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ABSTRACT 
 
 

Investigation of Transfer Function Analysis as a Means to Predict Strain on Rat Tibiae 

from Ankle Torque Waveforms. (December 2009) 

Scott Daniel Bouse, B.S., Texas A&M University 

 Co-Chairs of Advisory Committee:  Dr. Susan Bloomfield 
  Dr. Harry Hogan 

 

Electrical Muscle Stimulation (EMS) is used as a countermeasure in animal 

disuse studies that seek to determine which forms of exercise are most effective in 

mitigating the effects of disuse atrophy on bone and muscle.  Although EMS has been 

used for many years in our lab and others, few researchers have been able to quantify the 

levels of strain on rat tibiae during EMS and far fewer have investigated the causal 

relationship between torque produced at the ankle and strain on the tibia.  This thesis 

sought to investigate the relationship between ankle torque and tibial strain by using a 

combination of techniques, namely: (1) the addition of rosette strain gages, (2) improved 

synchronization between ankle torque and tibial strain recordings, and (3) spectral 

analysis between torque and strain waveforms. 

In previous work, few methods existed to align torque and strain recordings 

temporally, as those data were recorded on separate computers and synchronizing events 

were not captured.  Attempting to create a torque-strain crossplot with unsynchronized 

data does not always yield valid results, so a method of reliably synchronizing those data 

is required.  This thesis developed methods to capture simultaneous (synchronizing) 

events in both torque and strain recordings and then used those captured events to 

synchronize data between two computers.  Following that synchronization, stiffness 

calculations were run on torque-strain crossplots to determine linear-model relationships 

between torque and strain for each method of synchronization.  The results from those 

regressions were then used to determine if one or more synchronization techniques are 

superior to others, in terms of repeatability or precision.  The results of these analyses 
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have shown that using portions of the curves can dramatically increase computing speed 

while providing high levels of repeatability in synchronization measures. 

After synchronization techniques had been investigated, 3-element rosette data 

were used to calculate the principal strains on the surface of the tibiae, and the percentage 

of principal strains that are accounted for in the axial direction.  Since the strain 

environment changes along the axis of the bone, the principal strain data were plotted 

versus the distance from proximal epiphysis to rosette gage, and statistical analysis was 

presented. 

After rosette data were analyzed, the torque and strain data pairs were fed into a 

signal processing suite for the purpose of transfer function calculation.  Using the 

synchronization methods outlined above, two means of synchronization were compared 

in the transfer function program.  Results for these analyses demonstrated that transfer 

functions are slightly dependent on synchronization methods, but that calculated gains do 

not differ between synchronization techniques.   

The specific shapes of the transfer functions highlight the relative 

attenuation/amplification of frequencies in torque and strain signals.  Specifically, a range 

of frequencies, commonly called a band, between 24 and 32Hz is attenuated by the soft 

tissues and mechanical linkages in the lower leg of rats.  This finding gives researchers 

looking to increase or decrease modeling stimulus to bone a new piece of information 

about the relative efficiency of EMS exercise.  For example, EMS performed at 24-25Hz 

might produce less strain in the tibia than EMS at 22-23Hz, despite the 22-23Hz 

stimulation producing marginally less torque.   
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INTRODUCTION 
 

Motivation 
Bone serves two primary roles in the body:  It serves as a calcium store for 

homeostatic processes, and it protects and supports bodily tissues1.  Although calcium 

homeostasis is a critically important function for bone, it is not a targeted feature of bone 

mechanics in this thesis.  However, bone’s ability to structurally adapt to changes in its 

loading environment has a direct effect on its physical properties, and it is that ability that 

serves as the basal motivation behind this thesis.  Changes in loading environment can 

come in many varieties: an individual can exercise, perform strenuous labor, take a ride 

into space, or sit at a desk for prolonged periods each day.  Through any of these changes, 

the body’s mechanical need for bone will change substantially. 

Many studies have investigated bone’s adaptation to mechanical loading, but few 

studies have been able to control the amount of loading on bone with a high degree of 

certainty.  One of the more direct approaches to controlling bone loading is enforced 

unloading: in humans, this concept requires bed rest studies, which can be costly and 

time-consuming.  Animal unloading studies are faster and less expensive to execute, but 

carry a degree of uncertainty because animals cannot be made to cooperate on the same 

level as a human subject could.  Thus, the exercises typically applied to animal studies 

are less accurately controlled or recorded.  This work seeks to reduce the uncertainty 

inherent in animal models by finding a relationship between an easily measurable metric 

of muscular exertion (force, torque, etc.) and a more difficultly acquired metric of bone 

loading (bone strain). 

Previous studies by Jay Jeffrey and Brent Vyvial measured ankle torque and tibial 

strain in rats during electric muscle stimulation (EMS)2,3.  While their approaches were 

elegant and their accomplishments notable, previous approaches have relied on data 

collected from multiple sources on multiple computers.  There was no definitive way for 

past students to synchronize those data temporally, leading to an uncertainty in their  

 

 

 This thesis follows the style of the Journal of Bone & Joint Surgery. 



  2 

results.  Furthermore, previous work was technologically limited to strain data collected 

via uniaxial gages. 

This study uses rosette gages and simultaneous recording techniques to not only 

quantify the strain environment more fully, but also temporally synchronize those data 

with ankle torque measurements.  These results work to extend our understanding of the 

strain environment on bone during electric muscle stimulation.   

 

Objectives 
This study investigated the strain environment of the rodent tibia during EMS and 

related the measurements to both axial location and output ankle torque.  Two main 

points were investigated: (1) Can the strain gradient be described along the axis of the 

tibia, and (2) Can these data be used more generally to describe the bone strains resulting 

from EMS in previous and future studies?   These questions, expanded below, seek to 

identify the global applicability of strain measurements from EMS and elucidate the 

relationships between torque and strain on a spectral level: 

1. What is the local strain environment on the surface of the tibia during EMS? 

2. How does that environment change along the axis of the bone? 

3. As the strain on the bone during EMS is a result of muscular contraction, can the 

strain be correlated with measures of muscular output (torque produced at the 

ankle)? 

4. Can a generalized transfer function be found between ankle torque and tibial 

strain? 

5. What kind of relationship(s) do the following parameters have on the torque-

strain interaction: 

a. Location of strain measurement 

b. Orientation of a “uniaxial” strain gage 

  

At the conclusion of the discussion outlined above, one more question may 

become apparent: How large would a study need to be, in terms of animals, time, and 

scope, to resolve the torque-strain relationship to high levels of both statistical 

significance and power? 
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BACKGROUND 
 

Engineering Basics: Stress and Strain 
In engineering, stress and strain are terms used to describe the states of loading 

and deflection that a material may bear.  These two concepts are related by a variety of 

constitutive relationships, such as the elastic modulus (ratio of stress to strain) and other 

constants such as the Poisson’s ratio (a measure of volumetric conservation). 

Stress is defined as pressure, or force per unit area4.  An example of the units of 

stress is the Pascal (Pa), which is listed as a Newton per square meter (N/m2).  For the 

remainder of this thesis, stress will serve little purpose, as the modulus of bone is not 

universally defined for all locations or all animals. 

Unlike stress, strain can be directly measured using strain gages affixed to the 

surface of an object of interest.  Mathematically, strain is the change in length of a sample 

divided by its original length, and is thus unitless.  The most basic equation for finding 

strain is given below, and is known as simple strain. 

 0

0 0

l l l
l l

ε − ∆
= =  (1) 

Simple strain is valid for small deflections5, as long as we can safely assume that 

the variations in shape are small enough that changes in volume do not affect 

measurements of length.   

One method of directly measuring surface strains is via the application of a strain 

gage.  A simple strain gage can measure deflections in one direction only, and is 

commonly known as a uniaxial strain gage.  Combining several uniaxial gages, each 

aligned to a different angle, can allow engineers to calculate strains in any direction on 

the surface of interest.  An example of such a configuration is listed in Figure 1: 

 

  
Figure 1: Example Rosette  
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  Knowing the strains recorded from three uniaxial gages (a configuration 

commonly known as a rosette gage) can permit us to calculate the maximum (principal) 

strains, and their directions of action.  The formulae to calculate strains in a specific 

coordinate system (aligned to the gages) are listed below4. 

 

1 cos(2 ) 1 cos(2 )
sin(2 )

2 2

1 cos(2 2 ) 1 cos(2 2 )
sin(2 2 )

2 2

1 cos(2 2 2 ) 1 cos(2 2 2 )
sin(2 2 2 )

2 2

a x

b y

c xy

α α
α

α β α β
α β

α β γ α β γ
α β γ

ε ε

ε ε

ε τ

+ −

+ + − +
= +

+ + + − + +
+ +

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥
⎣ ⎦

 (2) 

For 0°-45°-90° Degree rosettes, the above equation simplifies to: 

 
1 0 0

1/ 2 1 / 2 1
1/ 2 1 / 2 1

x

y

xy

a

b

c

ε

ε

τ

ε

ε

ε

=

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (3) 

This system of equations does not directly allow us to calculate principal strains, 

but rather it allows us to calculate the conversion to strains measured in a specific 

coordinate system.  The equations above simplify to: 

 _ _; ;
2

a c
x a y c xy b

ε εε ε ε ε τ ε +
= = = −  (4) 

Once we have those data, we can determine principal strains using an 

implementation of Mohr’s Circle: 

  
Figure 2: Mohr’s Circle 
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From Figure 2, we can see that the maximum normal strains will exist when the 

shear strains have been eliminated.  Based on that requirement, we can derive formulae to 

find principal strains (�1,2): 

 
2

2 2 2 ;
2

_x y
xy xyR

ε ε
ε τ τ

−⎛ ⎞
= ∆ + = + ∴⎜ ⎟

⎝ ⎠
 (5) 

 
2

2
1,2 ;

2 2
x y x y

avg xyR
ε ε ε ε

ε ε τ
+ −⎛ ⎞ ⎛ ⎞

= ± = ± +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6) 

The angle the rosette makes to the direction of principal strain can be found using: 

 
21 arctan

2
xy

P
x y

τ
θ

ε ε
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (7) 

Equations (6) and (7) will be useful later, when we begin investigating the 

directions of the principal strains of our in vivo loading system. 

 

Classical Experiments in Bone Adaptation 
In the 1970’s and 1980’s, several groups of researchers were investigating strain 

as a stimulus to bone formation.  Of the many studies conducted, one of the more notable 

papers was an overloading study by Goodship et al.6.  Here, the researchers removed 

ulnae from pigs and allowed the radii to functionally adapt for several months.  They 

recorded bone strains from control and ostectomized groups, at time points immediately 

after surgery and 3 months later.  From these results, Goodship found that the radii in 

question had adaptively modeled in the wake of an approximately 2-fold overstrain on 

the lone weight-bearing bone.  At the conclusion of the study, the researches found that 

strains recorded on the adapted radii were statistically no different from contralateral 

controls, suggesting that the bones had ‘sought’ a particular level of strain, and adapted to 

achieve that level of loading.  In their weight-matched, normally-loaded radii, Goodship 

found that average strains were approximately 800µε.  These results suggest that bone in 

the porcine radius is sensitive to appositional modeling influences above the 800ME 

level. 
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Another study by Qin et al.7 showed that artificial loading on turkey ulnae 

promotes adaptive modeling via a non-linear relationship.  A schematic of their loading 

regime is shown in Figure 3: 

  
Figure 3: Schematic of Turkey Ulnae Loader (Adapted from Qin7) 

 
 

After the ulnae were isolated from loading in the wing by surgically severing both 

ends of the ulna and capping them off, various loading regimens were applied via pins 

inserted into the isolated bones.  As the cycle count of low-magnitude strains increased, 

the researchers found bone outcomes similar to those from high-strain, low cycle count 

loading regimes.  Their results are best shown graphically, as in Figure 4: 

 

  
Figure 4: Qin & Rubin’s Intensity-Cycle Count findings for Bone Maintenance (Adapted from Qin7) 
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The studies used to produce the above graph were performed over a period of 

several years, and account for several loading regimes on different animal models.  These 

researchers took results from previous work, calculated cycle counts and plotted those 

counts versus the loading intensity effective for maintenance of bone mass.  In this way, 

the researchers identified a cycle count and intensity threshold for bone maintenance.  

Although their conclusions have been recently challenged, the quantified results they 

obtained are inarguable.   

A parallel study by Rubin and Lanyon8 identified strain rate as a controlling 

influence on adaptive modeling.  In their paper, the authors provided axial compression 

of the ulnae via external loading, as diagrammed in Figure 5: 

 

  
Figure 5: The Rubin – Lanyon Ulna Loader (Adapted from Rubin-Lanyon8) 

 
 

With the above diagrammed loader, the researchers were able to load the bones of 

interest with varying strain rates.  The strain rates they had used were calculated from 

calibration animals at the onset of the study.   Figure 6 shows their targeted strain 

waveforms: 
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Figure 6: Rubin & Lanyon’s Strain Rate Sample Groups (Adapted from Rubin-Lanyon8) 

 
 

 

At the conclusion of their study, Rubin and Lanyon found that strain rate and 

periosteal apposition rate were well correlated, even without experimental changes in 

strain magnitude.  Hence, the most osteogenic loading paradigms were those generating 

higher strain rates.   

More recent work has found that fluid shear stress on bone cells initiates 

remodeling, with work by Bacabac9,10 showing that fluid shear stress initiates signaling 

pathways in osteocytes.  These papers found that fluid shear stress recruits osteocytes to 

begin signaling for remodeling.  Additionally, they also suggest that initial ‘kicks’ of 

shear stress amplify the cells’ sensitivity to additional shear stress.  These results are 

important, as we know that bone is filled with tiny channels called canaliculi1.  As a bone 

is stressed, or subjected to strains, the fluid in the canaliculi will flow within the channels 

to reach pressure-driven equilibrium.  As the period of the strain increases, the amount of 

strain required to produce a certain amount of fluid flow would be much higher than with 

shorter-period waveforms.  This relationship should exist only to the point where the 

pressures oscillate so quickly that the viscosity of the fluid overcomes the driving forces, 

and the fluid flow is arrested.  This phenomenon is called flow choking, and would seem 

to predict a plateau effect of loading frequency on modeling rate. 
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Whether this plateau effect actually occurs is unknown, and is outside the scope 

of this thesis.  In contrast, some recent work on rest-inserted loading has shown that 

osteocytes may have a sort of latency period between effective stimuli.  These papers 

have demonstrated that remodeling signaling is enhanced by allowing each cell to come 

to equilibrium before stimulating then again.  In 2004, LaMothe and Zernicke11 published 

an analysis of high-frequency, moderately high magnitude strains applied to mice, with 

and without rest inserted.  Their rest-insertion paradigm is illustrated in Figure 7: 

  
Figure 7: Lamothe’s Rest Insertion Paradigm (Adapted from LaMothe11) 

 
 

Their results indicate that, in their loading paradigm, a 9.1% duty cycle for high 

frequency loading is sufficient to cause an osteogenic response that is at least as potent as 

continuous loading, if not more so.  Their study relies heavily on Qin’s results, discussed 

above, and made little mention of strain rate as a possible mechanotransduction 

mechanism.  Additionally, this paper discusses using Fourier transforms to identify 

power spectra of strain waveforms.  While it is not the first work to do so, their approach 

is worthy to note: they identified side-lobes from their loading scheme, but failed to offer 

that technique the scrutiny that it deserves.  Specifically, those researchers saw secondary 

frequencies in the signal after Fourier processing and concluded that those frequencies 

were significant.  In truth, the frequencies identified in this study did not actually exist, 

and instead were a result of a limitation inherent in Fourier analysis. 

Other papers that investigated rest-inserted loading have been focused on mouse 

bones, as in Srinivasan’s paper from 200712.  Here, the researchers found that rest 
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insertion at high levels of strain amplified osteogenic responses, but at an overall strain 

magnitude that is typically considered to be quite high (average of 1250µε). 

Collectively, these papers seem to indicate that periods of brief, high-rate loading 

interspersed with periods of brief rest would be more effective at stimulating periosteal 

apposition than constant loading paradigms.  To this end, a recent study by Alcorn13 has 

demonstrated that electrically stimulated muscle contractions can be effective at reducing 

or eliminating disuse osteopenia caused by Hindlimb Unloading (HU) in rats.  These 

studies utilized EMS to load rat tibiae in-vivo during HU, in a set-rest exercise pattern.  

Four sets of five contractions each were spaced out by several minutes.  In this manner, 

the researchers used their stimulus-rest paradigm to minimize, or even reverse, disuse 

osteopenia with as little as 20 minutes a day, three days a week. 

 

Strain Gage Technology 
The study on which this thesis is based used miniature strain gages to measure the 

strain fields on rodents’ bones.  Strain gages are highly sensitive instruments that change 

resistance when deformed.  Thus, the relative deformation (strain) of a bone is measured 

via changes in resistance of an attached strain gage.   

The circuitry that allows us to accurately measure unknown resistances is 

frequently called a Wheatstone bridge14 in Figure 8, below.   

 

  
Figure 8: Wheatstone Bridge Configuration 
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In a Wheatstone bridge, parallel paths, of two resistors each, are connected to the 

same input and output signals.  On one of the parallel paths, a resistor is replaced by a 

strain gage, whose base resistance is known.  The values of the other three resistors are 

carefully adjusted, until the voltage between the mid-points of the parallel circuits reads 

zero.  Then, knowing the relative values of the three known resistances allows us to 

calculate the value of the unknown resistor by measuring the voltage across the mid-

points.  The equations required to calculate these resistances are shown below: 

 2

1 2 3

x
G

x

R ER EV
R R R R

= −
+ +

 (8) 

This expression can be solved for Rx, yielding: 

 2 3 2 3 1 3

1 2 1

g g
x

g g

ER R V R R V R R
R

V R V R ER
− −

=
+ +

 (9) 

Furthermore, by assuming a specialized case where R1=R2=R3, we find that: 

 ( )
( ) 1,2,3

2
2

G
x

G

E V
R R

V E
−

=
+

 (10) 

If we define α to be the ratio Vg/E, the resulting equation simplifies further.  This 

new relationship is shown graphically in Figure 9, which is only valid for [-½ < α < ½], 

and has a vertical asymptote at α= -½.   
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Strain Gage Calibration Chart (Specialized Case)
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Figure 9: Sample Strain Gage Calibration Chart 

 
 

Primer on Digital Signal Processing 
This thesis uses analysis techniques originally derived to be used in electrical 

engineering to determine ex-temporal relationships between related signals.  Specifically, 

repetitive signals that have a causal relationship between them can be related with a tool 

known as a Transfer Function (TF).  Transfer function derivation will be covered below, 

but for now it may be said that a transfer function can describe the variation between two 

signals. 

From signal theory, we know that any repeating signal can be approximated by a 

sum of sine waves, each at a different frequency15.  The example below demonstrates 

how sine waves can be used to represent a distinctly non-sinusoidal signal.  In Figure 10, 

we can see that the first harmonic of a square wave is simply a sine wave.  As the 

harmonics begin to add, the sum-of-sines wave begins to approximate the square wave 

with ever-increasing precision. 
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Figure 10: Sine Wave Approximation of a Square Wave 

 
 

In signal processing, almost all operations are based on the Fourier Transform 

(FT).  The Fourier transform is based on the above-mentioned theory, and uses the 

following equation to convert a measured signal into frequency components16.   

 ( ) ( ) i tF x t e ωω
∞

−

−∞

= ∫  (11) 

This equation must be repeated separately for each frequency of interest, leading 

to a long series of numeric calculations.  The Fourier transform does have limitations, 

which were alluded to in Figure 10.  The more complex a signal, the more frequencies are 

needed to fully explain its fluctuations.  Certain aspects of a signal, such as vertical jumps 

or vertical discontinuities, cannot be modeled with 100% accuracy in a continuous time 

system15 because sine waves cannot have an infinite slope.  This limitation is handily 

avoided when we sample a continuous signal for data storage and manipulation: a 

computer can only record discrete time points along a continuous signal, meaning it 

cannot ever record an infinite slope.  All that is left is to convert the time-based Fourier 

transform formula to a sample-based transform, and run the signals of interest through the 

transformation.  An equation showing the discrete Fourier transform is given below16: 
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 ( ) ( ) i nF x n e ωω
∞

−

−∞

=∑  (12) 

 

The above equation, for a sample set containing N points, will require N2 numeric 

calculations17.  For large N, this number of calculations becomes extremely large, thus 

direct Fourier transforms are unrealistic to use.  In practice, a Fast Fourier Transform18 

(FFT) can be used, whereby a sample of N points only requires Nlog2N numeric 

calculations.  For N=1000, the FFT requires less than 1% of the calculations required by 

the direct Fourier transform. 

Mathematically, it takes two points to describe a sine wave, meaning that 1000 

samples can yield half as many frequencies, or harmonics15.  The root frequency (1st 

harmonic) of a signal is equal to the inverse of its temporal duration, meaning that a 1-

second signal can record frequencies no lower than 1Hz and a 3-second signal can record 

frequencies no lower than 1/3Hz.  This phenomenon is purely mathematical; care should 

be taken to note that signals may, in actuality, represent more frequency information than 

can be mathematically calculated.  It is also worth noting that the FFT of a signal 

explains the location of every point in the signal, meaning that all information that was 

captured can be represented, but there may be errors of ±9% between the points in the 

signal15. 

The results from an FFT are typically displayed in order of increasing frequency, 

meaning that for a relatively low frequency signal, the majority of the signal can be 

neatly approximated by the first few entries in the FFT results table.  The remainder of 

the FFT can be thought of as completing the signal; each additional entry in the FFT 

corresponds to two extra points ‘matched’ in the original signal. 

Care should be taken, here, to elucidate the difference between sampling 

frequency and signal frequency.  In the square-wave example from above, the wave is 

made up of various points, equally spaced out at a specified sampling frequency.  In 

contrast, the duration of the square wave determines the signal frequency.  For example, a 

10Hz signal is a data recording that captured information 10 times per second.  If that 

capture process was continued for 2 seconds, we would have recorded 20 samples.  The 

root signal frequency in the FFT would be ½Hz, and the sampling frequency would be 
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10Hz.  Since it takes two points to describe each sine wave, we would be able to describe 

ten (10) sine waves, starting at ½Hz and increasing up to 5Hz.    

Now that we have covered the basic rules of signal processing, we can investigate 

the mathematics behind transfer function calculations.  Equation 12 shows that the FFT 

of a signal is defined as17: 

 ( ) ( ) i nF x n e ωω
∞

−

−∞

=∑  

The FFT can supply more information than just magnitude and phase angle of 

constitutive sine waves; it can quantify power levels in each frequency band.  If used for 

this purpose, the result is known as a Power Spectral Density (PSD) plot, and represents 

information from one signal only.  To calculate transfer functions, we require a Cross-

Spectral Density (XSD) function that is capable of representing frequency contributions 

from two signals.  The XSD function can be found by taking the cross correlation of two 

signals, and then the FFT of the result.  Taking auto spectra and cross spectra for two 

signals gives us the following relations15: 

 2( ) i
xx xxS R e dπ ωττ τ

∞
−

−∞

= ∫  (13) 

 2( ) i
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∞
−

−∞
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 2( ) ( ) ( )yy xxS H Sω ω ω=  (15) 

 ( ) ( ) ( )xy xxS H Sω ω ω=  (16) 

 

In the equations above, Sxx represents the auto-spectra, Sxy represents the cross-

spectra, Rxx is the auto-correlation, and Rxy is the cross-correlation of the signals.  

Equations 15 and 16 are the primary goal of this thesis: the function H(�) is the transfer 

function between two signals.  

In practice, this approach has several limitations: Primarily, the signals should 

have exactly the same number of points.  Secondly, for the computed TF to be of any 

relevance, the signals must be sampled at the same sampling frequency, and the signals 

must be removed of any vertical bias (DC Offset).  Once these limitations have been met, 
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we can investigate the results with the confidence that our approach is mathematically 

valid.  

 

Advanced Signal Processing Techniques 
Computing transfer functions from raw input signals can sometimes yield useful 

results, but more frequently, one is forced to use some advanced tools to make the signals 

more suitable for transfer function analysis.  The tools used in this thesis are, in order of 

importance: digital filtering (noise removal), windowing functions (error reduction), and 

FFT smoothing filters. 

Digital filtering is a technique used to eliminate the sometimes-potent electrical 

interference given off by almost all electronic equipment.  Primarily, this filtering is done 

to remove 60Hz line-voltage noise. This noise is given off by everything plugged into the 

mains, and even by the wires imbedded in the walls.  In this thesis’ application, the 60Hz 

noise only appears in the strain measurements.  Failing to remove the noise before 

computing transfer functions would result in the results being skewed artificially.  It 

would appear as though the bones were amplifying 60Hz input energy, a condition that is 

fairly unlikely to occur.  Digital filter design is complicated19, and does not merit 

substantial discussion here; suffice to say, higher-order filters are more complicated to 

produce and are much more computationally intensive to execute, but yield ‘cleaner’ 

results.  Figure 11 shows a typical low-pass digital filter: 
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Figure 11: Typical Low Pass Filter 

 
 
 

It should be noted, as well, that digital filters inadvertently affect amplitudes of 

frequencies that are not targeted.  Consequently, it is advisable to filter both the input and 

output signals.  Even though the input signals do not need filtering, the exact same phase 

and magnitude changes would be applied, leading to a more accurate transfer function 

result. 

Windowing functions are signal conditioning curves designed to reduce end-to-

end discontinuities in an input signal15.  Recall that step (vertical) discontinuities in a 

signal require high-order frequency spectra to properly approximate them.  In order to 

eliminate the error associated with these discontinuities, the ends of a signal are ‘pinched’ 

to zero before a FFT is processed.  In this way, the beginning and end of a signal are 

equal (at zero) and there is no error associated with the possible discontinuity.  

Windowing functions have unique FFT fingerprints.  Like the filtering, both input and 

output signals should be windowed to eliminate introduced bias20.  
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There are several windowing functions available for use15, such as Hamming, 

Hanning, Kaiser, Flat Top, and Kaiser-Bessel Derived (KBD).  Most of these are sine-

derived window functions, with the exception of Flat Top and KBD windows.  The Flat 

Top is a Sinc waveform, and the KBD is a Bessel function-derived wide window useful 

for minimizing the effect of the windowing function on magnitudes of the input signals.   

A typical KBD window is shown in Figure 12: 

 

 

 
Figure 12: Typical KBD Window 

 
 

 

Once signals are filtered, windowed, and the transfer function produced, the raw 

TF needs to be smoothed somewhat, before statistics can be run.  Moving average filters 

are ideal in this case, as they smooth signals without adding much amplitude bias.  Their 

sole purpose is to make wild fluctuations in the FFT more manageable and highlight 

trends within the spectra.   

After smoothing, we need to average transfer functions from multiple pairs of 

data to eliminate subtle variations that each signal pair may contain.  To get a measure of 

how good this averaged transfer function is, the coherence function (γ2) value at each 
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frequency will be found.  The equation to find coherence is given in numerous texts15, 

and after simplification with Equations 15 and 16, is listed below: 

 
( )
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2
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( )
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H

ω
γ ω

ω
=
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 (17) 

Equation 17, above, is the spectral equivalent to the R2 value in time-based linear 

regression models.  After finding coherence, the final discussion required in signal 

processing is a quantification of how error-free a transfer function approximation might 

be.  As transfer functions are compiled together, their average fails to correctly 

approximate individual relationships.  To examine the effect averaging has on spectral 

estimations, we turn to error estimation.  A good formula for Normalized Random Error 

while estimating spectral content Sxx is15: 

 1

d

E
n

=  (18) 

In the above equation, nd is the number of transfer functions averaged together to 

find the ‘current’ spectral estimation.  For many of the results in this thesis, E will have a 

value of roughly .19.   

 
 



  20 

METHODS 
 

Experimental Design 
Eight (8) male Sprague-Dawley rats, aged 5 months, were housed singly and fed 

ad-libitum.  After acclimatization, each animal was anesthetized, and prepared for the 

surgical procedure.  The surgical procedure, outlined in Texas A&M Animal Use 

Protocol (AUP) #2007-24, is given below: 

After anesthetizing each animal with isoflurane, rats were removed of hair above 

the left tibia and femur.  Betadyne surgical scrub and solution were used to prepare each 

animal for incision, while a sterile rosette was tested for calibration.  A 2cm long incision 

was then made above the antero-medial aspect of the left tibia, and soft tissue gently 

scraped away to reveal periosteum-free bone.  A drop of epinephrine was used to assist in 

clotting, and then the bone was dried with sterile Q-tips.  After the bone was dried, the 

gage was removed from its sterilization packaging, and trimmed of excess backing.  

While this trimming procedure does affect the strain transduction properties of the gage21, 

that step was necessary to ensure the gage would be properly attached to the bone 

surface.   

After trimming, each gage was affixed to the bone approximately 12-14mm from 

the proximal tibial metaphysis with a drop of cyanoacrylate glue.  Pressure was 

maintained on the rosette for 90 seconds, after which the rosette gage was firmly attached 

to the bone.  The surface bonding was then given another 2 minutes to cure before the 

animal was strapped into the muscle stimulation unit.  A photograph of an attached strain 

gage is shown in Figure 13: 
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Figure 13: Proper Gage Location on Rat Tibiae 

 
 

 

   After attachment, measurements of gage location and tibial length were made, 

along with length of the animals’ feet.  Animals were then subjected to the prescribed 

muscle stimulation protocol.  Figure 14 shows a schematic of the muscle stimulation 

unit2: 
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Figure 14: Diagram of the Muscle Stimulation Unit 

 
 

 

 In this study, the EMS sessions were originally done with two separate 

contraction groups, consisting of 400ms isometric contractions (contractions with a fixed-

length muscle) and a combined isometric-eccentric contraction (contractions that 

incorporate a lengthening muscle during contraction).  The 400ms contraction duration 

was chosen to provide a waveform that provided distinct and separable loading and 

unloading regions, while minimizing the duration of the stimulus.  The analysis 

investigated these loading and unloading regions separately, and they will be discussed in 

later sections.  The combined isometric-eccentric contraction typically uses 175Hz 

stimulation to provide tetanic contractions in the isometric phase, followed by an 

eccentric foot pedal sweep with concurrent stimulation at approximately 25Hz.  Previous 

studies1 have shown that 20Hz is a minimum stimulation frequency to cause summation 

of individual muscle twitches.   

During muscle stimulation, data were recorded simultaneously in two computers; 

one computer recorded ankle torque (10kHz sampling rate for fixed-duration 1s period) 

while the other recorded strain measurements (5kHz sampling rate, manually controlled 

sampling duration).  To help synchronize the data files, a novel approach was enlisted: a 

strain gage was affixed to the foot pedal of the muscle stimulation system.  In this way, 

we were able to indirectly record the reaction forces on the foot pedal (by the resulting 

strains), and match the waveforms measured in the strain computer with the torque 
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waveforms taken by the torque machine.  Figure 15 shows the location of the strain gage 

on the muscle stimulation foot pedal: 

 
  

 
Figure 15: Strain Gage Location on the Muscle Stimulation Unit 

 
 

Data Synchronization Methods 
After data were recorded, strain data were reduced to ASCII text files, and both 

torque and strain data were transported to the computer lab for analysis.  Custom-written 

MATLAB (The MathWorks, 2008) M-files were employed (Appendix A) to: (1) find 

peak-to-peak strains for the tibiae, (2) make corrections for principal strain directions, (3) 

find synchronization values from each data file pair and visualize the parametric Torque-

Strain plots.   

To find synchronization data for each point-pair, strain from the foot pedal was 

rectified and filtered to remove 60hz noise.  After removing the DC offset of the strain 

trace, pedal strain was normalized by peak strain, to produce a signal of unit amplitude.  

The same technique was applied to the torque recordings so that the signals could be 

compared with maximum certainty, but with one additional operation: since the torque 

data were recorded at twice the sampling rate, they had to be decimated (resampled) to 

match the sampling frequency of the strain recordings.  The traces were then shifted in 



  24 

time with respect to one another, and the sum of the differences between the signals was 

computed.  The formulae to accomplish this sliding summation are listed below, where 

L� and L� represent the lengths of torque and strain recordings, respectively: 

 
0

_( ) ( ) ( ) ; )_ 0 (
L

j

D i i j j i L L
τ

ε τε τ
=

= + − ≤ ≤ −∑  (19) 

Once this sliding summation had been accomplished, the function D could be 

analyzed for local and absolute minima.  The absolute minimum value of D represents 

the maximum agreement of the torque and pedal strain recordings.  Figure 16, below, 

shows a typical “D” curve: 

 

 

 
Figure 16: Typical “D” Curve 

 
 
 

 

From these data, the minimum of D was found.  The location in D of the 

minimum represents the offset, or time-shift, between the torque and pedal strains.  After 

locating the minimum, the index value of the minimum of D was recorded in a 

spreadsheet for later analysis. 
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At this point, it is worth noting that mathematical minimization of whole-signal 

differences is not the only means to synchronize data.  By isolating various components 

of the torque curve, we can match rising slopes, falling slopes, curve ‘toes,’ or any other 

identifiable features that both signals share.  The axial strain trace was then synchronized 

using the above-described methods, for contrast.  These alternative analyses were 

computed, and results are listed in greater detail in the results section below.  

Additionally, after finding the minima of D, the offset values could be used in creating 

parametric torque-strain curves. 

 

Rosette Data Analysis 
While our strain recording capacity was limited to three channels, we were able to 

collect ‘full’ rosette data by sacrificing data collection on the foot pedal for a small 

percentage of strain recordings.  As mentioned previously, finding the directions and 

magnitudes of principal strains requires three single-element rosettes aligned in a known 

geometry.  From Equations 6 and 7, we can determine the magnitude and orientation of 

peak strains on the tibiae.  In practice, the strain data tends to ‘float’ away from zero 

during a muscle stimulation session, so data needed to be post-processed to determine 

principal strain data from the reduced strain data.  The procedure for post-processing is 

listed below, with a full flowchart listed in  Appendix A: 

1. From the raw strain data, the muscle stimulation event is identified. 

2. For each of the three strain traces, the stimulation event is filtered and 

zeroed in a custom-written MATLAB program (DATMeT, Scott Bouse) 

designed to maintain temporal relationships between many input signals. 

3. For the newly processed data, principal strain magnitude and angles were 

calculated, and the results plotted alongside the axial strain trace. 

4. Angle traces were then analyzed for strain angle at peak principal strain.  

5. Those results were reported to a spreadsheet, and are summarized in 

Results. 
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Spectral Analysis 
For spectral analysis, data were imported into DADiSP (DSP Development 

Corporation, 2002), a signal processing suite with advanced capabilities.  This step was 

taken to ensure that coding errors could not introduce inconsistencies into the spectral 

data.  The full pseudo-code for spectral analysis is listed in Appendix A, but a short list of 

the actions taken is given below: 

1. Import Data 

2. Filter, Demean Data 

3. Compute Transfer Functions 

a. Report to spreadsheet 

4. Calculate average Transfer Function 

a. Report to spreadsheet 

b. Normalize by High-Frequency Average 

5. Compute Coherence Functions 

a. Report to spreadsheet 

It is worthy to note that the delay function �(t-to) has a spectral equivalent equal 

to the complex exponential waveform (e-jwt).  In other words, spectral analysis does not 

fully escape the need for data synchronization.  Figure 17 shows the delta function in 

both time and frequency space: 

 
 

 
Figure 17: Time and Frequency Equivalent Signals 
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To address the need for data synchronization, we used the synchronization values 

previously tabulated to minimize the effect of mathematical delay.  After applying 

appropriate data conditioning steps, we outputted the data to spreadsheet for further 

analysis. 

 

Statistics 
The statistics used in this thesis are based on the Analysis of Variance (ANOVA) 

algorithm, the student t-test (T-test), and linear regression statistics.  Specifically, 

measures of signal amplification and delay calculations will be weighed for significance 

using pairwise t-tests, while parametric plots use linear regression methods to acquire 

linearized relationships between input and output.  A good reference for those algorithms 

is Applied Statistics for Engineers and Scientists22.   
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RESULTS / DISCUSSION 
 

Synchronization 
After the strain data were collected, synchronizing the torque and strain data 

became the next step in the analysis.  Figure 18, below, shows the results of a typical set 

of synchronization curves, and the resulting offset values that they produce.   

 
 

 
Figure 18:  Effects of Different Synchronization Subroutines on the Alignment of Torque and Strain 

Curves.  The ordinates of these graphs are in samples, and the abscissas are in normalized amplitude.  
The top row demonstrates variations on foot pedal strain synchronization, while the bottom row 

demonstrates variations on tibial strain synchronization 
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The global results of the above procedures are outlined in Table I, below: 

 

 
Table I. Results of Synchronization Routines 

Delay Values compared to The 
Pedal Strain Total Signal 
Optimization (baseline) Samples  ±SE Seconds (±SE) 

Pedal Strain Toe 3.96± .28 0.001±(5.5E-5) 

Pedal Strain Rising Slope -32.58±  .28 -0.01±(5.5E-5) 

Tibial Strain Total Signal 
Optimization (Jeffrey 2006) 158.71± 1.21 0.03±(2.4E-4) 

Tibial Strain Toe 127.65 ±  2.59 0.03±(5.2E-4) 

Tibial Strain Rising Edge 108.54±  1.80  0.02±(3.6E-4) 

*The Samples column is a count of the amount of time (in sample count) that the synchronization routine 
altered the relationship between input and output signals.   Seconds represents the number of seconds 

corresponding to 1/5000 of Samples. 
 

 

Linear regressions between pedal strain toe synchronization and tibial strain toe 

synchronization show that tibial strain values lead (precede) torque values by 

approximately 0.025s.  These results indicate that a standardized delay may be used to 

concretely determine torque vs. strain offset delays.  Moreover, these data suggest that 

strain in the tibia occurs before torque production at the ankle.  This result can be 

logically justified because a muscular contraction must act on bone before it can produce 

motion.   Complete results of all statistical analyses are shown in Appendix B.   

Based on the offset values calculated in the previous paragraphs, we can produce 

parametric torque-strain plots, similar to those produced by Jeffrey (2006).  Figure 19 

shows the same torque and strain data as above, but at different synchronization values: 
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Figure 19: Parametric Plots of Torque vs. Strain for Different Synchronization Values 

 
 

 

The figure above demonstrates how crucial proper synchronization is to analyzing 

parametric plots of torque and strain.  Small differences in synchronization can alter 

linear-model calibration parameters substantially. Table II shows the average differences 

in linear regression calibration parameters due to choice of synchronization routine: 
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Table II. Linear-Model Calibration Coefficients for Various Synchronization Protocols 

Strain Trace 
Used 

Synchronization Method 
Used 

Average Stiffness by 
Linear Regression 

(µε/Nm) ± SE 

Average R2 of 
Regression 

Whole Curve Matching 2408.7 ± 240.9 µε/Nm 0.71 
Curve Toe Matching 2378.3 ± 239.3 µε/Nm 0.73 Pedal Strain 

Rising Slope Matching 2548.8 ± 254.3 µε/Nm 0.64 
Whole Curve Matching 2048.8 ± 202.3 µε/Nm 0.93 

Curve Toe Matching 2087.0 ± 203.5 µε/Nm 0.90 Tibial Strain 
Rising Slope Matching 2066.9 ± 202.1 µε/Nm 0.92 

 

 

 

In Table II, we see that the stiffness values are generally higher in the P-sync 

curves than in the T-sync curves, but with a detriment to regression R-values.  This shift 

corresponds to higher levels of strain at the initial phases of torque production (strain 

leads torque in time).  The differences will be accounted for in later sections of this text. 

 

Discussion of Synchronization Results 
The synchronization values, listed in Table II, found by matching whole torque 

and whole pedal strain signals were not substantially significantly different from those 

found matching the toe curves.  This result allows the (faster) curve toe synchronization 

to be used in place of the more mathematically-rigorous full-signal synchronization. 

After inspecting the parametric torque-strain curves produced by the various 

synchronization routines (Appendix C), it becomes clear that the tibial strain curve toe is 

the more repeatable method of the three to synchronize those data with Torque 

recordings.  Subjectively, the parametric curves produced by the T-Sync algorithm cross 

with much less frequency than either the area minimization or the rising edge algorithms.  

Since these data are the most repeatable of the three methods used, they were chosen for 

use in the remainder of the study.  It is a happy coincidence, then, that the preferred 

methods of synchronization were toe matching for both the Pedal strain and Tibial strain 

traces, and it lends an appreciable level of symmetry to this study.  For the remainder of 

this thesis, comparisons will be run between synchronizations based on the toes of either 

the tibial strain (T-Sync) or the pedal strain (P-Sync).   
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These results bring up an interesting point: an experimenter must be careful not to 

create results via his/her analysis system.  Certain synchronizations produce more 

variability in linear parameters than others, and can alter statistics calculations as well.  

This limitation is a primary reason why this thesis is focused more on transfer function 

analysis than on parametric plots. 

 

 Results of Rosette Strain Analysis 
One of the most basic, but intriguing, findings from this thesis has been that 

recorded strains on the metaphyses of rat tibiae are tensile during muscle stimulation.  

The majority of strain recordings taken for this thesis show tensile strain recordings.  This 

observation is backed by binomial probability distribution (Appendix B). 

The primary reason for enduring the additional cost and complication of using 

rosette gages on rat tibiae was to determine principal strains and principal directions.  

Following that prompt, the value of maximum principal strain was calculated for each 

animal that received a rosette gage, then the axial measurements were normalized by their 

corresponding maximum principal strains.  These results are best shown in Figure 20: 



  33 

 

Percent of Max Principal Strain accounted for by Axial Strain
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Figure 20: Percent of Max Principal Strain Accounted for by Axial Strain 

 
 

 

These data do not fit a linear trend.  Variations in gage placement across the width 

of the antero-medial aspect are likely to blame for these results.  Unfortunately, these 

bones were not preserved, so there is no way to determine whether cross-axial location 

had a substantial impact on the gage readings shown above.   

In order to accurately measure the results from this thesis against that of previous 

work, I present an illustration of peak torque to peak strain ratios.  These correlations 

were also performed in theses by both Vyvial and Jeffrey and are mirrored here for 

reference by interested readers (Figure 21). The main difference between the preceding 

work and this thesis’ results is that principal strains were chosen to represent strain values 

instead of axial strains.  There are variations in these results, which are likely due to 

differences in surgical technique or individual preference in gage placement.   
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Peak Isometric Torque vs. Peak Principal Strain*
*Calculated from Axial Strain Measurements
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Figure 21: Peak Strain and Peak Torque for Each Animal’s 6-12 Data Points 

 
 

 

These data have a highly variable maximum principal strain, but similar torque 

levels, meaning they do not suggest a universal linear correlation between peak strain and 

peak torque.   

 

Discussion of Rosette Strain Analysis 
The dissonance of the principal strain data in Figure 20 is disheartening.  Initially, 

one would expect that the more advanced technology used would allow us to capture a 

broader picture of unknown phenomena.  The original intent was that by calculating 

principal strains, one could eliminate gage orientation errors.  Then, the principal strains 

would allow a truer correlation between strain and torque.  Unfortunately, this 

expectation is not reality: The results simply do mot support the intentions of this section 

of the study.   
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This author proposes a thought as to why the rosette data (Figure 20) are so 

incongruent.  The tibia is curved along its axis and all muscle groups act on the opposite 

side of the tibia from the gage location23.  From that knowledge, it is easy to understand 

how a complex relationship between exact gage location and principal strain magnitude 

could exist.  Based on that understanding, one might expect to see highly varying strains 

along the width of the tibial metaphysis: The most tensile strains would be expected 

opposite the combined lines of force for the contracting muscles, while the neutral 

bending axis would theoretically exist in zero axial strain.  Since the metaphysis of the rat 

tibia is typically less than 5mm wide, the gage elements used span 16% of the total width.  

The prewired pads accounted for a much larger portion of the total tibia width, and were 

commonly positioned below the gage elements on the bone.  This means that most 

measurements with rosettes were from a point closer to the anterior edge of the tibia than 

previous measurement techniques.  Experimental or procedural error could also account 

for a portion of these findings.  Specifically,  an error in placement of half a gage-width 

would account for about 8-10% of the tibia’s total width  Unfortunately, these tibiae were 

not saved, so post-procedure evaluation is not possible. 

Another possible candidate for these differences is a difference in the adhesion 

between bone and gage.  Although great care was taken to ensure that the gages were 

properly affixed, experimental error is impossible to rule out. 

 

 

Transfer Function Analysis Results 

After finding that curve toe synchronization is the most repeatable method of the 

methods investigated, data files were fed into a DADiSP macro for further processing.  

Simultaneously, transfer functions were computed for both T-Sync and P-Sync offset 

values.  Recall that transfer functions relate frequencies in an ‘input’ signal to those in an 

‘output’ signal.  The curve is a function of frequency, and the amplitude is the ratio of 

strain to torque in that frequency range.  Figure 22 shows a typical 80-Hz representation 

of a transfer function: 
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Typical Transfer Function Curve
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Figure 22: Typical Transfer Function Curve 

 
 

 

  Once obtained, the transfer functions were analyzed for their “high-frequency 

average:” and subsequently normalized by those values.  The high-frequency average is 

equivalent to the “gain” of the system, and represents the general amplification from 

input to output.   The resulting plots look very similar to Figure 22, so an individual plot 

is not repeated below.  Instead, Figure 23 and Figure 24 show accumulated transfer 

function data for T- and P-Sync optimizations, respectively: 
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T-Sync Transfer Functions for 400ms Contractions
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Figure 23: T-Sync Transfer Function Curves;  The Dark Red Line Indicates the Average. 

 

 

 

P-Sync Transfer Functions for 400ms Contractions
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Figure 24: P-Sync Transfer Function Curves;  The Dark Red Line Indicates the Average. 
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It is interesting to note that the above figures show transfer functions calculated 

from the exact same data.  The only differences between them are the synchronization 

routine used to run the calculations.  While these two figures do have some differences, 

they are fairly similar in overall shape.  Their high-frequency components level off to a 

relatively flat value and they have fluctuations in the lower-frequency region.  To better 

illustrate the differences between these transfer function calculations, Figure 25, below, 

illustrates the average (solid dark lines from above) curves for P- and T-Sync 

calculations. 

 

 

 

 

T- vs. P-Sync Average Transfer Functions
 for 400ms Contractions
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Figure 25: P- and T-Sync Average Transfer Functions for 400ms Contractions 

 
 
 

 

The most interesting differences between these functions happen at the lower 

frequencies.  Specifically, the T-Sync transfer functions show a general attenuation of 0-
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25Hz signals while the P-Sync transfer functions show a less substantial attenuation in 

the 25-32Hz band.  The calculated functions show good agreement at higher frequencies, 

which indicates that the gains calculated by the transfer functions are accurate.  The 

lower-frequency variations likely appear because the P-Sync transfer function contains 

the extra “energy” needed to cause the signal delay.  The factual accuracy of that 

statement may be unapparent, so I offer additional explanation.  When dealing with a 

(relatively) low-frequency signal, the majority of the energy exists in the lower 

frequencies.  If all frequencies need the same amount of delay to accommodate a time 

shift, the relative impact of a time shift will be greater where more energy exists.  Since 

the T-sync transfer functions need minimal delay, the impact is seen most acutely in the 

lower bands.  It makes sense that the lower frequency bands of the T-Sync transfer 

functions would have lower amplitudes than in the higher frequency regions.  Figure 26 

shows the results of taking the difference of the two curves in Figure 25, which should 

represent the impact of the delay on the transfer function. 
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Figure 26: Difference between T- and P-Sync Average Transfer Functions 
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The meaning of the figure above will be explained thoroughly in the discussion.  

Table III shows the differences in the H-F averages (gain) of the transfer functions 

alongside the stiffness results obtained in Table III: 

 
Table III. Effects of P- and T- Synchronizations on Transfer Function Gain and Linear 

Stiffness Calculations 

 Transfer Function Gain 
(±S.E.) 

Linear Regression Stiffness 
(±S.E.) 

P-Sync 2300.4 ± 228.0 2378.3 ± 239.3 
T-Sync 2290.8 ± 230.6 2087.0 ± 203.5 

   

The table above shows only the averages of each group.  In Table III (above), 

there are some striking similarities in the results calculated.  Namely, the transfer 

function gain is nearly unfazed by delays between the signals, while the linear regression 

is greatly affected.  The more consistent transfer function method suggests that the P-sync 

optimization is closer to an optimized delay than the T-sync method is.  Figure 27 sheds 

some light on the results in Table III by plotting individual point-pairs, TF gain vs. linear 

regression stiffness: 



  41 

 

Linear Regression Stiffness vs. Transfer Function Gain

y = 1.0445x - 24.504
R2 = 0.9909

y = 0.8804x + 70.024
R2 = 0.9955

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Transfer Function Gain (µε/Nm)

Li
ne

ar
 R

eg
re

ss
io

n 
St

iff
ne

ss
 ( µ

ε/
N

m
)

Tibia Sync Pedal Sync Linear (Pedal Sync) Linear (Tibia Sync)
 

Figure 27: Linear Regression Stiffness Values vs. Transfer Function Gain Values 
 
 
 

 

As you can see from the figure above, the R2 values from the regressions are very 

high (R2 > .99).  This level of correlation affirms that the original signals are similar in 

shape: if the slopes of the strain and torque data were dramatically different, their linear 

regressions would not be cleanly linear.  The fact of the regressions’ good fit with 

transfer function gains serves to reaffirm transfer function analysis as a powerful means 

to explore these signals.  It is also noteworthy that the pedal synchronization routine 

offers better 1-to-1 (slope ≈ 1) correlation between the transfer function gain and the 

linear regression stiffness.  The lack of a perfect 1-to-1 correlation between transfer 

function average and linear regression stiffness leads this author to conclude that the 

synchronization offsets found above somehow bracket the offset value that could offer 

that ‘perfect’ correlation.  To that end, the slopes of the lines in Figure 27, above, were 

used to interpolate (I-Sync) between the offset values found for P- and T-Sync routines.  

Using the found offset values from I-Sync, transfer functions and linear regressions were 
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calculated, and plotted as in Figure 27.  Figure 28 shows those data plotted, with linear 

regression and R2 value parameters identified: 

 

 
 

Transfer Function Gain vs. Linear Regression Stiffness derived from I-
Sync Offsets

y = 0.903x + 14.622
R2 = 0.9974

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Transfer Function Gain (µε/Nm)

St
iff

ne
ss

 ( µ
ε/

N
m

)

 
Figure 28: Transfer Function Gain vs. Linear Regression Stiffness Derived from I-Sync Offsets 

 
 
 

 

As you can see in Figure 28, the slope of that linear regression is not 1.  This 

result suggests that the effect synchronization has on the relationship between transfer 

functions and stiffness is non-linear.  The interpolation (I-sync) method was designed to 

predict a synchronization offset that would allow for a 1-to-1 relationship between 

stiffness and transfer function gain.  Since the linear interpolation model did not ‘find’ 

the 1-to-1 slope, we must conclude that the TF gain/linear stiffness relationship is not 

linearly dependent on offset value. 

As outlined in Methods, axial gage location was recorded for each animal along 

with that animal’s tibial length.  From those measurements, we were able to express 
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locations of the gages both as a fraction of the tibial length and as a distance from the 

epiphysis.  Figure 29, below, shows the results of plotting P-Sync averages vs. gage 

location: 
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Figure 29: P-Sync Transfer Function Averages vs. Gage Location 

 
 

 

As you can see, there is little to be had here in the way of coherent data.  There 

seems to be a general rising trend as gage location moves away from the epiphysis, but 

no significances exist between those data.  The possible sources of variation have been 

listed in the Rosette section, and will be discussed below.   

After calculating the transfer functions from given data, we need a measure of 

how close the average of the functions comes to each individual transfer function.  For 

this question, the coherence function was used (Eq. 17).  The closer the resulting value is 

to one (1), the closer the fit.  Figure 30 shows the results of these calculations: 
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Figure 30: γ2 Values of T- and P-Sync Transfer Function Averages 

 
 
 

 

It is worth noting that the P-Sync data have much higher agreement than the T-

Sync data.  Overall, the averages of both transfer functions describe >85% of the total 

variation in the signals.  Given these results, it may be possible to use these average 

transfer functions to predict the spectral content of strain data from torque recordings.   

The final phase of this thesis investigates the potential use of these average 

transfer functions to predict tibial strain from torque curves.  To accomplish this, the 

Inverse Fourier Transform (IFFT) was used to compute a time-based signal from the 

average transfer function illustrated in Figure 31: 
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Figure 31: IFFT-Derived Time-based Transfer Function 

 
 
 

 

  As multiplication in the frequency domain is equivalent to convolution in the 

time domain, the resultant time-based signal will be convolved with the input (torque) 

and the results compared to the strain curve.  The results of that operation on a single data 

set are shown in Figure 32: 
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Figure 32: Combined Plots of Torque, Strain, and Predicted Strain 

 
 
 

 

As you can see, the time-based signal is inadequate to properly transform the 

torque curve into the strain curve.  A discussion on these findings can be found below. 

 

 

Discussion of Transfer Function Results 
To this author, the most interesting findings from the 400ms contractions are the 

attenuation of the lower-frequency bands in the T-Sync data.  At this time, it warrants a 

reminder that the T-Sync routine is an area minimization between ankle torque’s rising 

edge and tibial strain’s rising edge.  T-Sync is not the same routine that previous 

researchers used in their theses; all previous work into synchronization was done by area 

minimization of the entire torque curve against the strain recording.  The previously used 

method mentioned above was used in this thesis, and can be seen in the lower left corners 
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of Figures 17 and 18.  While these techniques only create an average of 31 samples’ 

difference between start points (0.0062s), the stiffness values obtained from linear 

regression are significantly higher for the (new) T-Sync protocol. 

By comparison, using any means of synchronization to find transfer functions 

between data yields nearly identical results for gain in the transfer function.  While gain 

in a transfer function and linear regression stiffness are not the same thing, Figure 27 

shows that the two measures of curve relation are correlated to over 99% agreement 

regardless of synchronization routine used.  This high level of correlation suggests that 

transfer function gain values are sufficient replacements for synchronization-based linear 

regressions.   

Figure 25 shows T- vs. P-Sync averages for calculated transfer functions.  In that 

figure we see that T-Sync functions average much lower in the 0-25Hz bands than the P-

Sync functions do.  As mentioned above, this difference is likely a ‘lead factor,’ which is 

superimposed onto the more natural T-Sync transfer function.  The result of taking this 

difference is found in Figure 26, and looks very similar to the difference between the 

Fourier transforms of two time-delayed square waves.  Figure 33 shows the results of 

subtracting the Fourier transforms of two square waves from each other.  One of the 

waves was delayed, and one was not: 
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Figure 33: Exemplar Plot of Differences between Two Square Waves in Frequency Space 

 
 
 

 

Note how similar Figure 26 and Figure 33 are: this similarity is fully expected 

given the 400ms contractions’ resemblance to square wave functions.  When we 

instituted a delay in the transfer function, we simply created the difference between the 

two traces in Figure 25.  This finding supports the claim that the equivalence of overall 

transfer function gain values is invariant with temporal delay.  Using transfer functions to 

determine relationships between signals does not fully depend on temporal delay; only 

the lower frequencies are affected by delay. 

The γ2 values calculated in Figure 30 demonstrate that the torque and strain data 

have, at least, a highly repeatable relationship.  The higher degree of agreement in the P-

Sync data is an interesting finding, but unexpected.  There is extra energy required in 

causing a delay in the Fourier transform, and that extra energy serves as a unifying factor 

in the average.  The agreement was an appealing find, but care should be taken here.  The 

T-Sync transfer function is a much more direct calculation, and should be treated as such.  
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If one wanted to calculate gain values, any synchronization method would be acceptable, 

but for linear regression, synchronization is crucial in interpreting the results. 

The final operation presented above was the convolution of the transfer function 

IFFT with the input signal.  The results of that operation were presented in Figure 32, and 

show little success in predicting strain values from transfer function averages.  There are 

several problems interfering with the success of this approach: of them, features of Eq. 15 

and truncation errors in the transfer function are the most problematic.   

In Eq. 15, we see that the direct relationship between two signals is due to the 

square of the magnitude of the transfer function.  This relationship necessarily destroys 

phase information about the transfer function, leading to a transfer function whose 

magnitude is correct, but whose phase information is lost.  Reproducing a curve from 

magnitude sans-phase cannot be properly done.  The direct IFFT of a transfer function 

calculated from Eq. 15 cannot produce the time-based signal as desired.   

Fortunately, the transfer functions are derived from spectral inputs and are valid 

for spectral relationship inferences.  Specifically, the transfer functions show that 

attenuation between torque and strain occurs in the 24-32Hz band.  This may be 

physiological in origin: nerve impulses to muscle occur at roughly 30Hz.  The 

attenuation, or “soft tissue effects” at those frequencies would serve to calm the impulses 

into smooth motion.   

Truncating the transfer function eliminates some of the energy originally 

calculated between the signals.  After truncation, performing an IFFT results in an 

incomplete time-based signal.  Without a doubt, there exists a time-based signal to relate 

torque and strain waveforms via convolution.  Unfortunately, the approach cited in this 

thesis is inadequate to derive that waveform.   

 

 



  50 

CONCLUSIONS AND RECOMMENDATIONS 
 

From the combined plots of Figure 18 and Appendix C, it appears that using the 

toes of the torque and strain curves as synchronization defaults would increase the 

repeatability and accuracy of torque-strain synchronization.  When we compare the 

results from synchronized linear regressions to those from transfer functions, it becomes 

clear that synchronizing pedal strain to ankle torque (P-Sync) may provide a better linear 

regression stiffness value than the synchronization of tibial strain to ankle torque (T-

Sync).  Either synchronization method effectively predicts overall gain with transfer 

functions, meaning the additional complication arising with recording pedal strain is 

unnecessary if using transfer functions.  Future work will need to keep in mind that the 

values found in either transfer function shapes or linear regression stiffness are dependent 

on synchronization, and use the methods that work best for the intended analysis.  Some 

results, like transfer function high-frequency gain, however, do not vary with 

synchronization routine. 

It appears that transfer function gain accurately represents the linear regression 

stiffness values calculated earlier in this work.  Previous work and data collected by other 

researchers has been investigated by the author, but differences in the method and type of 

muscle stimulations make their strain gage recordings unavailable for use. 

At this point, a renewed discussion is merited on the actual meaning of the 

computed transfer function.  There are unavoidable biases in the recording computers for 

both strain and torque, which can have an effect on the shapes of the transfer functions.  

More to the point, it is unwise to assume from these data that the shapes of these transfer 

functions are solely dependent on the reactions of the rodent leg.  The calculated transfer 

functions represent the frequency response of the entire system, which includes the rat 

leg, and both measurement systems.  While the effects of the mechanical systems were 

not investigated here, this author believes that the overall effect is minimal.  Since strain 

predictions are sought from torque waveforms and the recorded torque data already have 

the bias incorporated, the transfer functions automatically correct the biases to accurately 

predict the relationship between recordable torque and recordable strain. 
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The majority of this thesis has focused on 400ms contractions for mathematical 

analysis, despite there never having been a 400ms contraction used in previous work by 

our lab.  The reasons for this contraction length were originally to provide separable 

regions in the strain profile for analysis.  Specifically, loading, holding, and unloading 

regions of each curve were to be evaluated against a generalized linear model for 

viscoelasticity.  This model was intended to provide an effective means of predicting 

strain based on torque production.  In order to properly calculate the relationship, we 

need a causal relationship to exist where our measurable parameter (torque) causes an 

immeasurable parameter (strain).  When it was determined that strain in the tibia leads 

(occurs before) torque production at the ankle, viscoelastic models had to be thrown out 

because no physical system can cause an output that is dependent on future values of 

input (non-causal).  The search for a physical analog model of the ankle had to be 

abandoned temporarily due to time and scope constraints on this work.  A spring-mass-

damper transfer function may be eventually found that will accurately represent the shape 

changes between torque and strain waveforms, but much more work is required before 

accurate predictions of parameters can be accomplished.  Future work in this field may 

focus on the muscle stimulation signal (square wave of electrical current) as the true 

‘input’ of the system and evaluate that input versus the dual outputs of ankle torque and 

tibial strain.  This method of analysis is outside the scope of this thesis and is not shown 

here.  Other work in this vein may experiment with introducing false lag into the strain 

data, or experimenting with a more advanced single input, multiple output system 

(SIMO). 

Introducing artificial lag into the torque-strain system is an accepted method of 

introducing causality into an otherwise non-causal system.  A small tradeoff of that 

method would be that the strain traces acquired would not be temporally relevant to 

torque; in other words, only the shape of the strain curve would be obtainable.  I doubt 

that this tradeoff would be a substantial burden on research, as knowledge of the strain 

environment would still be obtainable without surgery.  This method may be the most 

promising way to relate torque to strain, but will require more research. 

A SIMO system is more mathematically difficult to calculate, but would allow the 

simultaneous relation of stimulation waveforms (electrical shock pattern) to both torque 
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and strain outputs.  From those data, calculating strain environments would only require 

knowledge of the electrical stimulation waveform. 

One of the major disappointments in pursuing this thesis has been the rosette gage 

results.  I expected this section of analysis to be much more detailed and nuanced; 

instead, I found no results.  If the assumptions mentioned above are correct, I believe it 

would take approximately 100 animals to correctly identify the surface strain 

characteristic of the stimulated rat tibia.  The methods would be very refined, and 

multiple animals used at each data point.  This would be an unfeasibly large study that 

cannot promise irrefutable results. 

Another comment I’d like to make is one on the possibility of repeating strain 

gage surgeries.  In the original AUP, a sterile surgery was called for to implant a 1st strain 

gage, with a secondary gage implantation surgery to follow after the rat had healed.  This 

design was meant to maximize the number of readings I could acquire off my allotted 

number of animals.  Upon opening the strain gage site during the second surgery, it was 

noted that the original gage location was clearly obstructed by bony growth at the gage 

site, even after 3 weeks’ healing time.  My next attempt on a new animal was 5 weeks 

after the first operation, with identical results.  Since the gage location targeted for 

attachment had already been used, a new site had to be found.  Strain recordings from 

those two second surgeries were taken, but their results were not reliable, and were not 

included in this thesis. 

Applying a strain gage to the muscle stimulation machine was a first for our lab; 

the synchronization power that strain gage gave us yielded valuable insight into the 

nature of ankle torque and strain interactions in the rat leg.  I had assumed that temporal 

synchronization of torque and tibial strain would allow a greater level of calibration, but 

no predictive measures have come out of this work to date.  Theoretically, taking the 

inverse Fourier transform (IFFT) of a transfer function could yield a time-based signal 

that can span the shape gap between torque and strain.  In reality, the differences in gains 

between different animals and the physical impossibility of the system (non-causality), 

where the expected output occurs before the defined input, makes obtaining that time-

based signal very difficult. 
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This thesis was successful in identifying a more direct means of calculating the 

gains between torque and strain signals, but the specifics of shape changes between those 

signals have yet to be fully quantified.  Overall, the transfer functions derived above 

show a marked improvement in our understanding of the dynamics of muscle 

contraction-induced deformation of the rat tibia.    Frequencies lower than 32Hz are 

typically attenuated by the leg, possibly an artifact of muscular contraction and soft tissue 

interactions with bone. 

A final word about previous research; the Lamothe paper referenced above11 used 

Fourier transforms to investigate frequency responses to bone growth in the leg, but those 

researchers overlooked a particularly sticky point in frequency analysis.   The act of 

inserting spaces in a signal does not change the nature of the signal, but rather the time 

periods over which it acts.  A 30Hz sine wave is a 30Hz sine wave, regardless of how 

long it lasts.  The conclusion that the increased power in low frequencies, even if 

accompanied by higher-frequency waveforms, directly caused additional bony growth is 

incomplete.  A more direct means of interpreting those data would be to consider the rate 

of cellular activation as a function of frequency along with the time period required for 

cellular action9.  The proper combination of rapid cellular activation with sufficient rest 

time to allow those cells to function is the true goal of this and other exercise studies.  

While this study cannot purport to have solved the question of optimized exercise single-

handedly, the frequency-response data presented here can prove valuable to future 

researchers looking to maximize bony response to simulated exercise. 
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APPENDIX A 
PROGRAM FLOWCHARTS FOR DATA ANALYSIS 
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APPENDIX B  
STATISTICAL RESULTS 
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