverse ancestral population spanning large 
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geographical areas of the world captured a small portion of the wide variety of BoLA IIa-

III-I haplotypes in ancestral wild cattle and these haplotypes have since been passed 

down, some largely in tact, in the lineages of various cattle breeds.  Some haplotypes may 

have been lost over time, but this study has shown that at least seven BoLA haplotypes 

have remained completely conserved over hundreds of years since the divergence of 

certain domestic breeds of cattle that currently share entire BoLA IIa-III-I haplotypes.  As 

more animals of various breeds, especially Bos indicus breeds, are defined for BoLA IIa-

III-I haplotypes, the phylogenetic history of BoLA haplotypes will tell a more complete 

story. 

 
Haplotypes Inferred from BoLA Heterozygotes 

Haplotypes were not observed directly unless the individual was homozygous, so 

haplotypes present in heterozygotes were inferred statistically from their genotyping data.  

The SNP allele phases of animals with heterozygous BoLA haplotypes were determined 

with PHASE, fastPHASE, and a novel approach based on known homozygous haplotype 

frequencies.  The diverse breed structure and lineage diversity of cattle complicated 

PHASE analysis, so PHASE was used to analyze each breed individually.  PHASE 

performed best within breeds and among individuals that shared common haplotypes, but 

PHASE still made some mistakes in predicting the BoLA haplotypes of heterozygotes 

when evaluated in pedigreed samples (Table 21).  We have a developed a method to 

identify known BoLA haplotypes, which reduced the need for PHASE in Angus and 

Holstein heterozygotes.  The success of this method was attributed to the high frequency 

of common BoLA homozygous haplotypes, the strong conservation of haplotypes across 

the entire BoLA IIa-III-I region, and the divergence of BoLA IIa-III-I haplotypes from 

each other.  The divergence of BoLA IIa-III-I haplotypes gives them unique 

combinations of alleles that may be easily ascertained and distinguished from one 

another.  Our method of inferring unknown haplotypes with known homozygous 

haplotypes was also useful for imputing missing data because the linkage of multiple 

alleles across the region was already known.   
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Table 21.  Errors in Haplotype Inference.  The SNPs of BoLA in a trio of individuals including 
HOL000001 (sire), HOL000007 (dam), and HOL000010 (offspring) is shown as incorrectly 
phased in the first set of haplotypes and correctly phased in the second set.  Gray cells indicate 
that the SNP was not included in the analysis.  The haplotype the offspring inherited from its sire 
is highlighted blue and the haplotype inherited from its dam is highlighted pink in each of the 
analysis methods.  All three of the methods - fastPHASE, PHASE, and known haplotype based 
inference - correctly determined the BoLA IIb haplotypes for this particular trio, but mistakes 
were inserted to show examples of the different kinds of errors that were encountered throughout 
the course of this analysis.  The mistakes in the second set include errors in genotyping (green), a 
double recombinant haplotype (yellow), and the incorrect phasing of alleles (red).  There is 
clearly a genotyping error (green) because the SNP at position 7384619 appears homozygous T/T 
in both parents and heterozygous G/T in the offspring.  The double recombination (yellow) event 
required to produce the inferred HOL000007 haplotypes is very rare, so it is more likely that 
these haplotypes are the result of an error in the phasing of the SNP alleles at position 7280210.  
A clear example of the incorrect phasing of alleles (red) is given at SNP position 7398492 in 
HOL000010 because the G allele had to come from the sire and the A allele had to come from the 
dam.  All of these errors were detected because they were evaluated in pedigreed individuals. 
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Table 21 Continued.   

 

 

 

Haploview is a program that was used to calculate and visualize the linkage 

disequilibrium statistic r2 among SNPs across the BoLA IIb and BoLA IIa-III-I regions.  

If stronger linkage disequilibrium had been observed in Haploview, this program could 

have also identified BoLA haplotype blocks and tagSNPs.  It was surprising that the 

strong level of linkage disequilibrium noted across the BoLA IIa-III-I region in our 

previous analyses was not reflected in the Haploview figures (Figure 16).  If conclusions 

were to be drawn from the Haploview figures alone, the BoLA IIa-III-I region would not 

be considered unique, as it appears to have blocks of linkage disequilibrium similar to the 

rest of the bovine genome.  It seems that these samples may be violating some of the 

assumptions underlying the algorithms of PHASE or Haploview such that they are not 

recognizing the high levels of BoLA linkage disequilibrium within breeds.   
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Improving methods of heterozygous BoLA haplotype inference did not drastically 

change the outcome of the Haploview figures.  Haploview figures were generated with a 

much larger data set (n > 350) derived from Angus BoLA homozygous haplotypes and 

haplotypes inferred from Angus heterozygotes by comparison to known BoLA 

homozygous haplotypes (Figure 17), but the low levels of linkage disequilibrium 

observed in the Haploview outputs were not resolved by this approach.  Slightly higher 

linkage disequilibrium and an elimination of monomorphic SNPs are observed in Figure 

17 when compared to the haplotypes generated by PHASE in Figure 16, but overall 

Figures 16 and 17 look quite similar with markers located close together showing the 

highest levels of linkage disequilibrium.  Therefore, errors in PHASE and small sample 

sizes are not responsible for the low levels of linkage disequilibrium observed in the 

Haploview figures. 

Improving the accuracy of heterozygote haplotype inference and increasing the 

sample size within a breed did not increase the amount of linkage disequilibrium 

observed in the Haploview figures.  Perhaps the highly divergent combinations of alleles 

within BoLA haplotypes are negating the calculations of linkage disequilibrium.  PHASE 

detected linkage disequilibrium when markers were located close together, so increasing 

the SNP density of the BoLA region may allow PHASE and Haploview to detect higher 

levels of linkage disequilibrium.  Although PHASE and Haploview did not detect high 

levels of linkage disequilibrium in BoLA IIa-III-I, the results of this study have 

demonstrated that high levels of linkage disequilibrium exist within the BoLA IIa-III-I 

region.  The information provided by this study demonstrates that a tagSNP approach to 

defining BoLA IIa-III-I haplotypes would offer more information and improve the 

efficiency of future disease association studies of cattle.   
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Figure 17.  Angus BoLA IIa-III-I and BoLA IIb Haploview Outputs.  This figure was 
generated with an increased sample size and more accurate haplotype predictions than 
Figure 16, as most of the animals were homozygous for BoLA IIa-III-I.  The total number 
of animals analyzed (n) is listed in the left bottom corner of the figure.  SNPs with the highest 
levels linkage disequilibrium (maximum number = 100) are represented by black boxes, SNPs 
with lowest linkage disequilibrium (minimum number = 0) are white boxes, and shades of gray 
represent SNPs with intervening levels of linkage disequilibrium.  This figure demonstrates that 
larger amounts of linkage disequilibrium were not observed in Haploview after improving the 
accuracy of haplotype inference and increasing sample size of BoLA IIb and BoLA IIa-III-I. 
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Addressing Criticisms of tagSNPs and Haplotypes 

Concerns have been raised about the utility of tagSNPs, including tagSNP 

selection bias towards high frequency SNPs that may not detect rare variants and the 

transferability of tagSNPs across different populations.  The vast diversity among cattle 

breeds (Gibbs et al. 2009) may be a hinderance to utilizing tagSNPs in other regions of 

the bovine genome, but the high degree of conservation, divergence, and linkage 

disequilibrium in the BoLA IIa-III-I region is ideal for utilizing tagSNPs.  This work has 

demonstrated that haplotypes of the BoLA IIa-III-I region can be predicted with a subset 

of 52 SNPs from the Illumina 50K SNPchip because overlaying different types of 

markers with varying mutation rates across the SNP-defined BoLA IIa-III-I haplotypes 

did not identify any further subdivisions within the haplotypes.   

 Various criticisms have been made about utilizing BoLA IIa-III-I haplotypes in 

disease association studies.  A general criticism of haplotype disease associations is that 

the causal genetic element(s) behind susceptible and resistant phenotypes is not 

identified.  However, the power and robustness of mapping the causal genetic elements of 

diseases has been shown to be significantly improved by analyzing haplotypes rather than 

a putative single locus (Akey et al. 2001; De Bakker et al. 2005).  A disease association 

study is strengthened by analyzing haplotypes over alleles of a single locus because more 

information is provided by the linkage disequilibrium of multiple markers within the 

haplotype, which allows for the evolution of otherwise unmeasured causal variants and 

the interaction of multiple variants within the haplotype.  After a BoLA haplotype has 

been associated with a disease phenotype, it may be further characterized to identify the 

specific causal genetic element(s) within the haplotype.  However, identifying the causal 

element(s) is not required to select against the haplotypes that are most susceptible to a 

particular disease.  The susceptible haplotype only needs to be correctly identified within 

a disease association study, and then recognized and selected against at the population 

level.  Culling animals with a BoLA class II haplotype (DRB3*0301-0302 / DRB3*3401-

3402 and DQB*1804) strongly associated with susceptibility to dermatophilosis reduced 

the disease prevalence from 0.76 to 0.02 over a five year period within a Brahman cattle 

population (Maillard et al. 2003).  Although in this example only the BoLA class IIa 

haplotype was selected against, this demonstrates how knowledge of BoLA haplotypes 
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can be successfully used to reduce the prevalence of specific diseases affecting cattle 

populations.  

 BoLA haplotypes will be useful for identifying disease associations with genes 

positioned in the BoLA region; however, this approach will not detect causal associations 

with genes outside of the BoLA region, and many genes located in other regions of the 

genome play important roles in the immune response pathway.  Over 1500 genes have 

been implicated in the human immune response, representing 7% of the human genome 

(Kelley et al. 2005).  It is presently unclear which of these genes contribute in significant 

detectable ways to individual differences in disease resistance or susceptibility. 

Furthermore, one can expect that the contribution of each gene will be determined to 

some extent by the genomic context in which it functions.   

 This study provides genetic resources for associating BoLA haplotypes with 

diseases, but the complex nature of many diseases should be considered when drawing 

conclusions from BoLA disease association studies because the additive affects of many 

loci may be contributing to a disease phenotype.  Evidence from this project supported 

the conclusions of Regitano et al. 2008 that host resistance to ticks is a complex multi-

factorial trait, as some calves that were classified as most susceptible or most resistant to 

the Lone Star tick had identical BoLA IIa-III-I haplotypes in our study and Regitano et al. 

2008 found quantitative trait loci (QTL) for Rhipicephalus (Boophilus) microplus tick 

load on BTA 23 and six other chromosomes (BTA 4, 5, 7, 10, 14, and 18) in cattle.  

Genes within BoLA are frequently associated with mastitis resistance, but genes of the 

innate immune system that are located on other chromosomes also appear to play a 

significant role in defending against mastitis.  Putative mastitis QTLs have been 

identified on cattle chromosomes 3, 4, 6, 14, and 27 (Klungland et al. 2001).  Bovine β-

defensin genes, clustered together on BTA 27 (Gallagher et al. 1995), are expressed in 

mammary gland tissue and may be candidates for resistance to mastitis (Roosen et al. 

2004).  Other studies have demonstrated that cattle infected with mastitis showed 

associations with β-defensin 5 located on chromosome 27, toll-like receptor 2 (TLR2) 

located on chromosome 17, and TLR4 located on chromosome 8 (Goldammer et al. 

2004; Wang et al. 2002; White et al. 2003).  Mastitis is a multi-factorial disease that is 

influenced by many environmental factors like proper managenment and hygienic 
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milking practices, and different environmental and genetic factors may be implicated in 

susceptibility to different strains of bacteria causing the disease (Heringstad et al. 2000). 

 Disease associations with BoLA haplotypes do not have the power to detect 

causal genetic variants located outside of the BoLA regions; therefore, whole-genome or 

whole-chromosome association studies may be more appropriate to understand complex 

diseases that are influenced by multiple genetic variants positioned throughout the 

genome, such as cattle susceptibility to ticks and mastitis (Klungland et al. 2001; 

Regitano et al. 2008).  Whole genome studies present some challenges including 

problems with defining intermediate phenotypes and understanding the interactions 

among many polymorphisms.  The complex nature of the immune response imposes 

limitations on the capacity of any disease-association study to identify all causative 

agents involved in differential immune responses, as even an experiment designed to 

represent all genes involved the immune response would still not account for 

environmental factors, such as management practices and stress levels (Webster et al. 

2002).  The data provided by this study will increase the amount of information obtained 

from disease association studies in cattle by incorporating loci across the entire BoLA 

IIa-III-I region rather than the limited amount of information gained from single BoLA 

markers appearing on the background of multiple BoLA IIa-III-I haplotypes.  The SNPs 

defining BoLA IIa-III-I haplotypes could easily be incorporated into a genome-wide 

immune response SNPchip that integrates markers of other important immune system 

genes to identify disease QTLs positioned outside of BoLA. 
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Implications for Future Research 

 Information from this project should be considered in future BoLA disease 

association studies.  The potentially high frequencies of a small number of BoLA IIa-III-I 

haplotypes within each cattle breed should be taken into account during the design and 

analysis of case-control disease association studies.  A haplotype present at high 

frequency within a particular disease phenotype may simply be due to the high frequency 

of that haplotype within a particular breed or population, and not due to a true statistical 

association with the disease.  Ideally, all disease association studies with BoLA IIa-III-I 

haplotypes should be performed and evaluated within a single breed of cattle to minimize 

statistical errors in disease associations.  The phasing of all BoLA heterozygous 

haplotypes should be performed within a breed, as this study found many inaccuracies 

when BoLA haplotypes were inferred with different breeds grouped together.  Although 

seven BoLA IIa-III-I haplotypes were discovered to be entirely shared across breeds in 

this study, most BoLA haplotypes were breed specific and little haplotype sharing has 

been observed in the bovine genome across different cattle breeds (Gibbs et al. 2009).  If 

the same BoLA haplotype appears within the most resistant and the most susceptible 

animals of a study, it is unlikely that the BoLA haplotype is the only factor contributing 

to the disease phenotype.  Complex diseases of cattle may involve the interactions of 

multiple loci throughout the genome, as well as many different environmental factors.  

Integrating the BoLA haplotype with variants of other important immune system genes 

will give a more complete understanding for the genetic basis of susceptibility and 

resistance to a particular disease of cattle.     
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 We found no evidence that adding additional markers to the BoLA IIA/III/I 

region would identify any additional haplotypes and conclude that the 52 SNPs of the 

Illumina 50K SNPchip are sufficient to define BoLA IIa-III-I haplotypes among the cattle 

breeds used in this study.  However, the data set was heavily biased towards taurine 

breeds and more Bos indicus animals should be investigated to ensure that these SNPs 

have the capacity to define additional haplotypes that are specific to Bos indicus 

breeds.  Haplotypes sharing alleles for 52 SNPs of the Illumina 50K SNPchip distributed 

across the BoLA IIa-III-I region had identical alleles for known class IIa genes DRB3, 

DQB, and DRA, and identical alleles for microsatellites and SNPSTRs in the class III and 

class I regions. This would be especially useful in typing certain genes that have been 

challenging to define in the past, such as those in the class I region. Defining BoLA 

classical class I genes has been laborious and time consuming because the number of 

class I loci differs between BoLA haplotypes (Birch et al. 2006), so a new set of locus-

specific class I primers must be redesigned for every breed. Copy number polymorphisms 

(Glass et al. 2000) also create challenges in defining the gene content of different BoLA 

haplotypes. As BoLA IIa-III-I haplotypes are defined, members of BoLA research 

community could undertake the task of identifying alleles of BoLA genes on the 

background of these SNP-defined haplotypes. Different labs have previously determined 

the alleles of various genes within BoLA, and many labs have DNA samples with pre-

defined BoLA alleles that could easily be integrated with haplotypes defined by the 

BoLA tagSNPs. Such a collaborative effort would be cost-effective for determining the 

gene content of BoLA IIa-III-I SNP-defined haplotypes, and provide a very valuable 

resource for future disease association studies in cattle. 
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APPENDIX 

 
FastPHASE Haplotypes of HapMap Breeds.  A total of 59 SNPs were analyzed by fastPHASE in animals from the Bovine HapMap Project.  
SNPs are color-coded according to their BoLA class, SNP positions are listed across the top row, and each animal has two rows of SNPs 
representing two haplotypes. 
 
Results of fastPHASE on Angus HapMap Animals 
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Results of fastPHASE on Beefmaster HapMap Animals 
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Results of fastPHASE on Brahman HapMap Animals 
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Results of fastPHASE on Brown Swiss HapMap Animals 
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Results of fastPHASE on Charolais HapMap Animals 
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Results of fastPHASE on Gir HapMap Animals 
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Results of fastPHASE on Guernsey HapMap Animals 
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Results of fastPHASE on Hereford HapMap Animals 
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Results of fastPHASE on Holstein HapMap Animals 
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Results of fastPHASE on Holstein HapMap Animals (continued) 
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Results of fastPHASE on Jersey HapMap Animals 
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Results of fastPHASE on Limousin HapMap Animals 
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Results of fastPHASE on Limousin HapMap Animals (continued) 
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Results of fastPHASE on N’Dama HapMap Animals 
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Results of fastPHASE on Nelore HapMap Animals 
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Results of fastPHASE on Norwegian Red HapMap Animals 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

223

Results of fastPHASE on Piedmontese HapMap Animals 
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Results of fastPHASE on Red Angus HapMap Animals 
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Results of fastPHASE on Romagnola HapMap Animals 
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Results of fastPHASE on Santa Gertrudis HapMap Animals 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

227

Results of fastPHASE on Sheko HapMap Animals 
 

 
 
 
 
 
 
 
 
PHASE Haplotypes of BoLA IIb across HapMap Breeds.  A total of 15 SNPs were analyzed by PHASE in animals from the Bovine HapMap 
Project.  The SNP positions are listed across the top row and each animal has two rows of SNPs representing two BoLA haplotypes.
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Results of PHASE on Angus HapMap Animals for BoLA IIb 
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Results of PHASE on Beefmaster and Brahman HapMap Animals for BoLA IIb 
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Results of PHASE on Brown Swiss and Charolais HapMap Animals for BoLA IIb 
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Results of PHASE on Gir and Guernsey HapMap Animals for BoLA IIb 
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Results of PHASE on Hereford and Holstein HapMap Animals for BoLA IIb 
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Results of PHASE on Holstein and Jersey HapMap Animals for BoLA IIb 
 

 
 
 



 

 

234

Results of PHASE on Limousin and N’Dama HapMap Animals for BoLA IIb 
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Results of PHASE on Limousin and Nelore HapMap Animals for BoLA IIb 
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Results of PHASE on Norwegian Red and Piedmontese HapMap Animals for BoLA IIb 
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Results of PHASE on Red Angus and Romagnola HapMap Animals for BoLA IIb 
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Results of PHASE on Santa Gertrudis and Sheko HapMap Animals for BoLA IIb 
 

 
 
 
 
PHASE Haplotypes of BoLA IIa-III-I across HapMap Breeds.  A total of 114 SNPs were 
analyzed by PHASE in animals from the Bovine HapMap Project.  The SNP positions are listed 
across the top row, SNPs are color-coded according to their BoLA class, and each animal has two 
rows of SNPs representing two BoLA haplotypes.
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Results of PHASE on Angus HapMap Animals for BoLA IIa-III-I 
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Results of PHASE on Angus HapMap Animals for BoLA Class I - Extended Class I 
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Results of PHASE on Beefmaster HapMap Animals for BoLA IIa-III-I  
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Results of PHASE on Beefmaster HapMap Animals for BoLA Class I - Extended Class I 
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Results of PHASE on Brahman HapMap Animals for BoLA IIa-III-I 
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Results of PHASE on Brahman HapMap Animals for BoLA Class I - Extended Class I 
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Results of PHASE on Brown Swiss HapMap Animals for BoLA IIa-III-I 
 

 
 
 



 

 

246

Results of PHASE on Brown Swiss HapMap Animals for BoLA Class I – Extended Class I 
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Results of PHASE on Charolais HapMap Animals for BoLA IIa-III-I 
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Results of PHASE on Charolais HapMap Animals for BoLA Class I and Extended Class I 
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Results of PHASE on Gir HapMap Animals for BoLA IIa-III-I 
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Results of PHASE on Gir HapMap Animals for BoLA Class I and Extended Class I 
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Results of PHASE on Guernsey HapMap Animals for BoLA IIa-III-I 
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Results of PHASE on Guernsey HapMap Animals for BoLA Class I – Extended Class I  
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Results of PHASE on Hereford HapMap Animals for BoLA IIa-III-I 
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 Results of PHASE on Hereford HapMap Animals for BoLA Class I - Extended Class I 
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Results of PHASE on Holstein HapMap Animals for BoLA IIa-III-I 
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Results of PHASE on Holstein HapMap Animals for BoLA IIa-III-I (continued) 
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Results of PHASE on Holstein HapMap Animals for BoLA Class I and Class I Extended 
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Results of PHASE on Holstein HapMap Animals for BoLA Class I and Class I Extended (continued) 
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Results of PHASE on Jersey HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Jersey HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Limousin HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Limousin HapMap Animals for BoLA Class IIa-III-I (continued) 
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Results of PHASE on Limousin HapMap Animals for BoLA Class I and Extended Class I 
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Results of PHASE on Limousin HapMap Animals for BoLA Class I and Extended Class I (continued) 
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Results of PHASE on N’Dama HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on N’Dama HapMap Animals for BoLA Class I and Extended Class I 
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Results of PHASE on Nelore HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Nelore HapMap Animals for BoLA Class I and Class I Extended 
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Results of PHASE on Piedmontese HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Piedmontese HapMap Animals for BoLA Class I and Extended Class I 
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Results of PHASE on Red Angus HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Red Angus HapMap Animals for BoLA Class I and Extended Class I 
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Results of PHASE on Romagnola HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Romagnola HapMap Animals for BoLA Class I and Extended Class I 
 

 
 
 
 
 
 
 
 
 
 
 



 

 

275

Results of PHASE on Santa Gertrudis HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Santa Gertrudis HapMap Animals for BoLA Class I and Extended Class I 
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Results of PHASE on Sheko HapMap Animals for BoLA Class IIa-III-I 
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Results of PHASE on Sheko HapMap Animals for BoLA Class I and Extended Class I 
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BoLA IIb Haploview Output for HapMap Breeds.  BoLA IIb haplotypes were determined by 
PHASE within each breed and graphically displayed in Haploview.  The breed and total number 
of animals analyzed (n) is listed in the left hand corner of the figure.  Low minimum allele 
frequencies of SNPs rendered the alleles monomorphic in many breeds, and monomorphic alleles 
are seen as blank diagonals in the Haploview output. 
 
 

Angus (n = 62Angus (n = 62)
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CharolaisCharolais

(n = 26)(n = 26) GirGir (n = 24)(n = 24)GirGir (n = 24)(n = 24)GirGir (n = 24)(n = 24)
CharolaisCharolais

(n = 26)(n = 26) GirGir (n = 24)(n = 24)GirGir (n = 24)(n = 24)GirGir (n = 24)(n = 24)
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LimousinLimousin (n = 45)(n = 45) N'DamaN'Dama (n = 25)(n = 25)LimousinLimousin (n = 45)(n = 45) N'DamaN'Dama (n = 25)(n = 25)  
 

NeloreNelore (n = 24)(n = 24)
Norwegian Red Norwegian Red 
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RomagnolaRomagnola (n = 24)(n = 24)
Santa Gertrudis Santa Gertrudis 

(n = 13)(n = 13)RomagnolaRomagnola (n = 24)(n = 24)RomagnolaRomagnola (n = 24)(n = 24)
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BoLA IIa-III-I Haploview Outputs for HapMap Breeds.  BoLA IIa-III-I haplotypes were 
determined by PHASE within each breed and graphically displayed in Haploview.  Although 
some breeds showed evidence of stronger linkage disequilibrium than others, these figures show 
that over all breeds SNPs positioned close together exhibited a higher level of linkage 
disequilibrium.  Linkage disequilibrium may have been influenced by the total number of animals 
analyzed (n) and their pedigree relationships.   
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Brahman (n = 26)Brahman (n = 26)Brahman (n = 26)Brahman (n = 26)

Brown Swiss (n = 24)Brown Swiss (n = 24)

CharolaisCharolais (n = 21)(n = 21)CharolaisCharolais (n = 21)(n = 21)
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GirGir (n = 24)(n = 24)GirGir (n = 24)(n = 24)
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Holstein (n = 64)Holstein (n = 64)Holstein (n = 64)Holstein (n = 64)
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N'DamaN'Dama (n = 23)(n = 23)N'DamaN'Dama (n = 23)(n = 23)
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PiedmontesePiedmontese (n = 24)(n = 24)PiedmontesePiedmontese (n = 24)(n = 24)
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Santa Santa GertrudisGertrudis (n = 18)(n = 18)Santa Santa GertrudisGertrudis (n = 18)(n = 18)
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