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ABSTRACT 

 

Chemical Agent Induced Reduction of Skin Light Scattering. (December 2009) 

Jason M. Hirshburg, B.E., Vanderbilt University 

Chair of Advisory Committee:  Dr. Alvin T. Yeh 

 

 Skin turbidity limits light based medical applications while increasing the risk of 

epidermal thermal injury.  Collagen fibers are responsible for the majority of light 

scattering within skin.  Chemicals, known as clearing agents, reduce tissue light 

scattering with the potential to increase the efficacy of light based imaging and 

therapeutic applications.  Three hypotheses have been suggested for the clearing 

mechanism: index of refraction matching between clearing agent and collagen, tissue 

dehydration, and agent induced collagen structure perturbation.  This study investigates 

optical clearing in skin while presenting a comprehensive clearing mechanism. 

 Clearing was found to be a complex process with thermodynamic and kinetic 

components.  Concentration gradients drive clearing agents to diffuse into skin and 

remove water.  The introduction of clearing agents into the tissue reduces light scatter.  

The speed of clearing was found to increase with molecular size and number of hydroxyl 

groups.   

 The molecular modeling program CHARMM suggests collagen affinity plays a 

major role in clearing agents’ ability to interact with collagen and remove bound water.  

Collagen solubility is a measure of clearing agent affinity for collagen and was found as 
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a predictor of agent clearing potential.  Increasing agent molecular size led to a greater 

reduction of fibrillogenesis with corresponding high collagen solubility. 

 Raman spectroscopy quantified clearing agent induced dehydration of dermal 

collagen.  Clearing agent ability to dehydrate dermal collagen corresponded with 

collagen affinity and the ability to clear tissue optically.  The most effective clearing 

agents were found to remove bound water with the greatest efficacy.  

 Replacement of collagen triple helix bound water by clearing agents with an 

index of refraction similar to collagen optically homogenizes skin tissue leading to a 

reduction in light scattering.  Through dehydration of collagen with concomitant 

diffusion of clearing agent into collagen, the skin is homogenized leading to a large 

reduction in tissue light scattering. 
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CHAPTER I 

INTRODUCTION 

 

1.1  Brief Review of Optical Clearing  

 The turbidity of most biological tissue limits biomedical applications of light-

based diagnostics and therapeutics.  Multiple scattering events reduce the effective depth 

over which information about the tissue can be ascertained and the ability to localize 

embedded features of interest.  Optical imaging of deep structures is difficult due to the 

rapid degradation of image resolution and signal strength with increased depth.  

Furthermore, optical scattering restricts delivery of a collimated laser beam to subsurface 

targets such as blood vessels, decreasing the efficacy of light-based therapeutic 

applications. 

 Prior studies demonstrate that a reduction in optical scattering can improve the 

efficacy of light-based techniques in medical applications[1-9].  Non-reactive chemical 

agents, in particular sugars (e.g., glucose) and sugar-alcohols (e.g., glycerol) have been 

used to temporarily increase tissue transparency[1-3-10-12].  These agents have been 

investigated primarily in collagenous tissues with initial studies measuring induced 

increases in light transmittance in ocular sclera[1].   

 
 
 
 
_____________ 
This dissertation follows the style of Lasers in Surgery and Medicine. 
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          In fact, agents have been shown to be most effective when applied directly to the 

mesenchyme of tissue systems such as the dermis of skin.  Application of glycerol sub-

dermally in vitro or by injection in vivo reduced light scattering in skin, improved 

detection of fluorescence signal from subsurface targets and enhanced visualization of 

subsurface blood vessels[2-3].  This optical clearing effect has been studied in other 

tissue systems such as muscle[10] and the gastrointestinal tract[11] as well as used for 

agent sensing, where a reduction in tissue scattering occurred with increased blood 

glucose levels[6].   

 

1.2  Significance and Identification of Opportunity 

 Development of topically applied clearing agents would have a large impact on a 

wide range of skin conditions and diseases.  Many patients suffer from a considerable 

degree of psychological morbidity from these conditions further increasing the need for 

effective treatments[13].  Table 1 lists several dermatologic pathologic conditions that 

would benefit from clearing agents. 
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 Many of the conditions listed in Table 1, such as Port Wine Stain (PWS) involve 

abnormal growth of tissues within and under the skin.  PWS is a congenital 

malformation of the vasculature within skin that occurs in approximately 1,500,000 in 

the United States and thirty-two million people worldwide[14-16].  PWS is more than a 

cosmetic problem; personality development is adversely affected in PWS patients with 

detailed studies documenting low self-esteem and problems with interpersonal 

relationships[17-19].  PWS is characterized by flat, red macules that darken and become 

raised over time due to the development of vascular nodules (Figure 1)[20-21].   

 

Table 1:  Conditions currently treated with light based therapies that would benefit from 
clearing agents. 

Vascular Lesions Pigmented Lesions Other Skin Pathologies 
Port Wine Stain 

  (PWS) Lentigo Skin Cancers 
Hemangiomas Nevus of Ota Acne Vulgaris 
Telangiectasias Nevus of Ito Acne Scars 

Angiomas Blue Nevus Hypertrophic Scars 
Adenoma sebaceum Ephelides Rhytides 

Angiokeratomas Becker's Nevi Hypertrichosis 
Venous Lakes Hairy Nevi Hidradenitis Suppurative 
Spider Veins Epidermal Melanosis Pseudo-folliculitis Barbae 

Rosacea Nevus Spilus Traumatic and Decorative Tattoos 
Poikiloderma of Mucocutaneous Hyper- 

 Civatte Pigmentation Chrysiasis 
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 Studies of PWS show a normal epidermis overlaying an abnormal plexus of 

dilated blood vessels within the dermis.  Currently, pulsed dye lasers are used to destroy 

dermal blood vessels and are the therapy of choice for PWS.  However, treatment 

success remains variable and unpredictable.  Complete blanching of the lesions occur in 

only 10% of patients even after multiple laser treatments.  This low success rate is 

caused by the light scatter within skin.  The scattering reduces the ability of the laser to 

deliver an adequate amount of light to the targeted PWS blood vessels (Figure 2). 

 
 

 

 

 Figure 1: Twenty-four year old  Caucasian male with PWS. 

 
Figure 2:  Two-year-old Asian male with PWS of the right face: 
(A) prior to laser therapy; and (B) two years after eight laser 
treatments. 
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 The use of clearing agents to reduce the light scattering properties of skin would: 

• Improve the effectiveness of the laser treatment 

• Reduce the risk of burns to the patient 

• Potentially reduce the number of required treatments lowering the cost and time 

of treatment.   

  

1.3  Proposed Clearing Mechanisms 

 The turbidity of skin is due to light scattering associated with dermal 

collagen[22].  Thus the interaction of clearing agents and collagen play a central role in 

reducing light scattering within skin.  Previous studies used common properties of these 

chemical agents to suggest that refractive index matching and dehydration are possible 

mechanisms for tissue optical clearing.  Light scattering in dermis is predominantly from 

ubiquitous collagen fibers[22].  Indeed, all studies cited used agents with indices of 

refraction within the range reported for collagen (from 1.35 to 1.55)[2-3-8-22-27].  

Dehydration is also believed to play a role as all reported agents are hyperosmotic with 

respect to biological tissue.  However, these parameters, refractive index and osmolarity, 

do not correlate with agent optical clearing potential[27].  In fact, tissue optical clearing 

with glycerol shows a strong inverse dependence on the degree of covalent cross-linking 

present[28] and in vitro studies of collagen gel opacity correlated with sugar and sugar-

alcohol concentrations[29] suggesting the importance of agent-collagen molecular 

interactions.   
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 Molecular interactions of sugars and sugar-alcohols and their destabilizing and 

inhibitory effects on collagen structure and fibrillogenesis have been extensively studied 

within the biochemistry community.  Such studies provide insight on a molecular 

mechanism of tissue optical clearing and a means of rational selection and design of 

effective chemical agents.  This work examines the role refractive index matching, 

dehydration, and collagen structure perturbation play in bulk tissue clearing.  A 

comprehensive clearing mechanism based on homogenizing the optical properties of 

skin through clearing agent removal of collagen’s bound water is presented.   
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CHAPTER II 

TISSUE OPTICS 

 

2.1  Skin Anatomy 

 Skin consists of three layers: 1) the epidermis; 2) dermis; and 3) subcutaneous fat 

(Figure 3).  The epidermis is the thinnest layer averaging 100 µm in thickness and is 

largely cellular.  The most superficial layer is the stratum corneum (SC).  The SC is 

responsible for the barrier effects of skin and consists largely of differentiated cells 

surrounded by a lipid membrane.  Below the SC, the epidermis is metabolically active 

containing several cell types.  Keratinocytes form the majority of the epidermis and 

contribute to SC formation.  Melanocytes produce melanin, a chemical involved in skin 

pigmentation.  Other cell types include Langerhans cells (immune function) and Merkel 

cells involved in touch perception. 

 

 

 

 

Figure 3:  The three layers of skin. 
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 The dermis is largely connective tissue responsible for the mechanical properties 

of skin and consists of collagen and elastin.  The small superficial portion of the dermis 

is called the papillary dermis and contains a loose network of small collagen fibers (0.3-

3.0 µm diameter).  Below the papillary dermis is the reticular dermis.  The reticular 

dermis forms the majority of the dermis and is characterized by densely packed, large 

collagen fibers (10-40 µm diameter) oriented parallel to the skin surface.  Surrounding 

the collagen is an amorphous ground substance consisting primarily of water.  Below the 

dermis is a layer of subcutaneous fat. 

  

2.1.1  Collagen Structure 

 An understanding of collagen structure is required due to the pivotal role it plays 

in dictating skin optical properties and clearing.  Dermal collagen is primarily Type I 

collagen and is characterized by a structural hierarchy[30].   

 Primary structure describes the sequence of amino acids that form proteins.  

Collagen is a hydrophilic protein consisting of mostly acidic, basic, and hydroxylated 

amino acid residues.  Glycine (GLY), shown in Figure 4 is the most common residue 

and is regularly spaced throughout the entirety of the molecule in GLY-X-Y repeats.  

Proline (PRO) and hyroxy-proline (HPO) are the next most abundant residues found in 

the “X” and “Y” positions, and constitute almost 25% of collagen’s primary sequence. 
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 The secondary structure details the configuration of individual chains formed by 

the amino acid sequence.  Type I collagen has a left-handed helical secondary structure 

with a pitch of about 9 Å.  The occurrence of a glycine residue at every third position 

allows for sterically permissible hydrogen bonding. 

 Tertiary refers to the helicity or large scale folding by the totality of polymeric 

chains.  The tertiary structure of collagen is a right handed triple helix which forms the 

fundamental molecular unit of collagen fibers (Figure 5A).  The triple helix consists of 

three left handed helices with a repeat distance of 100 Å, a length of about 2800 Å and 

diameter of 15 Å.  Of these helices two are identical and are known as α1 chains with the 

third chain being somewhat different and known as an α2 chain.  The end of the triple 

helix is non-helical in nature and is thought to be the primary cite of crosslink formation 

with other triple-helices.   

 Quaternary structure refers to large scale aggregates of collagen triple-helices.  

Triple-helices combine to form collagen fibrils (Figure 5B,C).  Attractive forces between 

triple-helices are largely hydrophilic in nature (hydrogen bonding) with some inter-helix 

covalent crosslink formation between non-helical regions.  Fibrils show a banding 

 

Figure 4: Structure of amino acids commonly found in collagen. 
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pattern of light and dark regions in electron microscopy images characteristic of the 

staggered nature of triple-helix aggregation.  Dark regions are characteristic of complete 

overlap of collagen triple-helices forming the fibril.  Light regions are areas that 

incorporate gaps between triple-helices.  One fibril period or “repeat region” consists of 

one light region and one dark region and is about 680 Å in length. 

 

 

 

 

2.2  Optics of Bulk Skin 

 Light interaction with tissue can be quantitatively described by optical property 

coefficients (Table 2).  

 

Figure 5:  Tertiary and quaternary structure of collagen. (A) One repeat unit of triple 
helix; (B) Triple-helices aggregate forming collagen fibrils; (C)  Transmission electron 
microscopy image of rodent tail collagen fibrils. 
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 Absorption and scattering contribute to tissue turbidity.  Both the absorption and 

scattering coefficients have units of inverse centimeters (cm-1) and quantify the average 

amount of absorptive or scattering events per unit length.  Absorption is the transfer of 

energy from a photon to matter usually resulting in electrons raised to an excited state 

(Figure 6A).  The increase in energy is dissipated through radiative events such as 

flouresence or non-radiative events such as heat.  Absorption in skin is small relative to 

scattering and assumed constant with application of clearing agents (Table 3)[24]. 

 

 

 

 Scattering is large in skin compared with absorption and provides the principal 

contribution leading to tissue turbidity.  Scattering results from the interaction of light 

with atoms and molecules.  Light waves induce the electric charges of atoms and 

Table 3: Optical properties of the epidermis and dermis. 

Skin Layer λ (nm) µa (cm-1) µs (cm-1) g n 

Epidermis 633 4.3 107 0.79 1.5 

Dermis 633 2.7 187 0.82 1.4 
 

Table 2: Tissue optical property coefficients. 

Event 
Symbol 
[units] Description 

Absorption μa Photons eliminated by exciting matter 

Scattering μs Light emitted from charge oscillations 
Anisotropy g Average cosine of scattering angles 

Reduced Scattering µs' = µs(1-g) Effective amount of scattering within tissue 
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molecules within the tissue to oscillate and emit secondary electromagnetic radiation.  

The emitted secondary radiation is considered light “scattered” by the material (Figure 

6B).  Scattering within tissue is usually quantified by the reduced scattering coefficient, 

µs’.  µs’ incorporates anisotropy, g, giving the scattering description a directional 

component and is commonly used rather than the scattering coefficient, µs.  Anisotropy 

is a quantity that describes the direction of the scattered light. 

 

 

 

2.3  Light Scattering from Collagen 

 Previous studies indicate that refractive index differences between collagen and 

the surrounding medium in skin lead to light scattering[1-24].  The scattering 

coefficients are useful for describing the amount of scattering events in bulk tissue as 

well as attenuation calculations for light propagation.  When considering scattering of 

light waves with collagen, the index of refraction is useful.  

 

 

Figure 6: Light absorption. 

 



13 
 

2.3.1  Index of Refraction 

 Index of refraction is easily illustrated by reflection and refraction of incident 

light upon an optically smooth surface (Figure 7). 

 

 

 

The directions of the reflected and refracted waves are described by the law of specular 

reflection and Snell’s law.  These laws express the direction of each light “ray” based on 

the index of refraction, n, of the medium.  Figure 7 shows an example with conditions: 

n1 < n2 and θ’ < θ.  The larger refractive index n2 has “bent” the light at the interface 

where the refracted light forms a smaller angle with the line normal to the surface.  The 

magnitude of the “bend” varies with the ratio of each material’s refractive index. 

 The example above can also be depicted by considering the molecular nature of 

matter.  The homogenous, transparent medium with an index of n2 is actually an 

aggregation of many molecules.  As described in the above section, incident light waves 

create oscillations in molecules causing a secondary emitted electric field.  Thus, each 

molecule is acted on by not only the incident light wave, but the emitted fields of the 

 

Figure 7:  Reflection and refraction at a surface. 



14 
 

surrounding molecules.  The solution to this many body problem is illustrated by the 

bending of light at the surface resulting in the refracted ray.  The net result is the 

superposition of the many secondary waves giving one refracted ray with a propagation 

velocity of c/n, where c is the speed of light and n is the refractive index.  The incident 

wave is extinguished in the medium and outside the secondary waves give rise to the 

reflected ray.  The index of refraction, n, is thus the expression of scattering by many 

small particles (molecules) that make up a medium and is dependent on the number of 

particles and their polarizability.  In skin, light scattering is somewhat more complicated 

than the example above.  However, differences between the refractive index of collagen 

fibers and surrounding medium give rise to many scattering events that lead to tissue 

turbidity.  
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CHAPTER III 

BULK SKIN CLEARING 

 

3.1  Measuring Optical Properties of Skin Using Inverse Adding-Doubling 

 The absorption and reduced scattering coefficients describe light attenuation in 

tissues.  The inverse adding doubling method (IAD) is an effective and commonly used 

method to calculate each coefficient[22-24-31].  IAD uses total reflectance and total 

transmission to calculate the optical properties of bulk tissue.  “Inverse” describes the 

reverse of the usual process of calculating reflection and transmission from optical 

properties.  “Adding-doubling” indicates the way the radiative transport equation is 

solved within a specified error range.  The radiative transport equation (RTE) describes 

light propagation within tissue.  The overall equation is an energy balance in the 

form[24]: 

 

where I(r,s) is the radiance or the amount of energy that flows across an area at point r 

in the direction of s.  µt is the total attenuation (µa + µs) and p(s,s’) is a probability 

density function or “phase function” describing scattering in direction s for a photon 

traveling in s’.   At each point within tissue, energy is lost due to absorption and 

scattering and gained from energy flow from surrounding areas.  The radiative transport 

 
                        3.1 

[Change of energy of area element = Energy out + Energy in] 
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equation, RTE, is difficult to solve and requires constraints on the sample to exactly 

match assumptions made for an exact solution.  The RTE is depicted schematically in 

Figure 8. 

 

  

 

 The IAD method allows for optical property calculations in a wide range of 

tissue types by approximating a solution to the RTE with an acceptably small error 

(~3%).  IAD calculates the absorption and scattering coefficients using experimentally 

measured tissue total reflectance and transmission.  IAD employs the following steps: 1) 

guess the optical properties of the tissue (µa, µs); 2) calculate reflection and transmission 

 

Figure 8:  Schematic drawing of energy flow described by the RTE.  Within the 
spherical volume element V, the radiance I(r,s’) in direction s’ is either 
absorbed or scattered in direction s within the unit solid angle dΩ. 
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(Rcalc, Tcalc); 3) compare calculated values with experimental values; and 4) change 

guessed µa and µs until calculated values match experimental values (Rcalc, Tcalc = 

Rexperimental, Texperimental). 

 IAD has several advantages and disadvantages[32].  The advantages are that only 

integrations over angles are required, physical interpretations can be made at each step, 

and isotropic and anisotropic scattering can be considered.  The program is also faster 

than other methods such as Monte Carlo.  Disadvantages are that calculations of internal 

fluence are awkward and uniform irradiation of optically homogenous slabs is required.  

Previous studies indicate the disadvantages are minor when measuring skin optical 

properties making the IAD method appropriate for bulk skin optical measurements[31-

33]  (See appendix for further discussion of IAD). 

  An integrating sphere based system is used to measure percent total reflection 

and transmission (Figure 9)[33].  Integrating spheres convert light into an electrical 

signal that can be measured by an oscilloscope.  Reflectance standards, materials that 

reflect a known amount of light, are used to calibrate the system for use with actual 

tissue.  Figure 9 shows a simple schematic of a typical experimental setup used to 

measure transmission and reflection of light in skin.   
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3.2  Controlling the Optical Properties of Skin 

3.2.1  Introduction 

 Traditionally, the optical properties of skin have been considered fixed.  

However, after tissue immersion in select non-reactive chemical agents, a temporary 

reduction in light scattering has been demonstrated (Figure 10).     

 

 

 

 

Figure 10: Clearing agents induced transparency in skin: (A) Ruler; (B) Turbid skin on 
ruler.  Reduction of scattering is seen (C) 5 min and (D) 10 min after clearing agent 
application.  

 

 

Figure 9:  Experimental setup to measure (A) total transmission and (B) total 

reflectance. 
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 Previous studies have shown that a reduction in tissue optical scattering can 

improve the efficacy of light based therapeutics[24-34].  Optical clearing can be 

dramatic as tissue becomes visibly transparent and loses mechanical compliance.  This 

process is reversible when upon subsequent immersion in isotonic saline, tissue turbidity 

and mechanical properties return to their native states[35].  These clearing agents are 

benign, biocompatible and already in use as sweetening additives in foods and 

emollients in skin care products.  Optical clearing agents have been investigated 

primarily in collagenous tissues and have been shown to be most effective when applied 

directly to the dermis of skin[3-23-28-36-38].  Interestingly, aldehyde fixatives, such as 

formaldehyde, hinder the clearing process[28].  This section examines changes in optical 

properties of native and aldehyde fixed skin cleared by a series of sugar-alcohols, 

propanediols, and sugars (Table 4). 
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3.2.2  Methods of Skin Optical Property Measurement 

 Ex vivo rodent skin (3-6 wk old Sprague-Dawley) was cut into 1.5x1.5 cm2 

samples using surgical scissors.  Subcutaneous fat was removed using a razorblade and 

rodent skin stored in 1x PBS at 4 ºC until experiments were performed less than 24 hr 

later.  Skin thickness was measured using a micrometer (Mitutoyo, Aurora, IL) after the 

sample had been placed between two glass slides of known thickness.  The slides were 

secured using binder clips to ensure constant pressure on each skin sample. 

 An integrating sphere (Labsphere, North Sutton, NH) was used to determine the 

transmittance and reflectance of 635 nm laser diode light in rodent skin samples[32-33].  

Table 4: Physical properties of clearing agents. 

    Molecular Refractive Osmolality 
Chemical Agent Formula Weight Index (Osm/kg) 

Sugar Alcohols: 
    Sorbitol C6H14O6 182.17 1.45 15.2 

Xylitol C5H12O5 152.15 1.45 15.6 
Glycerol C3H8O3 92.09 1.46 7.60 

Ethylene glycol C2H6O2 62.07 1.43 9.00 

     Propanediols: 
    1,2-propanediol C3H8O2 76.1 1.44 8.30 

1,3-propanediol C3H8O2 76.1 1.43 8.70 

     Sugars: 
    Sucrose C12H22O11 342.29 1.45-1.50 N/A 

Dextrose C6H12O6 180.15 1.45 N/A 

Fructose C6H12O6 180.16 1.45 N/A 
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The skin/glass combination was placed at the entrance and exit ports of the integrating 

sphere for transmittance and reflectance measurements, respectively.  For transmittance 

measurements, the exit port was covered using a spectralon-coated port plug (99% 

reflectance).  Light measurements were conducted using a silicon photodiode 

(Labsphere) connected to an oscilloscope (Tektronix, Beaverton, OR).  System 

calibration was performed using neutral density filters and reflectance standards 

(Labsphere).  The inverse adding-doubling method was used to calculate the reduced 

scattering coefficient, µs’, for each skin sample before and after (45 min) clearing agent 

application.  Volume matched solutions of each clearing agent (Table 4) were applied to 

the dermal side of the skin sample.  The chemical agents were applied for a total of 45 

minutes and removed carefully with KimwipesTM prior to transmittance and reflectance 

measurements.  Reduced scattering ratio (RSR) defined as: 

 

the ratio of µs’ before and after clearing agent application, was used to quantify the 

reduction in tissue µs
’ and chemical agent optical clearing potential (OCP). 

 MATLAB software (The Mathworks, Natick, MA) was used to perform a one-

way analysis of covariance (ANCOVA) test on the RSR data of rodent skin to test for 

statistically significant differences in the linear regression for each chemical agent.  The 

overall RSR data were found to be dependent on chemical type (categorical variable) 

and concentration (continuous variable).  The effect of each clearing agent on skin was 

 

                                        3.2 
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assumed to be normally distributed.  Analysis by chemical agent with the need to control 

for the covariate (concentration) called for the use of one-way ANCOVA.  An F-test 

determined that RSR mean values were significantly different and t-tests were performed 

to compare the effects of the individual chemicals.  The Scheffes multiple-comparisons 

procedure was used to correct for the error associated with the large number of 

comparisons[39]. 

  

3.2.3  Native Skin Clearing 

 The clearing ability of the agents in Table 4 was examined in native rodent skin 

and human skin after 45 min of agent application.  Figure 11 shows the reduced 

scattering ratio as a function of clearing agent concentration.  The clearing ability of 

each agent was evaluated from a concentration of 0.1 M to full strength (sorbitol and 

xylitol up to 7 M; glyercol, 1,2-propanediol, and 1,3-propanediol up to 13.6 M;

 Clearing in human skin showed similar trends of clearing as those found in 

rodent skin (Figure 11).  Clearing was slightly greater in human skin than rodent, 

 and 

ethylene glycol up to 17.8 M). High RSR values indicate a large reduction in scattering 

within skin.  The slope from linear regression analysis was used to define opt ical 

clearing potential (OCP) for each chemical agent.  Application of one way analysis of 

covariance to test RSR data identified three significantly different groups (p≤0.05) 

among the sugar alcohols and propanediols (Figure 11).  Sorbitol was the most effective 

clearing agent with two fold greater clearing than xylitol, glycerol, and 1,3-propanediol.  

Ethylene glycol and 1,2-propanediol exhibited the least effective ability to clear.   
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however, three significantly different groups were seen: sorbitol; glycerol and 1,3-

propanediol; and ethylene glycol and 1,2-propanediol (p≤0.05).  Xylitol was not found to 

be significantly different than sorbitol in human skin.  Similar statistical trends in 

clearing efficacy between rodent and human signify rodent skin as a good experimental 

model for opt ical clearing in human skin.  

 The ability of sugar alcohols and propanediols to reduce light scattering within 

native skin after 45 minutes of clearing does not correlate with index of refraction or 

osmolality.  Figure 12 illustrates clearing (RSR) in relation to agent osmolality and 

refractive index.  Dehydration (osmolality) and refractive index did not correlate with 

each agent’s ability to clear rodent skin.  For example sorbitol and xylitol have similar 

refractive indices (1.45) and osmolalities (15.2, 15.6 respectively) yet exhibit statistically 

different clearing efficacies.  Previous studies suggested a clearing mechanism based on 

index matching and dehydration[1-3-23-24-26].  Chemical agents with high refractive 

index similar to collagen were thought to dehydrate skin tissue and raise the refractive 

index of the medium surrounding collagen fibers.   
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 The removal of bulk water from the tissue and subsequent replacement by 

clearing agent was thought to minimize the refractive index mismatch and reduce 

scattering.  The lack of correlation between refractive index and osmolality with clearing 

ability cast doubt on these previous assumptions and suggest a more complex molecular 

mechanism based on clearing agent interaction with collagen. 

 

 

Figure 11:  Reduced scattering ratio (RSR) of chemical agents in rodent and human skin. 

*  Xylitol was not found to be significantly different than sorbitol in human skin. 
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 Optical Clearing in rodent and human skin does correlate with molecular size.  

Clearing efficacy was proportional to molecular chain length.  Sorbitol, a six carbon 

chain (Mw = 182.17), was the largest sugar alcohol examined and was found to be the 

most effective clearing agent.  Ethylene glycol and 1,2-propanediol were the smallest 

chemical agents tested and the least effective clearing agents after 45 min.  

 Hydroxyl group placement also affects an agent’s ability to clear skin.  1,3-

propanediol and 1,2-propanediol are both similar in size and other physical properties 

such as refractive index and osmolality.  1,3-propanediol was found to be a significantly 

more effective clearing agent than 1,2-propanediol after 45 min.  1,3-propanediol has 

hydroxyl groups on its terminal carbons whereas 1,2-propanediol has hydroxyl groups 

on adjacent carbons (Figure 13).  As we will see later, the longer spacing of 1,3-

propanediol’s hydroxyl groups allow for a larger interaction with collagen and more 

effective clearing of skin tissue as a whole. 

 

 

Figure 12:  Skin clearing (RSR) does not correlate with osmolality or refractive index. 
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 The ability of a series of sugars to reduce the turbidity of native skin after 45 min 

of clearing was also examined.  Figure 14 shows RSR as a function of clearing agent 

concentration.  Linear regression analysis was again used to determine OCP.  Statistical 

ANCOVA analysis determined a significant difference between glycerol and the other 

agents indicated by the division in the OCP chart.  Like sugar alcohols and propanediols, 

large sugar molecules are effective clearing agents.  Fructose and dextrose, both six 

carbon molecules, reduce light scattering with no statistical difference compared to the 

six carbon sugar alcohol, sorbitol (p≤0.05).  The trend of increasing molecular size 

leading to larger reduction in scattering (high RSR) was found to reach a limit.  Sucrose 

is disaccharide sugar consisting of one fructose and one dextrose molecule.  Sucrose was 

found to have a similar clearing ability to the other sugars.  We hypothesize that 

sucrose’s large molecular size sterically hindered its ability to interact with collagen 

fibers within the skin and limited overall clearing. 

 

 

Figure 13:  (OH) spacing is larger in 1,3-propanediol leading 
to more effective clearing after 45 min in native skin. 
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 Clearing in native skin after 45 minutes reveals significant differences in the 

ability of chemical agents to reduce light scattering.  Index of refraction and osmolality 

are not predictive chemical properties of optical clearing potential.  These findings 

suggest that clearing is more complex than matching an agent’s refractive index to the 

reported values for collagen or simply removing water from skin tissue.  Differences in 

clearing ability cannot be explained by simple diffusion either.  Large molecules diffuse 

more slowly than small molecules throughout tissue, yet they clear more effectively. 

 The clearing results imply clearing agent interactions with collagen potentially 

play a large role in optical clearing.  Yeh et al, found clearing agents perturb collagen 

structure in cleared tissues[28].  It was suggested that clearing agents reduce the 

attractive forces between collagen triple helices which results in collagen structural 

 

Figure 14:  Reduced scattering ratio (RSR) as a function of agent concentration.  
Optical clearing potential (OCP) of each agent is defined by slope from linear 
regression analysis of RSR data and shown in inset table. 
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changes that lead to clearing.  To elucidate the role alterations in collagen morphology 

play in skin optical clearing, rodent skin tissue was fixed prior to clearing by exogenous 

chemical agents. 

 

3.2.4  Clearing in Fixed Skin 

 Fixed tissues exhibit a reduced ability to be cleared leading researchers to 

suggest collagen structural changes as a possible mechanism for optical clearing.  

Clearing agents cannot overcome covalent bonds.  Fixing tissue introduces an abundance 

of covalent bonding within skin effectively locking the structure in its native state.  A 

clearing mechanism based solely on collagen perturbation would result in little to no 

clearing seen in fixed skin immersed in clearing agents. 

 Excised rodent skin was fixed in 4.0% glutaraldehyde for 48 hr.  After fixation, a 

series of sugar alcohols and propanediols were applied to the skin for 24 hr.  The 

reduction in tissue scattering due to the agents was measured using the integrating sphere 

technique described above.  The reduced scattering ratio (RSR) was calculated and is 

shown in figure 15 with corresponding standard deviation (Table 5).  OCP was 

calculated for statistical analysis of clearing efficacy, but is not shown.   

 Given time, clearing agents reduce light scattering within fixed skin.  After 24 hr 

of clearing agent application, scatter reduction in fixed skin was similar to clearing in 

native skin.  Interestingly, there were no differences in clearing ability between the 

clearing agents examined (p≤0.05) and each reduced light scattering in fixed skin similar 

to the most effective agents (sorbitol and sugars) found in native skin after 45 min. 
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 Clearing agent ability to reduce scattering in fixed skin indicates that collagen 

structure perturbation is not the primary cause of scatter reduction.  Underlying this 

result is the assumption that fixatives form covalent bonds throughout the entirety of the 

collagen fibers.  Supporting this assumption are previous studies of glutaraldehyde 

diffusion through skin that found diffusion of fixative throughout the majority of 

collagen fibers[40-43].  Cheung et al conducted a comprehensive examination of GA 

Table 5: RSR standard deviation (n=4 at each concentration). 

0.1 M 1.0 M 3.5 M 7.0 M 13.6 M 17.9 M
Ethylene glycol 0.039 0.077 0.256 0.355 N/A 0.425

Glycerol 0.088 0.095 0.227 0.161 0.703 N/A
Xylitol 0.054 0.166 0.299 0.569 N/A N/A

Sorbitol 0.115 0.001 0.482 0.182 N/A N/A
1,2-propanediol 0.979 0.151 0.093 0.278 1.33 N/A
1,3-propanediol 0.452 0.082 0.486 0.289 0.986 N/A  

 

Figure 15:  Clearing of rodent skin fixed with 4.0% glutaraldehyde 
for 48 hr. 
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induced covalent bonding in proteins and collagen fiber networks within pericardium.  

Glutaraldehyde, a dialdehyde, was found to form intra- and inter-fiber covalent 

crosslinks between the lysine and hydroxylysine residues of collagen and the aldehyde 

groups of GA[42].   

 Initially, it was hypothesized that glutaraldehyde formed polymer networks that 

quickly crosslinked the surface of collagen fibers limiting the diffusion of the fixative 

into the interior of the fiber[42].  Recently, however, many studies using Raman, thermal 

stability, AFM, and enzymatic stability methods have found that an average of three GA 

molecules bind at each lysine/hydroxylysine residue[40-41-43-44].  These findings, 

make the early hypothesis of GA polymerization, limiting diffusion into fibrils, seem 

unlikely[44].  

 Glutaraldehyde seems to be able to penetrate into collagen fibrils forming 

crosslinks between triple helices.  Cheung found that after fixation with 1% GA, 

solubilization of collagen within pericardium using CNBr and Pronase was 

ineffective[42].   Olde Damink found that 85% of free amine groups within 0.5% GA 

fixed dermal sheep collagen formed Schiff bases which lead to covalent crosslinks[44].  

These results indicate a large amount of crosslinking within collagen fibers and fibrils 

which supports the assumption that native collagen structure is retained throught the 

clearing process in fixed skin. 
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3.2.5  Thermodynamics and Kinetics 

 Clearing experiments in bulk skin tissue point to important processes in the 

clearing mechanism involving the thermodynamics and kinetics of light scatter 

reduction.  First, there is a thermodynamic equilibrium that is reached between clearing 

agents and skin.  Concentration gradients drive clearing agents to diffuse into skin and 

remove water.  The introduction of clearing agents into the tissue begin to optically 

homogenize skin and reduce light scatter.  Secondly, there is kinetic component to 

clearing.  The speed of clearing differs depending on the clearing agent used and 

differences between native and fixed skin. 

 An example of the roles thermodynamic equilibrium and kinetics play in clearing 

is shown in figure 16.  RSR of excised, native rodent skin immersed in 1,2-propanediol 

and 1,3-propanediol was measured after 1 hr and 24 hr.  The optical clearing potential, 

OCP, was calculated as described above.  After 1 hr of clearing there was a significant 

difference in clearing ability.  1,3-propanediol was found to clear more effectively than 

1,2-propanediol.  After 24 hr of clearing, however, there was no difference (p≤ 0.05).  

1,2-propanediol and 1,3-propanediol have similar refractive indices and osmolalities.  

They differ in hydroxyl group placement and ability to hydrogen bond with collagen.  

1,3-propanediol’s greater collagen affinity allowed for faster clearing in rodent skin and 

suggests a clearing mechanism based on clearing agent interaction with collagen.   
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 Ultimately all clearing agents studied with high refractive indices and osmolality 

eventually clear skin given sufficient time.  The speed of clearing is dependent on the 

collagen affinity of the agent used.  Light scatter reduction depends on optically 

homogenizing skin by reducing refractive index mismatches within the tissue.  As seen 

in the following sections, optically homogenizing skin requires clearing agent diffusion 

through collagen fibers with removal of tightly held bound water.  

    

 

Figure 16:  Reduced scattering ratio (RSR) as a function of agent concentration in 
native rodent skin after 1 and 24 hours.  Linear regression lines indicate optical clearing 
potential (OCP).  Non-visible error bars indicate standard deviation smaller than data 
point. 
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CHAPTER IV 

MOLECULAR MODELING OF CLEARING AGENT INTERACTION 

WITH COLLAGEN 

 

 Molecular dynamics simulation is an ideal tool to probe molecular level 

phenomenon, as it provides atomic level insight to enhance qualitative understanding of 

molecular interactions. Briefly, molecular dynamics is based on Newton’s second law of 

motion. Force on each atom is computed using a force field and the system of equations 

is integrated to get the time evolution of positions, accelerations, and velocities of atoms. 

The force field, or potential field, includes bonded (harmonic bond length, bond angle, 

and torsional) and non-bonded (Vanderwaal's and electrostatic) energy terms as a 

function of the position of atoms which can be used to compute atomic forces[45].  

  CHARMM molecular dynamics package with param22 force field in implicit 

solvent conditions was used to probe the interaction of alcohols with collagen mimetic 

peptides[46-47].  Collagen mimetic peptides are short triple helical domains like 

collagen having few (typically 7-12) amino acids in each alpha chain.  

 

 

 

 

_____________ 
Note: Molecular dynamics simulation performed in collaboration with Krishnakumar M. 
Ravikumar and Professor Wonmuk Hwang. 
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          These synthetic peptides have provided useful insights into the structure, function,   

and their relationship in collagen and are useful for simulation studies owing to their  

smaller size[48]. 

 

4.1  Structure of Peptides and Alcohols 

   Small modeling peptides are commonly used to quickly and accurately model 

collagen.  Synthetic peptides 1BKV (Protein Data Bank ID) and a regular GPO peptide, 

((GPO)_10)_3 (G-Glycine,P-Proline, and O-Hydroxyproline),  were used in the 

simulations. Peptide 1BKV has a biologically relevant imino acid deficient sequence of 

type-III collagen, which is important in its cleavage[48-49].  Peptide GPO is an imino 

acid rich peptide whose backbone structure was built using the TheBuSr collagen 

building script[50].  The side chain atoms were added to the backbone using the existing 

amino acid topology files and systematically energy minimized as reported 

previously[49] to get the final structure.  Polar hydrogens were added to the peptides 

using the HBUILD facility in CHARMM[51].  Parameters for hydroxyproline were 

added from a previous study[52].  Structures of the 6 alcohols - ethylene glycol, 

glycerol, 1,2-propanediol, 1,3-propanediol, xyletol, and sorbitol were built from the 

already existing lipid topology and parameter files. 
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4.2  Simulation Setup 

    Each alcohol was simulated with both peptides making a total of 12 separate 

simulation runs. In each simulation, 20  alcohol molecules were placed randomly around 

the peptide at a radial distance of 12.0 Angstroms from the cylindrical axis of the 

peptide. Owing to their bigger molecular structure, only 12 molecules of xylitol and 

sorbitol were placed around the peptide. Generalized Born solvation energy with simple 

smoothing function at the dielectric boundary was used to mimic solvation effects[53].  

The systems were first energy minimized to remove close contacts and then heated at the 

rate of 5 K/ps for 60 ps to get to the desired temperature of 300 K.  The systems were 

then equilibrated for 40 ps at 300 K. Each production run was for 600 ps using Verlet 

integration algorithm with a time step of 2.0 fs; coordinates were saved every 1 ps. To 

prevent the diffusion of peptide, harmonic constraints (spring constant = 2 kCal/mol-A) 

were applied on all peptide atoms to their original positions during heating and 

equilibration. During the production run, harmonic constraints were applied only on 

backbone amide nitrogen, alpha carbon, and carboxyllic carbon atoms, leaving the rest 

of the atoms, including side chains, free to interact with the alcohol molecules. To 

prevent diffusion of alcohol molecules away from the peptide, a cylindrical potential 

shell of 40 Angstroms diameter was defined around the peptide. Whenever alcohol 

molecules attempted to move out of this shell, a harmonic force was applied (spring 

constant = 1 kCal/mol-Å) pushing the alcohols back into the cylindrical shell. 
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4.3  Analysis 

 The hydroxyl groups in alcohols, being donors and acceptors of hydrogen bonds, 

can interact with the peptide side chains, backbone amide hydrogens, and carboxyllic 

oxygens.  Hydrogen bonding and hydrogen bond bridge formation of sugar alcohols and 

propanediols were analyzed.  Hydrogen bonds were defined using a distance cutoff of 

2.4 Å[54]  and a bridge was defined to be formed between two alpha chains if an alcohol 

molecule is simultaneously hydrogen bonded to  two alpha chains or two amino acids in 

the same alpha chain. Bridges can span across the surface area of collagen disrupting 

ordered water hydration layers. The propensity of chemical agents to form hydrogen 

bonds and bridges can be considered as a measure of its affinity to the collagen surface 

and is potentially related to its optical clearing properties. 

 

 

 

Table 6:  Average number of hydrogen bonds and bridges formed. 

  Hydrogen   
Chemical Bonds (#/ps) Bridges (#/ps) 

Ethylene glycol 0.73430 0.2758 

1,2-propanediol 0.75304 0.3174 

1,3-propanediol 0.76562 0.3279 

Glycerol 0.78600 0.3318 

Xylitol 0.78700 0.3525 

Sorbitol 1.51854 1.0866 
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 Table 6 shows the series of sugar alcohols and propanediols modeled in this 

study with the average number of formed hydrogen bonds and bridges per picoseconds 

of each agent.  Ethylene glycol with two hydroxyl groups forms the least number of 

hydrogen bonds and bridges.  The average hydrogen bonds and bridges formed increase 

with increasing molecular size with sorbitol forming the most number of hydrogen 

bonds and bridges.  Large amounts of formed hydrogen bonds and bridges indicate a 

high collagen affinity of the agents and an increased ability to displace water and 

dehydrate collagen.  These results correlate with our previous skin clearing experiments 

and suggest that collagen affinity and dehydration play a fundamental role in reducing 

the light scattering within tissues.  Though we did not include explicit water in our 

simulations, one expects that the relative hydrogen bonding propensities of sugar alcohol 

and propanediol molecules to remain the same.  Figure 17 shows a CHARMM 

simulation of 1,3-propanediol (green) penetrating into the groves on the surface of the 

triple helix shown in blue, red, and gray.  Collagen molecules have a dense ordered first 

hydration shell of water which can be disrupted by clearing agents. Clearing agents like 

alcohols penetrate into the grooves on the surface of collagen forming hydrogen bonds 

and bridges with collagen and hydration water.  This interaction leads to disruptions in 

the native water hydration layer around collagen. 
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 The number of hydroxyl groups and the position of hydroxyl group can have 

significant influence in the above process.  In this regard, 1,3-propanediol with its 

hydroxyl groups far apart on terminal carbons might disrupt the native collagen 

hydration better than 1,2-propanediol, whose hydroxyl groups are much closer to each 

other on adjacent carbons.  Sorbitol’s large size with six hydroxyl groups allows the 

formation of additional hydrogen bonds with collagen.  Sorbitol’s large collagen affinity 

leads to an increased disruption of collagen’s hydration shell.  CHARMM simulations of 

the clearing agents 1,3-propanediol and sorbitol’s interaction with collagen were 

examined and are illustrated in Figures 18 and 19.  Sorbitol’s large size allows for the 

formation of an additional hydrogen bond with collagen.  This increase in collagen 

affinity is exhibited by the marked increase in hydrogen bonding and bridge formation 

modeled by CHARMM and correlates well with previous findings that sorbitol is an 

effective clearing agent[55]. 

 

Figure 17:  CHARMM model of 1,3-propanediol (green) in the grooves of the collagen 
triple helix backbone (red, blue, gray).  Infiltration of clearing agents such as 1,3-
propanediol can disrupt the water hydration structure of collagen. 
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Figure 19:  Sorbitol (pink box) forms a bridge between hydroxyproline in one 
alpha chain (gray) and the backbone ( –C=O) groups (2) in another alpha chain 
(blue).  Sorbitol’s large size allowed the formation of an additional (third) hydrogen 
bond with collagen. 

 

Figure 18:  1,3-propanediol (pink box) forms a bridge between hydroxyproline in 
one alpha chain (gray) and the backbone (–C=O) group in another alpha chain 
(blue). 
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 Overall the trends found using CHARMM simulations mirrored the results of the 

bulk skin clearing experiments discussed previously.  Large alcohols disrupt the 

hydration layer more effectively than small molecules due to the increase in hydroxyl 

groups.  The inability of water molecules to displace large clearing agents prevents the 

hydration layer from reforming.  These results suggest hydrogen bonding or bridging 

leading to collagen dehydration is a key factor responsible for optical clearing.  The 

following chapters investigate the relationship between collagen dehydration and skin 

optical clearing. 
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CHAPTER V 

CLEARING AGENT INDUCED CHANGES OF COLLAGEN 

STRUCTURE 

 

5.1  Clearing Agent Interaction with Collagen on the Microscopic Level 

 Clearing agent interaction with collagen was found in both bulk skin optical 

property measurements and molecular dynamic modeling to play a fundamental role in 

optical clearing.  Previous studies indicated that clearing agents induce structural 

changes in the collagen of native skin[28].  Nonlinear optical microscopy was used to 

investigate collagen structure in native and cleared skin. 

 

5.2  Clearing Agent Activity on Collagen Reduces Tissue Scattering 

 Nonlinear optical microscopy (NLOM) is a laser scanning technique that can 

render thin images from within intact, living tissues[56-57].  Nonlinear optical 

phenomena result from the modification of the optical properties of a material system by 

the presence of sufficiently intense light[58].  Optical phenomena are considered 

“nonlinear” when the response of a material system to an applied optical field depends in 

a nonlinear fashion.  The polarization equation, equation 5.1, describes how the dipole 

moment per unit volume, or polarization P(t), of a material system depends upon an 

applied optical (electric) field, E(t). 

 

                   5.1 
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 The constant of proportionality, χ, is a tensor describing the material properties 

of the medium and is known as the susceptibility.  The first term in the polarization 

equation, χ(1)E(t),  describes linear events such as absorption and scattering.  Nonlinear 

events are described by the higher order terms.  Second order interactions such as second 

harmonic generation (SHG) or frequency doubling, (detailed below) is described by χ(2), 

a tensor of the third rank, and two electric fields, E(t)E(t).  For a more rigorous 

derivation of nonlinear events and second harmonic generation please see the appendix. 

 Endogenous two-photon fluorescence excitation and second harmonic generation 

(SHG) have been characterized for collagen; SHG can provide a unique spectral 

signature for collagen specific imaging[56-59-61].  SHG in fibrillar collagen has been 

used to enhance NLOM image contrast and constituent specific segmentation in 

skin,[28] cornea[60] and articular cartilage[61] without using exogenous stains or dyes. 

 Second harmonic generation is a second order, nonlinear interaction where two 

photons with frequency, ω, incident upon a material interact with the medium to form 

one photon consisting of twice the original frequency (2ω).  SHG is described by the 

second term in the polarization equation: 

 

where:

 
                                    5.3 

 
       5.2 
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equation 5.2 dictates that two sources contribute to second order polarization.  The first 

term of equation 5.2 (2χ (2) EE*) is time independent and forms a static field in the 

material called optical rectification.  The second term is frequency doubled and can lead 

to the generation of radiation at the second harmonic frequency. 

 A necessary condition for SHG is that the constituent molecules lack an 

inversion center.  Fibrillar collagens satisfy this condition; its secondary structure is an 

alpha helix.  For type I collagen, two identical α1(I) and one α2(I) chains form a triple 

helix.  Despite 30 years of research, the fine structure and assembly mechanisms of 

collagen structures remain topics of intense study and inquiry[30-62-64].  High-order, 

macroscopic collagen structures exhibit long range molecular order, providing a 

nonlinear medium with characteristic lengths on the order of near-infrared wavelengths.  

Disruption of long range molecular order extinguishes SHG, making it sensitive to 

perturbations of collagen structure and useful for optically monitoring denaturation[65-

67].   

 NLOM was used previously to image collagen with SHG in tissues during 

optical clearing and subsequent rehydration after applying glycerol and saline, 

respectively[28].  Tissue systems investigated were fibroblast-seeded collagen tissue 

constructs and rodent skin, both untreated and fixed.  For fibroblast-seeded collagen 

tissues, application of glycerol resulted in loss of SHG from collagen and concomitant 

increase in gel transparency.  Loss of SHG was indicative of collagen destabilization by 

glycerol, an effect demonstrated with electron[68] and polarization light microscopy[28] 

in glycerinated rodent tail tendon.  Application of glycerol to rodent skin did not 
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extinguish SHG signal, but fibrous collagen morphology unraveled to a matted 

appearance concomitant with increased tissue transparency.   

 Subsequent rehydration with saline in fibroblast-seeded collagen tissues restored 

SHG signal, fibrous collagen morphology and gel turbidity.  Similarly, rehydration of 

rodent skin with saline resulted in reformation of fibrous collagen morphology and 

return in tissue turbidity.  Differences observed by NLOM in optical clearing of 

fibroblast-seeded collagen tissue and rodent skin were hypothesized to be due to the 

presence of native covalent cross-links.  Indeed, formalin fixation of these tissues limit 

glycerol induced optical clearing and morphological changes to collagen as measured by 

NLOM. 

 An example of SHG images of collagen in native and fixed rodent skin after 

clearing is shown in figure 20.  Collagen in its native state has a ribbon-like morphology 

characteristic of large fibers.  Native and fixed rodent skin was submerged in clearing 

agents and imaged using second harmonic generation after 1 hr and 24 hr respectively.  

Clearing agents induce structural changes in native collagen after 1 hr (left column 

figure 20).  Interestingly the magnitude of dissociation appears to correlate with clearing 

efficacy.  Larger agents such as xylitol, sorbitol, and high fructose corn syrup (90% 

fructose) induced large changes in collagen structure.  Smaller agents such as 1,2-

propanediol only minimally perturbed collagen structure. 

 Native collagen structure is retained after clearing in fixed skin (figure 20 right 

columns).  Glutaraldehyde produces an abundance of covalent crosslinks between 

collagen triple helices that clearing agents are unable to overcome.  This result is not 



45 
 

surprising and is in agreement with our previous finding that clearing is not dependant 

on collagen structural changes. 

 

 

  

 Clearing agent induced changes in collagen structure correlate with clearing 

efficacy.  In chapter III we showed that larger chemical agents clear native skin more 

 

Figure 20:  SHG images of collagen in native and fixed rodent skin after clearing for a 
series of clearing agents.  Collagen structure is perturbed in native skin while the ribbon-
like structure is retained in fixed skin.  Images are 84x92 µm. 
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effectively than smaller agents.  As a result the collagen structure is perturbed.  These 

findings support modeling results in chapter IV.  Clearing agents diffuse into collagen 

fibers, remove water, resulting in marked changes of fiber morphology.  In contrast, 

fixed tissues exhibit a reduced clearing efficacy.  We will examine this phenomenon 

more closely in the following chapters. 
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CHAPTER VI 

COLLAGEN FIBRILLOGENESIS INHIBITION AND SOLUBILITY 

 

6.1  Destabilizing Effect of Glycerol on Collagen in Rodent Tail Tendon 

 Destabilization of native collagen structures using non-reactive chemical agents 

is a surprising finding.  Type I collagen is the predominant structural component in most 

biological tissues and shows increased thermal stability against denaturation in solution 

with sugar-alcohols[69-71].  The earliest evidence of native collagen dissociation using 

glycerol was reported over 20 years ago using transmission electron microscopy (TEM) 

and x-ray diffraction (XRD) techniques to measure collagen fiber structure in rodent tail 

tendon following one of six exposures:  1) water, 2) phosphate buffer, 3) glutaraldehyde, 

4) glutaraldehyde followed by glycerol, 5) glycerol, or 6) glycerol followed by 

phosphate buffer[68].  Consistent with results observed using NLOM[28], only glycerol 

treatment induced swelling of interfibrillar space, dissociation of collagen fibrils into 

microfibrils (and loss of characteristic banding in some regions) as observed using TEM 

and molecular disorder as measured with XRD.  Ultrastructurally, glutaraldehyde 

fixation (exposure 4) reduced the dissociative effects whereas rehydration with 

phosphate buffer (exposure 6) reversed the dissociative effects of glycerol[68].  These 

ultrastructural and NLOM studies show that:  1) bonding forces for high order collagen 

structures are primarily non-covalent in nature; 2) glycerol interrupts these bonding 

forces; and 3) upon rehydration, these bonding forces are restored as evidenced by 

reassembly of high order collagen structures.   
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6.2  Molecular Interactions of Agents with Collagen in vitro 

 Studies using synthetic collagen-like peptides show that stable formation of 

secondary, tertiary and, consequently, higher order structures depend on specific binding 

sites[72].  Stability of secondary and tertiary structures is enhanced by inductive 

(electronegativity) effects provided by hydroxylated proline residues[73].  For 

quaternary and higher order structures, attractive forces mediated by hydrophilic 

environments[74] are preeminent, and sugars and sugar-alcohols can be used effectively 

to elucidate collagen interactions and self-assembly mechanisms.   

 

6.2.1  Hydrogen Bonding in Fibrillogenesis 

 The dynamics of collagen fibril formation can be described by nucleation 

followed by growth during which higher order structures (fibrils) develop[29].  Non-

covalent forces driving collagen fibrillogenesis could include, for example, hydrogen 

bonding, van der Waals and steric interactions.  Sugars and sugar-alcohols have been 

used to modulate and characterize these forces[29-75-79] in conjunction with 

measurement techniques utilizing osmotic pressure to study macromolecular 

interactions[80].  Typically, these techniques apply force through osmotic pressure via 

polymer solutions and measure intermolecular distance by XRD.  Force-distance 

measurements have been performed using concentrated collagen thin films immersed in 

solutions of polyethylene glycol (PEG)[75-78-80].  PEG does not penetrate these thin 

films, thus exerting osmotic pressure on the collagen fibers in a manner directly related 

to its concentration.  Osmotic removal of water decreases the molecular separation of 
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triple helices; this osmotic force is balanced by repulsion.  Decreasing PEG 

concentration corresponded with decreasing osmotic pressure and increasing interaxial 

distances until attractive forces dominated.  These attractive forces are responsible for 

molecular recognition and drive collagen fibrillogenesis.   

 Collagen attractive forces may be characterized with the addition of sugars and 

sugar-alcohols.  These agents screen collagen attractive forces resulting in force-distance 

measurement curves that reflect intermolecular repulsion.  Collagen attractive forces 

were characterized by taking the difference between curves, with and without agents, as 

a function of interaxial distance[75-78].   

 Force-distance measurements of collagen led to two significant findings in 

determining the mechanism for fibrillogenesis:  1) the repulsive force increases 

exponentially with a decrease in interaxial spacing (1.5 - 2.0 nm); and 2) both 

interhelical spacing and net repulsive force decrease with an increase in temperature[77].  

These findings, along with the discovery that force-decay lengths and force magnitudes 

are insensitive to ionic strength at high osmotic stress, suggest that either “hydration 

forces” between polar surfaces or the “hydrophobic effect” of nonpolar moieties is the 

dominant force in fibrillogenesis.  Although the temperature sensitivity of attraction is 

qualitatively consistent with both hydration forces and the hydrophobic effect, the 

magnitude of this sensitivity suggests a hydrophilic mechanism[78].   

 A mechanism for fibrillogenesis was further defined when considering the effects 

of pH on collagen fiber formation.  Collagen fibrillogenesis was strongly favored at 

physiologic pH (~7.4).  However, when pH was lowered to 6, there was substantial 
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weakening of the attraction between collagen helices – consistent with titration of 

specific hydrophilic residues[78].  pH effects suggest involvement of histidine residues 

which have the lowest pKa value of the three basic amino acids making it the most 

sensitive to reduction of pH from 7.4 to 6.  At neutral pH, histidine is neutral and forms 

hydrogen bonds as a proton acceptor.  Reducing pH protonates histidine whereby it 

becomes a hydrogen bond donor and disrupts the interactions between helices.  The 

reaction of collagen to pH, in conjunction with force-distance measurements, support 

hydrophilic interactions as the main driving force for fibrillogenesis.(26, 59, 61, 62)   

 

6.2.2  Collagen Solubility (Inhibition of Fibrillogenesis) 

 Collagen solubility refers to soluble collagen remaining in solution after 

fibrillogenesis.  Addition of sugars and sugar-alcohols in previous studies were shown to 

enhance collagen solubility in buffered saline by masking hydration mediated attractive 

forces between helices and inhibiting fibrillogenesis[29-71-75-79].  These chemical 

agents slow and limit fibrillogenesis by disrupting hydrogen bond facilitated water 

bridges between collagen helices.  The efficiency of fibrillogenesis in the presence of 

glucose, fructose and sucrose (figure 21) as well as ethylene glycol, glycerol and sorbitol 

(figure 21) has been studied previously and showed an inverse dependence on agent 

chain length[29-75].  Ethylene glycol was the shortest (two carbon chain) agent tested 

and displayed little effect on collagen fibrillogenesis and solubility[75].  Inhibitory 

effects of glycerol on collagen self-assembly are well documented[29-75-79].  Sorbitol 

is twice as long as glycerol (6 and 3 carbons, respectively) and has twice the collagen 
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solubility[75].  Glucose and fructose are six carbon sugars and show greatest collagen 

solubility when compared to sugar-alcohols (ethylene glycol, glycerol and sorbitol) [75].  

Sucrose, a disaccharide of glucose and fructose, showed similar inhibitory effects on 

collagen fibrillogenesis as with the monosaccharides[29].   

 Insight into the difference in collagen solubility between ethylene glycol and 

glycerol can be gained by comparison studies of 1,2- and 1,3-propanediol which both 

have similar dielectric properties, e.g., their indices of refraction are 1.43 and 1.44, 

respectively.  If electrostatic, van der Waals, or hydrophobic interactions were the major 

attractive forces in fibrillogenesis, these two agents should have similar collagen 

solubilities.  In fact, 1,3-propanediol had ~20 times greater collagen solubility 

(comparable with glycerol) than 1,2-propanediol which showed comparable collagen 

solubility with ethylene glycol[75].   
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 Collagen solubility of propanediols and ethylene glycol, glycerol and sorbitol 

suggests a stereochemical effect[75-78].  For propanediols, adjacent or terminal 

placement of hydroxyl groups on the three carbon backbone has dramatic effects on 

collagen solubility.  This is reflected in sugar-alcohols where ethylene glycol (glycerol) 

and 1,2- (1,3-) propanediol have similar distances between hydroxyl end groups.  

Placement of hydroxyl end groups on 1,3-propanediol and glycerol may correspond to 

the spacing of hydrophilic interaction sites of collagen tertiary structures.  The fact that 

sorbitol has twice the collagen solubility as glycerol is supportive, but studies with 

sugar-alcohols of other chain lengths would further refine this hypothesis. 

 

Figure 21:  Molecular structures of sugar alcohols and sugars. 
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6.2.3  Expanded Collagen Solubility Study 

  Collagen fibrillogenesis inhibition and solubility for a series of chemical agents 

were examined to corroborate and expand previous studies and to evaluate these 

properties as possible predictors of clearing efficacy.  To date, selection of potential 

agents has been empirical rather than based upon fundamental understanding of 

chemical agent induced tissue optical clearing.  Common properties of optical clearing 

agents such as sugars and sugar-alcohols have suggested refractive index matching with 

native tissue components, in particular collagen, and dehydration as possible 

mechanisms of tissue optical clearing[2-24].  Under this proposed mechanism, refractive 

index matching of the clearing agent to that of collagen would reduce light scattering 

leading to an increase in tissue transparency.  Dehydration was also believed to play a 

role as reported chemical agents are hyperosmotic with respect to tissue.  However, use 

of these properties as selection criteria does not predict agent optical clearing potential 

(OCP) [27-81] which suggests an incomplete understanding of chemical induced tissue 

transparency.   

 Previous studies have suggested molecular interactions of chemical agents with 

collagen have a prominent role in tissue optical clearing[82].  It has been shown at 

microscopic and ultrastructural length scales that glycerol, a prototypical optical clearing 

agent, destabilizes high-order collagen structures and that this is an effect of agent 

induced tissue transparency[28-68].  In addition, glycerol’s non-reactivity with collagen 

facilitates reversibility of its optical clearing effects.  Attractive forces between collagen 

triple helices drive collagen fibrillogenesis from solution and have been characterized in 
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the presence of sugars and sugar-alcohols[75].  Here we introduce collagen solubility as 

a measure of a chemical agent’s ability to screen non-covalent forces and correlated it 

with tissue optical clearing for a series of polyols.   

 In vitro self-assembly of solubilized (pH ~ 3) rodent tail collagen I (BD 

Biosciences) into fibrils was carried out in phosphate buffered saline (PBS) (0.138 M 

NaCl, 0.0027 M KCl).  Stock collagen solutions (4.26 and 4.27 mg/ml) were diluted to 

concentrations of 0.25, 0.75, 1.50, and 2.13 mg/ml.  These solutions were mixed with 

chemical agents of various concentrations.  Ethylene glycol, glycerol, xylitol, sorbitol, 

1,2-propanediol, 1,3-propanediol, dextrose, fructose, and sucrose (Sigma Aldrich) were 

all reagent grade quality and used without further purification.   With addition of NaOH, 

the solutions were adjusted to physiological pH (~ 7.4), inducing collagen 

fibrillogenesis, and incubated at 37º C for 24 hours.  After fibrillogenesis was complete, 

the solutions were centrifuged at 12,000 rpm for 15 minutes to separate fibrils (white 

precipitate) from the remaining collagen molecules (supernatant).  Collagen solubility 

was measured by optical absorbance of the supernatant (Figure 22).  See appendix for 

more detailed discussion on optical absorbance and spectrophotometry.  Collagen 

concentration is commonly measured optically using peaks at 215-230 nm and 276 nm.  

A calibration curve was determined by measuring optical absorbance at 215-230 nm  and 

276 nm[83] (USB2000, Ocean Optics) of a series of known collagen solutions at 

different concentrations.  Optical absorbance at 215-230 nm and 276 nm was used to 

measure collagen concentration in solution.  Measured collagen concentrations using 
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absorbance were consistent with each other when comparing a minimum of three 

samples at each agent concentration. 

 

 

  

 Estimated fibril formation is shown in Figure 23 for 1.4 M chemical agent 

concentration.  Straight lines are guides to the eye and calculated by linear regression.  

Fibrillogenesis inhibition manifests in two ways.  First, there is a reduction in regression 

line slope indicative of a lower formation efficiency.  Second, the x-axis intercept is 

increased resulting in higher concentrations of collagen being needed for fibrillogenesis 

to occur.  Ethylene glycol and 1,2-propanediol showed negligible inhibitory effects on 

 

Figure 22:  Soluble collagen absorption peak (276 nm) before (red) and after 
(blue) fibrillogenesis. 
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collagen fibrillogenesis.  With these agents, efficiency of fibril formation was near unity, 

mirroring collagen self-assembly in PBS (not shown).  Longer chain polyols such as 

glycerol, xylitol, sorbitol, and 1,3-propanediol showed increasing chemical agent 

concentration, consistent with previously reported results[75-79]. 

 

 

  

 Collagen solubility as a function of chemical agent concentration is shown in 

figure 24.  Solubility is quantified as the amount of collagen remaining in supernatant 

following fibrillogenesis.  In this data set, the initial collagen concentration was 1.25 

 

Figure 23:  Collagen fibril formation.  Fibrils formed from total collagen in 1.4 M 
solutions of each chemical agent. 
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mg/ml.  As would be expected from the data shown in Figure 23, ethylene glycol and 

1,2-propanediol showed low collagen solubilities.  With glycerol, 1,3-propanediol, 

xylitol, and sorbitol solutions, their collagen solubilities increased with increasing 

chemical agent concentration.  Sorbitol exhibited twice the collagen solubility of 

glycerol and 1,3-propanediol, consistent with previously reported results[75].  Overall 

the data demonstrated an increase in collagen solubility with increasing sugar alcohol 

chain length from ethylene glycol (2 carbon chain) to sorbitol (6 carbon chain). 

 

 

 

Figure 24:  Collagen solubility of sugar alcohols and propanediols.  Quantity of 
collagen remaining in solution as a function of chemical agent concentration. 
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 Collagen fibrillogenesis and solubility for a series of sugars were also examined.  

Fibril formation from 0.4 M solutions of chemical agents is shown in figure 25.  For 

collagen in PBS only, fibrillogenesis efficiency is near unity and depicted by the bold 

black line.  Sugars showed higher fibrillogenesis inhibition than sugar alcohols or 

propanediols.  Sucrose was the largest molecule tested and had the greatest inhibiting 

effect on fibrillogenesis.  Fructose, dextrose, sorbitol, and glycerol showed decreasing 

inhibition of collagen fibrillogenesis. 

 

 

 

Figure 25:  Collagen fibrils formed for sugars and sugar alcohols.  All agents shown have a 
concentration of 0.4 M. 
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 Collagen solubility for the series of sugars is shown in figure 26.  The previous 

study found that solubility increased with increasing sugar alcohol chain length.  The 

sugars continued this trend with sucrose having the highest collagen solubility followed 

by fructose, dextrose, sorbitol, and glycerol.   

 

 

  

 Chemical agents that can induce tissue optical clearing solubilize collagen by 

suppressing hydrophilic, intermolecular interactions.  The propanediols evaluated have 

been used previously to highlight the role of hydrogen bonding in collagen 

 

Figure 26:  Collagen solubility as a function of agent concentration for a series of 
sugars and sugar alcohols. 
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fibrillogenesis[75].  Suppression of these hydrophilic attractive forces can destabilize 

high-order collagen structures in native and in vitro tissues as observed 

microscopically[28] and ultrastructurally[68].   

 Measured chemical solubility predicts a chemical’s ability to clear skin tissue.  

Our data indicate that a chemical agent’s ability to suppress hydrogen-bond-mediated 

attractive forces within collagen directly correlates with its optical clearing potential 

(OCP).  Traditionally, refractive index matching with collagen (n=1.45-1.55) had been 

used empirically to screen and select potential chemical agents for tissue optical 

clearing[22-24-25].  The propanediols used in our study had similar physical properties 

including molecular weight, index of refraction, and osmolality, but the most important 

predictive characteristic of their OCP was collagen solubility.  Similar comparisons can 

be made with the sugar alcohol series; no correlation can be made between the chemical 

agent’s index of refraction or osmolality with its OCP.  For sugar alcohols, our study 

suggests that an even higher OCP may be realized by extending chain length. 

 Large chain length sugars were found to have characteristically large collagen 

solubilities.  Dextrose and fructose had collagen solubilities similar to sorbitol whereas 

sucrose had the largest collagen solubility measured.  Sucrose is a disaccharide 

composed of the two monosaccharide units dextrose and fructose bound together by a 

glycosidic bond.  We propose that in solution, collagen molecules are free to interact 

with both disaccharide units of sucrose, enhancing solubility.  This increase in solubility 

did not correlate with an increase in OCP however.  We hypothesize that sterics play a 

role in skin clearing.  In skin, interaction of sucrose with high-order collagen structures 
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is sterically hindered to individual monosaccharide units resulting in an OCP similar to 

that of dextrose and fructose. 

 Previous studies have reported similar relative OCP of agents to those shown 

herein.  For example, 7 M glucose was shown to have the same optical clearing effect as 

13 M glycerol as measured by fluorescence through in vitro skin[3].  This is consistent 

with our study in which collagen solubility predicted glucose to have twice the OCP of 

glycerol.  In addition, it is interesting to note that in efforts to develop non-invasive, 

optical monitoring of blood glucose levels, a correlation has been reported between a 

reduction in tissue light scattering and glucose concentration[6-84-85].  The reduction in 

tissue scattering was hypothesized to arise from an increase in glucose concentration in 

local extracellular space, increasing its refractive index to better match that of tissue 

scatterers.  The results presented here suggest that the molecular interaction of sugars as 

well as other chemical agents such as sugar alcohols and propanediols will lead to a 

reduction in tissue optical scattering. 

 The correlation between collagen solubility and OCP in native skin for sugars 

and sugar alcohols suggest that the primary characteristic of effective clearing agents is 

collagen affinity.  High affinity allows the agents to interact efficiently with collagen and 

remove water.  A primary physical property (collagen solubility) has been identified of 

effective clearing agents for tissue optical clearing.  It has been shown that the ability to 

screen non-covalent intermolecular forces which drive collagen fibrillogenesis correlates 

with OCP in native skin.  This property provides a criterion for selection and a basis for 

the rational design of optimized optical clearing agents. 
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CHAPTER VII 

DEHYDRATION OF DERMAL COLLAGEN 

 

7.1  Raman in Biological Applications 

 Raman spectroscopy has become an increasingly popular technique applied to 

biomedical problems.  Previous studies used Raman to examine interactions of 

chemicals such as glycerol and water[86-88], the hydration and structure of 

collagen[89], and the effects of fixatives on fibrous collagen[40-43-90].  Herein the 

kinetics of collagen dehydration of native and fixed rodent skin was examined using 

Raman spectroscopy. 

 

7.2  Raman Spectroscopy 

 Raman spectroscopy is fundamentally based on Raman scattering.  Earlier, light 

scattering was described as emitted light resulting from the interaction of an incident 

light wave and matter.  When light interacts with particles such as molecules that are 

smaller than its wavelength three types of scattering events result: 

1.  Rayleigh scattering – Elastic scattering event where emitted light is same 

frequency as incident light. 

2. Stokes Raman Scattering – Inelastic scattering event where emitted light is of 

a lower frequency than the incident light. 

3. Anti-Stokes Raman Scattering – Inelastic scattering event where emitted light 

is of a higher frequency than incident light. 
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Rayleigh scattering is the predominant form of scattering with the majority of scattering 

events being elastic.  Raman scattering occurs less frequently than Rayleigh scattering 

but can provide molecular information of the scatterer. 

 The Raman scattering effect results from the interaction of incident light and 

electrons in the illuminated molecules.  In non-resonant Raman scattering, the incident 

light does not have enough energy to excite the electron into a higher electronic energy 

level.  Thus the electron is promoted to a different vibrational level within the same 

electronic state (Figure 27). 

 

 

 

 In order for a molecule to exhibit the Raman effect, incident light must induce a 

dipole moment in the molecule or induce a change in molecular polarizability.  Light 

 

Figure 27:  Energy diagram of inelastic Raman scattering.  Scattered light 
energy is either lower (Stokes) or higher (Anti-Stokes) than incident light. 
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scattered through the Raman process can be either lower or higher energy than the light 

incident on the molecule.  When a molecule interacts with an incident photon, some of 

the electrons in the molecule convert the light energy into vibrational energy.  The 

scattered light loses energy equivalent to the change in vibrational mode (Stokes Raman 

effect).  If the electron is already in an elevated vibrational state, energy is donated, 

increasing the overall energy of the scattered photon (Anti-Skokes Raman effect).  It is 

important to remember that the majority of scattered light is of the same energy as the 

incident photon (Rayleigh Scattering) with Raman scattering lines potentially only 10-6 

of the intensity of the Rayleigh line.   

 The difference in frequency for Stokes and Anti-Stokes scattering is symmetrical.  

The disparity between the incident light frequency (Rayleigh scattered light) and 

scattered frequency in Stokes and Anti-Stokes scattering is identical (Figure 28).  For a 

mathematical discussion of Raman scattering see the appendix.  The Raman shift is 

independent of light source.  For the sample seen in Figure 28 one would get a 600 cm-1 

Raman shift regardless of light source wavelength.  For this reason raman bands are 

reported as a wavenumber rather than wavelength.  Modern Raman systems 

automatically give the wavenumber shifts which contain the biologically important 

information.  The wavenumber is the number of waves (periods) of a given wavelength 

in 1 cm.  The wavenumber is expressed in inverse centimeters (cm-1) and has the 

following relationship to wavelength: 
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where νWN is the wavenumber, λ is the wavelength, and c is the speed of light. 

 

 

 

 As molecular weight increases, the number of atoms present in the molecule 

increases as well.  Increasing molecular size leads to additional vibrational modes which 

add to the complexity of the system.  Sub-molecular groups of atoms within molecules 

usually appear with characteristic group frequency vibrations.  For example the bond 

between the oxygen and hydrogen in a hydroxyl group (-OH) usually has a stretching 

vibration in the region of 3100-3600 cm-1. 

  

 

 

 

Figure 28:  Raman frequency difference between Stokes and 
Anti-Stokes is symmetrical.  

 

 

                                      7.1 
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7.3  Methods of Raman Spectroscopy in Cleared Rodent Tissues 

 Our previous results indicate the hydration state of collagen dictates the optical 

properties of the tissue as a whole.  Water can be divided into three categories in rodent 

skin: structural, bound, and free.  “Structural water” is believed to stabilize collagen 

triple helices through interactions with its backbone.  “Bound water” refers to the water 

between the triple helices and microfibrils.  The third category of “free water” refers to 

the water found throughout the rest of the tissue.  Clearing agents act as dehydrating 

agents by removing water as they infiltrate rodent skin.  The exchange of water and 

clearing agents within collagen fibers has been implicated as the mechanism for bulk 

skin clearing.  Raman spectroscopy was used to investigate changes in the hydration 

state of native and glutaraldehyde fixed, excised rodent skin dehydrated by a series of 

clearing agents.   

 Ex vivo rodent skin (3-6 wk old Sprague-Dawley) was cut into 1.0x1.0 cm2 

samples using surgical scissors.  Subcutaneous fat was removed using a razorblade and 

rodent skin stored in 99.9 % deuterium oxide for 24 hr.  Deuterium oxide (D2O) quickly 

replaces water in native rodent skin and provides a unique Raman band (2250-2800 cm-

1) not found in native or fixed rodent skin.  The unique Raman signature of D2O allows 

quantitative examination of the dehydration of native and fixed rodent skin due to 

clearing agents.  D2O loss form clearing agent induced dehydration results in decreasing 

D2O Raman band areas.  Following skin immersion in D2O, the excised skin was 

randomly divided into two groups: native and fixed.  Fixation was carried out in 0.10, 
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0.25, and 0.50% vol./vol.glutaraldehyded in D2O for 48 hrs and at a pH of 7.2 and 27 °C.  

After chemical treatment, excess glutaraldehyde was rinsed off using D2O at 27 ºC.   

 

7.3.1  Dehydration of Fixed Rodent Skin 

 Raman spectra were collected for native and fixed rodent skin before and after 1 

hr of immersion in 3.5 M concentrations of the clearing agents ethylene glycol, glycerol, 

and high fructose corn syrup (HFCS).   

 

7.3.2  Kinetics of Dehydration 

 The dynamics of dehydration were examined using the clearing agents 1,3-

propanediol and 1,2-propanediol (3.5 M).  Native and glutaraldehyde fixed (0.10, 0.25, 

and 0.50 % vol/vol) rodent tissue in D2O at a pH of 7.2 and 27 °C was immersed in each 

clearing agent with D2O Raman band measurement at 5 min intervals for a total of 20 

min for native skin and 10 min intervals for a total of 120 min for fixed skin. 

 

7.3.3  Raman Spectra 

 Raman spectra was collected using a LabRam Raman spectrometer (Jobin-Yvon-

Horriba) comprising an Olympus BX41 confocal microscope, 50x objective, 633 nm 

excitation laser, and CCD detector.  Samples were placed on a glass slide and care was 

taken to prevent heating and dehydration of sample from the laser source or air.  

Keeping the laser source exiting the objective at or below 3 mW does not change the 

Raman spectra and prevents heating of the sample[40-43].  The spectra were recorded 
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using a 300 gr/mm grating, 5 scans per spectra with an integration time of 15 seconds 

per scan.  Ten measurements were taken from the dermal side per skin sample and each 

spectrum averaged to accommodate the natural heterogeneity of the dermis.  Baselines 

were adjusted using an 8th order polynomial fit with native and fixed skin Raman bands 

normalized. 

 

7.4  Raman Spectra Controls 

 Several controls were implemented to get an accurate measurement of water loss 

in native and fixed rodent dermis.  D2O was selected to track water loss in tissue due to 

its unique properties.  First, D2O is similar to water and quickly exchanges with free and 

bound water in collagen[40-43].  D2O also exhibits a unique Raman band in from 2200 

cm-1 to 2800 cm-1 not found in either native tissue, fixed tissue, or the clearing agents 

examined in this study (Figure 29). 

 Figure 29 shows the Raman spectra for native rodent skin immersed in H2O, 

PBS, and 3.5 M glycerol for 24 hrs.  No band is seen in the reported wavenumber range 

for D2O (2200-2800 cm-1) in any skin sample.  Introduction of the clearing agent 

increased the (CH) band characteristic of the addition of sugar alcohol. 

 Figure 30 shows the Raman intensity spectra for native skin immersed in D2O for 

24 hr prior to fixation with increasing concentrations of glutaraldehyde.  The Raman 

band characteristic of D2O is present.  The marked increase of D2O band area with 

increasing amounts of glutaraldehyde is expected and agrees with previous studies that 

found GA increases the amount of bound water within collagen fibers. 
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Figure 30:  Raman spectra of rodent skin immersed in D2O for 24 hr followed by 
fixation with 0.10%, 0.25%, and 0.50% solutions of glutaraldehyde and D2O.  Notice the 
Raman band characteristic of D2O in the 2200-2800 cm-1 region. 

 

Figure 29:  Raman spectra of native skin previously immersed in water, PBS, and 3.5 M 
glycerol for 1 hr.  No Raman bands are seen in the 2200-2800 cm-1 range. 
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7.5  Raman Spectroscopy in Cleared Rodent Tissues 

 Deuterium oxide (D2O) is freely interchangeable with water in skin and exhibits 

an OD Raman band from 2200 cm-1 to 2800 cm-1.  Skin fixed in 0.10%, 0.25%, and 

0.50% gluaraldehyde with D2O was immersed in 3.5M ethylene glycol, glycerol, and 

high fructose corn syrup (HFCS) for 1 hr and is shown in Figure 31.  Each clearing agent 

fully removed all measurable D2O from native skin after 1 hr (data not shown).  Raman 

OD band areas were normalized and presented as a percentage of the initial, fully 

hydrated skin D2O peak area.  OD band area fell in response to dehydration.  D2O was 

progressively retained upon dehydration with increasing glutaraldehyde concentration.  

High fructose corn syrup was the most effective dehydrating agent followed by glycerol 

and ethylene glycol.  Glutaraldehyde crosslinks hinder the clearing agents’ ability to 

remove water as seen for 0.25% and 0.50% GA fixed tissues.  This finding is consistent 

with previously reported studies which found reduced water exchange in GA fixed 

tissues[91-92].  
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 Raman spectroscopy was used to assess the degree of water loss due to clearing 

agent infiltration in fixed skin tissue.  Increasing concentrations of the fixative 

glutaraldehyde (GA) slowed water removal when dehydrated with hyper-osmotic agents.  

Just over half of the D2O remained in the tissue after 1 hr of dehydration in 0.10% GA 

fixed skin.  Increasing the concentration of GA lead to greater D2O retention with very 

little D2O loss in 0.50% GA fixed skin.  Interactions between glutaraldehyde and 

collagen explain slow water loss.  Cheung et al. suggested that glutaraldehyde forms a 

barrier around the outermost layer of collagen that could slow diffusion in and out of the 

protein[93].  Jastrzebska et al, found that the GA cross linking process lead to increased 

water molecules in the hydration shell around collagen triple helices that were not freely 

 

Figure 31:  Percent D2O remaining in fixed skin after immersion in ethylene glycol, 
glycerol, and high fructose corn syrup (HFCS).  Increases in glutaraldehyde 
concentration leads to greater water retension. 
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exchanged[91].  This barrier effect could explain the increasing inability of hyper-

osmotic chemical agents to remove water from fixed tissue. 

 Interestingly, the ability to dehydrate fixed skin correlates with collagen 

solubility and clearing potential.  High fructose corn syrup (HFCS) was the most 

effective dehydrating agent followed by glycerol and ethylene glycol.  Our previous 

studies indicated that fructose was an efficient clearing agent with high collagen 

solubility when compared to glycerol and ethylene glycol[36-38].  The high collagen 

affinity of HFCS potentially leads to more efficient dehydration in fixed skin. 

 The kinetics of skin dehydration due to clearing agents were examined.  Figure 

32-35 are bar graphs depicting the decrease in D2O band area for native and 0.10, 0.25, 

and 0.50 % GA fixed skin immersed in 1,2-propanediol and 1,3-propanediol over time.  

Native rodent skin and 0.10%, 0.25%, and 0.50% glutaraldehyde with D2O fixed skin 

were dehydrated for 120 min by 1,2-propanediol and 1,3-propanediol.  After 10 min of 

immersion in 3.5M 1,3-propanediol, native rodent skin had a significantly reduced D2O 

concentration compared to that immersed in 1,2-propanediol (Figure 32).  0.10% 

glutaraldehyde fixed skin showed a similar, but delayed trend with 1,3-propanediol 

exhibiting greater dehydration effects 20 min after application (Figure 33).  Higher 

concentrations of glutaraldehyde (0.25% and 0.50%) fixed rodent skin showed larger 

D2O retention with little difference between the propanediols to remove water (Figures 

34 & 35).  
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Figure 33:  Percent D2O remaining in 0.10% fixed skin after immersion in 1,2-
propanediol and 1,3-propanediol.  1,3-propanediol was found to be a more effective 
dehydrating agent. 

 

Figure 32:  Percent D2O remaining in native skin after immersion in 1,2-propanediol and 
1,3-propanediol.  1,3-propanediol was found to be a more effective dehydrating agent. 
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Figure 35:  Percent D2O remaining in 0.50% fixed skin after immersion in 1,2-propanediol 
and 1,3-propanediol.   

 

Figure 34:  Percent D2O remaining in 0.25% fixed skin after immersion in 1,2-propanediol 
and 1,3-propanediol.   
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 Collagen affinity plays an important role in chemical agent dehydration of tissue.  

The kinetics of dehydration were examined using a pair of propanediols.  Native and 

fixed rodent skin was dehydrated for 120 min by 1,3-propanediol and 1,2-propanediol.  

Comparable osmolality of each agent would suggest an equivalent ability to dehydrate 

fixed tissue.  1,3-propanediol was found to dehydrate native and 0.10% fixed skin more 

effectively than 1,2-propanediol.  As illustrated in chapter IV, hydroxyl group placement 

plays a critical role in interactions between clearing agents and collagen triple 

helices[38].  The larger spacing between hydroxyl groups in 1,3-propanediol allows it to 

form additional hydrogen bonds with collagen.  The greater collagen affinity of 1,3-

propanediol led to more efficient dehydration of skin.                     
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CHAPTER VIII 

CONCLUSION 

 

8.1  The Clearing Mechanism 

 The findings presented in this work suggest that the mechanism of skin optical 

clearing incorporates aspects of all three previously proposed mechanisms: dehydration, 

refractive index matching, and collagen dissociation.  Tuchin first proposed dehydration 

and refractive index matching as the primary cause of tissue clearing by suggesting that 

clearing agent removal of bulk water reduces the refractive index mismatch between 

collagen fibers and the surrounding media[1].  Since Tuchin’s initial clearing proposal, 

several studies have examined clearing in tissue in an effort to further define the clearing 

mechanism.  Vargas suggested that index matching in concert with dehydration cleared 

tissue allowing a greater amount of florescent signal to be recovered from beneath 

skin.[3]  Other studies by Rylander[23], Xu[10-12], and Wang[9], implicated 

dehydration alone as the sole cause of tissue transparency.    

 Refractive index matching and dehydration was found lacking as the primary 

cause of tissue clearing when Choi et al illustrated that clearing agent physical properties 

such as refractive index and osmolality do not correlate with an agent’s ability to clear 

skin.[27]  Additionally, Yeh et al. discovered that molecular interactions between 

clearing agents and collagen perturb the native collagen structure during the clearing 

process suggesting a molecular mechanism for clearing[28].  In totality, these results 
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illustrate that clearing is a dynamic process with each study described above shedding 

light on a single aspect of the clearing process. 

 The work presented in this dissertation suggests a unified clearing mechanism 

containing aspects of all three previous hypotheses of tissue clearing.  Clearing was 

found to be a complex process with thermodynamic and kinetic components.  First, there 

is a thermodynamic equilibrium that is reached between clearing agents and skin.  

Concentration gradients drive clearing agents to diffuse into skin and remove water.  The 

introduction of clearing agents into the tissue begins to optically homogenize skin and 

reduce light scatter.  Interestingly, this process does not seem sensitive to small 

variations in clearing agent refractive index.  No differences in clearing ability of the 

agents examined herein were found yet their refractive indices ranged from 1.42 to 1.47. 

Secondly, there is kinetic component to clearing.  Chemical agents clear skin with 

differing rates.  The speed of clearing was found to increase with molecular size and 

number of hydroxyl groups.  This finding points to molecular interactions between 

clearing agents and collagen as a major component of clearing. 

 The molecular modeling program CHARMM suggests collagen affinity plays a 

major role in clearing agents ability to interact with collagen and remove bound water.  

Clearing agents interact with collagen triple helices through hydrogen bonding and 

bridging thereby disrupting the water hydration shell surrounding collagen molecules.  A 

correlation was found between clearing efficacy and the ability of clearing agents to 

hydrogen bond with collagen (collagen affinity).  Increases in clearing agent molecular 
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size and hydroxyl groups led to a higher affinity for collagen and more effective tissue 

optical clearing. 

 Collagen solubility is a measure of clearing agent affinity for collagen and was 

found as a predictor of measured OCP.  Computational molecular modeling predictions 

were confirmed experimentally using collagen fibrillogenesis inhibition and solubility 

measurements.  Clearing agents have an affinity for collagen molecules and shield the 

attractive forces between collagen triple helices reducing fibrillogenesis.  Increasing 

clearing agent molecular size led to a greater reduction of fibrillogenesis with 

corresponding high collagen solubility.  High collagen solubility was a physical 

characteristic of the most effective clearing agents that was found to predict opt ical 

clearing efficacy. 

 Clearing was hypothesized as optically homogenizing skin by clearing agent 

removal of bound water between collagen triple helices.  Raman spectroscopy is capable 

of investigating the hydration state of dermal collagen fibers.  Deuterium oxide (D2O) in 

concert with Raman spectroscopy quantified clearing agent induced dehydration of 

dermal collagen.  Clearing agent ability to dehydrate dermal collagen corresponded with 

collagen affinity and the ability to optically clear tissues.  The most effective clearing 

agents were found to remove bound water with the greatest efficacy.  

 The replacement of bound water by clearing agents with an index of refraction 

similar to collagen optically homogenizes skin tissue leading to a reduction in light 

scattering.  Previous suggestions of index matching and dehydration of collagen were 

incomplete.  Replacement of collagen fiber’s surrounding medium with a high index 
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material is not sufficient to induce a large amount of optical clearing in skin.  Our results 

suggest a molecular mechanism for clearing.  Collagen fibers must be homogenized by 

clearing agent removal of bound water between triple helices and fibrils.  Through 

dehydration of collagen with concomitant diffusion of clearing agent into collagen, the 

skin is homogenized leading to a large reduction in tissue light scattering. 
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APPENDIX A 

INVERSE ADDING DOUBLING 

 

 Before discussing the inverse adding doubling method (IAD) we must first step 

back and briefly review general tissue optics.  Tissue is not transparent and attenuates 

light.  The attenuation of a collimated laser beam in a homogenous layer of tissue can be 

described by the exponential Beer-Lambert law: 

 

where I(d) is the intensity of collimated transmitted light, RF is the coefficient of Fresnel 

reflection [(n-1)/(n+1)]2, n is the relative mean refractive index, I0 is the incident light 

intensity, µt is the extinction coefficient, and d is the length of the tissue.  The above 

equation is useful if the optical properties (µa, µs) are known but in many circumstances 

they are unknown and need to be calculated.  The Beer-Lambert law does not allow for 

accurate calculations of µa and µs in tissue since multiple combinations of each 

coefficient would lead to similar intensity extinctions. 

 The inverse adding doubling method (IAD) is an effective and commonly used 

method to calculate each coefficient.[22-24-31]  IAD uses total reflectance and total 

transmission to calculate the optical properties of bulk tissue.  “Inverse” describes the 

reverse of the usual process of calculating reflection and transmission from optical 

properties.  “Adding-doubling” indicates the way the radiative transport equation is 

 
                       A1.1 
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solved within a specified error range.  The radiative transport equation (RTE) describes 

light propagation within tissue.  The overall equation is an energy balance in the 

form[24]: 

 

where I(r,s) is the radiance or the amount of energy that flows across an area at point r 

in the direction of s.  µt is the total attenuation (µa + µs) and p(s,s’) is a probability 

density function or “phase function” describing scattering in direction s’ for a photon 

traveling in s.   In practice the phase function has been found to be accurately 

approximated in tissue using the Henyey-Greenstein function: 

 

Where g is the scattering anisotropy factor (<cosθ>) which describes the direction of 

scattering (-1: totally backscattered, 0: isotropic, 1: totally forward).  IAD approximates 

the RTE to find the optical properties of the tissue. 

 

Inverse Adding Doubling (IAD) Method of Optical Property Measurement.[32] 

Assumptions: 

• Continuous incident light 

 

                            A1.3 

 

           A1.2 

[Change of energy of area element = Energy out + Energy in] 

 



90 
 

• Samples have homogenous optical properties 

• Sample geometry is infinite plane-parallel slab with finite thickness 

• Uniform index of refraction 

• Light is unpolarized 

 

 

IAD is an iterative method developed to approximate the solution to the radiative 

transport equation.  The following discussion/calculations will be for the geometry: 

 

Turbid slabs transmit and reflect light at different angles.  R(ν’,ν) and T(ν’,ν) denote 

total reflected and transmitted light from the slab.  Total reflectance is defined by van de 

Hulst and Prahl [32] as: 

 

The radiance reflected by the slab in direction ν for light conically incident from the ν’ direction.  

The reflection is normalized to an incident diffuse flux, π.  This definition has the advantage that 

R(ν’,ν) has finite non-zero values when ν = 0 or ν’ = 0 and thereby improves the computational 
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accuracy.  Furthermore, R(ν’,ν) is the ratio of the actual reflection function to the reflection 

function of an ideal white Lambertian surface.  The transmission function is defined similarly. 

 

With total transmission and reflection defined, the reflected intensity distribution, Iref is: 

 

where Iin is the intensity of the incident light and R(ν’,ν) is the reflected light.  Iref(ν) has 

units of power per unit solid angle.  Total reflection for normal irradiance (Rc) and 

diffuse irradiance (Rd), and the total transmission from collimated irradiance (Tc) and 

diffuse irradiance (Td) are derived by van de Hulst and Prahl as follows[32]: 

 

 At each point within tissue, energy is lost due to absorption and scattering and 

gained from energy flow from surrounding areas.  The radiative transport equation, RTE, 

is difficult to solve and requires constraints on the sample to exactly match assumptions 

made for an exact solution.  Because of these constraints the RTE is often approximated.  

 

       A1.5 

                      A1.6 

                              A1.7 

                      A1.8 

 

 
                    A1.4 
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Inverse adding doubling is a method that quickly and accurately approximates the RTE.  

Commonly the RTE is approximated using spherical harmonics.  Such a method leads to 

a simplified system of (N+1)2 connected differential partial derivative equations known 

as the PN approximation.  The PN approximation has been shown to be sufficiently 

accurate and used in multiple studies to calculate tissue optical properties.[94-100]  IAD 

uses quadriture which has been found to be equivalent to the spherical harmonic and PN 

method of order PN-1…ie four quadriture points is equivalent to a P3 approximation. 

 

 

 

Quadrature 

Quadrature is synonymous with integration.  Quadrature is a method that discretizes an 

integral and uses summation to approximate that integral.  For example the total 

reflection for normal irradiance (Rc) is given by: 

 

This integral can be approximated using quadrature using the identity: 

 

thus… 

                   A1.10 

 

                              A1.9 
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The integration points xi and wi are chosen so the integration will integrate a polynomial 

of degree 2M exactly. 

An example of quadriture use in IAD is as follows[32]: 

Consider a homogenous slab with a fixed albedo (a= 0.9), isotropic scattering (g=0) and 

an optical thickness (τ=1).  With an infinitely wide incident light on a slab the reflected 

light will vary with exit angle.  Quadrature was used by Prahl[32] to solve the above 

reflectance integral which gives the angular dependant reflection as: 

 

 

 

 

                    A1.11 
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Each dot represents a point of quadrature.  Note that the percent reflectance at each angle 

is given.  For a P3 equivalent spherical harmonic approximation, four quadrature points 

are used in the IAD program to approximate the angular dependant total reflection.  

Transmission values are calculated similarly.  Four quadrature points was found to give 

an error of 2-3 %.  Increasing the number of quadrature points more accurately 

approximates the solid line in the graph above and leads to a decrease in error.  For 

example 36 quadrature points was found to have an error of on 0.1%. 

 

Uniqueness 

 The IAD method continually guesses the optical coefficients until the calculated 

transmission and reflectance values match the experimental values.  It is not obvious that 

the IAD calculated optical coefficients (a, τ, g) are unique for a set of measurements (RT, 

TT, Tc).  For example increasing the albedo (a = µs/(µa + µs)) of a sample will increase its 

total reflection and minimize the transmission…and increasing the optical thickness of 

the sample (τ) will do the same.  Prahl demonstrated the uniqueness of IAD calculated 

optical properties for two conditions: 1) fixed unscattered transmission and 2) fixed 

scattering anisotropy.[31]  For each case the optical coefficients were found to be unique 

with only one existing set of optical coefficients leading to the measured transmission 

and reflection with an assumed anisotropy factor (g). 
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Errors 

 Prahl also examined the accuracy of the IAD method.[31]  The error analysis was 

conducted numerically because analytical expressions for light propagation in 

anisotropic media with mismatched boundaries were not available.  Using four 

quadrature points the error consistently was found to be 2-3 % when compared to Monte 

Carlo modeling of light propagation through tissue.  Increasing the number of quadrature 

points improved accuracy at the cost of computational time.  The 36 quadrature point 

simulation was within 0.1 % accurate of the Monte Carlo values.  The finding suggest 

the IAD method to be an accurate and time efficient method of calculating the optical 

properties of tissues. 
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APPENDIX B 

NONLINEAR OPTICS 

 

 Nonlinear Optical Phenomena describe the nonlinear response of a material 

system to an applied electric field and is described by the polarization equation. 

 

where χ is the optical susceptibility and characterizes the material response to an applied 

electric field, E(t).  The first term is a linear term describing events such as light 

absorption and scattering.  Second harmonic generation (SHG), the signal imaged in the 

study to examine collagen structure, stems from the second term in the polarization 

equation:  

 

For convenience the nonlinear susceptibility and electric fields will be discussed 

separately. 

 

 

Electric Field Interactions 

 SHG is a frequency doubling effect.  Consider an electric field with strength: 

 
                                     A2.2 

    A2.1 
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where “c.c.” is the complex conjugate.  The second term consists of two electric fields 

interacting so multiplying E(t) x E(t) we have: 

 

Notice when the two electric fields are multiplied together we are left with a time 

independent term, 2EE*, and a time dependant, frequency doubled term that is 

responsible for producing second harmonic signal, E2e-2wt. 

 

Optical Susceptibility 

 There are strict material characteristics for second harmonic generation.  Two 

major criteria are: 1) the medium must be highly organized and be on a size scale similar 

or larger than the wavelength of incident light and 2) the medium must lack a center of 

inversion.  The optical susceptibility, χ, is a third rank tensor representation of these 

material properties.  Χ(2)
ijk is represented by three, 3x3 matrices.  For SHG, dispersion 

can be neglected so the following shorthand was developed: 

 

  

Χ(2)
ijk= 

 

        A2.4 

 
                               A2.3 
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Because of symmetry: 

123 = 132,  223 = 232, 323 = 332 

131 = 113, 231 = 213, 331 = 313 

112 = 121, 212 = 221, 312 = 321 

The new shorthand matrix (dil) becomes: 

 

 

If the medium has a center of inversion all components of the matrix become 0 and no 

SHG is produced.  Collagen lacks a center of inversion and therefore produces SHG 

signal with a sufficiently intense laser light source.  The optical susceptibility matrix 

describing SHG for rat tail collagen is[101]: 
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APPENDIX C 

SPECTROPHOTOMETRY, OPTICAL ABSORPTION 

 

 

 Absorption spectroscopy in the UV and visible range is an important tool in 

identifying and quantifying chemicals.  Spectrophotometry was implemented in this 

dissertation as a way to measure the quantity changes of soluble collagen in solution 

before and after fibrillogenesis. 

 The Beer-Lambert law describing absorption is the mathematical basis for 

spectrophotometry.  Light is absorbed as it passes through a transparent material.  The 

extinction of light is described by[102]: 

 

where Aν is the absorbance, I0 is the intensity of monochromatic light entering the 

sample, I is the intensity of light emerging from the sample, d is the path length, c is the 

concentration of absorbing substance, and εν is the molar extinction coefficient.  εν is 

wavelength dependant and is a characteristic of the substance whose absorption is being 

measured.  In spectrophotometry the absorbance of a range of wavelengths is measured 

for a chemical solution. 

 

 

                             A3.1 
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APPENDIX D 

RAMAN SCATTERING 

 

 

 The following is a more in depth mathematical description of Raman scattering 

from Ewen Smith and Geoffrey Dent’s book entitled, “Modern Raman Spectroscopy: A 

Practical Approach.”[103]  This is not an exhaustive description, but a description aimed 

at understanding major concepts useful for the experimentalist to understand.  For a 

more in depth discussion the reader should be directed to the many published books on 

the subject.[104-105] 

 Raman spectroscopy is fundamentally based on Raman scattering.  Earlier, light 

scattering was described as emitted light resulting from the interaction of an incident 

light wave and matter.  When light interacts with particles such as molecules that are 

smaller than its wavelength three types of scattering events result: 

1.  Rayleigh scattering – Elastic scattering event where emitted light is same 

frequency as incident light. 

2. Stokes Raman Scattering – Inelastic scattering event where emitted light is of 

a lower frequency than the incident light. 

3. Anti-Stokes Raman Scattering – Inelastic scattering event where emitted light 

is of a higher frequency than incident light. 

Below is a brief discussion of the major components of Raman scattering: 
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Vibrational states and Hooke’s Law 

 Molecules consists of electronic states which each contain a large number of 

vibrational and rotational states.  A typical diagram of an electric state consisting of 

vibration levels is as follows and will be referred to as a Morse diagram: 

 

 

 

The y-axis represents the energy of the system with the x-axis representing the distance 

between two atomic nuclei.  The curved line indicates the electronic state whereas 

straight lines indicate different vibrational states.  Energy is quantized with vibrational 

states occurring at discrete energy levels.  ν = 0, indicates the ground state where the 

molecule is not vibrating.  ν = 1 is the first level of higher energy than the ground state 

and the molecule vibrates.   
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 The Raman scattering effect results from the interaction of incident light and 

electrons in the illuminated molecules.  In non-resonant Raman scattering, the incident 

light does not have enough energy to excite the electron into a higher electronic energy 

level.  Thus the electron is promoted to a different vibrational level within the same 

electronic state. 

 

 

 

 In order for a molecule to exhibit the Raman effect the incident light must induce 

a dipole moment in the molecule or induce a change in molecular polarizability.  Light 

scattered through the Raman process can be either lower or higher energy than the light 

incident on the molecule.  When a molecule interacts with an incident photon, some of 

the electrons in the molecule convert the light energy into vibrational energy.  The 

scattered light loses energy equivalent to the change in vibrational mode (Stokes Raman 

 

Energy diagram of inelastic Raman scattering.  Scattered light energy is 
either lower (Stokes) or higher (Anti-Stokes) than incident light. 
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effect).  If the electron is already in an elevated vibrational state, energy is donated, 

increasing the overall energy of the scattered photon (Anti-Skokes Raman effect).  It is 

important to remember that the majority of scattered light is of the same energy as the 

incident photon (Rayleigh Scattering) with Raman scattering lines potentially only 10-6 

of the intensity of the Rayleigh line.   

 The energy between vibronic levels can be calculated using a harmonic 

simplification of the above Morse curve.  In the harmonic approximation a parabola is 

used rather than the non-symectric Morse curve.  Also in the harmonic model the 

vibronic levels remain equal distant apart as energy increases.  In reality however as 

energy increases the vibration energy levels become closer together. 

 The harmonic model for a diatomic molecule can be considered as two masses 

connected by a vibrating spring.  Hooke’s law can be used to give the relationship 

between frequency, the mass of the atoms involved in the vibration, and bond strength: 

 

where c is the speed of light, K is the force constant of the bond, and π is the reduced 

mass of the two atoms (we’ll call them atom “A” and “B”). 

 

 

 

                                        A4.2 
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From Hooke’s law we can understand some general trends: 

• The lighter the atoms involved…the higher the frequency 

• The stronger the bond…the higher the frequency 

Polarization 

 Raman scattering is affected by the polarization of the incident light.  Linearly 

polarized light is common in Raman spectroscopy and will be discussed here. 

 The electron cloud of a molecule can only be distorted by incident light by an 

amount related to the molecule’s electrons ability to polarize.  The amount of distortion 

is called the polarizability (α).  The incident light is only polarized in one plane, however 

the electron cloud is distorted in all directions.  The simple expression used to denote a 

molecular dipole (µ) is: 

 

where E is the electric field of the incident photon.  Expanding for all directions (x, y, z) 

we have: 

 

 

 

The above equation shows that the polarization of Raman scattered light is dependent on 

the polarization of incident light.   

 

                                         A4.3 



105 
 

The Kramer Heiseneberg Dirac Expression 

 The intensity of Raman scattering is defined by: 

 

K is a constant, l is the laser power, ω is the frequency of the incident radiation, and α 

the polarizability of the electrons in the molecule.  To calculate the polarizability of the 

molecule the Kramer-Heisenberg-Dirac expression is used: 

 

α is the molecular polarizability, ρ and σ are the incident and scattered polarizations, Σ is 

the sum over all vibration states of the molecule, G is the ground vibronic state, I is the 

vibronic state of the “excited” state, and F is the final vibronic state.  Put another way, G 

and F are just the initial and final vibronic states which are shown in the above energy 

diagram of the Raman process.  ωGI is the energy difference between the ground state 

vibronic energy and the intermediate state.  ωL is the energy of the exciting light and iΓI 

is a small error term related to the lifetime of the excited state and the breadth of Raman 

lines. 

 The numerator in the above equation shows integrals in the “bra-ket” form.  They 

are terms that “mix” the ground and excited states in order to describe the electron 

configuration that has been distorted by the incident light.  For example, consider the 

             A4.5 

 
                                      A4.4 
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first term describing a molecule in the ground state being excited into a higher final 

state: 

 

Starting from the right side of the above expression,  is a wave function describing 

the ground vibronic state that is being acted on by the dipole opporator, rρ.  This product 

is then multiplied by a wave function describing the “excited” vibronic state .  This in 

effect “mixes” the states with the result being summed (integrated) over all states. 

 We have just described the molecule being “excited” into a virtual state and have 

yet to describe the molecule returning to the final state.  A similar process as just 

describes happens in the left side of the above equation and the molecule is left in the 

final state . 

 The process just described does not have to start in the ground state.  For 

example electrons could reside in high vibrational states if the molecules have sufficient 

heat energy.  The second “bra-ket” term in the Kramer-Heisenberg-Dirac (KHD) 

expression accounts for this case.  Consider: 

 

This term starts with the excited states and mixes the ground and final state together in a 

similar way to the previous term just described. 

                                   A4.7 
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