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ABSTRACT

Modeling and Analysis of Large-scale On-chip Interconnects. (December 2009)

Zhuo Feng, B.Eng., Xi’an Jiaotong University, China;

M.Eng., National University of Singapore, Singapore

Chair of Advisory Committee: Dr. Peng Li

As IC technologies scale to the nanometer regime, efficient and accurate modeling

and analysis of VLSI systems with billions of transistors and interconnects becomes

increasingly critical and difficult. VLSI systems impacted by the increasingly high

dimensional process-voltage-temperature (PVT) variations demand much more mod-

eling and analysis efforts than ever before, while the analysis of large scale on-chip

interconnects that requires solving tens of millions of unknowns imposes great chal-

lenges in computer aided design areas. This dissertation presents new methodologies

for addressing the above two important challenging issues for large scale on-chip in-

terconnect modeling and analysis:

• In the past, the standard statistical circuit modeling techniques usually employ

principal component analysis (PCA) and its variants to reduce the parame-

ter dimensionality. Although widely adopted, these techniques can be very

limited since parameter dimension reduction is achieved by merely consider-

ing the statistical distributions of the controlling parameters but neglecting

the important correspondence between these parameters and the circuit per-

formances (responses) under modeling. This dissertation presents a variety of

performance-oriented parameter dimension reduction methods that can lead to

more than one order of magnitude parameter reduction for a variety of VLSI

circuit modeling and analysis problems.
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• The sheer size of present day power/ground distribution networks makes their

analysis and verification tasks extremely runtime and memory inefficient, and

at the same time, limits the extent to which these networks can be optimized.

Given today’s commodity graphics processing units (GPUs) that can deliver

more than 500 GFlops (Flops: floating point operations per second). comput-

ing power and 100GB/s memory bandwidth, which are more than 10X greater

than offered by modern day general-purpose quad-core microprocessors, it is

very desirable to convert the impressive GPU computing power to usable design

automation tools for VLSI verification. In this dissertation, for the first time, we

show how to exploit recent massively parallel single-instruction multiple-thread

(SIMT) based graphics processing unit (GPU) platforms to tackle power grid

analysis with very promising performance. Our GPU based network analyzer

is capable of solving tens of millions of power grid nodes in just a few seconds.

Additionally, with the above GPU based simulation framework, more challeng-

ing three-dimensional full-chip thermal analysis can be solved in a much more

efficient way than ever before.
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CHAPTER I

INTRODUCTION AND ORGANIZATION

A. Statistical On-Chip Interconnect Modeling and Analysis Using Parameter Di-

mension Reductions

As CMOS technologies continuously scale down, predicting the circuit performance

variations due to various process variations becomes increasingly critical and diffi-

cult [1]. While the growing magnitude of process variations pushes for more complex

parametric models that are capable to capture the nonlinear effects of these process

variations, the dramatically increasing sources of process variability further impose

a formidable high-dimensional parameter space in which a given design have to be

verified and optimized. Curse of dimensionality impacts a wide range of CAD prob-

lems since the feasibility as well as the efficiency of many CAD algorithms critically

depend on the dimension of the parameter space:

• The cost and complexity of many empirical macromodeling techniques (e.g.

RSM based performance modeling) grow exponentially in the number of param-

eters [2, 3]. For example, to extract a model with 20 parameters by a level-two

RSM technique will require some fraction of 220 data, which is very expensive.

Practically, building RSM models with hundreds or thousands parameters is

simply infeasible.

• The same issue appears in a large body of more formal parameterized inter-

connect reduced order modeling algorithms and variational analysis techniques

developed for capturing interconnect variability [4, 5, 6, 7, 8, 9, 10]. The high di-

This dissertation follows the styles of IEEE Transactions on Very Large Scale
Integration (VLSI) Systems.
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Fig. 1. Limitation of PCA.

mensional parameter space makes such model order reduction extremely difficult

and complex. For example, the size of the reduced model generated by algorithm

[8] exponentially increases with the number of parameters. Although it has been

observed in [6] that the projection subspace used in model reduction does not

grow fast in the number of process variations, identifying such low-dimensional

subspace, however, requires expensive samplings in high-dimensional parameter

space.

In the CAD community, the standard practice employs PCA (principal component

analysis) and its variants for parameter reduction [11, 12, 13]. Although widely

adopted, these techniques are limited since parameter reduction is achieved by only

considering the statistics of the controlling parameters while neglecting the important

correspondence between these parameters and circuit performances under modeling

(as shown in Fig. 1). Parameter screening has also been applied under the context

of response surface modeling [2], however, the technique is empirical in nature as it

prunes parameters one at a time based on sensitivity-like measures.
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Given the fact that systematic CAD specific parameter reduction methodologies

are lacking, Chapter II of this dissertation presents a performance-oriented param-

eter dimension reduction framework that can significant reduces the modeling and

verification cost (as shown in Fig. 2). More specifically, our contributions include:

1. Introduced the linear reduced rank regression framework for linear interconnect

circuit parameter dimension reductions;

2. Proposed nonlinear iteration-based reduced rank regression method to perform

parameter dimension reductions for nonlinear transistor circuit components;

3. Proposed nonlinear moment-based parameter reduction method for the given

quadratic performance models.

The above linear and nonlinear parameter dimension reduction methods have

been utilized in a variety of statistical circuit modeling and analysis applications:

1. Very compact parametric interconnect models can be obtained more efficiently
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than ever before, which will significantly reduce the computational cost of the

parameterized model order reductions (PMOR);

2. Statistical design-dependent interconnect corner can be extracted in a more

efficient way, avoiding excessive model generation cost as well as corner finding

efforts;

3. Prior second-order statistical static timing analysis (SSTA) algorithm has been

extended to capture 10X more local and global variation sources than before.

B. Hardware Acceleration of Large Scale On-Chip Power Grid Analysis

Power grid analysis requires solving very large scale linear equations with tens of

millions of unknowns. In the past decade, on the standard general-purpose CPU

platform, a body of power grid analysis methods have been proposed [14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25] with various tradeoffs. The previous methods fall into

the following categories:

• Direct methods such as LU factorization and Cholesky decompositions [18, 24]

produce the most accurate results, at the cost of high runtime and memory con-

sumption. Typically, the runtime and memory of direct methods can increase

super-linearly in the problem sizes, which limits the methods to solve up to only

a few million unknowns. For instance, the state-of-art direct solver Cholmod

takes around 8 Gb memory and 1,000 seconds for solving a nine-million 2D grid

problem.

• Iterative methods such as preconditioned conjugate gradient (PCG) [14, 25],

multigrid (MG) method [15, 17] and the classic first or second order iterative

methods [20, 21] are memory efficient, but may face with slow convergence prob-
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lems. For instance, PCG methods usually require fairly good pre-conditioners

for fast convergence that is very difficult to obtain, the classic iterative method

requires good initial solution guess as well as an accurate estimate of the spatial

radius of the grid, while the multigrid methods typically rely on good coarse

level grid approximations as well as efficient and effective smoothers to damp

out the error components.

• Stochastic method such as random walk [22, 26] can be efficient for solving a

very small portion of a grid design. However, the accuracy level is hard to

predict and a satisfactory results may require a huge number of random walks

that leads to much longer runtime than other methods.

Recently, the emergence of massively parallel single-instruction multiple-data

(SIMD), or more precisely, single-instruction multiple-thread (SIMT) [27], based GPU

platforms offers a promising opportunity to address the challenges in large scale power

grid analysis. Today’s commodity GPUs can deliver more than 500 GFlops 1 of

theoretical computing power and 100GB/s off-chip memory bandwidth, which are

10X greater than offered by modern day general-purpose quad-core microprocessors

[27]. The ongoing GPU performance scaling trend justifies the development of a

suitable subset of CAD applications on such platform.

In Chapter III of this dissertation, a GPU accelerated power grid solver is pre-

sented for very fast power grid analysis. Our contributions include:

1. Proposed GPU-friendly Jacobi and Gauss Seidel iteration schemes that can

achieve a performance of more than 100 Gflops on a 128-core GPU hardware

(theoretical peak performance for the hardware is 500 GFlops), which are more

than 100X faster than the CPU based computations;

1Flops: floating point operations per second.
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2. Proposed a GPU-friendly geometrical multigrid (GMD) solver for fast on-chip

power grid analysis;

3. Proposed a hybrid multigrid method (HMD) for solving irregular, multi-layer

power supply networks which takes the most advantages of both the CPU and

GPU computing platforms.

Designed as a general partial differential equation (PDE) solver, our powerful GPU

based simulation engines can be also used in other VLSI design automation applica-

tions such as clock mesh simulation, power-gated circuit verification, as well as three

dimensional full-chip thermal analysis, etc.
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CHAPTER II

STATISTICAL CIRCUIT MODELING USING PARAMETER DIMENSION

REDUCTION

A. Statistical Parameter Dimension Reduction Methods

In this section, we first review the well-known parameter reduction technique us-

ing principal component analysis (PCA). Then we propose the performance-oriented

parameter reduction while several important application issues are also discussed.

Finally, we show how to implement the performance-based parameter reduction tech-

nique in practical circuit modeling problems.

1. PCA-Based Parameter Reduction

Traditional statistical analysis starts by transforming the correlated Gaussian vari-

ables to uncorrelated ones using principal component analysis (PCA). Subsequently,

the statistical performance distributions can be evaluated accordingly based on the

new variables.

a. Procedures of PCA

PCA transforms the data set to new coordinates such that the largest variance of

the data is projected onto the first few coordinates (also called the principal compo-

nents). PCA can be used for dimension reduction for a data set by keeping those

characteristics of the data set that contribute most to its variance. By keeping the

most dominant principal components, the new data set obtained by PCA usually

contains the ”most important” aspects of the original data set.

Consider an n-dimensional data set X ∈ R
n, which has zero mean and multivari-
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ate normal distributions. After obtaining the covariance matrix Σxx of this data set,

PCA first computes the eigen-decomposition of Σxx, which gives

Σxx = PΛP T , (2.1)

where Λ is a diagonal matrix containing all the eigenvalues of Σxx, and P contains

all the corresponding orthogonal eigenvectors. By including few eigenvectors (of P )

that have the largest eigenvalues into the projection matrix Pr, the new parameter

set Xr that has a smaller dimension than the original data set X can be obtained by

Xr = P T
r X. (2.2)

b. Limitations of PCA

The objective of statistical circuit analysis is to compute circuit performance varia-

tions. Under such context, PCA can be applied to improve the efficiency of circuit

analysis by identifying the principle components of process variations that impact cir-

cuit performances. However, PCA removes the redundancy in the process variation

data set without considering specific design performances. In practice, such design-

independent parameter reduction reduces the cost of statistical circuit analysis, but

in a limited way. To better understand the limitations of PCA, we show the following

two examples.

• DC Response Variation: We first consider a resistance-capacitance (RC) circuit

with a single voltage source input and no grounded resistors, representing the

widely used on-chip RC interconnect model for timing analysis. We assume

that the RC circuit is perturbed by the manufacturing fluctuations in the forms

of wire width (W ), thickness (T ) and dielectric layer thickness (H) variations.

It is well known that the DC voltage response of such circuit can be trivially
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determined by the input voltage excitation regardless of any RC element vari-

ations. However, if one blindly applies PCA to reduce the dimension of RC

variations for the purpose of modeling the DC circuit performance, one will fail

to identify the trivial fact that the dimensionality of the variability of the DC

performance is essentially zero.

• Timing Performance Variation: We consider the more useful issue of modeling

the timing performance variations of the RC circuit. Suppose that variance

of wire width (W ) is greater than that of dielectric layer thickness (H), then

a relevant question to ask is: which variation is more critical (statistically)

in terms of the delay variability? Without taking any circuit information into

account, PCA may just pick W since it has a larger variance. However, in terms

of delay the W variation may not necessarily be a more dominant factor, since

the increase in W leads to an increase in wire capacitance but also a decrease

in wire resistance so that the delay may not be influenced much.

From the above examples, it can be understood that for different performances

of interest (DC response variation or timing variation), PCA will provide the same

parameter reduction results since only the statistical properties of the parameter set

are considered during the reduction. In order to incorporate the output performance

into the parameter reduction procedure and achieve a greater extent of parameter

reduction, we propose the performance-oriented parameter reduction method as fol-

lows.

2. Performance-Based Parameter Reduction

Unlike the standard principal component analysis (PCA), our performance-based pa-

rameter reduction exploits not only the statistical properties of underlying process
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parameters, but also the correlation between these parameters and circuit perfor-

mances of interest, by incorporating and extending the theoretic framework of the

linear reduced rank regression (RRR) [28].

a. Procedures of Linear Reduced Rank Regression (RRR)

We denote the original parameter set by X ∈ R
n and the dependent output perfor-

mance set by Y ∈ R
m. As before, we assume X has zero mean and multivariate

normal distributions. It is assumed that the covariance matrix of Y and X is given

by Σyx and the covariance matrix of X is Σxx. RRR finds the projection matrix by

performing the eigen-decomposition of matrix ΣyxΣ
−1
xx ΣT

yx, instead of Σxx as in PCA.

A few eigenvectors (from U) of the largest eigenvalues (from Λ) form the projection

matrix Ur, which is used to get the reduced parameter set Z by

Z = UT
r X. (2.3)

Obviously, in the above dimension reduction procedure, RRR not only considers the

statistical properties (Σxx) of the original parameter data set X, but also considers

the correlation (Σyx) between the output performance Y and the parameter data set.

As a result, parameter reduction via RRR is achieved while considering specific design

information, which distinguishes itself from PCA-based dimension reduction method.

In practice, for a given set of circuit performances, not all the parameter variations or

the combinations of thereof will be equally important. Exploiting design information

potentially leads to a higher degree of parameter reduction, hence brings additional

benefits beside what PCA can offer.
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b. Application Issues

After the brief introduction of the performance-based dimension reduction (using

RRR), we discuss the following important aspects for practical applications of such

techniques.

• Robust Mathematical Framework : The previous description of linear RRR pro-

vides a basic flavor of our proposed performance-oriented parameter reduction

techniques. However, in reality, circuit performances may react nonlinearly to

large range process variations. As will be described in this Chapter, we extend

linear RRR to a more general nonlinear framework to facilitate more robust

circuit modeling.

• Smart Sample Collection: To efficiently carry out the parameter dimension re-

duction under the RRR framework, the correlation between the output perfor-

mances (Y ) and the input parameters (X) must be obtained carefully. A large

set of statistical parameter/performance data may be needed to compute the

covariance Σyx. However, collecting such data through brute-force full-blown

Monte-Carlo simulations is too expensive, which also defeats the purpose of the

parameter reduction. Therefore, smart data collection techniques that avoid

direct circuit simulations are necessary to realize efficient data collection.

• Efficient Model Characterization: After parameter reduction, parametric mod-

eling can be much more efficiently obtained in the reduced parameter space. As

such, parameter reduction can be considered as a pre-processing step of param-

eterized circuit modeling, though this characterization step is the not the main

focus of this work.

• Retaining Physical Meaning of Parameters : Parameter reduction maps the
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original set of parameters to a new and reduced set. It is important to relate

the resultant new (or artificial) parameters to the original physical parameters.

In the proposed approach, this is achieved by keeping the linear, or more gener-

ally, nonlinear mapping between the original and reduced parameter sets. This

allows us to physically interpret circuit models built upon the reduced param-

eter set. Additionally, it enables the application of parameter reduction under

the full-chip modeling context: parameter reduction and parameterized mod-

eling is applied first to individual circuit blocks and then the resultant models

are further combined to generate models at the next higher level. The ability

of transforming back and forth between the original and reduced parameter

sets makes it possible to handle common global parameters shared by multiple

circuit blocks.

c. Statistical Circuit Modeling Using Performance-Based Dimension Reduction Meth-

ods

Following the ideas we presented previously, we outline how our proposed performance-

oriented parameter reduction can be applied under the general context of statistical

circuit analysis, as illustrated in Fig. 3.

• Circuit Partitioning : Partition the circuit into several building blocks using

divide and conquer;

• Smart Sampling : Apply the smart sampling technique within each small parti-

tion to collect the statistical data for parameter reduction.

• Dimension Reduction: Based upon the correlation information from the sam-

ples to perform the performance based parameter reduction within each small
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Fig. 3. Performance-based parameter reduction for full chip circuit modeling (consid-

ering multiple circuit blocks).

partition; obtain the mappings between the full parameter set (global/local

variations) and the reduced parameter set.

• Model Characterization: Generate individual parametric circuit models in the

reduced parameter space.

• Parameter Mapping : Use the mappings obtained in the dimension reduction

step to map the reduced parameter set to the full parameter space; Conse-

quently, generate the parametric performance models in the full parameter

space.

• Final Model Evaluation: Combine all the parametric circuit models and evaluate

the statistical variations due to all the global/local variations.

In the above procedures, it is evident that the efficiency of the model character-

ization step will be significantly improved, since much smaller parameter dimension

is considered. Additionally, the mappings between the full and reduced parameter
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sets produced by the parameter reduction will allow proper handling of global/local

variation parameters impacting multiple circuit blocks. Such mappings also enable

us to recursively apply parameter reductions for the full chip modeling. Due to the

scope of this work, we will only focus on parameter reduction of partitioned circuit

blocks and leave the hierarchical full-chip modeling to the future work.

B. Performance-Based Dimension Reduction via Reduced Rank Regression (RRR)

To achieve more powerful parameter dimension reduction, it is clear that a framework

that can take into account the meaningful structural information of a given design and

consider the modeling of multiple performances is desired. To facilitate a statistical

parameter reduction approach rigorously, we adopt RRR as a suitable modeling tool

and extend it for practical circuit modeling needs.

1. Dimension Reduction with Linear Reduced Rank Regression Framework

a. Linear Multivariate Reduced Rank Regression Theory

Regression analysis has been widely used in statistical data analysis. We consider the

general multivariate linear model

Y = CX + ε, (2.4)

where Y is an m×N matrix containing N -samples of m dependent variable vectors,

X is an n×N matrix containing N -samples of n predictor variables, C is an m× n

regression coefficient matrix and ε is the zero-mean random errors of the regression.

As a standard approach, C can be found by using the least square criterion, which

aims to minimize the trace (sum of the diagonal elements) of the covariance matrix,
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Σεε of ε

tr(εεT ) = tr[(Y − CX)(Y − CX)T ]. (2.5)

A unique solution for C can be shown to be

C = Y XT (XXT )−1. (2.6)

It is easy to show that the minimization of the trace of Σεε also implies the minimiza-

tion of the standard deviation error for each dependent variable in the response vector

Y . Note that the above linear regression model does not lend itself to parameter re-

duction. The standard regression model does not exploit any statistical redundancy

and correlation between Y in the model. In practical problems, however, it is very

likely that significant model redundancy may exist, which manifests in the possibility

of constructing a rank-reduced regression matrix C̃.

Suppose that we have a predictor variable vector X ∈ R
n and a dependent

variable vector Y ∈ R
m, with each having a zero mean. We denote the covariance

matrix of X as Cov(X) = Σxx, and the covariance matrix between X and Y as

Cov(Y,X) = Σyx = ΣT
xy. The following theoretical result can be shown [28]:

Theorem 1 An m× r matrix Ar and r× n matrix Br can be found to minimize the

trace

tr{E[(Y − ArBrX)(Y − ArBrX)T ]}, (2.7)

where

Ar = U,Br = UT ΣyxΣ
−1
xx , (2.8)

and U = [U1, ..., Ur] contains r normalized eigenvectors corresponding to the r largest

eigenvalues (λj, j = 1, ..., r) of the matrix

D = ΣyxΣ
−1
xx ΣT

yx. (2.9)
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In the above theory, suppose we are given a matrix S ∈ R
m×n, which is the first order

sensitivity matrix that relates Y and X by Y = SX, then we have Σyx = SΣxx, which

further gives

D = SΣxxS
T . (2.10)

b. Implication on Parameter Dimension Reduction

It is critical to note that, a successful application of RRR also implies the possibility of

parameter reduction. In other words, by the previously described rigorous procedure,

the inherent redundancy in the predictor variables can be filtered out statistically. To

see this point, we first note that we have computed a rank-r regression model that

minimizes the statistical errors in Y in the sense of (2.55)

Y = ArBrX + ε̃, (2.11)

where ε̃ represents the model error. We can construct a new set of variable Z ∈ R
r

(r < n) as

Z = BrX, (2.12)

leading to an optimal regression model

Y ≈ ArZ. (2.13)

c. Formation of the Reduced Parameter Set

Until now, the original set of parameters in X can be reduced into new variables in

Z using a mapping matrix Br (2.12). From another angle, Br reveals the importance

of each old parameter (in X) with respect to the performance (in Y ) in a statistical

sense, which can be clearly understood by examining the weighing coefficients. For

example, the (i, j) entry of matrix Br describes the linear contribution of the jth



17

original parameter xj to the ith new parameter zi.

Obviously, this feature of the RRR-based parameter reduction method is more

preferable when compared with the traditional parameter screening technique [2].

For instance, we know that the performance of VLSI system can be expressed using

response surface models (RSM), and the coefficients of the RSM model actually pro-

vide the sensitivities of the underlying parameters. Though people can reasonably

reduce the parameter dimension of a specific RSM model by examining the sensitiv-

ities of the parameters and removing those parameters with insignificant coefficients,

for high-dimensional performance cases, the method becomes difficult to apply.

d. Inverse Mapping: From Z to X

To map the reduced parameter set (Z) back to the full parameter set (X), we can

use the pseudo-inverse (Moore-Penrose) [29] of matrix Br that satisfies

X = TZ. (2.14)

This mapping is done by computing the singular value decomposition (SVD) of Br

matrix. So if the SVD of Br matrix is Br = UΣV T , then the pseudo-inverse is

T = V Σ−1UT . As will be discussed later (Section a), this inverse mapping is necessary

for converting models from the full parameter space to the reduced parameter space.

e. Uncorrelated Reduced Parameter Set

The new parameters in Z are uncorrelated and under certain conditions, they are

independent, which lead to the following theorem:

Theorem 2 For any reduced parameter set Z = BrX, the individual variables z1, z2, ...

are uncorrelated (under the normal distributions, they are independent). This argu-
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ment is equivalent to that the covariance matrix of Z is diagonal.

Since the covariance matrix of Z is given by:

Cov(Z) = E
(
BrXXT BT

r

)
= BrΣxxB

T
r , (2.15)

after substituting Br = UT ΣyxΣ
−1
xx , we have:

Cov(Z) = UT ΣyxΣ
−1
xx ΣxxΣ

−1
xx ΣT

yxU = UT DU = Λ, (2.16)

where Λ is a diagonal matrix containing all the eigenvalues of D matrix in (2.9). So

the covariance matrix of Z is diagonal thus the new parameters in Z are uncorrelated

variables. It is interesting to see that the standard deviations of these new parameters

are simply the square roots of the diagonal elements of the matrix Λ.

f. Linear Reduced Rank Regression Algorithm

Algorithm 1 Linear RRR Algorithm

Input: First order sensitivity matrix S ∈ R
m×n (satisfies Y ≈ SX, where Y is the

standardized performance vector with µYi
= 0, σYi

= 1 ), parameter dimension n (of X),
the parameter covariance matrix Σxx and the reduced parameter dimension r or the
pre-defined error tolerance ε.
Output: The mapping matrix Br .

1: Set D← SΣxxS
T;

2: Do eigen-decomposition for D matrix such that D = UΛUT to get all the eigenvalues
λi (in descending order) and the corresponding eigenvectors ui ;

3: if Use the error tolerance ε to find the parameter dimension r then

4: Set λs ← Σm
i=1λi;

5: Find r that satisfies Σr
i=1λi > (1− ε)λs > Σr−1

i=1 λi;
6: else

7: Use the default r as the parameter dimension;
8: end if

9: Use the r largest eigenvalues and their corresponding eigenvectors to form a diagonal
matrix Λr and a matrix Ur;

10: Set Br ← Λ
−1/2
r UT

r S;
11: Return the mapping matrix Br .



19

We conclude the parameter reduction algorithm using linear RRR in Algorithm 3.

The inputs to the algorithm include the first order sensitivity matrix S that linearly

relate the standardized performance space Y and the parameter space X and the

covariance matrix Σxx of the full parameter space X. The input may also include

the desired dimension of the reduced parameter set r, or the error tolerance ε. By

following the formulas given in the previous sections, Step 1 of the algorithm computes

the the D matrix in (2.9) using a closed form formula. The eigen-decomposition is

subsequently performed to find all the eigenvalues and the eigenvectors of the D

matrix. After sorting all the eigenvalues in a descending order, if we want to find

the reduced parameter set for a predefined error tolerance ε, the sum of top r largest

eigenvalues Σr
i=1λi are compared with the sum of all eigenvalues λs in step 3 and 4,

where the dimension of the final reduced parameter set is determined by looking at

the the ratio Ratr = (Σr
i=1λi)/λs: the smallest r that satisfies Ratr > 1 − ε will be

chosen as the final dimension of the reduced parameter set. In Step 6 of the algorithm,

Λ
−1/2
r is used to scale the rows of Br matrix such that the final reduced parameters

(Z = BrX) all have the N(0,1) distributions.

We show the comparisons on the key steps of the PCA and the RRR algorithms

in Fig. 4. The standard PCA can be applied to reduce the data redundancy in either

X or Y , but not the both simultaneously. Under our context of circuit modeling, it

is important to note that a reduced rank model such as (2.61) is computed not to

simplify a given more complex model [e.g., (2.52)]), instead, it is used as a means

to reveal the redundancy in the predictor variables (e.g., process variations) to fulfill

the purpose of parameter reduction. In our circuit modeling task, Y does not have

to be the circuit performances of interest, more generally it can be chosen to be some

other easily computed circuit responses that are closely related to the performances,

as described in the following sections.
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Fig. 4. Comparison of PCA and RRR for circuit modelings.

2. Dimension Reduction with Nonlinear Reduced Rank Regression Framework

For many realistic circuit problems, we have noted that the linear regression models

in (2.52) and (2.59) are not completely adequate to capture the noticeable nonlinear

relationship between process variables and circuit performances, especially when the

range of the process variations is relatively large. To seek a more robust parameter

reduction for these cases, we adopt the same notion of reduced rank regression as

described in the previous subsection but cast it under a more general quadratic model.

Consider the following quadratic regression model

Y = f (X) ≈
[

C1 C2

]



X

X ⊗X


 , (2.17)

where the quadratic terms of X are expressed using the tensor product: X ⊗X =

[x2
1, x1x2, · · · , x1xn, · · · , x2

n]T , C1 and C2 are the first- and second-order coefficient

matrices, respectively. To apply the reduced rank approximation, ideally we want to
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find some regression matrices Ãr1 ∈ R
m×r, Ãr2 ∈ R

m×r2
, and B̃r ∈ R

r×n such that the

error of the following reduced-rank regression model can be minimized in a statistical

sense

Y ≈
[

Ãr1 Ãr2

]



B̃rX
(
B̃rX

)
⊗

(
B̃rX

)


 . (2.18)

However, it turns out that an optimal model in the form of (2.18), to the best

of our knowledge, cannot be derived explicitly. Thus we propose two feasible ways to

obtain a proper reduced parameter set under this nonlinear model.

a. Extended Nonlinear RRR

In this approach, the nonlinear RRR problem is first converted to an equivalent linear

RRR problem and then solved for the optimal solution. To include the nonlinear

effects of the predictor variables on the response variables, we form an equivalent

linear RRR model by including the quadratic terms X ⊗X in the linear RRR model

as additional predictor variables.

An augmented predictor variable vector is defined as

X̃ =




X

X ⊗X


 . (2.19)

We then compute the new covariance matrices Cov(Y, X̃) = ΣY,X̃ and Cov(X̃) =

ΣX̃,X̃ and follow the linear RRR procedure to get a reduced-rank model

Y ≈ Ar

[
Br1 Br2

]



X

X ⊗X


 , (2.20)

where Ar ∈ R
m×r, Br1 ∈ R

r×n and Br2 ∈ R
r×n2

. The above model is optimal in a sense

similar to (2.55) (the regression model is cast in a quadratic form here). Compared
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with the model in (2.18), here we have

ArBr1 ≈ Ãr1B̃r, (2.21)

ArBr2 ≈ Ãr2(B̃r ⊗ B̃r).

The reduced parameter set Z ∈ R
r is expressed in a quadratic form of X

Z = Br1X + Br2(X ⊗X). (2.22)

It has been observed in our experiments that the above quadratic RRR model

can significantly improve the accuracy of the pure linear RRR model, especially for

nonlinear digital circuits, where key circuit performances may be very sensitive to

underlying process variations. However, one potential drawback of this approach

is that the reduced parameter set Z become some nonlinear combinations of X 2.

Sometimes, this will make it difficult to find simple closed-form expressions of the

statistical distributions of Z even those of X are known.

b. Iteration-Based Nonlinear RRR

To remedy the drawback of the ”extended nonlinear RRR” approach, we propose an

alternative iterative procedure to find the approximated reduced set of parameters

under a quadratic RRR model. We show the detailed procedure in Algorithm 6.

c. Algorithm Details

The initial step of this algorithm is to apply the traditional linear RRR to find the

initial guess for Ã
(0)
r1 and B̃

(0)
r matrices. Then the kth iteration of this algorithm can be

2When the circuit performances have a mild nonlinear dependency on the para-
metric variations, it has been observed that the nonlinear portion in (2.22) may be
safely truncated.
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Algorithm 2 Iteration-Based Nonlinear RRR Algorithm
Input: Standardized response vector Y, predictor vector X, the error tolerance ξ0, the
dimension of the reduced parameters r and the maximum number of iterations Nmax.
Output: Ãr1, Ãr2 and B̃r matrices in (2.18).

1: Do linear RRR to find the initial Ã
(0)
r1 and B̃

(0)
r ; Set k← 1;

2: while
(
ξ(k) ≥ ξ0

)
& (k ≤ Nmax) do

3: Set Y
(k)
quad ← Y − Ã

(k−1)
r1 B̃

(k−1)
r X;

4: Do nonlinear regression [30] for Y
(k)
quad with respect to the reduced pa-

rameter set Z̃(k−1) = B̃
(k−1)
r X, which gives Ã

(k)
r2 that best satisfies:

Y
(k)
quad ≈ Ã

(k)
r2

(
Z̃(k−1) ⊗ Z̃(k−1)

)
;

5: Set Ŷ
(k)
quad ← Ã

(k)
r2

(
Z̃(k−1) ⊗ Z̃(k−1)

)
;

6: Set Y
(k)
lin ← Y − Ŷ

(k)
quad;

7: Do linear RRR for Y
(k)
lin and X(k) to get the updated Ã

(k)
r1 and B̃

(k)
r matrices;

8: Set ξ(k+1) ←
∥∥∥B̃(k)

r − B̃
(k−1)
r

∥∥∥; Set k← k + 1;

9: end while

10: Return Ãr1, Ãr2, B̃r and the number of iterations k.

depicted as follows: a nonlinear regression algorithm [30] is used to find the coefficient

matrix Ã
(k)
r2 for the quadratic portion of Y

(k)
quad with respect to the quadratic portion

of the reduced parameter set Z̃(k−1) = B̃
(k−1)
r X; the updated the linear portion Y

(k)
lin

of Y is given by Y
(k)
lin = Y − Ã

(k)
r2

(
Z̃(k−1) ⊗ Z̃(k−1)

)
; another traditional linear RRR is

conducted to obtain the updated Ã
(k)
r1 and B̃

(k)
r based on the linear portion Y

(k)
lin and

X. Each iteration of the algorithm only requires one time nonlinear regression for

the quadratic portions of Y and Z, which will not require a significant optimization

cost. In our experiments, it has been observed that an optimal Br matrix can be

obtained after only two or three iterations. Thus this approach is rather efficient for

coping with the strongly nonlinear effects while maintaining a simple linear mapping

between X and Z.
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d. Algorithm Complexity

The main computational cost of each iteration loop includes one time nonlinear re-

gression (Step 4) and one time linear RRR (Step 7). The cost of the nonlinear

regression depends on the dimension of the reduced parameter set Z, which is typi-

cally very small. Consequently, the complexity of the iterative RRR mainly depends

on dimension of the reduced parameter set.

We should notice that the main cost of this parameter reduction method is

due to the sample data (Y ) collection which involves numerous circuit simulations.

Once the samples in the parameter space and performance space are collected, the

computational cost due to the iteration-based RRR algorithm can be negligible.

C. Variability Modeling of Interconnect Circuits Using Parameter Reduction

1. Statistical Circuit Model Generation with Parameter Reduction

In this section, we first show how our parameter dimension reduction framework is

applied to statistical modeling of interconnects using the linear RRR (Section b)

or the extended nonlinear RRR (Section a). Next, we show the application of the

iteration-based nonlinear RRR (Section b) for the transistor circuits. Finally, some

verification methods based on sampling base approaches will be introduced.

a. Parameter Reduction for Interconnects

1) Capturing Interconnect Parametric Variations:

We use the standard modified nodal analysis (MNA) equations to describe an inter-

connect network 



(G + sC) x = Bu

y = LT x

, (2.23)
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Region 4

Region 5

Fig. 5. An RC circuit with parametric variations.

where u ∈ Rn×1 and y ∈ Rm×1 represent the inputs and outputs, x ∈ RN×1 represents

the system unknowns, G,C ∈ RN×N are the conductance and capacitance matrices,

B ∈ RN×n and L ∈ RN×m are the input and output matrices, respectively.

In order to possibly capture process variations, without loss of generality, we

consider the RC circuit shown in Fig. 5 as an example. The circuit has one nonlinear

driver providing the input and three output circuit nodes driving three downstream

stages. The circuit is divided into several regions spatially and the local geometrical

variations are introduced on a per region basis to capture possible spatial process

variations. Variations considered in this dissertation only include various geometrical

parameters such as wire width and thickness, dielectric layer thickness, though other

types of local or global parameters can be treated in a similar way. Generally, we con-

sider a set of np local and global geometrical variation variables: ~p = [p1, p2, · · · , pnp
]T .

To capture the influences of ~p on the system equations (2.23), the following expansions
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of conductance and capacitance matrices in ~p are used:

G = G0 +
∑

i

Gipi, (2.24)

C = C0 +
∑

i

Cipi. (2.25)

In practice, we may only consider variations in resistances and capacitances and ne-

glect inductance variations, which have been observed to be small.

RRR-Based Interconnect Parameter Reduction

A full account of global and local variations in a large multi-layer interconnect

network can lead to the consideration of a large set of geometrical variables (np is

large). However, if we are only interested in analyzing the circuit performances at

the output nodes, the effective parameter dimension of a given network may not be

very large since the specific circuit structure can hide certain parametric variations

and may even introduce canceling effects between multiple variations. To identify the

reduced parameters of interconnect, general linear RRR is applied, since for linear

network the nonlinearity is not significant. It is important to understand that linear

RRR is only applied to find the reduced parameter set (linear combinations of the

original parameters), though the output response of the interconnect circuit may also

depend on the nonlinear effects of underlying parameters. The application of the

extended nonlinear RRR (a) for linear network has also been described in [31], which

is a more general parameter reduction approach but at a higher cost.

In this part, we only consider the linear RRR method proposed in Section b. To

apply linear RRR, one would very naturally choose the underlying process variations
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(~p) as the predictor variables (X). In the proposed approach, linear RRR is only

employed as a tool to perform parameter reduction but is not used for performance

modeling. Therefore, the dependent variables (Y ) may not have to be chosen as

certain performance measures such as circuit delays. In practice, this flexibility is

particularly useful because in many cases a compact simulation model is often needed

but not a performance model.

For interconnect models, we use the standardized transfer function moments

(with µ = 0, σ = 1) as the dependent variables (Y ) based on their strong correlation

with timing performance. One important benefit of such choice is that transfer func-

tion moments are also easy to compute. We have developed computationally efficient

procedures to generate closed-form expressions for transfer function moments and

their dependency on the underlying geometrical variations. As such, statistical mea-

sures required by RRR ( e.g. S and Σxx in Algorithm 3), can be efficiently obtained

in closed-form without resorting Monte-Carlo sampling, leading to high efficiency of

the proposed parameter reduction.

We expand a transfer function moment (mk) at a particular output of interest

as

mk = mnom,k +

np∑

i=1

αk,ipi, (2.26)

where k = 1, · · · , ns and ns is the number of moments to be observed. For example,

if we want to capture the first three moments for five output nodes, then ns will be

equal to 15. In the above equation, mnom,k is the nominal case moment, and αk,i are

the first order coefficients capturing the dependency of mk on ~p. As mentioned before,

though the actual transfer function moments not only depend on the first-order terms

but also the higher order terms, these first order forms are sufficient for linear RRR

to accurately identify the reduced parameters.
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The first-order coefficients αk,i can be efficiently computed by reusing the LU

factorization of the conductance matrix G [32]. Higher order dependencies of the

moments on pi can also be computed. With all the first-order sensitivities of the

transfer function moments obtained above, the covariance matrix between Y and X

is given as

ΣY X = E
{
SXXT

}
= SΣXX , (2.27)

where [S]i,j = αi,j. By following Algorithm 3, we can obtain the reduced set of pa-

rameters Z = BrX subsequently.

Reduced-Parameter Interconnect Models

To be benefited by parameter reduction in simulation, we need to cast our circuit

model such as (2.23) in the reduced parameter set Z. Hence, the dependency of the

system matrices on the new parameters should be computed:

G = G0 +
∑

i

Gzi
zi; (2.28)

C = C0 +
∑

i

Czi
zi. (2.29)

Applying the chain rule, we have the first order sensitivities with respect to the new

parameters as

Gzk
=

∂G

∂zk

=
∑

i

∂G

∂pi

∂pi

∂zk

; Czk
=

∂C

∂zk

=
∑

i

∂C

∂pi

∂pi

∂zk

. (2.30)

To fully compute the above expressions, we still have to find ∂pi

∂zk
first, which can be

done by expressing X (pi) in terms of reduced parameter set Z. To this end, T matrix

in (2.62), which is the pseudo inverse of Br, is computed such that X = TZ. Then
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pi in X can be written as

pi =
nz∑

j=1

tijzj, i = 1, ..., np. (2.31)

So we have ∂pi

∂zk
= tik and the first-order sensitivities with respect to the new

parameters zk as

Gzk
=

∂G

∂zk

=
∑

i

Gitik; Czk
=

∂C

∂zk

=
∑

i

Citik. (2.32)

Upon obtaining the new simulation models in the reduced parameter set z, the

immediate benefit of parameter reduction is to conduct Monte Carlo simulation by

sampling in the new parameter space, which is much more efficient. We have applied

variance reduction techniques such as Latin hypercube sampling (LHS) [33] to reduce

the number of random samples needed to estimate performance statistics by working

in the reduced parameter space. Due to the application of our RRR based parameter

reduction, LHS becomes an effective variance-reduction tool in the low-dimensional

parameter space.

Equally important, the reduction of parameter dimension is also a key to en-

able parameterized model order reduction techniques to compute compact simulation

models while considering the impact of process variations [8, 9, 10]. It should be un-

derstood that the efficiency and the cost of these algorithms critically depend on the

parameter dimension, as discussed before. By performing parameter dimension re-

duction, we are able to compute highly efficient reduced order models while capturing

a large set of (original) process variables. This leads to compact reduced-parameter-

order models.
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b. Parameter Reduction for Transistor Circuits

Unlike the parameter reduction for the linear networks where the first-order sensitivi-

ties of the transfer function moments are extracted to form a linear RRR formulation,

parameter reduction of transistor circuits is more complicated. It requires numerous

circuit simulations in the parameter space X. The simulation cost incurred in the

data collection can be justified under a hierarchical modeling approach, where small

portions of the circuit are reduced first and then merged to form a larger portion of

the circuit in a bottom-up fashion (as shown in Fig. 3). For this type of circuits, the

response vector Y usually strongly depends on the nonlinear portion of the underlying

parameters, thus the simple extended nonlinear RRR scheme (Section a) may cause

inaccuracy in presence of large variation sources. To improve the modeling accuracy,

the iteration-based nonlinear RRR (Section b) is applied, though it may cause a bit

higher computation cost.

The typical parameter reduction procedure for the transistor circuits includes

simulation data collection, data analysis and model verification. For the step of data

collection, we have to determine the circuit performance to be observed. For instance,

if we are interested in the circuit delays on some output nodes of a combinational logic

circuit, we can first generate hundreds or thousands of samples of input parameters

(corresponds to the predictor X) and then do simulations to collect the final delay

values as the performance (corresponds to the response Y ). Once all the input and

response data are collected, we standardize all the response samples in Y and conduct

the iteration-based nonlinear RRR to find the transform matrix Br using Algorithm

6, which may involve only several iterations.
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2. Verification of Reduced-Parameter Models

Once the parameter reduction has been carried out using the technique described

in previous sections, parameterized circuit models can be generated based upon the

reduced parameter set using a technique such as response surface modeling (RSM) or

parameterized model order reduction. It is expected that the cost of the parameterized

circuit modeling will be significantly reduced if the dimension of the new parameter

space is noticeably compressed. Due to the scope limitation of the present work, here

we are only concerned with parameter dimension reduction with the understanding

that the subsequent parameterized model generation can be conducted by using many

existing techniques.

To verify the accuracy of the proposed parameter reduction technique, we show

the procedure for re-sampling with the reduced-parameter set. Suppose that we have

obtained Br in (2.12), or Br1 and Br2 in (2.22), then we can verify the accuracy of

such parameter reduction by applying Monte-Carlo simulation of the original circuit

model and sampling in the new parameter set Z. Though there are several ways to

conduct such sampling scheme, we prefer to use the following two simple methods for

the purpose of demonstration.

a. Direct Re-sampling

To examine the model accuracy on the PDF or CDF distributions after parameter

reduction, we can do re-sampling in the new parameter space Z. For interconnect

and typical RC circuits, by computing Z in (2.12), we can obtain quite satisfactory

results (as shown in the result section). For nonlinear circuits, we either keep the

complete nonlinear mapping in (2.22) or use the iterative nonlinear RRR to find a

linear mapping, where the latter choice is preferred. Either for the interconnect circuit
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modeling using linear RRR (Section b) or for the transistor circuit modeling using the

iteration-based nonlinear RRR (Section a), the new parameters in Z = [z1, z2, ...]
T are

uncorrelated variables (Theorem 2). Since Algorithm 3 gives the reduced parameters

with N(0,1) distributions, new samples in the reduced parameter space can be easily

generated. Subsequently, we can accurately predict the probability distributions of

the circuit response. This sampling scheme is proved to realize the variance reduction

by various experiments, therefore much fewer samplings are needed for generating the

accurate PDF and CDF compared with the samplings in the full parameter model.

Our experiments indicate at least 5X reductions on the number of samples for an

accurate estimate of the probability distributions.

b. Indirect Re-sampling

To verify the model accuracy for specific input parameters with the full parameter

model, we can use an indirect approach for both the linear RRR-based model and

iteration-based nonlinear model, which is described as follows:

1. Generate a set of random samples of X and use the linear/quadratic mapping

of (2.12) or (2.22) to obtain the new parameter set Z;

2. Find the inverse mapping matrix T (2.62) that transforms the samples of Z to

the new samples of X (only the linear portion of X in Z is kept);

3. Re-simulate the circuit using these new samples of X.

The third step of the indirect re-sampling method can be explained more compre-

hensively as follows. The linear portion of (2.22) represents a set of under-determined

linear equations, in which the dimension of Z is much less than the dimension of X

due to the parameter reduction. Fortunately, we know that a successful parameter
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reduction implies that statistically not all the original parameters in X are important

but only a few combinations of them (Z) are. This intuition allows us to use the

standard methods for under-determined systems such as pseudo-inverse to express X

in term of Z. For the iteration-based nonlinear RRR case, the indirect re-sampling

can be significantly simplified since we can directly use the quadratic reduced rank re-

gression model in (2.18) to predict the response, which is accurate enough for typical

variation ranges.

It shall be noted that the direct re-sampling approach described above can be

applied to the reduced-parameter models to speedup statistical circuit analysis. Under

a full system analysis context, reduced-parameter models for various building blocks

are extracted first, and then the statistical performance distributions of the complete

system are computed by sampling in the compressed reduced parameter set resulted

from parameter dimension reduction.

3. Numerical Results

We demonstrate the applications of the proposed techniques on several interconnect

circuit examples and one digital circuit. This section includes the following four

subsections.

A) Parameter reduction via linear reduced rank regression. The linear RRR-based

algorithm is applied for parameter reduction of various interconnect circuits

considering spatial correlation of the intra-die variations.

B) Parameter reduction via nonlinear reduced rank regression. The iterative RRR

algorithm is applied for the parameter reduction of combinational logic circuit

for independent Gaussian variation sources; The dimension reduction results

are compared with the results given by PCA-based method.
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C) Combining parameter dimension reduction with model order reduction. The mul-

tiparameter model order reduction is incorporated with the linear RRR-based

parameter dimension reduction for interconnect circuits.

D) Formation of the reduced parameter space. The compositions of the reduced

parameters for the interconnect/digital circuits are demonstrated; The reduced

parameter sets produced by linear RRR and iteration-based nonlinear RRR

algorithms are compared.

For the interconnect cases, we assume all the random interconnect geometrical

variations are Gaussian. The accuracy of our reduced-parameter models as well as

the reduced-parameter-order models are verified by examining 50% Vdd delays and

frequency domain responses. For the combinational logic circuit, we assume all the

threshold voltages of the transistors to be Gaussian and the accuracy of our reduced-

parameter model is verified by examining the 50% Vdd delays at the specific output

nodes. We also show the accuracy of two reduced-parameter models on a per sample

basis.

a. Parameter Reduction via Linear RRR

1) Two Coupled Lines

First, we consider two coupled long RC lines as shown in Fig. 6. The wire width

W and thickness T of each line are both 1 µm, and the dielectric layer thickness

H is 0.5 µm. The spacing S between two lines is 0.8µm. To realistically relate the

RC parameters with the geometrical parameters, which are subject to process varia-

tion, capacitance values are calculated using the closed-form formulas based on the

geometrical values [34], while the unit length resistance is calculated using the cross

section area and the conductor resistivity. To better investigate the efficiency and
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accuracy of the parameter reduction algorithm, in this circuit example, we consider

the following assumptions :

Assumption 1—Correlated Variation Sources: The two lines are divided into ten

regions and three geometrical variations including W , T and H are considered. We

include a dependent variable, wire spacing (S) which is subject to the wire width W .

Therefore there are a total of 30 variation variables. We also consider the intra-die

correlations in this case: we assume the spatial correlation of parameters pi in region i

and pj in region j is determined according to their locations by corr(pi, pj) = e−|i−j|/lp ,

where lp is the correlation length of parameter p. So a larger correlation length

lp indicates a stronger parameter correlation. We consider two sets of correlation

coefficients for the intra-die variations: corr.(1) = [lw, lt, lh] represents a moderate

parameter correlation between different regions while corr.(2) = 10 × [lw, lt, lh]

represents a much stronger spatial correlation. The purpose of this experiment is to

examine how the number of the reduced parameters and the model accuracy varies

under different spatial correlation setups. It can be expected that a stronger spatial

correlation would result in a better accuracy when keeping the same number of the

reduced parameters.

Assumption 2—Gaussian Parameters : Considering the fact that the second-

order sensitivities of capacitance and resistance with respect to the geometry are

quite small compared with the first-order terms, we can safely express the R and C

values in the first-order forms of these geometrical parameters. The 3 σ geometri-

cal variation varies from 15% to 30%. We apply the linear RRR-based parameter

reduction algorithm in Section b to generated three parameter-reduced models with

one, two and three parameters, respectively. Therefore, the maximum parameter

reduction achieved is 20X for this example.

Accuracy 1—Delay Distributions : For both spatial correlations, we compare the
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Fig. 6. Two coupled lines.

original model with the 3-parameter models by examining the delays at terminal (1)

when a random ramp input is applied, as shown in Fig. 6. For the 3-parameter

model, we demonstrate the reduction on the number of random samples required to

compute the delay distribution when the 3 σ variations of all parameters are set to

be 30%. To improve the sampling efficiency, LHS [33] is used to generate samples for

all experiments.

First, we perform Monte Carlo simulations by using the LHS in the full 30-

parameter model to get the delay distribution. It is observed that a minimum of

5, 000 samples are required in order to get a stable delay distribution. If sampling

in the 2-parameter model using LHS, it is observed that 500 samples are enough

to provide an accurate estimation of the same distribution. We also find that the

accuracy is better when there is a stronger spatial correlation. We compare the PDF

results under different spatial correlations in Fig. 7. As observed, the accuracies

shown in the figure are pretty good.

Accuracy 2—Comparisons on Different Parameter Reduced Models : More exper-

iments are conducted on the three reduced-parameter models with one, two and three
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Fig. 7. Comparison of the full and the reduced-parameter models on the delay PDF

using different intra-die correlation coefficients.

parameters, respectively in Table I. We use 4, 000 Monte Carlo samples in the full

30-parameter model to get stable estimation of the delay distribution, and compute

the mean as well as the standard deviation (std.) as reference values. Then, we verify

the accuracy (relative error in mean/std.) of these reduced-parameter models by gen-

erating 500 LHS samples for the parameter reduced models. To investigate the model

accuracy for different inputs, we set random inputs with Gaussian distributed ramp

values. As seen, the parameter reduced models can provide quite accurate estimations

on the mean and standard deviation values while the three-parameter model is offer-

ing an excellent accuracy. From Table I we can also see that with the increase of the

spatial correlations, the number of reduced parameters can be potentially reduced,

which means that the true dimensionality of the original parameters depends on both

the design structure and the parameter spatial correlations. As a comparison, the

parameter dimension found by PCA is only based upon the spatial correlations.
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Table I. Comparison of delays (random ramp inputs)

Variations of Parameters 4K LHS (corr. 1) 500 LHS Rel. Err. in % (corr. 1)

σW σH σT Mean Std. 1 para. 2 paras. 3 paras.

5% 10% 10% 888.2 ps 77.3 ps 0.36/3.55 0.17/1.6 0.08/3.0.9

10% 5% 10% 899.3 ps 98.1 ps 1.20/6.11 0.87/4.72 0.70/3.04

10% 10% 5% 889.2 ps 70.5 ps 0.60/5.07 0.41/4.01 0.27/1.11

Variations of Parameters 4K LHS (corr. 2) 500 LHS Rel. Err. in % (corr. 2)

σW σH σT Mean Std. 1 para. 2 paras. 3 paras.

5% 10% 10% 889.4 ps 101.5 ps 0.04/3.09 0.03/4.64 0.04/0.37

10% 5% 10% 892.2 ps 127.3 ps 0.29/5.73 0.50/2.35 0.47/0.39

10% 10% 5% 888.9 ps 93.9 ps 0.08/3.01 0.00/1.77 0.01/1.56

2) Interconnect with Multiple Outputs

In this example, we consider an interconnect extracted from a realistic circuit IS-

CAS85 c499 [35] with 12 sink nodes. The circuit is divided into five regions according

to the physical layout. Wire width and thickness variations (3σ = 30%) within each

region are assumed to be Gaussian. So there are totally 10 geometrical parameters

in this circuit.

Three reduced parameters are obtained by linear RRR (Section a) to capture

the performance variations of the 12 sink nodes. Fig. 8 shows the comparisons of the

transient waveforms of 10 random simulations using the full parameter model and the

parameter reduced model. As shown in the figure, there is no significant difference

between the results of the above two models (for all 12 sinks).

For this 12-output circuit, only 3X parameter reduction is achieved, while 10X

reduction is realized for the two-output circuit in the previous example. This can be
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easily understood by looking into Equation (2.27): as the number of outputs increases,

the rank of the sensitivity matrix S (2.27) of transfer function moments increases,

which lead to the increase of the resultant reduced parameter dimension.

b. Parameter Reduction via Nonlinear RRR

In this section we demonstrate the dimension reduction via the nonlinear reduced

rank regression for the timing simulation of combinational logic circuits. The IS-

CAS85 circuit c17 is investigated where the threshold voltages Vth of all transistors

are considered as independent Gaussian random variables with 3σ variation of 15%.
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Fig. 9. Topology of ISCAS85 benchmark circuit C17.

The schematic of the circuit is shown in Fig. 9. All of the NAND gates are the

same and each of them consists of four transistors. We number the NAND-gates

from 1 to 6, while the 24 transistor threshold parameters in the complete circuit are

numbered as follows: In gate 1, the parameters 1 − 4 correspond to the transistors

M1 −M4; In gate 2, the parameters 5− 8 correspond to the transistors M5 −M8,

..., etc. The above setup brings totally 24 transistor threshold parameters in the

complete circuit.

We apply two rising inputs to G2 and G3 while randomly varying the threshold

voltages of all transistors. The delays and slews at the outputs of gate 5 and gate

6 are set as the observations while the 24 threshold voltage variations are set as

the input random variables. We conduct 1, 000 Monte Carlo transient simulations

using HSPICE and the results are collected for the linear RRR dimension reduction

algorithm (Section b) as well as the iteration-based RRR algorithms (Section b).

We found the latter algorithm only need three iterations to find the optimal Br

matrix. The application of our parameter dimension reduction technique leads to a

significantly reduced new parameter set with only three parameters. On the other

hand, PCA can not do any reduction since all the variation sources are uncorrelated
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with the same standard deviations.

We use the indirect re-sampling in section 2 to verify the accuracies of the two

parameter reduced models. The relative errors of the two models are plotted in Fig.10

and Fig.11. We can observe that the iteration-based nonlinear RRR is able to find a

more optimal Br matrix than the simple linear RRR approach.

c. Combining Parameter Dimension Reduction with Model Order Reduction

In the previous examples, we have demonstrated the accuracy of the reduced-parameter

interconnect models as well as the improved efficiency brought by these models in

sampling-based circuit analysis. To tackle the statistical analysis complexity brought

by the high parameter dimension and the large design size simultaneously, we com-

bine parameter reduction and model order reduction techniques to compute compact

reduced-parameter-order models. It should be noted that the cost of most param-

eterized interconnect model order reduction algorithms grow exponentially in the

number of the parameters, thus a significant reduction in the parameter space will

lead to highly efficient parameterized models as shown by the following circuit exam-

ples. It is obvious that the reduction of the parameter set will also help control the

cost of the parameterized modeling for transistor circuits although this issue is not

studied due to the limitation of the scope of this work.

1) Two Coupled RC Lines

For the two coupled RC line circuit (204 circuit unknowns) in Fig. 6, we split the lines

into five regions and setup the experiment following the similar procedure depicted in

Section a. We first apply the linear RRR algorithm to reduce the parameter dimen-

sion from 15 to one and then use the parameterized model order reduction algorithm

in [9] to compute a passive one-parameter 12th-order reduced model. Six transfer

function moments of nodes (1) and (2) are selected as the dependent variables in
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43

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

M
ag

ni
tu

de
Full Model with 15 Paras.
Mod. with 1 Para.
Redu.Mod. with 1Para.

T.F. at node (1)

T.F. at node (2)
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the RRR procedure. Since the model order reduction algorithm performs moment-

matching with respect to the process variable, a direct inclusion of 15 parameters will

lead to an explosion in model size. This difficulty is completely avoided by performing

a reduction in the parameter space first.

We compare the frequency responses of the full model and the one-parameter

12th-order model on circuit samples generated by perturbing all the 15 geometri-

cal parameters by ±10% and ±20%, respectively. In Fig. 12, four samples of the

frequency responses at nodes (1) and (2) are obtained based on three models: 15-

parameter full-order model, one-parameter full-order model and one-parameter 12th-

order reduced model, are plotted. We also plot the transfer functions of three circuit

nodes located in different regions (as shown in Fig. 13). Not surprisingly, the accu-
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racy of the reduced models becomes worse at the node (region 2) that is far away from

the observation nodes (nodes (1) and (2) in region 5) used in the RRR procedure.

2) An RLC Line

We apply the same reduction procedure to an RLC line. The line is 4 mm long and it

contains 120 resistors, inductors and capacitors. We divide the line into ten regions

and each region has three geometrical variations with the nominal values as: wire

width W = 1.2 µm, wire thickness T = 1µm, and dielectric layer thickness H = 1

µm. Again we apply the linear RRR algorithm to reduce the number of the variation

parameters from 30 to 1, resulting a 30x reduction. Then a one-parameter reduced

order model is computed, which has a size of 16. We introduce ±25% variations on

all 30 geometrical parameters to generate a set of circuit samples.

In Fig. 14, two circuit samples are selected for the full model, the one-parameter
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full model and the one-parameter 16th-order reduced model in terms of the frequency

response at the outputs. These results show indistinguishable curves for the lower

frequency band but larger errors in the higher frequency region. This down-gradation

in accuracy is due to the incapability of the first three moments. Setting higher order

transfer function moments into the regression model will improve the accuracy.

d. Formation of the Reduced Parameter Set

As mentioned in Section b, the matrix elements in the Br matrix (2.12) reflect the

composition of each new parameter for the given performances, we thereby show a

clearer picture of each xj’s statistical importance in the new parameter space. We

plot the compositions of the first three new parameters (z1, z2 and z3) of Section a in

Fig. 15. We designate the variation sources from each of the ten regions using the
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corresponding region numbers. It is evident that the wire width and thickness varia-

tions, especially those in the first few regions, contribute most to the new parameters,

if we only keep the observations at the two output nodes. These results can be well

explained by circuit intuition. However, our approach provides a statistical approach

to reveal the importance of the variation sources quantitatively.

In Fig. 16 we show the compositions of the first new parameters obtained from

the linear RRR and iteration-based nonlinear RRR. As observed, the resultant new

parameter set given by the linear RRR method is quite different from the set given by

the iteration-based method. This example also indicates the necessity of using this

iteration-based algorithm for some strongly nonlinear circuits.

4. Summary

The performance-oriented statistical parameter reduction framework allows us to an-

alyze interconnect variations by reducing the cost of sampling-based simulation and

generating very compact parameterized interconnect models with only a few com-
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pressed parameters. Furthermore, it is shown that the same parameter reduction

approach can be applied to combinational logic circuits. The presented framework

provides a much needed tool to control the explosion of statistical circuit analysis

considering high-dimensional inter/intra-die variations.

D. SICE: Statistical Interconnect Corner Extraction Using Parameter Reduction

While traditional worst-case corner analysis is often too pessimistic for nanometer

designs, full-blown statistical circuit analysis requires significant modeling infrastruc-

tures. In this section, a design-dependent Statistical Interconnect Corner Extraction

(SICE) methodology is proposed [36]. SICE achieves a good trade-off between com-

plexity and pessimism by extracting more than one process corners in a statistical

sense, which are also design dependent. Our new approach removes the pessimism

incurred in prior work while being computationally efficient. The efficiency of SICE

comes from the use of parameter dimension reduction techniques and an effective
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parametric timing metric. The statistical corners are further compacted by an iter-

ative output clustering method. Numerical results show that SICE achieves up to

260X speedups over the Monte Carlo method.

1. Background

Interconnect delay variations are becoming increasingly important to capture in de-

sign due to continuous technology scaling [1]. Ideally, a full blown statistical design

methodology that can take into consideration various systematic and random process

variations is desirable. However, the adoption of such statistical design methodology

in practice requires significant investment in modeling infrastructure. On the other

hand, corner based methods are simple to apply and do not require significant change

of existing design flows. However, they have two well known limitations: pessimism

and inconsistence with performance corners. The latter is particularly true for inter-

connects, where extreme process corners do not necessarily correspond to performance

corners. Hence, a systematic corner based methodology that reduces pessimism and

correlates well with performance variations is highly desirable. Traditional process

corner analysis (PRCA) has been widely used in industry for estimating the inter-

connect timing variations due to its simplicity (a few process corners are evaluated at

Cmax, Cmin, RCmax and RCmin corners), however, with the issues we discussed above.

In this paper, an efficient approach, SICE, is proposed for extracting the in-

terconnect design-dependent parameter/performance corners that can be used for

variation-aware timing analysis. The main contribution of this work includes:

• We apply the parameter dimension reduction method [31] to reduce the inter/intra-

die variations, thus to alleviate the design-dependent corner finding cost.

• We adopt an efficient timing metric (D2M metric [37]) for performance corner
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finding, which is very efficient to compute and able to capture the fidelity/trend

of the performance variations.

• We propose an iterative sink nodes clustering algorithm to reduce the number

of design-dependent corners.

We show that finding the design-dependent interconnect process corners that

correspond to the best/worst performance corners can be very simple and efficient

(without a single circuit simulation). The parameter dimension reduction technique

can significantly improve the overall extraction efficiency.

2. Preliminaries

a. Process Variation Model

For interconnect circuits, the global variables (inter-die variation sources) typically

refer to the process parameters that impact the whole chip, such as the dielectric

thickness (Hi) and dielectric constants (εi) for metal layer i. The process parameters

such as the metal width (Wi) and metal thickness (Ti) for metal layer i are usually

modeled as the local variables (intra-die variation sources), since these process pa-

rameters are usually impacting much smaller areas with various spatial correlation

properties [1]. In this work we model the statistical distributions of the process pa-

rameters as multivariate normal distributions. Similar to the prior work [8], we use

G0 and C0 to represent the nominal system matrices while Gi and Ci denote the

sensitivity matrices w.r.t the underlying parameter pi for an parametric interconnect

network.
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b. Parametric Interconnect Circuit Modeling

Similar to the prior work [8], we use the standard modified nodal analysis (MNA)

equations to describe an interconnect network. Consider a set of np local and global

geometrical variation variables: ~p = [p1, p2, · · · , pnp
]T that impact the system equa-

tions 



[G(~p) + sC(~p)] x = Bu

y = LT x

, (2.33)

where u ∈ Rn and y ∈ Rm represent the inputs and outputs, while x ∈ RN represents

the system unknowns. The parametric conductance and capacitance matrices are

defined as:

G(~p) = G0 +

np∑

i

Gipi; C(~p) = C0 +

np∑

i

Cipi, (2.34)

where G0 and C0 represent the nominal system matrices while Gi and Ci denote the

sensitivity matrices w.r.t the underlying parameter pi. B ∈ RN×n and L ∈ RN×m are

the input and output matrices, respectively.

The nominal qth (q = 0, 1, ...) order transfer function moment of the above system

is defined as:

mq = (−G−1
0 C0)

qG−1
0 B. (2.35)

The parametric forms (in terms of the parameter set ~p) of the above transfer functions

have been derived in [32], where it is shown that the first and second-order parameter

coefficients of ~p of the transfer function moments can be very efficiently computed by

reusing the LU factors of G0 in (2.34).

3. SICE Overview

The main steps of our design-dependent interconnect corner extraction algorithm,

SICE, are briefly depicted as follows (Fig. 17):
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Fig. 17. Overall flow of SICE.

• Step 1 : Compute the sensitivity matrices (2.34) according to the input R, C

sensitivity netlist that can be generated by commercial tools such as [38];

• Steps 2 : Perform parameter dimension reduction technique [31] to reduce the

parameter dimensionality;

• Step 3 : Build quadratic timing models (response surface models) for the tar-

geted sink nodes in the reduced parameter space (~z);

• Step 4 : Find design-dependent process corners in the reduced parameter (~z)

space iteratively for a desired confidence level.

The outputs of SICE can be of the following three types:

• Process corner netlists: SICE provides the process corners for obtaining perfor-

mance corners. The process corners tell how to perturb the global variables (
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such as Hi) and the local variables (such as Wi and Ti) within a specific grid,

such that the performance corners can be reached.

• Performance corner results: Once the process corners are found, SICE can

simulate these corners to obtain their corresponding performance corners.

• R, C corner netlists : SICE also provides the R, C netlists that will produce

the performance corners. Such R, C netlists can be further reduced [39] and

combined with driver models [40, 41, 42] for the stage delay corner characteri-

zations.

4. Parameter Dimension Reduction

Algorithm 3 Interconnect Parameter Reduction
Input: The nominal system matrices (G0,C0), the sensitivity matrices (Gi,Ci) and the
covariance matrix Σp̃p̃ of the original parameter set p̃, error tolerance ε.
Output: The sensitivity matrices (Gzi

,Czi
) of the reduced parameter set z̃ , the dimension

reduction mapping matrix Br and the inverse mapping matrix Tr .

1: Compute the transfer function moment sensitivity matrix S using the formulas in [32];
2: Set D← SΣp̃p̃S

T;

3: Do eigen-decomposition for D matrix such that D = UΛUT to get all the eigenvalues
λi (in descending order) and the corresponding eigenvectors ui ;

4: Use the nz largest eigenvalues and their corresponding eigenvectors to form a diagonal
matrix Λr and a matrix Ur;

5: Set Br ← Λ
−1/2
r UT

r S;
6: Set Tr ← pseudo inverse of Br;
7: For k = 1 to nz:

8: set Gzk
=

np∑
i=1

GiTr(i,k); Czk
=

np∑
i=1

CiTr(i,k);

9: Return Gzk
, Czk

, Br and Tr .

For interconnect circuits, it has been shown that linear reduced rank regression

(RRR) method can achieve more reductions of interconnect parameters than princi-

pal component analysis (PCA) [31], since RRR is a design-dependent methodology
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while PCA merely relies on the parameter data. To perform RRR based parameter

dimension reduction, the covariance matrix Σ~p~p of the local/global process parame-

ters can be constructed based on the correlation models provided by foundries. In

this work, we use the distance-based correlation formula Cor (i, j) = e−
Dist(i,j)

CorLength to

model the spatial correlation of the intra-die variation, where Dist (i, j) denotes the

distance between grids i and j, while CorLength represents the correlation length of

the parameter. An error tolerance ε is used to truncate the reduced parameter set by

keeping only the top few dominant reduced parameters in ~z. For R, C interconnect

circuit, only the first order sensitivities of the transfer function moments w.r.t ~p are

needed in parameter reduction, which can be computed efficiently [32] by reusing the

LU factorization of the nominal conductance matrix G0 of (2.34). Assume there are

nm sink node moments to be considered as targeted output in parameter reduction,

then we have to compute the sensitivity matrix S ∈ Rnm×np [32] and express the

transfer function moments (~m ∈ Rnm) of the sink nodes as:

~m(~p) ≈ ~m0 + S~p. (2.36)

Algorithm 3 is applied to reduce the interconnect parameters, which transforms

the original sensitivity matrices Gi and Ci in (2.34) into the sensitivities of the reduced

parameters, Gzi
and Czi

, and yields an alternative parametric system:





(G(~z) + sC(~z)) x = Bu

y = LT x

, (2.37)

where

G(~z) = G0 +
nz∑

i

Gzi
zi; C(~z) = C0 +

nz∑

i

Czi
zi. (2.38)

Compared with (2.33), the above system (2.37) has much fewer parameters (nz <<

np). The algorithm also generates the parameter reduction mapping matrix Br which
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maps the original parameter set ~p to the reduced parameter set ~z by ~z = Br~p. Essen-

tially, in Algorithm 3, the correlations between parameter variations and the resulting

performance variations are utilized to identify a reduced set of parameters that are

statistically critical to the performances. This leads to a design dependent parame-

ter reduction [31]. A unique feature of the reduced parameter set ~z is that they are

uncorrelated normal variables with N(0, 1) distributions [28]. The inverse mapping

matrix Tr which is the pseudo inverse of Br, maps ~z to ~p by ~p = Tr~z. As we will

describe later, these reduced parameters (~z) can significantly simplify the parametric

timing model generation, design-dependent interconnect corner extraction and the

process corner clustering procedures. Additionally, by using the mapping matrix Tr,

we are able to map the process corners in ~z to the original process corners in ~p.

5. Parametric Timing Model

After we obtained the reduced parameter set ~z, the interconnect timing model can be

parameterized in ~z via statistical modeling techniques such as design of experiment

(DOE) [43] or Latin Hypercube Samplings (LHS) [33].

Quadratic interconnect timing model is essential for capturing the nonlinear per-

formance variations due to the underlying process parameters, which typically re-

quires O(n2
p) data samples to generate. However, existing interconnect simulation

methods are usually impractical to utilize due to the high simulation cost. On the

other hand, it is not necessary to build an absolutely accurate performance model,

since our interests lies in finding the process corners that correspond to the perfor-

mance corners. In [44, 45], the authors successfully use the Elmore delay (ED) to

find accurate process corners (corresponding to the performance corners) for long in-

terconnects, since ED can very well capture the variation trend/fidelity of the true

performance. However, ED may not be a good metric for estimating the variational
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Fig. 18. Comparison of two interconnect timing metrics.

trend/fidelity of near-end nodes. As an example, we use an interconnect designed on

65nm technology, where the dielectric thickness, the metal width and thickness vari-

ations are considered. The R, C sensitivities due to these parameters are calculated

using the closed form formulas [34] and the R, C elements are divided into a few grids

for intra-die correlation modeling purpose. Random simulation results in Fig. 2 show

the scatter plots of the true delay (TD) w.r.t the other two delay metrics (Elmore

and D2M). As observed, both timing metrics correlate well with the true delay values

for the far-end node, while for the near-end node, D2M delays exhibit much better

correlation with the true delays (as shown in Fig. 18). In this work, we balance the

efficiency and accuracy by using the D2M metric [37] for timing model generation.

The D2M delay is given as:

Delay =
m2

1√
m2

ln 2, (2.39)

where m1 and m2 are the first and second transfer function moments, respectively.

To simplify the following design-dependent process corner finding step, we generate
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quadratic timing model by sampling in the reduced parameter space ~z and computing

the standardized D2M delay samples Y = (Yt− Ȳt)/σYt
, where Yt represent the D2M

delay values. The second-order parametric transfer function moments [32] have been

used for computing the D2M delays to further improve the efficiency.

6. Design-Dependent Corners

We describe in detail the procedures of finding the design-dependent (application-

specific) corners for interconnect circuits. This section first introduces how to find

such corners for a single sink node based upon its quadratic timing model that is

obtained in advance (Section 5). Then we propose an iterative clustering algorithm

that clusters the sink nodes into a smaller number of groups, such that only a few

representative process corners are needed to predict the true performance corners of

all these sinks.

a. Design-Dependent Corner Analysis

Assume the the quadratic timing models for all sink nodes (say ns sink nodes) are

generated in the reduced parameter space ~z. The timing model for sink node k is

given as follows:

yk (~z) = ~zT Ak~z + BT
k ~z + Ck, (2.40)

where Ak, Bk and Ck are the second-order, first order and constant coefficients.

We follow the corner extraction methodology proposed in [46] to find ns pairs of

best/worst design-dependent process corners for ns sink nodes, respectively. The

corner extraction for sink node k can be formulated as the following optimization

problem:

max / min
{
yk (~z) = ~zT Ak~z + BT

k ~z + Ck

}
, s.t. ‖~z‖ = α. (2.41)
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where α is used to define the confidence region of the parameter space. As discussed

in Section 4, all the reduced parameters in ~z are uncorrelated normal variables with

N(0, 1) distributions. Therefore, the concept of ellipsoid confidence region [47] of

~p now becomes a hypersphere confidence region of ~z. The confidence levels of the

corners found using Lagrange Relaxations can be adjusted by setting different α

values. More specifically, since the reduced variables in ~z are independent, then the

probability density function (pdf) of ~z becomes:

pdf (~z) = (2π)−
n
2 e−

1
2
~zT ~z = (2π)−

n
2 e−

1
2
‖~z‖2

. (2.42)

Consequently, pdf (~z) is constant when ‖~z‖2 is constant, and the probability P{~z | ~zT~z ≤

α2} can be used to determine the confidence region in the performance space. Since

‖~z‖2 =
∑nz

k=1 z2
k has a chi-square distribution with degree nz, we can therefore com-

pute α2 for a desired P{~z | ~zT~z ≤ α2} by evaluating the inverse of the cumulative

distribution function (cdf) of ‖~z‖2.

b. Iterative Sink Node Clustering

It is worthwhile to emphasize that (2.41) can be solved in the reduced parameter

space ~z, which typically has a much lower dimensionality than ~p. The corner finding

efficiency can therefore be significantly improved than ever before. Assume we have

computed ns pairs of best/worst design-dependent corners for all the ns sink nodes

already, but these 2ns corners can be difficult to utilize in practical applications due

to the high complexity. To reduce the number of corners, a clustering algorithm

has been proposed [46], where clustering is performed on the performance sample

data. Unfortunately, reducing the number of corners using this method may produce

more conservative corners. In this work, we propose to do clustering in the reduced

parameter space ~z, by clustering the 2ns best/worst parameter corners. For each sink
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node ( say node k), we introduce a new corner vector ~zk to include its best/worst

parameter corners as:

~zk =




~zbst,k

~zwst,k


 (2.43)

Then we adopt the K-mean algorithm to cluster ~zk ( k = 1, ..., ns) into fewer groups.

It can be shown that the reduced parameter size (nz) obtained by RRR is smaller than

the number of observation points (ns) [28]. In fact, for most interconnect circuits, nz

is much smaller than ns. Therefore, clustering using ~zk instead of the performance

samples may greatly reduce the clustering effort. Since K-mean clustering results are

very sensitive to the number of clusters, so we propose an iterative clustering method.

The algorithm uses an initial guess on the number of clusters (we choose ns − 1 as

the initial number). Then the optimization problems similar to (2.41) can be solved

to find the representative corners for the clusters where Ak and Bk for a single node

are replaced by the representative coefficients A′
i and B′

i (for cluster i):

A′
i =

∑

k∈Clsi

wkAk, B
′
i =

∑

k∈Clsi

wkBk. (2.44)

Then we follow (2.41) to find the best/worst corners for each of these clusters. For

accuracy purpose, these new parameter corners are substituted into the timing models

for all sink nodes (2.40), to compute their performance corners. If the errors of the

performance corners are within the tolerance, the number of clusters is reduced and

another K-mean clustering is performed. By repeating the above procedures several

times, we can determine the minimum number of clusters, which can produce accurate

performance corners. Finally, the representative parameter corners are obtained based

on the final clusters.
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7. Algorithm Complexity

The algorithm complexity of each step in SICE can be analyzed as follows:

• 1. Parameter Reduction: The computation of the linear sensitivities (S matrix

in Algorithm 3) of a few transfer function moments w.r.t to the original param-

eters ~p (for R, C circuit, only the first moment is adequate) is trivial, where

only one time LU matrix factorization of G0 and O(np) times reuse of the LU

factors are needed;

• 2. Timing Models Generation: We compute the quadratic forms of the transfer

function moments by reusing the LU of G0, to obtain the D2M delay samples

and build the timing models (2.40) for all sink nodes. Thus the computational

cost of this step mainly attributes to O(n2
z) times reuse of the LU factors of G0;

• 3. Design-dependent corner extraction: A few runs of the optimizations (2.41)

and K-mean clusterings in the reduced parameter space are required. The cost

is negligible for the circuits that have few sink nodes, when compared with the

matrix factorization cost.

Consequently, the main cost of SICE algorithm is the one-time matrix factorization

of G0, and O(np + n2
z) times reuse of the LU factorizations.

8. Numerical Results

SICE is implemented in C++ and executed on a Pentium-4 3GHz machine running

Linux system. Since We first compare SICE with the traditional process corner

analysis (PRCA) method. Next, we present the confidence-region aware corners given

by SICE. Finally, we compare the parameter reduction results obtained by RRR and

PCA on various circuit examples, where the runtime are also compared against the
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Monte Carlo results. All circuits examples in this section are designed in 65nm

technologies. We consider the inter-die variation (dielectric thickness H) as well

as the intra-die variations (T and W ). The R, C sensitivities w.r.t the geometric

parameters ~p are calculated using closed forms [34]. All parameters in ~p are set to

have std = 10% variations by default.

a. SICE vs Process Corner Analysis (PRCA)

We compare the design-dependent corner extraction results of SICE with the tra-

ditional process corner analysis results on a ten-grid R, C interconnect circuit with

12 sinks as targeted outputs. SICE produces two reduced parameters and finds two

clusters of sink nodes for corner extraction. The 99% performance corners are com-

pared with the PRCA results in Fig. 19 and Fig. 20, where the PDF of 10K Monte

Carlo simulations are also shown. We can find that in both cases, SICE predicts

pretty accurate corners even for very large variations, while PRCA usually gives very

conservative ones (especially the worst case delays).
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b. Corners by Different Timing Models

As described in Section 5, the D2M delay is more accurate than the Elmore delay

(E. D.), thus should provide more accurate design-dependent corners. We consider a

ten-grid R, C clock tree circuit with three sink nodes (sinks 1-3) as targeted outputs.

Two sets of correlation lengths (Cora = 5 × Corb) are considered for modeling the

intra-die variations. The 99% performance corners obtained by SICE using three

timing models are shown in Table II. The maximum and minimum delay values of

1K Monte Carlo simulations are also attached, to illustrate the realistic performance

corners. It is worth noting that SICE may produce pessimistic worst case corners

if the performance variation is large (1a-3a), which is due to the insufficiency of the

quadratic timing models used for corner finding.

c. Confidence-Region Aware Corners

We illustrate the confidence-region aware SICE corners for a four-grid R, C clock

circuit with four sink nodes as targeted outputs in Fig. 21. SICE produces two

reduced parameters and finds two clusters for corner extraction. The 99%, 95%
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Table II. Corner accuracy using the D2M timing model under different correlation

models

Sink Accurate Model D2M Timing Model 1K Monte Carlo

Index Best Worst Best Rel. Err. Worst Rel. Err. Min Max

S1a 36.3 88.5 36.3 0.13% 98.5 11.35% 36.9 85.7

S2a 8.7 16.0 8.6 -1.35% 16.9 5.69% 8.1 13.1

S3a 49.3 111.7 49.2 -0.31% 121.0 8.28% 44.22 125.4

S1b 38.1 78.0 38.0 0.3% 78.2 0.3% 37.1 72.2

S2b 7.65 14.8 7.6 -0.6% 15.0 0.13% 8.1 13.2

S3b 46.2 102.3 45.5 -1.5% 101.9 0.39% 46.1 95.8

Table III. Parameter reduction comparisons (RRR/PCA)

Circuits setups SICE Results

CKT Size NSinks NGrids np nz (RRR/PCA) NCorners

C1a 200 12 6 13 3/9 4

C1b 200 12 10 21 4/17 6

C2a 55 6 4 9 2/7 4

C2b 55 6 6 13 3/11 6

C3a 10 2 2 5 2/5 2

C3b 10 2 4 9 3/9 4
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Table IV. Runtime comparisons (SICE/1K Monte Carlo)

Circuits setups SICE time TSICE (ms) TMC (ms) Sp.

CKT Size NSinks. NGrids np TPR TTM TCC TSC TMC TMC/TSICE

C1a 200 12 6 13 2.9 3.6 4.1 36.1 9106 195X

C1b 200 12 10 21 4.6 5.4 5.2 54.7 9380 134X

C2a 55 6 4 9 0.6 0.8 1.5 12.8 2857 182X

C2b 55 6 6 13 0.6 1.4 2.1 18.3 2934 131X

C3a 10 2 2 5 0.1 0.26 0.7 1.2 588 260X

C3b 10 2 4 9 0.3 0.54 0.7 2.5 848 210X

and 90% performance corners are compared against the 5K Monte Carlo simulation

results. As observed, these confidence-region aware corners are reasonably accurate

for the non-normal performance distributions.

d. Parameter Reduction and Runtime

We demonstrate three interconnect circuits in six cases, where each of the circuit

uses two correlation models ( Cora = 2 × Corb). For each circuit case, we compare

the parameter reduction results (Nz) using RRR and PCA under the same error

tolerance levels. From Table III we find RRR based parameter reduction method

always achieves 2− 3X more reductions than PCA.

SICE runtime (TSICE) is also compared against 1K Monte Carlo (MC) runtime

in Table IV, which includes four parts: the parameter reduction time (TPR), the

parametric timing model generation time (TTM), the design-dependent corner finding

time (TCC) and the performance corner simulation time (TSC). We use a linear

circuit simulator for MC and the performance corner simulations. In each transient

simulation, the conductance matrix will be factorized once and the LU factors will be
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Fig. 21. Confidence aware timing corners vs 5k Monte Carlo simulations (std= 10%).

reused afterwards (100 time steps are used for all cases). As observed in all cases, the

performance corner simulations of SICE take 1/2 to 4/5 SICE runtime. The overall

performance of SICE is 131X to 260X faster than the MC simulations.

9. Summary

A design-dependent Statistical Interconnect Corner Extraction (SICE) methodology

is proposed for efficient and accurate interconnect performance corner extraction un-

der process variations. SICE removes the pessimism produced by the previous process

corner based analysis methods and achieves much higher efficiency than the tradi-

tional statistical methods. Statistical parameter dimension reduction technique helps

to dramatically reduce the dimensionality of the complex variation sources without

loss of accuracy. An effective timing metric for parametric timing model genera-

tion as well as an iterative sink nodes clustering method are proposed to facilitate

the design-dependent performance corner finding algorithm. Experiments on various
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interconnect circuits are demonstrated for validation.

E. Second-Order Statistical Static Timing Analysis Using Parameter Reduction

While first-order SSTA techniques enjoy good runtime efficiency desired for tack-

ling large industrial designs, more accurate second-order SSTA techniques have been

proposed to improve the analysis accuracy, but at the cost of high computational com-

plexity. Although many sources of variations may impact the circuit performance,

considering a large number of inter-die and intra-die variations in traditional SSTA

analysis is very challenging. In this work, we address the analysis complexity brought

by high parameter dimensionality in statistical static timing analysis and propose an

accurate yet fast second-order SSTA algorithm based upon novel on-the-fly parame-

ter dimension reduction techniques. By developing reduced-rank regression based and

the moment-based parameter reduction algorithms within block-based SSTA flow, we

demonstrate that accurate second-order SSTA analysis can be extended to a much

higher parameter dimensionality than what is possible before. Our experimental

results have shown that the proposed parameter reductions can achieve up to 10X

parameter dimension reduction and lead to significantly improved second-order SSTA

analysis under a large set of process variations.

1. Background

As a very popular research topic in the past few years, various Statistical Static Tim-

ing Analysis (SSTA) algorithms [48, 49, 50, 51, 52, 53, 54, 55, 56] have been proposed

to predict the impacts of process variations on circuit performance. It has tremendous

advantages over the traditional corner based timing analysis, in which the number of

corners may increase exponentially with the number of process variations. In com-
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parison, SSTA computes the statistical variations of timing performance to provide

more accurate and realistic estimates, while maintaining relatively low analysis com-

plexity. Several linear SSTA algorithms have been proposed to achieve high runtime

efficiency, which is desirable for large industrial designs [48, 49, 51]. However, due to

the linear approximations of variational device models as well as the atomic max op-

erations, such efficient algorithms may not be accurate in timing analysis. To improve

the accuracy, on the other hand, second-order SSTA techniques [54, 56, 55] are very

attractive in terms of robustness and accuracy despite of their higher computational

cost. Among the above high order SSTA algorithms, the ones proposed in [54, 55]

can give very accurate results, but may be limited to a small number of parameters

due to the dramatic growing of the analysis cost. The other algorithm [56] adopts

a simple and efficient linear approximation for the max operation, which makes it

suitable for dealing with a large number of parameters. Unfortunately, as reported

in their paper, this algorithm may be less accurate in some cases [57].

In reality, the performances of modern designs may be severely influenced by a

large set of independent or correlated inter-/intra-die variations. This fact creates an

immediate need to consider these effects efficiently and accurately in circuit analysis,

such as in SSTA. Hence, it is very appealing to develop SSTA techniques that are

capable of handling a large set of random parameters, and at the same time, being

efficient. In this work, we propose to extend the applicability of the existing second-

order SSTA techniques to a higher dimensional parameter space. To this end, the key

issue is to control the complexity introduced by multiple parameters properly under

the context of SSTA.

In this work, we adopt two techniques, a linear reduced rank regression (RRR)

approach [28] and a moment-based dimension reduction (MOM) technique [58, 59],

respectively. The first method is suitable for parameter reduction of moderate nonlin-
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ear performance variations and usually requires minimum reduction cost. The latter

is specifically proposed for more robust and accurate parameter reduction of those

performance models with stronger nonlinearity but at a higher cost. The key and

common distinguishing factor of these two methods is that they allows more powerful

parameter reduction while considering the interdependency between parameters and

the corresponding performances. As demonstrated recently in [31], the application

of RRR leads to significant parameter reduction of variational interconnect prob-

lems. This dissertation extends the work in [60] to develop SSTA-specific RRR based

and moment-based parameter dimension reduction techniques to facilitate fast and

accurate second-order parameterized SSTA. The efficiency of the proposed SSTA ap-

proach stems from the on-the-fly performance-based parameter dimension reduction

techniques. The latter helps maintain a low effective number of process parameters

that need to be considered by exploiting statistical parameter redundancy imposed

by design structure.

a. Process Variation Model

Let us consider a set of Xg ∈ R
ng global (die-to-die) process variations and a set

of Xl ∈ R
nl local (within-die) process variations. In this work, we use the process

variation model in Fig. 22 to model the impacts of these global and local variations

on circuit timing performance [49]. The global variations impact the complete die

while each local variation is only impacting a local region on the die.

Although the number of the global variation sources may be small, the number of

local variations can be quite large for modeling intra-die spatial variations. Hence, it

is prohibitive to simultaneously consider all the intra-die variations in the traditional

SSTA algorithms. As shown in Fig. 22, even though a local variable may only impact

device parameters in a small local region, its impacts can propagate to other parts
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of the circuit through the fanout signal paths, some of which may be reconvergent

fanouts. Because of reconvergent fanouts, handling a large set of local variables

becomes difficult even under the case where local variables are independent from

each other. In the rest of this section, we assume all the local and global variations

are multivariate Gaussian variables with zero means.

b. Block-Based SSTA

Block-based SSTA algorithms walk through the whole circuit by a breadth-first search

scheme and propagate the probability density functions (PDFs) of signal arrival times

from source nodes to sink nodes of a timing graph. First order block-based SSTA

algorithms are quite attractive to large industrial designs due to the high runtime

efficiency.

However, first order algorithms expand the arrival times in terms of the process
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variations using the first order canonical forms, therefore they may fail to accurately

predict delay distributions due to the high order nonlinearities of max operations

as well as the gate and interconnect delays. Consequently, several quadratic SSTA

algorithms [56, 55, 54] have been proposed to address the above insufficiency. A

very efficient max operation for computing second-order forms of signal arrival times

and delays using fast linear approximations was proposed in [56]. This approach can

handle a large number of variations but is limited in accuracy. A moment matching

based algorithm was proposed in [55] for highly accurate max operations but at the

cost of relatively high complexity. Unfortunately, the cost of the moment matching

based approach may grow quickly as the number of variaitons increases (Fig. 23).

The quadratic SSTA via moment matching is briefly reviewed in the following.

Suppose two signal arrival times yi (i = 1 and 2) have the following quadratic
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forms:

yi = XT AiX + BT
i X + Ci. (2.45)

The sum y3 of y1 and y2 is simply given by:

y3 = XT A3X + BT
3 X + C3, (2.46)

where

A3 = A1 + A2, B3 = B1 + B2 and C3 = C1 + C2. (2.47)

Unlike the sum operations, y4, the max of y1 and y2 is much more difficult and

expensive to compute. The algorithm [55] proposes to approximate the PDF of y4

using a quadratic model,

y4 = XT A4X + BT
4 X + C4, (2.48)

and the coefficients A4, B4 and C4 are computed by matching the first few moments of

the PDF functions of y4. Though this method can compute very accurate PDFs of the

max operations, the numerical convolutions and integrations in each max operation

make the total computational cost much higher than the first order SSTA algorithms.

To achieve the best possible statistical static timing analysis considering a large

number of process variations, it is desired to develop new SSTA algorithms that can

accurately capture the impacts of multiple process variations but at the same time

being runtime efficient. Consequently, incorporating parameter dimension reduction

techniques into the SSTA algorithms is very desired.

c. PCA-Based Parameter Reduction Before SSTA Starts

Before the standard SSTA algorithm starts, the spatially correlated process variations

(Gaussian variables such as Vth, Leff , ...) are transformed into the uncorrelated ones
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using PCA. We show how PCA reduce the dimension of a parameter set before SSTA

starts.

Assume X ∈ R
n is an n-dimensional data set, which has zero mean and mul-

tivariate normal distributions. PCA first computes the eigen-decomposition of the

covariance matrix Σxx of X as follows:

Σxx = UΛUT , (2.49)

where Λ is a diagonal matrix containing all the eigenvalues of Σxx, and U contains

all the corresponding orthogonal eigenvectors. By including few eigenvectors (in U)

that have the largest eigenvalues into the projection matrix Ur, the new parameter

set Xr that has a smaller dimension than the original data set X can be given by

Xr = UT
r X. (2.50)

Subsequently, the sum and max operations of SSTA can be performed upon these un-

correlated variables when computing the parameterized signal arrival times for each

node of a timing graph. The objective of statistical static timing analysis is to com-

pute the variations of signal arrival times for all the nodes on a timing graph. Under

such context, PCA can improve the efficiency of circuit analysis by identifying the

principle components of process variations that impact timing performances. How-

ever, PCA only removes the redundancy in the process variation data set without

considering circuit structural information (such as the timing graph properties). In

practice, such design-independent parameter reduction reduces the cost of the SSTA

algorithms, but in a limited way.
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d. On-the-Fly Performance-Based Parameter Reduction During SSTA

Basic Idea

In this work, we propose performance-based parameter reduction methods that can

be combined with the standard PCA method to produce much more effective dimen-

sion reduction during the SSTA flow. In addition to the dimension reduction realized

by PCA before SSTA starts, our methods propose to reduce the parameter dimension

during the SSTA procedure, by considering the correlation information of the perfor-

mance space (such as signal arrival times) and its corresponding parameter space at

each stage of the SSTA algorithm.

1) Mathematic Methods

By adopting the dimension reductions based on the linear reduced rank regression

(RRR) or moment-based (MOM) methods as a systematic tool, we can identify the

redundancy (reduced parameters) in the process variables. Considering the process

variation model in Subsection a, we show a general mathematical framework under

which a large set of local process variations can be reduced for the purpose of timing

performance modeling without any other assumptions regarding the statistical prop-

erty of the random process variables.

2) Implementation Framework

We outline how the theoretical framework of the parameter reductions are applied to

the second-order SSTA. For each circuit partition, parameter reduction is conducted

once to reduce the number of local process variations and then the second-order SSTA

(sum and max operations) can be performed much more efficiently for the original

set of global variations and a reduced set of local variations. The way in which the

parameter reduction is combined with SSTA is shown in Fig. 24 and Fig. 25, where

parameter reduction is intertwined with each SSTA processing step to dynamically
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control the parameter dimension. As described in the following sections, we will

demonstrate that by our specific problem formulations, the statistical information

inputs to RRR or MOM can be efficiently gathered during a SSTA run, leading to

the very much desired design specific parameter dimension reduction capability.
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Fig. 24. Second-order SSTA with local variation parameter dimension reductions (con-

ceptual).

3) An Example

The basic idea of our method is demonstrated through an example shown in Fig. 26,

where we only consider the spatial correlated intra-die variations (local variables).

For simplicity, we only consider the first order parametric form of the signal arrival

times, but in reality, our method is not constrained by this assumption. We assume

the following standard setup are done before the SSTA starts:

• Use the grid modeling method in [11] to partition the circuit into grids (four

grids in this example);

• Apply PCA to map the original correlated parameters (Vth, Leff , etc.) into the

uncorrelated ones (X1 to X4) that forms the parameter vector X;

• Extract the delay models based upon the uncorrelated parameter set X;



74

Global

Variables

Local Variables

Reduced

Variables

Reduced

Variables

Quad.

SSTA

Quad.

SSTA

Quad.

SSTA

Reduced

Variables

Para.      Redu. Para.     Redu. Para.      Redu.

Fig. 25. Second-order SSTA with local variation parameter dimension reductions (ac-

tual).

X1

2 4

5

6

7 8

X2

X3

X4

1

3

AT4,7 = 1.22+ 0.15*X1+0.055*X2+0.02*X3+0.11*X4

AT5,7 = 1.31+0.002*X1+0.14*X2+0.001*X3+0.10*X4

3

2

4

5

6

7

81

AT5,7

AT4,7
AT7,8

PCA Delay Model

Correlated parameters Vth, Leff, …

Uncorrelated variables 

X1, X2, X3 and X4

Timing Graph

AT7,8 = D(X1, X2, X3,X4)

Max of AT4,7 and AT5,7

with X1, X2, X3 and X4

Parameter 
Reduction

AT7,8 = D’(Z1,Z2) 

M
a
x
 o

f 
A

T
4
,7

 a
n
d
 A

T
5
,7

w
it
h
 Z

1
a
n
d
 Z

2

Correlation of

AT4,7 & AT5,7

Update Arrival Times
AT4,7 =1.22+ 0.25*Z1+0.08*Z2
AT5,7 =1.31+ 0.07*Z1+0.18*Z2

Z= Br*X 

Our Contribution

Traditional

approach

Fig. 26. SSTA flow using parameter dimension reductions.



75

• Generate the timing graph using the delay models.

In Fig. 26 we can see each of the four circuit grids has one independent Gaussian

variable for modeling the intra-die variations. Assume the parameterized signal arrival

times AT4,7, AT5,7 are given in advance (as shown in the Fig. 26 ).

Traditional SSTA algorithm computes the signal arrival time AT7,8 by performing

the sum and max operations directly on variables X1 to X4 (shown on the bottom

right of Fig. 26). On the other hand, our method (shown on the top right of Fig. 26)

that incorporates the performance-based parameter dimension reduction includes the

following extra steps:

• Extract the correlation data of AT4,7 and AT5,7 with respect to the underlying

parameters X1 to X4;

• For AT4,7 and AT5,7, conduct performance-based parameter reduction to obtain

the common reduced parameters Z1 and Z2 in Z through a mapping Z = BrX;

• Update the parameterized signal arrival times AT4,7 and AT5,7 in the reduced

parameter space;

• Perform sum and max operations of AT4,7 and AT5,7 in the reduced parameter

space;

• Express AT7,8 in Z1 and Z2.

Compared with the traditional SSTA, it is obvious that the above method (using

parameter reduction) can save a lot of computing efforts for the max operations, since

much fewer variables are considered.



76

2. Parameter Reduction Methods for SSTA

In this section, we first introduce the quadratic timing model that is used in the

second-order SSTA algorithm. Subsequently, the theoretic background of two param-

eter dimension reduction techniques, the linear RRR approach [28] and a moment-

based dimension reduction technique [58, 59], are introduced respectively. Finally,

numerical comparisons on the above two methods are made.

a. Quadratic Timing Model in SSTA

Assume we are considering parameter reduction during SSTA for the m parameterized

signal arrival times yk, where k = 1, ...,m. Each of these signal arrival times has the

following parametric form:

yk = ȳk + dT
k Xg + XT

g AkXg︸ ︷︷ ︸
global

+ cT
k Xl + XT

l BkXl︸ ︷︷ ︸
local

, (2.51)

where ȳk is the nominal case output value. dk ∈ R
ng and ck ∈ R

nl include the first

order coefficients of the global and local variables, while Ak ∈ R
ng×ng and Bk ∈ R

nl×nl

are the second-order coefficients capturing the dependency of yk on the global and

local variables, respectively. To come up with a common set of reduced parameters

for these m signal arrival times, the linear reduced rank regression method and the

moment-based method are adopted.

b. Linear RRR with Two Regressors (RRR)

In this subsection, we introduce the linear RRR approach in detail, which is suitable

for dimension reduction problem that has moderate nonlinear performance depen-

dence of the variation sources.
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1) The Theory

Considering the quadratic model in (2.51), if the second-order terms are not signif-

icantly larger than the first order coefficients, it is natural to relate all the m pa-

rameterized signal arrival times yk (in the performance vector Y ) with the parameter

space (Xl and Xg) by the following multivariate linear regression model 1

Y ≈ CXl + DXg + ε, (2.52)

where ε is the model error. First order coefficient matrices C and D are defined as

C = [c1, ..., ck, ..., cm]T ∈ R
m×nl , (2.53)

D = [d1, ..., dk, ..., dm]T ∈ R
m×ng , (2.54)

To effectively reduce the dimension of Xl (the local process variables), a rank-

deficient regression coefficient matrix C̃ can be used to approximate C without losing

the capability of predicting Y accurately. If such a good rank-deficient matrix C̃ can

be successfully found, it implies that as far as Y is concerned, the true dimensionality

in Xl is low. Hence, building such a reduced-rank model with respect to Xl serves the

need for discovering the redundancy in the full regression model and therefore fulfills

performance specific parameter dimension reduction.

The construction of a rank reduced linear regression model can be described

as follows. We denote the covariance of Y and Xl by ΣY Xl
and the covariance of

Xl by ΣXlXl
. We also assume no correlation between the global and local variables

(ΣXlXg
= 0). An optimal reduced rank regression model with two regressors can be

shown to be [28]:

1In our work, linear RRR is only used to do parameter reduction, however, the
SSTA is still conducted under a quadratic framework.
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Theorem 3 An m× r matrix Ar and r×nl matrix Br can be found to minimize the

trace [28]:

tr{E[(Y − ArBrXl −DXg)(Y − ArBrXl −DXg)
T ]}, (2.55)

where

Ar = Ur, Br = UT
r ΣY Xl

Σ−1
XlXl

. (2.56)

In the above equations, Ur = [u1, ..., ur] contains r normalized eigenvectors corre-

sponding to the r largest eigenvalues of the matrix

Q = ΣY Xl
Σ−1

XlXl
ΣXlY . (2.57)

The above model is optimal in the sense of minimization of the variance of the reduced

rank regression model errors.

As indicated by above theory, if we are given a matrix C in (2.53), which is

the first order sensitivity matrix for the local variables in Xl with respect to the

performance vector Y , then we have ΣY Xl
≈ CΣXlXl

, which further gives:

Q ≈ CΣXlXl
CT . (2.58)

2) Implication On Parameter Dimension Reduction

The inherent redundancy in the predictor variables Xl can be filtered out statistically

by the above procedure. Suppose a rank-r regression model with two regressors is

computed through the above procedure that minimizes the statistical errors in Y :

Y ≈ ArBrXl + DXg + ε̃, (2.59)

where ε̃ represents the model error. We can construct a new set of variable Z ∈ R
r
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(r < nl) as

Z = BrXl. (2.60)

Consequently, the quadratic timing model in (2.51) can be rewritten using the reduced

parameter set Z instead of Xl as:

yk ≈ ȳk + dT
k Xg + XT

g AkXg︸ ︷︷ ︸
global

+ c̃T
k Z + ZT B̃kZ︸ ︷︷ ︸

local

, (2.61)

A reduced rank model such as (2.61) can be used to reveal the redundancy in

the predictor variable Xl (e.g. local process variations).

3) Composition of The Reduced Parameter Set

Once the original set of parameters in Xl is reduced into new variables in Z using the

mapping matrix Br (2.60), we can reveal the importance of each old parameter (in

Xl) with respect to the performance (in Y ) in a statistical sense, by examining the

weighing coefficients. For example, the (i, j) entry of matrix Br describes the linear

contribution of the jth original parameter xj to the ith new parameter zi.

This exciting feature of the parameter reduction method is more preferable when

compared with the traditional parameter screening technique [2]. For the example

shown in Fig. 26, we know that the coefficients of the parameterized signal arrival

times (AT4,7 and AT5,7) actually provides the sensitivities of the underlying parame-

ters (X1 to X4). Consequently, for a specific signal arrival time AT4,7 ( AT5,7), people

can easily reduce the parameter dimension by removing those parameters X2 and X3

(X1 and X3) with insignificant coefficients. However, once we need to consider AT4,7

and AT5,7 simultaneously (in max operations), the parameter screening becomes dif-

ficult to apply.

4) Mapping Z back to X

To map the reduced parameter set (Z) back to the original parameter set (Xl), we
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can use the pseudo-inverse (Moore-Penrose) [29] of matrix Br that satisfies

X = TrZ. (2.62)

This mapping is done by computing the singular value decomposition (SVD) of Br

matrix. So if the SVD of Br matrix is Br = UΣV T , then the pseudo-inverse is

Tr = V Σ−1UT .

This inverse mapping is necessary for converting the quadratic timing models

(2.51) in the full parameter space to an alternative model in the reduced parameter

space. For instance, (2.51) can be rewritten as

yk ≈ ȳk + dT
k Xg + XT

g AkXg︸ ︷︷ ︸
global

+ (cT
k Tr)Z + ZT (T T

r BkTr)Z︸ ︷︷ ︸
local

. (2.63)

From (2.61) and (2.63), we have

c̃k = T T
r ck, B̃k = T T

r BkTr. (2.64)

Algorithm 4 Linear RRR Algorithm in SSTA

Input: First order sensitivity matrix C ∈ R
m×n, parameter dimension nl (of Xl), the

parameter covariance matrix ΣXlXl
and the reduced parameter dimension r.

Output: The mapping matrix Br .

1: Set Q← CΣxxC
T;

2: Do eigen-decomposition for Q matrix such that Q = UΛUT to get all the eigenvalues
λi (in descending order) and the corresponding eigenvectors ui ;

3: Use the r largest eigenvalues and their corresponding eigenvectors to form a diagonal
matrix Λr and a matrix Ur;

4: Set Br ← Λ
−1/2
r UT

r C;
5: Return the mapping matrix Br .

5) The Algorithm Details

We conclude the parameter reduction algorithm using linear RRR in Algorithm 4.
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The inputs to the algorithm include the C matrix in (2.53) and the covariance ma-

trix ΣXlXl
of the full parameter space Xl. The input may also include the desired

dimension of the reduced parameter set r.

By following the formulas given in the previous sections, Step 1 of the algorithm

computes the Q matrix in (2.57) using a closed form formula. If all the variables in

Xl are independent Gaussian with N(0,1) distributions, the covariance matrix ΣXlXl

is simply the identity matrix, which leads to Q = CCT . The eigen-decomposition

is subsequently performed to find all the eigenvalues and the eigenvectors of the Q

matrix. The r largest eigenvalues and their eigenvectors are used to form Λr and Ur.

In Step 4 of the algorithm, the Λ
−1/2
r matrix scales the rows of Br matrix such that

the final reduced parameters (Z = BrX) all have the N(0,1) distributions.

c. Moment-Based Dimension Reduction (MOM)

In the above section, we show that the linear RRR can be used to detect the real

parameter dimension by only a few extra computations. However, linear RRR is

built upon a linear regression framework, thus it is possible that the above dimension

reduction may cause relatively large errors when encountering stronger nonlinearities

(e.g. the quadratic timing models or the signal arrival times that have relatively large

second-order coefficients). Consequently, we introduce the moment-based dimension

reduction method in the following subsections to remedy the insufficiency of the linear

RRR method.

1) K-th Moment Dimension Reduction

To capture more challenging nonlinear effects of process variations in the performance

space, we apply a recently developed moment-based (MOM) dimension reduction

technique [58, 59]. In the following, we use Y to represent the performance space

vector and the standardized predictor vector (including local process variations) by
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X. The centered kth conditional moment M (k)(Y |X) is defined as:

M (k) (Y |X) = E [(Y − E (Y |X))⊗

· · · ⊗ (Y − E (Y |X))⊗ (Y − E (Y |X))T |X
] , (2.65)

where ⊗ indicates the Kronecker product that appears k − 1 times in the above

definition. Considering conditional moments, the moment-based method aims to find

an r × n matrix Br, r < n, such that the random vector BrX contains all the

information about Y which is available from M (1)(Y |X),M (2)(Y |X), ...,M (k)(Y |X).

If we use the notation U⊥V|Z to represent that the vectors U and V are independent

given any value for the random vector Z, then the following definition for the central

k-th moment dimension reduction subspace (DRS) is given by:

If : Y⊥
{
M(1) (Y|X) , . . . , M(k) (Y|X)

}∣∣ BrX, (2.66)

then the subspace spanned by the columns of Br is called a kth moment DRS for

the regression of Y on X, which can be denoted by Sub
(k)
Y |X . The central subspace is

designed to capture the entire conditional distribution of Y |X and provide an overall

picture of the dependence of Y on X, while the central kth moment subspace (CKMS)

Sub
(k)
Y |X is defined to be the intersection over all kth moment DRS. If such a subspace

exists, it is the smallest kth moment DRS. The existence of CKMS can be guaranteed

under various mild conditions [59]. For most data sets, existence is not a practical

issue, then the following relations hold:

Sub
(1)
Y|X ⊆ · · · ⊆ Sub

(k)
Y|X. (2.67)

Since the focus in multivariate regression is on the first two moments of the condi-

tional distribution of the response given the predictor, the central subspace Sub
(2)
Y |X

is of particular interest. To obtain the subspace Sub
(2)
Y |X , if we denote by Xs the
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standardized X vector, two matrices, K21c and K22c can be obtained:

K21c =

[
E

(
XsY

T
)
, E

(
XsY

T ⊗ Y T
)

]
,

K22c = E
[
XsX

T
s ⊗ [Y T − E(Y T )]

]
.

(2.68)

It has been shown in [58, 59] that the subspace Sub(K21c) spanned by K21c, and

the subspace Sub(K22c) spanned by K22c satisfies:

Sub(K21c) ⊆ Sub
(2)
Y |X , Sub(K22c) ⊆ Sub

(1)
Y |X . (2.69)

It may be of interest to note that the matrix K22c is the extended version of the

Principal Hessian Direction (PHD) [61, 62] to multivariate response regression. It

has been suggested that in practical applications, K21c can better detect the linear

trends or odd functions (cross terms), while K22c is better at revealing symmetric

trends or even functions (second-order self terms). In this work, we only use K21c

for dimension reduction and neglect K22c to simplify the computation.

2) The Algorithm

From the above theory, it is easy to realize that the moment-based dimension reduc-

tion is based on estimating the moments of functions of the response (performance)

and predictors. Unfortunately, the original theoretical work in [58, 59] does not as-

sume a known model (mappings between the responses and the predictors) and rely on

the sample-based estimators to evaluate K21c, which is rather expensive for practical

circuit applications.

We have derived the closed-form formulas to compute the central 2nd moment

dimension reduction subspace (DRS) based upon a given quadratic response model 2.

That is, if a quadratic model relating circuit performances with the process variables

2Higher order DRS with more complex forms can be derived in similar ways.
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is given, parameter reduction can be achieved rather efficiently without performing

sampling. The detailed algorithm is depicted in Algorithm 5, where we observe that

M1 reflects the information of linear models (find the same DRS as the linear RRR

approach) while M2 takes the second-order information into consideration.

Algorithm 5 K-moment dimension reduction Algorithm

Input: Quadratic forms of the standardized response vector Y = [y1,y2, ...,ym]T ∈ R
m

in terms of the standardized predictor vector (uncorrelated Gaussian) X ∈ R
n:

yi = XTBiX + cT
i X + fi for i = 1 : m, where Bi = [bp,q]

n×n
∈ R

n×n and ci ∈ R
n ;

Output: The dimension reduction matrix Br.

1: Set: M1 = E
(
XYT

)
←

[
c1 c2 · · · cm

]
;

2: for i, j = 1 : m do

3: Set: κi,j ← Bicj + Bjci;
4: end for

5: Set: M2 = E
(
XYT ⊗YT

)
←

[
κ1,1 · · · κm,m

]
;

6: Set: K21c←
[

M1 M2

]
.

7: Set: Br = Ur which include r left singular vectors u1, ...,ur of matrix K21c that
corresponds to the r largest singular values;

8: Return the transform matrix Br.

3) Combination With Linear RRR

Obviously, the moment-based (MOM) parameter reduction is more computationally

expensive when compared with the linear RRR approach, but can provide a better

parameter reduction for stronger nonlinear effects. It can be shown later that us-

ing this parameter reduction may lead to extra reduced parameters to remedy the

insufficiency of the linear RRR method.

In practical application, we suggest to combine this method with the simple

linear RRR method to achieve the best accuracy as well as the efficiency. Such

combinations can be performed by looking into the relative magnitude (say ε) of the

second-order coefficient with respect to the corresponding linear coefficients: when

the magnitude of ε exceeds a predefined threshold, a more accurate moment-based

dimension reduction can be applied.
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4) Implementation Issues

In realistic digital designs, there may be a lot of signal arrival times to be considered

for parameter reduction at the same time, which makes the computation of M2 matrix

too computational expensive, since many cross effects of the outputs need to be

evaluated (e.g. Bicj). Fortunately, we found in our experiments that neglecting the

cross-effect evaluations will not impact the accuracy of parameter reduction much.

So in practical implementations, we only need to compute the Bici terms for the M2

matrix in Algorithm 5, which greatly improves the algorithm efficiency.

Not surprisingly, by adopting the above simplification, the moment-based pa-

rameter dimension reduction generates at most 2m reduced parameters given m ob-

servations. On the other hand, the linear RRR based parameter reduction only gives

at most m reduced parameters for the m observations.

In this work, in order to reduce the local process variations (Xl) in the SSTA flow,

we consider the the quadratic signal arrival times contributed by the local process

variations as the performance vector (Y ) and the local variables as the predictor

variables. The moment-based parameter reduction can be applied to reduce the

dimension of the local variables following the flow in Algorithm 5.

d. Comparisons of RRR and Moment-Based Parameter Reductions

In this section, we compare the two parameter reduction techniques, RRR and MOM

based parameter reductions, on the ISCAS85 C17 implemented in TSMC 180nm

technology. We use V DD = 1V to test the two parameter reductions for the nonlinear

performance space (circuit delays at two output nodes). Each transistor’s threshold

voltage (Vth) is considered as an independent Gaussian/uniform variable. We run

500 spice level Monte Carlo simulations in the full parameter space that includes 24

variables and compare the circuit delay of each simulation with the results obtained
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by the two parameter reduction methods.

Since there are only two output nodes in this circuits, using the RRR approach

can only reduce the parameters into two, while the moment-based parameter reduc-

tion can give at most a four-parameter model (we only consider the Bici for M2

matrix in Algorithm 5). In the following experiments, we use 300 samples to fit two

quadratic timing models for the two outputs, and then apply the moment-based di-

mension reduction to obtain three reduced parameters.

1) Accuracy with Gaussian Variables

We assume a 30% 3σ variation for each Vth variation. The experiment results for

Gaussian variables are plotted in Fig. 27, showing the PDFs of the relative delay

errors of the parameter reduced models obtained by the RRR and moment-based

algorithms. As expected, with one additional reduced parameter, moment-based pa-

rameter reduction technique provides more accurate results compared with the RRR

based reduction method. As observed, the three-parameter model (by the moment-

based algorithm) is more accurate than the two-parameter model (by the RRR based

algorithm). In fact, even we keep the same number of reduced parameters, the pa-

rameter reduction accuracy of the moment-based method is always better than the

accuracy of the linear RRR based method.

The composition of the first reduced parameter set (the mapping coefficients in

Br) obtained by each method is plotted in Fig. 28. Obviously, there are differences

between the reduced parameter sets (DRS) found by two dimension reduction meth-

ods.

2) Accuracy with Non-Gaussian Variables

The RRR and MOM methods are derived to achieve the optimal parameter reduc-

tion accuracy for Gaussian variables. However, the RRR/MOM dimension reduction

results for non-Gaussian variables may be less accurate, as demonstrated in the fol-
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Fig. 27. PDF plots of the relative circuit delay errors by the RRR and moment-based

dimension reductions (two output nodes) with independent Gaussian vari-

ables.
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Fig. 29. PDF plots of the relative circuit delay errors by the RRR and moment-based

dimension reductions (two output nodes) with independent uniform distribu-

tions.

lowing experiments. We consider all the transistor Vth variations with uniform dis-

tributions and set the variation range from −30% to 30%. After applying the same

formulas (Algorithm 4 and 5 ) and repeating the experiments described in Section d,

the results obtained by RRR and MOM are shown in Fig 29. As observed, the rela-

tive errors of RRR and MOM with uniform distributions for the two circuit outputs

are significantly larger than the errors in the Gaussian case (Section d). Fortunately,

we have one possible workaround for handling the non-Gaussian variables that is to

transform them to Gaussian ones first and then apply the RRR/MOM formulas. We

also want to point out that in many cases the reason that certain process parame-

ters not being Gaussian is that they are not the “root” parameters. For example,

resistance and capacitance are not Gaussian, but the gate length, wire width and

thickness are Gaussian. So if we are given non-Gaussian parameters, we may convert

them to Gaussian by finding the “root” from them.
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The composition of the first reduced parameter set obtained by each method is

also plotted in Fig. 30, which is quite similar to the composition shown in Fig. 28.
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Fig. 30. Compositions of the first reduced parameters (Unif. Dis.).

3. SSTA with Parameter Reduction

In this section, we first introduce the fundamental ideas of embedding parameter

reduction within the quadratic SSTA procedure. Next, we describe how to partition

the circuit according to specific SSTA and parameter reduction algorithms. The

propagation of the reduced parameters in each step of the quadratic SSTA is also

demonstrated to provide a complete flow of the algorithm.

a. Overview

When propagating the signal arrival times by following the SSTA algorithm described

in Section b, an increasing number of local process variations will need to be con-
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sidered. To avoid the explosion of the number of parameters that enter the SSTA,

parameter reduction is intervened with SSTA processing steps to compress the local

variations. In the following part, we show how to apply the RRR and moment-based

parameter reductions in the second-order SSTA algorithm. Suppose there are m sig-

nal arrival times to be considered for parameter reductions at the same time.

1) RRR in SSTA

The RRR based parameter reduction involves the computation of the Q matrix (2.57)

that requires the covariance matrices relating the response variables and the underly-

ing parameters be computed in advance. Fortunately, the arrival time of each pin is

given in the quadratic forms in SSTA. So we can obtain the C matrix in (2.53) easily

and follow Algorithm 4 to perform the eigen-decomposition of the Q, whose eigen-

vectors with the few largest eigenvalues form the Br matrix (2.60). Subsequently, we

can transform the the original local variables into a smaller dimensional parameter

set.

2) MOM in SSTA

For the MOM based parameter reduction, the M1 matrix in Algorithm 5 is same as

the C matrix (2.53). To compute M2, we need to perform the matrix-vector multi-

plications, say Bici, for all the signal arrival times within this circuit partition (we

only consider the Bici term for M2 matrix). So m signal arrival times need additional

m times matrix-vector multiplications when compared with the RRR method. Then

the Br matrix can be obtained by computing the SVD of matrix K21c.

b. Circuit Partitioning

Assume the global variations are transformed to the uncorrelated variables by the

Principle Component Analysis (PCA) before the SSTA algorithm starts. Subse-

quently, we need to partition the circuit for the parameter reduction step. To apply
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the parameter reduction algorithms in SSTA, we first partition the circuits into some

building blocks and then do further partitions within each block. Parameter reduc-

tions are performed within these small partitions to obtain the reduced parameters,

and subsequently, these new parameters can be further reduced by parameter reduc-

tions within the larger building blocks. For example, we can partition the circuit

by logic levels and within each level, some additional partitions may be performed if

necessary.

During the partitioning, we also need to consider the partition size as well as its

corresponding local parameter dimension. In general cases, using larger blocks usually

results in more local parameters for each block, thus requires more computational cost

for the sum and max operations in the SSTA flow. Therefore, the partition strategy

largely depends on the efficiency of the atomic operations as well as the parameter

reduction procedures. To understand the impact of circuit partitioning on SSTA using

parameter reduction, we consider a circuit with n local variables that is partitioned

into k blocks (each block has a similar number of local variables, say nl = ceil(n/k)).

We introduce the parameter reduction ratio PRR, which is defined by:

PRR = nr/nl, (2.70)

where nr represents the number of reduced parameters and nl denotes the number of

the original local variables. Assume that there are totally c (constant number) max

operations to be performed and the parameter reduction within each circuit block

has the same PRR 3, then the total computational cost of all the max operations and

3This assumption is to ease the computational cost analysis and in reality, this
ratio is not exactly the same for each circuit block.
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parameter reductions can be approximated as:

Costtot ≈ c ∗ Costmax(ng + nl ∗ PRR) + k ∗ CostPR(nl), (2.71)

where Costtot is the total cost for all the max operations and parameter reductions,

Costmax is the cost for each max operation and CostPR is the cost for each parameter

reduction.

We give a very brief description of the circuit partitioning strategy as follows.

Considering n parameters, assume the computational cost for each max operation is

O(nq), and for each parameter reduction is O(ns). If q >> s, which is a very typical

case especially when using very accurate max operations (e.g. the algorithm in [55]),

we should consider very small partition size to make sure the max operations can be

performed efficiently on a small set of variables. Consequently, the circuit partition

should be performed according to the efficiencies of the atomic operations as well as

the parameter reductions for specific SSTA and parameter reduction algorithms.

c. Propagation of Reduced Parameters

After the circuit partitioning step, parameter reduction is conducted hierarchically.

Assume we have computed all the m signal arrival times of partition i by the

second-order SSTA, then one of these signal arrival times (say ATk) is given in the

form of (2.51) as:

ATk = M̄k + dT
k Xg + XT

g AkXg︸ ︷︷ ︸
global

+ cT
k Xli + XT

li
BkXli︸ ︷︷ ︸

local

(2.72)

where the local parameter set Xli =




Xloc i

Zi−1


 ∈ R

nl includes the local parameters of

partition i and the reduced parameter set Zi−1(obtained from the proceeding partition
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Fig. 31. Parameter propagations in parameter reduced SSTA.

i − 1 that is driving partition i). In the above way, the reduced parameters can be

propagated from the inputs to the outputs. We conclude the flow of Parameter-

Reduced SSTA (PR-SSTA) in Algorithm 6.

Algorithm 6 Quadratic SSTA with parameter dimension reduction

1: Partition a large design into a set of building blocks;
2: Do further partitions within each building block if necessary;
3: For partition i, reduce the local variables of partition i and the reduced parameters from

the proceeding partition (that is driving partition i) into a few reduced parameters using
RRR or moment-based algorithms according to the nonlinearity of the timing model;

4: Perform max and sum operations for the signal arrival times which are in terms of the
global parameters Xg and the reduced parameters Zi;

5: Propagate the reduced parameters to its following partitions;
6: i++; Go to 3 until all the signal arrival times are computed.

d. Examples of SSTA Using Parameter Reduction

1) A Circuit Example Partitioned By Its Logic Levels

We demonstrate the analysis flow in Fig. 31 for ISCAS85 C17 circuit where we
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assume the circuit is partitioned by its logic levels. In the figure, we denote one

of the arrival times, the global and local variables in level i by ATlev,i, Xg and Xli

respectively.

If we denote by Zi−1 the reduced parameter set obtained in the proceeding logic

level i − 1, the signal arrival time ATlev,i can be written in the quadratic forms of

the global parameters (Xg), the local parameters (Xli) and the reduced parameters

from the proceeding logic level (Zi−1). After parameter reduction is performed for

partition i to reduce Xli and Zi−1 into a new reduced parameter set Zi, the max and

sum operations of the signal arrival times in terms of Xg and Zi are performed, which

is much more efficient. As this algorithm continues, the local parameters that enter

the SSTA can always be compressed to a few reduced parameters before they are

propagated continuously through the whole circuit.

If more partitions need to be considered within each logic level, similar procedures

can be followed: parameter reduction is performed for each partition of the level, and

then the reduced parameters are propagated to the following partitions, where they
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are combined with the local variables that can be further reduced through parameter

reductions.

2) A More General Circuit Example

When reconvergent variables exist during SSTA, parameter recovery in Section b

is required which maps the reduced parameter set back to the full parameter set.

The parameter propagation considering reconvergent variables is shown in Fig. 32,

where five circuit partitions are considered. In partition i, the local parameter set

Xli (in partition i ) combined with the reduced parameter set Zi−1 that feeds into

this partition are reduced into a new reduced parameter set Zi. Bri
matrix maps

the original parameter set to the reduced parameter set while Tri
does the inverse

mapping. Consequently, to perform parameter reduction in partition 5, the reduced

parameter set Z2 from partition 3 needs to be recovered before using the parameter

reduction methods.

e. Computation Complexity

The computational complexity of the parameter reduction algorithm for each par-

tition is determined by the number of signal arrival times of the partition and the

number of local parameters (combined with the reduced parameters from the pro-

ceeding partitions) to be compressed. For RRR (MOM) based parameter reduction,

only the largest few eigenvalues (singular values) and their corresponding eigenvec-

tors (singular vectors) of matrix Q in Algorithm 4 (K21c matrix in Algorithm 5) are

needed. The main complexity of the SSTA algorithm is dominated by other parts

of the second-order SSTA algorithm (e.g. max operations), instead of the parameter

reduction procedure. The additional cost due to the parameter reduction algorithm

can be almost neglected (as shown in the following experiment section), especially for

the quadratic statistic timing analysis where max operations contribute most to the
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computational costs.

4. Experimental Results

We have implemented our second-order SSTA algorithm by combining the hierarchical

parameter dimension reduction algorithm (using RRR or MOM) with the quadratic

SSTA algorithm proposed in [55]. Our algorithm is tested on the ISCAS85 bench-

mark circuits. To model the correlation among the intra-die variations, we partition

the circuit into several grids (number of grids depends on the circuit size). The corre-

lated global variables are transformed to uncorrelated ones by PCA. All the quadratic

timing models are subsequently obtained based on the uncorrelated variables.

We compare our results with the following two types of experiments: (a) 100K

Monte Carlo simulations with a full set of inter-die and intra-die variations; (b) 100K

Monte Carlo simulations with only the global variations. The sample size for Monte

Carlo simulations is selected to be 100K to ensure the accuracy of Monte-Carlo sim-

ulations for the high (20 or more) dimensional nonlinear circuit timing analysis prob-

lems considered in this work. Various experiments are shown to demonstrate the

excellent performance of this new second-order parameter reduction based SSTA al-

gorithm in terms of handling high-dimensional process variations.

a. Impact of Local Process Variations

We first show through three circuit examples (ISCAS85 benchmark circuits C880,

C1355 and C5315), that neglecting the important local process variations in statis-

tical static timing analysis can lead to significant errors, especially for large circuit

designs. We also show that the proposed second-order SSTA with parameter dimen-

sion reduction can handle a large set of local variations efficiently and accurately,

which is extremely difficult to achieve by existing techniques.



97

We partition each circuit based on gate locations such that all partitions share

the same two global variation variables and are influenced by an individual local

variation source. In these experiments, multiple parameter reductions using RRR

are sequentially performed during the SSTA analysis as described in Section 3 (the

moment-based parameter reduction have quite similar results due to the moderate

nonlinearity of the quadratic timing model). At any point of time the effective number

of process parameters being kept is controlled to be less than five. As such, via

parameter dimension reduction, our new second-order SSTA is able to maintain a

very favorable runtime efficiency. This can be well understood by the fact that the

runtime complexity of any true quadratic SSTA will grow quickly with the number

of parameters.

The circuit delay probability density distributions of the ISCAS85 benchmark

circuits C880, C1355 and C5315 are compared with the two kinds of MC simulations

under the setups (a) and (b). Counting all the parameters in the global and local

variation set, the total number of parameters for the above three circuits are 14, 14

and 26 respectively. At the final step of our parameter-reduced SSTA, the complete

parameterized circuit timing expressions only include two global variables and two

reduced variables, achieving about 10X parameter dimension reduction for the local

variation sources. Without any significant loss of accuracy, the statistical circuit delay

distributions computed by our SSTA with parameter reduction follow closely with the

MC simulations, as shown in Fig. 33, Fig. 34 and Fig. 35.

At a glance, the PDF distributions seem to be similar to the ones without con-

sidering the local variations, but when we look at the rightmost tails, the curve dif-

ferences are obvious, which may indicate large differences on the final timing yields.

Consequently, neglecting the local variation effects in the timing analysis may lead to

quite large errors.
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b. Accuracy

In this section we follow similar experiment setup to present the results on several

ISCAS85 benchmark circuits. We apply the RRR and MOM based parameter reduc-

tions for all circuits, respectively4. At each step of SSTA, we always keep propagating

two reduced parameters (no extra reduced parameters are included in the moment-

based approach). Table V shows detailed results of each parameter-reduced SSTA

run, where Total # of parameters means the total number of the local and global

variables considered in the circuit. µ/σ by MC w/ all var. (ps) represents the mean

delay and the standard deviation given by the 100K Monte Carlo simulations consid-

ering all variation sources. µ/σ error of RRR (MOM)-SSTA represents the relative

errors of the mean and standard deviation given by our quadratic SSTA with param-

4We have not combined the two approaches, but in real applications, such combi-
nations may lead to better runtime efficiency.
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Table V. SSTA results of ISCAS85 benchmark circuits
Circuit C7552 C6228 C5315 C3540

# of Part. 21 12 24 23

Tot. # of para. 21 + 2 12 + 2 24 + 2 23 + 2

µ by MC w/ all var. (ps) 1328 3821 1670 1755

σ by MC w/ all var. (ps) 191.3 557.4 232.4 222.8

µ err. of RRR-SSTA 0.1% 0.89% 1.10% 1.14%

σ err. of RRR-SSTA 4.87% 0.65% 0.23% 0.37%

µ err. of MOM-SSTA 0.07% 0.56% 0.93% 1.05%

σ err. of MOM-SSTA 2.16% 0.41% 0.21% 0.28%

µ err. of MC w/o local var. 0.50% 0.61% 0.75% 1.15%

σ err. of MC w/o local var. 8.75% 2.4% 12.4% 7.8%

T. of MC (s) 582 455 360 243

T. of RRR (s) 0.02 < 0.01 0.02 0.03

T. of MOM (s) 0.05 0.03 0.05 0.08

T. of Quad. SSTA (s) 3.7 4.81 4.0 2.83

Sp. of PR-SSTA 162X 95X 90X 86X

Circuit C1908 C1355 C880 C499

# of Part. 20 12 12 5

Tot. # of para. 20 + 2 12 + 2 12 + 2 5 + 2

µ by MC w/ all var. (ps) 1206 671.78 727.32 555.33

σ by MC w/ all var. (ps) 175.8 89.63 99.34 37.29

µ err. of RRR-SSTA 0.52% 1.07% 0.32% 0.56%

σ err. of RRR-SSTA 0.54% 2.07% 0.47% 1.77%

µ err. of MOM-SSTA 0.32% 0.96% 0.25% 0.38%

σ err. of MOM-SSTA 0.46% 1.19% 0.39% 1.03%

µ err. of MC w/o local var. 0.69% 1.89% 0.12% 0.60%

σ err. of MC w/o local var. 7.1% 15.5% 12.5% 17.0%

T. of MC (s) 101 82.5 47.4 29.5

T. of RRR (s) < 0.01 < 0.01 0 0

T. of MOM (s) 0.02 0.03 < 0.01 < 0.01

T. of Quad. SSTA (s) 0.79 0.49 0.24 0.06

Sp. of PR-SSTA 128X 168X 200X 492X
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eter dimension reduction while µ/σ errors of MC w/o local var. represents the MC

simulation without the local variations. Not surprisingly, dropping the underlying

local parameters produces quite large errors in the timing results. From Table V we

can find that neglecting these local variation sources may introduce up to 1.89% mean

difference (C1355) and 17% sigma difference (C499).

The runtimes for both the SSTA with parameter reduction and the MC simula-

tions are listed. Since the runtime of the SSTA using the RRR and the MOM algo-

rithms are quite similar, only one of them is listed to show the runtimes and speedups

over Monte-Carlo simulations. The runtime of the parameter reduction procedures

(RRR/MOM) is only a negligible portion of the total analysis runtime. It shall be

emphasized that without effective parameter reductions, existing second-order SSTA

algorithms cannot handle such large numbers of parameters due to their super-linear

complexity. However, our new algorithms do not suffer from this limitation while

maintaining good accuracy.

To demonstrate the impacts of the number of parameters on the runtime, our

algorithm is also applied to the first few largest benchmark circuits in Table VI,

but using larger circuit partitions. Since the number of parameters that feed our

parameter reduced quadratic SSTA is smaller, the runtime for each circuit is reduced.

5. Summary

A hierarchical parameter reduction algorithm for quadratic Statistical Static Timing

Analysis is proposed by adopting the RRR and MOM based methodologies. Using

these approaches, we are able to accurately capture a large number of intra-die and

inter-die variations during SSTA. This is achieved by intervening the RRR/MOM

based parameter reductions with the SSTA processing steps such that the effective

number of process parameters at any point of time during the SSTA analysis is well
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Table VI. SSTA results of benchmark circuits with larger partitions

Cicrcuit C7552 C6228 C5315 C3540

Partitions 6 4 8 11

Total # of parameters 6 + 2 4 + 2 8 + 2 11 + 2

µ by MC w/ all 1329 3823 1651 1723

σ by MC w/ all 181.7 551.8 221.6 210.8

µ err. of RRR-SSTA 0.2% 0.40% 1.64% 1.04%

σ err. of RRR-SSTA 2.24% 0.65% 1.29% 0.67%

µ err. of MOM-SSTA 0.11% 0.27% 0.89% 0.65%

σ err. of MOM-SSTA 1.32% 0.55% 0.98% 0.54%

µ err. of MC w/o 0.50% 0.81% 0.4% 0.5%

σ err. of MC w/o 4.0% 2.71% 8.1% 4.5%

T of MC (s) 544 415 362 245

T of RRR (s) < 0.01 < 0.01 < 0.01 < 0.01

T of MOM (s) < 0.01 < 0.01 < 0.01 < 0.01

T of Quad. SSTA (s) 2.2 2.83 2.14 1.1

Speedups of PR-SSTA 247X 147X 169X 223X



103

controlled. Our experimental results have demonstrated significantly improved run-

time efficiency for accurate second-order SSTA analysis via these parameter dimension

reduction techniques.
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CHAPTER III

HARDWARE ACCELERATION OF LARGE SCALE ON-CHIP POWER GRID

ANALYSIS

The challenging task of analyzing on-chip power (ground) distribution networks with

multi-million node complexity and beyond is key to today’s large chip designs. For

the first time, this work exploit recent massively parallel single-instruction multiple-

thread (SIMT) based graphics processing unit (GPU) platforms to tackle power

grid analysis with promising performance. Several key enablers including GPU-

specific algorithm design, circuit topology transformation, workload partitioning, per-

formance tuning are embodied in the novel GPU-accelerated hybrid multigrid algo-

rithm, GpuHMD, and its implementation. In particular, a proper interplay between

algorithm design and SIMT architecture consideration is shown to be essential to

achieve good runtime performance. Different from the standard CPU based CAD

development, care must be taken to balance between computing and memory access,

reduce random memory access patterns and simplify flow control to achieve efficiency

on the GPU platform. Extensive experiments on industrial and synthetic benchmarks

have shown that for DC power grid analysis using one GPU, the proposed GpuGMD

engine can achieve 100X runtime speedup over a state-of-the-art direct solver and

be more than 50X faster than the CPU based multigrid implementation. For tran-

sient analysis using one GPU, more than 20X speedups is achieved when GpuGMD

is compared with the direct method. It is observed that the proposed approach scales

favorably with the circuit complexity, at a rate about one second per two million

nodes on single GPU card. We also show that utilizing a four-core-four-GPU system,

a grid with eight million nodes can be solved within about one second.
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A. Background and Overview

We first review the power grid analysis problems and the GPU architecture. Next,

an overview of the proposed GpuHMD approach is provided.

1. On-Chip Power Grid Analysis

The power grid analysis covers two main aspects: DC and transient analysis. As for

DC analysis, power grid problems are typically formulated into a linear system as

[14, 20, 22, 15, 23]:

GV = I, (3.1)

where G is a symmetric positive definite matrix representing the interconnected re-

sistors, V is the vector including all the node voltages and I is a vector containing all

the independent sources. Directly solving such a large system using LU or Cholesky

matrix factorizations is typically very expensive and requires huge memory resources

[18, 24]. Iterative methods [14, 20, 15] are memory efficient, but may suffer from slow

convergence.

Specifically, the point relaxation methods update the node voltage using the

neighboring nodes repeatedly until achieving the converged solution:

Vx =
∑

i6=x

gi∑
gi

Vi −
Ix∑

gi

, (3.2)

where Vx is the node voltage to be updated and Ix is the current sources flowing out

the node, while gi and Vi are the neighboring conductance and voltages.

Transient analysis requires solving the system at multiple time points. The point

relaxation based update can be written as:

Vx(t) =
∑

i6=x

gi∑
gi + Cx

h

Vi(t)−
Ix∑

gi + Cx

h

+
Cx

h∑
gi + Cx

h

Vx(t− h), (3.3)
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where Cx is the grounded capacitance associated with node Vx and h is the time step.

2. GPU Matrix Solvers?

A basic understanding of the SIMT GPU architecture is instrumental for evaluating

the potential in applying GPU matrix solvers to large power grid problems. Consider

a recent commodity GPU model, Nvidia G80 series. Each card has 16 streaming mul-

tiprocessors (SMs) with each SM containing eight streaming processors (SPs) running

at 1.35GHz. An SP operates in single-instruction, multiple-thread (SIMT) fashion

and has a 32-bit, single-precision floating-point, multiply-add arithmetic unit [63].

Additionally, an SM has 8192 registers which are dynamically shared by the threads

running on it and can access global, shared, and constant memories. The bandwidth

of the off-chip memory can be as high as 86GB/s, but the memory bandwidth may re-

duce significantly under many random memory accesses. The following programming

guidelines play very important roles for efficient GPU computing [27]:

1. Low control flow overhead: execute the same computation on many data ele-

ments in parallel;

2. High SP floating point arithmetic intensity: perform as many as possible cal-

culations per memory access;

3. Minimum random memory access: pack data for coalesced memory access.

Due to the very nature of the SIMT architecture, it remains as a challenge to

implement efficient general-purpose sparse matrix solvers on GPU. In recent such

attempts, it is reported that most of runtime is spent on data fetching and writing,

but not on data processing [64, 65]. For instance, traditional iterative methods such

as conjugate gradient and multigrid [64] involve many sparse matrix-vector computa-

tions, leading to rather complex control flows and a large number of random memory
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accesses that can result in extremely inefficient GPU implementations. On the other

hand, a problem with a structured data and memory access pattern can be processed

by GPU rather efficiently. The performance of a dense matrix-matrix multiplica-

tion kernel on GPU can reach a performance of over 90 GFLOPS, which is orders of

magnitude faster than on CPU [63]. Considering the above facts, it is unlikely to facil-

itate efficient power grid analysis by building around immature general-purpose GPU

matrix solvers or implementing existing CPU-oriented power grid analysis methods

[14, 15, 19] on GPU.

3. Our Approach

a. Power Grid Uniformity

To achieve the best analysis efficiency on SIMT platforms, understanding the phys-

ical properties of practical power grid designs is critical. It can be expected that

if the power grid can be stored and processed like pixel graphics, the GPU SIMT

platform can be of a significant advantage over the general purpose CPU platform.

Not surprisingly, after examining a set of published industrial power grids [66, 67],

we have found that real-life designs have a high degree of global uniformity while

exhibiting some local irregularity, as shown in Fig. 36 where the top view of the grid

node locations of all metal layers of an industrial power grid design is demonstrated

with some of the nodes overlapping. Therefore, to maintain regularity on GPU, it

is very natural for us to consider solving an approximate regular power grid that is

close to the original grid. However, this brings up the need for developing “regular”

numerical methods and correction schemes to guarantee solution accuracy.
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Fig. 36. Node distribution of an industrial power grid design.

b. GPU-Based Geometric Multigrid Method

Multigrid methods are among the fastest numerical algorithms for solving large PDE-

like problems [68], where a hierarchy of exact to coarse replicas (e.g. fine vs. coarse

grids) of the given linear problem are created. Via iterative updates, the high and

low frequency components of the solution error are quickly damped on the fine and

coarse grids, respectively, contributing to the efficiency of multigrid. When prop-

erly designed, multigrid methods can achieve a linear complexity in the number of

unknowns. The hierarchical iterative nature of multigrid is attractive to GPU plat-

forms since the GPU on-chip shared memory is rather limited. Multigrid methods

typically fall into two categories, geometric multigrid (GMD) and algebraic multi-

grid (AMG). AMG may be considered as a robust black-box method and requires an

expensive setup phase while GMD may be implemented more efficiently if specific ge-
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ometric structures of the problem can be exploited. The key operations of a multigrid

method include:

1. Smoothing: point or block iterative methods (e.g. Gauss-Seidel) applied to

damp the solution error on a grid;

2. Restriction: mapping from a fine grid to the next coarser grid (applied to map

the fine grid residue to the coarse grid);

3. Prolongation: mapping from a coarse grid to the next finer grid (applied to map

the coarse grid solution to the fine grid);

4. Correction: use the mapped coarse grid solution to correct the fine grid solution.

On the k-th level grid with an initial solution of vk, a typical multigrid cycle MG(k, vk)

has the following steps [68]:

1. Apply pre-smoothing to update the solution;
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2. Compute the residue on the k-th grid and map it to the k + 1-th coarser grid

via restriction;

3. Using the mapped residue to solve the k +1-th grid directly if the coarsest level

is reached, otherwise apply a multigrid cycle MG(k+1, vk+1) with a zero initial

guess vk+1 = 0;

4. Map the solution vk+1 to the k-th grid via prolongation, and correct the solution

vk by adding vk+1;

5. Apply post-smoothing to further improve vk at the k-th level grid and return

the final vk.

A GPU-specific GMD method is developed in our approach. Starting from a reg-

ularized power grid, all the key components of multigrid are realized in a geometrically

regular fashion across the entire multigrid hierarchy, leading to simple flow controls

and highly regular memory access patterns, favoring the GPU implementation.

c. Hybrid Multigrid (HMD) Iterations

The approximate regular power grid is solved efficiently using our custom GMD

method on GPU (Fig. 37), where no explicit sparse matrix-vector operations are

needed. The work associated with the GMD constitutes the dominant workload of

the entire GpuHMD approach. To guarantee the accuracy of the final power grid

solution, we further apply HMD iterations between the GPU and host to remove any

error that may arise from only solving the approximate regular grid. Denote the true

(original) power grid by GridO and the regularized grid by GridR, HMD iterations

involve the following main steps (Fig. 38):
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1. (CPU:) Compute the residue of the current solution on GridO and map the

residue to GridR;

2. (GPU:) Solve the GridR problem under the mapped residue using GMD and

return the solution to GridO;

3. (CPU:) Update the GridO solution using the GPU result and apply additional

smoothing;

4. (CPU:) If the solution error is small enough, exit; otherwise repeat the above

steps.

The bulk workload of the entire GpuHMD approach is done on GPU via solving the

regular grid (step-2). Only a fraction of the work such as simple residue computation

and smooth steps is preformed on the host, where the general-purpose CPU is more
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efficient in terms of handling the original (irregular) power grid.

B. Regular Grid Approximation

We discuss several key issues in converting a three-dimensional irregular power grid to

a two-dimensional regular approximation that can be processed efficiently on GPU.

1. Mapping to a Regular Grid

The goal is to map the original three dimensional irregular power grid to a two

dimensional regular grid such that the electrical property of the original grid can be

best preserved. As such, the regular grid can provide very close solution to the true

solution, reducing the number of the GPU-CPU hybrid iterations required.

After examining all the IBM power grid benchmarks [66, 67] and several indus-

trial designs, we found that these designs exhibit globally uniform gird structures,

except for some local grids that have irregular patterns. If we are able to form an

artificial 2D regular mesh structure and map all the original multi-layer irregular

grid elements (resistors, current and voltage sources) onto this regular grid based on

the geometrical and electrical information, the structure of the original power supply

network can be well preserved. During the above mapping, we simply neglect the

impact of the via resistors which may usually introduce relatively small errors. As

demonstrated in Table VII, for the five benchmark power grid designs, the average so-

lution differences of the top metal layer nodes and their corresponding bottom metal

layer nodes are relatively small (much smaller than 1 mV). We propose an efficient

yet effective mapping procedure that has three subsequent steps:

1. 3D irregular to 2D irregular mapping. By neglecting via resistances, all the

metal layers in the network are overlapped on the same 2D plane, forming a
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Table VII. IBM power grid benchmark solution comparisons for the top and bottom

layer node solutions (∆V is the solution ranges, Eavg is the average solution

difference of the top and bottom layer nodes and Erel% is the relative

solution difference , for the VDD/GND grids respectively).

CKT Nnode Nl ∆V (mv) Eavg(mv) Erel%

ibmpg2 127, 238 5 337/270 0.87/0.63 0.06/0.20

ibmpg3 851, 584 5 171/151 0.01/0.01 0.01/0.10

ibmpg4 953, 583 6 5.3/2.4 0.02/0.02 0.00/0.78

ibmpg5 1, 079, 310 3 48/27 0.05/0.04 0.00/0.15

ibmpg6 1, 670, 494 3 154/112 0.1/0.06 0.01/0.10

collapsed 2D irregular grid. Based on analyzing industrial power grid bench-

marks, we found that neglecting via resistances typically does not alter the

circuit solution in any significant way (Table VII). Nevertheless, the error com-

ponents introduced by via removal can be quickly damped through our hybrid

multigrid iterations.

2. 2D irregular to 2D regular mapping. By examining the pitches in the collapsed

2D irregular grid, a fixed uniform pitch is chosen for the X and Y directions for

the final 2D regular grid, on which all the circuit elements are mapped to.

3. Circuit element mapping. After introducing the new regular grid nodes, circuit

elements can be mapped onto those nodes. The elements that occupy multiple

regular grid nodes have to be decomposed into smaller pieces before mapping,

while all the current and voltage sources are simply mapped according to their

geometrical locations.

As an example, let us consider a simple example shown in Fig. 39, where a

two-metal-layer irregular grid is mapped to a single-layer regular grid. The resultant
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conductance values on the regular grid can be calculated as follows:

G1 = 2g31 + g21, G2 = 2g31 + g22, G3 = 2g32,

G4 = 2g32 + g23, G5 = g33 + g24.
(3.4)

Note that because of irregularity of the original grid, some of the regular grid

nodes may not correspond to any of the original nodes. In this case, small dummy

conductances (Gmin = 1e − 6) are inserted between such regular grid node and its

neighboring nodes. Note also that the uniform pitches of the regular grid may be

set to the averaged pitch values in the irregular grid and can be adjusted when

appropriate. Smaller uniform pitch values lead to increased regular grid size and

improved grid approximation. The possible grid size increase in the regular grid

does not significantly impact the overall runtime efficiency of our approach due to

the linear complexity of the GPU GMD solver. The improved grid approximation,

however, may contribute to faster HMD convergence. As will be demonstrated later,

both the accuracy and efficiency of our GpuHMD algorithm are not sensitive to the

regular grid size. This is the case even when the regular grid size is varied from 50%

to 150% of the original grid size.

2. Table-Based Representation of the Regular Grid

The 2D regular grid is represented by several tables, denoted by Gh, Gv, Gz and Iz.

The simple representation allows for efficient coalesced memory access to the device

memory and is shown to be critical to the GPU implementation. For a regular grid

node N [i, j], the following four tables are adopted:

Gh[i, j] : Horizontally connected conductance between node N [i, j] and node N [i +

1, j];

Gv[i, j] : Vertically connected conductance between node N [i, j] and node N [i, j+1];
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Fig. 39. Cross section view of mapping a two-layer irregular grid to a single-layer

regular grid.

Gz[i, j] : The conductance that connects node N [i, j] and the voltage sources;

Iz[i, j] : The current sources that flows out node N [i, j].

C. Geometric Multigrid on GPU

While the 2D regular grid can be obtained in a relatively straightforward manner, de-

veloping an efficient regular grid solver on GPU is non-trivial. Naive implementations

for either data transferring or processing can lead to severe performance degradation.

The proposed GPU based GMD solver is described by covering the key issues con-

cerning the discussion in Section 2.

1. Coarse Grid Generation and Inter-grid Operators

With the mapped regular 2D grid sitting at the bottom of the multigrid hierarchy,

a set of increasingly coarser grids shall be created to occupy the higher levels. In



116

this case, the regular grid produced by the previous mapping step serves as the finest

grid in our GMD method. Ideally, these coarse grids should be created such that

the increasingly global behavior of the finest grid is well preserved using a decreasing

number of grid nodes. Unlike in CPU based multigrid methods, here, it is critical

to carry the regularity of the finest grid throughout the multigrid hierarchy so as to

achieve good efficiency on the GPU platform. The goal is achieved from the following

view of the I/O characteristics of the power grid.

When creating the next coarser grid, we distinguish two types of wire resistances:

resistances connecting a grid node to a VDD source (or VDD pad conductances)

vs. those connecting a grid node to one of its four neighboring nodes (or internal

resistances) on the regular grid, as shown in Fig. 40. Importantly, the two types of

resistances are handled differently. We maintain the same total current Iz that flows

out the network and the same total wire conductance (Gz) that connects the grid

to ideal voltage sources (e.g. total VDD pad conductance). In this way, the same

pull-up and pull-down strengths are kept in the coarser grid of a power distribution

network. Denote the voltages of M grid nodes that connect to an ideal voltage source

via a wire resistance by Vi for i = 1, ...,M , and the N loading current sources by Ij

for j = 1, ..., N . The following equation holds:

M∑

i=1

(V DD − Vi) Gzi
=

N∑

j=1

Izj
. (3.5)

To maintain approximately same node voltages Vi at V DD pad locations in the

coarser grid, we ensure that
M∑
i=1

Gzi
and

N∑
j=1

Izj
are unchanged. Consequently, as

shown in Fig. 40, both the V DD pad conductance (Gz) and current loadings (or

residues) are summed up when creating the coarser grid problem. Differently, inter-

nal conductances are averaged to create a coarser regular grid that approximately
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preserves the global behavior of the fine grid.

Use H and h to indicate the fine and coarser grid components, respectively, the

coarser grid is created as follows:

Gh
h[i, j] =

1

4
×

(
GH

h [2i, 2j] + GH
h [2i + 1, 2j] +

GH
h [2i, 2j + 1] + GH

h [2i + 1, 2j + 1]
)
,

Gh
v [i, j] =

1

4
×

(
GH

v [2i, 2j] + GH
v [2i + 1, 2j] +

GH
v [2i, 2j + 1] + GH

v [2i + 1, 2j + 1]
)
,

Gh
z [i, j] =

(
GH

z [2i, 2j] + GH
z [2i + 1, 2j] +

GH
z [2i, 2j + 1] + GH

z [2i + 1, 2j + 1]
)
, (3.6)

where i and j denote grid locations, and the numbers of nodes along the horizontal and

vertical directions are reduced by a factor of two in the coarser grid. The restriction

and prolongation operators are:

Rh [i, j] = RH [2i, 2j] + RH [2i + 1, 2j] +

RH [2i, 2j + 1] + RH [2i + 1, 2j + 1] ,
(3.7)

EH [2i, 2j] = EH [2i, 2j + 1] = EH [2i + 1, 2j] =

EH [2i + 1, 2j + 1] = Eh [i, j] ,
(3.8)

where residues and errors (solution corrections) are denoted by R and E, respectively.

Apparently, the coarser grid problem is defined completely based on geometry and

can be stored in the same regular table-based representation. In our GMD imple-

mentation, the coarsest grid is solved via a direct method on the host. To reduce the

overhead of this sparse matrix solve on CPU and fully utilize the GPU computing

power, the GMD hierarchy is purposely made deep. In our implementation, four to

five grid levels are used, making the size of the coarsest problem vary from a few
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Fig. 40. VDD pads (Gz) and current sources (residues) in fine/coarse grids.

hundred to a few thousand times smaller than the finest grid. This choice may push,

say 95%, of the overall computation onto the GPU.

2. Point vs. Block Smoothers

The choice of smoother is critical in GMD. Typically, point Gauss-Seidel or weighted

Jacobi smoothers are used for CPU based GMD methods. However, a block based

smoother is adopted in our approach to fully utilize the SIMT GPU computer power.

On GPU, a number (more precisely a warp [27]) of threads may be simultaneously

executed in a single-instruction multiple-data fashion on a multiprocessor. This im-

plies that multiple circuit nodes can be processed in the smoothing step at the same

time. In our approach, a block of circuit nodes are loaded into a multiprocessor at a

time. Then, multiple treads are launched to simultaneously smooth the circuit nodes

in the block for a number of iterations. As a result, such processing step (almost)

completely solves the circuit block, effectively leading to a block smoother. This ap-

proach ensures that a meaningful amount of compute work is done before the data

is released and a new memory access takes place. In other words, it contributes to
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efficient GPU computing by increasing the arithmetic intensity. This block smoother

is discussed in detail in Section D.

D. Accelerating GMD on GPU

To gain good efficiency on the GPU platform, care must be taken to facilitate thread

organization, memory and register allocation, workload balancing as well as hardware-

specific algorithms.

1. Thread Organization

Through a suitable programming model (e.g. CUDA [27]), threads shall be packed

properly for efficient execution on multiprocessors. On a multiprocessor, threads are

organized in units of blocks, where the number of blocks should be properly chosen

to maximize the performance. The optimal block size shall be multiples of 32 threads

for a commercial GPU [27]. In our implementation, the actual optimal block size is

chosen experimentally.

2. Memory and Register Allocation

Before the GMD solve starts on GPU, 1D tables are allocated on the CPU to store

all the regular grids in the multigrid hierarchy. Then, the data are transferred to

the device (CPU). We bind the conductance tables (Gh, Gv and Gz) to the texture

memory and other data to the on-board GPU device memory. Texture memory is

cached, so its access latency is significantly smaller than the device memory. However,

the texture memory is read-only and cannot be used for solution updates. Therefore,

residues, solution and error vectors are stored in the device memory. Since the device

memory is not cached, coalesced memory accesses are employed to achieve the best
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memory bandwidth.

The fast on-chip shared memory and registers are very limited resources on GPU.

If the required shared memory and registers exceed what are available, an application

will fail. On the other hand, more than one block of threads should be run on the

same stream multiprocessor (SM). This will hide the memory read/write latency in a

better way, leading to a much higher performance throughput. With this in mind, all

components of our GPU GMD method are developed carefully to fully utilize GPU

resources. As an example, in the smoothing steps, the solution and right hand side

(RHS) vectors are loaded from the global memory to the shared memory, while the

resistance grid data are loaded from the the texture memory to the registers. The

above scheme allows more than two blocks of threads to be launched concurrently

within the resource limitation on an SM. Otherwise, if the grid data were loaded

to the shared memory, only one block of threads could be run, making the memory

access latency a higher impact.

3. Mixed Block-wise Smoother

In our GMD solver, the relaxation (smoothing) steps dominate the overall computa-

tion. Hence, an efficient implementation of the smoother is critical. On CPU, point-

wise iterative methods such as Gauss-Seidel or weighted Jacobi are often adopted.

However, to improve the arithmetic intensity and work better with efficient coalesced

(block) memory accesses and control flows, global block Gauss-Seidel iteration (GBG

iteration) and local block weighted Jacobi iteration (LBJ iteration) schemes are intro-

duced.

As illustrated in Fig. 41, during each GBG iteration, the whole 2D regular

grid is partitioned into small blocks which are subsequently transferred to streaming

processors. Next, k times LBJ iterations are conducted within each block locally.
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Fig. 41. Mixed block relaxation (smoother) on GPU.

Since only the threads within the same thread block can share the data with each

other, the solution of this local block can not be shared by others unless it is sent

back to the global memory. As processed block solutions are written back to the

global memory, the smoothing of subsequent blocks will be based upon the most

recent solutions of the neighboring blocks. Therefore, from this global point of view,

the smoother is a block Gauss-Seidel iterative (or GBG) method. On the other hand,

when each block is being smoothed, all its nodes are processed by multiple threads

simultaneously in a weighted Jacobi fashion, referred to as LBJ iterations. The above

mixed block-iteration scheme has been carefully tailored for our GPU based GMD

engine, particulary through the following considerations:

1. To increase the arithmetic intensity, we perform k times LBJ iterations for each

global memory access. k can be determined based upon the block size: larger

block size may include more local iterations. However, excessive local iterations
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may not help the overall convergence since the boundary information is not

updated.

2. To hide the memory latency and thread synchronization time, we allow two or

more blocks to run concurrently on each multiprocessor to avoid idle processors

during the thread synchronization and device memory access.

The block size may impact the overall performance significantly. A too large

block size may lead to slow convergence while a too small size may cause bad memory

efficiency and shared memory bank conflicts. To minimize shared memory and register

bank conflicts, block sizes such as 4×4 or 8×8 are observed to offer good performance.

4. Selection of Block Size

The block size used for the above relaxation may impact the overall performance

significantly. Too large block size may lead to slow convergence while too small size

may cause bad memory access latency. We apply a fixed hybrid block-wise relaxation

scheme (k = 5) but different block sizes on IBM power grid benchmark ibmpg5, and

demonstrate the results in Table VIII. From the table it can be found that when

using five (k = 5) local iteration for each global update, the optimal block size is

4 × 4. Empirically, it is possible to find optimal number (k) of local iterations for

different block sizes. For instance, the optimal k = 10 can be used for the block size

of 4× 4 and k = 20 for the block size of 8× 8.

5. Dummy Grid Nodes

As discussed before, GPU data processing favors block-like operations. If the grid

dimensions are not multiples of the block size, extra handling is required. For example,

assume one smoothing kernel of the GMD solver is executed on all multigrid levels
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Table VIII. Impact of partition size on the performance of the GMD solver imple-

mented on GPU for the GND grid of ibmpg5 benchmark. Part. Size is the

block size for GPU processing, #of Iter. is the total number of iterations

(NGBG∗k = 5NGBG) for each level in the smoothing step, #of V cyc. is the

number of V cycles needed for the desired accuracy level, and Runtime is

the overall execution time of the GMD solve. CPU refers to the results

obtained on the host using point-wise iteration scheme.

Part. Size 16× 16 8× 8 4× 4 2× 2 CPU

#of Iter. 150 150 50 50 50

#of V cyc. 17 10 8 5 10

Runtime 1.21s 0.54s 0.48s 0.72s 12.9s

based on 8 × 8 thread blocks. Then, all the grid widths and heights need to be

modified to be multiples of the block size. To this end, certain dummy grids can be

attached to the periphery of the original grid. It is important to isolate these dummy

grids from the original grid, as shown in Fig. 42. Otherwise, the GMD convergence

can be significantly impacted.

VDD VDD VDD

V
D

D
V

D
D

Original Grid Dummy Grid+=Final Grid

Fig. 42. Appending dummy grid nodes for a chosen block size.
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6. A Simple Example of GBG Iteration

Denoting the solution by V , we demonstrate the key steps of one GBG iteration

(block size is 8× 8 in this example) using shared memories and registers on GPU as

follows:

1. Load 8×8 V data from the global memory to the the shared memory and 8×8

Gh, Gv, Gz, RHS data to the registers;

2. Load the four boundary data of V, Gh, Gv, Gz, RHS to the shared memory

and registers as well;

3. Do k times LBJ iterations using a 8× 8 thread array;

4. Return the 8× 8 solution V to the global memory for updating;

As shown above, the central 8 × 8 nodes can be updated by the 8 × 8 threads

simultaneously, which is not possible for CPU implementations.

E. Hybrid Multigrid for Power Grid Analysis

Although solving the mapped 2D regular grids on GPU typically provides pretty

accurate results, the solution quality may not be completely guaranteed since grid

approximations can lead to various accuracy levels. To have a robust error control

scheme, interactions between the 2D regular grid and the original 3D irregular grid are

important. In this work, we propose a hybrid multigrid (HMD) analysis framework

to iteratively correct the error components that are caused by grid approximation.

The main steps of our HMD flow is shown in Fig. 38 and Fig. 43, and also outlined

in Section 3.
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1. Problem Formulation

Assuming for a 3D irregular power grid (GridO), the following large linear system of

equations need to be solved:

A · x = b, (3.9)

where A ∈ R
n×n is the original grid system matrix, representing a linear operator

A(x) : R
n → R

n, x = x∗ ∈ R
n is the exact solution vector to be solved, and b ∈ R

n is

the right hand side (RHS). Denote the system matrix of the mapped 2D regular grid

(GridR) as Ar ∈ R
m×m, which is a linear operator Ar(x) : R

m → R
m. Denote the

solution of the original grid in the k-th HMD iteration as x(k) ∈ R
n. The following

steps are performed in the k-th HMD iteration. The residue r(k) associated with x(k)

is computed and mapped onto r
(k)
r on the 2D regular grid (GridR) as

r(k) = b− A · x(k), r(k)
r = V r

o · r(k), (3.10)
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where V r
o ∈ R

m×n is a proper linear operator (Rn → R
m). Note that the above simple

computations are done on the CPU. With r
(k)
r , a solution correction e

(k)
r is computed

on the regular grid using the GPU GMD method:

Ar · e(k)
r = r(k)

r . (3.11)

e
(k)
r is returned to the CPU host for further processing. e

(k)
r is mapped back to the

original grid (GridO) via:

e(k) = V o
r · e(k)

r , (3.12)

where V o
r ∈ R

n×m is a proper linear operator (Rm → R
n). The solution for the

original grid is updated:

x(k+1) = x(k) + e(k). (3.13)

Finally, if the solution correction (e(k)) is below a user-defined threshold, x(k+1) is

returned as the final solution; otherwise, proceed to the k +1-th HMD iteration. The

inter-grid (GridO and GridR) mapping operators V r
o and V o

r may be interpreted as an

prolongation or restriction operator, respectively, as in a classical multigrid method,

depending on the relative sizes of GridO and GridR. They are also constructed in a

way similar to prolongation or restriction operators.

2. Convergence Analysis

Experimentally, it is observed that the proposed HMD approach can converge in a few

iterations. To gain further insights on the converge property, the following theoretical

result is proved.

Theorem 4 Denote the spectral radius of an l×l matrix M by ρ (M), where ρ (M) =

maxi=1,··· ,l|λi|, λi is an eigenvalue of M . The HMD iteration converges to the true
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solution x∗ for any chosen initial guess x(0) if and only if:

ρ
(
I − V o

r (Ar)
−1 V r

o A
)

< 1. (3.14)

Proof At the k-th HMD iteration, the residue on GridO ((3.10)) can be written as:

r(k) = Aε(k) = A
[
x∗ − x(k)

]
, (3.15)

where ε(k) is the solution error w.r.t. x∗ and shall not be confused with e(k) in (3.12).

Combining (3.10), (3.11) and (3.12) leads to

e(k) = V o
r A−1

r V r
o r(k). (3.16)

From (3.13), (3.15) and (3.16), we have

x(k+1) = x(k) + e(k)

= x(k) + V o
r A−1

r V r
o A

[
x∗ − x(k)

]
. (3.17)

Let B = I − V o
r A−1

r V r
o A. Substituting the definitions ε(k) = x∗ − x(k) and ε(k+1) =

x∗ − x(k+1) into (3.17), we have:

ε(k+1) =
[
I − V o

r A−1
r V r

o A
]
ε(k)

=
[
I − V o

r A−1
r V r

o A
]k+1

ε(0)

= Bk+1ε(0). (3.18)

It is not difficult to see that for any ε(0) (or x(0)), if ρ (B) < 1, ε(k) converges to a zero

vector. Furthermore,

∥∥ε(k+1)
∥∥ ≤ ‖B‖k+1

∥∥ε(0)
∥∥ ≥ [ρ (B)]k+1

∥∥ε(0)
∥∥ . (3.19)

It implies that if ε(k) converges to zero for any ε(0) (or x(0)), it must be true that

ρ (B) < 1.
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Theorem 1 provides a very intuitive understanding of the convergence property of the

HMD iterations and offers a theoretical basis to further improve the convergence rate.

Let C = V o
r A−1

r V r
o , C ∈ R

n×n. C can be interpreted as a linear operator (Rn → R
n),

which corresponds to the correction operator of the GridO solution x(k) by solving

an approximate problem defined by GridR. If there exists no grid approximation

in GridR, then the original power grid can be solved exactly on the regular grid:

C = A−1. In this ideal case, ρ (B) = ρ (I − CA) = 0, implying that HMD converges

in one iteration. In practice, the regular grid problem needs not to be exactly identical

to the original grid problem to have HMD converge fast, as long as it is sufficiently

close. Here, the closeness is measured by ρ (B) (the smaller the better).

In our implementation, we have found that applying a few, say m, additional

simple point Gauss-Jacobi relaxations to further improve the solution obtained in

(3.13) is very beneficial. In this case, the spectral radius (3.18) of the HMD iterations

becomes ρ
(
B (I −D−1A)

m)
, where D is the diagonal matrix corresponding to Gauss-

Jacobi iterations. This only adds a small additional cost on the host, but makes the

spectral radius even smaller, improving the overall convergence rate.

3. HMD on Multi-Core-Multi-GPU System

The proposed HMD algorithm is highly parallelable, and the workload can be easily

partitioned based on the geometrical information of the power grid circuit. In this

work, we propose to parallelize the HMD simulation on multi-core-multi-GPU system

(Fig. 44). As a simple example, if we want to solve an N-node power grid on a

quad-core machine with four GPUs, each core is used to talk with a GPU card such

that a smaller grid partition (e.g. a grid partition with N/4 nodes) can be solved

independently on GPU by GMD. When the solutions of all partitions are fed back to

the full grid, a few smoothing steps can be performed and residuals can be computed
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Fig. 44. Power grid simulation scheme on multi-core-multi-GPU platform.

subsequently. New RHS vectors (residuals on full grid) are sent to individual GPUs

for the subsequent GMD solving. In this way, even very huge power grid designs

can be handled very efficiently. For instance, if each of the GPU can solve up to ten

million node (with 512 Mb device memory), then the multi-core-multi-GPU system

can solve up to 40 million node power grid within a few seconds, which is not possible

ever before.

To implement the multi-core-multi-GPU multigrid algorithm, the GPU code

(written in Nvidia’s CUDA language [27]) can be compiled to a static library that

can be further invoked in the C/C++ code. Pthreads library [69] is used for the mul-

tithreading programming and each thread will control a single GPU card throughout

the computation. Care must be given to designing data structure of the GPU code:

Different grid partitions must be stored in the on-board memories of different GPU

devices and the full grid solution will be updated in the shared memory by the multi-

core CPU during each CPU-GPU iteration procedure. To minimize to the total

data communications between the host and device, we suggest to exchange only the

boundary data of each partitioned grid.
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4. Accuracy and Overhead

The proposed HMD iteration scheme favorably enhances the robustness of the pro-

posed algorithm and relaxes the need for a very accurate 3D-irregular-to-2D-regular

grid mapping (Section B). For a set of power grid benchmarks, as the regular grid

size is varied from 80% to 120% of the original grid size, running two HMD itera-

tions can always reach a very satisfactory accuracy level of less than 1mV average

node voltage error. Increasing to three iterations will cut the average error down to

less than 0.5mV . In addition to the solution of a small sparse matrix problem (the

coarsest grid), required by the GMD method, the host (CPU) also conducts simple

smoothing, correction and residue computation steps. The CPU runtime is typically

only 1/3 to 1/10 of the total GpuHMD runtime.

F. Power Grid Transient Analysis on GPU Using HMD

In this section, details for transient power grid analysis based upon the GpuGMD

and GpuHMD solvers will be introduced. As discussed in [70, 71], on-chip power grid

analysis only requires taking into account capacitive effects while the inductance can

be ignored. In this work, we only consider capacitors for the transient analysis.
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To facilitate more efficient transient simulation procedure, a regular grid correc-

tion scheme is proposed to improve the simulation efficiency of each time step. From

the convergence analysis (as shown in Section 2) we know that a better regular grid

approximation can potentially reduce the number of HMD iterations, thus improve

the simulation efficiency. It is therefore helpful for us to make a better 2D regular

grid based upon the DC analysis results which in turn improve the overall transient

simulation efficiency. Furthermore, the new multigrid-based analysis flow allows more

flexible time step controlling during the transient simulation than the fixed time step

scheme which is based on matrix factorizations. Our transient analysis flow is depicted

in Fig. 45 and includes the following key steps:

1. HMD iteration for DC solution. Some of the HMD results will be used for the

regular grid correction step.

2. By examining the DC solution difference (between the GMD and HMD solvers)

at the VDD/GND pad locations, the VDD/GND pad conductance values of the

regular 2D grids are modified to compensate the effects due to the 3D-to-2D

grid approximation.

3. For each time step, choose a suitable Gz grid based on the current time step size

and set the RHS vector for multigrid solver. The solution obtained from GPU

will be used for the smoothing and residual computation on CPU for improving

the accuracy.

1. Regular Grid Correction Scheme

In the regular grid approximation step, the via resistors are simply neglected and the

errors are corrected by the HMD iterations. It is obvious that the proposed regular
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grid approximation neglects the via resistance effects and will always lead to under-

estimated IR drop/bounce values, since the electrical current across the vias are not

taken into consideration. Fortunately, by making use of the DC results given by the

HMD iterations, we are able to obtain a more accurate 2D regular grid for approxi-

mating the original 3D grid, which in turn will effectively reduce the HMD iteration

numbers in the transient power grid analysis. The idea of our grid correction scheme

Algorithm 7 Regular Grid Correction Algorithm.
Input: The original 3D power grid (GridO) that has N nodes connected with the

VDD/GND pads, the initial 2D regular grid (Grid
(0)
R ) and the number of grid correction

iterations K.
Output: The updated 2D regular grid.

1: for k = 1 to K: do

2: Do DC analysis for GridO using GpuHMD solver with the latest 2D regular grid

Grid
(k)
R . Store the solution of node i as V HMD

i , if this node is connected to VDD/GND
pads;

3: Do DC analysis for Grid
(k)
R using GpuGMD solver. Store the solution of node i as

V GMD
i , if this node is connected to VDD/GND pads;

4: for i = 1 to N: do

5: Correct the VDD/GND pad conductances of the regular grid using:

Gnew
zi

= Gold
zi

[
1 + α

(
VGMD

i
−VHMD

i

VHMD
i

)]
;

6: end for

7: Update the regular grid to Grid
(k+1)
R using the latest pad conductance values;

8: end for

9: Return the final 2D regular grid.

is shown in Fig. 45, where the VDD/GND pad values can be slightly varied according

to the difference between the HMD solution and the GMD solution. For instance, for

a VDD/GND location if the GMD solver gives overestimated/underestimated solu-

tions, then the original 2D regular grid pad conductances should be reduced by some

value to alleviate the overestimation/underestimation. Although there may be other

ways for improving the regular grid approximation (such as changing the local wire

conductance values), we observe that the VDD/GND pad conductance values can
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significantly impact the DC solutions of the nearby grid nodes. Therefore, adjusting

the VDD/GND pad conductance values can be very effective for better grid approxi-

mation, which aims to compensate the influences of the via resistors that sit between

multiple metal layers. The detailed grid correction procedure can be performed in an

iterative fashion, which is concluded in Algorithm 7.

In practical implementations, the coefficient α shown in Fig. 45 and Algorithm

7 can be empirically selected, which is usually no greater than 5. We emphasize

that selection of the coefficient α will not impact the final grid correction accuracy

but the number of grid correction iterations. Intuitively, the lager α value used, the

more pessimistic GMD results will be obtained. In practise, using only one or two

grid correction iterations are adequate for getting a pretty good regular grid. In our

experiments, we found this simple grid correction scheme will produce more accurate

regular grid approximation of the original 3D grid, and can lead to faster convergence

of the HMD iterations, which may bring more advantages to the transient simulation

of power grid circuits.

2. Flexible Time Step Control

As observed in the equations (3.2) and (3.3), to perform the transient analysis using

the existing GMD solver, only the RHS vector and the Gz grid need to be modified

for simulating the dynamic effects due to capacitors. Consequently, the following

formulas can be applied to set the RHS values as well as the Gz grids during the

transient simulation steps.

RHSTR = −[Ix (t)− Cx

h
Vx (t− h)]; (3.20)

GTR
z = GDC

z +
Cx

h
. (3.21)
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From the above formulas, we find that as long as different Gz grids that correspond

to different time step sizes have been setup on GPU device in advance, the power grid

transient analysis using adaptive time step controlling can be naturally performed.

Adaptive time step controlling technique is important for reducing the simulation

cost (by examining the local truncation errors) when nonlinear devices are combined

with the linear power delivery network, since much less time steps are needed to be

analyzed. However, achieving such a flexible time step controlling is rather expen-

sive when using the direct methods (sparse matrix solvers), since for different time

step sizes, many times of matrix factorizations are needed and much more memory

space (supper linear complexity) has to be taken for the matrix factors. On the other

hand, the HMD-based transient simulation method using flexible time step controlling

scheme costs much less memory (linear complexity), since only the Gz grids corre-

sponding to different time step sizes are stored. In this paper, we will only use the

fixed time step size for transient analysis.

G. Experimental Results

Extensive experiments are conducted to demonstrate the promising performance of

the proposed GpuHMD engine. A set of published industrial power grids [66, 67] and

synthetic benchmarks are used to compare five solvers: proposed GPU accelerated

GMD solver (GpuGMD), the CPU implementation of the same algorithm (CpuGMD),

proposed GPU accelerated hybrid solver (GpuHMD), the GPU implementation of the

same algorithm (CpuHMD), and the state-of-the-art CPU-based direct sparse matrix

solver CHOLMOD [72]. All the algorithms are implemented using C++ and the

GPU programming interface CUDA [27]. The hardware platform is a Linux PC with

Intel Core 2 Quad CPU running at 2.66 GHz clock frequency and two Nvidia Geforce
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Table IX. DC analysis results of the GMD solver. GridSize is the number of nodes

of the original power grid, NV c is the number of V-cycles, ∆V (mv) is the

solution range (Vmax − Vmin), Eavg is the average error, and Emax is the

maximum error (the data for the VDD and GND grids are shown in the form

of V DD/GND). TC/MC is the runtime/memory using Cholmod solver,

TGPU/TCPU(s) is the runtime using GMD on GPU/CPU (the above runtime

are the total runtime for solving both the VDD and GND grids).

CKT GridSize NV c ∆V (mv) Eavg(mv) Emax(mv) TGPU(s) TCPU(s)

ibmpg2 127, 238 4/4 347/275 3.7/2.5 21/8.3 0.08 2.41

ibmpg3 851, 514 4/4 181/153 4.2/2.9 32/20 0.33 19.50

ibmpg4 953, 583 8/8 5.3/2.6 0.1/0.1 0.6/0.3 0.24 13.20

ibmpg5 1, 079, 310 10/8 48/28 1.5/1.0 4.4/4.6 0.38 26.95

ibmpg6 1, 670, 494 10/10 154/86 3.6/1.4 20.1/10.3 0.46 40.06

9800 GX2 cards (including four GPUs and each of them has a similar performance

as Geforce 8800 GTX GPU).

The block size used for relaxations may also greatly impact the overall perfor-

mance. An excessively large block size may lead to slow convergence or even di-

vergence while a too small block size usually results in bad memory efficiency. As

observed in our experiments, smaller block size achieve better convergence rate (less

V-cycles) in spite of their lower efficiency for memory access. It is found that the

overall performance obtained using a block size of 4 × 4 is comparable to the block

size of 8× 8 for all power grid test cases, whereas the block size of 16× 16 may cause

divergence sometimes.
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Table X. DC analysis results of the HMD solvers. NIter is the number of HMD itera-

tions, Eavg is the average errors of the HMD solvers, Emax is the maximum

errors of the HMD solvers, and Ewst is the worst voltage drop/bounce error.

THMD is the runtime of HMD solve. The data for the VDD and GND grids

are shown in the form of V DD/GND.

CKT NIter Eavg(mv) Emax(mv) Ewst(mv) TH(s) Speedup

ibmpg2 2/2 0.3/0.2 2.7/3.5 0.4/0.1 0.12 25X

ibmpg3 2/2 2.1/1.0 12.0/8.2 3.0/1.2 0.72 43X

ibmpg4 1/1 0.0/0.0 0.3/0.3 0.0/0.0 0.46 34X

ibmpg5 2/2 0.6/0.2 4.4/2.8 2.4/2.9 0.83 48X

ibmpg6 3/3 0.6/0.2 5.5/1.8 1.4/0.2 1.15 55X

CKT NIter Eavg(mv) Emax(mv) Ewst(mv) TH(s) Speedup

ibmpg2 3/3 0.0/0.0 2.3/1.2 0.0/0.0 0.18 24X

ibmpg3 3/3 1.0/0.6 10.0/5.4 1.1/0.9 1.15 44X

ibmpg4 2/2 0.0/0.0 0.2/0.1 0.0/0.0 0.62 34X

ibmpg5 3/3 0.4/0.2 3.0/2.9 1.5/1.5 1.10 48X

ibmpg6 4/4 0.5/0.2 4.3/1.5 0.0/0.2 1.58 51X
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Fig. 46. Comparison of IBM solution and GpuGMD results.

1. DC Analysis Results

a. GMD and HMD Results

The GMD solvers are terminated when the residue reaches 0.5% of the initial residue.

The HMD solvers are stopped when the (estimated) average node voltage error is less

then 0.5mV . The comprehensive results of GpuGMD and GpuHMD for all the indus-

trial benchmarks are shown in Table IX and Table X. The results for VDD nets and

GND nets are displayed as VDD/GND. GpuGMD is up to 87X faster than CpuGMD

while GpuHMD is up to 55X faster than CpuHMD. In Fig. 46 we compare the spa-

tial voltage distribution of ibmpg5 circuit given by IBM with our results obtained on

GpuGMD solver, which indicates that without the help of HMD iterations, GpuGMD

can provide a pretty accurate voltage distribution. Additionally, in Table X, we show

the runtime/accuracy results when using different numbers of HMD iterations. As

observed, using one more iteration, the accuracy can be improved significantly. For
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Table XI. Runtime (ms) composition of 100 relaxations on GPU. The pure computa-

tion time Tc and total runtime Tt are listed as Tc/Tt. K is the number of

local block-wise Jacobi (LBJ) iterations. Block size is 4× 4.

CKT ibmpg2 ibmpg3 ibmpg4 ibmpg5 ibmpg6

k = 1 25/60 45/223 60/357 49/254 73/471

k = 5 6.4/12.3 16/45 23/69 18/51 30/93

k = 10 4.2/6.9 13/24 20/37 15/28 26/49

most benchmarks, GpuHMD produces a less than 0.5mV average node voltage error

and a less than 5mV maximum node voltage error.

b. Block Size Selection

As explained in Section 3, GPU memory access (read/write) latency can be dominant

if the algorithm is not well implemented. When the block size is 4×4, for each choice

of the local Jacobi (LBJ) iteration number k, the number of global iterations is em-

pirically determined by 100/k. The runtimes and ratios of the pure GPU computing

time Tc over the total GPU runtime Tt (computing time+memory read/write time)

for all industrial benchmark circuits are shown in Table XI and Fig. 47. From Fig.

47, we observe that the pure computation time Tc can only be a fraction (15% to 60%)

of the total runtime Tt, while more local LBJ iterations (larger k) can better hide

the memory access latency. However, it is less useful to do excessive local iterations,

since they may not help the convergence of the overall GMD solve. Therefore, the

number of local iterations (k) should be selected to tradeoff between the relaxation

runtime and global convergence rate. We suggest k = 10 for the block size of 4 × 4

and k = 20 for the block size of 8× 8 in practice.

The following insightful experiments are also conducted. 1000 smoothing steps
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are run on both the CPU and GPU. As shown in Fig. 48 , the GpuGMD engine

achieves 93X to 117X speedups over its CPU counterpart. The runtimes of the

multi-V-cycle GMD solve are also compared on the GPU and CPU. As shown in Fig.

49, our GPU implementation achieves roughly 31X speedup for small grid and 87X

speedup for large grids.

c. Errors of HMD Iterations

In Fig. 50, the runtimes of HMD iterations on CPU and GPU have been shown,

where the GPU runtime takes more than 60 percent of the total runtime. To see

the convergence behavior of the proposed HMD iterations, the spatial node voltage

error distributions of the V DD net of IBM power grid benchmark ibmpg2 are shown

in Fig. 51. The errors decrease drastically after two iterations, indicating the fast

convergence of HMD. The average solution error as a function of the number of HMD
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iterations is shown for the largest four industrial benchmarks in Fig. 52 (left). The

average errors of all four benchmarks can be damped very quickly after two or three

HMD iterations.

In Fig. 52 (right), the dependency of the total GpuHMD runtime on the regular

grid size is shown for IBM benchmark ibmpg6. As the regular grid size is varied

from 20% to 150% of the original grid size, the GpuHMD HMD runtime does not

vary significantly under the same accuracy tolerance. This indicates that high accu-

racy in the 2D regular grid approximation is not needed. A reasonable regular grid

approximation is sufficient for fast HMD convergence.

2. Grid Correction and Transient Analysis Results

The grid correction using the simple scheme proposed in Section 1 have been imple-

mented and the test results on the largest benchmarks are shown in Table XII. As

observed in the table, only after two to four HMD iterations, a more accurate regu-
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Fig. 51. Error distributions after the 1st (left) and 2nd (right) HMD iterations.
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Table XII. Grid correction results using the HMD solver. NIter is the number of HMD

iterations for grid correction, Eavg/Ẽavg and Emax/ Ẽmax are the average

and maximum errors (mV) of the GMD solutions before/after the grid

corrections. Ewst/Ẽwst is the worst voltage bounce errors (mV) before/after

the grid corrections. T̃GMD is the runtime of GMD solve using the regular

grid after correction. Only the GND grid results are shown below.

CKT NIter Eavg Emax Ewst Ẽavg Ẽmax Ẽwst T̃GMD

ibmpg4 2 < .1 < .1 < .1 < .1 < .1 < .1 < .1

ibmpg5 3 1.0 4.9 −4.7 0.5 1.7 1.6 0.22

ibmpg6 4 1.7 8.9 −6.5 1.3 8.2 −3.2 0.37

lar grid can be obtained by simply modify the VDD/GND pad conductance values

according to the GMD and HMD solutions. With such a better regular grid, the tran-

sient analysis can be performed more efficiently. In this work, we assume some typical

decoupling capacitance values according to [73, 74], and run the transient analysis

using the analysis flow in Section F. To guarantee the accuracy of each time step, we

assure that the final residual is much smaller than the original ones. Interestingly,

with the grid correction scheme, we can solve each time step using only one HMD

iteration while the inside GMD solving usually converges in two V-cycles, which is

much faster compared with DC analysis. Therefore, the transient simulation of each

time step is much less expensive than the DC analysis. It is observed through several

test cases that the runtime of each transient time step analysis is about 1/20 to 1/10

of the overall DC solving time.

Table XIII shows the results of 100 time steps’ transient simulation using the

GpuGMD solver, which is compared against the Cholmod solver. The running time

of Cholmod only includes the re-solve time, and the matrix factorization time is

not considered. The power grids considered in this experiment are generated using
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Table XIII. Runtime (seconds) comparison of transient simulation (100 time steps).

Average runtime for solving one time step is TGPU (Tchol) when using the

GpuGMD (Cholmod) solver. Speedup is defined as Tchol/TGPU . Fixed

time step is used for both cases.

CKTSize 1M 2.25M 4M 7M 9M

TGPU 0.08 0.14 0.23 0.45 0.55

TChol 1.7 4.5 7.1 14.1 17.4

Speedup 21X 32X 31X 31X 32X

the typical wire/pad conductance values and current loadings observed in realistic

industrial benchmarks [67]. As observed, the GPU transient simulator is roughly

20X to 30X faster than the direct matrix solver.

3. Scalability of GMD Solvers
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Fig. 53 shows the runtime and memory comparison of GpuGMD and CHOLMOD



145

10 15 20 25 30
3

4

5

6

7

8

9

Number of Grid Nodes (Millions)

R
un

tim
e 

(S
ec

on
ds

)

Fig. 54. Runtime of GpuGMD for solving very large grids.

for several large synthetic 2D (topologically) regular power grids (as the ones in Table

XIII). GpuGMD is run on our four-core-four-GPU machine while the Cholmod is run

on a more powerful computer (8-core Intel Xeon@2.33GHz with 8G RAM running

64-bit Linux). The runtime and memory consumption of GpuGMD solver increase

linearly as the grid size increases, while the 1-threading (8-threading) Cholmod solver

typically runs 100X (20X) slower and takes 20X more memory resources. The run-

ning times of GpuGMD for solving very large grids is plotted in Fig. 54, where the

thirty-million grid has been solved in eight seconds. Our GpuGMD solver, the key

component of GpuHMD, scales favorably with the circuit complexity, at a constant

rate about one second (runtime) and 100Mb (memory) per two million nodes or more.

4. Multi-Core-Multi-GPU Results

In previous section, we mentioned how to utilize the multi-core computers and multi-

GPU cards to further accelerate the HMD solver, where each CPU-GPU pair works
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Table XIV. GMD results for multi-core-multi-GPU system. Size is number of nodes

of the 2D regular grid, while TN is the runtime of the GMD solver on N–

core-N-GPU system. TChol−N is the runtime of Cholmod solver running on

N-core CPU. Spd. is speedups of four-GPU GMD solver over the Cholmod

solver running on eight-core CPU. All the runtime results are shown in

seconds.

Size T1 T2 T3 T4 TChol−1 TChol−8 Spd.

4M 1.7 1.1 0.75 0.56 194.2 73.7 132X

8M 3.5 2.1 1.35 1.1 561.4 154.3 140X

on a smaller partition of the original grid and the residuals and smoothing steps are

computed on the full grid. In this section, we show the results of solving large 2D

regular grids on multi-core-multi-GPU system, though the HMD irregular grid solver

can be accelerated in the same way. The synthetic 2D regular grids are split into

smaller partitions with similar sizes based on the grid geometries to well balance the

workload. The runtime results of GMD solving using different numbers of GPUs and

CPUs are shown in Table XIV, where we observe four-GPU system can achieve up

to 140X speedups over the 8-core CHOLMOD solver.

H. Summary

In this work, we address the challenge of large-scale power grid analysis by developing

a novel multi-core-multi-GPU acceleration engine. To gain good efficiency on GPUs,

we propose to transform an irregular grid to a regular structure so as to eliminate most

of random memory access patterns and simplify control flows. To properly exploit

the massively parallel single instruction multiple thread (SIMT) GPU architecture,

a parallel geometrical multigrid algorithm is specially designed. New coarse grid

construction and block smoothing strategies are adopted to suit the SIMT GPU
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platform. The robustness of the algorithm is well enhanced by an efficient CPU-GPU

hybrid multigrid iteration scheme. Careful performance fine tuning is conducted to

gain good analysis efficiency on the GPU. Extensive experiments have shown that

the DC analysis accelerated on a single-core-single-GPU system can lead to 100X

runtime speedups over a state-of-art direct solver and 50X speedups over the CPU

based multigrid solver, while the transient analysis can be more than 20X faster than

the direct method. It is also demonstrated that when utilizing a four-core-four-GPU

system, a grid with eight million nodes can be solved within about one second.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

A. Conclusion of the dissertation

This dissertation presents methodologies for modeling and analysis of large scale on-

chip interconnect networks. Two major circuit modeling and analysis issues have

been covered:

1. Statistical parameter reduction methods have been proposed to facilitate mod-

eling and analyzing VLSI circuits that are impacted by high dimensional param-

eter space: (a) Very compact parametric interconnect models can be obtained

more efficiently than before; (b) Statistical design-dependent interconnect per-

formance corners can be extracted in a more economic way; (c) Prior second

order statistical static timing analysis algorithm has been extended to capture

more local variation sources during the analysis.

2. A graphics processing unit (GPU) accelerated multigrid algorithm has been

proposed to efficiently solve the very large scale power supply network. Much

attention has been paid to the GPU algorithm design and implementation. The

proposed approach starts by solving an approximate 2D regular grid that is

close to the original 3D irregular grid using a novel GPU accelerated geometric

multigrid solver. The error components introduced by the grid approximation

step can be effectively damped out through the CPU-GPU iterative hybrid

multigrid procedure. The GPU based multigrid solver exhibits very promising

performances on various benchmark circuits, which is typically more than 100X

faster than the state-of-art matrix solver CHOLMOD and 20X more memory

efficient. Several key algorithm development issues have also been discussed.
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B. Future Work

There are a few interesting topics to be investigated in the future, which can be briefly

described as follows.

a. Modeling and Simulation of Complex Large-scale Systems

In the future, I plan to propose new methodologies and strategies, especially for the

new microarchitectures, to better address the large-scale modeling and simulation

challenges in VLSI design. Primary research efforts will be focused on developing effi-

cient simulation and optimization methods for modern power supply network (PDN)

designs, particularly for the low-power multi-core PDNs which involve complex power

gating activities. The strategy of power gating is to switch between the low power

modes and the active modes, at the appropriate time and in the appropriate manner

to maximize power savings while minimizing the impact to performance, which has

been widely adopted for nowadays multi-core processor designs. A main challenge

in power gating design is how to efficiently and accurately assess the tradeoffs be-

tween the amount of leakage power savings, the entry/exit time penalties incurred,

the energy dissipated during entering/leaving such leakage saving modes and the ac-

tivity profile (assignment of asleep or active times), requiring a huge number of PDN

simulation runs. However, the bottleneck of simulation speed of multi-million node

systems makes power gating designs quite time-consuming with existing simulation

methods. I plan to extend my recent research studies [75] to provide a highly efficient

yet accurate hardware-accelerated PDN simulation strategy with promising speedups

(potentially 100X faster than the traditional simulation methods).

As a following step, I will also work on developing new 3D integrated circuit (IC)

thermal analysis and verification methods. With the ever-increasing power densities,
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IC designs are experiencing bigger temperature variations across the chip [76]. Full-

chip thermal analysis is quite important since it provides useful insights for revealing

hotspots, selecting the appropriate packaging technologies and avoiding excessive tem-

perature variations. Furthermore, full-chip thermal simulation results can be used for

more accurate power, timing and electromigration simulations. However, full-chip

thermal analysis down to the device and interconnect levels is very computational ex-

pensive in that 3D dense fine-grained mesh structure (with up to hundreds of millions

of unknowns) has to been solved as a whole, resulting in excessively long runtime and

huge memory consumption. I plan to develop much more efficient hardware acceler-

ation algorithms to analyze the three-dimensional chip thermal effects, by extending

my prior work [75]. Efficient 3D iterative algorithms will be investigated to properly

handle the inhomogeneous multi-layer structure. In the long-term, this thermal solver

can be integrated into our PDN analysis engine, to facilitate the dynamic thermal

management for reliable VLSI system design and verification.

I also feel well prepared to conduct research on fast algorithms for addressing emerg-

ing modeling and simulation challenges. One immediate goal is to accelerate the

optical lithography simulations. Optical lithography simulation is essential to enable

the profitable continuation of Moores Law, which can assist with improving device

yields and reducing the number of design iterations, allowing a fabrication house to

make profits faster and save substantially in production costs. However, full-chip

lithography simulation may takes many days with existing simulation methodologies.

I plan to study how the geometries can be efficiently stored and processed [77], like

graphics pixels on graphics processing unit (GPU), and the lithography simulation

can be performed in a massively parallel manner (using hundreds or thousands of

cores of GPU).
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b. Variability Modeling and Analysis

I plan to continue with my previous research topics on statistical VLSI circuit mod-

eling techniques [78, 60, 31], to include more complex statistical parameter model

uncertainties. Process variation data can only be obtained from foundries of IC

manufacturing companies, through specific test structure designs and extensive mea-

surements across different dies. However, due to the very limited measurements (test

structures) and complex process characterization fluctuations, even the statistical

process variation data obtained from foundries may not be accurate enough. It is de-

sirable to build statistical circuit models capturing the statistical model uncertainties.

To achieve this goal, I would like to study the impacts of parameter uncertainties on

the parameter dimension reduction algorithms [79] for a variety of VLSI modeling

problems (digital, analog and RF circuit modelings). Advanced matrix perturbation

theories can be adopted to analyze the reduced parameter sets obtained from uncer-

tain statistical parameters. Nonlinear optimization methods can be also applied to

find the upper and lower bounds of the reduced parameter sets due to the parameter

uncertainties [31, 79, 80]. With the above modeling framework, VLSI designs with

hundreds or thousands of process parameters can be accurately verified through a fea-

sible means. The final goal is to make the chip-level yield analysis and optimizations

more efficient and effective than ever before. In the long-term, I plan to integrate

the dynamic power-thermal simulation engine into the variation-aware VLSI mod-

eling and analysis flow, making the process-voltage-temperature (PVT) aware yield

analysis unprecedented efficient and accurate, which is indispensable for nanometer

VLSI design.
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c. PVT-Aware VLSI Design and Optimization

The modeling and simulation methods always serve for practical circuit designs and

optimizations. In the long-term, therefore, I hope to conduct research on VLSI design

optimizations that take into account the complex power, thermal and process varia-

tion effects. Prior researches on VLSI optimizations usually use rather coarse-grained

(approximate) modeling approaches to avoid long simulation time. On the other

hand, my ultimate goal is to deliver practical optimization solutions based on our ac-

curate yet efficient PVT modeling and simulation methods. I believe my background

in VLSI design and numerical methods prepares me well for this challenge.

Looking forward, I am interested in conducting advanced researches in computational

techniques for the simulation of a large variety of large-scale engineering and physical

systems, and applying numerical techniques to the simulation and modeling of emerg-

ing and interdisciplinary technologies (photonic systems, nanoelectronics, biological

sequencing, numerical weather prediction, etc).
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