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ABSTRACT 

 

Composite System Based Multi-Area Reliability Evaluation. 

(December 2009) 

Ramya Nagarajan, B.E., College of Engineering Guindy, Anna University, India 

Chair of Advisory Committee: Dr. Chanan Singh 

 

Currently, major power systems almost invariably operate under interconnected 

conditions to transfer power in a stable and reliable manner. Multi-area reliability 

evaluation has thus become an invaluable tool in the planning and operation of such 

systems. Multi – area reliability evaluation is typically done by considering equivalent 

tie lines between different areas in an integrated power system. It gives approximate 

results for the reliability indices of a power system as it models each of the areas as a 

single node to which are connected the entire area generation and loads. The intra-

transmission lines are only indirectly modeled during the calculation of equivalent tie    

lines’ capacities. This method is very widely used in the power industry, but the 

influence of the various approximations and assumptions, which are incorporated in this 

method, on reliability calculations has not been explored. 

The objective of the research work presented in this thesis is the development of 

a new method called Composite system based multi – area reliability model, which does 

multi – area reliability evaluation considering the whole composite system. It models the 

transmission system in detail and also takes into account the loss sharing policy within 
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an area and no – load loss sharing policy among the areas. The proposed method is 

applied to standard IEEE 24 bus Reliability Test System (RTS) and the traditional 

equivalent tie-line method is applied to the multi-area configuration of the same test 

system. The results obtained by both the methods are analyzed and compared. It is found 

that the traditional model, although having some advantages, may not give accurate 

results. 
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CHAPTER I 

I�TRODUCTIO� 

 

1.1       Introduction 

Currently power systems most invariably operate under interconnected 

conditions. Interconnections of power systems may offer significant technical, 

economical and environmental advantages. Some of these advantages are listed below. 

1. Possibility to use larger and more economical power plants. 

2. Reduction of the necessary reserve capacity in the system 

3. Utilization of most favorable energy resources 

4. Flexibility of building new power plants at favorable locations 

5. Increase of reliability in the systems 

6. Reduction of losses by an optimized system operation 

The adequacy of the generating capacity in a power system is normally improved 

by interconnecting the system to another power system. Each interconnected system can 

then operate at a given risk level with a lower reserve than would be required without the 

interconnection. The actual interconnection benefits depend on the installed capacity in 

each system, the tie capacity, the forced outage rates of the tie lines, the load levels and 

their residual uncertainties in each system and the type of agreement in existence 

between the systems [1]. 

____________ 
This thesis follows the style of IEEE Transactions on Power Systems. 
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Due to prevalence of integrated power systems, also called multi-area power 

systems, responsibility lies in the hands of utility companies, Independent System 

Operators (ISOs) and other related entities to evaluate and maintain the reliability of 

these systems.  

1.2       Power System Reliability  

Reliability is the probability of a device or system performing its function 

adequately, for the period of time intended, under the operating conditions intended. The 

reliability of a power system pertains to its ability to satisfy its load demand under the 

specified operating conditions and supporting policies. 

Some of the most commonly used reliability measures are as follows [2]. 

1. Loss of Load Probability (LOLP) is the probability that a system will fail to 

satisfy its load demand under the specified operating conditions and 

policies. This index, being a probability measure, is dimensionless. 

2. Loss of Load Expectation (LOLE) is the expected period of time during 

which the system will fail to meet its load demand, over a given period.  

Typical unit is hours/year, and the LOLE in hours/year can be obtained by 

multiplying the LOLP by 8760 (8760 is the total number of hours in a 

typical year). 

3. Expected Unserved Energy (EUE) is the expected amount of energy which 

the system will be unable to supply to the consumers. This index is 

alternatively known as Expected Energy $ot Served (EENS). Typical unit 

of measure is MWh/year. 
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The above mentioned reliability indices are expected values and as such indicate 

the long-term reliability that can be expected. Reliability evaluation of interconnected or 

multi-area systems involves calculation of these indices of the individual areas and 

hence the overall system.  

1.3       Supporting Policies in Multi-Area Systems 

A power system pool or interconnected system configuration is usually 

represented by a group of areas each of which is associated with a specific utility 

company or a jointly owned generation facility. It is therefore important to calculate area 

indices which indicate area reliability. In order to obtain realistic area indices which 

indicate area reliability, a supporting policy must be clearly specified. Different 

supporting policies lead to different area indices and therefore a different appreciation of 

area reliability.  

The transmission lines which connect any two individual areas are called the tie 

lines and during normal operating conditions power flowing through them based on the 

contractual arrangements. When assistance is required these tie lines carry power from a 

source area to a sink area. There is a wide variety of supporting policies which guide this 

tie line flow. A firm interchange contract can be considered by adjusting the area load 

levels and the relative tie line capacity. The following two basic load sharing policies 

can be used in a loss-of-load situation [3]. 

1. Load Loss Sharing Policy – Under this policy the areas share the loss of 

load. The objective here is to minimize pool load loss. The areas, therefore, 
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help each other even at the expense of losing their own load to achieve this 

objective. 

2. $o Load Loss Sharing Policy – Based on this policy, an area will provide 

emergency assistance to other areas only to the extent of its surplus 

capacity. The first obligation is the area’s own load. An area will, therefore, 

help other areas only after its own demand has been met.    

These policies play an important role in distributing power among the various 

areas in an interconnected power system and hence different supporting policies will 

lead to different area reliability evaluation.  

1.4       Multi-Area Systems 

Most electric power companies operate as members of an interconnected power 

system owing to the mutual benefits associated with interconnected operation and 

planning. The reliability of a power system can usually be improved by interconnecting 

with other systems. Because of the diversification of load demands and generation unit 

failures, every interconnected system is able to share reserves through these 

interconnections.  

When the total available capacity in an area is insufficient to meet its load, 

assistance can be received from neighboring areas. The amount of power assistance from 

one or more source areas to a sink area is dependent upon the following factors. 

1. The load level of the supported area 

2. The available generating capacities of the supporting areas 

3. The tie line constraints 
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4. The import/export agreement between areas 

Reliability evaluation of interconnected power systems is an important area of 

investigation. Several techniques and analytical methods for multi-area reliability 

evaluation have been proposed in literature [4-17].  

The reliability of an interconnected system is affected not only by the capacities 

and reliability of the individual components, but also by issues such as operating 

policies, firm contracts and government legislation. Techniques for reliability evaluation 

of multi-area systems have attempted to address and incorporate some of these issues in 

addition to modeling and integrating the system components and topology [18]. 

Consider, for example, an interconnected system consisting of three areas, which 

are connected in a loop, and three tie lines. The multi-area system is thus formed and can 

be represented as a network comprising of 3 nodes and 3 arcs, as shown in Fig. 1 [18]. 

Each node represents an area or an individual power system interconnected with several 

other systems. The generation and load models, that are associated with an area, are 

described later on in this section. Each of these arcs represents an equivalent tie line 

between areas. The modeling issues involved in such a multi-area representation of the 

original interconnected system are discussed in the following sub-sections. 

 

 

Fig. 1.  Network representation of a 3-area system 
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1.4.1     �etwork 

The network, as displayed in Fig. 1, consists of Na nodes and Nt arcs connecting 

these nodes. Each node represents an area and the arcs between the nodes represent the 

tie lines. Each area is represented by a single node, to which are connected the entire 

area generation and loads. This does not mean that the intra-area transmission line 

constraints are totally ignored. The tie lines between areas represent equivalent ties and 

the intra-area bottlenecks are reflected, to a certain extent, on the tie line capacities. The 

term area is used in an arbitrary manner to represent either an electric power utility or 

part of a utility.  

1.4.2    Component Capacity States 

At any given time a component, such as a generator or a transmission line, can 

exist in one of several capacity states: it may be fully available or in derated state or 

totally unavailable. An outage refers to a state when an equipment is taken out of 

service. Two kinds of outages, that are usually considered, are planned and forced. An 

equipment is on planned outage when it is taken out for scheduled maintenance or pre-

emptive repair. Forced outage occurs in the event of a random failure. An equipment 

may be in a derated state due to a part of it being on outage, or due to certain climatic 

conditions. 

The probability of the totally unavailable state is specified in input data and in 

the so-called forced outage rate of the unit (FOR). The probability of the fully available 

state is then (1-FOR). When information about outages or deratings is available in 
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advance, such information is used by dividing the study period into intervals over which 

the outages are assumed to result only from random failures.  

1.4.3    Generation Model 

Generator unit modeling is the most important factor and it provides an artificial 

history of the unit. Each of the generation nodes in the interconnected system have one 

or more generating units. A conventional two-state model is used in this research, by 

which the units are considered to be either fully available or totally unavailable.  

The generating unit models described above define the probability distribution of 

available capacities for a unit. The state of a unit is then defined in the simulation 

process through the following procedure. 

1. A uniformly distributed random number, RN, is drawn from the range 0-1. 

It is to be noted that each of the generators has a dedicated random number 

generator to facilitate convergence. 

2. The random number thus drawn as described, RN, is used to determine the 

state of the unit according to the specified probability distribution through 

the following guidelines. 

a. Unit is fully available if, 

 RN ≥ FOR 

b. Unit is totally unavailable if, 

 RN < FOR 

The capacities of all the generation units that are fully available at a given bus are 

added. This cumulative value denotes the generation capacity at a given bus for a 
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particular time period. Generator planned outages are not considered in this research for 

simplicity. 

1.4.4    Load Model 

Load modeling can be done by considering an annual load curve. The basic load 

data for each area of the interconnected system consists of an 8760 hour (considering 

365 days in a year) or 8736 hour (considering 364 days in a year) chronological load 

cycle in Edison Electric Institute (EEI) format. This load cycle is used to create a per 

unit load cycle for each area.  

The most basic approach to consider the annual load curve is to scan all hourly 

points of the chronological load curve. The loads are varied every hour based on a 

hierarchical structure. That is, the hourly peak load is expressed as a percentage of daily 

peaks, the daily peak load as a percentage of weekly peaks and the weekly peak load as a 

percentage of annual peaks. The annual peak load alone is expressed in MW. This way 

of modeling ensures that each hourly load in one year has an equal occurrence 

probability and it also facilitates faster convergence.  

1.4.5    Transmission Line Model 

In multi-area studies, equivalent tie-lines are used. Each of these tie lines is 

assigned an admittance value and capacities in the forward and backward flow 

directions. The methods for calculating these parameters are discussed in the Chapter II. 

It should be noted that it is often difficult to compute equivalent admittances for tie line 

representations [19-21]. 
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In the research work presented in this thesis all these lines are assumed to be in 

fully available state at all times for simplicity. As the failure rate of transmission lines is 

very low when compared to generation outage rates, omission of transmission line 

outage factor is a valid assumption for analysis. But the line capacity constraints are 

considered throughout the analysis. 

1.5       Composite Systems 

In composite system model the generations, loads and transmission lines are 

modeled in a detailed manner for reliability evaluation. This model is more 

comprehensive when compared to the multi – area system model discussed earlier.  

In composite system studies a similar network representation, as that of the 

multi-area system earlier discussed, is used with the nodes representing the buses and the 

arcs representing the transmission lines. Fig. 2 shows a simple composite system 

generation-load model [3].  

 

Fig. 2.  A simple composite system model 
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 The composite system modeling is similar to multi-area except that there are 

many more nodes as the transmission lines are modeled in more detail manner, 

preserving the structure of the bulk power transmission network. The analysis techniques 

are similar except for the network flow calculations. In multi-area calculations, 

transportation type modeling or DC power flow modeling are considered adequate. In 

composite system reliability analysis, transportation type model is not considered 

acceptable. 

1.6       Research Objective 

Power system reliability evaluation has been given great attention in system 

planning and load forecasting.  Operation of power systems under interconnected 

conditions being highly prevalent has made reliability evaluation of complex 

interconnected systems a necessity. In order to cater to such needs and accurately 

evaluate the reliability several methods exist in literature [4-17]. It is important to keep 

checking the accuracy of such methods and development of more accurate methods. 

Also comparison of the methods on the basis of simplicity, accuracy, efficiency to 

handle the complexity of interconnected systems, computational effort and time is quite 

important. 

The research work described in this thesis seeks to meet the needs stated above, 

to some extent.  

Multi – Area Reliability Evaluation is typically done by considering equivalent 

tie lines and as a result the intra – area transmission lines are considered only indirectly 

in calculating the equivalent capacity of the tie lines. Once these equivalent capacities 
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are determined, the generation and loads within each area are modeled as if they are 

connected to a single node. This equivalent method gives approximate results for the 

reliability indices as it cannot be expected to model the transmission system 

comprehensively. Load sharing policy can either be no load loss or load loss sharing 

between the areas for multi-area reliability evaluation and within the areas only load loss 

sharing is followed.  

The traditional multi-area reliability model is quite simple in structure as the total 

number of nodes analyzed is equal to the number of areas within the interconnected 

system. Its implementation and reliability indices calculation using Monte Carlo 

Simulation is fast. Currently this method is widely used in power industry and several 

techniques and heuristics are also available [22] that make this model computationally 

more efficient.  

Since the multi-area reliability model involves approximations that might not 

yield accurate reliability indices a composite system based model is suggested. If the 

more detailed composite system model is to be used as a basis for multi-area reliability 

evaluation then the new model to be developed should be able to handle simultaneous 

load loss sharing policy within the areas and no load loss sharing policy among the 

various areas. 

The new methodology presented in this thesis is called the Composite System 

based Multi – Area Reliability Model. It does multi – area reliability evaluation 

considering the whole composite system. This method is more comprehensive as each of 

the transmission lines is taken into account for calculations and no approximations are 
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made. Prioritizing the flow of power within the same area over the tie line flow ensures 

simultaneous handling of load loss sharing policy within the area and no load loss 

sharing policy between the areas.   

The more comprehensive composite system based multi – area reliability model 

can be used as a standard to examine the accuracy level of the equivalent tie line model. 

Though the traditional method is used extensively for reliability evaluation of 

interconnected systems, its accuracy has never been addressed in the literature. 

Comparison of both these models on the basis of previously mentioned aspects, 

especially accuracy, will assist related entities to measure reliability indices of 

interconnected system with greater confidence. 

1.7       Thesis Outline 

Chapter I briefly discusses the general concepts of power system reliability and 

operation of interconnected power systems. The various reliability indices and load 

sharing policies are presented. The advantages of interconnection of power systems and 

the necessities for accurate evaluation of reliability of such systems are described. Multi-

area and composite systems were explained along with their modeling. A brief overview 

of the tradition method and the newly proposed method for multi-area reliability 

evaluation are given.   

In Chapter II the equivalent tie line method, which is typically used for multi-

area reliability studies, is explained in detail. The Linear Programming (LP) formulation 

associated with this method has been presented. Also discussed briefly are aspects of 

Monte Carlo simulation and procedures for reliability indices estimation. 
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Chapter III presents the newly proposed composite system based multi-area 

reliability model. The LP formulation for implementing this model has been discussed in 

detail.  

A case study has been discussed in Chapter IV. An IEEE 24-bus Reliability Test 

System (RTS) and a modified RTS (MRTS) are described briefly. Reliability indices 

evaluation for these systems by both methods was done and the results are presented. 

Comparison of both the models used for reliability calculations has been discussed. 

Chapter V concludes the thesis by presenting the general conclusion of this 

research work. 
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CHAPTER II 

MULTI-AREA RELIABILITY EVALUATIO� BY EQUIVALE�T 

TIE LI�E METHOD 

 

2.1       Introduction 

Most electric power utilities today operate as members of an interconnected 

power system. The reasoning behind interconnecting to other utilities is based on the 

improvements of system reliability brought about by these interconnections. Due to the 

diversification of loads and unit failures, members of an interconnected power system 

are able to share reserves, and therefore operate at higher levels of reliability for a given 

reserve or alternatively for the same level of reliability have lower reserve. For system 

planners, tools for performing reliability calculations of interconnected systems are of 

great need. These tools are of particular importance in deciding which interconnections 

need reinforcements, and which areas need installation of additional generating units [6]. 

Throughout the years a number of methods for reliability calculations of 

interconnected systems have been proposed. Almost all of these methods for reliability 

indices calculation are based on the equivalent tie line model. This model is favored 

owing to its simplicity and efficiency of calculation. The equivalent tie line model 

represents an interconnected system by incorporating several assumptions and 

approximations and has certain modeling issues. Though it has been prevalently used, 

the accuracy with which it calculates the reliability indices has never been addressed in 

the literature. 
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This chapter discusses the equivalent tie line model in detail and the modeling 

issues associated with it. It also briefly describes the LP formulation required to 

implement this model. Monte Carlo simulation and its uses while calculating reliability 

indices and basic reliability assessment concepts are presented. 

2.2       Basic Concepts of Reliability Evaluation 

The basic steps of reliability assessment are shown in Fig. 3 [23]. The first step is 

to define the system that is being analyzed. The system consists of components and 

therefore the models of the components and system need to be outlined. The 

combination of component states describes system states. Thus a possible approach 

would be complete enumeration, i.e., to select each state in turn and evaluate it for its 

status as success or failure defined for the system. In power systems, the failure of the 

system often means that the entire load cannot be satisfied and thus some part of it needs 

to be curtailed. Then based on the probability of the failed states and the magnitude and 

location of load loss, the relevant reliability indices can be computed. 

 

Fig. 3.  Reliability evaluation steps 
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 It can be seen from this process that the following are needed for the reliability 

evaluation. 

1. Component and system models and data 

2. A state evaluation procedure 

3. Reliability indices to be computed 

The procedure described above is generic and, here in this thesis, two methods 

are discussed for system modeling – equivalent tie line model and composite system 

based multi-area reliability model. State evaluation is done by using the LP formulations 

described for both the methods. 

2.3       System Modeling – Equivalent Tie Line Method 

Equivalent tie line model is based on the approximation of composite system 

model resulting in a very simple structure. Each of the areas in an integrated system is 

represented as a single node by this model. Hence it reduces the total number of nodes, 

in the actual interconnected system, to the number of individual members or areas. The 

loads and generations within an area are modeled to be connected to the node, which 

represents the corresponding area of the original interconnected system.  

All the tie lines which can transfer power between any two areas are represented 

by an equivalent tie line. The capacity and admittance of an equivalent tie line can be 

computed by the methods explained later in this chapter. It is important to note that the 

intra-transmission lines’ capacity constraints are not totally ignored in reliability 

calculations. Though they do not directly influence the reliability indices calculation, 

their capacity limits are reflected, to some extent, in equivalent tie line capacities. 
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Equivalent tie line model is quite simple in structure as the total number of nodes 

analyzed has been reduced greatly and also are the number of tie lines. The basic steps 

for calculating multi-area reliability using this method are as follows [3]. 

1) Construction of generating capacity and load models for each area.  

2) Calculation of the available capacity margin for each area by combining the 

generation capacity model and the load model.  

3) Incorporation of the tie line network and appropriate load sharing policies 

and calculation of the reliability indices for each area and the total 

integrated system using Linear Programming (LP) formulation and Monte 

Carlo simulation. 

The implementation of this method and reliability calculation using Monte Carlo 

Simulation is quite fast. Several heuristics and techniques are presented in [22], which 

make this model highly time efficient. 

Though the advantages of this method such as simplicity and fastness are quite 

appealing, they happen at the cost of certain approximations and assumptions. Direct 

influence of intra-area transmission line constraints on reliability indices has been 

neglected while modeling the network. Equivalent tie line admittance calculations are 

really difficult [19-21] and therefore relative admittance is taken into consideration. 

Such issues affect accurate reliability evaluation and the degree to which it is getting 

affected will be presented in this thesis. 

The following sections have been designated to explain in detail on how to build 

the model and use it for reliability calculation.  
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2.3.1    Generation Model 

Generator unit modeling is the most important factor and it provides an artificial 

history of the unit. Each of the generation nodes in the actual interconnected system have 

one or more number of generating units. A conventional two-state model comprising of 

fully available and totally unavailable states is used. The capacity and probability 

associated with these states are as follows. 

1. Unit Fully Available State 

(a) Capacity = Rated 

(b) Probability = 1 – FOR 

2. Unit Totally Unavailable State 

(a) Capacity = 0 

(b) Probability = FOR 

The state of a unit at a specified time is determined by drawing a random number 

RN from uniform distribution of range 0 – 1. As was discussed earlier in Chapter I,  

c. Unit is fully available if, 

  RN ≥ FOR 

d. Unit is totally unavailable if, 

  RN < FOR 

The capacities of all the generation units that are fully available at a given bus are 

added. This cumulative value denotes the generation capacity at that bus for a particular 

time period.  
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The above described generator unit model determines the generation available at 

a node in the equivalent tie line model. The capacities of all the available generation 

nodes, within an area of the original interconnected system, is thus added and assigned 

as the capacity available at the node which represents the corresponding area in the 

equivalent tie line model. 

2.3.2    Load Model 

All the loads in an area of the interconnected system are modeled to be connected 

to a single node representing the area in the equivalent network model. Once the load at 

each node in the original system is calculated using the load modeling approach 

described in Chapter I, the loads at each of the nodes in the equivalent tie line model is 

found. These vary once in every hour in a year and each load level is found to have an 

equal probability distribution of occurrence.  

The annual load curve approach promotes faster convergence. Load forecast 

uncertainty has been neglected in this research work for simplicity as the primary focus 

is comparison of the basic methodologies of the equivalent tie line and composite system 

based multi-area reliability model.  

2.3.3    Transmission Line Model 

An equivalent tie line, as the model name suggests, represents all the tie lines that 

connect any two areas. These tie lines are assumed to be always in fully available state in 

this thesis, although multi-state equivalent models can also be similarly developed by 

considering failures of the transmission lines. 
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A. Equivalent Tie Line – Capacity Calculation 

In this thesis, to find the equivalent tie line power carrying capacity between two 

areas, a procedure is discussed below. 

1. System: Consider the original interconnected power system model.  

2. Load: Take the peak demand as the load level at each of the buses. 

3. Generation: Each area should be able to meets it own load demand, if there 

is sufficient capacity available. A generation node in each area is assigned a 

generation level such that it contributes to its area demand based on its 

rated capacity. Assuming that the capacity available in the area is higher 

than the load, 

�� =  ��  ×  ������                                             (1) 

where 

Gn – Generation at node n in an area 

Da – Total load demand of an area 

Grn – Rated generation capacity at node n in an area 

Gra – Total rated generation capacity of an area. 

4. Power flow: For the above specified load and generation level run a DC 

power flow. Sum up the flows in all the tie lines connecting the source and 

sink areas. Check if there are any transmission line violations.  

a.  If there any transmission line limit violations are found then the 

equivalent tie line capacity is assigned this cumulative value, 
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provided the cumulative value is positive, else the capacity is equated 

to zero. This ends the procedure. 

b. If no transmission line violations occur, proceed to step 5. 

5. Increase load level at each of the nodes in the sink area by a small 

multiplication factor. Also increase generation at source area proportional 

to the demand increase in sink area. That is, 

�� = (�� +  �
)  × ������                                   (2) 

where 

Di – Total increase of load demand in sink area   

6. Now once again run DC power flow.  

a.  If there are no transmission line limit violations, go to step 5. 

b. Else go to step 7. 

7. Sum up the flows in all the tie lines connecting the source and sink areas.  

a.  If the cumulative value is found to be a positive value then it is the 

capacity of the equivalent tie line between the considered source and 

sink areas. 

b. If the cumulative value be negative then the net increase between the 

initial cumulative flow, calculated in step 4, and this final cumulative 

flow is taken as the equivalent tie line capacity. 

Once the equivalent tie line capacity is found, it remains fixed irrespective of the 

varying load levels during reliability evaluation. DC Power flow is used in the above 
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procedure owing to its simplicity and it sufficiently satisfies the need of the task 

involved.  

B. Equivalent Tie Line – Relative Admittance Calculation 

It is often difficult to compute equivalent admittances for tie line representations 

[19-21]. Here a procedure, which calculates relative admittance of an equivalent tie line, 

is discussed. The fact that admittance is directly proportional to power transfer is used in 

calculating the relative admittance. This value of admittance is relative to the source and 

sink area.  

1. System: Consider the original interconnected power system model.  

2. Load: Take the peak demand as the load level at each of the buses. 

3. Generation: Each area should be able to meets it own load demand. A 

generation node in each area is assigned a generation level such that it 

contributes to its area demand based on its rated capacity. Thus the 

generation level at a node is given by, 

�� =  ��  ×  ������ 

4. Power flow: For the above specified load and generation level run a DC 

power flow. Sum up the flows in all the tie lines connecting the source and 

sink areas. 

5. Substantially increase power demand in sink area, say about 100 MW. Also 

increase an equal amount of generation in source area. 

6. Once again run DC power flow. Sum up the flows in all the tie lines 

connecting the source and sink areas. 
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7. Find the percentage of power distributed, from the source area to the sink 

area through tie lines directly connecting both the areas, by subtracting the 

cumulative value of step 4 from that of step 6. (Note that for any value, 

other than 100 MW, the cumulative values ought to be divided by it before 

subtraction.) 

8. Set admittance of equivalent tie line, which connects source and sink areas, 

to be equal to the percentage of power distribution calculated in step 7.  

9. Using this value of admittance and by injection the same amount of power 

used in step 5, find the power distribution. 

10. Alter admittance till the initial power distribution is met. (Even if no exact 

value of admittance that can reproduce the initial power distribution can be 

found, an approximate value of admittance can cause no major deviation in 

results.) 

This method of admittance calculation is a relative one and hence the values are 

only approximate.  

 2.4      Monte Carlo Simulation  

Reliability evaluation methods can be broadly classified into two categories, 

analytical methods and Monte Carlo simulation methods. In the analytical methods, the 

system is explicitly or implicitly modeled by a set of mathematical equations. Reliability 

indices are obtained by performing mathematical operations on these equations. On the 

other hand, in the Monte Carlo simulation, artificial histories of the system are created 

by using the probability distributions of component state residence times. Reliability 
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indices are then estimated by statistical inference from these histories just in the same 

manner as would be done on the history of the real system. Both sets of methods have 

their own advantages and are used in reliability evaluation. The Monte Carlo enjoys a 

special advantage in its ability to accommodate higher levels of system complexity [22]. 

2.4.1    Features of Monte Carlo Methods in Reliability Evaluation 

A fundamental parameter in reliability evaluation is the mathematical expectation 

of a given reliability index. Salient features of the Monte Carlo method for reliability 

evaluation therefore can be explained from an expectation point of view [3]. 

Let Q denote the unavailability (failure probability) of a system and xi be a zero-

one indicator variable which states that, 

xi = 0 if the system is in the up state 

xi = 1 if the system is in the down state 

The estimate of the system unavailability is given by 

�� =  1� � �

�


��                                                            (3) 

where $ is the number of system state samples. 

The unbiased sample variance is 

�(�) =  1� − 1 �(�
 −  ��)��

��                                               (4) 

When the sample size is large enough, (4) can be approximated by 

�(�) =  1� �(�
 −  ��)��

��                                                   (5) 
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Because xi is zero-one variable, it follows that 

� �
�
�


�� =  � �

�


��                                                          (6) 

Substituting (3) and (6) in (5) yields 

�(�) =  1�  � �
�
�


�� −  1� � 2�
���

�� + 1� � ����


��  

     �(�) =  �� −  2��� + ���                                                                                
�(�) =  �� −  ���                                                                                       (7) 

It is important to note that (3) gives only an estimate of the system unavailability. 

The uncertainty around the estimate can be measured by the variance of the expectation 

estimate: 

�(��) =  1�  �(�) 

�(��) =  1�  �(�� − ���)                                                (8) 

The accuracy level of Monte Carlo simulation can be expressed by the 

coefficient of variation, which is defined as 

 =  !�(��)��                                                               (9) 

Substituting (8) in (9) gives 

 =  #1 −  �����                                                           (10) 

Equation (10) can be rewritten as 
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� =  1 −  �� � ��                                                            (11) 

The above equation indicates two important points: 

1. For a desired accuracy level α, the required number of samples $ depends 

on the system unavailability but is independent of the size of the system. 

Monte Carlo methods are therefore suited to large-scale system reliability 

evaluation. This is an important advantage of Monte Carlo methods 

compared to analytical enumeration techniques for the reliability 

evaluation. 

2. The unavailability (failure probability) in practical system reliability 

evaluation is usually much smaller than 1.0. Therefore, 

� ≈  1 � ��                                                            (12) 

This means that the number of samples $ is approximately inversely 

proportionally to the unavailability of the system. In other words, in the 

case of a very reliable system, a large number of samples in required to 

satisfy the given accuracy level. 

2.4.2    Random �umber Generation 

A random number can be generated by either a physical or a mathematical 

method. The mathematical method is most common as it can guarantee reproducibility 

and can be easily performed on a digital computer. A random number generated by a 

mathematical method is not really random and therefore is referred to as pseudo-random 
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number. In principle, a pseudo-random number sequence should be tested statistically to 

assure its randomness. 

The basic requirements for a random number generator to be used in Monte 

Carlo simulation are as follows. 

1. Uniformity: The random number should be uniformly distributed between 

[0, 1]. 

2. Independent: There should be minimal correlation between random 

numbers. 

3. Long Cycle Time: The repeat period should be sufficiently large. 

2.4.3    Monte Carlo Simulation – Random Sampling 

In conducting reliability evaluation of power system using Monte Carlo methods, 

the computing time and the variance are directly affected by the selected sampling 

techniques and system analysis requirements. Most Monte Carlo simulation methods that 

are used for system reliability analysis can be classified as sequential or non-sequential.  

In this research work, Monte Carlo random sampling technique is used for 

calculating the reliability indices because of its simplicity. Random sampling, or non-

sequential simulation, consists of performing random sampling over the aggregate of all 

possible states the system can assume during the period of interest. It ensures fast 

convergence and it is simpler when compared to frequency sampling technique of Monte 

Carlo simulation. 

The state of all the generation units within the interconnected system is found 

using random sampling and hence their available capacities. A unit is said to be up state 
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if the random number drawn is greater than or equal to the Forced Outage Rate (FOR) of 

that unit, else it is in down state. Most important factor in using random sampling is that 

the random number must have a uniform distribution. 

2.4.4    Convergence Criteria of Random Sampling 

The coefficient of variation shown in (9) is often used as the convergence 

criterion in Monte Carlo Simulation.  

It is crucial to sample sufficient number of states to estimate reliability indices.  

It can be seen from (9) that  

1. Sample size is not affected by system size or complexity.  

2. Accuracy required and the probability being estimated effect the sample 

size.  

3. Computational effort depends on $ and CPU time/sample. 

A covariance of 2.5% at system level LOLE is used in this research work as the 

convergence criteria.  

2.5       Linear Programming Formulation 

The loads, generation and transmission lines define the system state at a load 

hour. Once the system state is defined, LP module is used to enumerate the unmet 

demand at the corresponding load hour. The state evaluation process described earlier is 

handled by the following LP technique. It evaluates if a system state is a success or 

failure state. 

The system is said to suffer loss of load if any of the nodes, which actually are 

areas, goes without its demand being met. The loss of load of the system can be found 
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using the following LP formulation [22, 24]. Some of the parameters and variables 

appearing in the LP module vary based on the loss sharing policy between the various 

nodes. 

Loss of Load =  Min � C0
12

0��                                            (13) 

subject to: 

B 4 θ +  G + C = D                                                            (14) 

                      G  ≤   G89:                                                    (15) 

                       C  ≤   D                                                           (16) 

                b A4 θ  ≤   F89:                                                     (17) 

           −  b A4 θ  ≤   F89:                                                     (18) 

                    G, C  ≥   0                                                            (19) 

                                   θ           unrestricted 

where 

Nb -     number of buses 

Nt -     number of transmission lines 

b -     Nt  Nt primitive (diagonal) matrix of transmission line  

         susceptances 

A4 -      Nt   Nb element-node incidence matrix 

B4 -      Nb   Nb augmented node susceptance matrix 

B4 =      A4F b  A4 

 -       Nb – vector of bus voltage angles 
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F
max

 -       Nt – vector of flow capacities of transmission lines 

F -       Nt – vector of transmission line flows 

For no load loss sharing policy between the nodes (or areas), 

G -       Nb – vector of net positive injections 

D -       Nb – vector of net negative injections 

C -       Nb – vector of negative injection curtailments 

Ci -       i - th element of C, i.e., negative injection curtailment at bus i 

G
max

 -       Nb – vector of maximum available net positive injection 

For load loss sharing policy between the nodes (or areas), 

G -       Nb – vector of bus generation levels 

D -       Nb – vector of bus loads 

C -       Nb – vector of bus load curtailments 

Ci -        i - th element of C, i.e., unsatisfied demand at bus i 

G
max

 -        Nb – vector of maximum available bus generation levels 

The reliability indices such as LOLE and EUE, for a sampled system state at a 

particular load hour, for the overall system or each area can be obtained by the above 

mentioned LP formulation.  

2.6       Reliability Indices Evaluation 

The basic steps involving the whole process leading to estimating the reliability 

indices are as follows. 

1) Find the load levels at all the nodes for every hour in the annual load cycle. 
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2) Select a system state S = (S1, S2,….., Sn) by sampling techniques, where Si 

is the state of the i
th

 component. The set of n components includes the 

generating units in each area, the loads in each area and all the tie lines.  

3) Evaluate a reliability index R(S) for the system state S ϵ G by an LP model, 

where G denotes the set of all sampled system states and R(S) represents 

the selected reliability index for the overall system or each area. 

4) Then calculate the expected value of R(S) can be calculated by, 

E(R) =  � R(S) n(S)NK ∈ M                                              (20) 

 where $ is the total number of samples and n(S)  is the number of 

occurrence of system state S. 

This procedure is continued until the convergence criterion specified for the 

simulation is met. E(R(S)) denotes LOLE or EUE of the overall system or individual 

areas and for the mentioned tolerance the value obtained is quite accurate. 

2.7       Conclusion 

In this chapter the general steps involved in reliability assessment have been 

presented. The various techniques contributing to reliability indices calculation have 

been explained. From the discussions it is obvious that multi-area reliability evaluation 

using the equivalent tie line method proves to be simple. A case study is presented later 

in this thesis which shows the implementation of this method for estimating the 

reliability of a standard IEEE Reliability Test System. Comparison of this method with 

the newly proposed method has been presented in the coming chapters.  
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CHAPTER III 

COMPOSITE SYSTEM BASED MULTI-AREA RELIABILITY 

MODEL 

 

3.1       Introduction 

Composite system reliability evaluation involves the joint analysis of the 

generation and bulk transmission facilities and is an important aspect in the planning and 

operation of power systems. When large or interconnected power systems are studied, 

reliability equivalent models were developed for parts of these networks. The primary 

objective of using equivalent models is to replace the large and complex structure of a 

power system by a simple model, which contains all the essential elements and possible 

states of the original system but eliminates much of the detailed information of this 

system. This equivalent model can then be utilized in further reliability evaluations.  

By convention, the above mentioned equivalent model has been used for multi-

area reliability evaluation. It is an approximate method and scales down the number of 

nodes in an interconnected system. This model though very simple to construct and 

eases computational effort and time, it suffers certain setbacks. Direct effect of intra-area 

transmission line capacity limitation on reliability indices cannot be observed. The effect 

of neglecting a detail structure of the system and the resulting reduction in accuracy 

level of calculations are to be explored. 

This research work aims at building a detailed model of the original 

interconnected system based on composite system structure. Also, a comparative study 
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of this model and the traditional model is to be presented. This chapter explains in detail 

the proposed model along with the state evaluation process required by this model for 

reliability assessment. A general algorithm for implementing this model and reliability 

indices calculation is presented. 

3.2       Composite System Model 

The composite system model incorporates the generation, loads and transmission 

lines in a detailed manner unlike the equivalent multi-area reliability model. The 

equivalent model is obtained by applying approximations to the composite system 

model.  

In composite system studies a network representation, similar to that of the 

equivalent multi-area network discussed in Chapter II, is used with the nodes 

representing the buses and the arcs representing the transmission lines. Since this model 

is highly detailed it is often time consuming when used for reliability evaluation, 

especially when used for very large systems. Yet this detailed approach will result in 

accurate calculations. 

Using this composite system model as a base to model interconnected systems 

for reliability estimation is suggested in this thesis. Detailed modeling of system 

components is definitely going to improve the accuracy, but the level to which the 

accuracy is pushed up will be discussed in the next chapter. 

3.3       Composite System Based Multi-Area Reliability Model 

A new model for reliability assessment based on composite network is proposed 

in this thesis, called the Composite System based Multi-Area Reliability Model. It is a 
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well comprehensive model and no level of approximations is involved while modeling 

the system components.  

Composite system based multi-area reliability model is a new approach and it 

gives attention to more details. This method, unlike the equivalent tie line method, 

evaluates reliability of interconnected system by consideration of the whole composite 

system model. By considering the original system without exclusions or approximations, 

a high degree of accuracy can be achieved and the reliability indices evaluated will 

directly reflect the influence of all the loads, generations and transmission lines.   The 

capacity of intra-transmission lines on system and area reliability indices calculation will 

now be directly reflected in reliability assessment. These modifications ensure multi-area 

reliability calculations in the most detailed manner and will serve as a standard for 

measuring the accuracy of the equivalent tie line method.  

This model can take into account the load loss sharing policy within the area and 

no load loss sharing policy between the areas simultaneously. Prioritizing the flow of 

power within the same area over the tie line flow ensures no – load sharing policy 

between areas. This aspect is very important to achieve reliability calculations of 

interconnected systems with varying supporting policies. 

3.4       System Modeling 

The network model, of this method, used in reliability evaluation is described 

here. Like the composite system reliability model every major node and transmission 

lines are considered while calculating the reliability indices. Generation limitations and 

transmission line power carrying capabilities are taken into account. The network 
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consists of several nodes and arcs representing the buses and transmission lines in the 

actual interconnected system. 

3.4.1    Generation Model 

The generator unit modeling approach discussed in Chapter II is used. The 

generation at a bus coming from one or more generation units is modeled to be attached 

to the node which represents the bus in the network model. 

Though only the two-state generator unit model is used in the research work, it is 

noteworthy that the new model developed is capable of handling multi-states too. Same 

is the case for loads and transmission line.  

3.4.2    Load Model 

Load modeling is similar to that of generation modeling described above. An 

annual load curve is used for faster convergence. Every hourly point of this 

chronological curve is scanned. 

3.4.3    Transmission Line Model 

The network model contains several arcs which represent each transmission line 

of the interconnected system. These lines are differentiated for calculation purposes 

based on the end nodes – lines with end nodes belonging to the same area and lines with 

end nodes belonging to different areas. Impedance and power carrying capability are 

assigned to all the transmission lines and are provided by the input data. 

3.5       LP Formulation for System State Evaluation Process  

The state evaluation process is used to check if the selected system state is 

successful or not. The LP formulation described below handles this task. 
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The LP formulation discussed in Chapter II can be used for the composite system 

based multi-area model, provided that all the nodes (or areas) in this model under 

complete loss sharing policy. 

Using the composite system model for multi-area reliability evaluation 

necessitates simultaneous application of no load loss sharing policy between areas and 

load loss sharing policy within the areas. This is really important as interconnected 

systems may have varying supporting policies within an area and among the various 

areas.  

One way of doing this is to set priority levels in the transmission line flows. 

Firstly, the flows are to be differentiated a follows.  

1. Flow from a node to another which belongs to its area 

2. Flow from a node to another which belongs to other areas in an 

interconnected system 

Once differentiated, a LP technique can be used to prioritize the flows between 

the nodes belonging to the same area over that which belonging to different areas. The 

idea employed here is that, the optimization tool will make sure that for the selected 

system state the loss of load or load curtailments are minimal, but no area will aid 

another in need until all its load met.  This prioritization ensures simultaneous 

application of both the load sharing policies described above for multi-area reliability 

evaluation. This module also helps in inclusion of limitations on generation capacity and 

transmission line power carrying capabilities.  
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The LP formulation incorporating all the above mentioned features is as follows. 

The explanation of a M-factor used in this formulation is provided later in this chapter. 

Given Sets: 

I - set of all nodes 

$ (i) - set of neighbors of i within its area 

O (i) - set of neighbors of i outside its area 

Given Parameters: 

�
N�O   - maximum power that can be generated by i 

�
 >=  0, demand of power at i 

Set the value of M-factor, which is to be used in the objective function, as shown below. 

M =  � D00 ∈ Q                                                         (21) 

Declaration Variables:  

�
   >=   0, generation of power by i 

R
   >=   0, unmet demand at i 

S
T   >=  0, power transferred from i to j 

The objective function that satisfies the newly proposed method is given by,  

Min UVMW � C0   +   M� � f0X0 ∈ Q,   X ∈ Y(0)0 ∈ Q
U   +   M � f0X   0 ∈ Q,   X ∈ 1(0) Z          (22) 

subject to: 

� fX0  +  X ∈ 1(0) � fX0  +   C0  +  G0X ∈ Y(0)  =   D0,           ∀    i ∈ I      (23) 
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G0  ≤   G089: 

C0   ≤    D0    
f0∈Q,X∈1(0)   ≤   F0∈Q,X ∈1(0)89:                                                       (24) 

        f0∈Q,X∈Y(0)   ≤   F0∈Q,X ∈Y(0)89:                                                        (25) 

The LP formulation described above minimizes loss of load of the entire system 

but also obliges to the loss sharing policies as discussed previously.  

3.5.1   M – Factor  

Prioritization of flows is achieved by the use of M-factor in the objective 

function of the LP formulation. It will ensure simultaneous application of load loss 

sharing policy within an area and no load loss sharing policy between areas.  

Mathematically speaking, it must be a very large positive number. It can be 

interpreted as the one that introduces penalty to be paid by any solution with a non-zero 

value (here, strictly positive). 

It determines how the flows ought to be distributed among the nodes in the 

composite network. The priority is such that the load is first satisfied within an area and 

only the remaining generation in that area, that is found to be in excess of its load, is 

transported to other areas, if needed. That is, the generation at a node and the flows 

originating from the node will be calculated such that the priority of satisfying various 

loads is as follows. 

1. Load at the node 

2. Load at nodes, within the same area 

3. Load at nodes, which belong to other areas 
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Therefore no area will attempt to transport power to other areas at the cost of not 

meeting its own load. Thus load loss sharing policy is followed within an area and 

among the various areas no load loss sharing policy is withheld.  

While implementing this LP module choosing a right numerical value for the M-

factor should be the most important thing to be noted. The value of M must be 

sufficiently large when compared to any other quantity. The peak load of the whole 

system is suggested as one such value to be used for the M factor as none of the flows or 

loss of load can be greater than it. Equation (20) can be used to calculate the value of M. 

3.6 Reliability Indices Estimation 

The procedure described in Chapter II can be used for reliability indices 

estimation. Using Monte Carlo simulation the generation at all nodes is selected for 

every hour in the annual load curve, which gives the load level at all nodes. Once the 

system state is defined, appropriate LP module can be activated to evaluate the state. 

Using the formulas discussed earlier the reliability indices can be calculated. 

3.7 Conclusion 

Reliability assessment of complex integrated system by the newly proposed 

composite system based reliability model has been presented in this chapter. The various 

differences between this model and the equivalent model have also been described. 

Implementation of both these models and applying them for the standard IEEE 24-bus 

Reliability Test System will be presented in the following chapter. The results will 

indicate the level of accuracy of the traditional model when compared with the much 

detailed proposed model.  
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CHAPTER IV 

CASE STUDIES A�D RESULTS 

 

4.1      Introduction 

Reliability evaluation of a test system by methods discussed in the previous 

chapters will be presented here in this chapter. The standard IEEE Reliability Test 

System (RTS) has been considered for analyzing both the models – the equivalent tie 

line model and composite system based reliability model. A Modified Reliability Test 

System (MRTS), which is obtained by applying certain variations to the RTS, is also 

presented and used analysis of both the models due to certain issues presented later in 

this chapter. 

Reliability indices such as LOLE and EUE are obtained for the RTS and MRTS. 

System level reliability indices are alone considered for comparison of these models. A 

comparative study has been presented to elaborate the benefits of using these models for 

multi-area reliability studies.  

4.2      Case Study – IEEE Reliability Test System (RTS) 

 The IEEE Reliability Test System (RTS) was developed by the Subcommittee on 

the Application of Probability Methods in the IEEE Power Engineering Society to 

provide a common test system which could be used for comparing the results obtained 

by different methods [3].  
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4.2.1    IEEE 24 – Bus Reliability Test System (RTS) 

IEEE 24 bus Reliability Test System (RTS) is used in this paper and its reliability 

indices are calculated by the equivalent tie line model and composite system based 

multi-area reliability model. The network diagram of IEEE RTS (multi-area 

configuration) is shown in Fig. 4 [25]. The data of load model, generation and 

transmission system of the original IEEE 24-bus RTS have been reproduced in 

Appendix A.  

In order to use this RTS for this multi-area study, it is divided into three areas, 

which are shown in Table I and Fig. 4. The tie lines between areas are listed in Table II. 

 

TABLE I 

THREE AREAS IN RTS 

 

AREA BUS 
GEN. CAP 

(MW) 

LOAD 

(MW) 

MARGIN 

(MW) 

1 14,15,16,17,18,19,21 1170 1125 45 

2 5,6,8,9,10,11,12,13,20,22,23 1551 1141 410 

3 1,2,3,4,7,24 684 584 100 

 

 

TABLE II 

TIE LINES BETWEEN AREAS 

 

AREA TIE LINES 

Area 1 to Area 2 Line 21-22, 17-22, 19-20(2), 14-11 

Area 1 to Area 3 Line 15-24 

Area 2 to Area 3 Line 3-9, 4-9, 1-5, 2-6, 7-8 
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Fig. 4.   IEEE 24-bus RTS divided into three areas 

   

 

4.2.2    IEEE 24 – Bus Modified RTS (MRTS) 

Modified Reliability Test System (MRTS) as described in [26, 27, 28] is also used 

for analysis of both the methods mentioned in this paper. MRTS is identical in topology 

and component outage rates to IEEE 24-bus RTS, except for the generation and load 
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levels. MRTS has peak generation doubled and the loads are multiplied by a factor 1.8, 

when compared to original IEEE RTS, but the transmission line capacities are 

maintained the same. The transmission network of the original IEEE RTS is too strong 

and hence their power carrying capacities had little effect on the reliability indices [26].  

The equivalent tie line capacities and admittances calculated for the multi-area 

configuration of the IEEE RTS is shown in Table III. 

 

TABLE III 

EQUIVALENT TIE LINE CAPACITIES AND ADMITTANCES OF MULTI-AREA CONFIGURATION 

OF IEEE RTS 

 

TIE LINES  

BETWEEN 

CAPACITY 

(MVA) 

ADMITTANCE  

(P.U.) 

Area 1 – 2 335.8802 0.7884 

Area 2 – 3 582.7872 0.3783 

Area 1 – 3 377.1394 0.1569 

Area 2 – 1 1705.8 0.7884 

Area 3 – 2 297.2906 0.3783 

Area 3 – 1 30.0353 0.1569 

 

 

Tables IV and V display the results obtained for IEEE-RTS and MRTS by both 

Equivalent Tie Line model and Composite System based Multi-Area Reliability Model 

under load loss sharing policy and no load loss sharing between the areas respectively. 
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TABLE IV 

MULTI-AREA RELIABILITY INDICES OF RTS AND MRTS – LOAD LOSS SHARING POLICY 

 

SYSTEM 

MODEL 

RELIABILITY INDICES  

OBTAINED BY EQUIVALENT  

TIE LINE MODEL 

RELIABILITY INDICES OBTAINED BY 

COMPOSITE SYSTEM BASED MULTI-

AREA RELIABILITY  MODEL 

LOLE 

(h/year) 

EUE 

(MWh/year) 

LOLE 

(h/year) 

EUE 

(MWh/year) 

RTS  

(Constant 

Load) 

 

792.7000 

 

1.4422e+5 

 

742.1000 

 

1.2870e+5 

RTS  

(Variable 

Load) 

 

38.4565 

 

4.3109e+3 

 

10.7523 

 

1.3629e+3 

MRTS 

(Constant 

Load) 

 

1982 

   

2.1284e+5 

 

548.9500 

 

8.9475e+4 

 

 

 

TABLE V 

MULTI-AREA RELIABILITY INDICES OF RTS AND MRTS – NO LOAD LOSS SHARING 

POLICY 

 

SYSTEM 

MODEL 

RELIABILITY INDICES  

OBTAINED BY EQUIVALENT  

TIE LINE MODEL 

RELIABILITY INDICES OBTAINED BY 

COMPOSITE SYSTEM BASED MULTI-

AREA RELIABILITY  MODEL 

LOLE 

(h/year) 

EUE 

(MWh/year) 

LOLE 

(h/year) 

EUE 

(MWh/year) 

RTS  

(Constant 

Load) 

 

804.2000 

 

1.4450e+5 

 

742.1000 

 

1.2870e+5 

RTS  

(Variable 

Load) 

 

38.2917 

 

4.2741e+3 

 

10.7523 

 

1.3629e+3 

MRTS 

(Constant 

Load) 

 

1.9954e+3 

   

2.1349e+5 

 

525.6500 

   

1.3585e+5 
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The constant load mentioned in these tables is the peak loads of the system and 

hence the loads are assumed to be fixed throughout the calculations. Variable load 

scenario is produced by applying the annual load curve to the system, which makes the 

load vary every hour. 

 

4.3       Discussion of Results and Error Estimation 

The results obtained by using the newly proposed model under Load Loss 

Sharing policy can be validated using references [29] and [22]. It should be noted that 

under load loss sharing, the multi-area system indices should be the same as that of the 

normal composite system. The RTS LOLE obtained in [29] under variable load is 

9.3942. This value is lower when compared to 10.7523 LOLE of obtained in this 

research work, as the former does single area reliability calculations, which is 

comparable to composite system reliability evaluation without consideration of 

transmission line violations. These figures are quite close as the transmission system of 

the RTS is very strong. The LOLE of MRTS is given as 600.001 in [22] is comparable to 

548.9500 obtained in this paper. Both results are obtained for loss sharing policy, but 

[22] considers transmission line outage factors for analysis and hence it produced a 

higher LOLE. 

The approximate results obtained by equivalent tie line model are compared with 

the accurate results provided by composite system based multi-area reliability model. 

The absolute value of the percentage errors can be obtained by using the following 

equation. 
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PERCENTAGE ERROR =  `RY(S) −  R(S)`R(S) %                             (26) 

 

where R(S) is reliability index obtained by Composite System based Multi-Area Model 

and Ro(S) is obtained by the traditional method. The percentage errors of these results 

are tabulated in Table VI. 

 

TABLE VI 

PERCENTAGE ERRORS OF RELIABILITY INDICES OBTAINED BY EQUIVALENT TIE LINE 

MODEL AND COMPOSITE SYSTEM BASED MULTI-AREA RELIABILITY MODEL 

 

SYSTEM 

MODEL 

PERCENTAGE ERROR OCCURRED 

UNDER LOAD LOSS SHARING 

POLICY IN 

PERCENTAGE ERROR OCCURRED 

UNDER NO LOAD LOSS SHARING 

POLICY IN 

LOLE EUE LOLE EUE 

RTS 

(Constant 

Load) 

 

6.8185 

 

12.0591 

 

8.3681 

 

12.2766 

RTS 

(Variable 

Load) 

 

257.6584 

 

216.3035 

 

256.1257 

 

213.6033 

MRTS 

(Constant 

Load) 

 

261.0529 

  

 137.8765 

 

279.6062 

 

57.1513 

 

The percentage errors obtained show that the equivalent method calculates LOLE 

and EUE with very less accuracy. The errors are quite high except for the case of IEEE 

RTS under constant load. Constant load used is the peak load of the system, which is 

also used in calculating the equivalent tie line capacities. For this case alone, since the 

capacities of the equivalent tie lines have been calculated most accurately, the results 
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match most closely. The errors in other case are remarkably high making the equivalent 

method a poor choice for reliability studies for interconnected power systems. 

It is worth mentioning that all the results were calculated by programming using 

MATLAB. For executing the LP modules, MATLAB ‘linprog’ function has been used as 

it is user friendly and highly accurate. 

4.4 Comparative Study 

 

Both the methods discussed in this paper have their own pros and cons. Here are 

main differentiations between the models based on certain important factors. 

1) Complexity – The structure of the system model used by the equivalent tie 

line method has a really simple construction unlike the detailed composite 

system structure used by the composite system based multi-area reliability 

method. The former has total number of nodes equal to the number of 

interconnected areas, whereas the latter has retained all the nodes in the 

original integrated system. Though the equivalent method is really simple it 

ought to be noted that it is at the cost of approximations and assumptions. 

Even if equivalent tie line capacity calculations include the intra-area 

transmission line constraints to some extent, the direct influence on 

reliability indices has been prevented by this model. Calculation of 

equivalent tie line admittance is quite difficult and exact values cannot be 

obtained. This is another approximation that makes the equivalent model 

less appealing. 
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2) Computational Effort – The computational effort and time, involved in state 

evaluation process, is directly proportional to the number of nodes 

analyzed. This is due to the fact that the variables discussed in the LP 

modules grow as the system structure enlarges and the run time of a LP 

module increases as the number of variables increase. Hence the traditional 

method is quite fast and thus it is favored for multi-area reliability studies 

in power industries. The newly proposed method handles all the nodes 

while computing reliability indices and the variables used are much larger 

in number, making this model more time consuming.  

3) Ease of Implementation – Both the models discussed are fairly simple to 

implement. But the equivalent model has certain parameters, such as the 

equivalent tie line capacity and admittance, which ought to be calculated 

while modeling the system and enter into the state evaluation process.  

4) Accuracy – The most important of all the factors is accuracy of the results 

obtained. If the results produced by both the methods have less deviations 

then the traditional method have an edge over the other composite system 

based method, but as the percentage errors are quite high the need to use 

the latter method is recommended. Calculating multi-area reliability with 

real good accuracy is highly essential due to the vast prevalence of 

interconnected operation among power systems.  
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4.5 Conclusion 

 The newly proposed model and the traditional model have been successfully 

implemented and reliability indices of RTS and MRTS were calculated. IEEE RTS and 

MRTS are standard test systems which are used very widely for reliability studies.  

 The credibility of the new composite system based reliability model was checked 

using standard results obtain in the literature. This model due to its detailed modeling of 

the system produced accurate results and served as a standard to weigh the equivalent 

model’s accuracy.  

 The results obtained were compared and the percentage errors were also 

calculated. The equivalent model produced very high error percentages which should 

definitely be considered by system planners while choosing reliability models for 

interconnected system.  

 Due to the highly accurate results produced by the new method, it is 

recommended to use it for interconnected system reliability calculations. Keeping the 

importance of the task involved and the impact of such results on system planning, 

accuracy should be given more priority than the computational time involved. 
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CHAPTER V 

CO�CLUSIO� 

 

The primary function of an electric power system is to provide electrical energy 

to its customers as economically as possible and with an acceptable degree of continuity 

and quality. The adequacy of the generating capacity in a power system is normally 

improved by interconnecting the system to other power systems. 

Operation of power systems under interconnected condition has been receiving 

growing attention. Interconnecting power systems becomes attractive from the view 

points of economics and reliability. When many systems are to be interconnected or 

when a new system is to join an existing interconnection they must oblige to certain 

conditions and provide a specified level of reliable operation. A proposed 

interconnection must not degrade the reliability or operating flexibility of the existing 

power system. System planning studies are carried on to assess such interconnections 

and evaluate their reliability.  

Reliability evaluation of multi-area systems has always been an important topic 

for research owing to its importance. Power system reliability evaluation has been 

extensively developed utilizing probabilistic methods and wide range of appropriate 

indices can be determined. The main steps of reliability evaluation are state selection, 

state evaluation, and index estimation. The system has to be modeled to begin the state 

selection process. This thesis discusses two types of system modeling – equivalent tie 

line model and a newly proposed composite system based multi-area reliability model. 
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Traditionally, multi-area system reliability evaluation has been carried out by the 

equivalent tie line method. This model represents an area by a single node to which is 

connected the entire area’s loads and generations. Hence the number of nodes analyzed 

is equal to the number of areas and this reduces complex integrated systems into a 

simple one. Tie lines connecting any two areas are replaced by an equivalent tie line, 

which is later assigned a power carrying capacity and admittance. Intra-area 

transmission line constraints are, to some extent, reflected by the equivalent tie line 

capacities. Such type of modeling facilitates fast computation of reliability indices and 

this is the main reason for using this model most prevalently.  

A new model called the Composite system based multi-area reliability model is 

proposed in this thesis. It can serve as a standard to weigh the accuracy of the existing 

equivalent tie line model and would help system planning studies to carry out reliability 

evaluation more accurately. This model is comprehensive and is based on composite 

system structure as all the buses, loads and generations of the original interconnected 

system are modeled without any approximations or exclusions. This is an ideal way of 

system modeling to get accurate results. With the help of a simple LP prioritizing 

techniques operation of an interconnected system with varying load sharing policies can 

be easily modeled. This model was developed mainly for the purpose of gaining insight 

about the accuracy of the traditional method. 

Monte Carlo simulation techniques have been favored in reliability enumerations 

as it has the ability to accommodate higher levels of system complexity. The reliability 

techniques using Monte Carlo simulation can be broadly classified into two methods 
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which are random sampling and sequential sampling. In random sampling, or non-

sequential sampling, a system state is sampled based on components distribution 

functions using proportional probability or probability distribution methods. Random 

sampling is preferred and used, in the work presented in this thesis, for system state 

selection as it is really simple to use and accomplishes the objectives of this research. 

The IEEE 24-bus Reliability Test System and Modified Reliability Test System 

have been used in this research for comparing both the models described previously. 

Reliability indices such as LOLE and EUE were calculated for both the system by both 

the models and are presented in Chapter IV. The results are compared and the percentage 

errors produced were enumerated. The error percentages reflect the accuracy of the 

models. The newly proposed model being very comprehensive and detailed is said to 

produce accurate results for reliability indices. When comparing with these results the 

equivalent tie line method estimates reliability indices with huge errors.  

Equivalent tie line model excels in calculation speed and simplified system 

structure but does not compare well with the new method in terms of accuracy, which is 

of greater importance. System planning studies use reliability indices for various 

purposes and any error in estimation of such indices may affect further dependant 

calculations. 

The accuracy of reliability indices calculated by composite system based multi-

area reliability model is used as since no simplifications have been made. It would make 

a better tool in system planning studies. The problem with the conventional method is 

that the values for the capacities are fixed and based on a certain scenario. The accuracy 



 53

could be improved by using different values under different conditions but then it would 

become complicated to implement. 
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APPE�DIX A 

THE IEEE 24 – BUS RELIABILITY TEST SYSTEM 

 

The IEEE Reliability Test System (RTS) is a synthetic system which was 

developed with the objective of providing the research community with a benchmark test 

system and a common basis for comparing alternative techniques for reliability analysis 

[18]. Details of the RTS and its components are available in [26, 27]. Since the system 

was first developed in 1979, the system data has been extended and enhanced in two 

phases; the extensions are reported in [30] and [31]. However, the basic RTS has not 

been altered in terms of topology or component capacity and reliability, and all the data 

used in the research reported in this thesis is available in [27]. This data, i.e., the 

information used for this research is reproduced here. 

The IEEE – RTS is a 24 – bus system, with 32 generators and 38 transmission 

lines. The configuration is shown in Fig. 5 and the generation, load and transmission line 

data are given in Tables VII through XIII. 

Load Model: The basic annual peak load for the test system is 2850 MW. Table 

VII gives data on weekly peak loads in percentage of the annual peak load. If week 1 is 

taken as January, Table VII describes a winter peaking system. If week 1 is taken as a 

summer month, a summer peaking system can be described. Table VIII gives a daily 

peak load cycle, in percentage of the weekly peak. The same weekly peak load cycle is 

assumed to apply for all seasons. The data in Tables VII and VIII together with the 

annual peak load define a daily peak load model of 52 x 7 = 364 days with Monday as 
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the first day of the year. Table IX gives weekday and weekend hourly load models for 

each of three seasons. Combination of Tables VII, VIII and IX with the annual peak load 

defines an hourly load model of 364 x 24 = 8736 hours. 

 

Fig. 5.  Configuration of the IEEE Reliability Test System 
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TABLE VII 

WEEKLY PEAK LOAD IN PERCENTAGE OF ANNUAL PEAK 

 

WEEK PEAK WEEK PEAK WEEK PEAK WEEK  PEAK 

1 86.2 14 75.0 27 75.5 40 72.4 

2 90.0 15 72.1 28 81.6 41 74.3 

3 87.7 16 80.0 29 80.1 42 74.4 

4 83.4 17 75.4 30 88.0 43 80.0 

5 88.0 18 83.7 31 72.2 44 88.1 

6 84.1 19 87.0 32 77.6 45 88.5 

7 83.2 20 88.0 33 80.0 46 90.9 

8 80.6 21 85.6 34 72.9 47 94.0 

9 74.0 22 81.1 35 72.6 48 89.0 

10 73.7 23 90.0 36 70.5 49 94.2 

11 71.5 24 88.7 37 78.0 50 97.0 

12 72.7 25 89.6 38 69.5 51 100.0 

13 70.4 26 86.1 39 72.4 52 95.2 

 

 

 

TABLE VIII 

DAILY PEAK LOAD IN PERCENT OF WEEKLY PEAK 

 

DAY PEAK LOAD 

Monday 93 

Tuesday 100 

Wednesday 98 

Thursday 96 

Friday 94 

Saturday 77 

Sunday 75 
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TABLE IX 

HOURLY PEAK LOAD IN PERCENTAGE OF DAILY PEAK 

 

 

 

HOUR 

WINTER WEEK 

1-8 & 44-52 

SUMMER WEEKS 

18-30 

SPRING/FALL WEEKS 

9-17 & 31-43 

WKDY
A 

WKND
A 

WKDY WKND WKDY WKND 

12-1 am 67 78 64 74 63 75 

1-2 63 72 60 70 62 73 

2-3 60 68 58 66 60 69 

3-4 59 66 56 65 58 66 

4-5 59 64 56 64 59 65 

5-6 60 65 58 62 65 65 

6-7 74 66 64 62 72 68 

7-8 86 70 76 66 85 74 

8-9 95 80 87 81 95 83 

9-10 96 88 95 86 99 89 

10-11 96 90 99 91 100 92 

11-Noon 95 91 100 93 99 94 

Noon-1 pm 95 90 99 93 93 91 

1-2 95 88 100 92 92 90 

2-3 93 87 100 91 90 90 

3-4 94 87 97 91 88 86 

4-5 99 91 96 92 90 85 

5-6 100 100 96 94 92 88 

6-7 100 99 93 95 96 92 

7-8 96 97 92 95 98 100 

8-9 91 94 92 100 96 97 

9-10 83 92 93 93 90 95 

10-11 73 87 87 88 80 90 

11-12 63 81 72 80 70 85 

 

A
WKDY = weekday, WKND = weekend 
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Generation System: Table X shows the generating unit ratings and reliability 

data. Table X shows the locations of the generating units. 

TABLE X 

GENERATING UNIT RELIABILITY DATA 

UNIT SIZE 

(MW) 
NUMBER OF UNITS 

FORCED OUTAGE 

RATE (FOR) 

12 5 0.02 

20 4 0.10 

50 6 0.01 

76 4 0.02 

100 3 0.04 

155 4 0.04 

197 3 0.05 

350 1 0.08 

400 2 0.12 

 

 

 
TABLE XI 

GENERATING UNIT LOCATIONS 

 

BUS 
UNIT 1 

(MW) 

UNIT 2 

(MW) 

UNIT 2 

(MW) 

UNIT 2 

(MW) 

UNIT 2 

(MW) 

UNIT 2 

(MW) 

1 20 20 76 76   

2 20 20 76 76   

7 100 100 100    

13 197 197 197    

15 12 12 12 12 12 155 

16 155      

18 400      

21 400      

22 50 50 50 50 50 50 

23 155 155 350    
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Transmission System: The transmission network consists of 24 bus locations 

connected by 38 lines and transformers, as shown in Fig. 5. The transmission lines are at 

two voltages, 138 kV and 230 kV. The 230-kV system is the top part of Fig. 5, with 

230/138 kV tie stations at Buses 11, 12 and 24. The system has voltage corrective 

devices at Bus 14 (synchronous condenser) and Bus 6 (reactor). The synchronous 

condenser at bus 14 has a MVAr capacity of 50 (reactive) and 200 (capacitive) and the 

reactor at bus 6 has 100 (reactive).  Bus load data at the time of system peak is shown 

below. 

TABLE XII 

BUS LOAD DATA 

 

BUS 
LOAD 

MW MVAR 

1 108 22 

2 97 20 

3 180 37 

4 74 15 

5 71 14 

6 136 28 

7 125 25 

8 171 35 

9 175 36 

10 195 40 

13 265 54 

14 194 39 

15 317 64 

16 100 20 

18 333 68 

19 181 37 

20 128 26 

TOTAL 2850 580 
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Impedance and rating data for lines and transformers are given below. 

 

TABLE XIII 

TRANSMISSION LINE AND TRANSFORMER DATA 

 

FROM 

BUS 

TO 

BUS 

REACTANCE 

(P.U., 100 MVA BASE) 

CAPACITY 

(MVA) 

1 2 0.0139 175 

1 3 0.2112 175 

1 5 0.0845 175 

2 4 0.1267 175 

2 6 0.1920 175 

3 9 0.1190 175 

3 24 0.0839 400 

4 9 0.1037 175 

5 10 0.0883 175 

6 10 0.0605 175 

7 8 0.0614 175 

8 9 0.1651 175 

8 10 0.1651 175 

9 11 0.0839 400 

9 12 0.0839 400 

10 11 0.0839 400 

10 12 0.0839 400 

11 13 0.0476 500 

11 14 0.0418 500 

12 13 0.0476 500 

12 23 0.0966 500 

13 23 0.0865 500 

14 26 0.0389 500 

15 16 0.0173 500 

15 21 0.0490 500 

15 21 0.0490 500 
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FROM 

BUS 

TO 

BUS 

REACTANCE 

(P.U., 100 MVA BASE) 

CAPACITY 

(MVA) 

15 24 0.0519 500 

16 17 0.0259 500 

16 19 0.0231 500 

17 18 0.0144 500 

17 22 0.1053 500 

18 21 0.0259 500 

18 21 0.0259 500 

19 20 0.0396 500 

19 20 0.0396 500 

20 23 0.0216 500 

20 23 0.0216 500 

21 22 0.0678 500 
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