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ABSTRACT 

Radar-derived Forecasts of Cloud-to-Ground Lightning over Houston, Texas.  

(December 2009) 

Richard Matthew Mosier, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Courtney Schumacher 

            Dr. Richard E. Orville  

 

 Ten years (1997 – 2006) of summer (June, July, August) daytime (14 – 00 Z) 

Weather Surveillance Radar – 1988 Doppler data for Houston, TX were examined to 

determine the best radar-derived lightning forecasting predictors.  Convective cells were 

tracked using a modified version of the Storm Cell Identification and Tracking (SCIT) 

algorithm and then correlated to cloud-to-ground lightning data from the National 

Lightning Detection Network (NLDN).   

Combinations of three radar reflectivity values (30, 35, and 40 dBZ) at four 

isothermal levels (-10, -15, -20, and updraft -10°C) and a new radar-derived product, 

vertically integrated ice (VII), were used to optimize a radar-based lightning forecast 

algorithm.  Forecasts were also delineated by range and the number of times a cell was 

identified and tracked by the modified SCIT algorithm.  This study objectively analyzed 

65,399 unique cells, and 1,028,510 to find the best lightning forecast criteria.   

 Results show that using 30 dBZ at the -20 °C isotherm on cells within 75 km of 

the radar that have been tracked for at least 2 consecutive scan produces the best forecasts 

with a critical success index (CSI) of 0.71.  The best VII predictor was 0.734 kg m
-2

 on 

cells within 75 km of the radar that have been tracked for at least 2 consecutive scans 
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producing a CSI of 0.68.  Results of this study further suggest that combining the radar 

reflectivity and VII methods can result in a more accurate lightning forecast than either 

method alone.   
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1. I�TRODUCTIO� 

 

1.1 The �ecessity of Lightning Research 

 The American Meteorological Society’s Glossary of Meteorology (Glickman 

2000) defines lightning as a “transient, high-current electric discharge with path lengths 

measured in kilometers.”  Uman (1986) defined lightning as the self-propagating process 

of electric discharge that results from the accumulation of positive and negative space 

charges that typically occur within convective clouds. Lightning poses a significant threat 

to life and property and is therefore a concern of the National Weather Service (NWS).  

Curran et al. (2000) showed that lightning ranked second in weather-related deaths in the 

United States between 1959 and 1991 (Table 1.1) and ranked first in some years (Table 

1.2).  Texas was ranked in the top ten in lightning fatalities (3
rd

), casualties (7
th

), injuries 

(8
th

), and damage reports (9
th

) yet there has been only one study (Clements and Orville 

2008) that has examined lightning forecasting within the state.  More recent studies show 

years show similar trends.  For example, the 2008 NWS Weather Fatalities, Injury, and 

Damage Statistics 30-year (1978 – 2007) average has lightning as the second most 

frequent cause of weather related fatalities with an average of58 fatalities per year.  As a 

result, the forecasting of cloud-to-ground (CG) lightning strikes is of great importance. In 

addition, the National Lightning Safety Institute (NLSI) estimates lightning related 

damage in the 4-5 billion dollar range annually across the United States.

   

___________ 

This thesis follows the style of Journal of Atmospheric Sciences. 
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As a result, the forecasting of cloud-to-ground (CG) lightning, i.e. lightning that reaches 

the surface, is of great importance. 

 

1.1.1 Thunderstorm Charge Structure  

 A “thunderstorm” is defined as a local storm that is accompanied by thunder and 

lightning produced by a cumulonimbus cloud (Glickman 2000).  The presence of 

lightning indicates that there must be some type of charge separation within the storm.  

C.T.R Wilson (1916, 1920, 1929) conducted influential research regarding thunderstorm 

charge structure in the early twentieth century.  His studies showed a positive dipole (i.e. 

the positive charge above the negative charge) structure in thunderstorms.  However, this 

result was controversial since measurements at the surface, at a distance from a 

thunderstorm, can produce conflicting results (MacGorman and Rust 1998).  Wormell 

(1930, 1939) concluded that most storms had a positive dipole, but a few had a negative 

dipole (i.e. the negative charge above the positive charge).  In-situ measurements were 

made by Simpson and Scrase (1937) and Simpson and Robinson (1947) since ground-

based measurements were inconclusive.  Their results suggested that there is typically a 

positive dipole structure, with an additional area of positive charge below the main 

negative region.  They hypothesized that electrified storms had: 1) a small region (0.5 km 

radius) of positive charge, approximately +4C total, around the 0°C level, 2) a negatively 

charged region, with an approximately 1 km radius and -20C total charge, around the -

7°C level, and 3) another positively charged region, with an approximately 2km radius 

and +24C total charge, where temperatures were less than -20°C.  It is this 

“dipole/tripole” structure, shown in Figure 1.1, which is generally accepted as the 
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conceptual model for thunderstorms.  More recently, additional research has suggested 

the possibility of an additional layer of negative charge on the upper cloud boundary 

(Krehbiel 1986, Marshall et al. 1989), called the screening layer.  The actual structure of 

the charge separation can be very complex (Zigeler and MacGorman 1994), but the 

dipole/tripole plus screening layer structure is generally used when examining the gross 

charge distribution of a thunderstorm.  

 

1.1.2 Thunderstorm Electrification  

 Any process of cloud electrification must include both a small-scale process that 

electrifies hydrometeors (i.e.,liquid or frozen water particles) and a process that creates 

the charge separation observed (Rakov and Uman 2006).  MacGorman and Rust (1998) 

list a number of possible mechanisms including ion capture, inductive charging of 

rebounding particles, non-inductive graupel-ice collisions, convection and charging 

during the melting of frozen hydrometeors.  One of the most widely accepted 

mechanisms at this time is non-inductive graupel-ice collision.  This theory, first 

proposed by Reynolds et al. (1957), also called non-inductive charging (NIC), has gained 

recognition because it does not require an initial electric field to polarize the 

hydrometeors.  The inductive charging theory requires an initial electric field and it is 

commonly believed that the earth’s fair weather electric field, which is 0.1 kV near the 

surface (Rakov and Uman 2006), is not strong enough to create the charging observed 

within thunderstorms (MacGorman and Rust 1998).  Lab results show that NIC is a more 

reasonable option (Reynolds et al. 1957, Takahashi 1978, Gaskell and Illingworth 1980, 

Jayaratne et al. 1983). 
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Takahashi (1978) presented groundbreaking work on NIC.  Takahashi showed 

that high electrification occurs when riming probes rotate in an environment containing 

both ice crystals and supercooled droplets, but the sign and magnitude of the charge was 

dependent on temperature and cloud water content (CWC).  Figure 1.2 shows the results 

of this research.  He also discusses the physical mechanisms of charge separation which 

are based on the thermoelectric effect. The thermoelectric effect results in protons 

moving in directions determined by the temperature gradient such that the warmer areas 

will be more negatively charged and colder areas will be more positively charged.  Figure 

1.3 shows the three physical mechanisms he discusses.   

The first mechanism occurs at low temperature and CWC (below 0.1 g m
-3

).  

Since latent heat is released during riming, the temperature of the surface will be warmer 

and the thermoelectric effect will cause the protons to move towards the interior of the 

rime.  Therefore, broken ice crystals that impact the rime will be negatively electrified 

while the rime will be positively electrified (Figure 1.3a).   

The second mechanism occurs at CWC between 0.1 to 4 g m
-3

 and charges the 

rime negatively.  The rime receives a negative charge when ice crystals impact the warm 

riming surface.  Protons move toward the ice crystals because of the warmer temperature 

of the rime.  Therefore when an ice crystal impacts the rime a slightly positive charge is 

transferred to the ice crystal (Figure 1.3b).   

The third mechanism occurs when CWC is greater than 4 g m
-3

 and charges the 

rime positively.  Since the CWC is high, a thin water layer exists on the riming surface.  

This water surface tends to be more negatively charged near its surface and more 

positively charged near the intersection of the water and riming surface.  Again, this is 
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due to the thermoelectric effect where more H
+
 ions move towards the ice (riming 

surface) while more OH
-
 ions remain on the thin water layer.  As a result, when ice 

crystals collide with the rime they remove portions of the negatively charged water layer 

(Figure 1.3c).   

Takahashi (1978) concluded that the electric fields observed in thunderstorms 

result from a process of graupel formation and collisions with ice crystals within the 

updraft of a thunderstorm.  Higher electrification in the cloud regions with lower 

temperatures is expected due to the abundance of ice crystals.   

Therefore, the electric structure observed by Simpson and Scrase (1937) and 

Simpson and Robinson (1941) is due to the negatively charged graupel falling in the 

updraft column while the ice crystals are lofted into the anvil cloud due to their different 

terminal velocities (Williams 2001).  When temperatures increase above -10°C, positive 

graupel electrification occurs.  As a result, the lower positive charge and the main 

negative charge result from graupel charging, while the upper positive is due to the 

lofting of the positively charged ice crystals.  

However, temperature and CWC are not the only elements that control charge 

transfer.  Jayarante et al. (1983) and Keith and Saunders (1990) found that while charge 

transfer depends on temperature and CWC, it also depends on the size of the ice crystal 

intersecting with the graupel, the speed of the impact, and the purity of the water 

particles.  For example, Keith and Saunders (1990) showed an increase in charge transfer 

resulting from an increase of ice crystal diameter.  Further studies (Jayaratne and 

Saunders 1985, Baker et al. 1987) concluded that liquid particles that did not collide with 

the graupel did not have an effect on the charge transfer.  Therefore subsequent studies 
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(Saunders et al. 1991, Saunders and Brooks 1992) adjusted the CWC to account for the 

particles that did not collide with the graupel due to aerodynamic forces.  This adjusted 

CWC was called the effective liquid water content.  This new parameter is used on the 

plot in Figure 1.4, which places the results from Saunders et al. (1991) onto the results 

from Takahashi (1978).  Differences are noted in the figure, mainly in the lower left of 

the figure where the CWC is small and the temperatures are warm.  The reason for these 

differences are not completely known, but are expected to be a result of the difficulty in 

obtaining good measurements at low CWC and warm temperatures (MacGorman and 

Rust 1998).   

Cloud water content and aerodynamic forces are not the only factors affecting the 

effective liquid water content.  Brooks et al. (1997) found that an increase in the velocity 

of the riming target increased both the impact velocity of ice crystals and the rate of 

collisions with cloud droplets.  As a result, they suggested that the rime accretion rate 

was the main factor that influenced charge transfer, and that the effective liquid water 

content was a method of including this factor into the charge transfer relationship.  

MacGorman and Rust (1998) provide a summary of the graupel-ice charging 

mechanism: 1) a large rimed particle and a small amount of CWC are needed for 

significant charging, 2) graupel become positively charged when CWC is high, 3) graupel 

becomes negatively charged when CWC is low, 4)graupel charge positively, for most 

CWC, at 0 °C, 5) increasing the ice crystal size increases the amount of charge transfer 

during a collision, 6) results from an individual collision may be different than the mean 

results found in laboratory studies (i.e. Takahashi 1978, Jayaratne et al 1983), and 7) 

charge transfer is strongly affected by the purity of the ice involved in the collision.     
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 The NIC theory provides a viable method for producing the gross charge structure 

observed in thunderstorms, but it is largely based on laboratory studies and there is still 

uncertainty related to the exact microphysical processes that induce the NIC process.  In-

situ measurements by Dye et al. (1986) showed that the NIC method is a probable 

method of charge separation between -10 and -20 °C.  Studies from several other field 

campaigns (Goodman et al. 1988, Carey and Rutledge 1996, Carey and Rutledge 2000) also 

suggest a strong correlation between precipitation-sized ice mass (i.e. graupel) and the 

production of lightning, which strengthens the viability of the NIC theory.  Peterson et al. 

(2005) give a brief overview of how the NIC theory works within thunderstorms.  First, 

you need a vigorous updraft (also noted in Takahashi 1978), which leads to mixed phase 

microphysics.  The mixed phase microphysics then lead to small- and large-scale charge 

separations (methods of separation described above from Takahashi).  This charge 

separation often results in lightning production. 

 

1.1.3 Lightning   

 There are two types of lightning: intra-cloud (IC) and cloud-to-ground (CG).  An 

IC flash occurs completely within a cloud while a CG flash lowers cloud charge to the 

ground.  This study only focuses on CG flashes.  As a result, most of the discussion here 

will be related only to CG flash processes.  Figure 1.5 shows the four types of CG 

lightning: (a) downward negative lightning, (b) upward negative lightning, (c) downward 

positive lightning, and (d) upward positive lightning.  Type (a), downward negative 

lightning, accounts for 90 percent of all CG flashes ( Orville and Huffines 2001, Rakov 

and Uman 2006). Type (c), downward positive lightning, accounts for approximately 10 
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percent of all CG flashes.  The other two types, (b) and (d), only occur from objects that 

are greater than 100 m tall.  As a result of their height, these objects “trigger” lightning as 

the charge propagates from their tops.  A negative (positive) flash brings negative 

(positive) charge to ground.  

Figure 1.6 shows a typical lightning flash process.  This process begins with the 

initial breakdown within the cloud.  The breakdown process is not well understood and 

may be the result of an IC discharge that bridges the main negative charge region with the 

lower positive charge region (Rakov and Uman 2006). After this breakdown process, a 

downward-moving leader is formed.  During the first stroke of a lightning flash this 

leader is called the “stepped leader” because it appears to “step” down towards the 

ground discretely.  These steps are normally 1 µs in duration and tens of meters in length 

and are typically 20 to 50 µs apart (Rakov and Uman 2006).  The stepped leader forms a 

conducting path between the cloud and the ground.  The first stroke leader is typically 

branched, as the process attempts to follow the path of least resistance.  As a result, the 

first stroke typically stores more charge along its path than subsequent strokes.   

As the leader approaches the ground, the electric field increases and eventually 

reaches the point of breakdown.  At this point, upward-connecting leaders initiate from 

various objects such as the ground, trees, and houses to begin the attachment process.  

The attachment process ends whenever contact is made between the downward and 

upward moving leaders.  At this point, the first return stroke begins.   

The return stroke then acts to transport the charge stored in the channel created by 

the stepped-leader to the ground.  The average peak current of the return stroke is 30 kA 

(Berger et al. 1975, Rakov and Uman 2006) and occurs on the order of microseconds. If 
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the first stroke is the only stroke in a flash, the lightning is called a single-stroke flash.  

Most negative flashes are composed of more than one stroke while most positive flashes 

are composed of only one stroke. 

In a multiple stroke flash, the residual channel created by the first stroke is then 

navigated by an additional leader that moves continuously.  This leader is called a dart 

leader because of its high speed and lack of stepping. In most situations, the dart leader 

travels along the channel without branching.  Without the branching, less charge is stored 

within the channel and the peak current is typically much less than that of the initial 

stroke.  In some cases, the dart leader begins stepping as it nears the ground.  This 

process is known as a dart-stepped leader.  As the dart leader or dart-stepped leader 

moves close to the ground, the attachment process is largely the same as during the first-

stroke process.   

This dart-leader return stroke process can repeat numerous times. A typical 

lightning flash contains 3 to 5 strokes (Rakov and Uman 2003).  The number of strokes 

within a flash is referred to as the multiplicity of the flash.  Flash multiplicity ranges from 

1 to as high as 26.  The time between strokes is on the order of a millisecond.  This short 

lapse time between strokes is what causes the lightning to appear as if it “flickers” to the 

human eye.  For this study, the term “flash” or “lightning flash” represents the entire 

lightning event.  The term “strike” may also be used in this sense.  The term “stroke” is 

used to distinguish multiple discharges within the same flash. 
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1.2 Radar Meteorology 

 The term “radar” is actually acronym for radar detection and ranging.  This term 

was originally suggested by S. M. Taylor and F. R. Furth of the United States Navy 

during World War II (see Chapter 1, Doviak and Zrnic (1993) or Chapter 1, Rinehart 

(2004) for a detailed description of the history of radar).  The term “radio” is generally 

applied to electronic radiation with wavelengths approximately 20km to less than a mm.  

The major development phase of radar technology took place during World War II when 

detection of aircraft became very important.  A radar works by sending out an 

electromagnetic wave via the antenna and then receiving the return signal after the 

electromagnetic wave has reflected off of an object.  Early radars used a two antenna 

system where one antenna sent the electromagnetic signal continuously and the other 

listened for the return signal continuously.  However, modern weather radars accomplish 

this task with only one antenna for transmitting and receiving.  The signal is transmitted 

via the antenna using a short pulse of energy.  The system then waits a specified time 

period before sending another pulse.  During this waiting period, the antenna is receiving 

any return signal from the first pulse.  Since the electromagnetic radiation travels at the 

speed of light, the wait time between pulses is short. 

 The return signal is then processed using complex electromagnetic theory to infer 

the size of the target.  A derivation of the radar equation follows.  The derivation starts by 

considering an isentropic antenna.  The power radiated by an isentropic antenna moves 

away from the source in all directions at the speed of light, creating an expanding sphere 

of energy.  Using the surface area of a sphere, the power per unit area, or power density, 

can be expressed 
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S =
pt

4πr2
     (1.1) 

where S is the power density, pt is the transmitted power, and r is the distance to the 

radiation source.  Generally, weather radar systems do not use an isentropic antenna, but 

a directional antenna, therefore the antenna’s gain must be considered.  The gain of an 

antenna is the ratio of power that is actually received from the directional antenna to the 

power that would have been received from an isentropic antenna.  Defined 

mathematically, 

g =
pd

pi

      (1.2) 

where g is the gain, pd is the power from the directional antenna, and pi is the power from 

an isentropic antenna.  Considering a point target with cross-sectional area Aσ , the power 

intercepted by the target is 

Pσ = S ⋅ g ⋅ Aσ      (1.3) 

where Pσ  is the power intercepted by the target, S is the power density, g is the antenna 

gain, and Aσ is the cross-sectional area of the target.  Combining the power intercepted 

(Equation 1.3) with the power density (Equation 1.1) gives 

Pσ =
pt ⋅ g ⋅ Aσ

4πr2
    (1.4) 

where the variables are the same as defined previously.  The target will then reradiate the 

energy it just received.  Assuming the target radiates equally in all directions then the 

power density from the target will be 

Sσ =
Pσ

4πr2
     (1.5) 
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where Sσ  is the power density from the target, Pσ  is the power intercepted by the target, 

and r is the distance from the target.  Therefore the power received by the antenna from 

the point target can then be defined 

Pr = Sσ ⋅ Ae =
Pσ

4πr2
⋅ Ae    (1.6) 

where Pr  is the power received by the antenna and Ae  is the effective area of the antenna.  

Using Equation 1.4 in Equation 1.6 yields 

Pr =
Pt ⋅ g ⋅ Aσ ⋅ Ae

4πr2
    (1.7) 

For a circular parabolic antenna, the most common antenna used for weather radar, the 

effective area is  

Ae =
gλ2

4π
     (1.8) 

where λ is the wavelength.  Combining Equation 1.7 with Equation 1.8 yields 

Pr =
Pt ⋅ g

2 ⋅ λ2 ⋅ Aσ

64π 3r4
    (1.9) 

The last step in obtaining the radar equation for point targets is to use the backscattering 

cross-sectional area,σ, of the target instead of its visual cross-sectional area Aσ .  The 

visual cross-sectional area alone cannot be considered because of the complex scattering 

properties of targets due to their size, composition, and shape.  Scattering properties are 

also a function of the wavelength which must be considered when calculating the return 

power. The calculation of the cross-sectional area is usually very complicated.  However, 

for most radar systems, spherical Rayleigh scattering is assumed, which yields 

σ =
π 5 K

2
D6

λ4
      (1.10) 
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where D is the diameter of a spherical target, and |K|
2
 is the dielectric of the target.  

Targets are initially assumed to be water so the dielectric is usually taken to be 0.93.  The 

final form of the radar equation for point targets is generally written 

Pr =
Pt ⋅ g

2 ⋅ λ2 ⋅σ
64π 3r4

    (1.11) 

where all the terms are as previously defined.  Equation 1.11 will work when considering 

only one spherical target.  However, for weather radar there are many spherical targets 

(i.e. raindrops or hail) instead of just one.  This complicates the calculation of the 

backscattering cross-sectional area.  Therefore, the backscattering cross-sectional area is 

redefined to the total backscattering cross-section 

σT =V ⋅ σ i
vol

∑     (1.12) 

whereσT is the total backscattering cross-section, V is the sample volume, and σ i is the 

backscattering cross-sectional area per unit volume.  The sample volume, V, is defined by 

V = π
rθ
2

rφ
2

h

2
=
π ⋅ r2 ⋅θ ⋅ φ ⋅ h

8
    (1.13) 

where θ and φ are related to the beamwidth, h is the transmitter pulse length, and r is the 

distance to the target.  When the Guassian beam shape is accounted for Equation 1.13 

becomes 

V =
π ⋅ r2 ⋅θ ⋅ φ ⋅ h

16ln(2)
     (1.14) 

Replacing σ in Equation 1.10 with Equation 1.12 and combining with Equation 1.14 

yields the radar equation for distributed targets: 

pr =
ptg

2λ2θφh σ i∑
1024 ln(2)π 2r2

     (1.15) 
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Finally, a term called the radar reflectivity factor, 

z = Di

6

i

∑     (1.16) 

is combined with Equation 1.10 and placed into Equation 1.15 to yield: 

pr =
π 3 ptg

2θφh K
2
z

1024 ln(2)λ2r2
    (1.17) 

Therefore, by measuring the strength of the returned signal, radar can estimate the mean 

diameter of a volume of drops.  Radar reflectivity is normally expressed in logarithmic 

units, such that  

Z =10log10(z)       (1.18) 

where units are dBZ. 

 

1.2.1 Weather Radar Systems 

 There are also many different types of radar systems including monostatic and 

bistatic, continuous wave and pulsed, Doppler, dual wavelength, and polarimetric.  A 

discussion of most types is given in Rinehart (2004).  For this project, the important radar 

system is the Doppler weather radar system known as the Weather Service Radar -1988 

Doppler (WSR-88D).  The WSR-88D network is maintained and operated by the 

National Weather Service (NWS).   

Doppler radar uses the physical principles first described by Christian J. Doppler 

in 1853.  Since the radar is stationary, any change in frequency of the transmitted signal 

must be due to the movement of its target.  Doppler radar operates on the basic principle 

that if the target is moving towards the radar, its frequency will increase; if the target is 

moving away from the radar, its frequency with decrease.  Therefore, Doppler radar 
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determines the speed of the target by the frequency shift between the transmitted signal 

and the return signal.  As discussed in Section 1.2, weather radar measures a volume of 

hydrometeors.  Therefore, the speed determined from the frequency shift is representative 

of a volume of rain drops or snow particles and can be thought of as a mean wind 

velocity.  Also, since the return signal is a function of the diameter to the sixth power 

(Equation 1.16), the mean velocity is actually skewed towards the wind speeds of the 

larger particles.  This study does not focus on the Doppler aspects of the WSR-88D so a 

derivation of the wind speed calculations will not be presented.  See Chapter 6 of 

Rinehart (2004) for more information. 

 

1.2.2 Radar-derived Products 

 Additional products besides the radar reflectivity factor can be derived from radar 

measurements. A few common products are vertically integrated liquid (VIL), rain rate, 

and total precipitation.  The most important product for this study is VIL.  VIL was first 

proposed and derived by Green and Clark (1972).  VIL will be discussed in detail in this 

section as well as another product, called vertically integrated ice (VII).  An 

understanding of how VIL and VII are obtained is important for this study since each of 

these products is used as a forecasting tool for lightning.  Also of importance is the 

knowledge that these products, as all radar products, are based on remote sensing.  

Therefore, the products do not always accurately represent the environment.  In most 

cases, these products only represent the storm environments well when assessed on large 

time scales greater than 5 minutes and spatial scales larger  than 10 km.  On smaller time 

and spatial scales the storm environment is very dynamic and cannot be accurately 
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represented by remote sensing snapshots (typically occurring every 5 to 10 min).  With 

that in mind, a derivation of VIL and VII is provided.   

 

1.2.2.1 Liquid Water Content and Vertically Integrated Liquid 

 An understanding of VIL starts with an understanding of liquid water content 

(LWC).  LWC is defined by Wallace and Hobbs (2006) as the amount of liquid water per 

unit volume of air.  The LWC of a cloud or storm system provides an estimation of the 

amount of liquid precipitation within it.  A LWC measurement can be useful when 

attempting to locate heavy rain or hail within a storm.  Determining LWC from radar 

measurements begins with an exponential drop-size distribution as proposed by Marshall 

and Palmer (1948), 

"(D) = "0 exp(−ΛD)      (1.19) 

where D is the drop diameter, "(D) is the number of drops of diameter D, and Λ 

and "0 are parameters of the distribution.  The radar reflectivity factor, defined by 

Equation 1.16, can be also written 

   Z = "(D)D6dD
0

∞

∫ .     (1.20) 

Also, the liquid water content, M, can written in a similar form (derived in Doviak and 

Zrnic, 1993) 

 ∫
∞

=
0

3 )()
6

( dDD"DM wπρ
    (1.21) 

where wρ  is the density of water. Using the mathematical function 

xν −1

0

∞

∫ e−µxdx = (1/µν )Γ(ν)     (1.22) 
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where Γ(ν)  represents the gamma function [Γ(n)= (n-1)!] and Equation 1.22 in Equations 

1.20 and 1.21 yields 

7

0720

Λ
=

"
Z       (1.23)  

and 

4

0

Λ
=

πρw"
M       (1.24) 

where Z has units mm
6
m

-3
 and M has units g m

-6 
mm

3
 (if wρ  is in g m

-3
).  At this point in 

the derivation, two different paths could be taken.  One could eliminate "0 between each 

equation.  The other is to eliminate Λ between each equation.  The following derivation 

takes the latter option since both Green and Clark (1972) and Carey and Rutledge (2000) 

utilize this method. Eliminating Λ between the equations yields 

7
4

7
4

0 )720(
Z

"

"
M wo πρ

=      (1.25) 

where M and Z have units has defined above.  Converting units of "0 to m
-4

 yields the 

relation 

7
4

7
4

0

18 )10720(
Z

"

"
M wo

×
=

πρ
    (1.26) 

 where M is in 3−⋅mg and Z is in 36 −⋅mmm .  This relation is known as a Z-M relation.  

This relationship can also be determined empirically using the form  

baMZ =      (1.27) 

where both Z and M are determined from observations or measurements instead of 

theoretically with the Equation 1.25.  Battan (1973) lists a number of empirically derived 

Z-M relations and demonstrates that Z is approximately proportional to M
2
.  This 
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information becomes a powerful tool in estimating the amount of liquid water in a 

specific cloud or storm.  However, Z-M relations will be different for each cloud of each 

storm due to the difference in drop size distributions.  Therefore, it becomes necessary to 

establish a standard relation so that results can be accurately studied and utilized.    

Green and Clark (1972) standardized Equation (1.26) using assumed value of "0  

and ρw and applies the resulting equation to individual radar reflectivity measurements to 

estimate LWC, i.e, 46

0 108 −×= m" , and 36 /10 mgw =ρ which yields 

7
4

31044.3 ZM −×= .     (1.28) 

This value is then summed vertically, from reflectivity at the lowest level to the highest 

reflectivity at the highest level, resulting in VIL (or the amount of liquid water) for an 

individual atmospheric column. In equation form, 

dhZdhMVIL
top

base

top

base

h

h

h

h ∫∫ −×== 7
4

61044.3      (1.29) 

where h is in meters and VIL has units of 2−⋅mkg .  As noted in Greene and Clark (1972), 

caution should be used when using this product.  Equation 1.20 shows that the 

reflectivity, Z, is a function of the particle diameter to the sixth power.  Therefore, the 

reflectivity will be dominated by large drops.  A cloud with many small droplets may not 

be recognized by the radar, while a cloud with large drops will be recognized, even if the 

clouds have the same LWC. Also, since the radar assumes all drops are water, graupel, 

hail, and snow may give the impression of higher LWC than is actually present.  

Boudevillian and Andrieu (2003) assessed the accuracy of radar VIL measurements and 

concluded that the measurement errors are significant when related to meteorological 

conditions.  According to their study, VIL is underestimated in convective situations 
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between 20% and 40% and the measurement error in stratiform situations ranged between 

+10% and -10%.   

 

1.2.2.2 Vertically Integrated Ice  

 Vertically integrated ice (VII) is a term for the ice mass product used in this study.  

This and similar ice related products have gone by many names in the literature including 

ice cloud content (Sassen 1987), ice water content (Black 1990, Liu and Illingworth 

2000; Peterson and Rutledge, 2001) and  precipitation ice mass (Carey and Rutledge, 

2000, Peterson et al. 2005, Gauthier et al. 2006, Deierling et al., 2008).  In fact, the term 

vertically integrated ice has only been used recently (Motley 2006, McCaul 2008).  In 

this study, the term is used because of its similar method of calculation to VIL.  The 

calculation of VII for this study is equivalent to the calculation from Gauthier at al. 

(2006), where the product is called precipitation ice mass.  Therefore, the VII values in 

this study are mathematically equivalent to the precipitation ice mass values in Gauthier 

at al.  The Z-M relation used in this study to calculate VII was first proposed by Carey 

and Rutledge (2000) and is defined as 

)(
720

1028.5
1000 3

7/4
18

7/3

0

−
−

⋅






 ×
= mgZ"M iπρ       (1.30) 

where iρ  is the density of ice (917 kg m
-3

).  VII is then calculated by 

∫
−

−








 ×
=

− 40

10

7
4

7
4

18
7/3

0
720

1028.5
1000

H

H

i dHZ"VII πρ        (1.31) 

where H -10 and H -40 indicate the heights of the -10 and -40°C environmental levels in 

meters, respectively.  The region between -10 and -40°C is chosen because of its 
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relationship to charge separation in a storm.  Climatologically these levels are located at 7 

km and 11 km, respectively (Kalnay et al. 1996, Gauthier et al. 2006).    

Equation 1.30 is used in numerous other studies (e.g. Peterson and Rutledge 2001, 

Peterson et al. 2005, Motley 2006, Gauthier et al. 2006) in addition to the Carey and 

Rutledge study. They developed this Z-M relation during the Maritime Continent 

Thunderstorm Experiment (MCTEX) because no appropriate relationship for deep, 

tropical convection existed.   Therefore, the constants (ρi and "0) Carey and Rutledge 

used could be significantly different from their values over Houston.  Not only would 

these constants vary as a result of different locations but they will also vary throughout 

the life cycle of individual cells as a result of complex microphysical processes.  

Pruppacher and Klett (1997) observed that hail bulk particles densities range from 0.70 –

36  1090.0 −× mg  and graupel densities range from 0.50 – 36  1089.0 −× mg .  Gilmore et al. 

(2004) observed the variability between hail and graupel intercept parameters with values 

ranging from 10
2 

m
-4

 to 10
10 

m
-4

.  Motley (2006) performed VII sensitivity studies using 

these range of values for ρi and "0.  The results showed that the intercept parameter is the 

most likely source of error since the amount of variation needed for Z and ρi to produce 

the observed results seemed excessive.  A combination of the three variables could be 

responsible, but without any in-situ measurements, it is impossible to know.  Therefore, 

in this study, as well as in Peterson and Rutledge (2001), Motley (2006), and Gauthier et 

al. (2006), the values assumed by Carey and Rutledge (2000) for ρi and "0 will be used.  

As a result, actual VII values should be used with caution as they could be 

unrepresentative of the actual environment.  However, the relative trends in the values 

(e.g., low VII vs. high VII) will still be valid. 
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1.3 Previous Studies of Cloud Electrification with Radar 

 Studies of storm electrification via radar were performed shortly after weather 

radar was put into operation (Workman and Reynolds 1949).  Their study concluded that 

significant storm electrification was concurrent with strong vertical development, which 

created an environment where precipitation ice, small ice crystals, and supercooled water 

droplets interacted near the -10 °C isotherm.  Reynolds and Brook (1956) concluded that 

precipitation was necessary, but not sufficient, for significant cloud electrification. They 

observed precipitation echoes that did not produce lightning, but did not observe 

lightning without precipitation echoes.  They also noted that rapid vertical development 

was needed for electrification and that the mean time lapse between the echo reaching the 

-10°C isotherm and a lightning discharge was 12 min.  Shackford (1960) observed that 

lightning flash counts increased as the radar echo increased in height.  Shackford also 

found that there is a relationship between lightning flash rate and reflectivity maxima 

above the 0°C level.  He observed that the radar reflectivity vertical profiles exhibited a 

maximum at approximately 20,000 feet (-7 to -15 °C) for storms with high flash rates.  

He hypothesized that this was due to wet hail, and its presence was contributing to the 

charge generation and separation within the storm.   

 Larsen and Stansbury (1974) were the first to uses a specific dBZ value (43 dBZ) 

at a particular atmospheric level (7 km) as an indicator of lightning location.  Their data 

show that there was no sferics (lightning signals determined by radio) from a storm if the 

43 dBZ contour had not reached a height of 7 km (-30 °C).   Following their work, 

Marshall and Radhakant (1978) used a similar procedure but lowered the height to 6 km 

and the reflectivity to 38 dBZ.  “Larsen regions” were developed using these criteria and 
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Marshall and Radhakant concluded that “a weather-radar map of precipitation can be 

generated which can be read directly as a map of electrical activity.”  

 Dye et al. (1986) observed an electrified storm in Montana.  They found that the 

electric field within the cloud was less then 100 V m
-1

 until reflectivities of 35 dBZ were 

present.  They also found that significant areas of a reflectivity near the -10 to -20 °C 

(approximately 7 km) level corresponded to areas of negative charge.  Goodman et al. 

(1988) observed a microburst producing storm and found results that agreed with Dye et 

al. (1986).  In both studies, the first lightning discharge was produced approximately 4-6 

min after graupel particles were observed with radar.   Dye et al. (1989) presented 

observations from a few storms in New Mexico.  For one of the storms, precipitation 

detectable by radar was observed 25 min before even a weak enhancement of the electric 

field began and 30 min before the electric field began to rapidly intensify.  The slow 

increase of the electric field was observed when 40 dBZ was observed at 6 km.  In 

another storm, the electrification process moved much more quickly but lightning was 

not produced until 40 dBZ was observed at 6 km.  Over all the cases they studied, the 

radar echo height needed to exceed 8 km for electrification to begin and needed to exceed 

9.5 km for lightning production.  

 

1.4 Previous Studies of Lightning Forecasting with Radar Reflectivity  

 All of the in-situ studies (Larsen and Stansbury 1974, Marshall and Radhakant 

1978, Dye et al. 1986, Goodman et al. 1988, Dye et al. 1989) discussed previously used 

radar data to infer the presence of mixed phase particles, especially graupel, at different 

environmental heights and isotherms (0, -10, and -20 °C).  The location of radar-inferred 
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graupel signaled the onset of cloud electrification.  As a result, studies began to 

investigate the usefulness of using radar reflectivity to forecast lightning in storm cells. 

 Buechler and Goodman (1990) suggested a new algorithm for the WSR-88D to 

identify lightning producing storms as storms with 40 dBZ reflectivity observed above 

the -10°C level and an echo top at or above 9 km.  In the 20 storms from Florida, 

Alabama, and New Mexico that they used for their study, their radar criteria had a 

probability of detection (POD) of 100% 4-33 min before the first flash occurs, a 7% false 

alarm rate (FAR) and a critical success index (CSI) of 93% (Section 2.9 contains a 

complete description of these statistical parameters).  When only radar reflectivity of 40 

dBZ at -10°C was considered, the POD was still 100% but the FAR increased to 20% and 

the CSI decreased to 80%.  Michimoto (1991) used 30 dBZ reflectivity at the height of 

the -20°C isotherm and found that the first CG strike occurred 5 min after a storm met 

this criteria.  Michimoto also observed that if a storm did not reach those criteria, it did 

not produce lightning.   

 Hondl and Eilts (1994) found that reflectivity of 10dBZ near the 0 °C level could 

be a definitive characteristic of a future thunderstorm.  For a storm initialized along a gust 

front created by a dissipating complex of thunderstorms in a conditionally unstable 

environment, using 10 dBZ at the 0 °C isotherm level yielded a lead time of 

approximately 16 min.  Using the same criterion on a storm initialized along a sea breeze 

boundary yield a lead time of only 8 min.  Another sea breeze initiated cell they observed 

had reflectivities as high as 54 dBZ, but did not produce a CG flash.  For the 23 cells they 

analyzed, using the 10 dBZ at the 0 °C yielded an average lead time of 15 min.  However, 
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there were 5 cases where no lightning was produced.  This results in a FAR of 18% and a 

CSI of 82 %. 

 Gremillion and Orville (1999) studied lightning initiation signatures (LISTs) of 37 

thunderstorms near Kennedy Space Center to determine whether lightning could be 

reliably forecast by radar reflectivity.  A LIST was defined as a value of maximum 

reflectivity that exists for at least two volume scans at a given isotherm level.  The LIST 

criteria used were 35, 40, and 45 dBZ at the -10°C level; 25, 30, and 35 dBZ at the -15°C 

level; and 20, 25, and 30 dBZ at the -20°C level.  Their statistical results are shown in 

Table 1.3.  The table shows that the best LIST, statistically, was 40 dBZ at -10°C.  Their 

study also showed that the best LIST in terms of lead time was 25 dBZ at the -15°C level. 

 Vincent et al. (2003) performed a similar study over central North Carolina for 50 

thunderstorms.  The criteria they used were 30 or 40 dBZ at the -10 or -15°C level for 

one or two volume scans yielding eight possible combinations.  Their results are shown 

in Figure 1.7.  The best criterion in their study was 40 dBZ at -10 °C for one volume 

scan.  Their study also showed that requiring the criteria to be met for more than one 

volume scan actually reduces the forecast quality. 

 Wolf (2006) performed the most robust study to date.  The study included more 

than 1,100 convective cells over 20 days in northern Florida and Georgia.  Wolf used a 

similar criterion as the previous studies (40 dBZ at -10 °C level), but used the -10 °C 

level within the updraft instead of the ambient environment.  297 of the cells studied 

produced no lightning.  Using this new criterion, Wolf found the results shown in Table 

1.5.  Those results show a significant increase in the probability of a CG strike when the 

40 dBZ echo moved to within 1 km of the updraft -10 °C level.  The environmental -10 
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°C level was usually 2,000 to 4,000 ft below the updraft -10 °C level, and, as such, had 

significantly less probability of producing a CG flash.  Wolf also tried to forecast storms 

that will produce a high number of CG flashes based on the height of the echo above the -

10 °C updraft level.  These results are also shown in Table 1.6.  The POD using 8 kft 

above the -10 °C updraft was 0.96 but FAR was 33% while using 4 kft above the -10 °C 

updraft level produced a POD of 1, but a FAR of 47%.  One drawback is that the study 

does not mention the season during which the analysis takes place, nor does it provide an 

example case to clarify the methodology. 

 Most recently, Clements and Orville (2008) compared the warning times of CG 

flashes from radar and total (i.e., CG and intracloud) lightning observations.  This study 

is also the only lightning forecasting study done over Houston, Texas. Other lightning 

studies over Houston have shown an enhancement in the amount of cloud-to-ground 

lightning in and surrounding the city (Orville et al. 2001).  It was originally thought that 

the real-time detection of IC lightning could be used as a forecast tool for a CG strike 

since it normally occurs first (Goodman et al. 1988, Motley 2006).  However, Clements 

and Orville (2008) showed otherwise.  Using the criterion of 30 dBZ at the -10 °C level 

produced an average lead time of 16 min compared to an average of 3 min using the total 

lightning method.  Detection errors within the total lightning network may have caused 

this result, but mores robust studies need to be preformed.  As a result, they concluded 

that using total lightning detection alone in attempts to forecast CG flashes is ineffective.  
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1.5 Previous Studies of Lightning Forecasting with Other Radar-derived Products 

 VIL has also proven effective in assisting forecasts of lightning and severe 

weather.  Greene and Clark (1972) hypothesized that the large radar returns due to hail 

and the associated VIL values could aid in hail prediction and the Houston Weather 

Forecast Office (WFO) of the NWS commonly uses VIL as an indicator of a storm’s 

severity (Lance Wood, personal communication).  A WFO will commonly set a VIL value 

they think corresponds to hail and set alarms to notify forecasters if that value is reached.  

Using VIL to predict hail size was determined by Edwards and Thompson (1998) to be 

ineffective but other products based on VIL, including VIL density (Amburn and Wolf 

1997), are currently being developed and tested for hail size prediction.   

 VIL has also been correlated to CG flashes.  Watson et al. (1995) observed the 

distribution of VIL and lightning for a storm on 9 June 1993.  They found that many of 

the flashes within this particular storm were associated with a VIL between 1 – 15 kg m
-2

, 

shown in Figure 1.8. However, as shown in Figure 1.9, higher VIL values were more 

likely to be associated with lightning.  For example, a VIL between 40 kg m
-2 

and 45 kg 

m
-2

 produced lightning 65% of the time for this storm.  

 Relationships between VIL and lightning flash density have also been studied.  

MacGorman et al. (2007) compared the lightning flash rate and VIL values for 1200 cells.  

Their results show a lack of a clear relationship between VIL and maximum ground flash 

rates, but that the mean and mode values do increase with increasing flash rate.  Yeung et 

al. (2007) used VIL in their lightning initiation and intensity nowcasting technique.  VIL 

alone cannot be used to forecast lightning, as shown by the lightning distributions in 

Watson et al. (1995) and MacGorman et al. (2007).  However, a using VIL in addition to 
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other parameters shows promise (Yeung et al. 2007), as does the development of other 

products based on VIL (i.e., VIL density, Amburn and Wolf 1997). 

 

1.6 Thesis Objectives and Hypothesis 

 The objectives of this study are to i) extend the previous work done on lightning 

forecasting with weather radar to the area observed by the WSR-88D operated by the 

NWS at the Houston/Galveston (HGX) WFO using an extensive, multi-year radar and 

lightning dataset, ii) integrate an additional radar-derived product, VII, into the lightning 

forecasting process, and iii) determine the best lightning predictors for the study area in 

terms of statistics, by analyzing a forecast contingency table, and warning time, by 

maximizing POD, CSI, and warning time and minimizing FAR, for different synoptic 

settings.   

 Forecasts of cloud-to-ground (CG) lightning will be created based on various 

radar reflectivity levels at different environmental heights.  Forecasts of CG lightning will 

also be created using cell-based values of the vertically integrated ice product.  Based on 

these forecasts and the observed CG lightning from the National Lightning Detection 

Network (NLDN), the best predictors will be determined.  Variations in the year and 

month will be considered, since the type of synoptic or mesoscale forcing of a particular 

storm can vary on these temporal scales, and may affect the predictors.  Variations in the 

length a cell was tracked by the radar, as well as the cell’s distance from the radar, are 

also considered.  The length a cell was tracked is considered since using a radar-based 

cell tracking method allows for the detection of small, weak storms as well as strong, 
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long-lived storms.  The distance from the radar is considered since the horizontal and 

vertical resolution of radar data degrades as the distance from the radar increases.   

 In contrast to previous studies, the work done within this study objectively 

analyzes a large number of cells in an attempt to provide high confidence statistics.  Only 

one of the previous studies (Wolf 2006) analyzed more than 100 cells.  This will be done 

with an automated method that allows for the analysis of many cells without the need of 

visual confirmation.  A total of 85,604 radar volume scans are analyzed which produces a 

total of 475,593 identified cells.   

 Based on prior research, we hypothesize that the analysis of a large number of 

lightning producing storm cells will result in significant increases in the confidence of 

lightning forecasts as well as increase situational awareness for forecasters at WFO HGX. 
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2. DATA A�D METHODOLOGY 

 

2.1 Radar Data 

 Ten years (1997 – 2006) of archived (Level II) Houston (KHGX) radar data 

obtained from the National Climatic Data Center (NCDC) for daylight hours (14 – 00 

UTC, 09 CDT – 19 CDT) for the summer months (June, July and August) was analyzed.  

These archived data files contained all the measurements (radar reflectivity, velocity, and 

spectrum width) from the entire volume scan started at the time listed on the file.  

  

2.1.1 Weather Surveillance Radar – 1988 Doppler (WSR – 88D) 

The KHGX WSR-88D is part of the Next Generation Radar (NEXRAD) network.  

This radar network consists of 155 radars within the contiguous United States, of which, 

the NWS operates 121 (OFCM 2008).  The WSR-88D radar specifications are listed in 

Table 2.1. The WSR-88D system directly measures radar reflectivity, which is calculated 

from the strength of the return signal (as discussed in Section 1.1), and radial velocity, 

which is calculated from the signal frequency shift (as discussed in Section 1.2).  Another 

base product, called the spectral width is calculated from the variability of the radial 

velocity data.  These three products are then used to produce many other forecast 

products.  For this study only radar reflectivity will be utilized. 

 Of great significance to this study is the fact that the radar does not scan only one 

level.  Many radar systems, including the WSR-88D, have the ability to scan the 

environment at different elevation angles.  An elevation angle is the angle between the 

horizontal plane, usually the base or platform on which the radar is located, and the line-
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of-sight of the antenna.  As the beam travels away from the radar it increases in height as 

shown in Figure 2.1.  This is due to many factors including the curvature of the earth, the 

refractivity of the atmosphere, and the elevation angle of the radar beam.  The height of 

the radar beam can be calculated, assuming standard refraction, by the equation  

0

22 sin2 HRRrRrH +′−′+′+= φ     (2.1) 

where r is the range to the target, R` is 4/3 R (where R is earth’s radius), H0 is the height 

of the radar antenna above sea level, andφ  is the elevation angle of the radar beam 

(Rinehart 2004).  As a result of this increase in beam height, the elevation angles used to 

detect a storm are important.  If a scan strategy utilizes mainly low elevation scans, the 

beam has more potential to miss the upper-levels of a storm.  On the other hand, if a scan 

strategy utilizes mainly high elevation scans, the beam has the potential to miss important 

low-level features or overshoot the top of a storm. Figure 2.2 shows a graphical 

representation of how a scan strategy samples a storm.   

The NWS uses various Volume Control Patterns (VCPs) to control the elevation 

angles used on the WSR-88D.  There are a total of nine VCPs (OFCM 2008, Table 2.2).  

The VCP is controlled by the WFO in charge of the radar and can be changed if a 

forecaster feels it is necessary.  Two precipitation mode VCPs are shown in Figures 2.3 

and 2.4.  VCP 11 (Fig. 2.3) consists of 14 elevation scans (0.5°, 1.5°, 2.4°, 3.4°, 4.3°, 

5.3°, 6.2°, 7.5°, 8.7°, 10.0°, 12.0°, 14.0°, 16.7°, and 19.5°) and 16 azimuthal scans in 5 

minutes.  The best vertical sampling is provided by VCP 11, which is typically used for 

severe weather within 60 nautical miles of the radar (Gauthier et al. 2006; OFCM 2008).  

VCP 12 has the same number of elevation angles as VCP 11, but concentrates more 

angles at lower levels. VCP 21 (Fig. 2.4) consists of 9 elevation scans (0.5°, 1.5°, 2.4°, 
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3.4°, 4.3°, 6.0°, 9.9°, 14.6°, and 19.5°) and 11 azimuthal scans in 6 minutes and provides 

less vertical sampling than VCP 11 and 12.   

Previous studies (Brown et al. 2000a and 2000b, Gauthier et al. 2006, Motley 

2006) considered the VCP in their analysis.  For example, Gauthier et al. (2006) excluded 

all non-VCP 11 data from their study.  This study does not exclude any data based on the 

VCP used even though the other VCPs may result in poorer vertical sampling.  However, 

since the events important to this study occur mainly as a result of convection, it is 

assumed that the VCP being used during the events provides sufficient vertical sampling.  

For example, during a day when there is no thunderstorm activity or none is expected, the 

radar may be run in “clear air” mode (VCP 31/32).  Since there will be no lightning 

events during that day, the statistics provided in this study will not be effected by the 

poor vertical sampling of these VCPs.  WFO HGX runs VCP 11 in most situations, but 

will run VCPs 211, 12, and 212 in some circumstances (Lance Wood, personal 

communication).  VCP 211 and 212 use the same elevation angles as VCP 11 and 12, 

respectively, but improve the velocity data using an algorithm to reduce range ambiguity. 

  

2.1.2 Constant Altitude Plan Projection Indicator (CAPPI) Data    

Weather radar data can be viewed in multiple ways.  The most common way is 

known as a plan position indicator (PPI) display.  A PPI is a constant elevation display 

that normally places the radar location at the center of the map and the corresponding 

radar echoes on the map at their location relative to the radar.  Topography, roads, 

coastlines, and many other objects can be overlaid on the PPI for increased understanding 

of the location of the radar echo.   
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It is also possible to display only the data from a specific altitude.  This radar data 

format, known as a constant altitude plan projection indicator (CAPPI), uses an algorithm 

to calculate the height of radar echo from its original polar coordinates.  The data used in 

this study is based on the CAPPI format.  

As discussed in Section 2.1.1, the slight angle of the radar beam causes the beam 

to rise as it moves away from the radar.  Therefore, when looking at a normal PPI 

display, the echo shown is at different altitudes.  However, when looking at a CAPPI 

display, all the data displayed is at the same altitude.  A CAPPI display requires the entire 

radar volume scan to be completed since multiple PPI scan are used to calculate the 

reflectivity at each height.  A problem will arise on a CAPPI plot whenever the storm is 

not adequately sampled since, as a radar varies in elevation, gaps occur in the data.  

Therefore, to create a CAPPI plot, interpolation must be used to fill the possible gaps.  

This does not affect the data at lower elevations and close to the radar, but as the height 

or distance from the radar is increased the data can become a product of interpolation 

instead of actual measurements.  Therefore, this study will analyze the results at varying 

distances from the radar and using different vertical resolutions to consider this effect.  

   

2.1.3 Cartesian CAPPI Data 

The KHGX radar data was converted from it native Level II format to Universal 

Format (UF)( Barnes 1980).  The UF data was then interpolated onto a 150 x 150 x 20 

Cartesian grid (or 300 x 300 x 20 km) using the National Center for Atmospheric 

Research REORDER software package (Mohr et al. 1986, Oye and Case 1995).  

REORDER takes a requested horizontal (x, y) resolution and vertical (z) resolution when 
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applying its interpolation scheme.  A three-dimensional Cressman interpolation scheme 

was used.  This scheme uses two parameters: the radius of influence, R, and the distance 

between the radar gate and the Cartesian grid point, r
2
. The weight for a particular value 

is represented by  

22

22

rR

rR
W

+

−
=       (2.2) 

where R
2
 is calculated using 

2222 dZdYdXR ++=    (2.3) 

where dX, dY, and dZ are the values set for the radius of influence of each spatial 

dimension.  The interpolation is weighted so that the points located closer to a particular 

gate have more influence than those points further away.  For this study the x, y, and z 

radii of influence were set 1.25, 1.25, and 1.75 km, respectively. 

 

2.1.3.1 Vertical Resolution of CAPPI Data 

A horizontal resolution of 2 km was found to be adequate for the radar data based 

on previous studies (Gauthier et al., 2006) and is a commonly used value in other radar 

studies based on objective statistical methods.  However, an adequate vertical resolution 

was not as clear. Gauthier et al. (2006) found 1 km vertical resolution to be adequate for 

their study, but this study includes forecast statistics based on the reflectivity at given 

height while theirs did not.  Thus, the vertical resolution of the radar data must be small 

enough to utilize available data but not introduce spurious features.  If the vertical 

resolution is too large, little differentiation will occur between the height levels in the 

forecast statistics. 
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 This problem was addressed by comparing data interpolated at a 1 km vertical 

resolution to data interpolated at a 0.5 km vertical resolution.  The horizontal resolution 

was kept at 2 km for each of the data sets.  August 2006 was chosen as the time period 

for the data comparison since the month exhibited the general storm characteristics 

expected during the summer months in Houston where precipitation was 0.43” below 

normal with a monthly total of 3.40” but 10 days reported precipitation totals greater than 

0.01” and 6 of those days had precipitation totals greater than 0.30”. 

 The contingency table statistics and forecast lead times of each of the different 

datasets are compared to determine if a 1.0 km vertical resolution is sufficient for 

reflectivity-based lightning forecasting.  The desire to keep the data at a 1.0 km vertical 

resolution is motivated by Gauthier at al. (2006), where the vertical resolution is 1.0 km.  

Comparison between this study and their study is important and therefore consistency in 

the datasets was desired.  Results of the analysis show that the 1.0 km resolution provided 

better results than the 0.5 km resolution.  As a result, the radar data is interpolated to a 

vertical resolution of 1.0 km.  A detailed analysis and comparison of the two datasets as 

well as relevant figures and tables is given in Appendix A.  

    

2.2 �ational Lightning Detection �etwork (�LD�) 

 The CG lightning data used in this study was provided by the NLDN, which is 

owned by Vaisala, Inc.  This network uses a combination of a magnetic direction finding 

(MDF) system and a time of arrival (TOA) system.    

The MDF system was first developed by Krider et al. (1976) and was the first 

type of lightning system used in the United States (Orville, 2008).  The MDF system 
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consists of two vertical and orthogonal loops.  One of the loops is oriented north-south 

and the other is oriented east-west.  The loops are oriented vertically since it is assumed 

that the lightning strike is vertical and will therefore produce an electric field that is 

oriented vertically.  If the electric field is oriented vertically then, by Maxwell’s 

equations, the magnetic field must be oriented horizontally.  These loops then measure 

that magnetic field, and based on the amount of signal received by each loop, determine a 

direction.  A minimum of two MDFs are needed for lightning location. This technique is 

shown in Figure 2.5. 

The TOA system is based on measuring the time when the electromagnetic field 

signal reaches a detector.  Using this time and the difference in time and distance the 

same signal arrived at a different sensor, all the possible locations of the strike may be 

placed on a hyperbola.  If the same signal is measured at one more location, the position 

of the strike may be determined as the location where the two hyperbolas intersect.  This 

is shown in Figure 2.6.  For unambiguous CG location, a minimum of four TOA sensors 

is needed. 

The MDF and TOA sensors were combined in 1994 to create the Improved 

Accuracy from Combined Technology (IMPACT) sensor.  The MDF sensor is used to 

establish the bearing and the TOA sensor is used to establish the distance.  The use of 

both the MDF and TOA data, combined with a least squares technique, provides a higher 

accuracy than either system alone (MacGorman and Rust 1998, Cummins et al 1998).  

The median location accuracy was increased to within 500 m and detection efficiency 

ranges from 80% to 90% for flashes with peak currents above 5 kA, with the majority of 

the US within 90% detection efficiency (Cummins et al., 1998).   
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An additional upgrade occurred in 2002-3 with the installation of an improved 

IMPACT sensor, IMPACT-ESP, and the addition of 8 new sensors (Cummins et al. 

2006).  This upgrade improved flash detection efficiency to 90-95% over the US.  Biagi 

et al. (2007) participated in a field campaign which measured the performance of the 

NLDN over Arizona, Texas, and Oklahoma for 2003 and 2004.  The results from 2003 

and 2004 had an average flash detection efficiency of 92% and 86%, respectively.  Biagi 

et al. also recommended that any positive flashes with peak current less than 15 kA be 

excluded.  In their study, positive flashes with a peak current less than or equal to 10 kA 

were from ground flashes only 1.4% (6/420) of the time.  Positive flashes with peak 

current between 10 kA and 15 kA were ground flashes only 3.7% (3/81) of the time.  

Thus, any flashes with positive peak current less than 15 kA were excluded from this 

study.    

These sensors measure each individual stroke of a lightning flash.  Therefore, the 

data was post processed by Vaisala Inc such that the individual strokes were combined 

into flashes for use in this study.  This flash data was compared and correlated to 

individual storm cells for analysis.  The correlation process is discussed in Section 2.5. 

   

2.3 Sounding Data and Methodology  

 Sounding data was obtained from the NOAA/ESRL Radiosonde Database for the 

same time period as the radar data.  Houston (HGX) does not launch a radiosonde, so 

data was averaged between Lake Charles (LCH), Corpus Christi (CRP), and Fort Worth 

(FWD) to create a HGX sounding.  For the period of this study there were 1867 LCH 

soundings, 1873 CRP soundings, and 1860 FWD soundings.  The HGX sounding was 



 37 

created by using a weighted average.  This has been done in previous studies (Vincent et 

al. 2003, Clements and Orville 2008) and was the suggestion of the Houston WFO 

(Lance Wood, personal communication).  LCH, CRP, and FWD are located 194 km, 302 

km, and 404 km away from HGX, respectively.  Therefore, the average was weighted 

most heavily toward LCH, then CRP, and last FWD.  If a sounding wasn’t available for 

that day, the remaining two were weighted with respect to distance.  If only one sounding 

was available, that sounding alone was used to create the HGX sounding.  If no 

soundings were available for a given time or day, the next closest time or day with at 

least one sounding was chosen.   

Including the FWD sounding was debated since it can be much drier than either 

LCH or CRP.  However, the lack of baroclinic forcings creates a similar environment 

over much of the Southeast United States.  Thus, it was decided to include the FWD 

sounding, but weight it half as much as CRP and a third as much of LCH.  Using this 

averaging method in the winter, however, would not yield the desired results, especially 

if FWD is included.  During the winter, cold fronts frequently create large temperature 

gradients across the Southeast and FWD will commonly have a very different 

atmospheric profile than the coastal sites.   

Only the 00 UTC and 12 UTC soundings were used.  Any special soundings at 06 

UTC and 18 UTC were not included in the averaging.  This resulted in a total of 1840 

HGX soundings, or two for each day analyzed during this study.  From of these 

soundings, the environmental temperature levels (-10, -15, -20, and -40 °C) and updraft 

temperature levels (-10 °C) were determined. 
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2.4 Cell Identification and Tracking with Radar 

 Since the lightning forecasts are on a cell-by-cell basis, the ability to identify, 

track, and forecast convective cell movement is vital.  Weather radar is a valuable tool 

that can be used for this purpose.  This study uses a modified version of the Storm Cell 

Identification and Tracking (SCIT, Johnson et al. 1998) algorithm.  The original SCIT 

algorithm was designed to work only in polar format since that is the format native to 

radar data.  However, as discussed above, the radar data used in this study was in 

Cartesian CAPPI form.  Another cell tracking method, Thunderstorm Identification, 

Tracking, Analysis, and Nowcasting (TITAN, Dixon and Wiener 1993) works on 

Cartesian data, but uses a different tracking method than SCIT.  Overall, SCIT provides 

better tracking of smaller cells within larger convective systems, which was desired by 

this study.  The operational use of the SCIT algorithm within the NWS also motivated its 

use in this study.  The SCIT algorithm contains four steps, shown in Figure 2.7: storm 

cell segments, storm centroids, storm tracking, and storm position forecast.  In the 

variation of the SCIT algorithm used in this study, CAPPI-SCIT, there are a few 

differences.  Those differences and the process involved in each step will be discussed 

below.  All of the information regarding the SCIT algorithm came from either Johnson et 

al. (1998) or OFCM (2006). 

 

2.4.1 Storm Cell Segments 

 Both the SCIT and CAPPI-SCIT algorithms begin by identifying one-dimensional 

(1D) segments within the reflectivity data.  For the SCIT algorithm this happens along 

each radial, but for the CAPPI-SCIT algorithm this happens along the x-axis.  The 
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CAPPI-SCIT algorithm begins in the lower left corner of the grid, at point (0,0), then 

moves across all the x values. When that is completed, it moves to the next y value and 

repeats the movement across all x values.  This is continued until all the data at that level 

(i.e. 1.0km) has been put into segments. It then moves to the next height and repeats the 

process. This is continued until the analysis has been performed at every level.   

Both algorithms use seven reflectivity thresholds (30, 35, 40, 45, 50, 55, and 60 

dBZ) to group the data into segments.  A segment consists of all the data within a certain 

reflectivity threshold along the search path.  An example is shown in Figure 2.8.  When a 

reflectivity value is found that is above the specified reflectivity threshold it is grouped 

with all the subsequent points with reflectivity values greater than the specified threshold.  

The CAPPI-SCIT algorithm uses the same technique as the SCIT algorithm when 

attempting to determine the end of a segment.  If a reflectivity value is found that is less 

than the specified threshold, but the difference between the reflectivity at that point and 

the reflectivity threshold is less than a user-defined variable, the point is retained in the 

segment and a counter is incremented.  This counter contains the amount of times a point 

has been retained based on the difference between its reflectivity and the specified 

reflectivity threshold.  If the counter reaches a user-defined amount, the point is not 

included in the segment.  

A 1D segment must have a user-defined length to be retained.  The default for 

SCIT is 1.9 km (Johnson et al. 1998), but CAPPI-SCIT uses 4.0 km.  This is equivalent to 

2 consecutive points on the 2 km x 2 km (x, y) Cartesian grid.  This process is then 

repeated for all reflectivity thresholds so that the data is divided into segments based on 

all the thresholds.   
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2.4.2 Storm Cell Centroids 

 The next step of both algorithms is combining the individual storm segments into 

two-dimensional (2D) components.  It is during this step that the SCIT and CAPPI-SCIT 

algorithms differ the most.   

The SCIT algorithm combines segments that are azimuthally adjacent and radially 

overlapping.  User-defined azimuthal and overlap variables are used during this 

combination process and only segments defined by the same reflectivity thresholds are 

used.  If a component based on a higher reflectivity threshold is found within an area of 

lower reflectivity, the component with the high reflectivity is retained while the other is 

discarded.  This yields, at every level, the mass-weighted centroid of each 2D cell. 

The CAPPI-SCIT algorithm also combines the segments into 2D components, but 

the method is different.  The segment data is placed into an array.  This array is the same 

size as the CAPPI grid (150 x 150 x 20) with an additional dimension that has the same 

number of elements as reflectivity threshold categories.  This array contains the locations 

of all the reflectivity threshold segments.  To create the 2D components, a contour 

function is run on the array for each of the reflectivity thresholds.  This contour function 

returns the boundaries of the contours and these boundaries define each of the 2D 

components for each reflectivity threshold.  As in the SCIT algorithm, if a component 

boundary of higher reflectivity is found within a component boundary of lower 

reflectivity, the component of lower reflectivity is ignored.  However, there are no 

separation or overlap criteria as in the SCIT algorithm.  Also, as in the SCIT algorithm, 

an area criterion is used to eliminate very small cells. 
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The next stage of this portion of the algorithms is vertical association of the 2D 

components to create three-dimensional (3D) storm cells.  The differences between the 

two algorithms are still significant. 

During this stage, the SCIT algorithm uses an iterative search process to associate 

the components.  The process begins by searching within a 5 km radius (total area of 78.5 

km
2
) of the component centroid at each elevation angle.  If a component is found, it is 

associated with the component at the lower level and a cell is created.  If multiple 

components are found within range, the component with the largest mass, estimated by 

the liquid water content, is associated.  If there are still unassociated components after 5 

km search, the process is repeated at 7.5 km (total area of 177 km
2
) and then at 10 km 

(total area of 314 km
2
).  Since only the highest reflectivity thresholds are used in the 

component creation, the association stage yields a 3D storm cell centroid.   

When there are multiple cells identified within a close proximity, the SCIT 

algorithm attempts to merge them.  Cell are only merged when: 1) the cells do not have 

components on the same elevation angle (i.e., there is a vertical gap in one or both of the 

cells), 2) the distance between the cells is less than a user-defined default, and 3) if the 

separation between the base of one cell and the top of the other is less than 4.0 km and an 

elevation angle of 3.0°.  If cells in close proximity still remain, the weaker cell, 

determined by its LWC, will be deleted.  If the distance between the centroids is less than 

a user-defined value and the difference in depth is less than a user-defined value, the 

weaker cell will be discarded.  

The vertical association of 2D components is done differently in the CAPPI-SCIT 

algorithm.  The 2D components are defined, as in the SCIT algorithm, with the highest 
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reflectivity threshold for that particular component.  Only one vertical association range, 

6 km, is used in the attempt to associate cells.  This range is also not calculated from the 

individual component centroids, but from the boundaries of the components.  If the 

search from the component boundary point yields another point in a component within 6 

km at the next height, that component boundary point is kept.  For example, if a 

component boundary point is located at (10, 10) on the horizontal grid at the lowest level, 

the next level is searched from (7, 7) to (13, 13) for a component boundary.  If a 

component boundary is found within that search area, then the point (10, 10) is retained 

as a cell boundary.  This method yields a total search area of 144 km
2
, which is less than 

the SCIT methods.  However, this method did not only search from the centroid, but from 

every point along the boundary of a cell. 

After the vertical correlation is performed, cell attributes are calculated.  The 

CAPPI-SCIT algorithm calculates the cell centroid, the cell depth, the maximum 

reflectivity at each level, the major and minor axis of an ellipse fit to the cell, the cell 

area, and a cell-based VIL and VII.  The cell-based VIL and VII are calculated by 

integrating the maximum reflectivity values at each height.  This is to account for 

possible tilted cells.  An example of the difference between a cell-based calculation and a 

grid-based calculation is given in Figure 2.9.  The output of this portion of the algorithm 

is used as input in both the storm cell tracking and the storm cell position forecast steps. 

 

2.4.3 Storm Cell Tracking  

 The methodology between the tracking for the SCIT algorithm is only slightly 

different than that of the CAPPI-SCIT algorithm.  For both algorithms, the first step is to 
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determine the time difference between the volume scans.  If the difference is greater than 

a user-defined value (default = 10 min), time association is not utilized; all the cells are 

treated as if it was the first time they have been identified.  This step is motivated by the 

unpredictable nature of the data.  If there is a loss of communications or the radar has a 

problem, this results in a gap in the dataset.  Even though two files may arrive in 

succession, they could be hours apart.  Attempting to track cells on these files would be 

useless. 

The next step is also the same in both algorithms.  A first guess, based on the 

cell’s previous centroid and movement, is generated.  The cell’s movement is determined 

by its average movement in the previous scans or a default motion vector if the cell was 

first detected on the previous volume scan.  This default motion vector can be used-

defined or based on the average motion vector of all the other detected cells.  

After a first guess is generated for all of the cells, correlation between the first 

guesses and the current centroids is attempted.  The distance between all current centroids 

and first guesses is calculated.  For the both algorithms, if the difference between the 

current centroid and a first guess is within a certain threshold the cells are correlated.  If 

more than one correlation is possible, the possibility with the smaller difference is 

considered to be best.  This is the only correlation done by the SCIT algorithm, but the 

CAPPI-SCIT algorithm adds an additional step.  The 30 dBZ boundary of cell on the 

previous volume scan is used as a search area for cells on the current scan.  If a cell on 

the current scan is found within the 30 dBZ boundary of a cell on the previous scan, those 

cells are correlated in favor of a distance correlation.  This is motivated by the fact that 

the cell centroids can be located in larger areas of reflectivity and will not move outside 
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of that area.  This becomes useful if an intense cell develops within a large area of lighter 

reflectivity.  If more than one cell is found within the 30dBZ boundary of a previous 

scan’s cell, the distance correlation method is used for the corrected correlation.  Cells 

that develop quickly and are not imbedded in large areas of reflectivity show little 

difference between SCIT and CAPPI-SCIT tracking since CAPPI-SCIT uses the SCIT 

method of correlation first.  The boundary method is used as an additional tool for correct 

cell correlation. 

 

2.4.4 Storm Cell Position Forecast 

 The storm cell position forecast is not used in this study, but has the potential to 

aid lightning forecasting on a cell-by-cell basis since it can be used to warn specific areas 

in the path of a lightning producing storm.  The method is identical between the two 

algorithms.  A new motion vector is created for each of the identified cells.  If the cell has 

been tracked for at least two scans, this vector is calculated using a linear least squares fit 

based on the storm’s current position as well as up to 10 previous locations.  If the cell is 

new, its motion vector is calculated by averaging the motion of all the other cells, or, if 

no other cells are available, a user-defined default is used.  Forecasts for the cell are made 

at various time steps (0, 15, 30, 45, or 60 min).  The number of forecasts made is based 

on the error of previous forecasts.  If a previous forecast’s error is larger than a user-

defined permissible range, that forecast time step is omitted in the current forecast.  

Basically, if the previous forecast for the cell was poor, the current forecast is made for a 

fewer number of time steps to reduce possible forecast errors.  
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 During this step, a cell table, with all of the attributes of each cell, is created.  This 

table contains the cell’s attributes for up to 10 previous scans.  The time series stored in 

the table provide a valuable tool in identifying the growth and decay of a cell.  

 

2.5 Lightning Correlation  

 CG lightning strikes were correlated with the cells identified by the CAPPI-SCIT 

algorithm.  This process started with identifying all the lightning strikes that occurred 

within 150 km of the KHGX radar between two minutes before the scan started to two 

minutes after the scan started.  This time frame is chosen since most of the precipitation 

mode VCPs take approximately five minutes to complete.  Therefore, it is the total 

amount of CG lightning that occurred within a five minute period within the KHGX 

domain.  As discussed previously, the CG lightning data was provided by the NLDN and 

contained the latitude, longitude, date, multiplicity, and peak current of each CG strike. 

 Correlation of the strikes was first attempted within the 30 dBZ boundaries of the 

CAPPI-SCIT identified cells.  If a strike was within the 30 dBZ boundary, it was 

correlated with that cell.  Otherwise, the distance between the boundaries of the highest 

reflectivity threshold of each cell and the lightning strike was correlated.  The strike was 

then correlated to the cell with the shortest distance.  In this way, every CG strike is 

correlated to a cell, even if the correlation distance was large. 

    

2.6 CG Lightning Forecasts 

 Numerous CG lightning forecast criteria were used in an attempt to establish the 

best criteria for Houston.  Two different radar parameters were used, reflectivity and VII, 
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as well as three different environmental levels (-10, -15, and -20 °C) and one updraft 

level (-10 °C).  The environmental levels are defined as the height for which a 

temperature is observed in the atmosphere.  This data comes directly from a radiosonde.  

The average height of the -10, -15 and -20 °C isotherms for this dataset was 6494, 7381, 

and 8092 m, respectively.  The updraft temperature level is calculated by using the 

sounding to calculate the temperature a parcel would be in a thunderstorm updraft.  An 

example, plotted on a Skew-T/Log P diagram is shown in Figure 2.10.  The 

environmental temperature levels were the same as in previous studies (Gremillion and 

Orville 1999, Vincent et al. 2003, Clements and Orville 2008) and the updraft level was 

used for comparison with Wolf (2006).  The reflectivity values used are also from the 

same previous studies.   

Forecasts were also made based on cell-based VII values.  If the cell-based VII 

reached a certain values, then a forecast was made.  The test values were determined by 

calculating the distribution of VII values throughout the entire dataset and using the 

resulting percentiles.  Percentile values every 5% were used as forecast criteria (i.e., 5, 

10, 15, 20, 25, …). 

 Lightning forecasts were made on a cell-by-cell basis.  A forecast was a yes-no 

product on whether or not the cell was expected to produce CG lightning.  A typical 

forecast was used using the following steps: 1) CAPPI-SCIT was run on a radar volume 

to identify and track cells, 2) environmental temperature levels were obtained from an 

area-averaged sounding, 3) for each cell, the reflectivity values were obtained at the 

environmental and updraft levels, 4) if the reflectivity values met the given thresholds, a 
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“yes” forecast was made, 5) cell-based VII was calculated and if the values met the given 

percentile, a “yes” forecast was made.   

 

2.7 First Flash Forecasts and Lead Times 

 In additional to making a CG forecast, a first flash forecast was made with the 

same methodology as a normal CG forecast.  A forecast was considered a first flash 

forecast if: 1) the cell had not produced any lightning during the time it has been tracked 

or, 2) the cell had not produced any lightning in ten minutes.  

 Since the lightning forecast is be based on radar data, the actual time the forecast 

is made needs to be considered.  The time on the radar data files is the time the volume 

scan started.  Gremillion and Orville (1999) and Clements and Orville (2008) used the 

difference between the time on the file and the time of the first CG strike to calculate the 

lead time.  Vincent et al. (2003) found that using the time when the volume scan started 

produced an error in the lead time from 2.5 to 4.5 min since a typical WSR-88D volume 

scan lasts 4-6 min (Table 2.2).  Therefore, they subtracted 3.50 minutes to account for 

this error. To maintain consistency with the previous study over Houston (Clements and 

Orville 2008), the lead time in this study will be the difference between the time when the 

scan began and when the strike occurred. 

 

2.8 Automated Analysis Process  

 All of the data and methodologies discussed previously were combined into an 

automated process to calculate forecast statistics and lead times.  This process proceeded 

as follows: 
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Step 1): Interpolate KHGX Level II radar data into CAPPI format with the 

dimensions 150 X 150 X 20 (x, y, z). 

Step 2): Run CAPPI-SCIT algorithm on CAPPI radar data. 

Step 3): Create the KHGX sounding 

Step 4): Using the cell data from Step 2 and the sounding information from Step 

3, create lightning forecasts based on various reflectivity values at various 

environmental and updraft temperature levels.  Also make forecasts using cell-

based VII values. 

Step 5): Find the lightning data within five minutes from when the scan began and 

correlate to cells.   

Step 6): Compare forecasts with lightning correlations to determine POD, FAR, 

CSI, and lead time values. 

This automated process was performed on a total of 85, 603 radar volume scans, which 

resulted in 475,593 identified cells, 65,399 unique cells, and 1,028,510 correlated CG 

flashes.     

        

2.9 Statistical Methods 

 The forecast statistics for this study used a simple 2 x 2 contingency table, shown 

in Table 2.3, to determine the forecast skill of each predictor.  X represents the number of 

events for which a forecast was made and the event was observed (also called a hit).  Y 

represents the number of events that were observed but no forecast was made (also called 

a miss). Z represents the number of events in which there was a forecast but the event 

was not observed (also called a false alarm).  W represents the number of events for 
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which there was no forecast and the event was not observed.  From the data in the table, 

three variables were used in computing the skill of the forecasts.  The first was the 

probability of detection (POD), the second was the false alarm ratio (FAR), and the last 

was critical success index (CSI, Wilks 1995).   

POD is defined as the percent of observed events that were forecast.  

Mathematically, this is represented by 

YX

X
POD

+
= .      (3.1) 

POD provides a general measure of how well a predictor can detect an event.  For 

example, in this study, a low (i.e. less than ~0.4) POD was usually the result of too strict 

of a predictor.  Therefore, the event would occur without ever being predicted.  For this 

study, a high POD (i.e. greater then 0.8) was desired. As a result, any forecast criteria that 

resulted in a low POD was desired. 

FAR is the ratio of non-successful forecasts to successful forecasts,  

mathematically represented as  

)( ZX

Z
FAR

+
= .     (3.2) 

FAR provides a skill assessment on the accuracy of a predictor.  A high (i.e., greater than 

~0.60) FAR indicates that the predictor is predicting too many events and a more 

stringent predictor may be needed.  Thus, a lower FAR is preferred. 

CSI can be defined as an estimate of the conditional probability of an event 

provided that the event was observed, forecast, or both (Jolliffe and Stephenson 2003).  

CSI can also be defined more simply as the ratio of correct forecasts to the total number 
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of events plus the number of false alarms (Schaefer 1990).  CSI is defined 

mathematically by 

)( ZYX

X
CSI

++
=      (3.3) 

or 

111 ]1)()1[( −−− −+−= PODFARCSI      (3.4) 

The no-forecast/no-event cases (W) were not considered in computing the skill scores 

used in this study.  In fact, the CSI can be seen as the hit rate for a forecast event once the 

correct no-forecast/no-event cases are removed (Wilks 1995).  Jolliffe and Stephenson 

(2003) note that CSI is often used on rare events since it is calculated without the use of 

correct rejections.  However, as addressed by Schaefer (1990), CSI is proportional to the 

frequency of an event and assumes that cases for an event that is not expected or not 

observed are unimportant.  Schaefer also showed how the CSI can be inflated by high 

frequency events and noted that CSI is a good indicator of the usefulness of different 

forecast techniques when applied to a consistent environment, including the effectiveness 

of various WSR-88D algorithms for a given WFO.  Therefore, despite potential 

problems, CSI is used as the primary indicator of forecast skill in this study because of its 

continued widespread use in the forecasting community and to maintain consistency with 

previous lightning forecasting studies.  However, caution should be used when 

comparing CSI between two different environments since it can be inflated by the 

frequency of events.     
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3. RESULTS 

 

3.1 Radar Reflectivity Forecast Method 

 The ten-year WSR-88D and NLDN datasets were analyzed using the radar 

reflectivity forecast method; results are shown in Figures 3.1- 3.3 and listed in Tables 

3.1-3.4. The results are broken down by the environmental level used, the range from the 

radar, the number of times the cell was identified by the CAPPI-SCIT algorithm, and the 

reflectivity value used in the forecast.  The environmental levels are labeled such that 

E10, E15, and E20 represent the -10, -15, -20 °C isotherm levels, respectively, and U10 

represents the updraft -10 °C level.  The range was delineated by radial distance from the 

radar location (i.e., 75, 100, 125, and 150 km).  The number of times the cell was 

identified by the CAPPI-SCIT algorithm, also called the track count, is the number of 

times the cell was tracked by the CAPPI-SCIT algorithm. Thus, 0 indicates 1 radar 

volume, 1 indicates 2 radar volumes, etc.  The dBZ test values are the radar reflectivity 

values used in the forecast criteria.  The results will be discussed considering the POD, 

FAR and CSI.  The statistic of the greatest interest is the CSI because it combines both 

the POD and FAR, but an analysis of POD and FAR is also essential since it provides 

additional understanding on how a specific CSI value was obtained.  For example, a 

situation with a high CSI (i.e. 0.6) can be obtained from a POD of 0.93 and a FAR of 

0.37.  In this case, the POD is high but so is the FAR suggesting that the forecast criteria 

were too easily met.  Another example with a CSI of 0.6 is when the POD is 0.70 and the 

FAR is 0.2.  This shows a different situation where the forecast criteria were hard to met, 

but were more accurate when met.   
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3.1.1 Environmental Level 

 When considering the four different isothermal criteria, E10, E15, and U10 has 

similar overall average CSIs (i.e., the average of each level’s bars in Figure 3.1) of 0.53, 

0.53, and 0.52, respectively. E20 had a slightly lower average CSI of 0.49.  The best 

average POD of 0.86 was at E10, E15, E20, and U10 had average PODs of 0.77, 0.61, 

and 0.77, respectively.  The best average FAR of 0.21 was found at the E15 and E20, E10 

and U10 had average FARs of 0.32 and 0.33, respectively.   

 E10 and E15 have equivalent CSI values.  However, the POD values suggest that 

E10 is the best detection level, which is expected since it is at a lower height.  However, 

this increase in detection is countered by an increase in false alarms indicated by the 

higher FAR value.  E15 is opposite in that it has a lower false alarm rate coupled with 

lower detection efficiency.  Thus, there is the option to maximize detection or minimize 

false alarms when choosing isothermal levels for lightning forecasting purposes. 

 

3.1.2 Range 

 The effect of the distance from the radar on the forecast statistics was examined 

since there is a degradation of radar resolution with range.  Because the data in this study 

is interpolated to a Cartesian grid, the lower resolution data can sometimes yield 

significant errors, an issue that is discussed at length in Appendix A. At all environmental 

levels, there is a slight increase in the CSI as the range from the radar decreases (Figure 

3.1). The average CSI values for 150, 125, 100 and 75 km were 0.48, 0.51, 0.53, and 

0.56, respectively. Thus, including data out to 150 km versus 75 km decreases the CSI by 

0.08.   
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The POD values show the same trend where the detection efficiency increases 

slightly with decreasing range (Figure 3.2).  The average POD values for 150, 125, 100, 

and 75 km were 0.74, 0.74, 0.76, and 0.78, respectively.  An average of 1.7 times more 

cells are identified for each range increment.  For example, within 125 km from the radar, 

the number of cells with a track count of 2 is 15,872.  This value decreases to 9,364 when 

the range is reduced to 100km.  As with the average CSI values, only a small difference 

(0.04) is noted between the POD at 150 km and the POD at 75 km.   

FAR values decrease with decreasing range (Figure 3.3).  The average FAR 

values for 150, 125, 100, and 75 km were 0.36, 0.31, 0.30, and 0.29, respectively.  An 

increase in FAR is expected with an increase in the number of identified cells as the 

range increases.  The difference between the average FAR within 150 km and the average 

FAR within 75 km is 0.07, so changes in FAR contribute more strongly to the range-

dependency of CSI than the changes in POD.   

However, the range-dependency of each of the forecast statistics remains 

relatively low.   As a result, confidence in lightning forecasts for cells close to the radar is 

similar to lightning forecasts for cells far from the radar.  Monthly variability exists for 

various months within the dataset, but overall the distance from the radar appears to have 

only a small impact on the accuracy of the CG lightning forecasts. 
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3.1.3 Track Count 

The number of times a cell was identified and tracked by the CAPPI-SCIT 

algorithm is represented by the count.  A count of 0 represents cells that were identified 

by the CAPPI-SCIT algorithm for at least one scan.  Likewise, a count of 1 represents 

cells that were identified and tracked for at least two consecutive scans.  These categories 

include all of the identified cells within the specified range.  The difference in the number 

of cells with a count of 0 and a count of 1 represents cells that were not identified in the 

previous or subsequent scans.  A few situations could produce these types of cells.  One 

possibility is that a cell develops ahead of a line or cluster of cells.  This cell could be 

discrete enough to be classified as its own cell, but will quickly merge with the existing 

cluster.  Summer convection in the Houston area is dominantly driven by mesoscale 

boundaries and therefore this is a likely possibility.  It is theorized that this is the most 

common case of a cell being identified for only one cell, but more research will need to 

be done for confirmation.  Another possibility is that a cell quickly strengthened so that 

the reflectivity and area criteria for identification are met for a single scan, but the cell 

then dissipates as quickly as it initialized, reducing its size and/or reflectivity values so 

that it is not classified during the next scan.  These types of storms are also driven by 

mesoscale boundaries, but are usually more isolated and have a smaller areal extent.  

Cells of this nature are also very common over Houston, and more work will need to be 

done to determine whether this type of cell or the merging cell mentioned previously are 

more commonly identified on only one radar scan.  One last possibility is that the storm 

is “created” as a result of the interpolation.  At large distances from the radar, the 

interpolation scheme will have to smooth the data more to maintain the same resolution.  



 55 

As a result, an area of reflectivity may be represented larger on the Cartesian grid than is 

actually observed.  This could cause cells to be identified that do not actually meet the 

identification criteria.  Cells identified in this manner are likely to disappear on the 

subsequent scan as different data is interpolated differently. In the discussion of the 

vertical resolution of the CAPPI data (Appendix A) some of these interpolation issues are 

addressed. For a range of 150 km, a total of 64,033 cells were identified while 37,094 

were identified and tracked for at least two consecutive scans.  As a result, there are 

26,939 cells that were only identified for one scan.  These cell are the least likely to 

produce lightning and therefore have low CSI values which brings down the average of 

the entire dataset with a minimum track count of 0. 

As mentioned before, a count of 1 represents a cell that was tracked for at least 1 

additional scan from its identification scan.  Therefore, these cells have met the 

reflectivity and area requirements to be identified by the CAPPI-SCIT algorithm for at 

least 2 consecutive scans.  At a range of 150 km, 37,094 cells were labeled with a track 

count of at least 1 while 25,776 cells were labeled with a track count of at least 2; thus 

11,318 cells are only tracked for the subsequent scan following the identification scan.  

Many of the same possibilities mentioned for the cells that are only identified once are 

also probable here.  However, the increased CSI values (Figure 3.1) show that lightning 

is more likely to occur in these cells than the cells that are only identified once.  

A track count of 2 represents cells that were identified and then tracked for at 

least 2 subsequent scans.  The scan time for each of the precipitation mode VCPs is 

approximately 5 min.  This means that the cells in this category have been observed by 

the radar for at least 15 min.  Cells meeting the CAPPI-SCIT algorithm for 3 consecutive 
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scans will be significant and will not be product of interpolation.  Therefore, this category 

produces the best CSI and the main track count category of focus. 

The average CSI of all identified cells is 0.44.  Increasing the minimum track 

count to 1 yields an average CSI of 0.53 while increasing the minimum track count to 2 

yields an average CSI of 0.60.  Therefore, when the results are discussed in more detail, 

primarily cells with at least a track count of 2 will be primarily considered.  However, a 

few cases with track counts of 1 will have important consequences.  

FAR values decrease as the minimum track count increases (Figure 3.3).  For all 

identified cells, the FAR is 0.39.  The average FAR value decreases to 0.31 if only cells 

with a minimum track count of 1 are considered and to 0.25 if only cells with a minimum 

track count of 2 are considered.  The difference is not as great as in the CSI values, but 

indicates an advantage in lightning forecasting using only cells with a minimum track 

count of 2.  

POD values increase as the track count increases (Figure 3.2), just as the CSI.  

The average POD of all identified cells is 0.70.  Increasing the minimum track count to 1 

increases the average POD to 0.76 while increasing the minimum track count to 2 

increases the average POD to 0.80.  The difference between the average POD between 

maximum and minimum track counts is less than the differences for the CSI and FAR, 

which is encouraging.  As mentioned previously, increasing the track count decreases the 

amount of identified cells.  However, since the difference in POD is not large, this 

suggests that a number of cells being eliminated do not produce lightning, which was the 

desire of considering the track count.  Increasing the track count past 2 could be 

considered.  However, a track count of 2 was chosen as the maximum since, in most 
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cases, it provides enough time for storm electrification, charge separation, and lightning 

discharge.  

 

3.1.4 Reflectivity Thresholds 

 The results are variable data when considering the different dBZ test values.  

Thirty and 35 dBZ had an average CSI of 0.55, while 40 dBZ had an average of 0.46. 

However, POD values decrease more dramatically as the reflectivity threshold increases.  

The average POD values when using 30, 35, and 40 dBZ are 0.90, 0.78, and 0.57, 

respectively – a decrease of 0.33 between 30 and 40 dBZ. The average FAR values 

decrease with increasing dBZ test value.  The average FAR values when using 30, 35, 

and 40 dBZ are 0.40, 0.32, and 0.22, respectively.  The difference between the average 

FAR when using the 30 and 40 dBZ test values, 0.18, is moderately significant.  In terms 

of forecast value, FAR represents an opposite trend than the POD and CSI.  Both POD 

and CSI suggest using the 30 dBZ test value, while the FAR suggests using the 40 dBZ 

test value. 

  

3.1.5 Overall   

 Considering forecast criteria separately is essential for understanding of how each 

criteria affects the forecast; however, considering combinations of forecast criteria can 

yield more accurate results.  Choosing the best overall predictor combination does not 

guarantee that it is the best combination in every situation, but it does provide a base 

from which the algorithm can be improved.  For this point on, the best predictor will be 

determined by its CSI value.  The POD and FAR will be considered to determine how the 
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CSI value was reached, but overall, the CSI will be the statistic that is maximized. Cases 

where the best overall combination does not perform well will be analyzed in Section 3.3.      

 Based on the CSI statistics in Figure 3.1 and Tables 3.1 – 3.4, the best predictor 

combination for the entire dataset is 30 dBZ at the E20 level within 75 km of the radar 

with a track count of at least 2. The CSI for this combination of forecast criteria is 0.71.  

It is interesting to note that E20 had the lowest overall CSI compared to the other 

environmental levels (Section 3.1.1), highlighting the importance of combining forecast 

criteria.  However, 40 dBZ at E20 within 150 km and track count of 0 is the worst overall 

combination with a CSI of 0.28.  Thus the specific choice of forecast criteria is critical. 

The average CSI using 30 dBZ at E20 is 0.60, while the average CSI using 40 dBZ at 

E20 is 0.33.  Therefore, CSI seems to be the most sensitive to the reflectivity choice 

when combining a reflectivity threshold and an environmental height, with track count 

and range choices providing more moderate improvements in the lightning forecast.  

Even though the best CSI value is 0.71, other predictors were close to this 

maximum value. The next best predictor combination (CSI = 0.69) was also found at the 

E20 level when using the 30 dBZ test value on cells within 100 km with a minimum track 

count of 2.   At E10, the best predictor combination (CSI = 0.68) is the 35 dBZ test value 

used on cells within 75 km with a minimum track count of 2.  At both the E15 and U10 

levels, the best predictor combination use 30 dBZ on cells within 75 km with a minimum 

track count of 2 ( CSI = 0.68 and 0.67, respectively).  In all, 33 (or 22%) of the possible 

144 predictor combinations had a CSI greater than or equal to 0.60.  None of these 

combinations included a track count of 0.  In only one instance (30 dBZ at E20) including 

cells out to 150 km yielded a CSI over 0.60. The greatest CSI using the 40 dBZ, 0.67, 
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was found at the E10 level when considering only cells within 75 km with a minimum 

track count of 2.  Forty dBZ generally performs better at E10 because of low FAR values 

(whereas 30 dBZ at this height can sometimes have unacceptability high FAR values).  

Out of all the predictors, 144 total, 14 (or %10) have a CSI less than or equal to 0.400.  

All but one of these combinations uses 40 dBZ as a reflectivity threshold. 

 

3.1.6 Comparison to Previous Studies 

 Results from previous studies are shown in Table 3.5 and are discussed in detail 

in Section 1.4.  This section will focus on comparing results from previous studies with 

the results of this study.  For example, Beuchler and Goodman (1990) found a POD of 

1.00, a FAR of 0.20, and a CSI of 0.80 when using 40 dBZ at -10 °C isotherm while this 

study found an average CSI of 0.54 for the same criteria.  It is likely that this discrepancy 

is a result of the number of cells analyzed.  Their study only analyzed 20 cells while this 

study analyzed 65,339.   

Results from Gremillion and Orville (1999) are compared to the results from this 

study in Table 3.6.  Their criteria was slightly different than those used in this study since 

they required the criteria to be met for at least two consecutive scans, while this study 

only required for it to be met for one scan.  Therefore, comparison between the two 

results should used cautiously, but the results are presented and compared here because of 

the study’s prominence in lightning forecasting (Tim Oram, personal communication). 

All of the comparable CSI values are higher for the Gremillion and Orville study except 

when using 30 dBZ at -20 °C isotherm.  POD is higher for this study in all except one 

case because Gremillion and Orville required the criteria to be met for at least two 
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consecutive scans.  For the same reason, the FAR values are higher in this study.  

Gremillion and Orville found 40 dBZ at -10 °C to be the best predictor pair while this 

study found 30 dBZ at -20 °C to be the best.  As with Buechler and Goodman (1990), the 

number of cells analyzed by Gremillion and Orville (1999) is much less than the number 

analyzed by this study (39 compared to 65,399), which also explains the differences 

between the two studies since, as seen in this study (Table 3.1-3.4), the statistics increase 

as the number of analyzed cells decreases. 

Results from Vincent et al. (2003) are directly compared to the results of this 

study in Table 3.7. The CSI in Vincent et al. are higher than the values in this study in all 

cases.  This appears to be a result of the higher POD values for their study, which is 

likely a result of the difference in dataset size.  Many of the days analyzed for this study 

showed similar results as Vincent et al. suggesting that the lower results for this study are 

most likely a result of the large dataset.   

Wolf (2006) analyzed 1,100 cells using 40 dBZ at the -10 °C updraft level and 

found a POD of 0.96, a FAR of 0.11, and a CSI of 0.83.  This study found a POD of 0.59, 

a FAR of 0.23, and a CSI of 0.48.  If only cells within 75 km will a minimum track count 

of 2 are considered the POD becomes 0.69, the FAR becomes 0.14, and the CSI becomes 

0.60.  The difference in these results is much greater than the difference in the results 

from the other studies.  There are a few different explanations: 1) the convection in 

Florida, the main location of Wolf’s study, could be more robust, therefore reaching the 

updraft -10 °C more frequently, 2) the subjective nature of using the -10 °C updraft level, 

and/or 3) the difference in the number of cells analyzed.  The most likely explanation 

appears to be (1).  Wolf’s results showed a POD of 0.99 when using the 40 dBZ at the -6 
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°C updraft level, which is near the location of the -10 °C isotherm.  The results from this 

study showed an average POD at this level of 0.74.  This difference alone shows that the 

cells considered for Wolf’s study were more robust, since almost all of them had 40 dBZ 

at approximately the -10 °C level.  This may be also result from using a subjective 

method to identifying cells. 

    

3.2 VII Forecast Method 

 The analysis of the entire dataset using the VII forecast method is shown in 

Figures 3.4 – 3.6.  As described in Section 2.6, the VII forecast method compares the 

cell-based VII values to the probability distribution function percentile values to make a 

lightning forecast.  As in the radar reflectivity method, the forecasts separated by range 

from the radar and how many times a cell was tracked by the CAPPI-SCIT algorithm.  In 

Figures 3.4 – 3.6, only those cells with a minimum track count of 2 were considered since 

it was determined in Section 3.1 to provide the most accurate forecasts.  Forecast 

variations by range from the radar and VII percentile value will be considered. 

 

3.2.1   Percentile Value 

 The results in Figure 3.4 show an increase in the CSI values from the lowest VII 

percentile (i.e., > 0.0 kg m
-2

) to the 20
th

 VII percentile (i.e., > 0.740 kg m
-2

) and then a 

decrease thereafter.  The VII percentiles used are shown in Table 3.8.  Thus, the best 

overall predictor is the 20
th

 percentile, which was found at a value of 0.740 kg m
-2

, with 

an average CSI of 0.64.  The percentile predictors on either side of the 20
th

 percentile, the 

15
th

 and 25
th

 percentiles yielded average CSI values of 0.63.  After the 35
th

 percentile, 
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which has an average CSI of 0.61, the CSI values begin to drop off significantly, 

dropping below 0.50 at the 55
th

 percentile, below 0.20 at the 80
th

 percentile, and below 

0.05 at the 95
th

 percentile.  The lower percentile (below 50 percent) forecasts show 

approximately the same skill as the radar reflectivity method forecasts, apparently 

resulting from high POD instead of low FAR.  
 

 POD values for the entire dataset are shown in Figure 3.5.  POD at lower 

percentiles is high, remaining above 0.90 until the 25
th

 percentile and then dropping 

approximately 0.05 every 5 percent.  POD values drop below 0.50 at the 60
th

 percentile, 

below 0.30 at the 75
th

 percentile, and below 0.05 at the 95
th

 percentile, following the 

same trend as the CSI values.  FAR values, shown in Figure 3.6, show similar trends as 

the POD value.  FAR is above 0.30 until the 25
th

 percentile, above 0.20 until the 45
th 

percentile, and above 0.10 until 75
th

 percentile.   

 An interesting result is the moderate CSI, 0.600, for the lowest percentile value of 

0.0 kg m
-2

.  As a result, a forecast is made whenever the VII is greater than 0 kg m
-2

.  

Since VII is only calculated between 7km and 11km, this result shows that any time echo 

reaches 7 km within a tracked cell, there is a potential for CG strikes.  The best CSI 

values were between the lowest and 25
th

 percentile, where the VII is less than 1.0 kg m
-2

.  

This information is very valuable when considering the ease of which a lighting forecast 

can be made.  The environmental level does not need to be known, which is beneficial for 

sites like Houston that do not have a sounding. However, the CSI values never reach 

above 0.65.  Therefore, VII alone may not be the best predictor, but combining VII 

values with the reflectivity threshold method shows promise and is discussed in Section 

3.4.  If maximization of CSI value is desired, the 20
th

 percentile test value should be used.  
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If maximization of POD value is desired, only a test of whether the VII is greater than 0 

should be used.    

 

3.2.2 Range  

 As in the radar reflectivity method, VII-based CSI values indicate only a small 

range dependency, i.e., CSI increases slightly as the range decreases (Figure 3.4).  At 150 

km the average CSI is 0.42, which increases to 0.45 at 125 km, 0.47 at 100 km, and 0.50 

at 75 km.  This result suggests that while considering range is beneficial, it is a secondary 

consideration.  If a maximization of the CSI is desired, only cells within 75 km should be 

analyzed.    

 

3.2.3 Overall 

 The best VII predictor was found when using a test value of 0.734 kg m
-2

 (20
th

 

percentile) in cells within 75 km of the radar, resulting in a CSI of 0.68.  The best 

predictor combination using the radar reflectivity method had a CSI of 0.71, so the values 

are comparable.  The highest POD value, 1.0, was found when using a VII of 0.0 kg m
-2

 

on cells within 100 km.  The lowest FAR, 0.01, was found when using a VII of 8.45 kg 

m
-2

 on cells within 75 km.  The maximum in the CSI values seen at the 20
th

 percentile at 

every range represents the best optimization of the high POD values and the low FAR 

values.  Using any VII above the 45
th

 or 50
th

 percentile lowers the FAR to below 0.20, 

but it also drops the POD to below 0.80, which yields a CSI of below 0.50.  The best VII 

values, from 0
th

 to 25
th 

percentile, all have VII values lower than 1.0 kg m
-2

.  Therefore, 

incorporating a VII threshold into the radar reflectivity method may be beneficial. 
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  3.3 Case Studies – Low CSI 

 As mentioned in Section 3.1.5, CSI averages from the multi-year data can differ 

significantly from daily or monthly averages.  In this section, select case studies are 

analyzed to better understand of the types of situations that produce large variations in 

CSI values.  The analysis will first look at cases with a low overall CSI; only the cells 

with a track count of at least 2 are considered.  

An understanding of why some months have very low CSI values is important in 

the lightning forecasting algorithm development.  For example, the lowest monthly CSI 

using the radar reflectivity method was found for June 2000 which had an average CSI of 

0.38 based on all predictor combinations.  A total of 707 cells were identified for the 

month compared to the monthly average of 859 for the entire dataset. So June 2000 is 

below average in the number of cells, but not significantly.  Therefore, it is not 

immediately clear why June 2000 indicates such a low CSI value.   

 A total of 138 days in the ten years of summer data had a CSI less than 0.35.  Of 

those days, five had a cell total of 100 or more and 27 had a cell total between 10 and 20.  

A day from each of those subsets will be examined in further detail to determine if there 

is a pattern for either situation.   

 

3.3.1. Low CSI / High Cell �umber - 11
 
June 2000    

A total of 105 cells were identified on the 11 June 2000, and the average CSI 

based on all predictor combinations was 0.32.  In addition, the average POD was 0.86 

and the average FAR was 0.63.   The high POD shows that the cells that produced 

lightning were correctly identified, but the high FAR shows that many of the tracked cells 
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meeting the reflectivity forecast criteria did not produce lightning.  CSI averages for the 

day using the E10, E15, E20, and U10 level were 0.21, 0.29, 0.48, and 0.29, respectively, 

so all levels except E20 performed very poorly.  This is in contrast to the June 2000 CSI 

averages of 0.35, 0.43, 0.38, and 0.38, where all environmental levels performed 

consistently.  June 11
th

 POD averages were 0.89, 0.89, 0.77, or 0.89 and FAR averages 

were 0.78, 0.69, 0.37, or 0.69 for the respective environmental levels, so it appears that 

the much lower FAR values at E20 contributed to the significantly better CSI value.  It 

remains to be determined what synoptic, mesoscale, and/or convective variations caused 

the E20 level to be a significantly better predictor for this day.    

The created KHGX soundings for 11 June 12Z and 12 June 00Z show a typical 

day over Houston with precipitable water values from 1.75 in (12Z) to 1.37 in (00Z) and 

modest CAPE from 599 J kg
-1

 (12Z) to 1462 J kg
-1

 (00Z).  Radar images from June 11
th

 

at 1403, 1703, 2004, and 2304 Z are shown in Figure 3.7.  This figure shows numerous 

cells developing north of the radar location.  The cells begin developing within 75 km of 

the radar at 1403 Z and quickly increase in number and move northward until the 

majority of cells are between 100 and 150 km from the radar.  The cells are all within 

close proximity to each other, but are still separate enough to be classified as individual 

cells by the CAPPI-SCIT algorithm (cell centroids are indicated by crosses).  This type of 

situation causes difficulty for the automated forecasting and verification process utilized 

in this study since the small spatial extent of each cell causes many cells to be identified. 

Also, the closeness of the cells makes the correct lightning correlation difficult.  The 

number of identified cells starts at 2 at 1403 Z, then increases to 30 at 1703 Z, then 
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decreases to 16 at 2004 Z, and 6 at 2304 Z.  The maximum number of cells identified for 

one scan was 34 for the scans started at 1628 and 1633 Z.   

A total of 715 flashes were observed within 150 km of KHGX and were 

correlated to 19 identified cells.  Table 3.9 shows the number of flashes correlated to each 

cell ID.  It is important to note that cell IDs are reused.  Therefore, if two different flashes 

are correlated to cell ID 1 that does not necessarily mean that they are correlated to the 

same cell.  A cell ID is kept until the cell that was identified by that ID number is no 

longer identified by the CAPPI-SCIT algorithm.  However, strikes correlated to cells that 

retain the same cell ID for numerous sequential scan are most likely correlated to the 

same cell.   

  Cell 4 was identified and tracked from 1713 to 1858 Z (Figures 3.8 – 3.13) and 

95 CG strikes were correlated to this cell during this period.  At 1713 Z (Figure 3.8) the 

cell was just beginning to develop and had a maximum reflectivity of 43 dBZ, a VIL of 

4.11 kg m
-2

, a VII of 0.05 kg m
-2

, and a maximum echo height of 12 km.  At 1748 Z 

(Figure 3.9), before any strikes were correlated to this cell, the maximum reflectivity had 

increased to 55 dBZ, VIL had increased to 26.29 kg m
-2

, and VII had increased to 3.28 kg 

m
-2

. The next scan, (1753 Z; Figure 3.10) shows a dramatic increase in VIL and VII as 

well as 5 CG strikes which are correlated to the cell (indicated by Xs on the x-axis of the 

time series).  At 1758 Z (Figure 3.11), VIL is slightly less than the previous scan, VII has 

increased, and 18 CG strike were correlated to the cell.  The cell shows slight weakening 

in the next scans (1803 Z; Figure 3.12) but the number of CG strikes correlated to the cell 

increases to 26.  The cell continues to weaken from 1803 Z until 1858 Z, when it is no 

longer identified by the CAPPI-SCIT algorithm. Figure 3.13 shows the cell at 1858 Z.  
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As can be seen, the maximum reflectivity, VIL, and VII values have dropped 

significantly from 1813Z until the current scan.   

Cell 12 was identified and tracked from 1728 to 1838 Z and no CG strikes were 

correlated to the cell.  The cell was first identified at 1728Z (Figure 3.14) and showed 

similar initial characteristics as Cell 4.  Cell 12 had a maximum reflectivity of 44 dBZ, a 

VIL of 2.9 kg m
-2

, and a VII of 0.03 kg m
-2

.  The next scan (1733 Z; Figure 3.15) shows 

some more vertical growth and an increase in all of the time series variables.  The 1738 Z 

scan (Figure 3.16) shows a slight increase in the maximum reflectivity, but the VIL and 

VII both decreased suggesting limited vertical development.  The 1758 Z scan (Figure 

3.17) shows a gradual rise in maximum reflectivity and VIL while VII remained constant.  

The final scan this cell was identified (1833 Z; Figure 3.18) shows a gradual decrease in 

maximum reflectivity and VIL and constant VII. 

The greatest difference between the radar measurements of these two cells 

appears in the VIL and VII values.  The cells show very similar traits on their initial 

identification (Figure 3.8 and Figure 3.14).  However, cell 4 continued to grow vertically, 

increasing both VIL and VII values rapidly, while cell 12 showed promise of vertical 

growth, but ultimately remained weak.  Both cell 4 and cell 12 met the 30 dBZ at E10 

forecast criteria immediately.  Using E20 would have eliminated the false alarms created 

by cell 12.  However, using E10 in conjunction with VIL or VII may also decrease FAR 

values in these types of cells. 
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3.3.2 Low CSI / Low Cell �umber – 25 August 2000 

 There are a total of nine days in the ten-year dataset where the CSI was less than 

0.35, the number of identified cells was between 10 and 20, and at least one cell was 

identified within 75 km.  Out of these nine days, only three had a POD greater than 0.9, 

and only one of those three had over 50 flashes.  That day, 25 August 2000, is analyzed 

in more detail to identify why the CSI value was so low.   

 The created KHGX sounding for 12 Z on 25 August 2000 and 00 Z on 26 August 

2000 shows a moderately moist (precipitatable water values of 1.83 in at 12 Z and 1.58 in 

at 00 Z), and unstable (CAPE values of 552 J kg
-1

 at 12 Z and 4365 at 00 Z) J kg
-1

. Figure 

3.19 shows the radar images from 1617 Z, 1802 Z, 2012 Z, and 2247 Z.  Figure 3.19 

(2012 Z; top-left) shows 5 cells southwest of the radar with one cell at a distance of 

around 75 km from the radar while the others are 150 km from the radar.  Figure 3.19 

(top-right) shows a large cluster of cells between 100 and 150 km from the radar.  At this 

point there are 3 identified cells, one of which was identified at 1617 Z.  Figure 3.19 

(2247 Z; bottom-left) shows that the large cluster of cells has dissipated and only small 

single cells remain and Figure 3.19 (bottom-right) shows the last identified cell for the 

day.  The radar images show that despite ample convective energy, the lack of synoptic 

or mesoscale forcing limited the number of cells that developed. Also, the distance from 

the radar creates an issue.  The images shown are CAPPI plots at 1 km altitude.  As a 

result, much of the data shown on the plots is a result of interpolation.  A radar beam with 

an elevation angle of 0.5° will be above 1.0 km in a normal atmospheric beginning at 

around 77 km. The beam height, given an elevation angle of 0.5°, at 100 km is 

approximately 1.4 km and at 150 km is approximately 2.5 km.  As discussed in Section 
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2.1.3, the radius of influence for a point is 1.25 km in the x and y directions, and 1.75 km 

in the z direction.  Therefore, the data shown in the figures is a result of the interpolation 

of the data at higher heights.  This interpolation should not adversely affect the data since 

the same interpolation scheme is used on the entire dataset and there must be data present 

for interpolation to occur.  The most likely explanation of the data at 1 km is that 

reflectivity values shown were measured at the lowest elevation scan.  Figure 3.20 (an 

NCDC image at 1802 Z) shows the data from the lowest elevation angle in PPI format 

and confirms that the data shown in Figure 3.19 (top-right) is from the lowest elevation 

scan. 

 A total of 86 flashes were observed within 150 km of KHGX on 25 August 2000 

and were correlated to four cells.  Table 3.10 shows the number of flashes correlated to 

each cell ID.  The majority of flashes (65) were correlated to cell ID 2, while 16 were 

correlated to cell ID 0, 4 were correlated to cell ID 5, and 1 was correlated to cell ID 3.   

Cell 2 was identified for a total of three hours from 1617 to 1917 Z.  Figure 3.21 

shows the cell on the scan after is was identified (1622Z).  Maximum reflectivity and VIL 

values are low, but the VII suggests that there are already hydrometeors being lifted 

above 7 km.  Growth is seen on the next scan (1627 Z; Figure 3.22) as all of the values 

increase.  Figure 3.23 shows cell 2 when the first strike was correlated (1657 Z).  The 

time series show a spike at 1642 Z followed by a decrease in all measured values.  

However, while the VIL remains moderate at 14.8 kg m
-2

, both the maximum reflectivity 

and VII suggest a stronger cell.  Since VII begins its calculation at 7 km, the high VII 

values show that a large amount of precipitation mass is above this level.  Figure 3.24 

(1757 Z) shows the time series of the cell for the hour between 17 and 18 Z.  Two 
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“jumps” are seen in the data with the first around 1727 Z and the second around 1737 Z.  

These “jumps” are followed by CG strikes. Figure 3.25 shows the final hour (17-18Z) of 

the cells lifetime.  Jumps in the time series data is still noted, but CG strikes are occur 

throughout and do not follow the jumps as in the last hour.  This suggests that the initial 

“jump” or first few “jumps” are the most important indicators in attempting to forecast 

the first flash, but do not indicate flash potential thereafter.   

The lifetime of cell 1 is shown in Figure 3.26.  No CG strikes were correlated to 

this cell.  The maximum reflectivity and VIL values are comparable to those in cell 4, but 

the VII values are less.  Also of note, are the quick increases (“jumps”) in the reflectivity 

and VIL values, but only minor variations in VII.  This is in contrast to the observations 

of cell 4, which had quick increases of maximum reflectivity, VIL, and VII and produced 

a high number of CG strikes.  Also, the VII for this cell is less than 1 kg m
-2

 in all but one 

scan.  This represents a lack of precipitation mass above 7 km, which is the most likely 

cause of the lack of CG lightning. 

 

3.4 First Flash Forecast Time 

 In addition to testing the accuracy of the forecast, the lead time to the first flash 

was calculated for the reflectivity threshold and VII methods.  Only the first flashes were 

considered because the forecast times would be greatly exaggerated otherwise.  For 

example, if a cell is tracked for three hours, as was the case for cell 2 in Section 3.3.1.2, 

the forecast times would continue to increase since the first forecast is made early in the 

cell’s lifetime.  For the radar reflectivity method (Figure 3.26) the average forecast times 

were 16.9, 13.4, 10.0, and 14.2 min for E10, E15, E20, and U10, respectively.  Averaging 
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all the forecast times for the VII method is not as straight forward since there were a large 

number of possible values (Figure 3.27).  Thus, the 0-25
th

, 25-50
th

, 50
th

 – 75
th

, and 75
th

-

95
th

 percentile ranges were averaged and yielded an average forecast time of 18.2, 12.0, 

5.8, and 1.4 min, respectively.  As seen in Figure 3.27 and represented by the forecast 

times, a large decrease from the 0
th

 to 95
th

 percentile is observed.  This decrease is a 

result of the correlation between the forecast time and the POD.  The largest forecast 

times follow the highest POD values.  As shown by Figures 3.2 and 3.5, both the radar 

reflectivity and VII method forecast times follow the high POD values.  This is to be 

expected since higher POD values signal that a predictor is easily met, which in turn 

creates a longer forecast time.  The only difference is that the forecast time is maximized 

at larger distances while the POD is maximized within 75km.  Since the differences are 

minor, a maximization of the POD can be used as a maximization of the forecast time.    

 The best POD for the radar reflectivity method (0.99) was found when using 30 

dBZ at E10 on cells within 75 km with a minimum track count of 2.  Using this predictor 

combination, the average forecast time is 17.5 min.  For the VII method, the best POD 

(1.0) was found using 0.0 kg m
-2

 at 100km.  Using this predictor combination, the 

forecast time is 19.4 min.  In both methods, the best forecast times, 21.8 min for the 

reflectivity method and 23.1 min for the VII method, were found using the same 

thresholds but within 150 km. The average forecast time of using the VII method on the 

0-25
th

 percentile was higher than the average of using any of the environmental test levels 

for the radar reflectivity method.  This matches the POD data.  The average POD using 

the 0-25
th

 percentiles was 0.94, while the POD averages at E10, E15, E20, and U10 were 

0.90, 0.81, 0.66, and 0.811, respectively.  As a result, the VII method provides better lead 
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times than the radar reflectivity method.  This is encouraging because, as mentioned 

earlier, the VII forecast method is simpler than the radar reflectivity method.  In fact, the 

best lead times for the VII forecast method were found when using 0.0 kg m
-2

 as the 

threshold value.  This means that for the highest lead times the only test that is needed is 

whether any precipitation-size echo is above 7 km.  The average FAR when using 0.0 kg 

m
-2

 as the test value is 0.40, which is not unacceptably high.  Therefore, the VII method 

provides an easy and reliable tool that can be used to maximize forecast time.  If the radar 

reflectivity method is still desired, the best environmental level for the maximization of 

the forecast time is E10, which has an average forecast time of 16.8 min and an average 

FAR of 0.32.  The best reflectivity value is 30 dBZ, which has an average forecast time 

of 17.6 min and an average FAR of 0.33.  The results do vary slightly by range, therefore 

increasing the maximum range to 150 km improves the forecast times at the expense of 

the FAR.  

 

3.5 Lightning Forecasting Algorithm (LFA) Development 

 Using the two days discussed in Section 3.3, various predictor combinations are 

tested to determine the optimal lightning forecasting algorithm (LFA), with emphasis on 

optimizing CSI and forecast time.  As discussed in Section 3.1, if using the radar 

reflectivity method and maximization of the CSI is desired with only one predictor, the 

E10 level, using only cells with a minimum track count of 2, and 30 dBZ are the 

predictors of choice. However, the best overall predictor combination was 30 dBZ at E20 

for cells within 75 km of the radar with a minimum track count of 2.  The best predictor 

using the VII method was testing if VII was greater than 0.  Combining these two 
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methods may provide better results than either one individually.  Since the emphasis of 

this study is improving CG forecasting skill and lead time, the basis of the algorithm will 

use 30 dBZ at E20 since it provides the greatest CSI.  

 

3.5.1 Development of a VII Threshold 

Recall that for 11 June 2000 the average CSI was 0.32, the average POD was 

0.86, and the average FAR was 0.63.  Using 30 dBZ at E20 level on cells with a 

minimum track count of 2 and a range of 75 km results in a CSI of 0.07, a POD of 1.0, 

and a FAR of 0.93.  Using 0.0 kg m
-2

 for the VII method on cells within 75 km yields a 

CSI of 0.06, a POD of 1.0, and a FAR of 0.93.  Thus, both optimized forecast methods 

yield similar results for this day, in part because all the lightning producing cells had VII 

greater than zero.  This is likely the case for many days.  Therefore, the LFA needs to be 

strengthened.  

The best predictor combination for this day using the radar reflectivity method is 

40 dBZ at E20 resulting in a CSI of 1.00.  The easiest change to make is to have the CSI 

maximizing LFA switch to using 40 dBZ at E20 instead of 30 dBZ, when the cell 

numbers increase above 100.  However, there are two problems with that strategy: (1) it 

does not work in a real-time setting because the previous 99 cells would be forecast using 

the previous method and (2) only 48 of 626 cases have a larger CSI when using 40 dBZ 

at E20 instead of 30 dBZ when only cells within 75km are considered.  Therefore, 

increasing the VII test value provides an easier way to strengthen the algorithm without 

have to change the environmental height or reflectivity thresholds. 
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 As mentioned in Section 3.3.1.1, there were 715 flash correlated to cells on June 

11
th

.  The average VII value for those cells was 2.64 kg m
-2

, which is near the 60
th

 

percentile for the entire dataset.  This percentile is likely a result of a large number of the 

flashes (115) being correlated to a single cell. If cells with VII less than 2.56 kg m
-2

 (60
th

 

percentile) are excluded, the values become those listed in Tables 3.11-3.14.  These 

values show significant improvement from the values using either the radar reflectivity or 

the VII forecast method alone. The CSI using 30 dBZ at E20 increased from 0.07 to 1.00 

for cells within 75km.  When using the 40 dBZ test at the same level, the CSI stayed a 

1.00.  The CSI values increased for each different criterion for this day. 

Taking a slightly lower percentile (30
th

) that corresponds to a VII of 1.089 kg m
-2

, 

produces the results shown in Tables 3.15-3.18, which indicate a minimal increase in the 

forecast statistics.  Tests were also run on the 50
th

 and 75
th

 percentile, a VII of 1.984 and 

3.816 kg m
-2

, respectively.  Using the 50
th

 percentile produced an average CSI of 0.51, 

while using the 75
th

 percentile produced an average CSI of 0.52.  Therefore, using the 

60
th

 percentile provides the best maximization of CSI for this day.  

 Recall that for 25 August 2000 the average CSI was 0.33, the average POD was 

0.94, and the average FAR was 0.64.  The result of using 30 dBZ at E20 on cells with a 

maximum track count of 2 and a maximum distance of 75 km is a CSI of 0.00 because no 

flashes were detected in the cells within 75 km, which leads to a FAR of 1.  Increasing 

the distance to 150 km yields an average CSI 0.36, an average POD of 1.00, and an 

average FAR of 0.64.  Thus, the reflectivity-only LFA did not improve the CSI values.   

 As mentioned in Section 3.3.1.2, there were 86 flashes correlated to cells for this 

day.  The average VII for those cells was 1.71 kg m
-2

, which is near the 45
th

 percentile.  If 
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cells with a VII less than this value are excluded, the average CSI increases to 0.56.  

Increasing the test value to the 60
th

 percentile increases the average CSI to 0.60, while 

increasing the test value to the 75
th

 percentile value decreases the CSI to 0.17.  The data 

show that for both of the days, using the 60
th

 percentile VII value produces a maximum in 

CSI.      

 To test combined reflectivity/VII LFA more thoroughly, analysis was performed 

on the months of June, July, and August of 2006.  There were a total of 691 cells 

identified in June, 1466 identified in July, and 962 identified in August compared to the 

average monthly total of 891 for the entire 10-year dataset.  The three-month average CSI 

using the reflectivity-only LFA is 0.56.  When the combined LFA is used on the dataset 

the statistics reveal some problems.  In particular, the average CSI decreases to 0.39. 

Therefore, while the 60
th

 percentile test value increased the CSI for the two days 

previously analyzed, it leads to a lower CSI when executed on a monthly scale.  This is 

most likely the result of the types of days chosen.  Since each of these days had cells that 

produced a high number of lightning strikes per cell, it is probable that the cells had 

higher VII values, which is increased the average VII values for those days.  This agrees 

with Motley (2006), who showed that VII is positively correlated to flash rate.  

Therefore, the higher percentiles may be useful in predicting which cells will produce a 

high number of flashes, but more research will need to be done in this area. 

As a result of the failure of the 60
th

 percentile VII threshold, tests using the 10
th

, 

20
th

, 30
th

, 40
th

, and 50
th

 percentile values were performed in attempt to determine the 

optimal value.  The results are shown in Table 3.19 and indicate that the best percentile 

threshold was the 20
th

, but that the average CSI is slightly less than that based on the 
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reflectivity-only LFA.  However, the average is higher for June and July using the 20
th

 

percentile VII value than just the radar reflectivity method alone.  The 20
th

 percentile 

value is the same value that showed a maximum CSI for the entire dataset.  As a result, 

this value is chosen as the additional parameter added to the LFA to maximize CSI.  
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4. CO�CLUSIO�S 

 Previous research has shown the potential of forecasting cloud-to-ground (CG) 

lightning using radar reflectivity thresholds at various isothermal heights.  This study 

extends those results to Houston, Texas by objectively analyzing a multi-year 

summertime dataset that includes a factor of 500 more cells in the analysis than in any 

previous publication. This study also incorporates a new radar-derived parameter, 

vertically integrated ice (VII), into the radar-based lightning forecasting method.  The 

main results are as follows: 

1) Using 30 dBZ at the -20 °C isotherm on cells within 75 km of the radar and 

with a minimum track count of 2 is the best predictor combination for the 

Houston area, producing an average CSI of 0.71. 

The results of this study suggest different criteria than Gremillion and Orville 

(1999) and Vincent et al. (2003), which both recommend 40 dBZ at the -10 °C 

isotherm as the best predictor combination.  Using those criteria produced an 

average CSI of 0.54 for this study.  For most predictor combinations in this study, 

40 dBZ had significantly lower CSI than either 30 or 35 dBZ, while the CSI 

values when using 30 and 35 dBZ were close.  This difference suggests: 1) cells 

reaching 40 dBZ occur less frequently over Houston than either Florida (the 

location of Gremillion and Orville 1999) or North Carolina (the location of 

Vincent et al. 2003) and/or 2) the objective algorithm of this study resulted in 

more weak cells compared to the subjective cell identification in the other studies.  

The optimal environmental level in this study (-20 °C isotherm) likely better 

represents the depth mixed-phase hydrometeors need sufficient cloud 
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electrification.  Thirty dBZ at -10 °C (beginning of the “charging zone”) is not as 

likely to produce ample cloud electrification as 30 dBZ at -20 °C.  A test 

analyzing instability at the -10 °C level may be more appropriate to show the 

likelihood of continued convection if -10 °C is the desired forecast level.  

 

2) Limiting the analysis to include only cells that had been tracked for at least 

two scans improved the forecast statistics more than varying the range from 

the radar or the reflectivity threshold. 

When considering the individual predictors, including only cells tracked for at 

least two scans improved the forecasts statistics the most, with the CSI average 

increasing from 0.44 when considering all identified cells to 0.60 when 

considering only cells with a minimum track count of 2.  In addition, the best CSI 

values at every level were found when considering only cells with a minimum 

track count of 2.  Strong, long-lived cells are more likely to have time to loft the 

amount of hydrometeors needed for ample cloud electrification.  

   

3) Using cell-based VII values to forecast cloud-to-ground (CG) lightning shows 

promise.   

VII-based CSI values were often comparable to the reflectivity threshold method 

and, the ease of the VII forecast method provides the NWS an easy to implement 

and effective method of forecasting CG lightning.  Forecasts made using the 

predictor of VII greater than zero produced an average CSI of 0.60.   The best 

forecast value for this study was using the 20
th

 percentile, VII of 0.74 kg/m
2
, 
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which produced an average CSI of 0.64.  The CSI values stay above 0.60 until 

after the 35
th

 percentile VII value.  Since VII only considers reflectivity above 7 

km, any time VII is greater than zero, precipitation mass (i.e., rain, snow, graupel, 

and/or hail) has reached a height needed for cloud electrification, while any 

increase of VII over 0.74 kg m
-2

 is shown to represent a sufficient amount of 

precipitation mass for cloud electrification. 

 

4) The best first flash forecast time was 21.8 min when using the 30 dBZ test 

value at -10 °C on all cells within 150 km with a minimum track count of 2. 

This forecast time was greater than in previous study.  If the number of times a 

cell is tracked is not considered, the forecast time is 16.9 min.  This result is 

consistent with the forecast time of 16.1 min found by Clements and Orville 

(2008).  The average forecast time when using the 0-25
th

 percentile VII values 

was 18.2 min.  

   

5) A combination of the radar reflectivity forecast method and the VII forecast 

method can be used to provide better results. 

When testing the combined lightning forecasting algorithm on summer months 

from 2006, June and July showed improvement in their average CSI values when 

including the 20
th

 percentile VII value, while the August had a slightly reduced 

CSI.  Thus, VII values can be added to the radar reflectivity test method to 

improve forecasts.  In the cases when there is a reduction, it is small.  In two case 
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studies, where there was a large amount of lightning, incorporating the VII value 

significantly improved the lightning forecasts.  

   

6) The data from this study was used to create a lightning forecasting algorithm 

that runs in real-time and produces a categorical risk for lightning on a cell-

by-cell basis. 

   

While this study provides the most thorough and objective analysis of using radar 

reflectivity at an isothermal level to date, more work will still need to be done to find the 

best predictors at different locations.  This study was designed to be easily reproducible 

so that other WFOs could perform their own analysis and find the criteria which work 

best for their area.  Additional research also needs to be done with VII, including 

correlation of VII with various atmospheric parameters such as convective available 

potential energy (CAPE), lifted index, and wind shear as well as cloud-to-ground flashes 

rates.  More work also needs to be done with rapid changes in VII.  This study showed 

VII “jumps” often precede cloud-to-ground flashes.  There is also a possibility that rapid 

changes in VII could signal lightning cessation. 

 In addition, the lightning forecasting algorthim could potentially benefit from the 

addition of total lightning data.  Clements and Orville (2008) showed that the radar 

reflectivity method alone is better than using total lightning to predict CG lightning, but 

the combination of the two methods has not been studied.  The additional research with 

VII and total lightning has the potential to create an even more robust algorithm that 
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could be very effective and easily implemented at various WFOs across the United 

States.    
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APPE�DIX A  

A – Vertical Resolution of CAPPI Data 

The volume scan strategy and distance from the radar determine the maximum 

vertical resolution to which polar radar data can be interpolated without introducing 

artifacts (as would be the case with too fine a vertical resolution) or sacrificing data (as 

would be the case with too coarse a vertical resolution).  Radar data is often interpolated 

to a 1 km vertical resolution, which is a reasonable choice when considering a reasonably 

dense volume scan strategy (such as VCP 11) and observations out to 150 km from the 

radar (i.e., you lose some data close to the radar and are potentially over resolving echo 

features 150 km away from the radar, but the bulk of the radar observations are well 

resolved with 1 km vertical resolution).  However, this study is heavily dependent on 

high resolution reflectivity observations in the vertical, so as already discussed in Section 

2.1.3.1, August 2006 forecast statistics using vertical resolutions of 0.5 km and 1 km 

were compared to determine if a 1 km vertical resolution is sufficient to calculate robust 

radar forecast statistics or if a finer resolution should be used.    

 

A.1 – Cell Identification Comparison   

Using radar data interpolated to 0.5 km vertical resolution, the CAPPI-SCIT 

algorithm identified significantly more cells than using 1 km vertical resolution, 

especially cells with a track count of 0 (cf. Tables A.5-8 and Tables A.1-4).  For example, 

2351 cells met the 30 dBZ at E10 within 150 km criteria for 1.0 km, while 4110 cells met 

the same criteria for 0.5 km.  Since vertical association is required for a cell to be 

identified, an increase in the vertical resolution will increase the likelihood that a cell is 
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represented at different levels.  Recall that vertical association only needs to be two 

consecutive height levels.  Therefore, the CAPPI-SCIT algorithm used on the 0.5 km 

resolution data will identify cells with a minimum depth of 1 km, while the algorithm run 

on data with a 1 km resolution will identify cells with a minimum depth of 2 km.  As a 

result, the 0.5 km resolution produces almost double the amount of cells that are 

identified for only one volume scan.  However, the difference in the number of cells 

tracked for more than one volume scan decreases significantly the longer a cell is tracked.  

This suggests that the cells identified using the increased vertical resolution are weak 

and/or small in vertical extent. 

 The CAPPI-SCIT algorithm produced more cells for the 0.5 km vertical 

resolution except when the cell was within 100 or 75 km and tracked for at least 1 or 2 

scans.  For these cases, it appears that the increased resolution reduced interpolation 

issues and allowed the data to be more accurately represented.  The raw radar data will 

have better horizontal and vertical resolution closer to the radar.  If this data is 

interpolated over a large distance, it has the potential of making storms larger than they 

actually were.  Since the horizontal resolution is the same for each case, the interpolated 

1 km resolution data will have a greater potential to create larger storms, which was an 

initial reservation of using the 1 km resolution data.  However, it appears that this was 

only the case within 100 km of the radar. 

 

A.2 – Comparison of POD Statistics  

 Interestingly, the forecast statistics (Tables A.1-8) favored the 1.0 km vertical 

resolution in many of the predictor combinations.  Figure A.1 illustrates the POD 



 91 

comparison (i.e., POD1.0km - POD0.5k m).  POD1.0km was greater (and thus better) in almost 

all cases except at E10 within 150 km of the radar and other isolated 40 dBZ at E10 

combinations.  This is probably a result of the interpolation creating storms with greater 

vertical extent.  As a result, the interpolation is allowing the forecast criteria to be met for 

the data with the 1.0 km resolution while the 0.5 km resolution data remain below the 

desired levels.  However, if the data interpolated to 1.0 km is creating too many artifacts, 

an increase in the FAR will result. If FAR is increases as POD increases, no forecast skill 

is gained. 

 

A.3 – Comparison of FAR Statistics  

 Figure A.2 shows mixed results when comparing FAR1.0m and FAR0.5km. At E10, 

FAR1.0km is generally less than FAR0.5km indicating better false alarm rates for the 1.0 

resolution, especially when a cell has a track count of 0.  The average FAR1.0km at E10 is 

0.43, while the average FAR0.5km is 0.48.  If the cases when the cell is only identified for 

one scan are omitted, the FAR1.0km becomes 0.39 and FAR0.5km becomes 0.41, thus 

indicating little difference between vertical resolution choices.   

Increased vertical resolution benefits FAR at E15 most (i.e., FAR0.5km is generally 

less than FAR1.0km).  This could be a result of interpolation but most likely results from 

the additional comparison levels available for the 0.5 km data.  For example, if the -15 °C 

level was at 7.6 km (a reasonable climatological value for Houston in the summer), 

analysis based on the 1.0 km vertical resolution data would have to use the reflectivity 

values at 8.0 km since no closer heights are available.  However, analysis based on the 

0.5 km vertical resolution data could use the reflectivity values at 7.5 km.  This lack of 
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comparable levels was one of the main reasons an additional vertical resolution was 

considered.  It appears that this lack of comparison levels had the greatest influence on 

the environmental -15 °C level statistics because E10 and E20 round more closely to 

climatological values of 7 and 8 km, respectively.  

FAR1.0km - FAR0.5km values at E20 and U10 are consistently negative for cells 

identified only once, similar to the previous two environmental levels.  This is likely a 

result of the high number of cells detected by the CAPPI-SCIT algorithm when using the 

data with 0.5 km vertical resolution.  Excluding cases when a cell was only identified 

once, the 0.5 km dataset generally has lower false alarm rates, providing the largest 

improvement at ranges less than 100 km. 

 

A.4 – Comparison of CSI Statistics  

Figure A.3 shows that CSI1.0km - CSI0.5km values generally favor the 1.0 km 

resolution dataset.  At E10, CSI1.0km is about 0.1 greater than CSI0.5km when a cell is only 

identified for one scan, but the difference is close to zero when cells are tracked at least 

once.  CSI1.0km - CSI0.5km values are more variable at E15 and U10, although the use of 40 

dBZ strongly favors the 1.0 km resolution dataset at both environmental levels.  CSI1.0km 

shows the most consistent improvement over CSI0.5km at E20, with most differences 

ranging from 0.05-0.15.  

 

A.5 – Comparison of Forecast Lead Times  

The forecast lead times show trends similar to CSI. The longest lead times were 

found using the 1.0 km vertical resolution dataset for all predictor combinations except 
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40 dBZ at E10.  The largest difference in lead times was observed at E15. As discussed in 

Section A.3, the environmental -15 °C level is commonly near 7.5 km.  The 1.0 km 

dataset has to use values that are at greater distances from the actual height compared to 

the 0.5 km dataset.  Consider an example case when the environmental -15 °C level is at 

7.4 km.  The 1.0 km resolution dataset compares its closest reflectivity value, which is at 

7.0 km, while the 0.5 km resolution dataset compares its closest reflectivity value, which 

is at 7.5 km.  The chances of a forecast being correct at the 7.0 km level are higher and 

therefore the forecast is made sooner.  The case could also be the opposite.  For example, 

if the environmental -15 °C level is at 7.6 km, as in the example used in Section A.3, the 

1.0 km resolution dataset would have to compare at 8.0 km.  This case would lead to a 

decreased lead time for the 1.0 km resolution dataset.  However, the data suggest that the 

first example is true more often.  The KHGX sounding average heights for August 2006 

for the environmental -10, -15, and -20 °C levels were 6.6, 7.4, and 8.1 km, respectively.  

The best average lead time of 15.8 min was found using 1.0 km resolution dataset and 30 

dBZ at E10.  If the cases with only scan can are excluded, the forecast lead time increases 

to 17.0 min.  For the 0.5 km resolution dataset and the same predictor combinations, the 

average forecast lead times were 15.5 and 17.0 min. 

 

A.6 – Conclusions Regarding Vertical Resolution     

Based on the above comparisons, it was determined that using the 1.0 km vertical 

resolution dataset is the best choice for producing KHGX radar-derived lightning 

forecasts.  The forecast statistics favored the 1.0 km resolution dataset for most predictor 

combinations.  While the 0.5 km resolution dataset identified more cells, the additional 
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cells identified were usually weak and/or small. In addition, the dataset is identical to the 

dataset used by Gauthier et al. (2006), with the addition of three more years (2004 - 

2006), thus facilitating comparison of results.   
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APPE�DIX B 

 

 
Figure 1.1.  Dipole/tripole structure of a thunderstorm with an upper and level positive 

(+) charge regions and a main negative (-) charge region (from MacGorman and Rust 

1998). 
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Figure 1.2.  Open circles represent a positive charge, solid circles negative charge, and 

crosses represent uncharged cases (from Takahashi 1978). 
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Figure 1.3. Proposed methods of charge separation: (a) positive rime electrification by the 

breaking of riming branches, (b) negative rime electrification by ice crystal contact and 

break at the riming surface, and (c) positive rime electrification cause by an ice crystal 

tearing the water film from rim surface (from Takahashi 1978). 
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Figure 1.4.   The polarity of charged gained by graupel as a function of temperature and 

liquid water content (LWC) for the experiments of Takahashi (1978) and Saunders et al. 

(1991).  The bold dashed lines separate the values of temperature and CWC at which the 

charge on graupel changed polarity as measured by Saunders et al. Curved lines show the 

charged gained (in fC) by graupel as a function of LWC and temperature by Takahashi 

(1978). (From MacGorman and Rust 1998, p.67). 

 



 99 

 
Fig. 1.5. Four types of lightning effectively transferring cloud charge to ground.  Only the 

initial leader is shown for each type.  The direction of propagation and polarity of cloud 

charge effectively lowered to ground is indicated (from Rakov and Uman 2006, p.5).  
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Figure 1.6. Illustration of the processes involved in a typical cloud-to-ground lightning 

strike (from Uman 1987). 
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Figure 1.7. FAR, CSI, and POD for different lightning prediction criteria (from Vincent 

et al. 2003). 
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Figure 1.8. Number of flashes from two different lightning detection networks compared 

to vertically integrated liquid for storms on 9 June 1993: all flashes (top), negative flashes 

(middle), and positive flashes (bottom; from Watson et al. 1995).  
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Figure 1.9. Percentage of vertically integrated liquid value with CG lightning flashes 

from two different lightning detection networks from storms on 9 June 1993: all flashes 

(top), negative flashes (middle), and positive flashes (bottom; from Watson et al. 1995). 
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Figure 2.1. Illustration of how a radar beam increases with height as the distance 

increases (from http://www.srh.noaa.gov/srh/jetstream/doppler/baserefl.htm). 
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Figure 2.2. Illustrations showing how a scan strategy samples a storm (from 

http://www.srh.noaa.gov/srh/jetstream/doppler/comprefl.htm). 
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Figure 2.3. Graphical representation of VCP – 11.  The numbers along the top and right 

axes represent the elevation angle (from Radar Resources 2009). 



 107 

 

 
Figure 2.4. Graphical representation of VCP – 21.  The numbers along the top and right 

axes represent the elevation angle (from Radar Resources 2009). 
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Figure 2.5. Method of determining the location of lightning strike using the magnetic 

direction finding lightning locating system (from MacGorman and Rust 1998). 
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Figure 2.6. Method of determining the location of a lightning strike using the time-of-

arrival lightning locating system (from MacGorman and Rust 1998). 
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Figure 2.7. Storm Cell Identification and Tracking (SCIT) algorithm overview (from 

OFCM 2006). 
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Figure 2.8. Example of storm segments as identified by the SCIT algorithm (from OFCM 

2006). 
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Figure 2.9. Illustration of the differences between a cell-based VIL and a grid-based VIL 

(from OFCM 2006). 
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Figure 2.10. Illustration of the difference in the environmental temperature and the 

updraft temperature (from Wolf 2006). 
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Figure 3.1. CSI values as a result of the analysis of the entire dataset, from 1997 through 

2006.  Count represents the minimum number of times a cell must be tracked to be 

considered.  Range represents the range a cell must be within to be considered. 
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Figure 3.2. Same as Figure 3.1 for the POD values. 
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Figure 3.3. Same as Figure 3.1 for the FAR values. 
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Figure 3.4. CSI values using the vertically integrated ice (VII) percentile values for the 

entire dataset (1997-2006) when considering only cells with a minimum track count of 2. 
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Figure 3.5. Same as Figure 3.4 for the POD values. 
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Figure 3.6. Same as Figure 3.4 for the FAR values. 
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Figure 3.12. Radar images from 11 June 2000 at 1403Z (a), 1703Z (b), 2004Z (c), and 

2304Z (d).  Rings represent 50, 100, and 150 km from the radar.  The grid is centered on 

the location of the Houston, TX (KHGX) WSR-88D.  The data is plotted in constant 

altitude plan projection indicator (CAPPI) format, which is discussed in Section 2.1.2.  

The + symbols show centroid locations as determined by the CAPPI-SCIT algorithm and 

* represent CG lightning locations.   

 

 
 

 

 

 

Figure 3.7. Radar images from 11 June 2000 at 1403Z (top-left), 1703Z (top-right), 

2004Z (bottom-left), and 2304Z (bottom-right).  Rings represent 50, 100, and 150 km 

from the radar.  The grid is centered on the location of the Houston, TX (KHGX) WSR-

88D.  The data is plotted in constant altitude plan projection indicator (CAPPI) format, 

which is discussed in Section 2.1.2.  The + symbols show centroid locations as 

determined by the CAPPI-SCIT algorithm and * represent CG lightning locations. 
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Figure 3.8.  For cell 4 ending at 1713Z: Left: time series of maximum reflectivity in dBZ 

(top), cell-based VIL in kg m
-2 

(middle), and cell-based VII in kg m
-2

 (bottom). Right: 

cross-section through the CAPPI-SCIT identified cell centroid (* represents the centroid 

location). Top Right: Plan view showing the location of the cross-section.  
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Figure 3.9.  Same as Figure 3.8 for cell 4 ending at 1748Z.   
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Figure 3.10.  Same as Figure 3.8 for cell 4 ending at 1753Z.  The X on the x-axis of the 

time series on the left side represent the time of CG strikes correlated to the cell. 
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Figure 3.11.  Same as Figure 3.10 for cell 4 ending at 1758Z.   
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Figure 3.12.  Same as Figure 3.10 for cell 4 ending at 1803Z.  NOTE: the extended line is 

a result of a plotting error, not a long time period. 

 



 126 

 
Figure 3.13.  Same as Figure 3.10 for cell 4 ending at 1858Z. 
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Figure 3.14. Same as Figure 3.10 for cell 12 ending at 1728Z.   
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Figure 3.15. Same as Figure 3.10 for cell 12 ending at 1733Z. 
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Figure 3.16. Same as Figure 3.10 for cell 12 ending at 1738Z. 
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Figure 3.17. Same as Figure 3.10 for cell 12 ending at 1758Z. 
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Figure 3.18. Same as Figure 3.10 for cell 12 ending at 1833Z. 
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Figure 3.19.  Same as Figure 3.7 for 25 August 2000 at 1617Z (top-left), 1802Z (top-

right), 2012Z (bottom-left), and 2247Z (bottom-right).   
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Figure 3.20. Base reflectivity (0.34°) image from 25 August 2000 at 1802Z.  Created 

using the NOAA Weather and Climate Toolkit available from the National Climatic Data 

Center.  Range rings are every 50 km out to 150 km.   
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Figure 3.21. Same as Figure 3.10 for cell 2 on 25 August 2000 ending at 1622Z. 
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Figure 3.22. Same as Figure 3.10 for cell 2 on 25 August 2000 ending at 1627Z. 
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Figure 3.23. Same as Figure 3.10 for cell 2 on 25 August 2000 ending at 1657Z. 
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Figure 3.24. Same as Figure 3.10 for cell 2 on 25 August 2000 ending at 1757Z. 
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Figure 3.25. Same as Figure 3.11 for cell 1 on 25 August 2000 ending at 1657Z. 
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Figure 3.26. Same as Figure 3.1 for forecast time (in minutes). 
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Figure 3.27. Same as Figure 3.5 for the forecast time. 
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Figure A.1. 1.0 km vertical resolution POD minus 0.5 vertical resolution POD. 
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Figure A.2. 1.0 km vertical resolution FAR minus 0.5 vertical resolution FAR. 
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Figure A.3. 1.0 km vertical resolution CSI minus 0.5 vertical resolution CSI. 
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APPE�DIX C  

 

Table 1.1 Statistics on the number of deaths due to hazardous weather (from Curran et al. 

2000). 
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Table 1.2. Annual convective weather deaths, injuries, and property damage reports from 

1992 – 1994 (from Curran et al. 2000).   
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Table 1.3. Results for the statistical analysis of lightning initiation signatures in this 

study. (a) Statistics for -10 °C, (b) -15 °C, (c) -20 °C (from Gremillion and Orville 1999). 
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Table 2.1.WSR-88D radar specifications. 

Antenna 

Diameter, ft 28 

m 8.5 

Beamwidth 0.93 

Gain 45 dB 

Polarization Linear Horizontal 

    

Transmitter 

Band C 

Wavelength 10.71 cm 

Frequency 
Range 2700 MHz to 3000 MHz 

Pulse Length 1.57 and 4.5 µs 

Peak Power 750 kW 

PRFs 
Short: 318 Hz to 1304 

Hz 

  Long: 318 Hz to 452 Hz 

Receiver 

3dB Bandwidth 0.63 MHz 

MDS (-) 113 dBm 

Dynamic Range 93 dB 

Gate Spacing 250 m 

Zmin @ 50km (-)20.7 dBz 
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Table 2.3. A 2 x 2 contingency table and formulas for computing forecast skill. 

  PREDICTED       

  Yes No   X =  Hit 

OBSERVED       Y =  Miss 

Yes X Y   Z =  False Alarm 

No Z W   W =  Correct No Forecast 

Probability of Detection:   POD = x / ( x + y) 

False Alarm Ratio:   FAR = z / ( x + z) 

Critical Success Index:   CSI  = x / ( x + y + z)  
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Table 3.7. Comparison of the results from Vicent et al. (2003; V) to the results from the 

study. 

Criteria POD  FAR CSI 

dBZ Test 
Value Isotherm V This Study V This Study V This Study 

35 dBZ -10 1.00 0.89 0.41 0.41 0.59 0.56 

40 dBZ -10 1.00 0.74 0.37 0.31 0.61 0.54 

35 dBZ -15 0.93 0.80 0.37 0.33 0.60 0.56 

40 dBZ -15 0.86 0.60 0.31 0.22 0.63 0.49 
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Table 3.8. VII percentiles. VII values in kg m
-2

. 

1997-2006 

Percentile VII 

0 0.000 

5 0.249 

10 0.420 

15 0.576 

20 0.740 

25 0.907 

30 1.090 

35 1.286 

40 1.501 

45 1.733 

50 1.985 

55 2.264 

60 2.566 

65 2.927 

70 3.332 

75 3.816 

80 4.416 

85 5.216 

90 6.354 

95 8.456 

100 51.629 
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Table 3.9.  Number of CG flashes correlated to different cell IDs for 11 June 2000. 

June 11, 2000 

Cell 
ID # of Flashes 

0 22 

1 39 

2 44 

3 8 

4 110 

5 61 

6 61 

7 75 

8 24 

9 78 

10 75 

11 14 

12 0 

13 23 

14 14 

15 1 

16 26 

17 6 

18 0 

19 0 

20 0 

21 24 

22 7 

23 0 

24 0 

25 0 

26 0 

27 3 
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Table 3.10. Same at Table 3.8 for 25 August 2000. 

August 25, 2000 

Cell 
ID # of Flashes 

0 16 

1 0 

2 65 

3 1 

4 0 

5 4 
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Table 3.11. Forecast statistics for -10 °C that result from analysis of 11 June 2000 when 

cells with a VII less than 2.56 kg m
-2

 are excluded at Only cells with a minimum track 

count of 2 are included. 

Environmental -10 C Level 

E10-30 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.28 0.18 0.25 0 

CSI 0.48 0.64 0.6 1 

          

E10-35 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.28 0.18 0.25 0 

CSI 0.48 0.64 0.6 1 

          

E10-40 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.28 0.18 0.25 0 

CSI 0.48 0.64 0.6 1 
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Table 3.12. Same as Table 3.11 for -15 °C. 

Environmental -15 C Level 

E15-30 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.28 0.18 0.25 0 

CSI 0.48 0.64 0.6 1 

          

E15-35 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.24 0.18 0.25 0 

CSI 0.5 0.64 0.6 1 

          

E15-40 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.19 0.1 0.25 0 

CSI 0.52 0.69 0.6 1 
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Table 3.13. Same as Table 3.11 for -20 °C. 

Environmental -20 C Level 

E20-30 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.28 0.18 0.25 0 

CSI 0.48 0.64 0.6 1 

          

E20-35 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.5 0.67 0.75 1 

FAR 0.15 0.11 0 0 

CSI 0.46 0.62 0.75 1 

          

E20-40 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.29 0.5 0.5 1 

FAR 0.14 0 0 0 

CSI 0.27 0.5 0.5 1 
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Table 3.14. Same as Table 3.11 for updraft -10 °C. 

Updraft -10 C Level 

U10-30 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.28 0.18 0.25 0 

CSI 0.48 0.64 0.6 1 

          

U10-35 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.24 0.18 0.25 0 

CSI 0.5 0.64 0.6 1 

          

U10-40 dBz Test 

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.59 0.75 0.75 1 

FAR 0.19 0.1 0.25 0 

CSI 0.52 0.69 0.6 1 
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Table 3.15. Forecast statistics for -10 °C that result from 11 June 2000 when cells with a 

VII less than 1.09 kg m
-2

 are excluded.  Only cells with a minimum track count of 2 are 

included. 

Environmental -10 C Level 

E10-30 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.8 0.77 0.8 1 

FAR 0.67 0.71 0.76 0.88 

CSI 0.31 0.27 0.22 0.13 

          

E10-35 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.8 0.77 0.8 1 

FAR 0.67 0.71 0.76 0.88 

CSI 0.31 0.27 0.22 0.13 

          

E10-40 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.8 0.77 0.8 1 

FAR 0.64 0.67 0.73 0.86 

CSI 0.33 0.3 0.25 0.14 
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Table 3.16. Same as Table 3.15 for -15 °C. 

Environmental -15 C Level 

E15-30 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.8 0.77 0.8 1 

FAR 0.64 0.68 0.73 0.88 

CSI 0.33 0.29 0.25 0.13 

          

E15-35 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.8 0.77 0.8 1 

FAR 0.57 0.64 0.69 0.86 

CSI 0.38 0.32 0.29 0.14 

          

E15-40 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.79 0.75 0.75 1 

FAR 0.44 0.4 0.57 0.67 

CSI 0.49 0.5 0.38 0.33 
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Table 3.17. Same as Table 3.15 for -20 °C. 

Environmental -20 C Level 

E20-30 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.8 0.77 0.8 1 

FAR 0.55 0.55 0.64 0.8 

CSI 0.41 0.4 0.33 0.2 

          

E20-35 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.65 0.67 0.75 1 

FAR 0.41 0.38 0.4 0.5 

CSI 0.45 0.47 0.5 0.5 

          

E20-40 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.38 0.5 0.5 1 

FAR 0.27 0 0 0 

CSI 0.33 0.5 0.5 1 
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Table 3.18. Same as Table 3.15 for updraft -10°C. 

Updraft -10 C Level 

U10-30 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.8 0.77 0.8 1 

FAR 0.64 0.68 0.73 0.88 

CSI 0.33 0.29 0.25 0.13 

          

U10-35 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.8 0.77 0.8 1 

FAR 0.57 0.64 0.69 0.86 

CSI 0.38 0.32 0.29 0.14 

          

U10-40 dBz Test         

Within Dist 150 125 100 75 

Track Count 2 2 2 2 

# of Cells 105 60 35 16 

POD 0.79 0.75 0.75 1 

FAR 0.44 0.4 0.57 0.67 

CSI 0.49 0.5 0.38 0.33 
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Table 3.19. Average CSI values when using different percentile VII test values. 

  June  July August All 

Percentile         

None 0.566 0.572 0.600 0.583 

10th 0.568 0.565 0.588 0.577 

20th 0.579 0.575 0.588 0.580 

30th 0.574 0.586 0.563 0.574 

40th 0.581 0.556 0.494 0.533 

60th 0.493 0.424 0.360 0.409 
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