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ABSTRACT

Model-Based Pre-processing in Protein Mass Spectrometry. (December 2009)

John C. Wagaman, B.S., Millersville University;

M.S., University of Central Florida

Co–Chairs of Advisory Committee: Dr. Jianhua Huang
Dr. Webster West

The discovery of proteomic information through the use of mass spectrometry (MS)

has been an active area of research in the diagnosis and prognosis of many types of

cancer. This process involves feature selection through peak detection but is often

complicated by many forms of non-biological bias. The need to extract biologically

relevant peak information from MS data has resulted in the development of statistical

techniques to aid in spectra pre-processing. Baseline estimation and normalization are

important pre-processing steps because the subsequent quantification of peak heights

depends on this baseline estimate.

This dissertation introduces a mixture model to estimate the baseline and peak

heights simultaneously through the expectation-maximization (EM) algorithm and a

penalized likelihood approach. Our model-based pre-processing performs well in the

presence of raw, unnormalized data, with few subjective inputs. We also propose a

model-based normalization solution for use in subsequent classification procedures,

where misclassification results compare favorably with existing methods of normal-

ization. The performance of our pre-processing method is evaluated using popular

matrix-assisted laser desorption and ionization (MALDI) and surface-enhanced laser

desorption and ionization (SELDI) data sets as well as through simulation.
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CHAPTER I

INTRODUCTION

Proteomics is the study of the functions and structures of proteins. The extraction

of proteomic information from biological matter is often obtained through the use

of mass spectrometry. A substantial portion of the current research in protein mass

spectrometry currently uses statistical techniques to identify molecular biomarkers

that are associated with diseases of interest, which include breast cancer (Coombes et

al., 2003; Kuerer et al., 2004; Li et al., 2002), ovarian cancer (Petricoin et al., 2002a;

Rai et al., 2002; Sorace and Zhan, 2003; Wu et al., 2003), lung cancer (Zhukov et al.,

2003) and prostate cancer (Adam et al., 2002; Coombes et al., 2004; Qu et al., 2002;

Yasui et al., 2003b). The applications of these techniques can be used, for example,

in the monitoring of disease progression, observing the reaction to a treatment and

in early cancer diagnosis (Coombes et al., 2005a). The importance of proteomics

in early cancer detection is especially critical since therapies can be more effective

when applied earlier. However, some cancers, like early-stage ovarian cancer, lack

identifying symptoms which may delay the diagnosis (Petricoin et al., 2002b). The

use of proteomics in early cancer detection is an attempt to provide non-invasive and

diagnostic information in the discovery of useful biomarkers.

This dissertation follows the style of the Journal of the Royal Statistical Society.
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I.1. Mass Spectrometry Overview

In mass spectrometry, a sample of tissue, serum, biological fluid, etc. is collected

and input into a mass spectrometer, where a mass spectrum is produced consisting of

intensity and mass-to-charge ratio pairs for the molecules in the sample. This spec-

trum serves as a graphical description of the contents of the sample; that is, what

molecules are present and in what quantity. The process for producing a mass spec-

trum from a biological sample begins with a transformation of the sample input into

a gas and the ionization of these gaseous molecules. While several types of ionization

sources exist, our work has mainly focused on spectra resulting from matrix-assisted

laser desorption and ionization (MALDI) and surface-enhanced laser desorption and

ionization (SELDI) mass spectrometry (MS). In short, the sample input is embedded

in a crystalline matrix, where the both the sample input and matrix are transformed

and ionized with pulsed shots from a laser beam. As the ions are separated, they

are directed towards the mass analyzer, where ions will be sorted according to their

mass-to-charge ratio. For instance, in a time-of-flight mass analyzer, the ions are

propelled through a flight tube towards the ion detector. As each ion hits the detec-

tor, its flight time is recorded; smaller ions move faster. The masses of the ions are

determined from their respective flight times through a flight tube whose distance is

known. The mass-to-charge ratio for each ion is its atomic mass divided by its charge

(i.e., +1), and, because most ions have the same charge (+1), the m/z ratio is some-

times referred to as “mass” only. The mass and intensity information is summarized

in a bivariate spectrum which plots the range of observed mass-to-charge ratios (m/z)

and the respective ion intensities over this range. The peptides present in the sample

are represented as anonymous peaks in intensity at particular mass-to-charge ratios,

where each peptide, protein, molecule, etc. has a unique mass.
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An ovarian cancer data set analyzed in Tibshirani et al. (2004) and Wu et al.

(2003) has one MALDI spectrum for each of 89 subjects, each with known disease

status. We want to build a classifier based on these spectra to discriminate between

cancerous and healthy samples. Specifically, we want to classify each patient’s spec-

trum based on peak heights or peak presence at particular values of the mass-to-charge

ratio, which correspond to discriminating proteins, peptides, etc. Four of these spec-

tra are plotted in Figure 1. These figures clearly exhibit some forms of non-biological

bias that can complicate the extraction of biologically relevant information from the

spectra. These problems are the main motivation for this work. In this chapter, we

describe some of these biases and review existing methods of pre-processing spectra

to correct for such biases. In Chapter II, we propose a method for modeling the in-

tensities of the spectra. In Chapter III, we discuss baseline correction of the spectra

and in Chapter IV, we consider peak detection and classification.

I.2. Pre-processing of Spectra

A significant amount of pre-processing must be done to extract biologically-meaningful

patterns from the data for later use. Pre-processing consists of several steps that in-

teract in complex ways (Baggerly et al., 2003; Coombes et al., 2005b), and these steps

are essential, because the processed spectra should only reflect the behavior inherent

in the biological specimens. The pre-processing steps summarized below are not nec-

essarily performed in the same order and some steps may be omitted altogether. Poor

choices during the pre-processing stage may result in spectra with substantial biases

which may prevent the identification of important biomarkers for disease classification

(Coombes et al., 2005a). The goal of pre-processing spectra is to identify individual

proteins in each sample through peak detection and quantification. The methods
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Fig. 1 Four spectra from the ovarian cancer data set of (Wu et al.).

used to pre-process and extract peaks from spectra vary. Successful pre-processing

will yield a list of biologically relevant locations and intensities for each spectrum.

We briefly outline some typical pre-processing steps below.

I.2.1. Calibration

Calibration maps the observed time of flight to the inferred mass-to-charge ratio

(Coombes et al., 2005a). This step aligns the spectra so that peaks in different spec-

tra corresponding to the same protein can be identified as such (Morris et al., 2005).
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One method of calibrating spectra uses a windowing technique which depends on the

accuracy of the mass spectrometer used. The number of peaks that fall within this

window width for each location is calculated, and the mass-to-charge ratios which

have the largest number of peaks in their corresponding window of potential shift are

included in a set of calibrated mass-to-charge ratios (Yasui et al., 2003a). Extend-

ing the process, the locations in each bin are sometimes replaced with the midpoint

location of the bin and the maximum intensity in the bin. This procedure improves

peak calibration and reduces the dimensionality of the data (Carpenter et al., 2003).

Calibration is also proposed using parametric time warping (Eilers, 2004). The in-

tensities of two spectra can be calibrated by finding a “warping” equation for one

spectrum which minimizes its differences with the other spectrum in the quadratic

norm. Evidence of uncalibrated spectra is illustrated in Figure 2.

I.2.2. Baseline Correction

The baseline artifact of MS spectra is not biological in nature, rather, it often stems

from a large number of matrix molecules hitting the detector early in the analysis

(Coombes et al., 2005a). The baseline is the signal that would be produced by a

mass spectrometer in the absence of noise and a sample (Gras et al., 1999). Figure 3

shows two mass spectra from healthy controls with different baselines. Poor baseline

estimation may lead to increased detection of false positive peaks, as a peak may have

a greater intensity due to non-biological bias in the data. Baseline estimation using

a “loess” smooth is illustrated in Figure 4.

Clearly, the baseline estimation (and subtraction) procedure must be carried

out for each spectra, separately. Baseline estimates should be very smooth, especially

in peak regions, where poor baseline estimation may affect subsequent peak detection
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Fig. 2 Pieces of two raw spectra (top, middle) from Wu et al. (2003) and the difference between their

baseline-corrected intensities (bottom). Note how the large peaks are slightly offset, even though

they likely correspond to the same protein.

and quantification methods, as can be seen in Figure 4. We now summarize some

baseline estimation procedures from previous work. A “semimonotonic” baseline is

estimated by first removing a non-biological sinusoidal noise component, and then

using a function of the local and monotonic minima to estimate the baseline (Bag-

gerly et al., 2003; Morris et al., 2005). Since high-intensity peaks can affect baseline

estimation, a simple peak finding algorithm (SPF) is used to remove peaks based on

local maxima, before interpolating across the bases of removed peaks. The baseline is

estimated as the local windowed minima calculated using a fixed window width, and
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data set.
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this baseline is removed prior to a subsequent peak detection (Coombes et al., 2003).

A similar method uses monotone local minima, while allowing the window size to

grow smoothly across the spectrum (Kuerer et al., 2004). While the local minima are

easy to compute and do not require a model, one important disadvantage of using lo-

cal minima is that the subsequent baseline estimates between overlapping peaks may

be biased high, since the local minima will not drop to the true baseline (Dubitsky

et al., 2007). Further baseline estimation techniques include “loess” (Tibshirani et

al., 2004), local linear regression (Wagner et al., 2003), local medians (Torgrip et al.,

2003) and cubic splines with local medians (Yu et al., 2006). Locally, the baseline

should be a very smooth function that is unaffected by large intensities from peaks.

This suggests median-based methods and the removal of peaks in baseline estimation

are more appropriate. It is unclear which method of baseline estimation is best, since

this is generally an unsupervised problem.

I.2.3. Normalization

Normalization corrects for systematic differences in the total amount of protein des-

orbed and ionized from the sample plate (Coombes et al., 2005a; Morris et al., 2005),

as illustrated by the large scale changes in ion intensity on the vertical axes in Figure

1. This can make the classification of spectra using ion intensities difficult. Data

normalization is an important element of pattern recognition, as bias introduced by

ProteinChip quality, machine performance and operator characteristics can affect the

overall spectral quality (Conrads et al., 2004). Several authors have normalized by

dividing the intensities by the total ion current (Kozak et al., 2003; Kuerer et al.,

2004; Li et al., 2002; Morris et al., 2005; Wagner et al., 2003) or mean intensity (Zhu

et al., 2003). This method is motivated by the thought that the total ion current is
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a surrogate for the total amount of protein in the sample being measured (Coombes

et al., 2005b). Log transformations are also used as part of a two-step normalization

process. In one study, intensities were first normalized by total ion current, then

followed by a logarithmic transformation (Li et al., 2002). A logarithmic transforma-

tion preceded a linear transformation which mapped the 10th and 90th percentiles to

0 and 1, in another study (Tibshirani et al., 2004). Normalization steps sometimes

include transforming the minimum and maximum intensities in each of the spectra

to 0 and 1, respectively (Baggerly et al., 2004; Conrads et al., 2004).

The need for normalization is best argued by observing Figure 1. Normalization

is crucial for later classification purposes if the ion intensities are to be compared

across samples, since the ion intensity is often used to represent the abundance of

specific peptides. Clearly, comparing such abundance should be done relative to the

amount of input sample, as well as controlling for other external biases.

I.2.4. Denoising

Peak detection in spectra is usually affected by random noise that is typically elec-

tronic or chemical in nature (Coombes et al., 2005a), so estimation of this noise is

an important step in many peak detection algorithms. Smoothing is performed in

many of these cases to enhance the signal-to-noise ratio that may be used to quantify

peaks. Another benefit of smoothing is a decreased number of detected false positive

peaks due to large intensity values from the underlying noise component. Methods of

denoising that have been proposed include supersmoothers (Tibshirani et al., 2004),

moving averages (Carpenter et al., 2003), wavelets (Morris et al., 2005) and Gaussian

filters (Yu et al., 2006; Zhu et al., 2003). The wavelet denoising in Morris et al. (2005)

uses a form of hard thresholding where the wavelet coefficients are computed for the
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Fig. 5 Raw spectum (top-left) and spectum after smoothing using a supersmoother, using spans of .001

(top-right), .005 (bottom-left) and .01 (bottom-right).

observed spectrum, and those coefficients smaller than a threshholding parameter

are set to zero. A more hardware-specific smoothing method may involve envelope

extraction, since MALDI spectra obtained in reflectron mode maintain a constant

distance between neighboring isotope peaks (Yu et al., 2006). Figure 5 shows several

degrees of smoothing for a single spectrum using a supersmoother. We must be care-

ful not to oversmooth spectra, because important discriminatory information may be

lost, as we can see several small peaks that have been razed to the baseline.
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I.2.5. Peak Detection, Quantification and Matching

Peak detection and quantification is the process of identifying locations which corre-

spond to specific proteins or peptides in the sample (Dubitsky et al., 2007). Peaks in

each spectrum are identified as local maxima, although, not every local maximum is

a peak of interest. Some local maxima may stem from electronic or matrix noise in

unsmoothed spectra. Furthermore, multiple peaks may correspond to isotopes from

the same protein. Poisson distributions have been used to model the peaks in an

isotopically resolved group, to determine which of the peaks is the monoisotopic peak

(Breen et al., 2000).

Peak matching is used to determine whether peaks that have proximate m/z

values in different spectra represent the same biological feature or different biological

features (Coombes et al., 2005a). Two peaks that correspond to the same protein

or peptide, may have (slightly) different m/z values, even after calibration. A peak

alignment algorithm described in Adam et al. (2002) calculates a mass error score

between each pair of proximate peaks, using the absolute difference in the masses,

divided by the smaller mass. Each of these mass error scores is then compared to

a threshold. Two peaks in different spectra are said to be “matched” if their mass

error score does not exceed the threshold, and the peaks are believed to represent the

presence of the same molecule in each sample.

The peak probability contrasts method (Tibshirani et al., 2004) uses a peak-

finding algorithm that looks for locations with intensities that are higher than those

intensities at the surrounding ±s sites, and higher than the estimated average back-

ground at that location. Since peaks tend to be shorter and broader at higher values

of m/z, a log-transformation of m/z is used to transform the peaks so that the peak

width is roughly constant throughout the spectrum. Once peaks have been identified

in all spectra, these peaks are then matched through a one-dimensional clustering
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method based on location. The locations of the common peaks are defined to be the

centers of common peak clusters, and peaks from individual spectra are extracted if

they are within a certain distance from the cluster center.

Another method for peak detection and matching uses the mean spectrum to de-

tect peaks in individual spectra, by first finding peaks in the mean spectrum. These

peak intervals are searched in each individual spectrum, and the maximum (log) in-

tensity is recorded for each spectrum. These maxima are retained as peaks if they

exceed some minimum threshold for the signal-to-noise ratio (Morris et al., 2005). If

the individual spectra are well-calibrated, a single peak region in the mean spectrum

indicates the presence of a set of matched peaks in various individual spectra at that

locale.

A simple peak finding algorithm (SPF) compares peaks to local noise estimates

using first differences between successive time points. An initial set of peaks is iden-

tified through a local maxima search based on these first differences. The median

absolute value of these first differences is used as the noise estimate. Each peak

whose distance from the closest local minimum is less than this noise estimate is re-

moved from the initial set of peaks. Additional peaks whose left and right peak slopes

are less than half of the noise estimate are removed from this peaklist (Coombes et

al., 2003; Kuerer et al., 2004).

Peak width restrictions are imposed after selecting local maxima through a dis-

crete differentiation method. Local maxima whose distance from nearest local minima

does not exceed 1.5 Daltons (Da) are removed from future peak consideration. This

peak width restriction is helpful in reducing the number of detected false positive

peaks, since such peaks appear as narrow spikes in the spectra (Yu et al., 2006). An-

other study combines peak detection and identification by matching peak templates

from a database of known proteins to features in the data (Gras et al., 1999). How-
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ever, since peak identification is primarily a biological issue, it is not of particular

interest to us.

I.3. Resulting Classification

After all spectra have been pre-processed and all peaks have been quantified and

matched, classification based on peak information can begin. The peak information

can be viewed as a set of variables (peak locations) and measurements on each of

these variables (peak intensities, signal-to-noise ratios, etc.), and traditional statis-

tical methods can be used in the disease classification. The number of peaks used

in classification is a matter of feature selection; some common methods for selecting

locations of significance have utilized two-sample t-statistics (Baggerly et al., 2003;

Wu et al., 2003) and Wilcoxon tests (Sorace and Zhan, 2003; Zhukov et al., 2003). A

two-sample t-test is computed at each location that compares the average intensity for

the cancerous spectra and the average intensity for the non-cancerous spectra. Those

locations yielding large magnitudes of the test statistic are investigated as potential

discriminating locations. Use of the Wilcoxon test has a similar application.

Another method for the feature selection uses split points based on peak height.

At each location, a height is selected that maximally discriminates the peak inten-

sities between the groups to be classified (Tibshirani et al., 2004). Other methods

for feature selection include random forests (Wu et al., 2003), fitness tests based on

Euclidean distances (Conrads et al., 2004), Unified Maximum Separability Analysis

(UMSA) (Li et al., 2002), area under the curve (AUC) (Qu et al., 2002; Adam et al.,

2002) and binomial distributions based on desired specificity (Coombes et al., 2004).

One previous study boasted of high sensitivity and specificity in ovarian cancer clas-

sification (Petricoin et al., 2002a), but the lack of reproducibility of these results is a
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cause for concern (Baggerly et al., 2004).

An extensive study (Wu et al., 2003) compared statistical methods on the afore-

mentioned ovarian cancer data peaklists to evaluate the prediction error of each of

these methods. These methods included linear and quadratic discriminant analysis,

nearest neighbors, bagging, boosting, support vector machines and random forests.

Random forests consistently performed well as the number of biomarker selections

changed; the misclassification error rates were about .10, on average, depending on

the number of features selected. The variables (locations) were selected by examin-

ing the t-statistics calculated at each location. Each t-statistic was computed from

the normalized differences between the mean intensity for each group. The use of

t-statistics and Wilcoxon tests to identify locations for feature selection has been

questioned, based on the belief that cancer patients need not differ from normal pa-

tients in the same way (Coombes et al., 2004).

Many of the pre-processing methods described in this chapter rely on subjective

choices of the modeler, some of which may prevent reproducibility of results. While

these choices cannot be altogether avoided, we present an approach where one of our

focuses is to allow the data to be ultimate arbiter for model and parameter choice

instead of the modeler. In the next chapter, we present our method of modeling the

intensities from the spectra.
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CHAPTER II

METHOD

II.1. Model

Let Yt represent the observed intensities which are modeled as

Yt = ft + Zt, t = 1, . . . , n, (2.1)

where t indexes the locations within spectra, ft is the baseline, and Zt is the baseline-

corrected intensity. Our goal is to separate ft and Zt from Yt. We assume that

ft = f(t) for a smooth function f and assume that Zt is a random variable from a

mixture distribution, where the component distributions may vary based on applica-

tion. While analyzing data from Wu et al., (2003), we have found that the mixture of

a single normal and several normal-exponential sums to suitably model the intensities

in each spectrum. The details of the model that we describe in this chapter will be

specific to this motivating data set with a more general discussion of other component

choices to follow.

Assume that a baseline-corrected intensity, Zt, is generated from a mixture of

m components which is comprised of a single normal component and m− 1 normal-

exponential sum components. These densities may be written as φ(zt;µ, σ
2) and

ψ(zt;µ, σ
2, θj , αj), j = 1, . . . , m − 1, respectively, where µ and σ2 denote mean and

variance of the normal distribution. The parameters θj and αj denote the rate and

shift parameters of the exponential distribution, respectively, corresponding to the jth

normal-exponential component, where α1 < α2 < . . . < αm−1. Let the mixing prob-

abilities be denoted as π1, . . . , πm, where π1 is the mixing probability for the normal
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component, and π2, . . . , πm are the mixing probabilities for the normal-exponential

components, ψ(zt;µ, σ
2, θj , αj), j = 1, . . . , m − 1, respectively. The density function

of Zt can then be written as

pθ(zt) = π1φ(zt;µ, σ
2) +

m
∑

j=2

πjψ(zt;µ, σ
2, θj−1, αj−1),

where the mixing probabilities satisfy
∑m

j=1 πj = 1.

The normal density has the form

φ(z;µ, σ2) =
e−(z−µ)2/(2σ2)

σ
√

2π
, −∞ < z <∞,

and the normal-exponential sum convolution is

ψ(z;µ, σ2, α, θ) = Φ

{

(z − α)− (µ+ θσ2)

σ

}

θe

n

−θ
“

z−α−µ− θσ
2

2

”o

. (2.2)

To derive the convolution, we let φ(·) and η(·) denote the normal and shifted expo-

nential densities, respectively, and write the convolution as

ψZ(z) = ψX+Y (x+ y) =

∫ z−α

−∞

φX(w)ηY (z − w)dw

=

∫ z−α

−∞

e−(w−µ)2/(2σ2)

σ
√

2π
θe−θ(z−w−α)dw.

Note that η(·) refers to the α−shifted exponential density, so z−w > α and it follows

that, for fixed z, w < z − α. We first combine terms in the exponential, and then

follow by completing the square (in w) in the kernel of the normal density, which
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yields

ψZ(z) =

∫ z−α

−∞

e−(w−µ)2/(2σ2)

σ
√

2π
θe−θ(z−w−α)dw

=

∫ z−α

−∞

1

σ
√

2π
θ exp

(

− w2

2σ2
+

2wµ

2σ2
− µ2

2σ2
− θz + θw + θα

)

dw

=

∫ z−α

−∞

1

σ
√

2π
exp

{

− w2

2σ2
+

2w(µ+ θσ2)

2σ2
− (µ+ θσ2)2

2σ2
t

}

dw

× θ exp

{

−θz + θα +
(µ+ θσ2)2

2σ2
− µ2

2σ2

}

.

Finally, we simplify the last two terms in the exponential and perform some rear-

rangement, which gives

ψZ(z) = = Φ

{

(z − α)− (µ+ θσ2)

σ

}

θ exp

{

−θ
(

z − α− µ− θσ2

2

)}

,

where Φ(·) represents the cumulative distribution function of the standard normal

distribution.

One of the attractive properties of using the normal-exponential convolution

is that it can simultaneously model the peaks from the underlying biological signal

with noise from the mass spectrometer. Several graphs of this density are provided

in Figure 6. Comparison of the top two pictures shows the effect of an increased

noise variance, σ2. Since the variance of the convolution is σ2 + 1
θ2 , we see that a

smaller proportion of this variance is contributed by the exponential variance, 1
θ2 , in

the top-right graph. A change in the shift of the exponential part, α, is illustrated by

comparing the top-right and bottom-left graphs. Not surprisingly, we see no change

in the shape of the graphs – only a shift. Finally, the effect of a decreased θ is shown

in the bottom two graphs. Since we have chosen θ to represent the rate parameter

of the exponential, the mean and variance of the exponential increase for decreasing

values of θ. This is evident in the bottom-right graph with increased spread and right
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Fig. 6 Graphs of the normal-exponential sum convolution density for varying noise variance, peak minimum

and mean.

skewness.

We now present some graphical support for our choice of the normal and normal-

exponential sum components in the analysis of the data from our motivating MALDI

data set. We first consider a smooth baseline estimate using “loess” in Figure 7,

and using the baseline-corrected intensities in the entire spectrum, we compute an

upper fence at Q3 + 3 × IQR and examine the baseline-corrected intensities inside

(less than) this upper fence in Figure 8. The histogram confirms that the majority of

the intensities are located near the baseline through a dominating peak at 0, so we

restrict µ = 0 in our data generating model, and assign a zero-mean normal density

to represent random error. From this figure, this choice of normal component is
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Fig. 7 Raw mass spectrum from our motivating MALDI data set with initial baseline estimate.

well-founded. The heavy right skewness of the intensities above (greater than) the

upper fence in Figure 9 suggests that an exponential component or other right-skewed

density may be appropriate. However, since both peak and non-peak intensities are

affected by electronic noise in the mass spectrometer, modeling peak intensities as a

sum of normal and exponential components seems more appropriate.

Assuming independence of the data, we can find the parameters of our mixture

model by maximizing the log-likelihood of the observed data

ℓ(Θ) =

n
∑

t=1

{log π1 + log φ(yt − ft; 0, σ
2)}

+
n

∑

t=1

m
∑

j=2

{log πj + logψ(yt − ft; 0, σ
2, θj−1, αj−1)}.

(2.3)
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While the assumption of independent observations may not be entirely true, using a

diagonal covariance matrix for large datasets is justifiable (and convenient) as shown

in Bickel. Thus, we will assume that all of the intensities are independent throughout

this document.

II.2. EM Algorithm

Since direct maximization of (2.3) is difficult, we use the EM algorithm to maximize a

function which minorizes the observed data log-likelihood, up to a constant. A graph

of the relationship between these two functions is shown in Figures 10 and 11. To

motivate our estimation method, let us introduce a latent (unobservable) indicator

Ut denoting which distribution Zt is from. Then πj = P (Ut = j) and Zt is generated

from φ(0, σ2) if Ut = 1, or ψ(0, σ2
t , θj−1, αj−1) if Ut = j, for 2 ≤ j ≤ m. The joint

density of Ut and Zt is

{π1φ(zt; 0, σ
2)}I(Ut=1)

m
∏

j=2

{πjψ(zt; 0, σ
2, θj−1, αj−1)}I(Ut=j).

where I(Ut = j) equals 1 if Ut = j, and equals 0, otherwise.

Introducing such a latent indicator is a standard method of parameter estimation

for mixture models. Treating the latent variable as missing, the EM (Expectation-

Maximization) algorithm can be applied to compute the maximum likelihood esti-

mator. In the E-step of the algorithm we calculate the conditional expectation of

the log-likelihood of the complete data (Y , U), given the observed data, Y and the

current guess of parameter values, denoted Θi. In the M-step, we maximize the con-

ditional expectation obtained in the E-step, and we iterate the E- and M-steps until

convergence. Under mild conditions, the observed data likelihood increases after each

iteration of the algorithm and the algorithm converges to a local maximum of the
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likelihood.

II.2.1. E-step

The likelihood of the complete data (Y ,U) is

L(Θ|Y ,U , f) =
n

∏

t=1

[

{π1φ(yt − ft; 0, σ
2)}I(Ut=1)

m
∏

j=2

{πjψ(yt − ft; 0, σ
2, θj−1, αj−1)}I(Ut=j)

]

.

Thus, the log-likelihood is

ℓ(Θ) =
n

∑

t=1

I(Ut = 1)
{

log π1 + log φ(yt − ft; 0, σ
2)

}

+

n
∑

t=1

m
∑

j=2

I(Ut = j)
{

log πj + logψ(yt − ft; 0, σ
2, θj−1, αj−1)

}

.

(2.4)

Let Θi = (πi
1, σ

i, {πi
j, θ

i
j−1, α

i
j−1}, j = 2, . . . , m) respresent current estimates of the

parameters. To obtain the expected log-likelihood, we need to compute π̂j,t = P (Ut =

j|Y , f ; Θi), called “responsibilities”. The term “responsibility” is used in the sense

that the jth density is responsible for generating the intensity at location t, with a

certain probability or level of “responsibility”. The responsibilities can be computed

using Bayes Theorem as follows:

π̂1,t =
πi

1φ(Yt − ft; 0, σ
i)

πi
1φ(Yt − ft; 0, σ

i) +
m

∑

k=2

πi
kψ(Yt − ft; 0, σ

i, θi
k−1, α

i
k−1)

, t = 1, . . . , n (2.5)

and

π̂j,t =
πi

jψ(Yt − ft; 0, σ
i, θi

j−1, α
i
j−1)

πi
1φ(Yt − ft; 0, σ

i) +

m
∑

k=2

πi
kψ(Yt − ft; 0, σ

i, θi
k−1, α

i
k−1)

, j = 2, . . . , m, t = 1, . . . , n.

(2.6)
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It immediately follows that the component responsibilities for a given location sum

to 1. With these responsibilities, we obtain from (2.4) that

Q(Θ|Θi) ≡ E(ℓ(Θ)|Y , f ; Θi)

=

n
∑

t=1

π̂1,t

{

log π1 + log φ(yt − ft; 0, σ
2)

}

+
n

∑

t=1

m
∑

j=2

π̂j,t

{

log πj + logψ(yt − ft; 0, σ
2, θj−1, αj−1)

}

.

(2.7)

II.2.2. M-step

To perform the M-step, we need to maximize the expected log-likelihood function

given in (2.7) over each of the parameters. Closed-form solutions for the updates

may exist depending on the choices of the component distributions. The normal-

exponential convolution prevents us from obtaining closed-form updates for most of

the parameters in the model. Using the fact that
∑n

j=1 πj = 1, the updates for the

mixing probabilities are

π̂j =

n
∑

t=1

π̂j,t

n
.

II.3. Number of Components and Initial Values

We now consider the issue of determining the number of mixture components and

initial values for our mixture model. Estimating the number of mixture components

has been considered by Furman and Lindsay (1994), Karlis and Xekalaki (1999) and

Titterington et al. (1985), although there does not appear to be much work in the area

of mixtures from components of different densities, as we are proposing. It is more

difficult to apply the moment-based procedure in Furman and Lindsay (1994) to our

problem, since each additional normal-exponential convolution component requires

three additional moment equations to estimate the additional π, α and θ. We fit each
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spectrum over a range of m, and use AIC (Akaike Information Criterion) and BIC

(Bayesian Information Criterion) to determine the optimal number of components,

by choosing the m for which these criteria are minimized.

In addition to the number of components, the EM Algorithm also requires initial

estimates of the parameter values to be optimized over. A study of initial values for

the EM algorithm with normal mixtures was compared in Karlis and Xekalaki (2003).

Many of the methods reviewed used a grid of starting values for the initial parameter

estimates, so that at least one of the sets of starting values will lead to the global

maximum. Among those that consistently performed well, the moment estimation

proposed in Furman and Lindsay (1994), becomes unwieldy even for m = 3, since we

must solve a moment equation for each initial estimate of π2, π3, σ
2, α1, α2, θ1 and

θ2. Other methods that performed well used random or user-defined starting points.

We now describe our method for selecting initial values, where we make use of

prior information about the spectra. Assuming that our baseline is known, we believe

that intensities below this baseline are solely attributed to the electronic noise in the

machine and, thus, are generated only from the normal error component. Under

this assumption, it is sensible to restrict µ = 0, so we estimate the noise variance

using these negative baseline-corrected intensities as σ̂2 =
∑

z
−

z2
−/n−, where n−

represents number of intensities below the baseline. Once we have estimated the

variance, we compute an upper fence at 3σ and initially classify any baseline-corrected

(b-c) intensities less than this upper fence as members of the error component and

π1 =
∑

zt
I(Zt ≤ 3σ)/n. If m = 2, then π2 = 1−π1, and we then initially classify any

intensities greater than this upper fence as members of the peak component and use

these intensities to compute α1 and θ1. If m > 2, we use a k-means algorithm to find

k = m−1 means among the baseline-corrected intensities greater than 3σ. We use the

intensities that are classified to cluster j {j : 1 ≤ j ≤ m−1} to compute πj+1, αj , θj ,
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where the clusters are labeled in increasing order to correspond with the m−1 means

in increasing order. A histogram of baseline-corrected intensities for a single spectrum

with initial component classification is illustrated in Figures 12 and 13 using m = 4.

The α and θ chosen for each initial density are those that maximize the log-likelihood

of the baseline-corrected intensities assigned to the respective component.

There is an important distinction in using only the negative baseline-corrected

intensities to compute the variance, while assigning all of the intensities less than the

upper fence to the normal component. The negative b-c intensities are observations

believed to be generated by only the normal component; that is, we do not expect

to see (m)any peaks with negative intensities, assuming that we have estimated our

baseline well. Including intensities above the baseline in this variance estimate, may

include many small intensities generated from a peak density in addition to those

from the error component. The use of the upper fence serves the same purpose

for estimating the parameters in the peak densities, as we are very unlikely to see

electronic noise from the machine generate intensities larger than 3σ.

For each spectra, we estimate the baseline with a “loess” smooth using the closest

2% of the data, which provides for a very smooth baseline. Since the AIC and BIC may

not be monotone in the number of mixture components selected, we fit m = 2, . . . , 12

components to each spectrum using the k-means to initially determine the locations

of peak clusters and their initial values, as described above. We then begin iterating

the E- and M-steps according to the EM Algorithm, until the relative increase in the

log-likelihood after a single iteration is less than 10−8. This information is summarized

for a single spectrum from our motivating MALDI dataset, in Tables 1 and 2. The

number of components selected by these criteria will be used in the next chapter.
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Fig. 12 Histogram and initial component assignment (m = 4) for a single spectrum. Vertical lines indicate

a change in component.
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Fig. 13 Histograms and initial fitted mixture densities for the components in Figure 12.
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Fig. 14 Histogram and fitted mixture density (m = 4) for a single spectrum, with α unrestricted.

II.4. Goodness-of-Fit

In Figures 14 and 15, we provide histograms of the baseline-corrected intensities for

a single spectrum with the fitted mixture densities for unrestricted α and α = 0,

respectively. In Figure 14, the top-left, top-right, bottom-left and bottom-right plots

are histograms corresponding to intensities likely generated from components 1, 2, 3

and 4, respectively. In Figure 15, the top-left figure shows a histogram of all baseline-

corrected intensities with fitted mixture density in cyan. The remaining three plots

are enlarged areas of the top-left plot corresponding to intensities likely generated

from components 1 (red), 2 (green) and 3 (blue), in the top-right, bottom-left and

bottom-right graphs, respectively. The log-likelihood, AIC and BIC for this spectrum

are displayed in Tables 1 and 2 for a range of m. Tables 1 and 2 suggest that, from

a modeling perspective, there is some benefit to allow α > 0, insofar as the AIC and

BIC are concerned. This is generally the case for other spectra in our MALDI data,
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Fig. 15 Histogram and fitted mixture density (m = 3) for a single spectrum, with α=0.

as well. However, if we consider the fact that peaks appear to rise from the baseline,

restricting α = 0 is an intuitive selection. In Table 3, we provide the parameter esti-

mates for the fitted mixture models depicted in Figures 14 and 15. In Tables 4 and

5 we provide the number of mixture components selected for all of the spectra with

α 6= 0 and α = 0, respectively.

To investigate the efficacy of the model fit, we compared the empirical distribu-

tion function to the cumulative distribution function from the fitted mixture model

to the baseline-corrected intensities. The empirical distribution function is calculated

as F̂ (zt) = 1
n

∑

zt
I(Zt ≤ zt)/n, and the cumulative distribution function is calculated

as F (zt) =
∫ zt

−∞
pθ(zt)dzt. Plots comparing the empirical and cumulative distribu-

tion functions for two spectra appear in Figure 16, along with graphs of the spectra

and their noise bounds. The noise bounds provided in this figure are computed as

ft ± 3
√

σ2
t , where ft is the baseline estimate at ti and σ2

t is the normal component

variance at ti. It is interesting to note that the adquate fit of the model in the top-left
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Table 1. AIC and BIC values for a single spectrum from Wu et al. with α 6= 0.

m Log-likelihood AIC BIC Iterations

2 -367305.3 734618.6 734656.3 41
3 -366996.6 734007.8 734073.8 102
4 -366978.5 733977.0 734071.3 146
5 -366967.9 733961.9 734084.4 310
6 -366967.2 733966.4 734117.2 306
7 -366966.8 733971.6 734150.6 288
8 -366963.8 733971.6 734178.9 150
9 -366961.4 733972.8 734208.4 68

10 -366960.7 733977.5 734241.3 49

Table 2. AIC and BIC values for a single spectrum from Wu et al. with α = 0.

m Log-likelihood AIC BIC Iterations

2 -367305.3 734616.6 734644.9 12
3 -367030.6 734071.2 734118.3 68
4 -367030.6 734075.2 734141.1 64
5 -367030.6 734079.2 734164.0 61
6 -367028.5 734079.1 734182.7 101

graph, is, in part, due to the relatively small change in the variance of the noise across

the spectrum. The larger change in noise variance in the bottom-right graph results

in a serious compromise of the model fit, as evidenced in the bottom-right graph.

Figure 16 suggests that the use of a nonconstant estimate of the error variance would

be justified.

While the nonconstant variance issue is not of particular interest to us at

this point, we attempted to address it in the spirit of model fitting. We divided each

spectrum into ten pieces so that there were roughly the same number of points in each

Table 3. Parameters for the models shown in Figures 14 (m = 4) and 15 (m = 3).

π1 σ2 π2 α1 1/θ1 π3 α2 1/θ2 π4 α3 1/θ3

m = 4 .9811 150.8 .0145 28.5 10.6 .0040 67.6 111.5 .0004 576.2 232.7
m = 3 .9741 152.5 .0232 0 37.2 .0027 0 286.7 – – –
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Table 4. Optimal number of components selected by AIC and BIC with α 6= 0.

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11 m = 12

AIC 0 0 0 2 2 10 13 22 16 15 9
BIC 0 0 7 10 17 25 24 5 1 0 0

Table 5. Optimal number of components selected by AIC and BIC with α = 0.

m = 2 m = 3 m = 4 m = 5 m = 6

AIC 0 5 78 5 1
BIC 0 14 75 0 0

section. Note that there is a larger concentration of points at small values of m/z

than large values of m/z, which is particularly convenient since the variance appears

to change more at those small values. We also refit each mass spectrum assuming

that α = 0 and α 6= 0 for m = 2, . . . , 8, as we had done previously where we had

assumed that the error variance was constant. We want to point out that we only

allowed the variance to change across the range of m/z. The number of components

in each of these ten sections remain the same, as well the associated parameter val-

ues. Interestingly, the optimal number of components selected using AIC and BIC

were reduced under the assumption of nonconstant variance. This may suggest that

some of the peak components were modeling parts of the spectrum with larger error

variance rather than actual peaks. A summary of the optimal number of components

selected under the nonconstant variance assumption is provided in Tables 6 and 7 for

α 6= 0 and α = 0, respectively. Graphs of the two spectra from Figure 16 are plotted

again in Figure 17 under the nonconstant variance assumption with details from the

model fit.
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Fig. 16 Graphs of empirical versus cumulative distribution function and mass spectra with noise bands for

two spectra. Note the relationship between the nonconstant variance and the discordance of the

distribution functions.
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Fig. 17 Graphs of empirical versus cumulative distribution function for the two spectra from Figure 16 using

nonconstant variance.
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Table 6. Optimal number of components selected by AIC and BIC with α 6= 0 and nonconstant variance.

The number of components and associated parameter values are constant across the range of m/z.

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

AIC 0 0 9 26 13 28 13
BIC 0 3 38 32 13 3 0

Table 7. Optimal number of components selected by AIC and BIC with α = 0 and nonconstant variance.

The number of components and associated parameter values are constant across the range of m/z.

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

AIC 0 1 67 10 8 2 1
BIC 0 6 80 2 1 0 0

II.5. Other Components

To this point, we have restricted our consideration for a suitable model choice to a

combination of normal and normal-exponential densities, however other component

choices could be considered, depending on application. We considered the normal-

exponential not only because of its good fit, but also because it is practically sensible

to model peaks that are truly recorded with noise. For this reason, we feel that

our model choice has intuitive appeal, as well. Nevertheless, lognormal and Weibull

densities possess similar positive skewness properties and may yield similar fits when

compared with our normal-exponential component for our data. However, in the case

of the lognormal, it may seem unnatural to model error intensities with logarithms

of peak intensities. The Weibull density may involve unnecessary extra parameters

and complication, when we may be able to model the spectra effectively using a

more parsimonious approach. Careful inspection of Figure 15 shows that our normal-

exponential densities fit well, even with α1 = α2 = 0. This is evidence that more

complicated models may not be necessary. It also may be more logical from a clas-
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sification standpoint to model intensities across spectra, rather than within spectra,

as it is our hope that the intensities at a certain location for healthy spectra may be

modeled differently than the intensities from cancerous spectra. While this approach

may be preferred with an eye towards classification purposes, we still use the peak

densities as the main part of our peak detection algorithm after pre-processing and

consider classification issues later.

In this chapter, we have described our method for modeling the baseline-corrected

spectra, assuming that the baseline was known or fixed in advance. In the next chap-

ter we address this assumption and consider ways of estimating this baseline in our

model, within our likelihood framework.
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CHAPTER III

BASELINE ESTIMATION

III.1. Roughness Penalty

In Chapter II we assumed that the baseline component was known or fixed. We will

now extend this model to allow for criticism of the baseline component in addition

to the parameters of the mixture density. However, analytical maximization of the

expected conditional log-likelihood, Q, given in (2.7) for each ft, t = 1, . . . , n, results

in a baseline estimate which simply interpolates the intensities closest to the baseline.

Since we believe that our baseline component is a very smooth function, we want to

maximize (2.7) subject to some smoothness constraint.

There are many choices of smoothness constraints. One example from Pawitan

(2001) shows that if the intensity locations, ti, i = 1, . . . , n, are equally spaced, we can

impose such a constraint by restricting the squared second differences of the baseline

estimates
n−1
∑

t=2

[(ft+1 − ft)− (ft − ft−1)]
2 =

n−1
∑

t=2

(ft+1 − 2ft + ft−1)
2 (3.1)
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to be sufficiently small. We can represent the expression in (3.1) using a second-

difference penalty matrix, K, where

K =







































1 −2 1 0

−2 5 −4 1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1

1 −4 5 −2

0 1 −2 1












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























,

by writing (3.1) as f
TKf , where f denotes the n × 1 vector of ft and f

T denotes its

matrix transpose. The expression λfTKf is often referred to as a roughness penalty

in a penalized log-likelihood function, where it is subtracted from the log-likelihood

of the data. We include this roughness penalty with our complete data log-likelihood

in (2.4) to yield a penalized complete data log-likelihood

ℓp = ℓ− λ f
TKf . (3.2)

and penalized expected conditional log-likelihood

Qp = Q− λ f
TKf . (3.3)

We revise our EM algorithm to include an update of the baseline in the M-step of each

iteration, by finding the f that maximizes (3.3). Adding the roughness penalty term

to our likelihood developed in Chapter II does not change the convergence properties

of the EM algorithm.

The smoothness parameter, λ, is positive and controls the balance between

the data modeling and the degree of smoothing. Larger values of λ correspond to
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Fig. 18 Baseline updates from the maximization of (3.3). The top graphs use the penalty matrix considered

in Pawitan (2001) and the bottom graphs use the penalty matrix considered in Green and Silverman

(1994).

smoother baseline estimates; λ = 0 corresponds to a baseline with no smoothing. It

should also be noted that the choice of penalty matrix also affects the smoothness

of the resulting baseline. The interplay between the smoothing parameter, λ, and

the choice of penalty matrix, K, is illustrated in Figure 18. Here, we compared the

baseline updates for a piece of spectrum (n = 500) from Wu et al. (2003) for two dif-

ferent values of the smoothing parameter (λ) and two different penalty matrices (K).

The top-left and top-right graphs show resulting baselines from the maximization of
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(3.3) for λ = .0001 and λ = 5, respectively, using the penalty matrix from [25] shown

previously. The bottom-left and bottom-right graphs show the resulting baselines for

updating the same equation with the same values for λ, but for a penalty matrix

described in Green and Silverman (1994) that can adjust for locations that are not

equally spaced. After dividing the matrix coefficients by 2σ2, the first few rows and

columns of this penalty matrix are

K =



























































243 −551 390 −103 27 −8 2 · · ·

−551 1491 −1433 619 −162 45 −12 · · ·

390 −1433 2108 −1571 648 −180 48 · · ·

−103 619 −1571 2065 −1524 651 −174 · · ·

27 −162 648 −1524 2068 −1583 667 · · ·

−8 45 −180 651 −1583 2157 −1614 · · ·

2 −12 48 −174 667 −1614 2167 · · ·

−1 3 −13 47 −179 675 −1617 · · ·

0 −1 3 −13 48 −181 676 · · ·
...

...
...

...
...

...
...

. . .






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


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




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
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

.

Both penalty matrices have the property that Kf = 0 for any straight line, f. Most

of the visual difference in the smooths between the baselines using different penalty

matrices is due to the magnitude of the matrix coefficients, however we can see that

the bandwidths of the two matrices are slightly different. While the bandwidth of the

matrix above is larger than its counterpart for equally-spaced data, the coefficients do

decrease to zero for matrix positions further from the diagonal. We omit the details

of the computation of this matrix, but point out that it requires an inversion of a

banded matrix of the same size.

Since MS data typically contain intensity measurements at tens of thousands of
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locations, we must maximize the likelihood over an equal number of corresponding

baseline locations. This results in very large and complicated optimization issues

at each iteration. In order to avoid some of these issues, we consider updating the

baseline in a piecemeal fashion. There are several main reasons to motivate this ap-

proach. First, the computation of the penalty matrix may require the storage and

inversion of a large matrix, if we do not consider the spectra in smaller pieces. Also,

it should be much easier and take less time to update a 100,000-location baseline by

updating the baseline in, say, 100 adjacent sections than to update the entire baseline

as one large piece. We also illustrated in Chapter II that the variance of the normal

error component appeared to be nonconstant across the range of m/z for the MALDI

data. Perhaps the biggest advantage of updating the baseline in smaller pieces is a

natural solution to this nonconstant variance issue, since we can use a different choice

of smoothing parameter for each spectrum piece with a local error variance estimate.

The relationship between penalty parameter and initial estimate is evident from

Figure 19. In each of the graphs, a section of 200 points plotted with the initial base-

line estimate as a dotted black line from a ‘loess’ smooth using .00025, .00075, .0025

and .025 of the entire data set, respectively. Each baseline is updated by maximizing

(3.3) with λ = 10−6, 10−4, 10−2, 100 and these resulting updates are plotted in solid

blue, green, red and black, respectively. Since the data in our motivating data set

are not exactly equal-spaced, the baseline iterations pictured in Figure 19 use the

penalty matrix described in Green and Silverman (1994), so these values of λ are

comparable with the bottom two graphs in Figure 18. Note that the initial estimate

in the top-left graph has the shortest span and is heavily influenced by the periodicity

of the noise. We can see the baseline estimates from the same value of the penalty

parameter for different initial baseline estimates have varying degrees of smoothness,

particularly for the most wiggly baselines. Thus, the optimal choice of smoothing pa-
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Fig. 19 Baseline updates from the maximization of (3.3). The black dotted lines indicate initial baseline

estimates using “loess” smooths of differing spans. Colored lines represent resulting baseline updates

for varying λ = 10−6, 10−4, 10−2, 100.

rameter may depend upon the initial baseline estimate, but only slightly. This may

result from the fact that the maximization of the conditional expected log-likelihood

is done using responsibilities based on the initial baseline estimate which may weight

the data points from each component differently. In the next section, we investigate

the performance of our baseline estimation method in a simulation study.
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III.2. Simulation Study

Since the issue of baseline estimation is generally an unsupervised issue, we conducted

a simulation study to examine the effect of starting values and smoothing parameters

on the estimation of the baseline. The purpose of this simulation study is to evalu-

ate the performance of our baseline estimation procedure in a setting where the true

baseline is known. To generate each spectrum, we used an exponential decay func-

tion to generate the baseline at equally-spaced design point locations. We chose the

exponential decay in accordance with Chapter I, since the belief is that the baseline

should roughly resemble this and our motivating data set seems to support this, as

well. We should point out that for each spectrum, a different function of exponential

decay was generated, since the baselines will be different for each spectrum.

We then added a zero-mean, normally distributed error component with constant

variance about each baseline estimate to simulate machine noise. To add peaks, we

used initial estimates of the mixing probabilities to randomly select a proportion of

the locations where an exponentially distributed peak was added. For instance, in

a data set of 400 points we used the mixing probabilities (π1, π2) = (.95, .05), we

randomly selected 20 locations (without replacement) to add an exponentially dis-

tributed peak to the baseline plus noise estimates. The mixing probabilities were

selected based on results from Chapter II, since the data points in the spectra from

our motivating data set were mostly machine noise near the baseline.

For each generated spectrum, we considered five different initial baseline esti-

mates. Four different initial baselines used “loess” smooths and for these estimates,

we used spans of .10, .20, .40 and .80, which produced baselines that were very wiggly

to very smooth, respectively. We also considered the true baseline estimate as an ini-

tial estimate, as well, for each generated data set. For each of these initial baselines,
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we fit the parameters of our mixture model and updated the baseline using one of

eleven different values of λ. We then iteratively update the mixture parameters and

baseline according to the EM Algorithm as set out in Chapter II, until the relative

increase in the incomplete data log-likelihood was less than 10−7 or 100 iterations had

been performed. We repeated this process for eleven different values of the smoothing

parameter for each initial baseline. In total, 55 different models were fit to each of

100 generated spectra.

After fitting all 100 spectra, we computed the mean square error of the differ-

ence between the true baseline and fitted baseline after convergence as well as the

original “loess” baseline. We show one of these data sets in the graphs of Figure

20. The solid green line shows the true simulated baseline and the black dotted lines

show the initial baseline estimates using “loess”. The initial baseline estimates use

smoothing spans of .80, .40, .20 and .10, for the top-left, top-right, bottom-left and

bottom-right graphs, respectively. The solid lines in red, blue and violet show the

baseline estimates for selected λ = 105, 106, 107, respectively, after running the EM

algorithm until convergence. Note that for this simulation study we have used the

equally-spaced penalty matrix described in Pawitan (2001), so relative smoothness is

comparable with the top two graphs in Figure 19. We also show a summary table

of the mean square errors for the simulation study in Table 8. The numbers in the

table represent the average mean square errors of the 100 simulated data sets for each

combination of λ and initial baseline estimate.

We can learn several things from Figure 20 and Table 8. From the display in

Figure 20, it appears as though there is very little difference between the converged

baselines for same penalty parameter for different initial smooths. Recall that Figure

19 displayed a more visible difference between the baselines, but this picture depicted

unconverged baselines after only a single iteration. From the average mean squared
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Fig. 20 Simulated baseline (solid, green line) with four different initial estimates (dotted, black lines). Red,

blue and violet lines show the baseline estimates using λ = 105, 106, 107.

errors in Table 8, it appears that the initial baseline estimate makes only a very small

difference in the accuracy of the resulting estimate of the converged baseline when

compared with the true baseline. From the average mean square errors in Table 8,

it appears that our method can produce a better baseline estimate than even com-

petitive initial estimates from “loess” as far as the mean square error is concerned.

Moreover, the superior performance of our approach is not confined only to the mod-

els where the initial baseline estimates were competitive. We can easily see that our

method performs well in cases where the initial baseline is overly smooth or wiggly.
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Table 8. Average mean square errors for the simulation study described in Section III.2 for combinations of

initial baseline and smoothing parameter.

Start — Lambda Start 1 × 105 5 × 105 1 × 106 5 × 106 1 × 107 5 × 107 1 × 108 1 × 109

True f .0000 .0093 .0061 .0051 .0038 .0034 .0033 .0035 .0079
Loess, .80 .0076 .0095 .0063 .0054 .0040 .0036 .0034 .0038 .0082
Loess, .40 .0044 .0095 .0064 .0055 .0041 .0037 .0034 .0037 .0082
Loess, .20 .0058 .0096 .0065 .0057 .0042 .0036 .0034 .0037 .0081
Loess, .10 .0105 .0097 .0066 .0058 .0042 .0037 .0034 .0037 .0079

III.3. Choice of Smoothing Parameter

In Section III.1 we showed that the value of the penalty parameter that produces a

desired degree of baseline smoothness is dependent upon the choice of penalty matrix.

In the previous section, we illustrated some promise in using our method to estimate

the baseline in a controlled simulation where the baseline was assumed to be some

sort of exponential decay function. In practice, our baseline estimation is generally an

unsupervised issue, so it is desirable to automatically compute a data-driven estimate

of the smoothing parameter in some optimal way.

III.3.1. Generalized Cross-Validation

One popular method for choosing the smoothing parameter in nonparametric smooth-

ing problems uses a cross-validation score, where the optimal value of the parameter is

chosen to be the minimizer of this cross-validation score. The idea of cross-validation

is as follows. Consider a single spectrum and a fixed value of λ, for which we will

find the cross-validation score. A single data point is omitted from the spectrum,

say (ti, yi) and the f that minimizes (3.3) is determined, with the ith point omit-

ted. Denote this f as f̂ (−i). This baseline estimate at ti is f̂ (−i)(ti) and is used as

an “unbiased” predictor of ft = f(ti) with smoothing parameter λ. This procedure
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is carried out for each of the remaining n − 1 data points, yielding the predictions

f̂ (−i)(ti), i = 1, . . . , n. The cross-validation score for this single value of λ is computed

as

CV (λ) =
1

n

n
∑

i=1

(Yi − f̂ (−i)(ti))
2. (3.4)

The expression in (3.4) is of limited utility to us. Clearly, calculation of the cross-

validation score using (3.4) directly is prohibitive, since for each λ, we must solve n

smoothing problems to yield the estimates f̂ (−i)(ti), i = 1, . . . , n. This is especially

important in the context of MS data. There are algorithms where the cross-validation

score can be computed without using Equation 3.4 directly, however our mixture dis-

tribution representation may complicate matters.

In an attempt to circumvent this problem to use existing methods, we initially

consider computing a cross-validation score by using only points that are believed

to be generated from the normally distributed error component. Let E = {t :

π̂1,t = maxj π̂j,t}. Under this assumption, we compute the generalized cross-validation

(GCV) score for each value of λ as

GCV (λ) =

∑

t∈E(yt − f̂t)
2

(nE − dfE)2
, (3.5)

where nE is the cardinality of E , f̂ denotes the minimizer of the penalized sum of

squares over the nE points in the error component and

dfE = trace{(I + λK)−1}. (3.6)

Note that the K in (3.6) is computed using only the locations in E .

We used our simulation study to evaluate our GCV-based method for selecting

the smoothing parameter. For each of the 500 combinations of simulated data sets

and initial baseline estimates, we computed the GCV criterion for each of the values
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Fig. 21 Simulated data set with points correctly omitted (‘×’) and points erroneously included (‘◦’) in the

GCV calculation.

of λ in the grid. We computed the true GCV criterion which used all 400 points

from the generated noise. In practice, this entire set of points would not be known to

the modeler. We also computed a more honest estimate of the criterion by using the

responsibilities to determine which points were noise and which were peaks. These

responsibilities were calculated based on the initial parameter values.

In Figure 21 we show a simulated baseline with some points marked with × or

◦. The points denoted by × were correctly excluded from the honest GCV criterion

calculation; they were deemed to be peaks, when they were in fact peaks. Each point

denoted with ◦ had responsibilities which indicated that it was likely generated from

the error distribution, when, in fact, it had been generated as a peak. Not surpris-

ingly, most of these points tended be on the higher side of the baseline. It would

appear that any difference between the smoothing parameters of the true and honest-
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Fig. 22 Simulated data set with true baseline (green), best initial baseline (dotted black), converged baseline

selected by GCV (red) and best converged baseline (blue) from the grid of λ.

based GCV criterion estimates stems from very small peaks estimated to be within

the confines of the error component.

The performance from automatic smoothing parameter selections is evaluated

and displayed in Table 9. The left-most column shows the average mean squared error

between the initial baselines using “loess” and the true simulated baseline. To pro-

duce the results in the second column from the left, we compared the mean squared

errors for each of the converged baselines over the grid of λ and retained the minimiz-

ing mean squared error for each simulation and starting value as “best”. The values in

this column are then the average of these mean squared errors. The column labeled

“GCV Choice” displays the average mean squared errors from converged baselines

where the smoothing parameter was selected using normal component points as de-

termined by the responsibilities. For example, this would include all of the points in
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Table 9. Average mean square errors for the simulation study described in Section III.2 for initial baseline,

best baseline, modified GCV-selected baseline and full GCV-selected baseline.

Start — Lambda Start Best GCV Choice GCV Full

True f .0000 .0032 .0043 .0040
Loess, .80 .0076 .0032 .0046 .0042
Loess, .40 .0044 .0031 .0046 .0042
Loess, .20 .0058 .0031 .0046 .0042
Loess, .10 .0105 .0031 .0047 .0042

Figure 21 without a ×. The column labeled “GCV Full” displays the average mean

squared errors from converged baselines where λ was selected using all of the points

generated as noise. This would include all locations, but the intensities at locations

denoted with a × or ◦ would be replaced with their corresponding error intensity.

The results in Table 9 further suggest that there is some promise in using the

penalized likelihood idea to estimate the baseline. Through observation of the first

two columns we can see that there is at least one value of the smoothing parameter for

which the penalized likelihood approach yields a baseline that is considerably closer

to the true baseline in mean squared error than the competitive original baselines es-

timated via “loess”. We can also see that use of the automatic smoothing parameter

selection results in an improved baseline estimate in most cases, with the full GCV

performing slightly better. However, while both GCV methods performed very well

and improved upon the initial fit, they did not always choose the value of λ from the

grid with minimizing mean squared error.

From Figure 22, we can get a good idea of how comparable the performances

are between the “best” choice of λ and GCV-motivated selection. The green line

represents the true simulated baseline for this data set, while the dotted black line

provides a very good initial estimate using a ‘loess’ smooth with a span of .40. The

red line shows the converged baseline from the GCV-selected value of λ = 5 × 107,
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while the blue line shows the converged baseline from the mean squared error min-

imizer using λ = 1 × 108. It would appear that the GCV-based selected λ yields a

considerable improvement over initial baselines, especially when the initial baseline is

much too wiggly or smooth. There is still improvement when compared to the best

initial baselines, but, as expected, these returns diminish with better choices of the

initial smoothing span.

Finally, we were also interested to see whether the automatic selection of the

smoothing parameter had a tendency to underestimate or overestimate the value of

λ that yielded the best performance in terms of mean squared error. We also did a

similar comparison to examine the honest GCV-based criterion relative to the true

GCV-based criterion. Graphs comparing these results appear in Figure 23. Note that

we have jittered the values of λ here, since the points would otherwise fall into stacks

corresponding to the few values of λ used in the study. In the left graph, we can

see that the honest GCV estimate does fairly well in estimating the best value of λ,

however, there appears to be a slight tendency to overestimate this smoothness as

evidenced by a cluster of points in the lower right of this graph. On a more positive

note, we can see from the right graph that the honest and full GCV estimates are

much more comparable. It would appear that any shortcomings in the estimation of

the best value λ would be attributed to the generalized cross-validation in general;

our extension of the GCV using responsibilities yields very similar estimates to the

full GCV.

From a peak detection standpoint, estimating the optimal value of the smoothing

parameter with such precision may not be necessary, since there is a considerable range

of values of λ which produce smooth baselines that are practically similar. While the

optimal choice of λ is somewhat dependent on the initial estimate, the fruits of our

baseline correction method via roughness penalty can be easily seen where even rough
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Fig. 23 Scatterplot of best value of λ versus honest GCV-selected λ (left) and full GCV-selected λ versus

honest GCV-selected λ.

and wiggly initial baselines can be smoothed to a satisfactory degree provided that λ

is in an appropriate range. When considering future peak detection, the estimate of

λ is not as important as the resulting baseline, since satisfactory baseline estimates

can be obtained whether the initial baseline is too rough or not.

Also, note that the mean squared errors for the relatively accurate initial baselines

are approximately the same when compared to updated versions of these baselines

using the GCV-chosen value of λ. In other words, there is a limited benefit from

updating these baselines with certain values of the smoothing parameter, insofar as

the mean squared error is concerned. However, from a practical standpoint, visual

inspection of each baseline may be unreasonable, so updating the baseline with these

values λ will yield smooth baselines, regardless of initial estimate. At some point,

one may need to decide to balance the computation time with model performance.
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We briefly touch on this concept in the next section.

To apply these results to real data, we employ a grid search to find the λ which

minimizes (3.5) for a piece of spectrum from our MALDI dataset. A graph of the

generalized cross-validation score for varying λ appears in Figure 24. We then use this

GCV-minimizing λ in the numerical maximization of (3.3) for the baseline update.

A graph of the resulting baseline appears in Figure 25.

Clearly, the smoothing parameter that minimizes (3.5) does not yield a very

smooth baseline. In this case, the baseline models the somewhat periodic behavior

of the noise, which we include in the normal error distribution about our proposed

smooth baseline. Thus, the λ that yields a sufficiently smooth baseline for our pur-

poses must be found in an alternative way.

III.3.2. Restricted Maximum Likelihood

From Figure 25, it appears that the optimal value of the smoothing parameter is

affected by correlated observations, as evidenced by the periodic behavior of the as-

sociated baseline estimate. In a paper by Krivobokova and Kauermann (2007), the

authors show that use of a restricted maximum likelihood (REML) criterion can

provide a more reasonable estimate of the smoothing parameter, in the presence of

correlation. Additionally, they found that the use of this REML estimate is preferred

even when the correlation is misspecified, as may be the case with our motivating

data set. Recall that we have assumed that the intensities at neighboring locations

are uncorrelated.

We investigated the effect of this REML estimate with our MALDI data. We

chose a section of spectrum and calculated −2× REML over a grid of λ. Note that

this criterion uses the assumption of normally distributed errors, so we again use only

the points which belong to E , as previously defined. A graph of −2 × REML for
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Fig. 24 Generalized cross-validation score for varying λ.
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intensity pairs denoted with ‘×’ are omitted from inclusion in the generalized cross-validation score.

The dashed line represents the initial baseline estimate.
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varying λ appears in Figure 26. The minimizing value of this curve is at λ = .00685,

which is considerably larger than the λ yielded by the GCV criterion.

After finding the minimizer of −2×REML, we use this λ in the maximization of

(3.3) to obtain our updated baseline, which appears in Figure 27. The initial smooth

using ‘loess’ on the entire data set is represented as a dashed line. The dotted line

displays the baseline update using only the points belonging to E . The solid line dis-

plays the baseline update using the same value of λ, using all of the points, including

peak locations. We can see that use of the REML criterion has certainly produced an

improved choice of λ, compared to that of GCV. However, we feel that the resulting

baseline still produces baseline estimates that are too wiggly and biased high in the

peak regions, which requires us consider the estimation of the optimal value of the

smoothing parameter in yet another way.

III.4. Baseline Correction for Ovarian Cancer Data Set

Recall from Chapter II that we initially estimated a very smooth ‘loess’ baseline for

the ovarian cancer data set. We initially attempted to estimate the baseline using all

of the points in the spectrum. This involves the optimization of more than 90,000

baseline locations to find a maximum in the expected conditional log-likelihood, for a

given value of λ. The baseline correction is the most computationally intensive aspect

of our model-based pre-processing approach.

Our simulation study suggests that our improvement in baseline estimation may

be mitigated if we have selected a good initial baseline estimate. Of course, since this

is an unsupervised problem, we cannot be exactly sure how well our initial baseline

estimates the true baseline. Nonetheless, we were interested to see what improvement

was gained in attempting to update this initial baseline. We have seen from Section
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III.3 that an automatic and aesthetically-pleasing choice of smoothing parameter may

be obstructed by correlated errors, whereas the automatic choice of smoothing param-

eter worked considerably better in the absence of correlated errors. We now present

an alternative method for the selection of this value of λ.

In addition to our local baseline smoothness expectations, we believe that the

baseline is a non-increasing function similar to an exponential decay. We use this

picture to develop a restriction on the first differences of the resulting baseline up-

dates to yield an estimate of λ as follows. We update the baseline as an additional

part of the M-step and begin by dividing each spectra into pieces of roughly equal

size. There are several reasons that we divide each spectrum into pieces. From a

practical standpoint, we must be wary of the curse of dimensionality. The storage

and computation time required to optimize over one piece of baseline with a large

number of points will be much greater than if the spectrum is divided into adjacent

sections and optimized piecemeal.

Theoretically, the optimal values of the smoothing parameter for each section

may, in fact, be different. If the baseline is an exponential decay function, the base-

line may be more curved at smaller values of the mass-to-charge ratio, and, thus, a

relatively smaller value of λ would be more apropos. Likewise, the baseline function

at larger values of the mass-to-charge ratio may be flatter, which would suggest that

a larger value of the smoothing parameter should be applied. Another important

point of support for the use of piecewise baseline estimation is that the noise variance

estimate tends to be much larger at smaller values of the mass-to-charge ratio and

smaller for larger values of the mass-to-charge ratio. This change in variance may

result in a change of the value smoothing parameter, as well. We now describe our

initial approach for baseline correction.

For a single piece of spectrum, we employ a systematic grid search over λ and
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check the first differences of each baseline estimate. When the maximum of the first

differences of the baseline estimate is negative, this indicates that the resulting base-

line is nonincreasing. We begin with a relatively small value of λ and observe the

resulting update from the maximization of (3.3). If any of the first differences from

the resulting update are positive, λ is increased by a factor of ten and (3.3) is sub-

sequently maximized with the new value of λ. If the maximum of the resulting first

differences is negative, we retain the resulting update, and proceed to update the

section of the spectrum.

Ideally, we hope to find the smallest λ which yields a non-increasing baseline.

The purpose of this approach is two-fold. Our idea to restrict the baseline to be non-

increasing ensures that the baseline resembles something that is practically useful.

By choosing the smallest such λ, we allow the data to have more influence on the

resulting baseline, than our subjective restriction. However, given that the number

of locations that must be optimized over is very large, maximizing (3.3) for a piece

consisting of a few thousand points over a large grid of λ is somewhat impractical.

Thus, it should be noted that it is computationally expensive to estimate this λ with

great precision, especially as the number of points in each piece grows large. Further-

more, if we were able to estimate this λ with a great deal of precision, the resulting

baseline update may be very similar to other baselines resulting from a large range

of λ.

In Figure 28, we present two pieces of a single spectrum and a visualization of

the baseline update process for each piece. These pieces are two of the 100 pieces from

this spectrum, and each of these pieces has approximately 900-1,000 points in each

section. On the left, we can see visible short-run increases in the red and green base-

lines updates, from λ = .001 and .005, respectively. When we increase the smoothing

parameter to λ = .01, the resulting baseline (in blue) still has a small positive increase
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Fig. 28 Series of proposed baseline estimates for two sections of a single spectrum. On the left, the red,

green and blue baselines have at least one positive first difference. On the right, the smoothness of

a long-run increasing initial baseline prevents us from obtaining an update which is non-increasing

over the entire interval.

of .006. When we increased the smoothing parameter to λ = .05, the maximum first

difference decreased to -.007, but the resulting changes in corresponding baseline lo-

cations from the previous estimate using λ = .01 were less than a single intensity

unit. This is somewhat evident by the fact that the cyan line completely covers the

blue line in the left graph. The right piece shows a spectrum with a slow, long-run

increase that is difficult to discern by eye. The original baseline estimate is also slowly

increasing over this range and a choice of relatively large λ’s revert to the original

baseline, using our restriction.

Figure 28 is indicative of many of the baseline updates and it raises some in-

teresting talking points. Due to the large amount of data, we may have divided the
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spectrum into too many pieces in an attempt to procure a reasonable number of points

in each section to optimize over. One problem with this approach is that the baseline

often exhibits little more than straight line behavior in such small sections, which

may partially explain why the change between the updated and initial baselines is

quite small. Another drawback to having sections that are too small is illustrated in

the right graph of Figure 28. The data suggests that the baseline have a very slow

increase over this range. However, if this section were larger and extended more on

the side of larger mass-to-charge ratios, the spectrum may begin to decrease and a

horizontal or even decreasing baseline may then suffice. To make matters worse, even

with the large number of sections, the computational time to update the baseline

is still quite large, especially considering that few significant changes were garnered

through the baseline update.

To this point, we have considered the number of points to be somewhat of a detri-

ment to our baseline update procedure. From the previous study, we have learned

that the number of points in each section must be a manageable number to optimize

over, while spanning enough of the spectrum to illustrate some useful behavior in the

baseline. In an attempt to estimate the baseline under these revised restrictions, we

selected 10,000 points from each spectrum to use in baseline estimation and divided

each spectrum into ten sections. We selected the 10,000 points according to a se-

quence; for instance, from a spectrum with 91,380 locations, we selected the first ten

locations indexed at positions 1, 10, 19, 28, 37, 46, 55, 64, 74 and 83 of the original

raw spectrum. We then used the responsibility calculations based on the initial base-

line and initial parameter estimates to retain points from the normal error component

for inclusion into the baseline update.

For each section, we start with a relatively small value of λ and optimize the base-

line using R’s optim() function for multivariate optimization. As we mentioned from
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previous experience, using the maximum first difference as a criterion for whether to

retain the revised baseline is too stringent. In fact, some large sections of spectra will

prohibit this or will lead to a poorly estimated baseline. So, as an alternative restric-

tion, we require that the penalty term, f
T
Kf, be smaller than the original baseline

over this region at the selected points. If the penalty term from the revised baseline

is larger than that of the original baseline, the value of the smoothing parameter is

increased by a factor of ten. This procedure continues until the penalty term from a

resulting baseline is less than the penalty term of the original baseline.

In Figure 29, we present an illustration of this initial update process. The

dotted black line represents the initial baseline estimate from ‘loess’. The solid red

line shows a subsequent baseline estimate using an insufficiently small value of the

smoothing parameter, since the resulting penalty term is larger than that of the ini-

tial estimate. The solid black line shows a new baseline estimate from an increase

of λ by a factor of ten, where the resulting penalty term is smaller than the initial

baseline estimate. Thus, this baseline update is retained as an update to the initial

baseline. We want to point out the visual appeal of this revised baseline in that the

baseline estimates at the peaks on the ends of this piece of spectrum do not appear

to be affected by the high intensities, whereas the initial baseline estimate is higher

in both of these peak regions. Another example of the improved estimate in the peak

region is provided in Figure 30.

One issue that must be addressed is the possible discontinuity of the baseline

estimate at the ends of each baseline piece. If it all possible, we would prefer to have

the baseline be a continuous function in these regions. In areas where there are very

few peaks and mostly just electronic noise, the baseline estimates tend to be close. In

an attempt to make the baseline continuous, we look for the closest point where the

baseline estimate in the left (right) piece of the spectrum is equal to the first (last)
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Fig. 29 Initial baseline estimate (dotted line) with baseline updates with values of λ that yield a larger

penalty term than the initial estimate and smaller penalty term than the initial estimate, respectively,

in red and black solid lines.
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Fig. 30 Initial baseline estimate and updated baseline estimate denoted by dotted and solid line, respectively.
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baseline intensity in the right (left) piece of the spectrum. If these points are within

1% of each other, we revise the baseline to be horizontal in this region. We illustrate

this idea in Figures 31 and 32. We should point out that not every section break can

be adjoined in this manner. However, this appears to be confined to regions where

peaks are absent and the baseline discontinuity is relatively small. Figure 32 provides

evidence that we should take care to select breaks in the spectra sufficiently far away

from significant peaks.

For subsequent iterations of the baseline, we reevaluate the selected points

based on updated responsibilities. This may result in only a few points being re-

moved or added to the baseline optimization routine, if any, but this will depend on

how close the current baseline is to the previous estimate. Once the set of points has

been redetermined, the baseline is updated again. After the initial baseline update,

subsequent baseline estimates do not change much, so we only optimize the baseline

every ten iterations. However, during each iteration we do optimize the shift in the

baseline for each spectrum. This may be important since the large increases in the

penalized likelihood are generally attained by making the baseline smoother with,

possibly, little regard to the shift of the baseline. Shifting the baseline up or down

by only a few units may increase (or decrease) the likelihood after optimization, but

such a change may not result in a large change in the observed data likelihood or

conditional log-likelihood which may not be significant in the optimization routine.

In the simulation study, we have shown that baseline estimates depend some-

what on the initial estimate of the baseline, to a certain extent, but mostly on the

smoothing parameter. In particular, we have used a ‘loess’ smooth with a relatively

large smoothing span as our initial baseline estimate for the spectra from our MALDI

data. This initial estimate is non-increasing over much of the interval, so piecemeal

baseline update restriction does not yield much change in the resulting baseline in
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Fig. 31 Region that adjoins two sections of a single spectrum with two baseline estimates (left) and the

resulting baseline estimate (right) to force baseline continuity.
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Fig. 32 Region that adjoins two sections of a single spectrum with two baseline estimates (left) and the

resulting baseline estimate (right) to force baseline continuity.
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this case. However, from our simulation study we recall that an initial baseline that

is quite rough (top-left) can be smoothed to the same degree that an initially smooth

baseline is smoothed (lower-right). Since our initial baseline estimate is very smooth

to begin with, the improvements in our baseline updates have diminished returns.

In this chapter, we have considered the problem of baseline estimation and im-

provements through the use of a penalized likelihood. While the implementation of

the penalized likelihood criterion does not yield significant improvement in the case

where the baseline is already a smooth function, using relatively large values of the

smoothing parameter will produce baselines that are visually appealing regardless of

the initial estimate. We may also be able to reduce the dimension of the spectra with

little loss of model performance, while significantly decreasing the memory and time

required. A suitable baseline may arise from the combination of the data thinning

with the non-increasing baseline restriction, with a maximum value of λ as a cap for

baseline sections that are nearly horizontal or even slightly increasing. Another future

consideration may be to model the correlation structure of the data, if it is not in

fact independent. In the next chapter, we consider peak detection after the baseline

and mixture model have been fit.
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CHAPTER IV

PEAK DETECTION AND CLASSIFICATION

In Chapter II, we modeled the intensities as machine error from a normal distribution

or a peak from one of possibly several normal-exponential convolutions, assuming the

baseline was known or fixed. In Chapter III, we extended our model to include an

update of the original baseline estimate. We now consider the issue of peak detection,

assuming that we have suitably modeled the intensities and estimated the baseline.

There are several issues one must balance when considering peak detection from mass

spectra which may affect subsequent classification procedures.

IV.1. Peak Detection

Peak detection algorithms from previous work often involve some sort of local maxi-

mum search. However, this definition of “local” is not exactly constant from modeler

to modeler, and the size of the neighborhood in which a maximum is sought is an

important consideration since it effects the size of the resulting set of possible peaks.

The advantage to selecting a small peak set is the benefit of a smaller number of

potentially discriminating m/z locations to analyze in subsequent classification pro-

cedures. Increasing the size of the neighborhood has some benefit in that it will

often filter out many of the smaller peaks from isotopically resolved groups, as, from

a biological perspective, the monoisotopic peak is usually the peak of interest from

such a group and it is often the largest within these groups. However, a small peak

set may omit very small discriminating peaks if a peak is in some relatively larger
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proximity of a larger peak. A natural solution to this is to make the neighborhood

smaller in which a peak must be the maximum. This, in turn, increases the size of

the candidate peak set. Practically speaking, one must balance the computation time

and increased detection of false positive peaks in comparing larger candidate peak

sets with the chance that small and possibly discriminating peaks may be overlooked

during peak detection. We feel it is better to include more peaks since we have the

benefit of ample computing resources necessary to possibly compare a number of bi-

ologically irrelevant peak locations.

In addition to the size of the neighborhood, minimum peak height restrictions

are sometimes enforced as part of a local maximum search, so that many spurious and

non-biological peaks from the machine noise are excluded from potential biomarker

consideration. The same arguments from the previous paragraph apply in the context

of selecting a minimum peak height for such a restriction; peak height restrictions

using a smaller minimum will yield a larger peak set. A comforting notion is that

the choices of the size of the neighborhood and minimum peak height need not be

unguided and arbitrary. There are several factors that should be considered when

making such a choice.

As mentioned previously, isotopically resolved groups may be present in the spec-

tra. These peaks are often spaced approximately one Dalton apart, so adapting the

neighborhood size so that it exceeds one Dalton should eliminate the detection of

peaks which have been claimed to be biologically irrelevant as isotopes of other com-

pounds which are present in the spectrum. Another method for selecting the neigh-

borhood size may be based on the mass accuracy of the mass spectrometer used. This

mass accuracy may range from 0.1% to as high as 0.5% of the mass-to-charge value,

however, the use of mass accuracy is often used in subsequent peak matching algo-

rithms, where peaks are matched across spectra if they are within some neighborhood
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based on this mass accuracy. Using this mass accuracy in the local maximum search

within each spectrum prior to peak matching will remove some of the smaller peaks

that may be later discarded in a subsequent peak matching algorithm.

Minimum peak height restrictions are often based on some characterization of

the machine noise component, since many spurious peaks are often the result of rel-

atively large machine noise intensities. After baseline correction and normalization,

this noise has been estimated by computing a local estimate of median absolute de-

viation of the pre-processed intensities and then restricting a peak intensity to be

larger than three median absolute deviations above the baseline. Since we have gone

to the trouble of fitting our baseline and mixture model in our likelihood framework,

we preferred a model-based approach to find a suitable peak height restriction. By

using the EM Algorithm to model the intensities, we can use the responsibilities in

our approach for peak detection with little effort.

To illustrate how we can use the responsibilities to enforce this restriction, re-

call that each intensity has m responsibilities corresponding to its conditional density

value from each component. For the initial phase of peak detection, we need only

concern ourselves with responsibilities from the normal machine error component. We

display a histogram of baseline-corrected intensities whose maximum responsibilities

correspond to the error component in Figure 33. The violet bars of the histogram

correspond to the violet points in the associated spectrum section below. The red and

green curves on the histogram denote the weighted normal component density and

weighted peak convolution density with smallest mean, respectively. The dotted line

at the right of the histogram indicates the point at which these densities intersect;

that is, points where intensities whose highest responsibilities change from the error

component to the first ordered peak component. Note that this dotted line appears in

the spectrum below, just above the machine noise. The points in this section of spec-
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Fig. 33 Histogram of baseline-corrected intensities from the error component and spectrum of intensities

with points color-coded by responsibility from error component.

trum are color-coded by their responsibility from the error density. The color of the

points are scaled so that violet points denote intensities with highest responsibilities

from the error density, while red points denote those intensities with responsibilities

from the error density near zero.

From Figure 33 it is clear that peaks can easily be identified as intensities with

very low responsibilities from the normal error component. Since peak detection is

an integral part of many classification techniques for mass spectrometry, we investi-

gated to what extent responsibilities could serve as a viable tool for classification, as

well. We can see from Figure 33 that using just the responsibilities from the error
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Table 10. Average number of peaks found in each mass spectrum using local maximum search with varying

neighborhood size based on mass accuracy and error responsibility restriction on peak height in

the MALDI ovarian cancer data.

Mass Accuracy .001 .002 .003 .004 .005

Cancer 470.0 299.3 230.6 191.8 165.7
Healthy 499.1 317.0 242.7 200.8 172.9

component may suffice to a certain degree since the responsibilities from the error

component decrease for intensities with increased distance from the noise, as evi-

denced by the color changes. Even with the aid of responsibilities, we must still use

a local maximum search to avoid the run-up and run-down of points for each peak.

The purpose of peak detection is usually geared towards later classification.

While some of these peaks may be in fact spurious, we feel that a classification

procedure should sort which of these are spurious and which are meaningful. To this

end, we feel that finding more peaks is an advantage. In Table 10, we show the effect

of how a change in neighborhood size affects the initial peak harvesting counts from

each spectrum. To facilitate subsequent peak matching, we use mass accuracies to

determine the size of the neighborhood, since we may use these mass accuracies to

match peaks across spectra at a later point in time. One idea is to retain intensities in

an initial set of peaks for each spectrum if the intensity is the maximum in a window

of size [m/(1 + a), m(1 + a)], where m represents the m/z value of the peak and a

represents the mass accuracy (i.e., .001 for .1% mass accuracy). To impose a peak

height restriction, the responsibility from the machine noise component of the local

maximum intensity must be the smallest of the responsibilities for that location. As

expected, we see that as the neighborhood size grows larger, the number of peaks

retained is smaller.

In Figure 34, we illustrate how the neighborhood size affects the size of the
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Fig. 34 Local maxima in one section of spectrum from the MALDI ovarian cancer data. The biggest dots

are the largest intensities in a window of .5% of the m/z of the peak. The medium-sized and biggest

dots are local maxima in a window of .3%, while all of the dots are local maxima in a window of

.1%.
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Fig. 35 Number of peaks per spectrum in initial local maxima search from the MALDI ovarian cancer data.

The top, middle and bottom plots display the peak counts for each spectrum using mass accuracies

of .1%, .3% and .5%, respectively. The vertical dotted line separates cancerous and healthy spectra.



70

resulting set of candidate peaks. Peaks are denoted by solid black dots of three differ-

ent sizes. The largest dots correspond to local maxima in a neighborhood with mass

accuracy of .5%. The local maxima resulting from the smallest neighborhood search

with mass accuracy .1%, includes all of the large, medium and small dots. In Figure

35, we show how these neighborhood sizes affect the peak counts per spectrum; as

we mentioned before, a larger neighborhood yields a smaller candidate peak set. The

neighborhood size also affects the range of the number of peaks found across spectra.

Note that spectra 1, 4 and 35 show the smallest number of candidate peaks as the

mass accuracy changes, but the peak counts from these spectra appear as more sig-

nificant outliers as the mass accuracy increases.

IV.2. Spectral Alignment and Peak Matching

Up to this point, it was not necessary to address potential peak calibration issues

since we had restricted our analysis to within each spectrum. In our peak detection

discussion and in Chapter I, we mentioned the need to align the spectra in such a

way that peaks corresponding to the same peptide can be appropriately matched.

We considered two approaches to aligning the mass spectra and matching peaks. Our

first approach was to do a point-by-point mass spectral alignment for both peaks and

non-peaks, in the hopes of avoiding a potentially messy peak matching routine. We

found that our point-by-point spectral alignment was not sufficient for this data; we

briefly summarize our findings, before considering a more traditional peak matching

approach.
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IV.2.1. Point-by-Point Mass Spectral Alignment

In our analysis of our MALDI data, the number of points in each spectrum differed

slightly, but the mass-to-charge ratios were slightly offset in that the intensity at

the kth ordered mass-to-charge location was not always closest to the corresponding

mass-to-charge location in another spectrum. We attempted to circumvent this issue

and, hopefully a peak matching issue, by initially aligning the peaks and non-peaks

of each spectra, prior to peak detection, in a way that minimizes the variance of the

mass-to-charge ratios that are matched together.

This approach begins with the first (or smallest) m/z value in each spectrum

matched together, initially. Now consider the group of second m/z values in each

spectrum as candidates to be matched to this initial set of m/z values. Suppose that

the smallest of these second m/z values comes from spectrum s. We compare the

variance of the initial set of matched m/z values with a revised set where the first

m/z of spectrum s is replaced with the second m/z of spectrum s. If the variance

of the former set is smaller, the initial set of m/z remains matched together, and we

then proceed to the set of the next-largest m/z values from each spectrum. If the

variance of the latter set is smaller, we omit the first m/z value from spectrum s and

match the second m/z from spectrum s to the initial set. We then repeat the above

process by considering the smallest of the remaining unmatched m/z values.

To illustrate this concept we show a dot plot of the mass-to-charge values for

small sections of selected spectra in Figure 36. In the top graph, points of the same

color are in the same position in each raw spectrum; that is, each point of the same

color is the kth smallest m/z location in its spectrum. We can see that several of

these spectra are clearly shifted, in this regard. In the bottom graph, we display the

same points color-coded according to a new alignment based on a minimum variance

criterion. Locations in the same color are “matched” together.



72

981.10 981.15 981.20 981.25 981.30 981.35

0
2

0
4

0
6

0
8

0

m/z

S
p

e
ct

ru
m

981.10 981.15 981.20 981.25 981.30 981.35

0
2

0
4

0
6

0
8

0

m/z

S
p

e
ct

ru
m

Fig. 36 Dot plots of m/z values for selected misaligned spectra. In the top graph, each point of the same color

is the kth smallest m/z location in its spectrum. In the bottom graph, we display the same points

color-coded according to a new proposed alignment. Locations in the same color are “matched”

together.

Once these points are aligned, we compared regions of high peak responsibilities

across spectra. To visualize our idea, we display overlapped baseline-corrected spectra

zoomed to a single matched location that is identified as a peak for both healthy and

cancerous spectra in Figure 37. Our baseline correction followed the method outlined

at the end of Chapter III. The dots indicate the matched intensities according to

the previously described spectral alignment; red dots signify cancerous spectra and

blue dots denote healthy ones. We want to point out that we have compared some

non-maxima and maxima at this location. In Figure 38, we present side-by-side dot

plot of spectrum index versus baseline-corrected intensities on the left, along with a

corresponding plot displaying the error component responsibilities versus the spec-
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Fig. 37 Cancerous and healthy spectra in the vicinity of a peak. Red dots indicate cancerous spectra; blue

dots denote healthy spectra.
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Fig. 38 Dot plots of spectrum index versus baseline-corrected intensity (left) and error component respon-

sibility (right). There appears to be a clearer visual separation between the cancerous and healthy

error responsibilities.
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trum index on the right. There appears to be a clearer visual separation between the

cancerous and healthy points in the right plot.

Despite the promise shown in Figure 38, upon closer visual inspection we can

see that some of the dots corresponding to proposed peak intensities are not at the

local maximum, but are part of the run-up or run-down of the peak. Thus, while

such calibration may be helpful in aligning spectra, it will not eliminate the need

for subsequent peak matching, if we are to compare the maximum intensities of each

peak. Again, our hope was to align the spectra using all of the points, instead of

using only the peaks to guide the alignment.

IV.2.2. Peak Matching

If we consider the spectral alignment using only the peaks, we begin with a list of

locations and intensities of possible peaks for each spectrum. However, because of the

accuracy of the mass spectrometer, peaks which correspond to the same peptide in

different spectra may have slightly different m/z values. The most important input

into a peak matching algorithm is the degree of offset, or mass accuracy, of a peak

across spectra. One method for peak matching uses a one-dimensional clustering

algorithm on the location axis (Tibshirani et al., 2004). They observed that, after

applying a supersmoother and log transformation to the m/z values and intensity

values, the peak widths were approximately constant with width of .005 across each

spectrum on the log m/z scale. Although these peak widths may be somewhat spe-

cific to the data, operator, or machine, there are some merits to performing alignment

on the log m/z scale, which we will discuss later.

A general purpose idea is to cluster peaks together based on mass accuracy. This

idea is used in constructing a peak super set (Fushiki et al., 2006) as follows. Given
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a peak at mass m, a peak from another spectrum is aligned to the given peak if its

peak location lies within [m/(1 + a), m(1 + a)], where m represents the m/z value of

the given peak and a represents the mass accuracy. We can treat the mass accuracy

as an adjustable input into a classification algorithm to see which value of the mass

accuracy yields the best classification results.

We implement our peak matching algorithm similar to the continuous covariate

case considered in the super set idea proposed by Fushiki. Initially, the spectra are

sorted by the number of peaks detected after the peak detection stage. The spectrum

with the smallest number of initial peaks initializes the clusters for a peak super set.

Then the spectrum with the next smallest number of initial peaks is then aligned to

this peak super set, based on the mass accuracy. We compare the peaks from this

second spectrum with the peaks in the super set. If a peak from this second spectrum

is within the pre-determined mass accuracy of one of the peaks in the super set, then

each pair of aligned peaks is assumed to represent the same biological molecule. If

a peak from this second spectrum is not aligned to the peak super set, it initializes

a new peak cluster. This procedure is carried out until all of the spectra have been

aligned with the peak super set.

Our peak detection method may not be perfect, so it is reasonable to believe

that we may have missed some potentially important peaks or included some spu-

rious peaks in our peak super set. To address the first issue, after the initial peak

matching, we search for local maxima in the spectra with missing peaks in each lo-

cation within the confines of the existing cluster limits on the m/z axis in the peak

super set. This is analogous to the continuous covariate case described by Fushiki.

To address the second issue, we eliminated clusters with mostly missing peaks. While

analyzing the MALDI data, we eliminated peak locations with nine or fewer peaks.

We chose nine since the use of 10-fold cross-validation to divide the training and test
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Fig. 39 Matched peaks across spectra. Peaks in different spectra with the same plot symbol are matched

together in the same peak cluster. The left plots show peak detection and matching using a mass

accuracy of .1%, while the right plots show peak detection and matching using a mass accuracy of

.5%.

folds would guarantee that at least one peak from each peak cluster would always be

retained in the training fold. Prior to classification, our peak clusters can be viewed

as a rectangular matrix where each location has a quantitative measurement for each

spectrum.

To show the difficulties in peak detection and peak matching, we show the peaks

of three different spectra after peak detection and peak matching, in Figure 39. Peaks

in different spectra with the same plot symbol are matched together in the same peak
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Table 11. Number of clusters found with varied mass accuracy.

Mass Accuracy .001 .002 .003 .004 .005

No. of Clusters 1149 653 443 352 281

cluster. The plots on the left initially find peaks that have the largest intensity in its

mass accuracy range of .1%, and then are matched together if peaks in other spectra

are within its mass accuracy range. The plots on the right show peaks which are

detected and matched using a mass accuracy range of .5%. Note that in the bottom

left spectra, a single peak at m/z = 3001 is matched to two different peaks in the

spectra above it.

Clearly, the window width used in peak detection and peak matching routines

will affect subsequent classification results as is evident from Table 11. Unless the

mass accuracy of the mass spectrometer used is known exactly, this mass accuracy

can be used as an adjustable parameter in classification procedures. In the next sec-

tion, we make use of this fact.

IV.3. Classification

After performing peak detection and peak matching, peaks from all spectra will be

matched together so that we have tens or hundreds of clusters of peaks. Each cluster

of peaks represents peaks in various spectra with m/z values in some proximity of

each other. This clustering facilitates a classification problem where each spectral

observation has p covariates often consisting of some intensity measure at each of

the p peak cluster locations. This representation enables the use of a wide range of

classifiers, several of which were compared in a study by Wu et al. In this section,

we compare the performance of some different classifiers for its own sake, as well as
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a means to evaluate the merits of our work in previous chapters.

Using our MALDI data, we compared the performance of peak probability con-

trasts (PPC), locally adaptive discriminant analysis (LADA) (Wu and West, 2008)

and adaptive boosting (AdaBoost) (Yasui et al., 2003b) using the peak inputs from

different pre-processing techniques including our model-based representation. As a

benchmark for comparison, we had originally hoped to outperform an average of 23

misclassified spectra that was obtained using peak probability contrasts and ten-fold

cross validation for this data. However, we were unable to duplicate those results

using the supplementary code provided by the authors, so we used our own attempts

to reproduce these results to provide two benchmarks, which are described later. We

now present a brief summary of the PPC, LADA and AdaBoost methods.

IV.3.1. Peak Probability Contrasts

The peak probability contrasts method (Tibshirani et al., 2004) begins by iteratively

searching each peak cluster for an optimal split point which maximally discriminates

between the cancerous and healthy spectral peak intensities at that location. The

candidate split point is denoted as the α-quantile among the peak intensities at lo-

cation i, q(α, i). For each candidate value of q(α, i), the proportion of cancerous

spectra and healthy spectra at this location with peak intensity values above q(α, i)

is computed as pi1(α) and pi2(α), respectively. The optimal split point at location i

is denoted as the q(α, i) which maximizes the absolute difference in class proportions

above the split point, |pi1(α)− pi2(α)|. If there are p locations, each disease class is

represented by the vector of these maximally discriminated proportions, (p11 . . . pp1)
T

and (p12 . . . pp2)
T , respectively.

Classification for a new spectrum is done by defining a binary feature which has
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a 1 at location i if its peak intensity at location i is at least as large as the optimal

split point at location i and 0, otherwise. The new spectrum will be predicted to class

1 (say, cancerous) if the distance between its feature vector and the class 1 proportion

vector, described in the previous paragraph, is smaller than the distance to the class

2 proportion vector in some metric. Additionally, feature selection is done by finding

an optimal choice of a soft threshold parameter, δ, which shrinks the class proportions

towards .5 and essentially removes locations where the discriminated class proportions

are less than δ in absolute value. This approach provides a means for decreasing the

importance of spurious or otherwise unimportant features.

IV.3.2. Locally Adaptive Discriminant Analysis

Locally adaptive discriminant analysis (Wu and West, 2008) is an ensemble classifier

which initially fits several classifiers (say, c classifiers) to the peak intensities at each

peak location. The LADA method does not require that every spectra have an in-

tensity (peak or non-peak) at each location. At each location, the c classifiers are fit

to the intensities in the training data and yield c predicted classifications, consisting

of Cj = −1 for a healthy prediction or Cj = +1 for cancerous prediction, using clas-

sifier j. At each location, the error rate of classifier j is denoted by ej, and the class

prediction from the classifier with the minimizing ej is retained. Thus, the equivalent

feature vector for a single spectrum is a binary vector consisting of +1’s and/or -1’s

corresponding to the class predictions at each peak location of the respective best

classifiers. For each spectrum a score is then calculated from a weighted average of

the elements of the binary classification vector, where the weight at location i, is

computed as wi = 1− ei. This representation places the largest weights on classifiers

which perform best.
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Through leave-one-out and ten-fold cross-validation, an optimal cutoff error rate,

ec, is determined so that wi = 0 if ei > ec. For each spectra in the training set, s, a

score is calculated as

scores = ΣiwiCi,

using the weights and best classifiers at locations where spectra s had a peak present.

An optimal threshold score, t, is computed which maximally discriminates between

the scores of the cancerous and healthy spectra. Prediction for a new spectra from a

test set is done by first using the corresponding best classifiers where the test spec-

trum has detected peaks. The score for the new spectrum is calculated using these

classification results and the weights computed from the training sample. If the score

of the new spectrum is larger than the computed threshold, the new spectrum is

classified as cancerous, otherwise, healthy.

Like the PPC method, LADA also uses a threshold parameter as variable selec-

tion criteria, where locations can be assigned a weight of zero if the corresponding

classifier error rate is too large. This threshold can be similarly estimated using

a ten-fold or leave-one-out cross-validation procedure. Another attractive property

of the LADA method is that it can use one-dimensional as well as two-dimensional

peak information from the spectra. In our LADA procedure, we fit classifiers using

one-dimensional (intensity only) and two-dimensional (intensity and location) peak

information with 1- and 3-nearest neighbor classification and linear and quadratic

discriminant analysis. Using such information can dramatically increase predictive

power if there is a systematic shift in mass-to-charge ratio at a particular location

between disease classes. Also, the computational intensity of the LADA method can

be adjusted by controlling the number of classifiers fit at each location.
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IV.3.3. Adaptive Boosting

Adaptive boosting is similar to the LADA method in that it is ensemble classifier.

The AdaBoost procedure uses the outputs of a sequence of M weak classifiers to form

a much stronger classifier, by committee. These weak classifiers are formed iteratively

using modified versions of the training data. Initially, each of the spectra are weighted

equally with wi = 1/N , where i indexes the training spectra and N is the number of

spectra in the training set. For each iteration of the AdaBoost algorithm, a binary

classifier, Gm(x), is fit to the training data, where m indexes the classifier in sequence

(initially, m = 1) and x indicates a vector of predictors. If yi indicates the true

disease status of the ith spectrum, the misclassification error of the mth classifier is

computed as

errm =

∑N
i=1wiI(yi 6= Gm(xi))

∑N
i=1wi

.

From this misclassification error rate, the measure αm = (1−errm)/errm is computed,

which indicates the importance of mth weak classifier in the final classification. Like

LADA, the weak classifiers that perform better receive larger weight. The weights

for each spectra are updated as follows: wi+1 ← wi · exp(αm · I(yi 6= Gm(xi))). This

iterative re-weighting increases the importance of spectra which were misclassified by

the previous weak classifier, so the AdaBoost procedure increases weights for more

accurate classifiers and rogue spectra that are difficult to predict.

After M weak classifiers are fit, we obtain the predicted class of disease sta-

tus, Gm(x), m = 1, . . . ,M and the importance measure of each classifier, αm, m =

1, . . . ,M . The final “committee” classifier is then

G(x) =

M
∑

m=1

αmGm(x).
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Table 12. Average number (and standard error) of misclassified spectra after applying PPC to our mod-

el-based peaks, using different normalization techniques. Results in this table use all 89 spectra to

identify peak cluster locations and split points.

Normalization PPC LADA AdaBoost

Model-based σt .272 (.004) .216 (.005) .258 (.011)
No normalization .374 (.004) .289 (.010) .366 (.008)
Log and P90 − P10 .297 (.002) .198 (.007) .275 (.015)

P100 − P0 .285 (.002) .266 (.003) .391 (.011)
Mean Ion Current .299 (.004) .275 (.013) .334 (.018)

In Table 12, we present results which compare misclassification results for differ-

ent normalization procedures for three classifiers, PPC, LADA and AdaBoost. The

model-based local variance normalization procedure is applied after fitting the mix-

ture model and baseline in the spirit of Chapters II and III. After our pre-processing

method is applied to all of the spectra, peaks are harvested as baseline-corrected

intensities which are local maxima in a window of ±100 points and whose largest

responsibility is not from the normally distributed machine error component. After

using the peak clustering algorithm from Tibshirani et al. (2004), the unnormalized

baseline-corrected intensities are input into the three classifiers to produce the results

in the “No normalization” row. The results in the “Model-based σt” row normalize

the above baseline-corrected intensities after model fitting, by dividing these intensi-

ties by the square root of the local estimate of σ2
t .

We use the estimate of σt as a normalization approach since spectra with rel-

atively large peaks compared to other spectra, often possess larger noise estimates,

as well. The mean ion intensity normalization approach stems from a similar idea,

however, it is well known that the mean intensity in a mass spectrum will be highly

affected a few very large peak intensities. The P100 − P0 normalization technique
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transforms the largest intensities in each spectrum to 1, so it can also be affected by

one very large (or very small) intensity. Moreover, this transformation is especially

problematic if the largest intensity in each spectrum is often due to the same bio-

logical feature, since this will result in a serious compromise of discriminatory power

among the spectra at this location.

To compare the results of our approach, we carried out the pre-processing proce-

dure for this data outlined in by Tibshirani et al. using code from the authors. Our

attempt to reproduce the results using the authors’ code yielded a mean misclassi-

fication rate of .343 with a standard error of .005, which is significantly larger than

.258 (23/89) as claimed by the authors. Although the results use all 89 spectra to

identify peak cluster locations and split points, there are several things to note in Ta-

ble 12. Not surprisingly, our normalized peaks perform better than the unnormalized

peaks for all three classifiers tested, which illustrates that it may be advantageous

to use some model-based normalization techniques. Our model-based normalization

uniformly outperforms the three other normalization techniques, except in one case

where the tuned normalization from Tibshirani et al. performs better using the LADA

classifier.

The last three rows in the table refer to normalization procedures applied prior

to the fitting of our mixture model to the baseline-corrected intensities. Each of these

pre-processing approaches uses a ‘loess’ baseline with a span of 1000/91360 after ap-

plying the normalization. The log and P90 − P10 transformation is the normalization

of choice for this data by Tibshirani et al.; after a log transformation was fit, a lin-

ear transformation mapped the 10th and 90th percentiles of the baseline-corrected

intensities to 0 and 1, respectively. The P100 − P0 transformation is a similar trans-

formation which maps the minimum and maximum baseline-corrected intensities to

0 and 1, respectively, prior to model fitting. The mean ion current divides the inten-
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sities by the average intensity in the spectrum prior to model fitting. After all of the

spectra have been normalized and baseline-corrected, our mixture model is fit to the

spectra to find the responsibility-based peaks.

The log and P90 − P10 normalization circumvents some of the drawbacks that

afflict the mean ion intensity and 0-1 normalization approaches. However, the P90 −

P−10 normalization is somewhat specific to this data set, which is convenient in that

these percentiles correspond to points near the bounds of machine noise. However,

this approach may not work in general, since not all spectra have 90% (or more) points

in the machine noise component. We illustrate this fact with a low-resolution SELDI

data in the next section, which has peaks which extend over much larger ranges of

m/z than in this particular MALDI data set.

To obtain the results in the bottom three rows, the same initial baseline sub-

traction and normalization were applied and our mixture model was fit to the pre-

processed data. Peaks were then harvested in the same manner as the results from

unnormalized and post-fit normalized spectra in the two rows above. For all of the

results in Table 12, we used the peaks from all spectra to identify the peak clusters,

split points and train the classifiers, so the misclassification results are slightly opti-

mistic, however, that should not affect the comparison of the results within Table 12.

Since the misclassification results in Table 12 possess some in-sample qualities

and are slightly optimistic, we decided to compute the number of misclassified spectra

using strictly out-of-sample results while comparing baseline estimation techniques.

To obtain the results in Table 13, we first used a single baseline estimate from a

‘loess’ smooth with a span of 1000/91360 points prior to any normalization. For the

results in the top two rows, we did not update the initial baseline estimate as we

had in producing the results of Table 12. For the results in the bottom three rows,

we normalized the baseline-corrected intensities prior to fitting our mixture model.
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Table 13. Leave-one-out cross-validation of misclassified spectra after applying PPC, LADA and AdaBoost

to our model-based peaks, using different normalization techniques and only an initial baseline

estimate. Results in this table use only training spectra to identify peak cluster locations and train

classifiers.

Normalization PPC LADA AdaBoost

Model-based σt .292 .393 .326
No normalization .371 .404 .360
Log and P90 − P10 .326 .360 .202

P100 − P0 .382 .348 .303
Mean Ion Current .371 .382 .225

Table 14. Leave-one-out cross-validation of misclassified spectra after applying PPC, LADA and AdaBoost to

our model-based peaks, using different normalization techniques and an updated baseline estimate.

Results in this table use only spectra in the training set to identify peak cluster locations and train

classifiers.

Normalization PPC LADA AdaBoost

Model-based σt .348 .404 .303
No normalization .393 .506 .337
Log and P90 − P10 .438 .483 .371

P100 − P0 .382 .348 .315
Mean Ion Current .382 .360 .315
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After our mixture models were fit, we harvested peaks using responsibilities from all

spectra, regardless of normalization, and used a one-dimensional clustering to cluster

the peaks. The peaks harvested from the top rows had their baseline-corrected inten-

sities standardized by the local variance estimate, prior to entrance in the classifiers.

In Table 14, we used the same pre-processing approach as in Table 13, however

we allowed the baseline to be updated regardless of normalization technique. In Table

12, we updated the baseline for the spectra for the results in the top two rows, but

retained the original baseline throughout model fitting for the bottom three rows.

Through the comparison of Tables 13 and 14, we can better ascertain where our su-

periority lies in Table 12; that is, how advantageous are our model-based baseline

estimation and normalization approaches? In addition, we computed the number of

misclassified spectra more honestly using out-of-sample classification performance.

After model fitting, peak detection and peak matching, we used leave-one-out

cross-validation estimate the mean number of misclassified spectra. For each run,

one of the spectra (and their associated peaks) are withheld, while the training of

the classifier is performed using the remaining spectra (and their associated peaks).

The cancer status of each withheld spectra is unbiasedly estimated using the trained

classifier, and this process is repeated for the remaining nine folds in the fold choice.

This is a computationally intensive procedure, so it is important to balance the com-

puting time with the number of repetitions desired. We would also like to point out

that we did not harvest local maxima from each spectrum after peak clustering where

each spectrum had no detected peaks, as we had done previously.

The results in Table 13 are useful for comparison with Table 14, but are also

useful for comparing our peak detection results with the peak detection algorithm in

Tibshirani et al.. To adjust our earlier optimistic results, we used the same 10-fold

cross-validation procedure to estimate the number of misclassified spectra. We briefly
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describe our attempt to reproduce this result for matter of completeness. We carried

out the pre-processing techniques where the spectral intensities underwent log and lin-

ear transformations, prior to applying a ‘loess’ baseline estimate and supersmoother

to remove the isotopic envelop. Peaks were harvested as local maxima within a win-

dow of ±100 points and then clustered together using a one-dimensional clustering

on the log(m/z) scale. After applying the PPC classifier for 25 folds, we found an

average and standard error of .388 and .005 misclassified spectra, respectively. Again,

this was higher than what was claimed by the authors, and our model-based normal-

ization compares favorably with this result.

To summarize our findings from Tables 12, 13 and 14, it is clear that our base-

line estimation procedure yielded higher misclassification rates when compared with

the initial baseline estimation. While this is somewhat disappointing, but it is not

entirely surprising since the method of selecting λ from Chapter III was not exactly

optimal. We consider this fact further in Chapter V, where we consider a grid search

of the log-likelihood over many parameters, including the initial baseline smoothness.

Our normalization idea worked well for the PPC classifier, but less so for the other

classifiers. In the next section, we evaluate our normalization method with a SELDI

dataset.

IV.4. Application to SELDI Data

Throughout this document, our examples have referred to a popular MALDI dataset.

In this section, we show the application of our method to data that is different in

many ways from the ovarian cancer data set used in the previous chapters. We used

a set of mass spectra that are produced according to SELDI-TOF specifications and

was previously analyzed in Petricoin et al. (2002c). The mass spectra were collected
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Fig. 40 SELDI mass spectra of a control subject with low PSA level and prostate cancer patient with a

highly-elevated PSA level in the top and bottom plots, respectively.

from a study set of patients with a histopathologic diagnosis of prostate cancer or

no evidence of prostate cancer. These low resolution SELDI mass spectra were mea-

sured at 15,191 locations ranging from 0 to 20,000 m/z with the baseline already

subtracted. Mass spectra of two subjects are presented in Figure 40. The top spectra

shows a subject with low PSA level and no evidence of cancer, while the bottom spec-

tra represents a patient with highly-elevated PSA level. The spectra in this dataset

had similar ranges of intensity; most spectral intensities were located between -20

and 80 for each spectra. The data were found at the Clinical Proteomics National

Databank (http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp).

This data was selected for many reasons; we will state a few of them here. First,

SELDI data do not possess the isotopic envelope that is often present in MALDI data,

and SELDI data tend to be less “messy”. Second, this SELDI data set has a much
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larger range (0-20,000 m/z) than the MALDI data set (800-3,500 m/z) analyzed in

previous chapters. Third, despite the much larger range, the resolution of the SELDI

data is much lower; the number of points in this SELDI data set is about 1/6 of the

number of points in the MALDI data set. Lastly, these data were already baseline-

corrected, which facilitates a more honest comparison of normalization methods.

We first used our mixture model to fit the baseline-corrected intensities, and

discarded all of the spectral information below m/z = 800 since the mass spectra are

quite noisy and this region provides no biologically discriminating information. In an

attempt to compare some of our results, we divided the data into training and test

sets as in Petricoin et al. (2002c), where the training set comprised 25 patients with

no evidence of disease and PSA levels ≤ 1 ng/mL and 31 patients with biopsy-proven

prostate cancer and PSA levels ≥ 4 ng/mL. The test set contained 76 patients, with

38 patients in each of the aforementioned groups.

We divided the data into training and test sets as described in the previous para-

graph 100 times. For each training set, the peaks are clustered together using the

one-dimensional clustering technique described in Tibshirani et al. on the log(m/z)

axis. There is an important point in clustering on the log(m/z) axis, as was briefly

alluded to earlier in the chapter. Two peaks at m/z = mp and m/z = mp(1 + a)

would aligned together which a relative mass accuracy of 100a%, however the abso-

lute distance between these points depends on their mass, mp. However, the distance

between these points on the log scale is log(mp(1 + a))− log(mp) = log(1+ a), which

is independent of the peak masses. Conveniently, log(1 + a) is approximately equal

to a for small and positive values of a, which is our range for the mass accuracy, a,

as a decimal. Thus, peaks can be aligned according to relative mass accuracy on the

log scale, regardless of mass.

We used four different values of the adjustable parameter peak.gap, to cluster
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Fig. 41 SELDI mass spectra in the vicinity of a potentially discriminating location. The left graphs represent

healthy spectra and the right graphs represent cancerous spectra.

peaks from the various training spectra. For comparative purposes, these values are

equivalent to peak matching with mass accuracies of .125%, .250%, .374% and .499%,

respectively. Thus, the equivalent mass accuracy, as a decimal, is roughly half of the

peak gap.

After clustering the peaks together we then applied the PPC and LADA methods

to the clusters of peaks. In Figure 41, we show one of the discriminating locations

identified by PPC. The graphs on the left show the two largest peaks at this location

from the healthy spectra in one of the training sets, while the graphs of the right show

the two largest peaks from the cancerous spectra in the same training set. At this

location, the peaks tend to be larger in the cancerous spectra. In Figure 42, we show

a visual description of the PPC method applied at this location. The left graph shows

the normalized peak intensities in the training data at this location, where the circles
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Fig. 42 Application of the PPC classifier to the peaks with centroid at m/z = 4246.37. The circles repre-

sent the normalized peak intensity for each of the healthy spectra, while the pluses represent the

normalized peak intensity for each of the cancerous spectra at this location.

represent healthy spectra and the pluses represent cancerous spectra. The dotted line

is the optimal split point estimated by PPC at this location for the training data. In

the right graph, we show the normalized peak intensities in the test spectra with the

same split point estimated from the training data. In this instance, spectra with nor-

malized peak intensities larger than the split point will be classified as cancerous at

this location and assigned a value of 1 in its feature vector. Spectra with normalized

peak intensities below the split point will be classified as healthy, at this location,

and assigned 0 at this location of its feature vector.

For each test set of 76 subjects, the sensitivity, specificity and misclassifi-

cation proportion are computed, using our normalization procedure and competing

procedures described previously. Note that since the spectra were already baseline-
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Table 15. Average (and standard error) of misclassification rates after applying PPC, LADA and AdaBoost to

our model-based peaks in the data from Petricoin et al. (2002c) using two different mass accuracies

for peak matching. Results in this table use only training spectra to identify peak cluster locations

and train classifiers.

Normalization PPC, .005 LADA, .005 AdaB, .005

Model-based σt .152 (.007) .155 (.005) .129 (.007)
No normalization .194 (.007) .197 (.006) .127 (.010)

P90 − P10 .146 (.007) .163 (.005) .110 (.007)
P100 − P0 .163 (.008) .179 (.005) .142 (.011)

Mean Ion Current .174 (.009) .174 (.005) .116 (.007)

Normalization PPC, .01 LADA, .01 AdaB, .01

Model-based σt .154 (.005) .134 (.004) .116 (.006)
No normalization .168 (.006) .179 (.005) .126 (.007)

P90 − P10 .161 (.008) .154 (.006) .101 (.008)
P100 − P0 .172 (.007) .191 (.005) .113 (.008)

Mean Ion Current .165 (.008) .161 (.005) .113 (.007)

corrected, the only the divisors of the normalization procedures were used and no log

transformation was applied prior to the P90 − P10 normalization. We want to point

out that the comparison of our proposed normalization with unnormalized spectra is

not entirely foolhardy since the range of intensities changes very little across spectra

from this data set. From Figure 40, it may seem like little discriminatory information

can be gained through normalization, however, the results in Table 15 would suggest

otherwise, as the error rate is uniformly lower for the normalized spectra. In fact, the

difference in error rates between our normalized and unnormalized peaks are highly

significant (p-value < .01), with the exception of the largest peak gap.

Our proposed model-based normalization compares very favorably to competing

normalization procedures. Our model-based approach had uniformly smaller misclas-

sification rates than both the P100−P0 and the mean ion current normalizations, and

performed better than the P90 − P10 normalization in more than half of the compar-

isons. To show a more detailed view of where our improvement in the misclassification

rates lies, we computed the sensitivities and specificities in Tables 16 and 17.
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Table 16. Average (and standard error) of specificities after applying PPC and LADA to our model-based

peaks in the data from Petricoin et al. (2002c). Results in this table use only spectra in the training

set to identify peak cluster locations and train classifiers.

Normalization PPC, .0025 PPC, .005 PPC, .0075 PPC, .01

Model-based σt .789 (.0104) .777 (.0129) .759 (.0164) .769 (.0163)
No normalization .676 (.0147) .682 (.0153) .673 (.0150) .732 (.0111)

P90 − P10 .716 (.0178) .744 (.0132) .748 (.0142) .721 (.0164)
P100 − P0 .711 (.0171) .716 (.0164) .689 (.0156) .707 (.0124)

Mean Ion Current .692 (.0145) .696 (.0187) .695 (.0148) .735 (.0155)

Normalization LADA, .0025 LADA, .005 LADA, .0075 LADA, .01

Model-based σt .711 (.0130) .786 (.0117) .796 (.0120) .819 (.0100)
No normalization .661 (.0110) .720 (.0110) .714 (.0108) .753 (.0119)

P90 − P10 .753 (.0099) .761 (.0106) .785 (.0108) .785 (.0107)
P100 − P0 .691 (.0114) .754 (.0109) .780 (.0096) .777 (.0096)

Mean Ion Current .658 (.0118) .748 (.0107) .762 (.0107) .778 (.0010)

The high sensitivity for this data set was reported in Petricoin et al. (2002c),

as they correctly classified 36 of the 38 patients with prostate cancer and high PSA

levels in their test set. However, this estimate is believed to be computed from a sin-

gle partition of the training and test set. We want to point out that the sensitivities

for some of our test sets were exactly 1, and our mean sensitivity is not significantly

different from the high sensitivity claimed by the authors. It is interesting to note

that our sensitivities appear to be slightly lower using the PPC classifier, but with a

larger increase in the specificities.

In this chapter, we have used our model-based pre-processing procedures as in-

puts into peak detection and several classification procedures. In Chapter I, we out-

lined several pre-processing steps which are typically performed in the analysis of

mass spectral data. We have shown that our approach provides model-based pro-

cedures for baseline correction, normalization and peak detection. In this chapter,

we have shown that there may be some merit to using such model-based procedures

insofar as classification performance is performed, as we have obtained promising re-

sults using different data sets and classifiers. In the next chapter, we outline future
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Table 17. Average (and standard error) of sensitivities after applying PPC to our model-based peaks in the

data from Petricoin et al. (2002c). Results in this table use only spectra in the training set to

identify peak cluster locations and build classifier.

Normalization Divisor PPC, .0025 PPC, .005 PPC, .0075 PPC, .01

Model-based σt .923 (.0055) .920 (.0057) .909 (.0070) .923 (.0065)
No normalization .945 (.0053) .930 (.0058) .923 (.0064) .933 (.0059)

P90 − P10 .957 (.0044) .963 (.0039) .961 (.0040) .958 (.0045)
P100 − P0 .963 (.0035) .959 (.0039) .958 (.0039) .949 (.0049)

Mean Ion Current .967 (.0032) .956 (.0035) .952 (.0043) .935 (.0051)

Normalization Divisor LADA, .0025 LADA, .005 LADA, .0075 LADA, .01

Model-based σt .908 (.0074) .904 (.0067) .913 (.0065) .914 (.0064)
No normalization .896 (.0068) .886 (.0078) .884 (.0088) .889 (.0082)

P90 − P10 .913 (.0066) .913 (.0071) .919 (.0066) .906 (.0063)
P100 − P0 .901 (.0078) .887 (.0089) .865 (.0092) .842 (.0097)

Mean Ion Current .933 (.0062) .904 (.0069) .904 (.0075) .900 (.0066)

improvements to our method.
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CHAPTER V

CONCLUSION

Throughout the course of study that motivated this document, we have presented

many important questions and often several attempts to provide suitable answers to

these questions. For example, most of this document has assumed that mass spectra

can be appropriately modeled with parametric mixture models. While our parametric

mixture model is flexible, this structure may not be sufficiently accommodating as a

general purpose algorithm for all mass spectra, regardless of ionization method, mass

analyzer choice, etc. Thus, one improvement for our method would address a need for

increased flexibility. Since the goal of pre-processing is to extract biologically relevant

peaks from mass spectra, it may not be necessary to impose a parametric density on

the intensities, if peak and non-peak intensities are sufficiently distinguishable using

another choice of parametric components or some nonparametric assessment. Using

a nonparametric approach raises a new set of questions, however, implementation of

nonparametric densities does not prohibit the use of the EM Algorithm or model-

based estimates of the baseline, peaks or normalization.

Before we delve into the specifics of the improvements of our existing method,

it is important to exploit whatever advantages our method might hold over existing

methods. The fitting of our model to the large number of intensities certainly makes

computational implementation a concern, especially in cases where high-throughput

mass spectral analysis is desirable. Along those lines, high-throughput procedures

generally deem manually-tuned pre-processing techniques as impractical, thus we

want our model-based procedures to be largely automatic with a minimum number
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of user inputs. For the purposes of outlining future improvements for our method,

we want to maintain a constant appreciation for automation in the name of high-

throughput procedures.

An important matter of consideration is the optimal number of effective param-

eters, which is dependent on several inputs, including the smoothness of the baseline

and the number of local noise variance estimates. In Chapter II, we addressed the

optimal number of components using AIC and BIC, after fitting our model over a

grid m. In Chapter III, we used generalized cross-validation and restricted maximum

likelihood to determine an optimal smoothing parameter which maximized a penal-

ized likelihood to obtain a suitable baseline. Thus, if we want to properly consider

the optimal number of components using the AIC or BIC, a grid search for the num-

ber of fitted component densities should also include the number of local variance

estimates and baseline estimate and its equivalent number of parameters. Clearly,

such an exhaustive grid search increases the computation time to find this optimal

number of components. Ideally, our model-based procedure would be able to auto-

matically identify a reasonable number of parameters, while considering the variance

and baseline estimates, as well, through a computationally feasible grid search.

In Table 18, we show the BIC values for a selection of parameters and inputs.

The table shows two baseline estimates, f9.138 and f913.8, which are initial baseline

estimates provided by the ’loess’ function using the enp.target argument, which

provides a baseline with an equivalent number of parameters equal to enp.target.

These arbitrary values were obtained by dividing the number of points in the spec-

trum (91380) by 10,000 and 100, respectively. The value of m determines the number

of mixture components; specifically, it includes 1 normal component and m− 1 peak

components. The values for m.sec and v.sec indicate the number of sections to divide

the spectra on the m/z axis for fitting multiple components {πj, αj , θj} and multiple



97

Table 18. BIC computed for 54 different combinations of model and parameter choice for a single spectrum.

f9.138 f913.8

m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

m.sec = 1
v.sec = 1 1077283 1076492 1075554 1131860 1131722 1131408
v.sec = 3 1058880 1057723 1057735 1089169 1088937 1088968
v.sec = 5 1051588 1050552 1050570 1068302 1068049 1068080

m.sec = 2
v.sec = 1 1077028 1075576 1075284 1131772 1131645 1131371
v.sec = 3 1058907 1057490 1057541 1089116 1088927 1089000
v.sec = 5 1051618 1050567 1050409 1068276 1068058 1068125

m.sec = 3
v.sec = 1 1076346 1074901 1074792 1131504 1131231 1131331
v.sec = 3 1057851 1056825 1056922 1088693 1088324 1088429
v.sec = 5 1050998 1049945 1050016 1067902 1067732 1067825

machine noise variances, σ2
t . That is, when m.sec = 2, the spectrum is divided into

two non-overlapping and exhaustive sections along the m/z and m components are

estimated for each section.

From this small example, we can see that the BIC would select a smoother base-

line with m = 4 mixture components, to be fit separately in each of m.sec = 3

sections. The BIC also prefers that the underlying noise estimate, σ2
t , should be esti-

mated over five sections of the spectrum, instead of one or three sections. The results

from the AIC support these choices (table not shown). As presented in Chapter II

and in Table 14, our approach selects the number of mixtures for each spectrum only

after several models with different choices of m have been sufficiently fit according

to some possibly stringent convergence assumptions. This is not computationally

efficient, especially if the number of mixture components can be determined after a

much smaller number of iterations or through some a priori determination. If deter-

mining the effective number of model parameters is indeed important to classification

performance, finding a timely surrogate for the converged AIC or BIC criterion is

important.

We have shown examples of both MALDI and SELDI spectra which have exhib-

ited a noise variance which is nonconstant across the range of m/z. In Chapter IV,
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we showed that there may be some promise in using the estimation of this machine

noise to serve in a post-fit, model-based normalization procedure, so there may pre-

dictive merits to a well-estimated machine noise component. We obtained our local

variance estimates by assuming that the change in machine noise variability was suf-

ficiently gradual so that it could be viewed as constant over relatively small ranges of

m/z. While this assumption provided reasonable estimates and classification results,

a model that allows the variance to change more smoothly may be more appropriate.

In Chapter III, we investigated the premise of updating the baseline through a

penalized likelihood form of our model. This approach can be somewhat prohibitive

due to the large number of points that are typically found in mass spectral data.

We have seen that we can obtain smooth baselines from very wiggly initial estimates

and vice versa, but the computation time required to employ this idea cannot be

overlooked. The use of a grid search as described earlier in the chapter may be able

to identify an initial baseline that is similar in smoothness to an “optimal” baseline,

which is likely to decrease the computation time. In addition, the number of points

required to estimate a smoother baseline should be smaller than a wigglier baseline.

Thus, if the notion of a “best baseline” is quite smooth, we can estimate it using a

smaller number of points. We used this idea in Chapter III.

A natural solution to updating the baseline with a smaller number of points or

knots may be the use of P -splines (Eilers and Marx, 1996). The use of P -splines is

a combination of B-splines and difference penalties on coefficients of the B-splines

so that the notion of roughness penalty developed in Chapter III is not moot. The

advantages of using P -splines include the local fitting of polynomials at knots deter-

mined by the analyst, which makes the spacing of the raw intensities on the m/z axis

irrelevant. Most importantly, the number of knots needed to produce a sufficiently

flexible baseline may be far smaller (i.e., 50) than the number of intensity locations
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in each mass spectrum. This makes for a much more practical computation time.

One part of the estimation procedure we have largely ignored is associated with

the isotopic behavior of MALDI spectra. As we pointed out in Chapter I, some

authors have attempted to model the periodic behavior that afflicts high resolution

MALDI data. In Chapter III, our generalized cross-validation estimate of the smooth-

ing parameter was affected by this property of the MALDI data set, however we

determined that this baseline estimate was unsuitable due to its roughness and its

penchant to disproportionately raze peaks of interest more than the isotopic noise

envelop. It may be desirable to find a modeling solution for such behavior whether it

be through an appropriately chosen value of the smoothing parameter or an extension

of our model which models this somewhat periodic component, separately from the

trend of the baseline.

In Chapter IV, we have used the responsibilities to indicate the presence of peaks

in the mass spectra. However, due to our desire to handle the raw data without any

prior normalization, the number of peaks varies in the mass spectra, even within dis-

ease classes. It would be nice to find a way to use the responsibilities across spectra

in a way that keeps the number of peaks more uniform. This will help to disregard

spurious peaks that are typically found in noisier spectra, where our model likelihood

tends to be lower than for spectra that are better behaved.
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