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ABSTRACT 

 

 

Systematic Sampling of Scanning Lidar Swaths. (December 2009) 

Wesley Tyler Marcell, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Marian Eriksson  
                                                      Dr. Sorin Popescu 

 

Proof of concept lidar research has, to date, examined wall-to-wall models of forest 

ecosystems.  While these studies have been important for verifying lidars efficacy for 

forest surveys, complete coverage is likely not the most cost effective means of using 

lidar as auxiliary data for operational surveys; sampling of some sort being the better 

alternative.  This study examines the effectiveness of sampling with high point-density 

scanning lidar data and shows that systematic sampling is a better alternative to simple 

random sampling.  It examines the bias and mean squared error of various estimators, 

and concludes that a linear-trend-based and especially an autocorrelation-assisted 

variance estimator perform better than the commonly used simple random sampling 

based-estimator when sampling is systematic. 
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1. INTRODUCTION 

 

1.1 Common Lidar Sensors: Profiling Versus Scanning Lidar  

 

Traditional methods for forest measurement can require hundreds of man-hours of 

fieldwork to estimate parameters such as stem count, stand basal area (cross-sectional 

area at 1.3-m above ground) and volume for inventories of relatively large areas.  New 

technologies in remote sensing such as light detection and ranging (lidar) allow these 

estimates to be made over large areas in a short period of time, requiring fewer resources 

than ground-only surveys.  Lidar systems use lasers to measure the distance between the 

sensor and a target surface.  Measurements are made by recording the time it takes for a 

laser pulse to travel from the source to the target surface and back to the sensor, and then 

calculating distance based on the speed of light (Lefsky et al., 2002).  There are two 

common types of lidar systems: profiling lidars (e.g., Nelson et al., 2003), which create 

one-dimensional height profiles along slices of the forest, and scanning lidars (e.g., 

Næsset, 2004), which use an array of sensors to scan relatively wide swaths of the terrain 

along flight lines.   

 

Profiling lidars use sequential lidar pulses acquired along linear transects to create a one-

dimensional height profile.  Each laser pulse is recorded when it returns to the sensor.   

Each pulse can have multiple returns.  The first return will give the height of the canopy   

____________ 
This thesis follows the style of Photogrammetric Engineering and Remote Sensing. 
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and subsequent returns will represent understory or ground level readings.  Strong 

secondary returns often indicate the presence of a dense understory or represent the 

ground below the canopy.  A succession of laser pulse measurements can be used to 

develop a profile of a forest canopy and the underlying terrain along a flight line (Nelson 

et. al, 1984).   

 

Profiling lidar data can be used to estimate certain forest measurements such as biomass 

and merchantable volume based on canopy height density measurements.  However, 

they cannot be used to infer individual tree characteristics. To estimate individual tree 

characteristics such as tree count, average crown width, and average height, a scanning 

lidar system must be used.     

 

Scanning lidar data can be used to make height and crown width measurements at the 

individual tree level while profiling lidar only provides height data along a small slice of 

the forest.  Another benefit of scanning lidar is that a complete coverage of data can be 

obtained for the entire area of interest.  Forest height is a crucial forest inventory 

attribute for calculating timber volume, site potential, and silvicultural treatment 

scheduling (Popescu and Wynne, 2004).  Tree height, tree count, and crown width 

measurements can be used to estimate many forest parameters including: average tree 

diameter at breast height, biomass, and merchantable volume.  Scanning lidar data, in 

conjunction with specialized software allows researchers to create a database of 

thousands, even millions, of individual tree measurements in a fraction of the time 
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required by traditional field survey techniques.  Forest parameters can then be estimated 

from the database using common statistical techniques.  The focus of this research will 

concentrate on scanning lidar systems. 

 

1.2 The Need for Development of a Sampling Method 

 

To date, most lidar research has focused on the development of supporting technologies 

and on proof-of-concept studies, and not on using the data to enhance operational 

inventories; most have used complete lidar coverage of the study areas.  There is 

considerable interest in moving away from proof-of-concept studies and toward the use 

of lidar to enhance operational inventories.  Andersen (2009), for example, used lidar 

collected over a 300 × 300-m area centered on Forest Inventory and Analysis (Bechtold 

and Patterson, 2005) plots and concluded that lidar may be useful for characterizing 

stand condition for operational inventories.  Other examples will be noted below. 

 

 It is unlikely that lidar will be used to the exclusion of traditional plot measurements, 

but rather to enhance and extend them.  While complete coverage can be obtained of an 

entire area of interest, this comes at a cost.  An advantage of, indeed the premise of, 

conducting a laser-based forest inventory on the other hand, is that reliable estimates of 

the variable(s) of interest and the quality of those estimates may be obtained by 

measuring only a portion of the area; that is, by sampling.   
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At the design-phase of an inventory, decisions include whether to stratify, the size and 

number of field plots to use, and whether auxiliary information is or can be made 

available and how it might be used to improve the quality of any final estimate, as 

measured by its variance.  These decisions are made in an effort to ensure unbiased or 

nearly unbiased estimators and to reduce variance for a given cost, or to minimize cost 

for a specified maximum variance.  Technical details, such as flying-height and scanner 

settings, aside, the questions surrounding the operational use of lidar will include how it 

will fit into the overall design and how its use will influence the choice of estimators. 

 

Lidar measurements are proxy measurements and they are known to be imperfect due, 

for example, to (i) the fact that lidar pulses rarely intercept tree tips, (ii) current 

algorithms used to extract crown dimensions do not adequately model overlapping 

crowns, (iii) GPS error, and (iv) the fact that intermediate and suppressed trees are 

undercounted.  While imperfect, lidar measurements are also known to be “good” in the 

sense that correlations between the proxy measures and ground-based measurements are 

generally high; indeed, there are indications (e.g., Næsset, 2004) that the accuracy of the 

lidar measurements may, on average, actually be better than those made on the ground.   

 

It is therefore probable that lidar will be used in an auxiliary sense—quite likely as one 

of the phases in a multiphase design.  To date, examples of the use of lidar in operational 

double (2-phase) sampling designs include, Næsset (2004), Parker and Evans (2004), 

Parker and Mitchel (2005), and Andersen and Breidenbach (2007).  A written review of 
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double- and single-phase lidar sampling can be found in Parker and Evans (2009).  If a 

sample of flight lines is to be flown, then flight plan considerations argue that lines at 

regular intervals would operationally be more desirable than lines taken at irregular 

intervals.  This is an example of systematic sampling (e.g., Cochran, 1977).  All three of 

the double sampling designs cited earlier had a systematic component.   

 

1.3 Early Studies Using Lidar 

 

The first natural resource application of lidar was a 1968 study of bathymetry or oceanic 

depth (Hickman and Hogg, 1969).  In that study an aerial profiling laser was used to 

make bathymetric measurements in shallow offshore areas.  That method was found to 

be an effective means of collecting bathymetric measurements because of the lasers’ 

ability to penetrate the surface of the water and record sea floor depth.  The same 

principles that allowed bathymetry researchers to measure ocean floor depth were soon 

applied to terrestrial applications. 

 

One of the first studies involving terrestrial application of lidar was that of Krabill et al. 

(1980) which was mentioned in Nelson et al. (1984).  Studies were conducted to utilize 

the ability of the airborne laser system to penetrate vegetation and record ground 

measurements.  In those original studies vegetation was seen as a source of noise when 

creating terrain models.  Soon researchers realized that this noise could be used to 

determine the canopy height of vegetation.  Nelson et al. (1984) used a profiling lidar 
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system to find tree heights in an oak-hickory forest in south-central Pennsylvania.  He 

found that mean tree height estimates were underestimated by 60 cm when compared to 

data derived using photogrammetric methods.  However, his study found lidar estimates 

to be more precise than photogrammetric estimates.   

 

Further studies were conducted to estimate plant biomass and to determine the 

repeatability of lidar observations.  Nelson et al (1988) found a 7% and 8% difference 

between laser derived biomass and volume estimates, respectively, when compared to 

ground measurements.  They concluded their study by stating that there are two 

advantages to estimating forest parameters using profiling lidar.  The first advantage is 

that canopy height data can be collected quickly along transects hundreds of miles long.  

The second advantage is that lidar can be used to sample areas that may not be easily 

accessible using traditional ground inventory methods. 

 

1.4 Scanning Lidar Research 

 

Advances in technology have allowed lidar to become a more powerful tool than ever.  

Newly developed scanning lidar systems are capable of full data coverage with up to 

twenty points per square meter (Ackermann, 1999).  These new systems in combination 

with more powerful GIS and remote sensing software have allowed lidar research to go 

far beyond the profiling studies of the 1980’s.   
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In Norway remote sensing techniques are an integral part of forest surveys and there are 

ongoing studies involving scanning lidar.  Forest characteristics for approximately 50% 

of all area surveyed annually is derived using aerial photo interpretation.  In one of the 

first studies involving scanning lidar, Næsset (1997a, b) was able to estimate mean tree 

height and timber volume effectively using only the data provided from the scanning 

lidar system. 

 

Further studies in Norway have looked at complete coverage datasets with relatively low 

intensity scanning lidar (Næsset, 2004).  The dataset used in that study had a sampling 

rate of about one pulse per square meter.  This is not intense enough to make 

measurements on the individual tree level; however, Næsset’s study did provide very 

good stand-level forest estimates. 

 

1.5 Review of Systematic Sampling 

 

Figure 1 depicts a systematic arrangement for a finite population of size N = 12 with n = 

3 and k = 4, where n is the number of sample units to be measured and k is the number of 

possible samples, only one of the possible samples would actually be selected; indices h, 

i, and i', run from 1 to k, n, and N, respectively.  That is, randomization would be on the 

k possible samples, so one and only one h would be randomly selected from the k = 4 

possible samples.  Systematic sample h = 3 is highlighted to indicate the n = 3 units, 

swaths for us, that would be measured were h = 3 to be selected.  In the systematic 
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sampling literature, units with common index i are sometimes referred to as a stratum.  

For us, this is consistent with the land managers’ idea of strata being regions of 

relatively homogenous cover.  For simplicity we assume throughout that N is an integer 

multiple of k.  This amounts to assuming that n is fixed.  We will sometimes refer to the 

different h’s as “levels.” 

 

The degrees of freedom for an estimate is basically the number of times we randomize 

minus the number of parameters estimated.  With classical “single start,” systematic 

sampling (SyS) one randomizes once resulting in zero degrees of freedom.  This means 

that for SyS no statement can be made, with any confidence, about the quality of 

estimates.  Yet SyS is one of the most commonly implemented sample designs due to the 

ease with which samples can be selected (eg., Cochran, 1977).  Intuitively SyS is also 

“good” for land-based applications because a SyS can be viewed as being more “even” 

than a simple random sample (SRS) of the same population.  Statistically this is reflected 

by the fact that the true variance of the mean of a SyS is often less than the true variance 

of the mean of a SRS of equal size from the same population (Cochran, 1977).   The 

problem is that there is no unbiased design-based estimator of the true SyS variance. 
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Figure 1.  Schematic diagram depicting systematic sampling.  N=12 is the total number 

of units in the population, n = 3 is the sample size, and k=4 is the number of possible 

systematic samples; i’, i and h, respectively, are indices over these values. 
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is used.  Here f = n / N is the sampling fraction, (1 – f ) is the finite population 

correction,  2
hs = /)(

1
2∑ =

−
n

i hhi yy (n – 1) is the usual estimator for the variance among all 

N population units based on the n units in systematic sample number h, and division by 

n, of course, because we are considering variances of means.  The v# notation is Wolter’s 

notation for his numbered estimators and is included because diagrams in the appendices 

use this shorter notation for simplicity.  The longer 2
,xyzyh

s  notation is used as a mnemonic 

device indicating the origin of the estimator. 

 

We refer to equation (2) as the SRS-based estimator because it is appropriate for simple 

random samples of size n selected without replacement from a population of known size 

N, is used.  If the design is in fact, SyS, then (2) is a conservative estimator, and is 

sometimes justified on those grounds—in repeated sampling confidence intervals would 

be too wide; they would contain the true population mean more frequently than the 

stated level of confidence (p-value) would indicate.  The bias of 2
,srshys under classical SyS 

arises from fact that SyS induces within-level (h) and between-level components of 

variance and that the between-level component is unmeasured (Cochran, 1977).    

 

The SRS-based estimator (2) is unbiased if the order of units in the population is random 

with respect to the variable under consideration.  For example, if persons’ height is the 

variable of interest and the systematic sample is selected by choosing the first person on 
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every fifth page in a phone book, then (2) should be approximately unbiased.  The 

deviations from random that have received the most attention are when there is (i) 

autocorrelation, in our case spatial autocorrelation, in the variable of interest, (ii) when 

the “evenness” alluded to above can be considered as being associated with strata, as 

defined above, and (iii) a linear trend between the variable of interest and the index i' 

ordering the population.  Case (i), and to a lesser extent (ii) and (iii) are expected for 

landscape variables.  Numerous alternatives to (2) have been proposed to reduce bias in 

estimating (1) if population units are arranged according to (i)-(iii). 

 

The estimator Cochran (1977) uses for stratification effects is based on successive 

differences.  It is given by 

 ∑
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where the ahi = yhi – yh,i-1 are the successive differences between values separated by k 

units. 

 

Equation (3) is used when the mean is consistent within each stratum of k units.  It is a 

biased estimator.  Cochran (1977) states that ��������  contains an unwanted contribution 

for the difference of neighboring strata’s means which causes the first and last strata of 

the model to carry too much weight in estimating the random component of variance.  In 

a reasonably large sample the estimate of ��������  will generally be too high (Moore, 1955 

and Meyer, 1956).  Another stratification based estimator is 
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where the ah,2i
  are, again, successive differences of units, but now treating the strata as 

successively grouped in pairs with two units per pair.  That is, it pools the data from each 

pair of strata.  Estimator (4) is based on fewer degrees of freedom than �������� . 

 

The next trio of estimators are due to Yates (1949) and each is based on successive 

differences, and are similar in concept to (3), but with end-corrections intended to 

equalize the influence of all units regardless of position in the systematic sequence of 

observations.  According to Wolter (1984), “v4 is based upon second differences, which 

annihilate a linear trend in the population.”  It can be derived by assuming that the yi′ = 

βo + β1i′+ ε i′ where, again, i′ represents ordering 1, 2, … N, in the population.  

Estimators v5 and v6 generalize the concept to higher-order differences and, in turn, 

higher-order trends.  The estimators are: 
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respectively.  Note the alternating plus and minus components in these equations.  

Cochran (1977) states that for more complex populations containing continuous 

variation estimators based off the quadratic formula often provide better results than 

those based off successive differences such as estimator (3). 

 

We did not consider Wolter’s estimator v7, due to Koop (1971), as Wolter found it to be 

“unpredictable, and its variance is generally too large to be useful.  This estimator cannot 

be recommended…” (p. 790), and we anticipated that autocorrelation-based estimators 

would be better behaved. 

 

Our final two estimators are model-assisted, being based on (“assisted by” in the 

terminology of Särndal, et. al, 1992) a “superpopulation model.”  That is on the 

assumption that actual, observed, population is a realization of  a process for which yhi = 

µ + εhi, where the errors are assumed to be autocorrelated, in our case spatially 

autocorrelated, in the direction normal to the flight lines.  The estimators are due to 

Cochran (1946) and make the further assumption that the autocorrelation is of the 

exponential form, k
k e λρ −= , where k is the separation (“lag”) distance between two 

successive systematic observations. 
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The first of the two autocorrelation-based estimators is 
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Estimator (9) is, in theory, applicable for any n and k,  

 

Equation (8) has been mentioned by other authors but has not seen widespread use, 

especially in forestry and remote sensing literature.  We have never seen (9) applied to 

real data, presumably because of its seemingly more complex form, but with today’s 

computing power, there is no reason not to consider it as well.  Wolter (1984) did not 
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refer to this estimator in his paper so we refer to it as estimator c47 in the appendices—it 

is Cochran’s (1946) equation #47. 

 

Wolter (1984) considered estimators (2–8) for fifteen populations (seven simulated and 

eight real).  We used all eight of the estimators (2–9) on our simulated lidar forest.  On 

theoretical grounds, Wolter determined that �����	
�  tends to underestimate variance 

whereas (2–7) tend to overestimate and that �����	
�  “tends to have the smallest absolute 

bias except when � is small.  When � is small, the ln(��) approximation is evidently not 

very satisfactory” (p.786).  For forestry applications we expect “larger” correlations 

because the conditions at one location tend to be similar to conditions at nearby 

locations.  After analyzing the fifteen populations, he concluded that ��������  (equation 2) 

has reasonably small bias and mean squared error (MSE = bias2 + variance) only when 

the populations have no trend, autocorrelation, or stratification effects.  He also 

concluded that �������
�  is superior to the two similarly motivated trend-based estimators 

(���������  and ��������� ).  He wasn’t particularly impressed by the performance of �����	
� : 

 I like v2, v3 and possibly v4 (p. 789) … Estimator v8 has remarkably good 
properties for the artificial populations with linear trend or autocorrelation; 
otherwise it is quite mediocre … This estimator [v8] seems too sensitive to the 
form of the model to be broadly useful in real applications. (p. 790).  
 

By “model” he was referring to the assumed superpopulation model.  In his concluding 

paragraph he did, however, note that his findings were primarily applicable to surveys of 

establishments and people and that stronger autocorrelation patterns are likely to exist in 

forestry applications.  
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1.6 Purpose of Study 

 

We were asked the question: is sampling, and in particular is systematic sampling, a 

reasonable approach when using scanning lidar?  It is known that the mean of a 

systematic sample is unbiased, and we have seen that systematic flight lines are 

preferred over random flight lines, so the question becomes, would variance estimates 

for systematically sampled data be reasonable?  The first step of this thesis is to simulate 

a lidar forest to address these questions.   

 

The mean of a SyS is known to be more precise than the mean of an SRS of the same 

population when the true variance among units within systematic sample is greater than 

the variance among all units in the population (Cochran, 1977).  The first objective of 

this thesis, then, is to determine whether, on average, over combinations of n and k for 

the simulated lidar forest, the variance among units within systematic samples is greater 

than the variance among all units.  The second objective of this thesis is to compare the 

relative performance of estimators (2-9) over combinations of n and k for the simulated 

lidar forest.  Thus, the overall goal of this study is to analyze sampling strategies using a 

simulated lidar-forest. 
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2. METHODOLOGY 

 

2.1 Study Area 

 

A 4800-ha rectangular forested area in eastern Texas was the study area for this project.  

This area contains stands of various type, size, and density classes.  The composition and 

structure of the study area is similar to that of many forests in the southern United States.  

Complete scanning lidar coverage of the area was obtained in February, 2004.  Sixty two 

randomly located ground plots within the area were measured in May and June of that 

year.  Other studies using these data include Popescu (2007), Mutlu et al. (2008), and 

Zhao et al. (2009). 

 

2.2 Creation of the Lidar-Forest 

 

This study is really a study of the lidar-forest associated with the actual forest described 

above.  The lidar-forest is known to deviate from the actual forest due to a variety of 

errors (eg., GPS location error, measurement error, etc.).  The sum of the errors is 

generally considered to be small (Næsset, 2004).  These lidar-derived errors are not an 

issue for the study, because we are focusing on the sampling error of the lidar-forest—

our population of interest.  The lidar-forest was created from the raw pulse returns by 

following the steps as described by Popescu and Wynne (2004).   
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First, a canopy height model (CHM) was developed from the lidar point cloud.  A 

canopy height model is the difference between tree canopy hits and the corresponding 

lidar-derived terrain elevation values.  A more detailed description of the CHM 

development is available in Zhao et al. (2009).  In the second step, a leaf-off Quickbird 

image from 2004 was classified to differentiate between pine and hardwood stands and 

non-forested regions within the study area.  The classified image was combined with the 

original canopy height model to create two separate CHM’s; one containing only data 

for areas classified as pine stands, the other containing only data for areas classified as 

hardwood stands.  This step was necessary to correctly quantify individual trees using 

TreeVaW, an extension in the Interactive Data Language (IDL) developed by Popescu 

and Wynne (2004).  TreeVaW automatically assigns x-y coordinates (½-m) to individual 

trees and uses local max filtering and variable windows to determine each tree’s height, 

H, and crown width, CW.  

 

Relationships between CW and H, were developed using the ground data for pine and 

hardwoods separately.  The fitted equations were CWP = 0.0024H2 + 0.1848H + 0.4022 

(r2 = 0.66) and CWH = 0.0031H2 + 0.2076H + 1.6416 (r2 = 0.45) for pines and 

hardwoods, respectively.  With the two CHMs, these equations are used by TreeVaW to 

help determine CW by species.  Other inputs required by TreeVaW were the minimum 

expected tree height and the minimum and maximum expected crown width.  The 

minimum expected height was taken to be 7.6-m, which is approximately the minimum 

height of a merchantable tree given the range of site indices for this region of Texas.  
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This setting allows TreeVaW to ignore lidar returns below the threshold on the 

assumption that it was not from the crown of a merchantable tree.  The minimum and 

maximum expected crown widths were set at 1.5-m and 26-m, respectively; these 

settings control the search windows used to detect individual trees.  Since TreeVaW 

assigns trees to a ½-m × ½-m grid, below we refer to trees having the same y (or x) 

coordinate as a TreeVaW-line or, more simply, a line, sometimes qualified by direction. 

  

Some estimated heights were unreasonable—likely due to birds and towers, etc.  These 

points were removed from the dataset by setting a ceiling value for tree height of 47-m.  

In addition, a number of lidar-trees had crown widths of zero.  For these we used the 

crown width regression equations, above, to replace the zero values.  Random variation 

consistent with the prediction error variance of the equations was added to the predicted 

values.  This is acceptable for our study because once again we are not analyzing the 

accuracy of lidar, nor of TreeVaW, but rather the ability to correctly and efficiently 

estimate our lidar-forest parameters using systematic sampling. 

  

2.3 Simulation Study 

 

With scanning lidar, the operator has the ability to adjust (i) the scan angle of the sensor 

and (ii) altitude of the aircraft, and (iii) the pulse density to affect the ultimate quality of 

the lidar-forest.  The idea behind the simulation study was that by adjusting these 

settings one could, within limits, obtain actual swath data consistent with our observed 
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data for different assumed swath widths.  That is, we had the ability to treat groups of 

TreeVaW-lines normal to any assumed flight direction as a “virtual swath.”  Particulars 

for any real application will, of course, deviate from those presented herein, but the 

overall assessment concerning the efficacy of SyS at a lidar phase of sampling and of the 

overall assessment of estimator usefulness should apply to many real applications.  For 

the simulations we assumed E-W and N-S flight lines.  The area was clipped from the 

original 16923 by 11210 lines to the central 16800 (running from south to north, oriented 

west to east) by 10800 lines because (i) the number of lidar-trees in the outermost few 

lines was considerably less than for the rest of the area, and (ii) for simplicity we chose 

total line numbers that are even multiples of a few pre-selected sample sizes.   

 

The width of swaths obtainable from current-day sensors on aircraft flying at common 

altitudes is on the order of about 200 to 800 meters.  This would argue that the 

simulations should try to mimic swaths consistent with this range or, perhaps, a little 

larger, say 100 to 1000 meters wide.  Since we had the dual interest in examining the 

properties of the SyS estimators from a purely statistical viewpoint, we looked at 

“swaths” well beyond this range.  For extreme widths the idea of angular tolerances, 

pulse densities, and flying heights consistent with the simulated swaths becomes absurd, 

but if the observed lidar-forest is a reasonable depiction of reality, this does not diminish 

the value of looking at the properties of the estimators at the extreme values. 
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If we let ℓT be the total number of TreeVaW-lines (16800 E-W or 10800 N-S) and ℓS be 

the number of lines per swath then we have a population of size N = ℓT / ℓS.  For 

example, with our ½-m grid, there are N = 24 350-m E-W swaths when ℓS = 700.  We 

generated all even N from 4 to  ℓT / 4.  From each of the populations we generated all k 

systematic samples of integer sizes n = 2 to N / 2.  For N = 24 these were n = 2, 3, 4, 6, 

8, and 12 with k = 12, 8, 6, 4, 3, and 2.  This resulted in 633 (E-W swaths) and 459 (N-S 

swaths) combinations of n and N.  For each combination, the mean number of trees 

(TPH), basal area (BPH), and stem biomass per hectare (SWH) were computed; the 

DBH and biomass prediction equations were those of Popescu (2007); for a total of 

3(633+459) = 3276 simulations.  For each of the three variables, variances were 

computed using each of the eight estimators (2-9). 
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3. RESULTS AND DISCUSSION 

 

The mean of a SyS is known to be more precise than the mean of an SRS of the same 

population when the true variance among units within systematic sample is greater than 

the variance among all units (Cochran, 1977).  This was the case for more than 95% of 

the 3276 simulations examined in this.  For all of the exceptions, that is for all cases for 

which the variance among all units was greater than the variance within systematic 

samples, the simulated sample size was n=2 or n=3.  These are almost degenerate cases 

for which one would not expect SyS to be superior to SRS. 

 

The number of pines per E-W line is presented in Figure 2a.  There is a clear long-range 

linear, tending towards quadratic, trend in the number of pines per line with higher 

numbers in the south.  Had the study area been larger, the apparent trend would 

diminish, but it is very real for this finite population.  Corresponding trends for E-W 

hardwoods and for N-S pines and N-S hardwoods were generally cubic to quartic in 

nature.  The trends for basal area per line and stem wood biomass per line generally 

followed those for numbers of trees but were somewhat muted and had somewhat larger 

short-range variation (Appendix A).  The presence of linear trend in the E-W swaths 

indicated that �������
�  should perform favorably for numbers of trees, and to a lesser 

extent for basal area per hectare, and stem wood biomass for swaths in this direction.   
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Figure 2. Trees per line and autocorrelation plots. a) Number of trees per E-W-line 

plotted on distance from the southern boundary, b) empirical autocorrelation functions 

to 2500 meters for the number of trees per line. 

 

 

 

All variables indicated a high degree of autocorrelation on a per-line basis.  Figure 2b 

presents the empirical autocorrelation functions for numbers of trees per line for E-W 

pine, E-W hardwood, N-S pine, and N-S hardwood.  Though somewhat muted, the basal 

area and stem wood biomass trends closely follow the number of trees trends by species 

group and line direction (Appendix B).  For numbers of trees, basal area per line, and 

stem wood biomass, autocorrelation becomes insignificant at lag distances beyond about 

2250 m for E-W pine and about 1200 m for the others; in the geostatistics literature this 

distance is referred to as the range.  When summed over lines, then, we would expect 

that �����	
�  and �����	��  should perform favorably when kℓS is less than these values.  At 

1200-m (2400 E-W lines), for any n greater than about 16800/2400 = 7, autocorrelation 

is likely to be an issue for E-W hardwood, N-S hardwood, and N-S pine. 
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It is worth noting that, in theory, all of the autocorrelation functions should be 

continuous at the origin but all show a discontinuity.  In geostatistics, this discontinuity 

is called a nugget and is usually attributed to measurement and micro-scale variance 

(e.g., Schabenberger and Pierce, 2002).  For these data, the discontinuities would 

indicate measurement error variance for numbers of trees per line of about 10% of the 

total variance for E-W pine, and of about 20% for E-W hardwood, N-S pine, and N-S 

hardwood.  Tree diameters were predicted from the crown diameter and height 

estimates, themselves predicted by TreeVaW as indicated in the Methodology section.  

For basal area and stem wood biomass per line (Appendix B) the measurement plus 

prediction error variances contributed to about 25% and 50-60% of the total, for E-W 

pine and the others, respectively. 

 

The upper set of panels in Figure 3 are bias plots of the estimated variances, �������� , 

�������
� , and �����	�� , on the true variance V, as calculated from (1) for TPH using E-W 

swaths.  Systematic deviations from the 1:1 line indicate bias. The panels clearly show 

the bias incurred by using the usual SRS-based estimator when samples are, in fact, 

selected systematically.  It is often stated that the bias of the ��������  is unpredictable.  

Color was added for cases of n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).  In each case, 

increasing N is depicted by darker tones.  It is clear from the plots that bias is largest 

when n is small.  The plotted values are means over the k possible samples for each 

combination of n and N.  It is clear from the plots that there is a generally smooth 
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relationship of variance with N given n.  Plots are available for all combinations of 

estimators, line direction, and species class in Appendix C.  The ρ-assisted estimators 

�����	
�  and �����	��  are also significantly biased for small n but become largely unbiased as 

n increases beyond about n=12.  The poor performance of �����	
�  for small samples is 

likely attributable to one or both of (i) very small sample sizes would indicate samples 

separated by distances beyond the range and (ii) autocorrelation is very poorly estimated 

for such small sample sizes.  Indeed, the algorithm suggests setting �����	
�  and �����	��  to 

��������  when negative correlation estimates are computed.  Wolter (1984) commented on 

this as well (see the quote on page 15 of the introduction section of the thesis). 

 

Given the large variance ranges, bias is perhaps better viewed in the lower panels of 

Figure 3 in which the �����������
�	
��  are plotted on��� .  The fourth-root transformations 

both linearized the trends and induced common spread. In these plots we clearly see the 

relative bias in ��������  across all n and N.  We also see that, for most combinations of n 

and N, �������
� , and �����	
�  are nearly unbiased for these data.  Bias plots for all 

combinations of TPH, BPH, and SWH, pines & hardwoods, and E-W  & N-S swaths 

were qualitatively quite similar and are available in Appendix C and D.  For example on 

average ��������  for TPH was 4.84, 5.98, and 9.08 times that of �����	
�  for pine with 

samples of size n = 6, 8, and 12 for E-W 350-m swaths (N = 24); the corresponding 

values for hardwoods were 1.00, 1.78, and 5.32, respectively.  The implications for 

selecting sample sizes to achieve stated precision goals may be appreciable. 
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a)                                            b)                                             c) 

 

 
Figure 3.  Estimated variance plotted on true variance.  Estimated variance plotted on 

true SyS variance for 633 combinations of N, and n for number of pines per hectare on 

E-W-swaths using estimators a) �������� , b) �������
� , c) �����	
� .  In the upper panels 

variances are untransformed, in the lower panels they are transformed by v1/4. 

 

 

Figure 4 shows the MSE1/4 of ��������  and �������
�  (n ≥ 12) plotted on MSE1/4 of �����	
�  for 

pine trees per hectare on E-W and N-S swaths, panels (a) and (b), and pine basal area per 

hectare on N-S swaths, panel (c).  The scatter of points for MSE(�������� ) is well above 

the 1:1 line, again displaying the large bias in ��������  when samples are systematically 

selected.  Moreover, for the n = 6, 8, and 12 example of the previous paragraph, the 
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average MSE for ��������  was 2.5, 41, and 93 times that of �����	
� , indicating that, not only 

does ��������
 overestimate the true variance, but that it also more variable than �����	
�  for 

our lidar-forest attributes.  For n less than about eight, scatter for both ��������  and �������
�  

tend to the 1:1 line, again reflecting the poor estimation of ρ based on few data values 

and the large lag distances for small n (not shown in the diagrams).   

 

 

 

 

Figure 4.  Transformed mean square error plots.  One-fourth power of the estimated 

mean squared error for ��������  and �������
�  on that of estimated mean square error of �����	
�  

for (a) pine trees per hectare on E-W swaths (b) pines per hectare on N-S swaths, and (c) 

pine basal area per hectare on N-S swaths. 
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The corresponding values for �������
�  were 1.4, 3.5, and 10.5 times that of �����	
� ; 

MSE(�������
� ) was larger than MSE(�����	
� ) for about 70% of the combinations of n and 

N.  Care must be exercised in interpreting this percentage because of the higher 

percentages of small n in the suite of combinations. 

 

The scatter for MSE(�������
� ) is generally centered near, to somewhat above, the 1:1 line 

for �����	
�  for most n in situations where a linear trend in the population is noted (Figure 

4a).  This was the case for which �������
�  was designed and for which we had expected it 

to perform its best.  Yet here too the ρ-assisted estimator �����	
�  has, on average, smaller 

MSE.   In Figures 4b and 4c, where the presence of nonlinear trend in the population was 

evident, �������
�  was clearly intermediate between ��������  and �����	
� .  This is not 

surprising because �������
�  is based on successive differences and should perform 

reasonably well locally for larger n.  Average coverage rates for 95% confidence 

intervals for TPH and BPH for E-W-swaths swaths between 420- and 700-m were 

virtually 100% for ��������  and �������
�  (both) and 92%, 98%, respectively, for �����	
� .  

Coverage rate trends were similar for the hardwoods and for the ns-swaths. 

 

Mean squared error is depicted differently in the graphics of Appendix E.  On each page 

the panels are histograms of MSE for all h = 1, … , k and i= 1, 2… , n possibilities, each 
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panel representing one of our eight estimators. The SRS histogram is displayed in the top 

right panel and is repeated in red on the other figures for comparative reference.  Each 

page of Appendix E shows different combinations of E-W/N-S and TPH/BPH/SWH for 

pine/hardwood.  Across all the pages we see that (i) SRS has the highest mean value 

(bias), the largest spread (variance), (ii) the two stratification estimators are intermediate, 

(iii) the bias in the trend estimators approach zero but they have significant spread, and 

(iv) the correlation estimators have the least bias and the least spread.  Numeric tables of 

the mean variance and MSE for the above combinations of estimators �������� , �������
� , and 

�����	
� , and only for a set of realistic swath widths.  Conclusions drawn from Appendix F 

are entirely consistent with those already stated. 
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4. CONCLUSIONS 

 

The within systematic sample variances were larger than the variances among all units.  

This allows us to state with certainty that, for the number of trees, basal area per hectare, 

and stem wood biomass in our lidar-forest, the mean of a SyS is more precise than the 

mean of an SRS of equal size.  This was an expected result because these quantities are 

not spatially random in a forest and are expected to be spatially, positively 

autocorrelated.  Measurement error appears to account for ten to twenty percent of the 

total per-line variance for trees per hectare and measurement plus model prediction error 

accounts for between about 25 and 60% of the total per-line variance for basal area per 

hectare.  Calculating “nuggets” may be useful to other scientists as they evaluate the 

various sources of error in lidar-based inventories and analyze the relative contributions 

to overall variance. 

 

As noted in the introductory section, Wolter (1984) favored two stratification-based 

estimators and gave tentative approval to �������
� ; he was not impressed with the 

performance of �����	
� .  While not discussed explicitly within the text, we found the 

stratification-based estimators to be intermediate in performance, see Appendices B–E.  

In natural populations we expect significant spatial autocorrelation.  That autocorrelation 

is reflected in sums over adjacent elements (lines for us) providing the sums are not 

taken over distances that are too large.   In this regard we expected �����	
� , and �����	��  to 

be at least competitive among our eight estimators.  Estimator �������
�  was designed for 
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use in populations having linear trends on the unit index.  After observing that the lidar-

forest had a clear, and nearly linear, trend from south to north, we expected �������
�  to 

perform well for estimating the variance of the average basal area and especially for the 

number of trees per hectare in the case of E-W-swaths.  In those cases we found that 

�������
�  performed well and that �����	
� , and �����	��  were strong competitors, if not better 

estimators especially when considering MSE.  Estimators �����	
� , and �����	��
 were the best 

estimator in other cases, with �����	��  often showing slightly better results than �����	
� .  

The linear trend estimator was also superior to SRS when the long-range trends were 

cubic to quartic.  This too was not surprising because those trends are locally 

approximately linear, and since �������
�  is based on sequential differences and should 

perform outperform SRS in such cases. 

 

This study is but a small step toward incorporating SyS in lidar-assisted operational 

inventories of forested areas.  If systematic flight lines occur at distances less than the 

range of the correlation function, then steps to compensate for the bias due to spatial 

autocorrelation should be considered, whether it be via �����	
� , or some other method.  In 

the presence of autocorrelation some, among a number of other considerations as we 

move toward operational inventories, include how to appropriately calculate sample 

sizes, how to deal with (post)stratification, unequal swath lengths (unit sizes), and the 

fact that pulse densities are not equal across swath widths.  The hope is that this research 

will be of use for future developments in lidar-assisted forest inventories. 
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 Data plots for E-W lines: TPH (top), BPH (middle), and SWH (bottom); pines (left) 

and hardwoods (right).  Every other point is plotted. 
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Data plots for N-S lines: TPH (top), BPH (middle), and SWH (bottom); pines (left) 

and hardwoods (right).  Every other point is plotted. 
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Empirical Autocorrelation functions to 2500 meters for Basal Area (left) and Stem Wood Biomass (right) 
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APPENDIX C 
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Estimated variance plotted on true SyS variance for number of pines per hectare on east-west swaths.  Note that estimator rho 
refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for basal area of pines per hectare on east-west swaths.  Note that estimator 
rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance stem wood biomass per hectare on east-west swaths.  Note that estimator rho 
refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for number of hardwood trees per hectare on east-west swaths.  Note that 
estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for basal area of hardwoods per hectare on east-west swaths.  Note that 
estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for stem wood biomass of hardwoods per hectare on east-west swaths.  Note 
that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for number of pines per hectare on north-south swaths.  Note that estimator 
rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for basal area of pines per hectare on north-south swaths.  Note that estimator 
rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for stem wood biomass of pines per hectare on north-south swaths.  Note that 
estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for number of hardwood trees per hectare on north-south swaths.  Note that 
estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
 

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

srs
ns.h.tph

s
2 y

,s
rs

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

st
ns.h.tph

s
2 y

,s
t

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

se
ns.h.tph

s
2 y

,s
e

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

lt1
ns.h.tph

s
2 y

,lt
1

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

lt2
ns.h.tph

s
2 y

,lt
2

0
50

10
0

15
0

20
0

25
0

True Variance

lt3
ns.h.tph

s
2 y

,lt
3

0
50

10
0

15
0

20
0

25
0

True Variance

rho
ns.h.tph

s
2 y

,r
ho

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

c47
ns.h.tph

s
2 y

,c
47



 
 

 

52 

 
 
Estimated variance plotted on true SyS variance for basal area of hardwoods per hectare on north-south swaths.  Note that 
estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance plotted on true SyS variance for stem wood biomass of hardwoods per hectare on north-south swaths.  Note 
that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for number of pines per hectare on east-west swaths.  Note 
that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for basal area of pines per hectare on east-west swaths.  
Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for stem wood biomass of pines per hectare on east-west 
swaths.  Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 
6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for number of hardwood trees per hectare on east-west 
swaths.  Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 
6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for basal area of hardwoods per hectare on east-west 
swaths.  Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 
6 (pink).   
 

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

srs
ew .h.bah

(s
2 y

,s
rs
)1

4

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

st
ew .h.bah

(s
2 y

,s
t)1

4
0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

se
ew .h.bah

(s
2 y

,s
e)

1
4

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

lt1
ew .h.bah

(s
2 y

,lt
1)

1
4

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

lt2
ew .h.bah

(s
2 y

,lt
2)

1
4

0.
0

0.
2

0.
4

0.
6

0.
8

(True Variance)1 4

lt3
ew .h.bah

(s
2 y

,lt
3)

1
4

0.
0

0.
2

0.
4

0.
6

0.
8

(True Variance)1 4

rho
ew .h.bah

(s
2 y

,r
ho
)1

4
0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

c47
ew .h.bah

(s
2 y

,c
47
)1

4



 
 

 

60 

 
 
Estimated variance transformed by v1/4 plotted on true SyS variance for stem wood biomass of hardwoods per hectare on east-
west swaths.  Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 
(blue), and 6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for number of pines per hectare on north-south swaths.  
Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for basal area of pines per hectare on north-south swaths.  
Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for stem wood biomass of pines per hectare on north-south 
swaths.  Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 
6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for number of hardwood trees per hectare on north-south 
swaths.  Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 
6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for basal area of hardwoods per hectare on north-south 
swaths.  Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 (blue), and 
6 (pink).   
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Estimated variance transformed by v1/4 plotted on true SyS variance for stem wood volume of hardwoods per hectare on north-
south swaths.  Note that estimator rho refers to our �� and c47 refers to our ��.  Colors indicate n = 3 (gold), 4 (green), 5 
(blue), and 6 (pink).   
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Trees per Hectare (TPH) based on our 
population for east-west swaths of pine stands.  The upper-left figure shows the SRS estimator.  This is repeated in red in the 
other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Basal Area per Hectare (BAH) based 
on our population for east-west swaths of pine stands.  The upper-left figure shows the SRS estimator.  This is repeated in red 
in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Stem Wood Biomass per Hectare 
(SWH) based on our population for east-west swaths of pine stands.  The upper-left figure shows the SRS estimator.  This is 
repeated in red in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Trees per Hectare (TPH) based on our 
population for east-west swaths of hardwood stands.  The upper-left figure shows the SRS estimator.  This is repeated in red in 
the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Basal Area per Hectare (BAH) based 
on our population for east-west swaths of hardwood stands.  The upper-left figure shows the SRS estimator.  This is repeated 
in red in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Stem Wood Biomass per Hectare 
(SWH) based on our population for east-west swaths of hardwood stands.  The upper-left figure shows the SRS estimator.  
This is repeated in red in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Trees per Hectare (TPH) based on our 
population for north-south swaths of pine stands.  The upper-left figure shows the SRS estimator.  This is repeated in red in the 
other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Basal Area per Hectare (BAH) based 
on our population for north-south swaths of pine stands.  The upper-left figure shows the SRS estimator.  This is repeated in 
red in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Stem Wood Biomass per Hectare 
(SWH) based on our population for north-south swaths of pine stands.  The upper-left figure shows the SRS estimator.  This is 
repeated in red in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Trees per Hectare (TPH) based on our 
population for north-south swaths of hardwood stands.  The upper-left figure shows the SRS estimator.  This is repeated in red 
in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Basal Area per Hectare (BAH) based 
on our population for north-south swaths of hardwood stands.  The upper-left figure shows the SRS estimator.  This is repeated 
in red in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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The above figures show Mean Square Error (MSE) for each of our eight estimators for Stem Wood Biomass per Hectare 
(SWH) based on our population for north-south swaths of hardwood stands.  The upper-left figure shows the SRS estimator.  
This is repeated in red in the other figures for comparison.  Note that estimator rho refers to our �� and c47 refers to our ��. 
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 70 14 409.38 152.06 47.32 105228.57 4623.02 2314.65

240 70 35 99.11 12.29 4.30 8586.76 40.69 6.12

280 60 12 485.91 198.37 64.12 228411.13 43031.70 1536.59

280 60 15 357.42 120.70 37.66 94856.61 5875.69 225.94

280 60 20 234.23 56.98 18.36 35577.93 315.81 784.52

280 60 30 115.68 17.09 5.83 10685.60 41.29 42.18

300 56 14 383.28 140.59 43.69 101522.02 5036.08 877.42

300 56 28 124.16 19.55 6.67 12933.59 73.78 19.63

336 50 25 138.20 23.89 8.15 17376.40 334.22 3.87

350 48 12 451.09 179.33 57.62 214197.28 38227.55 2261.55

350 48 16 293.36 90.39 28.13 68763.45 4319.19 43.85

350 48 24 144.13 26.41 8.91 20481.38 599.33 47.52

400 42 14 333.11 118.14 36.94 67035.85 1978.95 2085.50

400 42 21 163.71 33.71 11.32 18723.93 33.05 312.86

420 40 20 171.92 37.85 12.54 22831.98 398.39 74.46

560 30 15 225.83 68.18 21.48 35581.90 1712.79 312.88

600 28 14 246.20 82.41 25.74 53233.37 4106.82 41.35

700 24 12 286.02 94.40 31.50 93425.52 10633.93 1008.13

E-W Pine - Trees per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 70 14 0.4193 0.1592 0.0407 0.16032771 0.02059308 0.00044095

240 70 35 0.1005 0.0071 0.0028 0.00991126 0.00003943 0.00000342

280 60 12 0.4952 0.2102 0.0558 0.21843966 0.03703199 0.00085117

280 60 15 0.3649 0.1294 0.0333 0.11439650 0.01318260 0.00017900

280 60 20 0.2396 0.0550 0.0151 0.05169281 0.00183000 0.00000948

280 60 30 0.1178 0.0116 0.0041 0.01204244 0.00001269 0.00001577

300 56 14 0.3923 0.1474 0.0375 0.14226421 0.01732184 0.00042118

300 56 28 0.1261 0.0142 0.0048 0.01471531 0.00007781 0.00000036

336 50 25 0.1409 0.0188 0.0061 0.01937185 0.00028874 0.00001716

350 48 12 0.4615 0.1939 0.0512 0.19368053 0.03264447 0.00088986

350 48 16 0.3016 0.0973 0.0250 0.08671334 0.00986072 0.00037284

350 48 24 0.1477 0.0229 0.0070 0.02167763 0.00050285 0.00004253

400 42 14 0.3437 0.1239 0.0317 0.10753035 0.01158263 0.00021949

400 42 21 0.1679 0.0313 0.0091 0.02773433 0.00087165 0.00005265

420 40 20 0.1778 0.0385 0.0107 0.02920641 0.00100405 0.00001465

560 30 15 0.2340 0.0716 0.0190 0.04806775 0.00491852 0.00010067

600 28 14 0.2549 0.0890 0.0229 0.05917917 0.00611683 0.00012313

700 24 12 0.2977 0.1117 0.0297 0.08929384 0.01243586 0.00087103

E-W Pine - Basal Area per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 70 14 2714768.00 953198.53 234239.79 6817910000000 746551300000 15249051039

240 70 35 650424.00 46331.40 16488.09 422178300000 2161380000 239444080

280 60 12 3207395.90 1257012.63 319759.83 9239375000000 1258981000000 23121904333

280 60 15 2364343.90 778900.88 192949.65 4959050000000 518723800000 7426330383

280 60 20 1552410.60 339844.19 89204.10 2294461000000 92745770000 2691597926

280 60 30 762763.30 75189.93 24305.72 518311500000 1046113000 343935685

300 56 14 2538121.00 880757.51 216335.32 5964890000000 602804800000 11490638579

300 56 28 816328.30 92801.44 28607.31 632237300000 4803177000 28227450

336 50 25 913648.30 121157.52 36410.57 833895000000 15239260000 1142341744

350 48 12 2993453.90 1163445.09 294740.10 8128122000000 1093524000000 21160329670

350 48 16 1957050.80 588269.41 146247.19 3736054000000 386714100000 16604309071

350 48 24 957652.40 148068.80 42011.49 895814900000 19061400000 975974432

400 42 14 2227514.80 739143.90 182023.14 4576475000000 415916200000 7555703511

400 42 21 1088287.10 193734.69 53550.86 1188021000000 37393830000 2829306374

420 40 20 1153481.90 240162.36 63579.52 1268485000000 45048790000 1267495261

560 30 15 1515070.10 426025.97 109292.09 2101151000000 201027900000 4686236248

600 28 14 1649185.20 531041.25 131617.35 2519235000000 221604800000 4869560748

700 24 12 1930417.70 687277.27 174534.15 3715256000000 466351400000 29253288671

E-W Pine - Stem Wood Volume per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 70 14 69.75 32.89 13.38 4904.06 1100.18 179.55

240 70 35 16.69 2.37 0.90 278.53 5.70 0.84

280 60 12 80.92 38.58 17.17 5475.04 993.66 113.44

280 60 15 60.00 27.95 10.61 3606.47 815.98 118.96

280 60 20 39.24 14.40 4.75 1424.24 165.29 9.32

280 60 30 19.31 3.26 1.24 369.94 10.16 1.36

300 56 14 64.28 30.04 12.12 4213.39 945.32 151.91

300 56 28 20.63 3.85 1.44 377.01 7.08 0.15

336 50 25 22.96 5.20 1.82 500.48 21.30 1.52

350 48 12 75.50 35.33 15.56 4490.81 717.07 54.19

350 48 16 49.62 22.36 8.02 2494.26 541.87 66.13

350 48 24 24.26 6.54 2.15 561.61 35.94 2.58

400 42 14 55.65 25.40 10.13 3112.04 645.49 98.75

400 42 21 27.10 7.95 2.72 621.44 33.26 0.25

420 40 20 28.74 9.66 3.27 828.61 97.04 10.80

560 30 15 37.22 14.93 5.90 1385.40 261.50 41.79

600 28 14 40.82 17.85 7.03 1850.61 390.96 68.68

700 24 12 46.11 19.48 8.65 1506.92 163.44 8.05

E-W Hardwood - Trees per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 70 14 0.0542 0.0293 0.0118 0.00279821 0.00091791 0.00013161

240 70 35 0.0130 0.0024 0.0008 0.00016640 0.00000540 0.00000045

280 60 12 0.0633 0.0354 0.0204 0.00361901 0.00101024 0.00051101

280 60 15 0.0468 0.0246 0.0088 0.00218339 0.00059546 0.00007078

280 60 20 0.0306 0.0135 0.0041 0.00082443 0.00014118 0.00000409

280 60 30 0.0151 0.0034 0.0011 0.00021582 0.00000903 0.00000049

300 56 14 0.0502 0.0267 0.0106 0.00242384 0.00076436 0.00010084

300 56 28 0.0162 0.0042 0.0013 0.00024875 0.00001430 0.00000081

336 50 25 0.0179 0.0053 0.0016 0.00032023 0.00003022 0.00000269

350 48 12 0.0589 0.0324 0.0204 0.00309951 0.00080418 0.00054474

350 48 16 0.0385 0.0195 0.0067 0.00141587 0.00034544 0.00003303

350 48 24 0.0189 0.0065 0.0019 0.00035627 0.00004401 0.00000355

400 42 14 0.0432 0.0227 0.0089 0.00192320 0.00064075 0.00009239

400 42 21 0.0211 0.0077 0.0023 0.00038141 0.00004161 0.00000076

420 40 20 0.0222 0.0090 0.0027 0.00050257 0.00008076 0.00000716

560 30 15 0.0288 0.0133 0.0048 0.00082764 0.00018190 0.00002324

600 28 14 0.0319 0.0156 0.0063 0.00109057 0.00037138 0.00005559

700 24 12 0.0356 0.0177 0.0075 0.00110361 0.00018304 0.00001198

E-W Hardwood - Basal Area per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 70 14 323569.78 178667.92 72153.89 92339055151 32139813526 4069685019

240 70 35 77778.66 16382.10 4915.36 5912575327 243497897 16149824

280 60 12 378530.55 218727.12 120617.89 133330731719 40414280882 18008838115

280 60 15 279973.41 149429.72 52862.83 78428544752 21755359854 2467098085

280 60 20 182880.58 85025.20 25058.03 28482751851 5516643134 137231628

280 60 30 90118.08 22800.09 6780.47 7650855249 410628433 17029605

300 56 14 299525.98 162848.31 64548.08 79072325040 26018558795 2831428201

300 56 28 96709.55 27979.62 8106.19 9041214235 695437622 42132507

336 50 25 106985.77 35384.42 10194.48 11403209506 1357959640 106125205

350 48 12 351687.72 199878.23 120095.69 115360677130 32423475153 18893542535

350 48 16 229958.26 119030.11 40564.10 48669123928 12011141798 992283340

350 48 24 112690.99 42037.71 11791.15 12766196567 1929074066 147901689

400 42 14 257766.38 138266.35 54239.63 64713151509 23472730528 2965949221

400 42 21 125755.04 49430.06 14512.58 13716205070 1854811543 43202757

420 40 20 132636.35 56241.18 16700.15 17922396738 3294438941 274751742

560 30 15 171511.25 80953.39 28447.06 29461318504 6629069346 810789703

600 28 14 189629.32 95001.02 38001.51 36517616383 13548963676 1818178816

700 24 12 210633.81 108341.26 45414.45 41942795780 7590389524 587813554

E-W Hardwood - Stem Wood Volume per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 45 15 91.09 42.90 12.43 5096.00 838.28 93.35

270 40 20 49.82 19.33 5.10 2475.36 452.93 31.27

300 36 12 111.73 51.35 17.61 12125.68 2852.92 237.87

300 36 18 54.08 21.19 5.67 2326.47 476.66 17.72

360 30 15 66.19 29.37 8.58 4222.31 1062.25 55.54

450 24 12 79.40 36.50 12.15 5584.00 1372.87 77.95

N-S Pine - Trees per Hectare

linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 45 15 0.0522 0.0193 0.0099 0.00150590 0.00005211 0.00001494

270 40 20 0.0283 0.0074 0.0035 0.00079197 0.00005630 0.00000957

300 36 12 0.0632 0.0272 0.0172 0.00305148 0.00037192 0.00008620

300 36 18 0.0307 0.0083 0.0043 0.00055543 0.00001622 0.00001340

360 30 15 0.0379 0.0125 0.0068 0.00126261 0.00010245 0.00001867

450 24 12 0.0453 0.0196 0.0119 0.00155307 0.00019957 0.00003097

N-S Pine - Basal Area per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 45 15 356953.10 109158.27 71361.30 83651245568 2363748620 11888345

270 40 20 193501.30 37530.57 23875.45 36626356442 1236419818 397894822

300 36 12 434766.00 165680.30 134905.30 154453967894 13812440182 8093659155

300 36 18 211865.60 44410.51 30503.62 30307086485 164067383 133301838

360 30 15 260464.90 70785.58 49353.69 62087473227 3410201188 1329800224

450 24 12 313684.40 117276.44 92566.30 81485454741 6839165011 3128601581

N-S Pine - Stem Wood Volume per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 45 15 19.28 10.01 4.07 113.02 16.71 52.61

270 40 20 10.79 4.19 1.56 103.09 10.76 0.43

300 36 12 23.94 13.69 9.87 387.00 126.08 143.43

300 36 18 11.74 4.35 1.72 124.70 17.01 1.44

360 30 15 14.02 6.81 2.68 167.73 20.15 0.12

450 24 12 15.79 8.84 2.96 207.70 86.37 6.29

N-S Hardwood - Trees per Hectare

linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 45 15 0.0136 0.0074 0.0034 0.00006134 0.00000509 0.00002100

270 40 20 0.0077 0.0032 0.0012 0.00003253 0.00000143 0.00000065

300 36 12 0.0166 0.0102 0.0072 0.00013602 0.00012207 0.00008827

300 36 18 0.0082 0.0033 0.0014 0.00006201 0.00001259 0.00000163

360 30 15 0.0096 0.0050 0.0021 0.00009735 0.00001852 0.00000186

450 24 12 0.0107 0.0059 0.0020 0.00006552 0.00000861 0.00000124

N-S Hardwood - Basal Area per Hectare
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linesPerSwath N n mean.s2.ran mean.s2.lt1 mean.s2.wv8 mse.s2.ran mse.s2.lt1 mse.s2.wv8
240 45 15 80649.94 48840.92 34820.46 2302521173 260223715 1127489048

270 40 20 45246.48 21196.92 8239.59 954681781 50151427 42680823

300 36 12 97609.89 63876.96 43599.37 4289725675 5105017199 3069917693

300 36 18 48276.00 22355.76 9330.25 2161633733 557399539 83296908

360 30 15 56570.01 32890.43 14832.06 3439945656 923188581 163591653

450 24 12 62007.24 35556.85 12783.47 2092618382 346168764 26200539

N-S Hardwood - Stem Wood Volume per Hectare
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