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ABSTRACT 

 

Tsallis Entropy Based Velocity Distributions in Open Channel Flows. 

(December 2009) 

Hao Luo, B.E.; B.A., Beijing University of Aeronautics and Astronautics 

Chair of Advisory Committee: Dr. Vijay P. Singh 

 

The Tsallis entropy is applied to derive both 1-D and 2-D velocity distributions in an 

open channel cross section. These distributions contain a parameter m through which the 

Tsallis entropy becomes a generalization of the Shannon entropy. Different m parameter 

values are examined to determine the best value for describing the velocity distribution. 

Two Lagrangian parameters that are involved in the final form of 1-D velocity 

distribution equation are determined from observations of mean velocity and the 

maximum velocity at the water surface. For channels which are not wide and where the 

maximum velocity does not occur at the water surface, a 2-D velocity distribution is 

more appropriate. The Tsallis entropy is applied to derive 2-D velocity distributions. A 

new parameter M is introduced which represents the hydraulic characteristics of the 

channel. The derived velocity distributions are verified using both field data and 

experimental data. The advantages are found by comparing with Parandtl-von Karman, 

power law and Chiu’s velocity distributions. 
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1. INTRODUCTION 

1.1. Rationale and significance  

There appears to be a remarkable shortage of reliable data of discharge in rivers and 

streams during unsteady high flows such as floods, in which the discharge changes 

rapidly. This shortage seems to be due to technical difficulties, and the fact that 

conventional methods of discharge measurements require too much time to be applicable. 

These data, however, are essential to understand the stage-discharge relationship needed 

in flow forecasting and in the design of flood control structures. Therefore, efficient 

methods of discharge measurement that will require only a simple sampling of velocity 

and that can be quickly accomplished or automated are highly desirable.  

Discharge measurements involve velocity sampling in order to determine the 

cross-sectional mean velocity. Therefore, for discharge measurements to be simple and 

efficient, the number of velocity samples to be taken must be sufficiently small so that 

the sampling may be accomplished quickly and within the time frame of the particular 

flow and velocity regime being investigated. Translating a small number of velocity 

samples into the cross-sectional mean velocity requires a novel velocity distribution 

equation. Such a velocity distribution equation can be derived using entropy.  

Fundamental to hydraulic modeling of flow propagation, sediment transport, 

pollutant transport, and river behavior is the velocity distribution at river cross-sections.  

____________ 
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The velocity distribution has been investigated using deterministic approaches as well as 

probabilistic approaches. The probability law describing the velocity distribution at a 

channel section in rivers and streams is resilient and invariant with time and discharge. 

This is based on the observation that its parameter, the average ratio of the mean and 

maximum velocities, is invariant with discharge and water level. This in turn can serve 

as a basis for an efficient method of discharge measurements in rivers and streams. The 

method is applicable in both steady and unsteady flows in rivers and can be used with 

any velocity-measuring equipment to drastically reduce the time and cost of discharge 

measurements. Its most important utility, however, is its applicability in unsteady, high 

flows to collect data that are essential in critical situations such as flow forecasting but 

cannot be measured by conventional methods.  

Regularities, such as the ratio between mean velocity and maximum velocity (Chiu 

and Said 1995; Moramarco and Singh 2004) holds constant, exist in fluid flows, 

especially in the velocity distribution, and can be represented by a set of constants such 

as the conservation of mass, momentum and energy. These constants are functions of the 

parameter of a probability distribution that exhibits resilience and stability under various 

flow conditions. The regularities explain the various fluid-flow phenomena and can be 

used in the analysis of rivers and streams. For example, they can be used as a basis to 

develop simple and efficient methods for discharge measurements which only require 

velocity sampling at a single point on a water surface or a few points on a single vertical. 

Because of their simplicity and the short time requirement, these methods can be easily 

automated for collecting velocity and discharge data in unsteady, high flows that are 
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badly needed for real-time flow forecasting and design of flood control structures, and 

for advancing the fundamental, scientific knowledge in hydrology. 

The flow in an open channel at a given time and location can be laminar, turbulent or 

mixed (transitional). The flow in open channels on alluvial sand beds is generally 

hydraulically rough and therefore turbulent flow prevails for most natural conditions. If 

the flow is laminar, then velocity can be defined accurately. However, in turbulent flow 

the velocity vector is not constant and the velocity fluctuates both spatially and 

temporally. The discussion in this thesis is restricted to time averaged velocity at a given 

location.  

Much research has been done in predicting velocity profiles using classic 

deterministic methods. Today, hydraulic analysis and modeling are, for the most part, 

based on rational hydrodynamics founded on the deterministic laws of physics that treats 

fluid flows as boundary-value problems and attempts to make predictions with certainty 

by deductive reasoning. In the process, however, the physical laws are supplemented by 

plausible or intuitive hypotheses and assumptions that compounded with often 

incomplete information about input and boundary conditions create paradoxes or the 

inconsistencies between observed facts and mathematical predictions.  

In hydraulics the very popular velocity distributions are Prandtl-von Karman 

universal velocity distribution and power law velocity distribution. Limitations of these 

velocity distributions have been discussed by Chiu (1987), Singh (1996), amongst others.  

Chiu (1987) proposed a probabilistic approach, using the principle of maximum entropy 

(POME) (Jaynes 1957), to derive velocity distributions, subject to specified constraints. 
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The distributions thus derived are considered to be the most probable or objective on the 

basis of the available information. Tsallis entropy, a generalization of the Shannon 

entropy, has not been applied to derive velocity distributions. This thesis therefore 

employs the Tsallis entropy. The comparison between different velocity distributions 

will be presented as well to show the characteristics Tsallis entropy based velocity 

equation have over the other velocity equations. 

1.2. Objectives 

The objective of this study is to develop an entropy theory using the Tsallis entropy, 

which is a generalization of the Shannon entropy, for deriving velocity distributions for 

flow in open channels, and test the derived distributions using experimental (laboratory) 

and field measurements. The thesis is directed at demonstrating the accuracy 

appropriateness and feasibility of the derived distributions from a scientific point of view. 

A simple method for estimation of 1-D and 2-D velocity distributions using the Tsallis 

entropy at a river section is thus developed. This has direct implications for 

measurement and estimation of transport of mass, momentum and energy in fluid flows. 

The method, based on the velocity distribution equation derived by Singh and Luo (2009) 

using the probabilistic formulation and entropy maximization, is capable of determining 

velocity profiles with reasonable accuracy, even near the side walls. Furthermore, there 

are regularities in open channel flows that, if detected, analyzed, and properly 

understood, can be used as a basis to simplify data collection and improve flow 

forecasting, design and control of engineering systems. The regularities are natural laws 
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governing flows, and their detection will be aided by theoretical analysis and illustrated 

in this thesis as well. The specific objectives of the thesis are: 

1. Derivation of 1-D (time averaged) velocity distribution equations in a given 

cross-section, using the Tsallis entropy.  

2. Derivation of 2-D (time averaged) velocity distribution equations in a channel cross 

section, using the Tsallis entropy. 

3. Derivation of equations concerning the relationship between the mean and 

maximum velocities and their locations.  

4. Derivation of equations for related regularities that can be used to provide additional 

attributes of velocity distribution. 

5. Investigation of a new hydraulic parameter M of the 2-D velocity distribution 

equations. 

6. Testing of the applicability of derived velocity distribution equations for different 

kinds of flows. 

1.3. Experimental and field data 

The 1-D velocity distributions based on Tsallis entropy were tested using a large set of 

experimental data collected by Einstein and Chien (1955) , Coleman (1986), Tu and Graf 

(1992) plus with field data collected by Afzalmehr (2008) for channels in Iran. There are 

84 sets of velocity data that were used here.  

The laboratory data collected by Einstein and Chien (1955) were used to evaluate the 

effect of suspended sediment and the coarseness of channel bed on the velocity profile 

near the channel bed. A total of 29 runs were made, 13 of them with clear water and the 
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rest with sediment-laden flow. The experiments were conducted in a painted steel flume 

1.006 ft wide by 1.17 ft deep and 40 ft long. The slope was adjustable by means of an 

especially designed jack and varied from 0.0185 to 0.025, and the discharge was variable 

from 2.6 to 3.0 cfs by changing the speed of the pump. The water depth ranged from 

0.36 to 0.49 ft and the average velocity of different runs changed from 6.1 fps to 8.7 fps.  

   Coleman’s experiments investigated the response of complete boundary layer 

velocity profile to sediment concentration. The experiments were performed in a 

recirculating flume with a rectangular Plexiglas channel 356 mm wide and 15 m long, 

with slope adjustment capability for maintaining uniform flow. 40 velocity profiles were 

measured at a vertical located on the flume channel centerline 12 m downstream from 

the entrance. The experiment was to establish a uniform flow at constant discharge, 

depth, and energy gradient, to establish the clear-water velocity profile by local velocity 

measurement at standard elevations, and then to monitor changes in the velocity profile 

resulting from systematic increases in suspended sediment concentration while holding 

other flow conditions constant. The discharge was held at 0.064 m
3 

/s, while the flow 

depths varied between 168 mm and 174 mm with an average of 169 mm and a standard 

deviation of 1.69 mm, and the channel width was 35.6, giving an aspect ratio of around 2. 

The maximum velocity varied from 1.024 m/s to 1.118 m/s. 

   Ten sets of flume data collected by Tu and Graf (1992) were used to test the 

applicability of the model in unsteady flows. In their experiments natural hydrographs 

were passed through a gravel-bed flume which was 16.8 m long, 0.6 m wide and 0.8 m 

high, with glass side walls and a smooth steel floor being covered with gravels and with 
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bed slope as 0.002. The evolution of the vertical velocity profiles during the passage of 

hydrograph NS1(1) was presented for several different time instants. The water depth 

ranged between 9.0 cm and 21.2 cm, the average velocity varied between 40.8 cm/s and 

94.9 cm/s and discharge varied from 60.6 l/s to 90.5 l/s. 

   Data from rivers in Iran (Afzalmehr 2008) was collected from wide rectangular 

channels with clear flow and the observations were for the whole water depth. 5 runs 

were used to test the overall performance of the Tsallis entropy based velocity 

distribution.  

   The goodness of the 2-D Tsallis velocity model, the accuracy of a linear relation 

between the mean and maximum velocities and a reasonable range of parameter M were 

investigated using 190 sets of vertical velocity data collected during a period of 20 years 

for four gauged sections in the upper Tiber basin and two flood events happened at 

Pontelagoscuro station in Po River in Central Italy. The discharge for different events 

varied between 1.5 m
3
/s and 537 m

3
/s with the mean velocity ranged between 0.12 m/s  

to 2.42 m/s and the maximum water depth between 0.8 m and 6.7m.  

   Field data obtained by Blaney (1937) from 10 canals in the Imperial Valley during 

1918-1919 was also used in the investigations on M. The canals had widths between 4 ft 

and 50 ft, the width-to-depth ratio was variable between 2.3 ft and 9.3 ft and the average 

velocity ranged from 1.56 ft/s to 4.04 ft/s. 

   Furthermore, there were a total of 10 sets of experimental data for rectangular flume 

with both uniform and nonuniform flows collected by Guy (1966) and Guo (1990) that 

were also chosen to show the performance of the new model in both uniform and 
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nonuniform flows. The data obtained by Guy was from a channel which was 2 ft wide 

and 0.60 ft deep with a discharge as 3.54 cfs. The observations made by Guo (1990) 

were from a flume which was 10 cm wide and 2.31 deep with a discharge as 669 cm
3
/s. 

  Sixteen sets of Tu’s (Tu 1995) laboratory data were selected to verify the applicability 

of Tsallis entropy based 2-D velocity distribution model in unsteady flows. The flume 

used to simulate unsteady flows was 25 m long, 0.6 m high and 1m wide with discharge 

varying between 11 l/s and 25 l/s and the water depth from 7cm to 9 cm. The width of 

the main channel was 40 cm and the floodplain was 60 cm wide. Flow velocities were 

measured on 16 vertical profiles at every 5 mm along each profile. The first measuring 

point on each profile was 10 mm from the channel bed. The flood plain had vegetation 

6.45 cm high. The diameter and height of the model plants were 2 mm. The space 

between plants was 2.5 cm. The slope of the tilting flume was 1/2000. 
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2. 1-D VELOCITY DISTRIBUTION 

2.1. Derivation of velocity distributions and related probability functions 

2.1.1. Hypothesis for cumulative probability distribution 

The velocity of flow at any point or in any cross-section varies with time. It is therefore 

assumed that the time-averaged velocity at any point in a cross-section is a random 

variable. The entropy theory proposed here for deriving velocity distributions is 

comprised of four parts: (1) Tsallis entropy, (2) principle of maximum entropy, (3) 

specification of constraints, and (4) maximization of Tsallis entropy. Before developing 

the entropy theory, the cumulative probability distribution of velocity distribution is 

needed.   

It is hypothesized that the cumulative probability distribution of velocity can be 

expressed as a ratio of the flow depth to the point where velocity is to be considered and 

the depth up to the water surface. Put algebraically, 

F(u) denotes the cumulative distribution function, u= velocity, y= distance from the 

bed, D= water depth, and the probability density function f(u) is:  

To test whether this hypothesis hold true for natural rivers and laboratory 

measurement, we took one set field data that was collected from Iran (Afzalmehr 2008) 

and Coleman’s experimental data (Coleman 1986) to show the relationship between the 

cumulative probability F(u) against the ratio y/D.  

 ( )
y

F u
D

  (1) 

 
( ) 1

( )
dF u dy

f u
du D du

   (2) 
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(a) 

 

(b) 

Fig. 1. Cumulative probability F(u). (a) Field data from Iran (Afzalmehr 2008); (b) 

Experimental data collected by Coleman (1986). 
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These two data sets were chosen because the measurements were made along the 

whole water depth as shown in Fig. 1(a). And it is also good to show the frequency of 

the velocity for either the lower region near bottom or the higher region up to water 

surface as shown in Fig. 1(b). 

 

 

(a) 

Fig. 2. Histogram of cumulative probability based on observations. (a) Field data from 

Iran (Afzalmehr 2008); (b) Experimental data collected by Coleman(1986). 
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(b) 

Fig. 2. continued 

 

Fig. 1 and Fig.2 shows the cumulative probability of flow velocity almost obeys the 

relationship given by y/D; to that end 17 field velocity points and 12 experimental 

velocity points were examined to find this trend. The objective is to determine the 

probability density function of u, f(u). This is accomplished by maximizing the Tsallis 

entropy of velocity, which is given below. 

2.1.2. Tsallis entropy 

Tsallis (Tsallis 1988; Gell-Mann and Tsallis 2004) proposed a generalized form of 

entropy H, now called Tsallis entropy, as: 
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where ( )i ip p u , 1,2,i n  or pi, i=1, 2, …, n, are probabilities of ui, i=1, 2, …, n; 

and m is a real number. Using Eq. (3), it can be known that as 1m , Eq. (3) reduces to 

the Shannon entropy. H is maximum for 
1

ip
n

  for m≥0, whereas, it is minimum for

0m  . 

For continuous non-negative velocity (where ,Du u y D  ), the Tsallis entropy can 

be expressed as  

2.1.3. Principle of maximum entropy  

Jaynes (1957) developed the principle of maximum entropy (POME) which states that 

the most appropriate probability distribution is the one that has the maximum entropy or 

uncertainty, subject to given constraints. Accordingly, the probability distribution of the 

velocity should be derived, subject to given constraints, such that it maximizes the 

uncertainty given by entropy.  

2.1.4. Specification of constraints 

The flow in a channel satisfies the laws of conservation of mass, momentum and energy, 

and these laws can be employed to define constraints that the velocity distribution must 

obey. Therefore, the constraints are defined as follows. Since integration of the 

probability density function of velocity must always be unity, one can write: 

Eq. (5) can be considered to prescribe the first constraint C1. 

The second constraint C2 can be obtained from the conservation of mass as: 

     1
0 0

1 1
1 ( ) ( ) 1 ( )

1 1

D Du u mm
H f u du f u f u du

m m

    
      (4) 

 1
0

( ) 1
Du

C f u du   (5) 
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where um is the cross-sectional mean velocity or Q/A, where Q is discharge passing 

through a cross-sectional area A. 

The third constraint C3 can be obtained from the momentum conservation as: 

where β is the momentum distribution coefficient.  

The fourth constraint C4 can be obtained from the energy conservation as:  

where α is the energy distribution coefficient. 

2.1.5. Least-biased probability distribution 

In order to obtain the least biased probability distribution of u, f(u), the Tsallis entropy, 

given by Eq. (4), can be maximized, subject to Eq. (5) to Eq. (8).  To that end, the 

method of Lagrange multipliers is employed. For 0m  , the Lagrange function becomes: 

or 
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where λ0, λ1, λ2 and λ3 are Lagrange parameters. Differentiating Eq. (9) or Eq. (10) with 

respect to f(u) and equating the derivative to zero, one obtains: 

Define
0

1

1
V

m
  


, Eq. (11) can be cast as: 

Eq. (12) defines the least biased probability distribution of velocity that satisfies Eq. (5) 

to Eq. (8) and is based on the Tsallis entropy. In this equation, parameters λV, λi, i=1, 2, 3, 

are determined using Eq. (5) to Eq. (8). 

Substituting Eq. (12) in Eq. (4) yields the maximum Tsallis entropy as: 

Eq. (12) is a general equation and can therefore be simplified for practical applications.  

Two simplifications are presented here. 

2.1.6. Velocity distributions  

Simplification I: It is assumed that no conservation laws are needed or specified. This 

means that λ1= λ2= λ3= 0. Eq. (12) then simplifies to:  
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This is the simplest case and the probability obeys a uniform distribution. 
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Simplification Π: It is assumed that the conservation of momentum and energy 

constraints are not needed or specified. This means that 2 3 0   . Eq. (12) then 

simplifies to: 

Eq. (14) is based on the mass conservation only. 

Simplification Ⅲ: It is assumed that the conservation of energy is not needed or 

specified. This means that 3 0  . Eq. (12) then simplifies to: 

Eq. (15) satisfies the conservation of mass and momentum.  

This study considers only the second simplification, because mass conservation is 

most basic physical law to that must be taken into account. The second simplification is 

the simplest and realistic case, because Tsallis has never been applied to velocity 

distributions before, it is meaningful and easy to start with the simplest case. Eq. (2) has 

two parameters: λV, and λ1 which can be determined from Eq. (5) and Eq. (6). 

Introducing Eq. (5) in Eq. (14), one can write:  

After integration, 
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Using Eq. (6), we have 

Integrating by parts, one obtains: 

Eq. (17) and Eq. (19) can be used to solve for V and 1 . 

The objective is to derive the velocity distribution in terms of flow depth. Recalling 

Eq. (2) and Eq. (14), one obtains: 

Integrating of Eq. (20) leads to: 

From Eq. (22), the velocity distribution as a function of y can be obtained as: 

Denoting 
1

m

m 
as k , Eq. (23) can be expressed as: 
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The velocity distribution given by Eq. (24) is based on the Tsallis entropy and is for flow 

in wide open channels where velocity varies with the vertical distance from the channel 

bed to the water surface. 

2.1.7. Dimensionless velocity 

The dimensionless velocity can be expressed by using shear velocity u* as the 

normalizing quantity: 

in which u* is the shear velocity equal to gDS , where g is the gravitational acceleration, 

and S is the channel slope. 

2.2. Sensitivity of parameters in Tsallis entropy based velocity distributions  

The velocity distribution Eq. (24) contains four parameter which are the exponent 

parameter m (or k), λ1 , λV and D. Exponent parameter m is a real number and the feasible 

range of it is found to be within 0-2 and more details will be presented in the following 

section.  Parameters λ1 and λV are the Lagrange multipliers. There are several ways to 

estimate the parameters of the velocity distribution equation, such as the method of least 

squares, method of moments, maximum likelihood, and Principle of Maximum Entropy. 

In a steady equilibrium condition a system tends to maximize the entropy under the 

prevailing constraints which are described by Eq. (5) and Eq. (6). With the maximum 

and mean velocities known or assumed, for a fixed m, the remaining two parameters λ1 
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and λV can be obtained by solving Eq. (17) and Eq. (19) numerically. D is nothing but 

water depth. 

The water depth D, which is given or easy to measure, plays no role in the shape of 

the velocity curve. It will be interesting to explore variations in the characteristics of the 

derived velocity distribution with variations in the other three parameters. In order to 

evaluate the influence of a specific parameter on the velocity distribution, one parameter 

is examined at a time, and all the other parameters are held constant. Thus velocity was 

computed for different values of m, λ1 and λV and is plotted in Fig. 3 to Fig. 5, 

respectively. 

 

 

Fig. 3. Variation of u with m. 
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 (a)  

 

 (b)  

Fig. 4. Variation of u with λ1. (a) λ1< 0; (b) λ1> 0. 
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 (a)  

 

(b) 

Fig. 5. Variation of u with λV. (a) λV> 0; (b) λV < 0. 
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Based on Fig. 3 to Fig. 5, we can see that the three parameters significantly influence  

the velocity distribution, i.e., any small change in any one of them can result in an 

appreciable change in the velocity distribution. In order to maximize the entropy, the 

exponent parameter m> 0 (Tsallis 1988). Further investigations showed that Eq. (17) and 

Eq. (19) with parameter m> 2 did not result in a real solution of λ1 and λV, hence no good 

simulation can be performed. Therefore, we can narrow down the feasible range of 

exponent m between 0 and 2, and the velocity increases faster when m increases.  

Parameters λ1 and λV can be any real numbers, they are obtained from the solution of 

Eq. (17) and (19). To guarantee velocity as a positive quantity (i.e. u> 0), the two 

parameters λ1 and λV always have opposite signs. When λ1 is positive, the velocity goes 

up more slowly as λ1 goes down; when λ1 is negative, the velocity goes up more slowly 

as the absolute value of λ1 goes down. On the other hand, if λV is positive the velocity 

increases more quickly with the increasing value of λV ; if it is negative the velocity will 

increase more quickly as the absolute value of λV increases. Relatively, we can see by 

comparaing Fig. 4 and Fig. 5 that the velocity changes more dramatically with the 

variation of λ1, and it seems parameter λ1 plays a more important part in the shape of the 

velocity curve. It may be interesting to find out how this parameter will relate to the 

hydraulic characteristics of open channel flows in the following sections. 

2.3. Probability distribution of dimensional and dimensionless velocity 

Based on Eq. (5), take u/u*  as a new term w, the probability density function of 

dimensionless velocity can be derived as:  
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The maximum and mean velocities sampled from the experimental data collected by 

Einstein and Chien (1955) and Coleman (1986), and field data collected by Afzalmehr 

(2008) were applied here to get the parameter values of Eq. (14). Parameters of Eq. (14) 

were computed and are given for different exponent parameter m values in Table 1. 

 

Table 1 Parameters of velocity distribution and probability density function. 

m k 

S4 series (Einstein 

and Chien 1955) 

S5 series (Einstein 

and Chien 1955) 

Iran Data 1 

(Afzalmehr 2008) 

λ1 λv λ1 λv λ1 λv 

uD=9.194 ft/s 

um=7.303 ft/s 

uD=11.42ft/s 

um=8.7ft/s 

uD=0.535 m/s 

um=0.412 m/s 

1/4 -0.33 0.672 -6.473 0.528 -6.489 1.190 -0.680 

1/3 -0.50 0.746 -7.354 0.576 -7.289 1.675 -0.984 

2/3 -2.00 0.712 -8.839 0.527 -8.644 4.109 -3.140 

3/4 -3.00 -0.665 9.499 -0.483 9.255 4.861 -4.333 

5/4 5.00 -0.864 3.218 0.672 -3.214 -10.804 -2.271 

3/2 3.00 -0.273 0.505 -0.224 0.783 -15.026 0.638 

2.00 2.00 0.084 -0.167 0.049 -0.106 22.585 -2.303 
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Table 1 (continued) 

m k 

Iran Data 2 

(Afzalmehr 2008) 

Run 09  

(Coleman 1986) 

λ1 λv λ1 λv 

uD=1.046 m/s 

um=0.890 m/s 

uD=1.050 m/s 

um=0.895 m/s 

1/4 -0.33 1.636 -1.742 1.651  -1.764  

1/3 -0.50 2.173 -2.345 2.192  -2.373  

2/3 -2.00 4.281 -5.429 4.313  -5.477  

3/4 -3.00 4.799 -6.787 5.915  -7.865  

5/4 5.00 12.125 -4.532 12.022  -4.482  

3/2 3.00 -6.868 1.515 6.828  -1.512  

2.00 2.00 7.696 -2.113 7.671  -2.122  

 

Using Eq. (14), the probability density function of velocity was computed and is plotted 

in Fig. 6. 
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(a) 

Fig. 6. Probability density functions for different datasets. (a) Data from S4 series 

(Einstein and Chien 1955); (b) Data from S5 series (Einstein and Chien 1955); (c) Iran 

data 1 (Afzalmehr 2008); (d) Iran data 2 (Afzalmehr 2008); (e) Data for Run 09 

(Coleman 1986). 
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(b) 

 

(c) 

Fig. 6. continued 
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(d) 

 

(e) 

Fig. 6. continued 
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The corresponding probability density of dimensionless velocity is plotted in Fig. 7. 

 

 

(a) 

Fig. 7. Probability density functions of dimensionless velocity for different datasets. (a) 

Data from S4 series (Einstein and Chien 1955); (b) Data from S5 series (Einstein and 

Chien 1955); (c) Iran data 1 (Afzalmehr 2008); (d) Iran data 2 (Afzalmehr 2008); (e) 

Data for Run 09 (Coleman 1986). 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25

f 
(u

/u
*)

u/u*

m=1/4

m=1/3

m=2/3

m=3/4

m=5/4

m=3/2

m=2

u*=  0.406 ft/s

uD = 9.194 ft/s, um = 7.303ft/s



29 

 

 

(b) 

 

(c) 

Fig. 7. continued 
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(d) 

 

(e) 

Fig. 7. continued 
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As we can see from Fig. 6 and Fig. 7 with the mean and maximum velocities given, 

the probability density function varies with the change of exponent parameter m, 

sometimes dramatically as shown in Fig. 6(a), Fig. 6(b), Fig. 7(a) and Fig. 7(b) . For the 

four sets of data, when m is within 0 to 1, as low as 1/4 and as high as 3/4 the probability 

density functions are all monotonically increasing against the velocity which 

corresponds with the previous observations that the probability density is not very 

sensitive to m. On the other hand, when m is larger than one, the plots do not show this 

trend steadily. As sown in Fig. 7(a) and (b), for m= 5/4 and 3/2 the probability density 

goes down with the increase of the velocity when the velocity is small which 

corresponds to the lower part of flows. When m tends to be its upper limit 2, the 

probability density turns to be a linear line, the simplest case which may make a 

simplification of the velocity equation possible so it may be interesting to further analyze 

this case in further research. Above all the variation of probability density with 

parameter m implies that overall the velocity distribution will not change dramatically 

with the change of parameter m within its possible range, the main differences will focus 

on the part close to channel bed and more details will be found out in the following 

sections. 

2.4. Testing of Tsallis entropy based 1-D velocity distribution with different m  

The reliability of Eq. (23) as a velocity distribution has been tested with experimental 

data collected by Einstein and Chien (1955) and field velocity data collected on rivers 

from Iran. The accuracy of velocity distribution equations can be investigated by 

evaluating the errors ε, defined as flows: 
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ob

obes

u

uu 
  (27) 

in which ues= velocity estimated using velocity equations, uob=observed velocity. 

There is one parameter m in the Tsallis entropy based 1-D velocity equation that is 

required to be taken into account. For a given set of observed values or with the 

maximum and mean velocities given, there can be different sets of parameters based on 

the parameter m we choose. In order to numerically and visually compare which m value 

gives the best velocity simulation, parameters in the velocity equation are determined for 

different m values with the maximum and mean velocities given, and the corresponding 

velocity distributions are calculated. Parameters of the velocity distribution equation are 

given in Table 1. The Iran data were observed for the whole flow depth and so they are 

good to first test the overall performance of the derived equation in the full flow depth as 

shown in Fig. 8. The corresponding dimensionless velocity is also plotted, because there 

was some parameter estimation involved in the computation of dimensionless velocity, 

so it may be desirable to plot the actual velocity profile first. 
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(a) 

Fig. 8. Velocity profiles over the whole water depth for Iran Data 2. (a) velocity; (b) 

dimensionless velocity. 
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(b) 

Fig. 8. continued 

 

Generally, the velocity distribution given by Eq. (23) gives a good estimation of 

velocity for the whole water depth. But when m>1, plots begin to deviate from observed 

values, especially in the lower part of the water depth. It seems the probable value of m 

should be within 0 to 1. For m in this range, there are little differences between the plots 

based on different m values, whereas the estimation with m=3/4 is the closet to the 

observed values. The mean error (μ(ε)) is found very close to zero and equal to 0.051 

while the standard deviation (σ(ε)) is 0.096. To verify the value of m parameter, it is 

necessary for us to examine the performance of the velocity distribution close to the 

channel bed. The velocity distribution very close to the channel bed which is under the 
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influence of both sediment concentration (if sediment laden flow) and channel bed is 

always difficult to measure and hence is of great importance. Einstein and Chien (1955) 

used experimental methods to take measurements of velocity very close to the channel 

bed for different types of flow. Observations for S4 series were chosen here to show how 

the new velocity distribution works when it is very close to channel bed as shown in Fig. 

9.  

 

   

(a) 

Fig. 9. Velocity distribution close to channel bed for S4 series. 
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(b) 

Fig. 9. continued 

 

Table 2 shows the mean and standard deviation of the error given by Eq. (27) 

considering Eq. (23) for estimating velocity with different m for S4 series. 

 

Table 2 Mean, μ(ε), and standard deviation, σ(ε), of error given by Eq. (27) considering 

Eq. (23) for estimating velocity with different m. 

  m=1/4 m=1/3 m=2/3 m=3/4 m=5/4 m=3/2 m=2 

μ -0.247  -0.227  -0.131  -0.097  -0.457  0.122  0.186  

σ 0.213  0.203  0.142  0.101  0.512  0.183  0.307  

 

0.01

0.10

1.00

0 5 10 15 20 25

y/
D

u/u*

m=1/4

m=1/3

m=2/3

m=3/4

m=5/4

m=3/2

m=2

observed

u*=  0.406 ft/s

uD = 9.194 ft/s, um = 7.303ft/s



37 

 

Based on the above computations and graphs, the possible range of m is from 0 to 2, 

but further testing shows that the values larger than 1 do not lead to stable performance. 

As seen from Fig. 8 and Fig. 9, in the region very close to channel bed, the plots with m 

values greater than 1 are not in agreement with the basic hypothesis that the velocity 

goes gradually up along the water depth and also exhibits a big gap with the observed 

values. On the other hand, the m values within the range between 0 and 1, as low as 1/4 

and with the upper limit 3/4, and yield good predictions. Within this small range of m, a 

small change in m values does not make an appreciable difference in the plot. Overall 

m=3/4 gives the best prediction with the mean error (μ(ε)) as -0.097 (Table 2). Hence the 

following computations used m=3/4. In order to clearly see how good the velocity 

equation with m=3/4 works, the velocity was computed in comparison with two sets of 

observations and also the probability densities. The results are tabulated in Tables 3 and 

4. 

 

Table 3 Tsallis entropy based computed velocity in comparison with Einstein and Chien 

Data 1.  

y 

(ft) 

u (ft/s ) ε 

Computed Observed (%) 

0.00 0.000 0.000 0.000 

0.01 1.314 2.221 40.845 

0.01 1.736 2.497 30.486 

0.01 2.038 2.720 25.085 

0.01 2.176 2.858 23.874 

0.01 2.565 2.964 13.468 

0.02 2.797 3.329 16.000 
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Table 3 (continued) 

 

y 

(ft) 

u (ft/s ) ε 

Computed Observed (%) 

0.02 3.107 3.573 13.039 

0.02 3.558 3.898 8.718 

0.03 4.296 4.519 4.922 

0.04 4.597 4.831 4.855 

0.04 4.868 5.075 4.080 

0.05 5.102 5.298 3.697 

0.05 5.315 5.522 3.738 

0.06 5.695 5.806 1.915 

0.07 6.017 6.090 1.199 

0.08 6.291 6.293 0.033 

0.09 6.541 6.516 -0.372 

0.10 6.754 6.699 -0.819 

0.12 7.125 7.113 -0.171 

Mean(μ(ε)) -9.703 

Standard deviation (σ(ε)) 10.10 

 

Table 4 Tsallis entropy model based computed velocity in comparison with Iran Data 2.  

y 

(m) 

u (m/s ) ε 

Computed Observed (%) 

0.01 0.390 0.512 23.768 

0.03 0.632 0.540 -17.004 

0.05 0.739 0.642 -15.009 

0.06 0.775 0.721 -7.465 

0.07 0.804 0.735 -9.368 

0.08 0.829 0.692 -19.690 

0.09 0.850 0.746 -13.921 

0.10 0.868 0.792 -9.561 

0.11 0.884 0.807 -9.625 
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Table 4 (continued) 

y 

(m) 

u (m/s ) ε 

Computed Observed (%) 

0.13 0.912 0.882 -3.406 

0.15 0.934 0.885 -5.527 

0.17 0.953 0.946 -0.756 

0.20 0.977 0.960 -1.713 

0.23 0.996 0.989 -0.736 

0.26 1.012 1.003 -0.933 

0.29 1.026 1.017 -0.899 

0.32 1.039 1.039 -0.001 

0.34 1.046 1.046 -0.024 

Mean(μ(ε)) 5.114 

Standard deviation (σ(ε)) 9.622 
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The computed results were plotted against Iran data 2 in Fig. 10 

 

    

(a) 

Fig. 10. Tsallis entropy based computed velocity in comparison with observed data (Iran 

Data 2) for the whole water depth and probability density function computed through Eq. 

(15) and observations. 
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(b) 

Fig. 10. continued 
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The computations were plotted against Einstein and Chien Data 1 in Fig. 11. 

 

 

(a) 

Fig. 11. Tsallis entropy based computed velocity in comparison with observed data 

(Einstein and Chien Data 1) near channel bed and probability density function computed 

through Eq. (15) and observations. 
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(b) 

Fig. 11. continued 

 

With the velocity distribution law as given by Eq. (23), velocity measurements 

between the channel bed and water surface according to a uniform density function 

p(y)=1/D (i.e., the velocity in each distance dy has an equal probability of being 

measured) should result in a set of velocity data distributed according to the density 

function given by Eq. (14). This means that greater values of velocity have greater 

probabilities of getting measured. An experimental scheme based on an inspection of Fig. 

10 and Fig. 11 would concentrate on the measurements on uD, the maximum value of u. 

This is a great advantage made possible by the validity of Eq. (23) over the full range of 
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y from zero to D, such that the data points stay on or very close to the regression line 

based on Eq. (23), including the point where u=0 and y=0 even in sediment laden flows. 

These results indicate the sampling scheme depends on the mathematical models of the 

velocity and its underlying probability distribution to be used, and that applications of 

Eq. (23) greatly simplifies the velocity measurements. 

2.5. Applications to different kinds of flows 

2.5.1. Effects of sediment concentration near the bed on the velocity distribution 

Since the turbulence which keeps the sediment in suspension is generated essentially at 

the bed, the local high sediment concentration naturally plays an important part in 

molding the turbulence pattern, resulting in a completely different flow as compared 

with that in clear water. It is imperative that the effects of heavy sediment concentration 

near the bed on the velocity distribution should be considered. The experimental data 

collected by Einstein and Chien (1955) which include velocity and sediment data from 

flows ranging from zero to heavy sediment concentration, over channel beds formed by 

coarse, medium, or fine sand was used here. The data include velocities measured very 

close to the channel bed. The relatively wide range of sediment concentrations, among 

other factors, makes the data attractive for the study. The validity of Eq. (23) was tested 

by actual data as shown in Fig. 12. 
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Fig. 12. Applicability of Eq. (23) near the bed in flows with and without sediments. 
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0.45. The mean errors were 0.097 and 0.017, respectively while the standard deviation 

was not larger than 0.1 (also see in Table A1 and A3), respectively. The superiority of 

Eq. (23) is especially conspicuous near the bed. Though the errors were minor, more 

errors were fund in the sediment laden flow which also implicated the strong effect of 

sediment concentration played on velocity distribution.  

2.5.2. Effects of suspended sediment on the open channel velocity distribution 

River flows are part of the general class of bounded shear flows. Landweber (1953) and 

Coles (1956) have shown that in bounded shear flows the boundary layer above the 

viscous sublayer is composed of a near-boundary inertial region in which the velocity 

profile corresponds closely to a logarithmic equation, and a second region further from 

the boundary where the velocity profile gradually deviates, displaying velocities higher 

than those predicted by the logarithmic equation. This outer region has been termed the 

wake region by Coles (1956). The relative thickness of the inertial and wake regions 

appears to be related to the level of turbulence in the outer part of the boundary layer and 

in the free stream. Coleman presented the effect of suspended sediment on the velocity 

profiles by describing the behavior of the various terms in the complete boundary layer 

velocity profile equation in response to changes in suspended sediment concentration. 

First, Coleman measure velocity in clear water and then gradually added sediment. He 

measured the changes in the velocity field and in the sediment concentration distribution 

in the flow. Flow depths varied between 16.8 and 17.4 cm, and the channel width, W, is 

35.6, giving an aspect ratio of around 2. 
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Fig. 13. Velocity profiles with different suspension sediment concentration from 

experimental series with 0.105 mm sand. Run 01: QS= 0 kg; Run 09: QS= 7.27kg; Run 

20: QS= 17.27 kg. 

 

Fig. 13 compares the clear water control velocity profiles and the velocity profiles 

with the medium sediment suspension and the capacity suspension comprising the 

beginning, the middle and the end of the series of experiments with 0.105-mm sand. 
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Fig. 14. Clear-water control velocity profile in comparison with velocity profiles with 

QS= 7.27kg with different particle size. Run 01: clear water; Run 09: D50= 0.105 mm; 

Run 29: D50= 0.210 mm. 

 

Fig. 14 compares the clear water control velocity profiles and the velocity profiles 

with the same sediment suspension but different particle size. 
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The results obtained from the Eq. (23) for different profiles are compared with 

Coleman’s (1986) experimental data and the errors are tabulated in Table 5. 

 

Table 5 Mean, μ(ε), and standard deviation, σ(ε), of error given by Eq. (27) considering 

Eq. (23) for estimating velocity for flows with or without sediment. (Also see in Table 

A6 to A9). 

  Run 01 Run 09  Run 20 Run 29 

μ -0.013  -0.019  -0.060  -0.012  

σ 0.042  0.040  0.061  0.041  

 

The mean errors and standard deviations are not substantially different for Run 01, 

Run 09 and Run 29 when the suspended sediment concentration did not change much, 

while the maximum errors happened in Run 20 with the maximum sediment 

concentration. Therefore, through this error analysis we can confirm the effect of 

sediment concentration on the velocity distribution. Parameters are also shown in the 

figure for different sediment concentration. With the increase of the sediment 

concentration the value of λ1 decreased from Run 01 to Run 20, the similar trend can be 

found through Run 01 to Run 29, with the same sediment concentration λ1 is almost the 

same. The advantage of Coleman’s experiments is that the whole range of concentration 

up to the capacity transport could be covered with no stationary sand bed in the flume, 

while the virtual origin of the velocity profile remained at the flume channel bottom. 

Any tiny changes observed in velocity profiles could be attributed to increases in 

suspended sediment concentration alone and not to other factors such as changes in 
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channel roughness. The experiments were repeated with two sands with D50 of 0.105mm 

and 0.210mm. Apparently, the effect of the suspended sediment is to decelerate the flow 

in the high-concentration region near the channel bed. Continuity of mass then requires a 

compensating acceleration in the upper part of the flow (Coleman 1981, 1986). In the 

near-bed region, the sediment concentration is very high and eddy viscosity is increased 

when compared with clear water flow. Fig.13 and Fig. 14 show that the presence of 

suspended sediment causes a general reduction in the mean flow velocity and that the 

magnitude of this velocity reduction is positively related to the sediment size. In a free 

surface region, velocity profiles show little difference between measured and computed 

values. 

2.5.3. Applicability in unsteady flows 

The preceding discussion is all about steady flow or cases where time-averaged velocity 

can represent the flow quantity. Unsteady flows are those whose properties depend also 

on time if referenced to an Eulerian frame. In natural rivers most of the flows are 

unsteady. However, unsteady phenomena are worth studying only if they depart 

substantially from quasi-steady state, or if treated with steady flow theory, significant 

errors would arise, such as flows in mountain streams characterized by steep slopes and 

gravel beds.  

In the past, some experiments had been carried out to study unsteady flow in open 

channels, for example, at the University of Canterbury, New Zealand, and at the EPFL, 

Switzerland. The researchers at these two institutions were concerned mainly with 

bedload transport in unsteady flow. Recently, Tu and Graf (1992) examined friction in 
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unsteady flow over gravel beds. Fig. 15 compared the computations with the 

measurements (Tu and Graf 1992) to test the performance of the Tsallis entropy based 

velocity distribution in unsteady case. 

 

 

Fig. 15. The computed and observed evolution of vertical velocity profiles. 

 

The evolution of the vertical velocity profiles during the passage of hydrograph NS 

1(1), for several different time instants, is shown in Fig. 15. The velocity distributions at 
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presentation. The corresponding hydraulic parameters and the parameters for Tsallis 

entropy based velocity distributions are summarized in Table 6. 

 

Table 6 Hydraulic and Tsallis entropy based model needed parameters for the velocity 

profiles during the passage of hydrograph NS1 (1). 

t  

(s) 

D 

(cm) 

umax 

(m/s) 

um 

(m/s) 
λ1 λV 

21 12.2 0.800 0.606 3.359 -4.639 

41 20.1 1.114 0.905 3.601 -5.946 

61 20.7 1.064 0.889 4.293 -6.399 

81 18.7 0.950 0.782 4.330 -5.936 

101 15.5 0.781 0.628 4.475 -5.292 

 

Table 7 Mean, μ(ε), and standard deviation, σ(ε), of error given by Eq. (27) considering 

Eq. (23) for estimating velocity in unsteady flows. (Also see in Table A10 to A14). 

  t =21s t =41s t =61s t =81s t =101s 

μ 0.014  0.016  0.029  0.002  0.001  

σ 0.111  0.081  0.077  0.058  0.086  

 

As we can see from Fig. 15, during the passage of the hydrograph the velocity 

profiles tend to return towards the original shape. The data from unsteady flows over 

gravel bed and the previous data from steady open channel with flow with clear water or 

suspended sediment over smooth or rough bed can be simulated by Tsallis entropy based 

velocity distribution equations. The accuracy was verified using error analysis as shown 

in Table 7. As in Table 7, the errors for different time periods did not exceed 0.029, 



53 

 

while the maximum value of the standard deviation was about 0.111. More details can 

be found in Table A10 to A14.  

2.6. Maximum entropy  

Based on Eq. (12) with one constraint, the entropy can be determined by integration as: 
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and the maximum entropy of dimensionless velocity can be determined as 
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Fig. 16 gives the relation between the entropy and uD plus another important 

parameter λ1, the equation relating entropy to uD and λ1 obtained from the regression 

analysis. 13 sets of data were investigated here, 2 of them are from Iran (Afzalmehr 

2008), 8 are collected by Einstein and Chien (1955) and the other three are from 

Coleman’s (1986) experimental data. 

 12.267.0 1  H  (29) 

 95.050.3  DuH  (30) 
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Fig. 16. Relation of H(u) to uD and λ1. 

 

Based on the analysis, it is shown that parameter λ1 can be taken as a new hydraulic 

parameter that can be used to characterize and classify open channel flows under the 

effects of both the coarseness of bed material and the sediment concentration. The data 

points in Fig. 16 at lower values of λ1 and hence higher values of entropy represent flows 

over coarser channel beds and or with higher levels of sediment concentration. The 

considerably wide range of λ1 in clear-water flows manifests the marked trend of λ1 to 

decrease with the coarseness of bed material. For sediment-laden flows, the data points 

reflect the effects of both the coarseness of bed material and the sediment concentration. 

The high correlation coefficient R computed for λ1 obtained from data and values of λ1 
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linear relation between λ1 and H. Also plotted in Fig. 16 are the values of entropy H 

against uD, in which uD is the maximum velocity which happens at the water surface; 

physically the larger uD and in turn H is, the more complexity is involved in the flow, the 

more likely the flow tends to be turbulent flow, hence, more uncertainty can be expected 

which is expressed as a linear relation. 
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3. 2-D VELOCITY DISTRIBUTION 

3.1. Importance of 2-D velocity distribution model 

The existing velocity distribution equations that are described in the 1-D case section 

are, however, applicable only to wide channels in which the velocity is assumed to 

increase monotonically in the vertical direction from the channel bed to the water 

surface. For flow in channels that are not wide with low aspect ratios that are < 7 and for 

most of the stream flow especially during flood events, they cannot be regarded as 

general or universal laws governing velocity distributions in open channels, since the 

velocity in an open channel cross section tends to vary also in the transverse direction, 

and the maximum velocity may occur below the water surface. Moreover, the maximum 

velocity usually occurs beneath the water surface during flood periods. The higher the 

water stage is, the deeper the location of maximum velocity (Chen and Chiu 2004). The 

fact that the maximum velocity may occur below the water surface is an important 

feature of open channel flows, and has attracted a great interest among civil engineers 

for at least 100 years (Stearns 1883). Even in a large river, such as Mississippi River, the 

maximum velocity occurs as much as one-third of the water depth below the water 

surface (Gordon 1992). The location of maximum velocity is linked to the ratio of the 

mean and maximum velocities, velocity distribution parameter, location of mean 

velocity, and probability density function underpinning a velocity distribution equation 

derived by applying the probability and entropy concepts. To determine the location and 

magnitude of maximum velocity, a velocity distribution equation is needed that is 

capable of describing all types of velocity distribution patterns, with maximum velocity 
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occurring on or below the water surface. To treat it analytically, a two-dimensional (2-D) 

analysis of velocity distribution is needed to deal with the geometry of isovels (lines of 

equal velocity) in a cross section. Applying probability concepts, Chiu and Chiou (1986) 

developed a technique that can be used to simulate velocity in rectangular open channels 

for any given set of values of discharge rate, slope, roughness, and width-to-depth ratio. 

All the work using the entropy concept reported in the literature has been done using 

Shannon Entropy. As a generalization of the Shannon entropy, the Tsallis entropy is 

applied for the first time to simulate the 2-D velocity distribution in this study. 

There are regularities in open channel flows that, if detected, analyzed, and properly 

understood, can be used as the basis to simplify data collection and improve flow 

forecasting, and design and control of engineering systems. The regularities are natural 

laws governing flows, and their detection can be aided by theoretical analysis. Chiu and 

Said (1995) reported that nature maintains a constant ratio of mean to maximum 

velocities at a given section by adjusting the velocity distribution and the channel 

geometry and is invariant with time and discharge. Its relationship with the others in turn 

leads to the formation of a network of related constants characterizing regularities in 

open channel flows that can be used to ease discharge measurements and other tasks in 

hydraulic engineering. Applying the Tsallis entropy the related regularities have been 

investigated and a new entropy parameter M is introduced to facilitate the interpretation 

of relationship between different quantities.   

The work presented here includes: (1) derivation by entropy maximization of an 

equation for two-dimensional velocity distribution in a channel cross section, which is 
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valid regardless of the location of maximum velocity; (2) derivation of equations for the 

location (on a vertical) of mean velocity in a channel cross section; (3) derivation of 

other equations, based on the maximum entropy principle, that can be used to provide 

additional descriptions of velocity distribution; and (4) investigation of a parameter of 

the entropy function, a new hydraulic parameter, which is a key to understanding and 

controlling open channel flows. The method can be applied in both high and low flows 

in rivers. Available laboratory flume and stream-flow data are used to illustrate the 

accuracy and reliability, and results show that this method can quickly and accurately 

estimate flow velocity.  

3.2. Derivation of 2-D velocity distribution in open channel cross sections 

In an open channel which is not “wide”, the (time-averaged) velocity varies in both the 

vertical (y) and transverse (z) directions (Chiu and Lin 1983). The isovels curve up 

towards the water surface under the effects of, among other factors, the two sides of the 

channel. In modeling the velocity distribution it is, therefore logical first to transform the 

Cartesian y- and z- coordinates into another coordinate system, say, the s-r coordinate 

system, in which r has a unique, one-to one relation with a value of velocity, and s 

(coordinate) curves are their orthogonal trajectories. The idea of using the s-r 

coordinates is similar to that of using the cylindrical coordinates in studying flows in a 

pipe. The term u (time averaged velocity) is almost zero along an isovel that has an r 

value equal to r0, which has a small value representing the channel bed (including the 

bottom and sides). In addition, u is umax, the maximum values of u, at r equal to rmax, 

which may occur on or below the water surface. The velocity u increases monotonically 
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with the spatial coordinate r from r0 to rmax, although it may not increase monotonically 

with y, the elevation from the channel bed. Therefore, Chiu (1987, 1989) expressed the 

function of velocity cumulative probability distribution in a channel cross section as:  
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Analogous to the derivation of 1-D velocity distribution, and the probability density 

function can be defined using Eq. (31) as: 
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With the probability density function given by Eq. (14), the velocity distribution, 

using one constraint, can be expressed as: 

 

m

m

m

m

V
m

m

rr

rr

m

m
u

1

1

0max

0
1

1

)
1

(
1

)
1

(














































 


 (33) 

By defining r in terms of coordinates in the physical plane, Eq. (31) and Eq. (33) can 

describe one- or two-dimensional velocity distributions. Eq. (31) indicates that 

)/()( 0max0 rrrr   is equal to the cumulative distribution function, or the probability of 

velocity being less than or equal to u. Therefore, to identify an expression for r, the 

probability concept is needed. If a large number of r values are randomly generated 

within the range (r0, rmax) and substituted into Eq. (33) to obtain a set of velocity 

samples, the probability of velocity being between u and u+ du is p(u)du. Under such a 

concept, )/()( 0max0 rrrr   is equivalent to the ratio of the area in which the velocity is 

less than or equal to u(r) to the total cross-sectional area. For example, for a wide 
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)/()( 0max0 rrrr  =(By)/(BD) =y/D, where B is channel width, D is flow depth, and y is 

vertical distance from the channel bed. For an axially symmetric flow in a circular pipe, 

in which isovels are concentric circles, 2 2

0 max 0( ) /( ) 1 / ,r r r r r R   
 
where r is radial 

distance from the pipe center; and R is pipe radius (Chiu et al. 1993). In such a way, 

)/()( 0max0 rrrr   may be defined to suit flows in various channels and conduits. In 

both cases r0=0; rmax=1; and hence, 0 max 0( ) /( ) .r r r r r   Equations of 

)/()( 0max0 rrrr   for two-dimensional velocity distributions in the open channels are 

shown in Fig. 17.  

 

 

Fig. 17. Velocity distribution and curvilinear coordinate system. (a) h>0 and (b) h<0. 
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Fig. 17. continued 

 

The following equations proposed by Chiu and Chiou (1986) are found to be suitable 

for the orthogonal curvilinear coordinates r-s. 
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Eq. (34) represents a family of isovels. Each isovel has a value of r. The channel bed 

itself is an isovel on which r = r0. In Eq. (34) – Eq. (36), as shown in Fig. 17, y = the 

vertical coordinate measured from the channel bed along the y – axis, which is defined 

as the special vertical that passes through the point where the maximum velocity in the 

channel cross section occurs; D is the water depth at the y-axis; z is the coordinate in the 

transverse direction; Bi for i equal to either 1 or 2 is the transverse distance on the water 

surface; and iyh  ,, ,and i  are parameters characterizing the isovel geometry. Among 

these parameters iy  ,  approach zero, if the channel cross section tends towards the 

rectangular shape. They increase as the cross-sectional shape deviates from the 

rectangular. Parameter h controls the shape and slope of isovels, especially near the 

water surface and in the vicinity of the point of maximum velocity. h may vary from –D 

to +∞. If h<0, umax occurs below the water surface and h is the depth of umax below the 

water surface; and, along the y-axis, velocity increases with y only up to y=D-h, and 

decreases with y in the region, (D+h) < y ≤ D. If h ≥ 0, umax occurs at the water surface. 

If h=0, isovels are perpendicular to the water surface. If h>0, h is a parameter that can 

be used to fine-tune the slope of isovels. If the magnitude of h is very large, isovels are 

parallel horizontal lines such that velocity varies only with y and r approaches y/D. Such 

a situation tends to occur in very wide channels. The s curves shown in Fig. 17 are 

orthogonal trajectories of r curves, that can be derived from Eq. (34) as: 
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in which s takes on the negative sign only when y > D+h and h<0. In other cases, s 

takes on the positive sign. The network of r-s curves can be used as a coordinate system 

in modeling two-dimensional velocity and shear–stress distributions and related 

processes (Chiu and Chiou, 1986). 

3.3. Determination of the y-axis 

The y-axis, on which the maximum happens, is in the center of a channel cross section, if 

the section is in a straight reach and has a symmetrical shape. If a cross section a 

nonerodible channel has a symmetrical shape but is in a curved reach, the maximum 

velocity in it and, hence, the y-axis occur closer to the inner bank (Yen 1965). At a 

section in a curved reach of an erodible channel, however, the maximum velocity and 

y-axis occur closer to the outer bank. In any case, the location of y-axis can be 

ascertained by measured velocity distributions. The velocity data applied to determine 

the discharge that can be used to plot the isovels in the cross-section reveals the location 

of the y-axis (Zy). The position of Zy in a natural channel can be located anywhere in the 

cross-section. Fig. 18, plotted using conventional velocity data, shows isovel patterns of 

an open channel and indicates the position of Zy, which is very stable and invariant with 

time, discharge and gauge height if the channel bed does not change drastically (Chen 

and Chiu 2004). 
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Fig. 18. Typical isovel pattern indication location Zy (Chen and Chiu 2004). 

 

 

Fig. 19. Two locations of the y-axis in the Kaoping River at Leeling Bridge (Chen and 

Chiu 2004). 



65 

 

However, once the water exceeds a certain level, e.g., banks are overtopped and 

water spreads over the flood plain, Zy in certain situations may shift to a new location. 

This kind of situation was illustrated in the Kaoping River at the Leeling Bridge (Chen 

and Chiu 2004) in Fig. 19. 

The maximum velocity in the high-velocity region on the right-hand side is greater 

than that on the left-hand side when the water level is above 29 m (gauge height) but Zy 

is found about 47.5 m from a reference point on the left bank when water flows in the 

main channel. Fig. 19 also shows that there are five anomalies between 25 and 26 m. 

The maximum velocities of the cross-section of the five flood events are very close to 

the maximum velocities on Zy. Therefore the discharge of the five anomalies still can be 

estimated accurately on Zy. Without records of data, Zy may be estimated using floats 

thrown on to the water surface to determine the velocity profile on the water surface. 

During the flood period, the maximum velocity on the water surface can fairly indicate 

Zy A slight shift of Zy will not have much effect on the estimation of the maximum 

velocity (Chen, 1998). Therefore the maximum velocities can be estimated at the mean 

location of the y-axis ( yZ ). G denotes gauge height. 

3.4. Derivation of velocity distribution along a particular vertical in a cross section          

The key terms in an observed cross section are illustrated in Figure 20: 
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Fig. 20. Illustration of key terms at a typical cross section in an open channel. 

In order to develop a practical and simple method for estimating flow velocity during 

high floods, it was assumed that the formulation of Eq. (34), written for the vertical 

where the maximum velocity occurs (z= 0) holds. For a particular vertical along the 

y-axis where z = 0. Eq. (34) to Eq. (36) gives: 
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as δy and δi is usually small (especially for a rectangular channel); and r0=0. 

If h<0, rmax and umax occur at y=D+h, so that rmax=1 according to Eq. (38). Then, Eq. 

(38) gives:  
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If h≥ 0, rmax and umax occur at the water surface where y=D according to Eq. (38) : 
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Eq. (34) with Eq. (39) or Eq. (40) depending on which case it belongs to and using Eq. 

(39) and Eq. (40) enhances the ability of Eq. (33) to refine the modeling of velocity 

distribution on the y-axis, regardless of whether umax occurs on or below the water 

surface. For h< 0, the velocity distribution is : 
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If h≥ 0, the velocity distribution is determined as: 
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Based on Eq. (41) and Eq. (42) we can compute the velocity distribution for an 

arbitrary vertical with the maximum and mean velocities known. Note the probability 

density f(u) and the maximum entropy H(u) have the same form as in 1-D part. 
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3.5.  Testing of the velocity distribution along a vertical and verification of 

parameter m 

To test the validity of Eq. (41) and Eq. (42) as a velocity distribution model, the model 

computed data were compared with three sets of observed data. Two sets of field data 

that were collected from two verticals located at the left and right hand side of the y-axis 

of the cross-section at P. Nuovo gauged section of Tiber River in Central Italy 

(Moramarco 2008) during a flood event that occurred in June 1997 and laboratory data 

collected by Coleman (1986) for Run 16 were used here. Parameters of the velocity 

distribution function Eq. (41) or Eq. (42) are computed and summarized in Table 8. 

 

Table 8 Parameters for Tsallis based 2-D velocity distribution with different m. 

m 

P.Nuovo Vertical 

No. 1 

P.Nuovo Vertical 

No. 2 

Coleman Data 

 (for Run 16) 

λ1 λV λ1 λV λ1 λV 

uD=2.48m/s,  

um=1.63m/s, 

h=-2.7m 

uD=2.72m/s, 

um=1.79m/s, 

h=-2.7m 

uD=1.074m/s, 

um=0.90m/s, 

h=-35mm 

2/3 0.74  -3.81  0.70  -3.94  3.87  -5.16  

3/4 0.77  -4.91  0.72  -5.03  4.33  -6.48  

5/4 0.80  2.87  0.72  2.80  7.09  -0.21  

3/2 2.55  -2.62  2.22  -2.50  6.60  -1.50  

2 0.61  0.05  0.51  0.04  7.03  -1.91  

 

To evaluate how the m exponent influences simulation, the velocity was computed 

and is plotted in Fig. 21 based on different m values against the observed velocity 

profiles collected from Tiber River. 
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(a) 

Fig. 21. Velocity profiles estimated by Tsallis entropy based 2-D velocity distribution, 

Eq. (41), plotted against velocity points sampled along two verticals at P. Nuovo gauged 

station during flood event that occurred in June 1997. 
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(b) 

Fig. 21. continued 

    

And the computations were also compared with experimental observations by 

Coleman (1986) in Fig. 22. 
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Fig. 22. Velocity profiles estimated by Tsallis entropy based 2-D velocity distribution, 

Eq. (41), plotted against experimental data for Run 16 by Coleman (1986). 
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(Coleman 1986) the maximum occurred at 35 mm below the water surface. They 

showed that the flow velocity profiles during flood events or for flow in non-wide 

channels the maximum velocity does not always happen at the water surface. The Tsallis 

entropy based 2-D velocity distribution combines the transformation of the coordinate 

system and the Tsallis entropy, in which the former shapes the velocity curve, and the 

latter enables the velocity equations satisfy the total probability and mass continuity, 

enhances the goodness of the model against the observed data, and helps guarantee that 

the maximum velocity happens below the water surface based on the curvilinear 

coordinate system. 

3.6. Introduction of new parameter M  

3.6.1. Mathematical definition of M 

Based on the study using both field and experimental data, the feasible range of m is 

from 0 to 2 as indicated in Fig. 23 and Fig. 24.We can see that the velocity distribution 

changes little with the variation of m under the coordinate transformation mentioned 

previously, so the velocity distribution is not highly sensitive to exponent m within the 

feasible range. In another words, the velocity curves derived from different m values do 

not have significant differences between each other. Furthermore, we found that for 

fixing m= 2, the two parameters λ1 and λV have simple analytical expressions obtained  

solving Eq. (17) and Eq. (19) in the previous section as: 
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with umax and um known, the two parameters can be easily obtained by substituting these 

two terms into Eq. (43). At this point, it is possible for us to make the velocity 

distribution equations much simpler by introducing a new dimensionless parameter M 

which is mathematically defined as: 

Based on the mathematical definition of parameter M, the mathematical range of it is in 

the interval (-12, 12). For most US rivers, the maximum velocity has been reported to be 

25-50% larger than the mean (Leopold et al. 1995). Thus the M values for US rivers are 

between 4 and 7.2. M is directly linked to the ratio between mean and maximum velocity, 

serving as a new key hydraulic parameter, it can play an important role in understanding 

open channel flow. In order to find the physical range and hydraulic characteristics of M, 

further investigations using more data sets are presented here. 

3.6.2. Investigations of M for typical channels 

In Table 9 and Table 10, 42 pairs of maximum velocity and mean velocity that were 

collected for different verticals at Pontelagoscuro gauged section on the Po river during 

two flood events that occurred on February 2, 1985 and March 27, 1991 and at P. Nuovo 

gauged section during flood events that occurred on June 3, 1997 and November 18, 

1996 (Moramarco and Singh 2004) were used to determine values of M for these rivers. 

 

 

 

 
2

max1uM   (44) 
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Table 9 Computation of M, λ1 and λV based on um and umax measured on the Po River 

(Italy) for different verticals at Pontelagoscuro gauged section during flood events that 

occurred on February 2, 1985 and March 27, 1991. 

umax (m/s) um (m/s) λ1 λV M Event 

0.38 0.27 36.08 -1.59 5.211   

  

  

 

February13,1985 

Po River 

  

  

  

  

  

  

  

  

1 0.77 6.55 -1.27 6.549 

1.36 1.11 4.12 -1.33 7.618 

1.36 1.06 3.60 -0.98 6.662 

1.33 1.00 3.38 -0.75 5.985 

1.57 1.11 2.02 -0.31 4.968 

1.8 1.32 1.73 -0.44 5.600 

1.71 1.19 1.60 -0.20 4.678 

1.17 0.89 4.56 -0.96 6.236 

1.18 0.93 5.03 -1.27 7.006 

1.08 0.87 6.31 -1.55 7.358 

0.56 0.40 15.94 -0.89 5.000 

      mean 6.072 

0.80 0.56 7.97 -0.65 5.036 
  

  

  

March 27,1991  

Po River 

  

  

  

  

  

  

  

  

  

1.26 0.86 2.85 -0.20 4.492 

1.35 1.02 3.33 -0.77 6.078 

1.42 1.10 3.30 -0.93 6.650 

1.44 1.17 3.64 -1.24 7.557 

1.49 1.17 3.13 -0.98 6.902 

1.80 1.29 1.58 -0.31 5.120 

1.80 1.41 2.08 -0.76 6.749 

1.44 1.10 3.13 -0.86 6.460 

1.37 1.04 3.31 -0.80 6.195 

1.32 0.89 2.41 -0.08 4.210 

1.07 0.79 5.09 -0.83 5.769 

0.56 0.35 8.62 1.13 2.733 

      mean 5.689 



75 

 

Table 10 Computation of M, λ1 and λV based on um and umax measured on the Tiber River 

(Italy) for different verticals at P. Nuovo gauged section during flood events that 

occurred on June 3, 1997 and November 18, 1996. 

umax (m/s) um (m/s) λ1 λV M Event 

1.02 0.63 2.71 0.58 2.824 

  

  

June 3, 1997  

Tiber River 

  

  

  

  

  

1.83 1.18 1.04 0.14 3.475 

2.13 1.60 1.33 -0.48 6.028 

2.48 1.88 1.01 -0.44 6.194 

2.72 2.20 1.00 -0.63 7.412 

2.41 1.73 0.90 -0.25 5.228 

2.39 1.81 1.08 -0.46 6.176 

1.97 1.40 1.30 -0.27 5.056 

1.71 0.99 0.65 0.62 1.895 

      mean 4.921 

0.86 0.63 7.55 -0.92 5.581 

November 18,1996 

Tiber River 

  

  

  

  

  

  

1.81 1.03 0.51 0.65 1.657 

1.98 1.46 1.45 -0.43 5.697 

2.13 1.67 1.50 -0.66 6.817 

2.6 2.05 1.02 -0.56 6.923 

2.45 1.93 1.15 -0.59 6.906 

2.1 1.58 1.37 -0.49 6.057 

1.71 1.12 1.27 0.08 3.719 

1.49 0.87 0.91 0.67 2.013 

      mean 5.041 

 

M is found between 4.68 to 7.62 for different verticals at Pontelagoscuro gauged 

section on Po river and varies from 1.66 to 7.41 for verticals located at P. Nuovo gauged 

section on Tiber River. Though the M values computed for every single vertical is 

different at the same gauged section for the same flood event, but the cross-sectional 
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mean for the same gauged section tends to be constant for different flood events. We 

may therefore conclude that the dimensionless parameter M may signal the 

characteristics of the channel section, such as changes in bed form, slope and geometric 

shape and it does not fluctuate much according to the changes in characteristics of flood 

events. 

Blaney (1937) also collected mean and maximum velocity data for typical canals 

which can be applied to our investigation on M as well as shown in Table 11. 

 

Table 11 Bed width, depth, and mean maximum velocity for typical canals. Imperical 

Valley, 1918-1919 (Blaney 1937). 

Name of canal Location B (ft) D (ft) um (fps) umax (fps) um/umax M 

Date Meter Bridge 14 1.5 2.66  2.95  0.90  9.64  

Lateral Sharps Heading 4 1 1.58  1.74  0.91  9.79  

Braw;eu El Centro Road 14 6 3.66  4.12  0.89  9.32  

No.5 Main Yuma 23 4.8 3.52  4.25  0.83  7.88  

No.5 Main Allison 30 4.7 4.04  5.10  0.79  7.01  

Central Bounday 38 5.5 2.80  3.20  0.88  9.00  

Dogwood Meter Bridge 19 3.2 1.67  1.95  0.86  8.55  

Alamitos Sharps Heading 24 3.3 2.54  2.75  0.92  10.17  

Briar Ten foot Drop 11 2.3 2.76  3.30  0.84  8.07  

Evergreen Dahlia Heading 10 1.5 1.56  1.88  0.83  7.91  

Elder Five Gates 10 3.1 3.00  3.40  0.88  9.18  

Encino Flume 22 3.4 3.48  4.00  0.87  8.88  

 

From the computations of parameter M using data from different kind of channels, 

the value of M is found to be as low as 0.537 and as high as 10.17, that means any value 
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within this range can be suitable for describing velocity profiles for certain kind open 

channel flow. The M value in the neighborhood of 9 represents channels of greater 

values of greater values of width-to-depth ratio and roughness and small slopes. An 

eodible channel generally tends to shape the channel and velocity distribution pattern so 

that um/umax may fall between 0.85 and 0.9 at M between 8 and 11, as shown by the field 

data in Table 11.  

3.6.3. Comparisons of parameter M in Tsallis entropy based 2-D velocity distribution 

and parameter M of Chiu’s 2-D velocity distribution 

In Chiu’s work (Chiu 1987) based on Shannon entropy, he also introduced a hydraulic 

parameter M which is also the combination of the Lagrange multiplier and the maximum 

velocity. So there may be some interesting relationship between these two key 

parameters in two entropy-based equations. Comparison between the parameter M in the 

Tsallis entropy and the one used by Chiu for the Shannon entropy is tabulated in Table 

12.  

 

Table 12 Comparison of parameter M in the Tsallis entropy based equation with M in 

Chiu’s Shannon entropy based equation. (Italy data and Blaney Data as in Table 9, Table 

10 and Table 11). 

 
M M (Chiu) 

Diffence between 

M and M(Chiu) 
Data 

6.07 1.95 4.12 Pontelagoscuro  

on Po River 5.69 1.95 3.74 

 4.92 2.01 2.91 P. Nuovo on 

Tiber River 2.79 2.01 0.78 
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Table 12 (continued) 

 
M M (Chiu) 

Diffence between 

M and M(Chiu) 
Data 

 9.64 10.17 -0.53 

Blaney (1937) 

9.79 10.87 -1.08 

9.32 8.95 0.37 

7.88 5.71 2.17 

7.01 4.58 2.43 

9.00 7.98 1.02 

8.55 6.92 1.63 

10.17 13.09 -2.92 

8.07 6.02 2.05 

7.91 5.77 2.14 

9.18 8.49 0.69 

8.88 7.66 1.22 

Average 7.80  6.51  1.30   

Standard 

Derivation 
2.03  3.43  1.79  
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Fig. 23. Relationship of parameter M in Tsallis entropy based 2-D velocity distribution 

and Chiu’s 2-D velocity distribution. 

 

As shown in Fig. 23, the two M parameters almost obey a power law relation. This 

relationship needed to be confirmed with further studies with more data for different 

patterns of flow and channels. In Chiu’s work, the M number has been found useful as 

an index for characterizing and comparing various patterns of velocity distribution and 

states of open channel flows. Based on Chiu’s work plus the relationship between these 

two parameters, the relation between M number in the Tsallis entropy velocity 

distribution and open channel system factors, such as geometry, roughness, slope, 

sediment concentration and flow patterns may be explored in the future. 
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3.7. Velocity distributions with parameter M 

3.7.1. Derivation of velocity distributions with parameter M for one vertical 

Now replacing the two parameters λ1 and λV in the velocity distribution function Eq. (42) 

with the new parameter M, the velocity distribution equation becomes to: 

Therefore, the dimensionless velocity can be expressed in the form: 

As we can see from Eq. (45) and the term (r-r0)/(rmax – r0) can be replaced with Eq. 

(39) or Eq. (40), so the velocity distribution with parameter M is linked with y in 

Cartisian coordinate system in the form as follows. 

If the maximum velocity happens below water surface, i.e., h<0, the velocity and 

dimensionless velocity are determined as: 
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If the maximum happens at the water surface, i.e., h≥ 0, the velocity distribution and                   

dimensionless velocity can be expressed as: 
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Eq. (47)- Eq. (50) with parameter M are the final form of the 2-D velocity distribution 

equations. Paramer M is the only parameter that need to be estimated, hence it is a key 

factor. In order to evaluate how the variation of M influences the velocity distribution, 

the dimensionless velocity distributions described in Eq. (48) are plotted in Fig. 24 for 

h<0. 

 

Fig. 24. Dimensionless velocity distributions at h/D=-0.4 and various M values. 
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Fig. 25. Dimensionless velocity distributions at h/D=0.05 and various M values. 

 

 

Fig. 26. Dimensionless velocity distributions at h/D=5 and various M values. 
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And the dimensionless velocity distributions described in Eq. (48) are plotted in Fig. 

25 and Fig. 26 for h≥0. Fig. 24 to Fig. 26 describe velocity distributions given by Eqs. 

(48) and (50) with h/D= -0.4 ,0.05 and 5, respectively, and show the effects of M and 

h/D on the velocity distibution. These figures also show that Eq. (45) with r represented 

by Eqs. (39) and (40) can describe any velocity distribution pattern regardless of whether 

umax occurs on or below the water surface.  

As in Fig. 24 to Fig. 26, the velocity distribution curve changes gradually according 

to the change in parameter M, but not so dramatically; during the reasonable 

mathematical range of M, profiles with different M tend to the same shape. For h<0, the 

intersection of velocity profiles with different M is determined by h/D . The differences 

focus on the region close to the channel bottom.  

Chiu and Chiou (1986) found an empirical relation between h/D and parameter M in 

his 2-D velocity distribution equation from 176 rectangular channels. He concluded that 

the h value can be significantly greater then zero only when the value of M is between 6 

and 9, i.e., the ratio um/umax falls between 0.84 and 0.89 which also corresponds to the M 

value in Tsallis entropy based 2-D velocity distribution is between 8.16 and 9.36. When 

the M value is between 8.16 and 9.36, the h value can be zero, smaller or greater than 

zero, so that isovels may or may not be perpendicular to the water surface. Both patterns 

of velocity distribution shown by Fig. 17 are possible. However, if M is outside the 

range of 8.16 to 9.36, the h value can only be zero or less than zero, and therefore, 

isovels tend to be perpendicular to the water surface. A small change in M will not lead 

to a remarkable change in the velocity distribution. For a given channel parameter M 
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does not change dramatically from vertical to vertical as disscussed in the previous 

section. The crossectional mean M seems acceptable to compute the velocity distribution. 

The velocity distributions at three verticals at gauged section P. Nuovo on Tiber River 

(Moramarco and Singh 2004) are plotted in Fig. 27 with the crosssectional parameter 

M=5.041 in comparison with the estimation using M computed for one particular 

vertical. 

 

 

Fig. 27. Velocity profiles estimated by Tsallis entropy based 2-D velocity distribution, 

Eq. (47), using cross-sectional mean value of parameter M and M estimated for one 

particular vertical. Against velocity points sampled along three verticals at P. Nuovo 

gauged section during a flood event that occurred in November, 1996. 
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Table 13 Errors given by Eq. (27) considering Eq. (47) for estimating 2-D velocity 

distribution using cross-sectional mean value of parameter M (Mm) and M (Mi) 

estimated for one particular vertical.  

Vertical 
Mm Mi 

μ σ μ σ 

z=16.64 m 0.088  0.145  0.080  0.128  

z=0 m -0.028  0.077  0.027  0.104  

z=20.8 m 0.192  0.243  0.139  0.281  

 

Comparing velocity profiles estimated by Eq. (47) with the field data, it is obvious 

that Eq. (47) is accurate for the axis having the maximum velocity as well as for the 

region near the bank. The mean errors at the three verticals considering Eq. (47) for 

estimating velocity using parameter M estimated in two ways did not exceed 0.20. Fig. 

28 also shows that though parameter M estimated from the maximum and mean velocity 

is different from vertical to vertical at the same section, there is no significant difference 

between the velocity profiles estimated by Eq. (47) using the cross-sectional mean of M 

and the M estimated particularly for the observed vertical. Obviously, comparison of 

errors shown in Table 13, the mean errors and standard deviations are not substantially 

different, while the estimation using parameter M for a particular vertical tends to be 

smaller. Though the differences are small, more differences are found in the lower 

portion of the velocity profiles and also in the region close to side walls, in this region 

the velocity profiles computed using M for this specific vertical have a higher accuracy. 

This aspect suggests that parameter M can be considered an indicator of the boundary 

effects on the velocity distribution. As in Fig. 27, M decreases when the vertical goes 
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away from the z-axis and get closer to channel bank, reaching the maximum of the cross 

section at the z-axis. 

3.7.2. Velocity distributions (isovels) for a given cross section 

For a given cross section, parameters of the isovels [Eq. (45) in combination with Eq. 

(34)-(36)] can be estimated directly from the actual velocity data or indirectly from 

discharge rate, slope, roughness, and cross section of the channel with reference to 

Manning’s equation. The indirect method is a simulation technique that can be used to 

generate any number of velocity distribution data sets for wide ranges of discharge rate, 

slope, roughness, and cross sections of channels.  

Fig. 28 shows isovel patterns simulated by Eq. (45) in conjunction with Eq. (34) - 

(36) for rectangular channels having various discharge rates and width-to-depth ratios, at 

the channel slope of 0.0016 and Manning’s n of 0.015 and 0.03, respectively. For each 

of the channels (or velocity distributions) in the figure, the values of umax, M, um and h/D 

are also indicated. The general trend for M varying with the width-to depth and channel 

roughness is vividly presented by the figures. 
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Fig. 28. Parameter M, B/D ratio, Manning’s n and velocity distributions. 
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(d) 

Fig. 28. continued 

 

To determine how good the new model is it is applied to predict the cross-sectional 

velocity distribution. Based on the previous analysis, the cross-sectional mean value of 

M can be applied to simulate velocity profiles along different verticals for the whole 

cross section, so these values are also acceptable to simulate the isovels presented here. 

2 

2 

2 
2 2 

2 

2 

2 

2.2 

2.2 

2.2 

2.2 2.2 

2.2 

2.2 

2.2 

2.3 

2.3 

2.3 

2.3 
2.3 

2.3 

2.3 

2.4 

2.4 

2.4 

2.4 
2.4 

2.4 

2.4 
2.5 

2.5 

2.5 
2.5 

2.5 

2.5 

2.6 

2.6 

2.6 
2.6 

2.6 

2.6 

2.7 

2.7 
2.7 

2.7 

2.7 2.8 

2.8 

2.8 

2.8 

2.8 2.9 

2.9 2.9 

2.9 
2.95 

2.95 

2.95 
2.99 

2.99 

z (m) 

y(m) 

-3 -2 -1 0 1 2 3 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

um=2.6 m/s, umax=3 m/s, M=8.8 

h/D=-0.1, n=0.03, B/D=2 

M=6.61 

 

 

 



91 

 

But more details about how to accurately estimate M can be found in the latter sections. 

The isovels are also plotted in comparison with the field data collected at P. Nuovo 

gauged section on Tiber River during two flood events that occurred June, 1997, 

respectively in Fig. 29.  

              

 

Fig. 29. Velocity distributions at P. Nuovo gauged section on Tiber River during flood 

events that occurred in June 1997. 
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3.8. Probability density function and maximum entropy of dimensionless velocity 

and velocity with M 

The desired PDF, f(u), can also be expressed with M as 

The probability density function of dimensionless velocity f(u/umax) can also be 

expressed with M as a parameter: 

 

Fig. 30. Parameter M and probability density of dimensionless velocity f(u/umax). 
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Eq. (52) shows the probability density and the dimensionless velocity u/umax follows 

a simple linear relationship, and the slope of the lines are determined by the parameter M. 

Fig. 30 describes the function f(u/umax) for various M values. 

Using Eq. (51) and Eq.(52), integration of Eq. (4) gives the maximum entropy of 

velocity and dimensionless velocity u/umax, denotes u/umax as w: 
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From Eq. (54), the maximum entropy is always determined by the parameter M; 

similarly, Chiu (1988) also found that the maximum entropy of dimensionless velocity is 

a function of the parameter M in his 2-D velocity equation. In order to further explore 

the relation between the two M parameters, Chiu’s function concerning M is also 

presented as Eq. (55a) and Eq. (55b): 

 
MMMMM

u

u
H ln]1))[exp(exp(]1)ln[exp(1)( 1

max

   (55a) 

 
max

max

ln)()( u
u

u
HuH   

(55b) 

The maximum entropy of dimensionless velocity based on Eq. (54) and Eq. (55a) is 

plotted in Fig. 31(a) and (b) with various M values respectively. 
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(a) 

 

(b) 

Fig. 31. Maximum entropy with various M. (a) Eq. (54); (b) Eq. (55a). 
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As we can see from Eq. (53) to Eq. (55b), the value of the maximum entropy of both 

Tsallis entropy based 2-D velocity distributions and Chiu’s 2-D velocity distributions is 

determined by their hydraulic parameter M and the maximum velocity umax. Apparently, 

H(u) increases with the increase of umax as in Eq. (53) and Eq. (55b) which approves the 

argument we made earlier that the maximum entropy goes up with the increase of the 

maximum velocity. In order to investigate how parameter M in these two velocity 

distributions influences the maximum entropy, we need to exclude the effects of umax and 

that is the reason we introduced the term H(u/umax). As in Fig. 31, H(u/umax) of the two 

velocity distributions is determined by their parameter M respectively and decreases 

with the increase of M in their possible range. Though Eq. (54) based on Tsallis entropy 

is much simpler that Eq. (55a), there is great similarity between the relation between the 

two M parameter and the maximum entropy which implies the similarity between their 

hydraulic characteristics. For an erodible channel, Chiu (1987) stated greater values of 

H(u/umax) were from channels of greater values of roughness and width-to-depth ratio 

and smaller slopes. H(u/umax) and M may be changed by adjusting the cross section 

(width, depth, and shape); slope; roughness; alignment; velocity distribution; and, 

perhaps, sediment transport. To increase the entropy H(u/umax), a nonerodible channel 

can only adjust the water depth and the pattern of velocity distribution. Consequently, 

flows in artificial channels of rigid boundaries tend to have a relatively wider range of 

possible values. Based on the similarities found between M in Tsallis entropy based 2-D 

velocity distributions and M in Chiu’s 2-D velocity distributions and their empirical 

mathematical relation presented in the previous section, the same conclusion can also be 
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applied to Tsallis entropy based 2-D velocity distributons, while M in Tsallis entropy 

based 2-D velocity distributions has a much smaller possible range than parameter M 

defined in Chiu’s 2-D velocity distribution, maybe easier to estimate and therefore more 

applicable in engineering. The great similarities found between the key parameter M in 

the two velocity distributions verified that Tsallis entropy is a generalization of Shannon 

entropy again. 

 

Fig. 32. Dimensionless velocity distribution and parameter M. 
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distribution, with velocity equal to zero at the bed and umax at the water surface in wide 

channel, corresponds to M= 0 and hence the theoretical maximum entropy. Another 

extreme case is when M tends to 12, f(u/umax)= 4, this corresponds to the minimum 

entropy situation, in this case the velocity is constant. Since f(u/umax) is determined by 

parameter M, the resilience or stability of it can be tested through either M or um/umax, 

and can be used as a basis for using Eq. (45) for describing velocity distributions under 

varying umax, um or discharge in flows with or without sediments. This provides the 

motivation to investigate um/umax and M. 

3.9. Maximum velocity and mean velocity  

3.9.1. M and the relation of maximum velocity to mean velocity 

In open channel hydraulics the mean velocity is needed in the governing equations for 

the transport of mass, momentum, and energy through a channel cross section. Therefore, 

the importance of determining the mean velocity is well known. To determine the mean 

velocity and discharge in rivers and streams, available methods include the use of 

empirical formulas and velocity samples. Originally derived for uniform flow, 

Manning’s equation is a popular empirical formula but its application in unsteady 

nonuniform flow is questionable, because both the energy slope and Manning’s n tend to 

vary with time and water depth from section to section along the flow direction. These 

temporal and spatial variations of energy slope and Manning’s n are often irregular and 

pronounced in flows affected by such factors, as ice and wind, and tend to cause great 

uncertainties in flow forecasting (Crissman 1993). 
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To determine the mean velocity and discharge from velocity samples, the 

conventional method requires a great amount of time and measurements, and, hence, is 

unsuitable for unsteady flows and (Kalman) filtering schemes are used to reduce 

uncertainties in flow forecasting (Crissman 1993). What is needed for unsteady flows 

and filtering schemes is an efficient method to quickly determine discharge and flow 

resistance that may change rapidly. 

In comparison with mean velocity, the maximum velocity in a channel cross section 

had never been considered important enough to receive special attention until Chiu 

(Chiu 1991) explored the relationship between the mean velocity and the maximum 

velocity using one entropy parameter M (different from the M in Tsallis entropy based 

2-D velocity distribution) which can be expressed as: 
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It is considered worthwhile to make special efforts for measurement, analysis and 

modeling of maximum velocity and determining the relation of maximum velocity to the 

mean velocity. The maximum velocity may be considered as a “signal” that is 

measurable and contains useful information about the open channel flow. First of all, the 

maximum velocity gives the range of velocity in a channel cross section, which is an 

important piece of information about the velocity distribution and mean velocity. 

On an isovel where r=rm and u=um, Eq. (46) becomes: 
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On the other hand, based on the definition of M and its relationship with the two 

parameters, we obtained: 

It is obvious that in Chiu’s work, the ratio of mean and maximum velocity is an 

exponential distribution of the entropy parameter M from the Shannon entropy based 

2-D velocity model (Chiu 1989). While the relation found based on Tsallis based 2-D 

velocity distribution is following a linear distribution with M. The ratio of mean and 

maximum velocity (i.e.Φ(M)) is plotted against various M for both Tsallis entropy based 

velocity distribution and Chiu’s velocity distribution in Fig. 33.  

 

(a) 

Fig. 33. um/ umax versus various M . (a) Eq. (56); (b) Eq. (58). 
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(b) 

Fig. 33. continued 

 

Eq. (56) and (58) show that if a sample of pairs (um, umax ) is given, first Φ(M) can be 

estimated and then the entropy parameter M .The parameter M in Chiu’s 2-D velocity 

distribution has a larger possible range compared with the parameter in Tsallis entropy 

based velocity distribution . 
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Fig. 34. Upper Tiber River basin with location of river gauging stations. 

 

To test the relationship between the mean velocity and the maximum velocity in a 

channel cross section, the velocity data collected during a period of 20 years were 

analyzed for four gauged sections, three of them are located along the Tiber River at 68 

km (S. Lucia), at 109.2 km (P. Felcino) and at 137.4 km (P. Nuovo) and one section 

along the Chiascio River, a tributary of the Tiber River at 85 km (Rosciano). Fig. 34 
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shows a cartographic map of the upper Tiber basin along with locations of the gauged 

sections investigated.  

The number of velocity measurements and the flow characteristics are summarized 

in Table 14. The selected sections are equipped with a remote ultrasonic water level 

gauge, while the velocity measurements are made by current meter from cableways. In 

particular, depending on the cross-sectional flow area, the number of verticals carried 

out changes from 4 up to 10 and for each vertical at least 5 velocity points are sampled.  

 

Table 14 Flow characteristics, discharge, Q, and maximum water depth, D, of the 

available velocity measurements, N, for four gauged sections in the upper Tiber River 

basin. 

Location N 
Q 

(m
3
s

-1
) 

D 

(m) 

S. Lucia 42 1.5-215 0.9-5.2 

P. Felcino 34 2.3-412 0.8-6.2 

P. Nuovo 51 5.4-537 1.1-6.7 

Rosciano 38 3-160 1.3-3.3 

    

Comparing the velocity points sampled along different verticals and applying the 

well-known velocity-area method (Herschy 1985), the maximum and mean velocities 

were estimated (Chiu and Said1995; Xia 1997). Generally, the true maximum velocity is 

unknown, but for each vertical, the maximum value in the data set of velocity points 

sampled can be assumed for it (Chiu 1988). Topographical surveys of the gauged 
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sections were also available for different years of sampling, showing that there were no 

substantial changes in the cross-sectional shape. 

Using pairs of um and umax collected at the four gauged sections, the best-fit mean 

velocity, ubf, was calculated. The values of Φ(M) were estimated and are shown in Fig. 

35(a)-(d), wherein is also reported the correlation coefficient, R
2
.  

 

 

(a) 

Fig. 35. Relation between mean and maximum velocities at selected gauged river 

sections. (a) S. Lucia (b) P. Felcino (c) P. Nuovo (d) Rosciano. 
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(b) 

 

(c) 

Fig. 35. continued 
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(d) 

Fig. 35. continued 

 

Therefore, Φ(M) can be assumed constant for the four gauged sections, confirming 

the results obtained by Xia (1997) for the Mississippi River. This means that the same 

linear relationship between the mean and maximum velocities can be surmised at any 

cross-section within the river reach between S. Lucia and P. Nuovo section and along the 

Chiascio River downstream Rosciano section. In order to test this assumption the best-fit 

line relative to the mean and maximum velocity data set of the four gauged sections was 

estimated as plotted in Fig. 36. 
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Fig. 36. Relation between mean and maximum velocities for data sets from four gauged 

sections. 

 

As can be seen, the linear relationship based on Eq. (58): 

 maxbf u665.0u   (59) 
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section at a value of discharge should be accurate and valid at other values of discharge. 

However, a given plot such as that in Fig. 35 or Fig. 36 is desirable for determining M in 

the least-squares sense, to offset likely errors in a single pair of umax and um. In Fig. 35 

and Fig. 36 each value of um was obtained from a given discharge; and umax from 

velocity samples. 

Fig. 35 shows that under a wide range of flow conditions, as characterized by 

discharge, water depth, and other flow properties, a channel section has a propensity to 

establish and maintain an equilibrium state that corresponds to a value of M and, hence, 

a value of the entropy of the distribution f(u/umax). To establish an equilibrium state and 

the corresponding M value, an erodible channel section adjusts the channel 

characteristics as represented by the bed form and material, roughness geometrical shape, 

slope, and alignment, under various values of discharge and water depth. A nonerodible 

or well-established channel section maintains the equilibrium state and the 

corresponding M and entropy by adjusting the velocity distribution through modifying 

umax and h when the flow condition changes (Chiu and Said 1995). 

So far we come up with three methods to estimate parameter M when the problem is 

to estimate the velocity distribution along a single vertical of on a cross-section. First, if 

the mean and maximum velocities along the objective vertical are available, M can be 

estimated using Eq. (58). Second, if enough velocity samples along several verticals are 

available, M can be estimated for the known verticals and then get the cross-sectional 

mean of M, as tested in the previous section, the cross-sectional mean is safe to use to 

predict the velocity distribution along any vertical with the maximum given or known. 
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Third, based on the previous analysis on Φ(M) and M, they tend to be constants for a 

particular river reach and do not change much during different time periods. That means 

if the historical records of the mean and maximum velocities at a cross-section are 

available, Φ(M) can be estimated from the least square method and then M can be 

obtained based on Eq. (58). Fig. 37 presented the velocity profiles plotted using M 

estimated in the three ways above for three verticals at P. Felcino gauged section during 

the flood event that happened in April, 1997. The values of M parameter estimated in the 

three ways are listed in Table 15. 

 

Table 15 M for different verticals at P. Felcino on Tiber River and estimated in three 

ways. Mm denotes M taken as the cross-sectional mean, Mh is M derived from historical 

value, Mi is M estimated using the data for the objective vertical.  

z (m) Mm Mh Mi 

-14.66 5.23 4.04 3.38 

0.00 5.23 4.04 6.36 

7.34 5.23 4.04 5.87 

 

 



109 

 

 

Fig. 37. Velocity profiles estimated by the Tsallis entropy based 2-D velocity 

distribution. U_Mh denotes velocity estimated using M derived from historical methods; 

U_Mm denotes velocity estimated using M obtained from cross-sectional mean value of 

M; U_Mi denotes velocity estimated using M obtained from velocity samples along the 

objective vertical. 
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using M estimated using different ways as shown in Fig. 37 and Table A24 to Table A26. 

More significant differences concentrated in the region close to the channel bed, for this 

area velocity estimation using M parameter for this particular case is the best against the 

observations. Based on the results, the three methods to estimate the M parameter are 

acceptable to use, but usually enough samples along one vertical is hard to get and many 

verticals needed to be taken into account to estimate the cross-sectional mean so both of 

these methods will rely on the available data. Based on the conclusion that M is a 

hydraulic parameter that holds constant and that is always historical data for the gauged 

section, M is handy and recommended to get in the third way. 

3.9.2. Location of mean and maximum velocity  

From Eq. (57) and (58), the location of mean velocity can be obtained as the ratio is 

computed and plotted for various M values in Fig. 38: 
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Fig. 38. (rm-r0)/(rmax-r0) versus M. 
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flood event that occurred in March, 1991, the locations of maximum and mean velocities 

are also shown. 

 

 

(a) 

Fig. 39. Velocity profiles plotted against the observed data collected from 

Pontelagoscuro gauged section on Po River during the flood event that occurred in 

March, 1991 and the locations of maximum and mean velocity. 
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(b) 

Fig. 39. Continued 
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describing velocity distributions and the field work dealing with natural and man-made 

channels, such as discharge measurements. 

The preceding results show that entropy parameter M is an effective measure of the 

overall characteristics of a channel section, as represented by the bed form and material, 

slope, shape, and alignment, and can be used to classify various channel sections and 

their equilibrium states. Even in a nonerodible or well-established channel, Manning’s n 

at a channel section tends to vary with discharge, um or water depth, while M remains 

constant. Therefore, M is a better representative of a channel section than Manning’s n. 

Periodic reevaluations of the M value of a channel section can be conducted to detect 

any significant changes in the channel characteristics due to man’s activities, such as 

construction of dams, bridges, and other structures that tend to upset the equilibrium 

state of the channel section. Most importantly, the M value can be used in Eq. (58) to 

facilitate the estimation of um from umax, or umax from um. To determine um, umax 

determined from a velocity profile on the y-axis can be used. umax can be determined 

without velocity data, if the discharge or um is known. . 

3.10. Application to different cases 

The Tsallis entropy based 2-D velocity equation is tested using various sources of data in 

this section to evaluate the performance of Tsallis entropy based 2-D velocity equation 

in steady uniform flows, nonuniform flows, high flood events, unsteady flows. 

3.10.1. Applicability to uniform and nonuniform flows 

In hydraulics, uniform flows are defined as flows with the depth average flow velocity 

(integrated over depth), area flow cross-sections constant everywhere along the channel. 
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For uniform flows, the energy grade line slope, water surface slope, and channel bed 

slope are all equal. The assumption of a uniform flow is the simplest model (and the least 

accurate) to solve a hydraulic problem. The principal advantages of a uniform flow 

assumption are speed and simplicity. Spreadsheet applications for normal depth analysis 

are either readily available or easily written. The disadvantages are loss of accuracy in 

water surface profile calculations and the potential to over- or under-design the storm 

sewer or small channel, depending on the topography of the site. This simplification may 

be adequate for some applications, but it can include significant error in the 

storage-outflow estimate. Uniform flow assumptions may be employed when the 

engineer believes that more complex, rigorous methods will not generate sufficient 

additional hydraulic accuracy or result in sufficient cost reductions in the engineering 

design. There are generally few instances in river hydraulic analysis when the engineer 

assumes uniform flow for the solution of an open channel modeling problem. More 

practical and frequently happening in natural channel is nonuniform flows, so it may be 

interesting to test the performance of Tsallis entropy based velocity distribution in both 

steady uniform and nonuniform flows. Data collected by Guy (1966) were for a steady 

and uniform flow in a rectangular flume. The velocity profiles plotted here were on the 

y-axis (i.e., a single vertical that passes through the point where umax occurs). Data along 

a steady, nonuniform flow in a rectangular flume is also used here to see how the model 

works for a nonuniform case.  

Fig. 40(a) and (b) compare velocity estimated by Tsallis entropy based 2-D velocity 

equation and velocity samples collected on the y-axis for two rectangular channels. 
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(a) 

Fig. 40. Velocity profiles on y-axis of rectangular channels. (a) Uniform flume flow 

(Guy 1966); (b) Nonuniform flume flow (Guo 1990). 
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(b) 

Fig. 40. continued 

 

Fig. 40(a) shows velocity samples on the y-axis at a channel section, 2ft wide, 0.60 ft 

deep and um =2.95 ft/s (Run7, Guy 1966) and the computed values using Tsallis entropy 

based velocity equation. Fig. 40(b) shows the velocity distribution on the y-axis of a 

rectangular channel, 10 cm wide and 2.31 cm deep (Guo 1990). Good agreement is 

found between the velocity samples and the velocity profiles estimated by the Tsallis 

entropy based equation. For Fig. 40(a) the flow condition is uniform and ideal, and the 

case in Fig. 40(b) the flow is nonuniform and more complicated and realistic in natural 
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rivers and streams. The entropy based velocity equations predict velocity in both 

uniform and nonuniform steady flows with high accuracy. The accuracy was verified 

with error analysis and the mean errors were 0.022 and 0.060, respectively, while the 

standard deviation did not exceed 0.05.  More details about the data and errors are 

tabulated in Tables A29 and A30. 

3.10.2. Application to clear water control flows and sediment laden-flows 

As stated for the 1-D case, the 1-D entropy based method can simulate both clear water 

flows and sediment-laden flows in the lower region of the flow when it is very close to 

channel bed where lots of factors have effects on the velocity distribution. The two 

dimensional velocity equation is proposed for channels that are not wide, where that the 

maximum velocity does not always happen at the water surface. Therefore, a more 

universal distribution is described by Eq. (47) and Eq. (49) by transforming the Cartesian 

coordinate system (y-z) to curvilinear coordinate system (r-s). The 2-D velocity 

distribution law can be treated as a generalized velocity law and its applicability to 

sediment-laden flow and clear water control flow is tested here using Coleman’s 

experimental data (Coleman 1986). 

Fig. 41 shows a clear-water control velocity profile and the capacity suspension 

profile comprising the beginning and end of the series of experiments with 0.105-mm 

sand. 
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(a) 

Fig. 41.  Clear water control velocity profile and the capacity suspension profile from 

the experimental series with 0.105 mm sand. (Run 1 and 20, respectively). 
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Eq. (54):
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Tsallis etnropy based 2-D velocity equation
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(b) 

Fig. 41. continued 

 

The other hydraulic factors that can affect the shape of the velocity profiles are 

constant, such as the channel geometry, discharge and alignment. Apparently parameter 

M decreases with the increase in the sediment load and hence the maximum entropy 

H(u/umax), with the maximum velocity being almost constant that means the mean 

velocity of the profile decreases. The location of the maximum velocity and then the 

term h/D that helps shape the velocity profile can be obtained by the least square method. 

The simulations using the Tsallis entropy based 2-D velocity equation are found to be 
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accurate in both the regions close to water surface and the lower part of the flow which 

is under the influence of high sediment concentration and shear stress with mean errors 

as -0.001 and 0.02 for Run 01 and Run 20, respectively. More details about the data can 

be found in Tables A31 and A32. 

3.10.3. Applications to high and unsteady flows  

The linear relationship between the mean and the maximum flow velocities is found to 

be accurate at four gauged river sections in the upper Tiber River basin in Central Italy 

in the previous section. The value of parameter could be surmised to be constant at any 

site within the two river reaches investigated and is acceptable to use to predict the 

velocity distribution along any vertical at the selected gauged section. The simple 

method developed for reconstructing the velocity profiles at a river section based on 

Tsallis entropy based two-dimensional velocity distribution (Eq. (47)) is tested here 

against the velocity samples on three verticals located at P. Nuovo gauged section and 

also the isovels for the cross section was plotted. 
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and (b) simulated 2-D velocity distribution using the Tsallis entroy based 2-D model in 

the rectangular channel section. 
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The Tsallis entropy based 2-D velocity distribution is found to be capable of 

estimating with a reasonable accuracy when compared with the sample of the observed 

velocity profiles for high flood events with mean errors between -0.03 to 0.05 and the 

maximum value of standard deviation was about 0.046. Therefore, through the analysis 

we can confirm the Tsallis entropy based velocity equation can be applied locally. 
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(b) 

Fig. 42. continued 
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Fig. 43. Velocity distribution of unsteady flows. 

 

Available laboratory flume data are used to illustrate accuracy and reliability of the 
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higher the water state is the deeper the location of maximum velocity. Fig.43 shows the 

velocity distribution of unsteady flows with the maximum as 59.1 cm/s, and the 

maximum velocity occurs beneath the water surface at around 0.6 depths.  

The probability law describing the velocity distribution at a channel section in rivers 

and streams is resilient and invariant with time and discharge. This is based on the 

observation that its parameter M, the average ratio of the mean and maximum velocities, 

is invariant with time, discharge, and water level. This in turn can serve as the basis for 

an efficient method of discharge measurements in rivers and streams. The method is 

applicable in both steady and unsteady flows in rivers, and can be used with any 

velocity-measuring equipment to drastically reduce the time and cost of discharge 

measurements. Its most important utility, however, is its applicability in unsteady, high 

flows to collect data that are essential in critical situations, such as flow forecasting, but 

cannot be measured by conventional methods. 
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4. COMPARISION OF VELOCITY EQUATIONS 

4.1. Other 1-D velocity distributions 

The velocity distribution given by Eq. (23) differs from the Shannon-entropy based 

velocity distribution derived by Chiu (1988): 

 

and the widely used Prandtl-von Karman universal velocity distribution: 

where k1 is a parameter, k is the von-Karma universal constant, y0 is a very small (almost 

unmeasurable) value of y at which the shear velocity (u*) happens, uD is the velocity at the 

water surface, u* is the shear velocity equal to gDS , where g is the gravitational 

acceleration, D is the flow depth, and S is the channel slope. The probability distribution 

function of Prandtl-von Karman velocity distribution is: 
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Based on the probability density function f(u), its maximum entropy is determined as: 
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Furthermore y0 can be estimated using the relation that: 
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We used the 12 sets of data collected by Einstein and Chien (1955) to test how Eq. 

(65) works as shown in Fig. 44. The data was chosen since the other parameters needed 
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to estimate D were available in their report. In order to guarantee the validity of Eq. (65) 

more data should be used to test it in the future. 

 

 

Fig. 44. Testing of Eq. (65) using the data collected by Einstein and Chien (1955). 
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where a, b, and n are parameters (Karim and Kennedy 1987). Exponent n is usually 

determined by the frictional resistance at the bed, and is, in practice, not known but can 

be determined using the least square method, if observed velocity profiles are available. 

Using Shannon entropy the exponent parameter n can be estimated as: 
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  (68) 

and its maximum entropy can be determined as: 

 ununH D lnln)1(   (69) 

Parameter n can also be determined using regression analysis (least square method), 

Fig. 45 presents how the two methods works for the data collected by Einstein and Chien 

(1955). 
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Fig. 45. Comparison of different method of estimating parameter n. (Data from C5 series 

(Einstein and Chien 1955)). 

 

We found in Fig. 45 the velocity distribution using the method of mathematical 

fitting is strictly in agreement with the observed data. It may be interesting to examine 

the relation between the parameter values estimated by the two methods. 10 sets of data 

collected by Einstein and Chien (1955), 2 sets of field data from Iran and 3 Coleman’s 

data are examined here and the n values estimated in two ways are found to follow a 
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Fig. 46. The relationship between exponent parameter n derived from Eq. (68) and n 

from regression. 

 

4.2. Comparison between Tsallis entropy based velocity distribution and other  
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Comparison of the four velocity distributions and corresponding dimensionless 

velocity distributions along the whole water depth against Iran river velocity data are 

presented in Fig. 47. 

 

 

(a) 

Fig. 47. Comparison of Tsallis entropy-based velocity distribution with observed 

velocity and velocity distributions based on Shannon entropy and Prandtl-von Karman 

universal velocity distribution and power law velocity distribution (Iran data 2). (a) 

velocity distribution; (b) dimensionless velocity distribution. 
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(b) 

Fig. 47. continued 

 

And the computations and observations were tabulated in Table 16. 

 

Table 16 Comparison of Tsallis entropy-based velocity distribution with observed 

velocity and velocity distributions based on Shannon entropy and Prandtl-von Karman 

universal velocity distribution and power law velocity distribution (Iran data 2). 

y  

(m) 

u (m/s ) 

Tsallis Shannon 
Prandtl-von 
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Power law Observed  

0.01 0.390 0.568 0.567 0.632 0.512 

0.03 0.632 0.716 0.716 0.739 0.540 
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Table 16 (continued) 

y  

(m) 

u (m/s ) 

Tsallis Shannon 
Prandtl-von 

Karman 
Power law Observed  

0.05 0.739 0.786 0.786 0.795 0.642 

0.06 0.775 0.810 0.810 0.816 0.721 

0.07 0.804 0.831 0.831 0.835 0.735 

0.08 0.829 0.849 0.850 0.851 0.745 

0.09 0.850 0.865 0.866 0.865 0.746 

0.10 0.868 0.880 0.880 0.878 0.792 

0.11 0.884 0.893 0.893 0.890 0.807 

0.13 0.912 0.915 0.916 0.912 0.882 

0.15 0.934 0.935 0.935 0.931 0.885 

0.17 0.953 0.952 0.952 0.947 0.946 

0.20 0.977 0.974 0.974 0.970 0.960 

0.23 0.996 0.993 0.993 0.989 0.989 

0.26 1.012 1.010 1.010 1.007 1.003 

0.29 1.026 1.024 1.025 1.022 1.017 

0.32 1.039 1.038 1.038 1.037 1.039 

0.34 1.046 1.046 1.046 1.046 1.046 

 

Table 17 Mean, μ(ε), and standard deviation, σ(ε), of error given by Eq. (27) 

considering Tsallis entropy-based velocity equation, Shannon entropy and Prandtl-von 

Karman universal velocity distribution and power law velocity distribution (Iran data 2). 

  
Tsallis Shannon 

Prandtl-von 

Karman 

Power 

law   

μ 0.046  0.087  0.087  0.096  

σ 0.091  0.090  0.090  0.106  
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As in Fig. 47, when y/D is below 0.5, the simulation lines of four velocity 

distribution began to deviate away from the actual values, all the four velocity 

distributions led to higher values than the measurements. The reason lies in the fact that 

in the lower part of the channel, especially alluvial channel, the sediment concentration 

tends be higher and the sediment movement tends to be more complicated which leads to 

a deceleration of the flow velocity. Therefore, a larger gap was found in the lower region 

that is close to the channel bed, whereas with the mean and maximum velocity measured 

or given the Tsallis entropy based velocity equation obtained the simulation closest to 

observations amongst the four velocity distributions with the minimum mean error as 

0.046 and the standard deviation about 0.091 as shown in Table 17. One thing noted is 

that as low as y/D was 0.03, the Prandtl-von Karman velocity law generated almost the 

same simulation as the Shannon entropy based velocity equation. 

And comparison of the four velocity distributions and corresponding dimensionless 

velocity distributions for the whole water depth against experimental data (Coleman 

1986) are presented in Fig. 48. 
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(a) 

Fig. 48. Comparison of Tsallis entropy-based velocity distribution with observed 

velocity and velocity distributions based on Shannon entropy and Prandtl-von Karman 

universal velocity distribution and power law velocity distribution (Data from Run 12, 

Coleman 1986). (a) velocity distribution; (b) dimensionless velocity distribution. 
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(b) 

Fig. 48. continued 

 

Furthermore, comparison of the four velocity distributions and corresponding 

dimensionless velocity distributions near channel bed against experimental data 

(Einstein and Chien 1955) are presented in Fig. 49. 
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(a) 

Fig. 49. Comparison of Tsallis entropy-based velocity distribution with observed 

velocity and velocity distributions based on Shannon entropy and Prandtl-von Karman 

universal velocity distribution and power law velocity distribution (Data from S5 series, 

Einstein and Chien 1955). (a) velocity distribution; (b) dimensionless velocity 

distribution. 
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(b) 

Fig. 49. continued 

 

Table 18 Mean, μ(ε), and standard deviation, σ(ε), of error given by Eq. (27) 

considering Tsallis entropy-based velocity equation, Shannon entropy and Prandtl-von 

Karman universal velocity distribution and power law velocity distribution (Data from 

Run 12, Coleman 1986 and S5 series, Einstein and Chien 1955). 

  

  
Tsallis Shannon 

Prandtl-von 

Karman 
Power law Data 

μ -0.022  0.003  -0.035  0.046  
Run 12 

σ 0.091  0.090  0.090  0.106  

μ -0.054  -0.006  -0.98  0.055  
S5 

σ 0.071  0.060  0.241  0.141  
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The errors for experimental cases are tabulated in Table 18. Apparently, the four 

velocity distributions have more advantages in simulating under experimental conditions 

than in natural cases when comparing Fig. 48 and Fig. 49 using experimental data with 

Fig. 47 for field data. Especially for the average performance for the whole water depth 

as shown in Fig. 48, the mean error found did not exceed 0.046 and the maximum 

standard deviation was about 0.106. Some of the reasons are that the experimental 

conditions are ideal and simple for small scale flume, just under several major factors 

and requirements to simplify the experimental process, while for natural rivers and 

streams with a much larger scale, the flow velocity distributions are exposed to more 

factors, which cannot be taken or totally taken into account when doing simulation using 

velocity distribution equations. What is more, the measurement is more difficult to carry 

on in natural situations, and errors are more easily generated. 

Based on the above Fig. 48 and Fig. 49, we can see the advantage of both entropy 

based velocity distributions was consistently found to increase with sediment 

concentration. Fig. 48 and Fig. 49 give an illustration in which the velocity data were 

collected from flow with relatively heavy sediment concentration over the channel bed 

of coarse sand (S5 series, Einstein and Chien 1955 and Run 12, Coleman 1986). In Fig. 

48(b) and Fig. 49(b), as y/D decreases below 0.05 and 0.2, respectively, the data points 

begin to deviate considerably from the line given by Prandtl-von Karman equation, 

while they stay on or very close to the lines given by the Tsallis entropy based equation 

and Shannon entropy based equation. That’s because the sediment laden flow is in itself 

very complicated and any simplified treatments like the conventional logarithmic 
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velocity formula can only apply as long as the effects of the particles on the flow and on 

each other remain negligible. On the other hand, in Fig. 49, as y/D increases beyond 0.1, 

the data points begin to deviate dramatically from the computed values based on the 

power law equation, while the Tsallis entropy based equation and Shannon entropy 

based equation still matched the observed data well. For natural rivers as shown in Fig. 

47, Tsallis entropy based velocity equation led to a more accurate simulation while for 

Shannon entropy based velocity equation fitted the laboratory data better. Overall the 

entropy based velocity distributions can better predict the velocity distribution, no matter 

the depth very close to channel or for higher depths. For the two entropy methods, the 

accuracy of Shannon entropy based method relies on the good estimation of parameter k 

which is not always constant and shear velocity u*. For Tsallis entropy based method, 

more accuracy and effectiveness can be expected which can be seen from Fig. 49 and 

Fig. 50, with the exact values of parameters λ1 and λV. 

4.3. Other 2-D velocity distributions 

The popular velocity laws such as Prandtl von Karman velocity law and Power law 

presented in the previous section were used to roughly describe the 2-D velocity 

distribution. More recently, Chiu (1988) proposed a Shannon entropy based 2-D velocity 

equation to estimate the velocity distributions as: 

in which M is a dimensionless entropic parameter which can be determined from Eq. 

(56). The term (r-r0)/(r-rmax) is the same as the one we used in Tsallis entropy based 
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velocity equation and so it can be replaced with Eq. (39) and (40) for different cases. 

The 2-D velocity distribution was introduced for the cases when the channel is non-wide 

and the maximum is not happening at the water surface. As we proved in the previous 

section, the entropy based methods have obvious advantages over Prandtl-von Karman 

and Power law velocity distribution in sediment laden flows in the region close to the 

channel bed. It may be interesting to see how these velocity distributions work for a 

non-wide channel with sediment laden flow. For this reason, Coleman’s experiment data 

for Run 20 was used here for comparison. 

4.4. Comparison between Tsallis entropy based 2-D velocity distribution and  

other velocity distributions using field data and laboratory data 

The two dimensional model is proposed for channels that are not wide, where the 

maximum velocity does not always happen at the water surface. Therefore, a more 

universal distribution is described by Eq. (47) and Eq. (49) by transforming the Cartesian 

coordinate system (y-z) to curvilinear coordinate system (r-s). The Tsallis entropy based 

2-D velocity distribution law can be treated as a generalized velocity law and its 

applicability and to sediment-laden flow and clear water control flow and the special 

characteristics it may have relative to other velocity distributions is presented in Fig. 50 

using Coleman’s experimental data (Coleman 1986) for a non-wide flume.  
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(a) 

Fig. 50.  Velocity profiles simulated in four ways compared with observations. (a) clear 

water flows and (b) sediment-laden flows in a non-wide flume. 
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Eq. (47):

Ф(M)=0.85, M =9.5, h=-46mm

Eq. (62):

u*=0.041 m/s, k=0.40, y0= 0.042 mm

Eq. (67):

n=11.5

Eq. (70)

Ф(M)=0.85, M =5.5, h=-40 mm
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(b) 

Fig. 50. continued 

 

Table 19 Mean, μ(ε), and standard deviation, σ(ε), of error given by Eq. (27) 

considering Tsallis entropy-based 2-D velocity equation, Shannon entropy and 

Prandtl-von Karman universal velocity distribution and power law velocity distribution 

(Data from Run 20 and Run 21 (Coleman 1986)).  

  
Tsallis 

Prandtl-von 

Karman 
Chiu Power law Data 

  

μ 0.021  0.048  0.018  0.047  
Run 20 

σ 0.027  0.061  0.035  0.100  

μ -0.006  -0.016  0.009  0.010  
Run 21 

σ 0.021  0.044  0.034  0.033  
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Eq. (47):

Ф(M)=0.80, M =7.2, h=-36mm

Eq. (62):

u*=0.041 m/s, k=0.308, y0= 0.042 mm

Eq. (67):

n=8.5

Eq. (70)

Ф(M)=0.80, M =4, h=-34 mm
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As in Fig. 50 the simulations using two entropy based velocity equations are proved 

to have obvious advantages over the Prandtl-von Karman and Power law velocity 

distributions in both the upper region close to water surface and the lower part of the 

flow which is under the influence of high sediment concentration and shear stress. The 

big gap found between the simulation using Prandtl-von Karman and Power law velocity 

distributions convinced us the classical velocity distributions based on 1-D assumptions 

are not sufficient to predict the velocity distributions that the velocity does not 

monotonically increase along water depth, especially for flows with suspended 

sediments where flows close to channel bed are under high sediment concentration 

effects. Error statistics concerning different velocity distributions are tabulated in Table 

19. And the mean errors generated when using two entropy based methods did not 

exceed 0.021 and the maximum standard deviation was around 0.035, which statistically 

verified the applicability of the two entropy based in 2-D velocity distribution for both 

clear water and sediment laden flows. Though comparing the errors generated for two 

runs, higher errors were obtained for Run 20 with high sediment concentration, which 

means sediment concentration in the flow can influence the velocity distribution. So the 

further analysis is focus on the comparison between Tsallis entropy based 2-D velocity 

distribution and Chiu’s 2-D velocity distribution. 
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Fig. 51. Velocity distribution estimated using the Tsallis entropy based 2-D velocity 

distribution (U_TS) in comparison with Chiu’s 2-D velocity distribution (U_Chiu) 

against velocity samples on selected verticals at P. Nuovo gauged station on Tiber River 

during flood event that occurred in November, 1996. 

 

The two entropy based methods were applied to high flood events and unsteady flow 

cases as shown in Fig. 51 and Fig. 52. 
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Table 20 Mean, μ(ε), and standard deviation, σ(ε), of error given by Eq. (27) 

considering Tsallis entropy-based 2-D velocity equation and Chiu’s 2-D velocity 

equation.  

  
z=-16.64m z=0m z=16.64m 

μ σ μ σ μ σ 

Tsallis 0.030  0.193  -0.077  0.120  0.141  0.279  

Chiu 0.030  0.223  -0.083  0.149  0.140  0.306  

 

 

Fig. 52. Velocity distribution estimated using the Tsallis entropy based 2-D velocity 

distribution (U_TS) in comparison with Chiu’s 2-D velocity distribution (U_Chiu) 

against laboratory vertical velocity samples. (Tu 1995). 
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As shown in Fig. 51 and Fig. 52, great similarities were found between the velocity 

curves simulated in two ways giving almost the same errors as shown in Table 20. First, 

Shannon entropy is one special case of Tsallis entropy when parameter m tends to be 

unity. Second, the two methods are in nature Tsallis entropy with m as 1 and 2 

respectively; based on previous analysis on the sensitivity of parameter m of the 2-D 

velocity distribution, the velocity distribution is not sensitive to m within its possible 

range, the results displayed here in turn proved this argument again. Finally, these two 

methods were actually built up on the same curvilinear system; the initial probabilistic 

assumption and mathematical transformation were the same. Based on above, the 

regularities found using Chiu’s 2-D velocity equation were also detected in Tsallis 

entropy based 2-D velocity distribution. For channels with a large scale, like the Tiber 

River shown in Fig. 51, where the effects of channel bed and the sediment concentration 

on velocity distribution is not so obvious, the results generated in two entropy based 

ways can be very subtle; for channels with a relatively small scale, like the flume shown 

in Fig. 52, the sediment concentration and the bed effects cannot be ignored, the higher 

the effects are, the more reduction of the velocity close to channel bed can be expected. 

Consistent with previous analysis, Tsallis entropy based 2-D velocity equation with m=2, 

led to more deceleration in lower regions so is more appropriate to use. 
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5. SUMMARY AND CONCLUSIONS 

Based on the computations and investigations in the thesis, the following conclusions are 

drawn: 

1. The velocity distribution varies with m, the proper m values for the 1-D case range 

from 0-1 and 3/4 is proved to be adequate.  

2. Parameter λ1 can be considered as a new hydraulic parameter which has a linear 

relationship with maximum entropy of the system. It can reflect the effect of 

roughness and sediment concentration and flow patterns. 

3. M is an important new hydraulic parameter, it can be estimated using an analytical 

formula with the mean and maximum known, and somehow with a narrow range as 

-12-12 and easy to estimate. 

4. The velocity distribution is not very sensitive to M, so the cross-sectional mean or 

the value derived from the historical records is acceptable for engineering. 

5. For both 1-D and 2-D case the Tsallis entropy based velocity distribution as well as 

the Shannon entropy can predict the flow velocity well and has obvious advantages 

over other popular velocity distributions such as Prandtl von Karman and Power law 

velocity distributions. Since no assumption is involved in the parameter estimation, 

the derived Tsallis entropy based velocity distribution is highly unbiased, exact and 

effective. 

In general, the velocity distribution equation used in the developed technique based 

on the Tsallis entropy is capable of accurately filling the missing data that is difficult to 

measure using acoustic device near the water surface and channel bed because of some 
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technical reasons. The M value of a channel section that can be determined from the 

umax-um relationship contains information about the overall characteristics of the channel 

section. Therefore, the M value is an effective, diagnostic measure of changes in bed 

form and material, slope, shape, and alignment that may result from man’s activities, 

such as construction of dams and bridges. 
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6. FUTURE WORK 

The results of the foregoing analysis tend to project M as an important new parameter 

that characterizes the velocity distribution and related properties and processes in an 

open channel. Further investigations of M are required to determine factors affecting it 

and explore its physical meaning. Hence, it may be interesting to explore how it relates 

to open channel system and flow patterns and other factors that contribute to the velocity 

distribution.  

On the other hand, though many sets of velocity distribution data are available, they 

seldom include accurate locations and values of maximum velocities. Available 

experimental data also fail to provide velocity distributions from channels of sufficiently 

wide ranges of shape (width–to-depth ratios), roughness, and slope. Therefore, another 

main task will be to estimate the value and location of the maximum velocity accurately. 

Using the M parameter and maximum velocity known or measured, the mean velocity 

can be obtained, so discharge can be also estimated based on these results. Application 

of this new method to the discharge estimation should be explored in the near future. 
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Table A1 Velocity data for C3 series (Einstein and Chien 1955) and estimation using 

Tsallis entropy based 1-D velocity equation 

 

y 

(ft) 

u (Observed) 

(ft/s) 

u (TS) 

(ft/s) ε 

0.00  0.000 0.000 0.000 

0.01  3.182 2.810 -0.117 

0.01  3.234 3.020 -0.066 

0.01  3.530 3.282 -0.070 

0.01  3.767 3.570 -0.052 

0.01  3.960 3.800 -0.041 

0.02  4.150 4.080 -0.017 

0.02  4.283 4.307 0.006 

0.02  4.558 4.545 -0.003 

0.03  4.730 4.740 0.002 

0.03  4.954 4.825 -0.026 

0.03  4.859 4.940 0.017 

0.04  5.083 5.102 0.004 

0.04  5.194 5.263 0.013 

0.05  5.375 5.400 0.005 

0.06  5.504 5.532 0.005 

0.06  5.676 5.647 -0.005 

0.07  5.771 5.757 -0.002 

0.08  5.835 5.855 0.003 

0.09  5.964 5.960 -0.001 

0.10  6.106 6.049 -0.009 

0.12  6.287 6.198 -0.014 

Note: u (Observed) denotes velocity observations; u (TS) denotes velocity estimation 

based on Tsallis entropy based velocity model.  

ε= relative error = (u (TS) - u (Observed))/ u (Observed).  
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Table A2 Velocity data for S4 series (Einstein and Chien 1955) and estimation using 

Tsallis entropy based 1-D velocity equation 

 

y 

(ft) 

u(Observed) 

(ft/s) 

u (TS) 

(ft/s) ε 

0.00 0.000 0.000 0.000 

0.01 2.221 1.314 -0.408 

0.01 2.497 1.736 -0.305 

0.01 2.720 2.038 -0.251 

0.01 2.858 2.176 -0.239 

0.01 2.964 2.565 -0.135 

0.02 3.329 2.797 -0.160 

0.02 3.573 3.107 -0.130 

0.02 3.898 3.558 -0.087 

0.03 4.519 4.296 -0.049 

0.04 4.831 4.597 -0.049 

0.04 5.075 4.868 -0.041 

0.05 5.298 5.102 -0.037 

0.05 5.522 5.315 -0.037 

0.06 5.806 5.695 -0.019 

0.07 6.090 6.017 -0.012 

0.08 6.293 6.291 0.000 

0.09 6.516 6.541 0.004 

0.10 6.699 6.754 0.008 

0.12 7.113 7.125 0.002 
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Table A3 Velocity data for S5 series (Einstein and Chien 1955) and estimation using 

Tsallis entropy based 1-D velocity equation 

 

y 

(ft) 

u(Observed) 

(ft/s) 

u (TS) 

(ft/s) ε 

0.00 0.000 0.000 0.000 

0.01 2.370 1.297 -0.453 

0.01 2.404 1.569 -0.347 

0.01 2.628 1.909 -0.273 

0.01 2.804 2.225 -0.206 

0.01 3.094 2.518 -0.186 

0.02 3.594 3.170 -0.118 

0.02 4.070 3.730 -0.083 

0.03 4.522 4.223 -0.066 

0.03 4.950 4.655 -0.060 

0.04 5.355 5.049 -0.057 

0.04 5.674 5.391 -0.050 

0.05 6.007 5.702 -0.051 

0.05 6.283 5.997 -0.045 

0.06 6.759 6.501 -0.038 

0.07 7.116 6.950 -0.023 

0.08 7.449 7.328 -0.016 

0.09 7.759 7.675 -0.011 

0.10 7.925 7.823 -0.013 

0.10 8.044 7.975 -0.009 

0.11 8.354 8.254 -0.012 

0.12 8.796 8.508 -0.033 
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Table A4 Iran velocity data 1 (Afzalmeh, 2008) and estimation using Tsallis entropy 

based 1D velocity equation 

 

y 

(m) 

u(Observed) 

(m/s) 

u (TS) 

(m/s) ε 

0.05 0.200 0.210 0.052 

0.06 0.229 0.234 0.019 

0.07 0.277 0.254 -0.083 

0.08 0.288 0.272 -0.055 

0.09 0.299 0.289 -0.035 

0.11 0.314 0.317 0.009 

0.13 0.347 0.340 -0.020 

0.16 0.366 0.369 0.010 

0.20 0.369 0.400 0.083 

0.24 0.424 0.424 0.000 

0.29 0.410 0.449 0.097 

0.34 0.447 0.470 0.052 

0.40 0.458 0.490 0.070 

0.47 0.483 0.509 0.053 

0.55 0.506 0.527 0.043 

0.59 0.535 0.535 0.000 
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Table A5 Iran velocity data 2 (Afzalmehr 2008) and estimation using Tsallis entropy 

based 1D velocity equation 

 

y 

(m) 

u(Observed) 

(m/s) 

u (TS) 

(m/s) ε 

0.01 0.512 0.390 -0.238 

0.03 0.540 0.632 0.170 

0.05 0.642 0.739 0.150 

0.06 0.721 0.775 0.075 

0.07 0.735 0.804 0.094 

0.08 0.692 0.829 0.197 

0.09 0.746 0.850 0.139 

0.10 0.792 0.868 0.096 

0.11 0.807 0.884 0.096 

0.13 0.882 0.912 0.034 

0.15 0.885 0.934 0.055 

0.17 0.946 0.953 0.008 

0.20 0.960 0.977 0.017 

0.23 0.989 0.996 0.007 

0.26 1.003 1.012 0.009 

0.29 1.017 1.026 0.009 

0.32 1.039 1.039 0.000 

0.34 1.046 1.046 0.000 
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Table A6 Velocity observations for Run 01 (Coleman 1986) and estimation using 

Tsallis entropy based 1-D velocity equation 

y 

(mm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

6 0.709 0.613 -0.135 

12 0.773 0.742 -0.040 

18 0.823 0.810 -0.016 

24 0.849 0.853 0.005 

30 0.884 0.885 0.001 

46 0.927 0.940 0.014 

69 0.981 0.986 0.005 

91 1.026 1.014 -0.012 

122 1.054 1.041 -0.012 

137 1.053 1.051 -0.002 

153 1.048 1.061 0.012 

162 1.039 1.065 0.025 

 

Table A7 Velocity observations for Run 09 (Coleman 1986) and estimation using 

Tsallis entropy based 1-D velocity equation 

y 

(mm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

6 0.621 0.537 -0.136 

12 0.683 0.676 -0.010 

18 0.751 0.751 0.000 

24 0.804 0.800 -0.004 

30 0.842 0.836 -0.007 

46 0.897 0.899 0.003 

69 0.945 0.952 0.008 

91 1.028 0.985 -0.042 

122 1.048 1.016 -0.030 

137 1.05 1.028 -0.021 

153 1.04 1.039 -0.001 

162 1.032 1.044 0.012 
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Table A8 Velocity observations for Run 20 (Coleman 1986) and estimation using 

Tsallis entropy based 1-D velocity equation 

y 

(mm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

6 0.57 0.438 -0.232 

12 0.648 0.595 -0.082 

18 0.743 0.685 -0.078 

24 0.791 0.746 -0.056 

30 0.848 0.792 -0.066 

46 0.922 0.873 -0.054 

69 0.986 0.942 -0.045 

91 1.043 0.985 -0.056 

122 1.07 1.027 -0.040 

137 1.068 1.042 -0.024 

153 1.057 1.057 0.000 

162 1.048 1.064 0.015 

 

Table A9 Velocity observations for Run 29 (Coleman 1986) and estimation using 

Tsallis entropy based 1-D velocity equation 

y 

(mm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

6 0.648 0.563 -0.131 

12 0.701 0.706 0.007 

18 0.776 0.783 0.008 

24 0.823 0.833 0.012 

30 0.853 0.869 0.019 

46 0.930 0.933 0.003 

69 0.991 0.987 -0.004 

91 1.055 1.020 -0.033 

122 1.084 1.052 -0.029 

137 1.082 1.064 -0.017 

153 1.066 1.075 0.008 

162 1.064 1.081 0.016 
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Table A10 Velocity observations for unsteady flows t=21s (Tu and Graf 1992) and 

estimation using Tsallis entropy based 1-D velocity equation 

 

y 

(cm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

1.22 0.339 0.326 -0.039 

1.34 0.408 0.345 -0.155 

1.71 0.421 0.394 -0.064 

2.04 0.443 0.431 -0.026 

2.44 0.471 0.470 -0.002 

2.98 0.500 0.513 0.027 

3.66 0.529 0.558 0.055 

4.06 0.543 0.581 0.069 

4.48 0.579 0.601 0.039 

6.23 0.671 0.671 0.000 

7.59 0.700 0.710 0.015 

8.41 0.730 0.730 0.001 

9.36 0.779 0.751 -0.036 

10.49 0.781 0.772 -0.011 

10.98 0.800 0.781 -0.024 

12.20 0.580 0.800 0.380 
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Table A11 Velocity observations for unsteady flows t=41s (Tu and Graf 1992) and 

estimation using Tsallis entropy based 1-D velocity equation 

 

y 

(cm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

1.57 0.536 0.529 -0.013 

1.21 0.557 0.463 -0.169 

2.01 0.614 0.593 -0.033 

2.67 0.650 0.667 0.027 

3.14 0.657 0.709 0.078 

3.62 0.720 0.745 0.035 

4.02 0.700 0.771 0.102 

4.68 0.800 0.809 0.011 

5.81 0.800 0.860 0.076 

6.69 0.864 0.893 0.034 

7.60 0.914 0.922 0.008 

8.48 0.910 0.946 0.039 

9.83 1.000 0.977 -0.023 

10.71 0.980 0.995 0.015 

11.62 1.020 1.012 -0.008 

12.50 1.050 1.026 -0.023 

13.41 1.056 1.040 -0.015 

14.29 1.100 1.052 -0.044 

15.42 1.079 1.066 -0.012 

16.52 1.114 1.079 -0.031 

16.96 1.071 1.084 0.012 

20.10 0.866 1.114 0.286 
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Table A12 Velocity observations for unsteady flows t=61s (Tu and Graf 1992) and 

estimation using Tsallis entropy based 1-D velocity equation 

 

y 

(cm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

1.39 0.486 0.535 0.100 

1.84 0.520 0.601 0.156 

2.30 0.629 0.652 0.037 

2.75 0.671 0.694 0.034 

3.23 0.700 0.729 0.041 

4.14 0.710 0.783 0.102 

5.53 0.815 0.842 0.033 

6.44 0.840 0.871 0.037 

7.37 0.864 0.897 0.038 

8.74 0.943 0.928 -0.016 

9.67 0.950 0.946 -0.005 

10.58 1.010 0.961 -0.049 

11.51 1.036 0.975 -0.059 

12.42 1.014 0.987 -0.026 

13.33 1.046 0.999 -0.045 

15.17 1.064 1.019 -0.042 

16.08 1.050 1.028 -0.021 

17.60 1.048 1.041 -0.007 

20.70 0.855 1.064 0.244 
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Table A13 Velocity observations for unsteady flows t=81s (Tu and Graf 1992) and 

estimation using Tsallis entropy based 1-D velocity equation 

 

y 

(cm)  

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

1.25 0.457 0.445 -0.026 

1.66 0.493 0.506 0.027 

2.08 0.557 0.554 -0.006 

2.49 0.600 0.592 -0.013 

2.92 0.614 0.626 0.020 

3.33 0.650 0.653 0.005 

4.11 0.671 0.696 0.037 

5.61 0.736 0.756 0.027 

7.48 0.814 0.808 -0.008 

8.30 0.845 0.826 -0.023 

9.56 0.900 0.849 -0.056 

10.40 0.857 0.863 0.007 

11.59 0.886 0.880 -0.007 

12.47 0.929 0.891 -0.040 

13.30 0.943 0.901 -0.044 

14.14 0.950 0.910 -0.042 

15.33 0.943 0.922 -0.022 

16.21 0.950 0.930 -0.021 

16.83 0.940 0.935 -0.005 

18.70 0.776 0.950 0.225 
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Table A14 Velocity observations for unsteady flows t=101s (Tu and Graf 1992) and 

estimation using Tsallis entropy based 1-D velocity equation 

 

y 

(cm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

0.00  0.378 0.308 -0.185 

0.03  0.400 0.377 -0.058 

0.04  0.429 0.420 -0.022 

0.06  0.514 0.483 -0.060 

0.08  0.500 0.528 0.057 

0.09  0.543 0.556 0.024 

0.11  0.550 0.587 0.067 

0.09  0.579 0.561 -0.031 

0.13  0.600 0.623 0.039 

0.16  0.657 0.656 -0.002 

0.18  0.648 0.673 0.038 

0.20  0.714 0.693 -0.030 

0.23  0.715 0.711 -0.006 

0.25  0.750 0.726 -0.032 

0.27  0.764 0.735 -0.038 

0.30  0.779 0.751 -0.035 

0.32  0.781 0.761 -0.026 

0.34  0.748 0.767 0.026 

0.38  0.614 0.781 0.272 
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Table A15 Velocity observations for P.Nuovo Vertical No.1 (Moramarco 2008) and 

estimation using Tsallis entropy based 2-D velocity equation 

 

y 

(m) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

0 0 0.000 0.000 

0.15 1.365 0.834 -0.389 

0.39 1.777 1.332 -0.251 

1.09 1.967 2.023 0.028 

2.09 2.323 2.395 0.031 

3.09 2.481 2.480 0.000 

4.06 2.344 2.428 0.036 

5.03 2.323 2.307 -0.007 

5.73 2.148 2.195 0.022 

6.03 1.982 2.143 0.081 

6.09 1.982 2.133 0.076 

 

Table A16 Velocity observations for P.Nuovo Vertical No.2 (Moramarco 2008) and 

estimation using Tsallis entropy based 2-D velocity equation 

 

y 

(m) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

0 0.000 0.000 0.000 

0.15 1.473 0.912 -0.381 

0.37 1.923 1.418 -0.262 

1.1 2.323 2.215 -0.046 

2.13 2.607 2.629 0.008 

3.13 2.719 2.720 0.000 

4.07 2.662 2.669 0.003 

5.04 2.607 2.542 -0.025 

5.71 2.581 2.429 -0.059 

6.01 2.662 2.374 -0.108 

6.07 2.662 2.363 -0.112 
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Table A17 Velocity observations for Run 16 (Coleman 1986) and estimation using 

Tsallis entropy based 2-D velocity equation 

y 

(mm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

6 0.583 0.646 0.107 

12 0.661 0.718 0.087 

18 0.744 0.776 0.042 

24 0.804 0.822 0.023 

36 0.854 0.895 0.048 

46 0.922 0.941 0.020 

69 0.978 1.011 0.034 

91 1.051 1.049 -0.002 

122 1.074 1.072 -0.002 

137 1.070 1.074 0.004 

152 1.057 1.072 0.014 

162 1.046 1.068 0.021 

Table A18 Velocity observations for vertical located at z=16.64 m at P. Nuovo gauged 

section during flood event that occurred in November, 1996 and estimation using Tsallis 

entropy based 2-D velocity equation  

y 

(m) 

u (Observed) 

(m/s) 

u (TS with M=5.041) 

(m/s) 

u (TS with M=5.697) 

(m/s) 

6.58 1.561 1.853 1.862 

6.52 1.561 1.858 1.866 

6.32 1.444 1.873 1.881 

5.55 1.812 1.927 1.930 

4.59 1.912 1.971 1.971 

3.61 1.979 1.976 1.976 

2.61 1.845 1.913 1.918 

1.91 1.595 1.802 1.814 

1.59 1.695 1.723 1.741 

1.09 1.261 1.547 1.578 

0.39 1.294 1.095 1.162 

0.15 0.973 0.795 0.894 
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Table A19 Velocity observations for y axis at P. Nuovo gauged section during flood 

event that occurred in November, 1996 and estimation using Tsallis entropy based 2-D 

velocity equation 

 

y 

(m) 

u (Observed) 

(m/s) 

u (TS with M=5.041) 

(m/s) 

u (TS with M=6.923) 

(m/s) 

6.64 2.530 2.437 2.466 

6.58 2.530 2.444 2.471 

6.38 2.530 2.464 2.487 

5.61 2.497 2.532 2.543 

4.65 2.597 2.588 2.590 

3.67 2.547 2.595 2.596 

2.70 2.563 2.519 2.533 

1.70 2.530 2.293 2.347 

0.65 1.829 1.707 1.874 

0.35 1.227 1.378 1.619 

0.15 1.277 1.039 1.374 

 

Table A20 Velocity observations for vertical located at z=-20.8 m at P. Nuovo gauged 

section during flood event that occurred in November, 1996 and estimation using Tsallis 

entropy based 2-D velocity equation  

y 

(m) 

u (Observed) 

(m/s) 

u (TS with M=5.041) 

(m/s) 

u (TS with M=6.923) 

(m/s) 

6.01 0.990 1.569 1.545 

5.95 0.990 1.574 1.551 

5.75 1.294 1.591 1.571 

4.95 1.227 1.651 1.641 

3.95 1.712 1.701 1.700 

2.95 1.695 1.702 1.701 

1.95 1.561 1.614 1.598 

0.95 1.143 1.343 1.280 

0.35 1.007 0.961 0.828 

0.15 0.718 0.721 0.539 
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Table A21 Pairs of mean and maximum velocities collected at S. Lucia gauged section 

during 20 years 

 

um umax um umax 

(m/s) (m/s) (m/s) (m/s) 

0.047 0.088 0.154 0.268 

0.182 0.269 0.697 1.227 

0.948 1.208 1.604 2.555 

1.072 1.467 0.870 1.403 

1.135 1.773 1.543 2.436 

1.179 1.631 1.945 3.094 

1.478 2.760 2.109 3.062 

1.648 2.243 0.305 0.496 

0.067 0.129 0.147 0.234 

0.324 0.495 0.996 1.603 

0.401 0.644 1.062 1.678 

0.736 1.155 1.816 2.816 

1.497 2.194 1.882 2.781 

1.873 2.437 1.803 2.781 

0.052 0.107 0.570 0.888 

0.315 0.482 0.153 0.270 

0.497 0.735 1.040 1.511 

0.672 1.022 0.262 0.453 

1.151 1.678 1.984 2.948 

0.123 0.209 2.020 2.989 

1.736 2.625 1.819 2.781 

1.910 2.778 1.707 2.580 

0.541 0.781 0.152 0.228 

0.926 1.462 1.836 2.739 

1.397 2.182 1.750 2.581 

0.052 0.095 0.979 1.453 
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Table A22 Pairs of mean and maximum velocities collected at P.Felcino gauged section 

during 20 years 

 

um umax um umax 

(m/s) (m/s) (m/s) (m/s) 

0.186 0.274 1.190 1.810 

0.492 0.771 1.373 2.079 

0.471 0.794 1.874 2.680 

1.110 1.678 0.957 1.461 

0.409 0.594 1.687 2.637 

0.820 1.130 1.858 2.906 

0.041 0.082 1.900 2.580 

0.111 0.146 0.885 1.340 

1.292 1.902 1.060 1.394 

1.802 2.608 1.594 2.405 

2.296 3.362 2.163 3.320 

0.604 0.868 2.074 3.181 

0.777 1.122 1.815 2.660 

1.734 2.547 2.120 3.365 

2.025 2.924 0.123 0.206 

2.154 3.118 2.097 3.410 

1.026 1.421 0.726 1.102 

0.023 0.061 1.449 2.164 
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Table A23 Pairs of mean and maximum velocities collected at P.Nuovo gauged section 

during 20 years 

um umax um umax 

(m/s) (m/s) (m/s) (m/s) 

0.620 0.978 1.255 2.029 

1.373 2.243 0.710 1.050 

1.593 2.384 1.640 2.280 

1.085 2.023 1.634 2.387 

0.262 0.420 1.847 2.699 

1.186 1.803 1.825 2.778 

1.464 2.097 1.463 2.097 

0.471 0.694 1.669 2.405 

1.833 2.972 0.566 0.884 

1.487 2.194 1.257 1.954 

0.448 0.690 1.276 1.904 

0.923 1.288 0.825 1.202 

1.406 2.048 0.828 1.221 

0.442 0.673 0.207 0.387 

1.136 1.578 0.854 1.261 

0.117 0.209 0.232 0.349 

1.324 2.024 1.339 2.054 

1.331 2.048 0.249 0.357 

1.946 2.972 1.736 2.597 

1.966 2.924 1.798 2.480 

1.712 2.521 1.330 1.925 

0.615 0.965 1.820 2.719 

1.791 2.827 1.151 1.779 

0.201 0.346 1.211 1.777 

1.627 2.480 0.507 0.736 

1.623 2.730 0.146 0.221 

1.157 1.954 1.173 1.777 

1.106 1.850 1.391 2.169 

1.148 2.060     
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Table A24 Velocity observations for vertical located at z=-14.66 m at P.Felcino gauged 

section during flood event that occurred in November, 1996 and estimation using Tsallis 

entropy based 2-D velocity equation  

 

y 

(m) 

u (Observed) 

(m/s) 

U _Mm 

(m/s) 

U_Mh 

(m/s) 

U_Mi 

(m/s) 

4.15 1.210 1.483 1.471 1.464 

4.09 1.210 1.488 1.477 1.470 

3.95 1.210 1.500 1.491 1.485 

3.15 1.450 1.549 1.548 1.547 

2.15 1.560 1.546 1.544 1.543 

1.15 1.290 1.390 1.365 1.348 

0.35 0.830 0.970 0.878 0.820 

0.15 0.710 0.735 0.599 0.520 

 

Table A25 Velocity observations for y axis at P.Felcino gauged section during flood 

event that occurred in November, 1996 and estimation using Tsallis entropy based 2-D 

velocity equation  

 

y 

(m) 

u (Observed) 

(m/s) 

U _Mm 

(m/s) 

U_Mh 

(m/s) 

U_Mi 

(m/s) 

6.15 3.360 3.298 3.289 3.305 

6.09 3.360 3.302 3.294 3.309 

5.95 3.160 3.312 3.305 3.317 

5.15 3.200 3.352 3.351 3.353 

4.15 3.280 3.351 3.350 3.352 

3.15 3.100 3.264 3.250 3.275 

2.15 2.780 3.039 2.991 3.075 

1.15 2.320 2.561 2.439 2.652 

0.35 2.030 1.735 1.472 1.941 

0.15 1.860 1.338 0.990 1.618 
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Table A26 Velocity observations for vertical located at z=7.34 m at P.Felcino gauged 

section during flood event that occurred in November, 1996 and estimation using Tsallis 

entropy based 2-D velocity equation 

 

y 

(m) 

u (Observed) 

(m/s) 

U _Mm 

(m/s) 

U_Mh 

(m/s) 

U_Mi 

(m/s) 

5.85 2.360 2.683 2.675 2.687 

5.79 2.360 2.687 2.679 2.691 

5.65 2.610 2.696 2.690 2.699 

4.85 2.700 2.733 2.732 2.733 

3.85 2.740 2.732 2.730 2.732 

2.92 2.610 2.659 2.646 2.664 

1.97 2.530 2.466 2.426 2.484 

0.97 2.000 2.022 1.912 2.071 

0.47 1.300 1.594 1.413 1.677 

0.15 1.190 1.112 0.833 1.245 

 

Table A27 Velocity observations for vertical located at z=25 m at Pontelagoscuro 

gauged section on Po River during the flood event that occurred in March, 1991 and 

estimation using Tsallis entropy based 2-D velocity equation 

 

y 

(m) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

8.00 1.803 1.800 -0.002 

7.70 1.790 1.802 0.007 

7.20 1.756 1.803 0.027 

6.20 1.685 1.794 0.064 

5.20 1.697 1.765 0.040 

4.20 1.693 1.711 0.010 

3.20 1.689 1.620 -0.041 

2.20 1.533 1.475 -0.038 

1.20 1.335 1.236 -0.074 

0.20 0.513 0.755 0.471 
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Table A28 Velocity observations for vertical located at z=-27 m at Pontelagoscuro 

gauged section on Po River during the flood event that occurred in March, 1991 and 

estimation using Tsallis entropy based 2-D velocity equation 

 

y 

(m) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) ε 

8.10 1.486 1.483 -0.002 

7.80 1.432 1.485 0.037 

7.30 1.411 1.486 0.053 

6.30 1.347 1.478 0.098 

5.30 1.486 1.456 -0.020 

4.30 1.423 1.412 -0.007 

3.30 1.364 1.340 -0.017 

2.30 1.402 1.226 -0.126 

1.30 1.090 1.040 -0.046 

0.30 0.433 0.682 0.575 

0.00 0.000 0.000 0.000 

 

Table A29 Uniform rectangular flume data (Guy 1966) and estimation using Tsallis 

entropy based 2-D velocity equation and Chiu’s 2-D velocity equation 

 

y 

(ft) 

u (Observed) 

(ft/s) 

u (TS) 

(ft/s) 

u (Chiu) 

(ft/s) ε 

0.03 2.130 2.171 2.170 0.019 

0.06 2.940 2.879 2.725 -0.021 

0.08 2.960 3.213 3.037 0.085 

0.10 3.280 3.448 3.279 0.051 

0.16 3.700 3.809 3.694 0.030 

0.26 3.990 4.082 4.051 0.023 

0.36 4.060 4.140 4.140 0.020 

0.46 4.140 4.090 4.083 -0.012 

0.56 3.960 3.983 3.952 0.006 
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Table A30 Nonuniform rectangular flume data (Guo 1990) and estimation using Tsallis 

entropy based 2-D velocity equation and Chiu’s 2-D velocity equation 

y 

(cm) 

u (Observed) 

(cm/s) 

u (TS) 

(cm/s) 

u (Chiu) 

(cm/s) ε 

0.13 14.150 22.300 22.272 0.576 

0.16 22.330 24.108 23.579 0.080 

0.25 26.600 27.864 26.736 0.048 

0.34 29.940 30.300 29.131 0.012 

0.44 32.460 32.039 31.021 -0.013 

0.66 35.020 34.655 34.134 -0.010 

0.84 35.900 36.002 35.832 0.003 

1.06 36.760 36.983 37.058 0.006 

1.34 37.510 37.661 37.804 0.004 

1.66 37.640 37.923 37.887 0.008 

1.97 37.550 37.840 37.442 0.008 

2.25 37.510 37.556 36.736 0.001 

 

Table A31 Velocity observations for Run 21 (Coleman 1986) and estimation using 

Tsallis entropy based 2-D velocity equation and Prandtl-von Karman velocity law 

y 

(mm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) 

u (Prandtl) 

(m/s) ε 

6 0.709 0.699 0.644 -0.014 

12 0.773 0.757 0.736 -0.021 

18 0.823 0.804 0.790 -0.023 

24 0.849 0.843 0.828 -0.007 

30 0.884 0.876 0.857 -0.009 

46 0.927 0.942 0.914 0.017 

69 0.981 1.002 0.967 0.022 

91 1.026 1.034 1.004 0.008 

122 1.054 1.053 1.043 -0.001 

137 1.053 1.054 1.058 0.001 

153 1.048 1.051 1.073 0.003 

162 1.039 1.048 1.080 0.009 
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Table A32 Velocity observations for Run 20 (Coleman 1986) and estimation using 

Tsallis entropy based 2-D velocity equation and Prandtl-von Karman velocity law 

 

y 

(mm) 

u (Observed) 

(m/s) 

u (TS) 

(m/s) 

u (Prandtl) 

(m/s) ε 

6 0.57 0.615 0.661 0.079 

12 0.648 0.695 0.753 0.072 

18 0.743 0.757 0.807 0.019 

24 0.791 0.807 0.845 0.021 

30 0.848 0.849 0.875 0.001 

46 0.922 0.933 0.932 0.012 

69 0.986 1.007 0.986 0.021 

91 1.043 1.046 1.022 0.003 

122 1.07 1.068 1.061 -0.001 

137 1.068 1.070 1.077 0.002 

153 1.057 1.067 1.092 0.009 

162 1.048 1.063 1.099 0.014 
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Table A33 Velocity observations for vertical z=-16.64 m at P. Nuovo gauged station 

and estimation using Tsallis entropy based 2-D velocity equation and Chiu’s 2-D 

velocity equation 

 

y u (Observed) u (TS) u(Chiu) 
ε 

(m) (m/s) (m/s) (m/s) 

6.58 1.56 1.832  1.853  0.174  

6.52 1.56 1.838  1.858  0.177  

6.32 1.44 1.856  1.874  0.285  

5.55 1.81 1.918  1.927  0.058  

4.59 1.91 1.969  1.971  0.030  

3.61 1.98 1.975  1.976  -0.002  

2.61 1.85 1.902  1.914  0.031  

1.91 1.60 1.773  1.800  0.112  

1.59 1.70 1.681  1.715  -0.008  

1.09 1.26 1.476  1.515  0.170  

0.39 1.29 0.944  0.925  -0.270  

0.15 0.97 0.584  0.485  -0.400  

0 0.00 0.000  0.000  0.000  
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Table A34 Velocity observations for vertical z=0 m at P. Nuovo gauged station and 

estimation using Tsallis entropy based 2-D velocity equation and Chiu’s 2-D velocity 

equation 

 

y u (Observed) u (TS) u(Chiu) 
ε 

m (m/s) (m/s) (m/s) 

6.64 2.53 2.411  2.437  -0.047  

6.58 2.53 2.418  2.443  -0.044  

6.38 2.53 2.441  2.464  -0.035  

5.61 2.50 2.521  2.533  0.009  

4.65 2.60 2.586  2.588  -0.004  

3.67 2.55 2.594  2.595  0.018  

2.7 2.56 2.506  2.520  -0.022  

1.7 2.53 2.243  2.285  -0.113  

0.65 1.83 1.558  1.584  -0.148  

0.35 1.23 1.169  1.129  -0.047  

0.15 1.28 0.761  0.630  -0.404  

0 0.00 0.000  0.000  0.000  
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Table A35 Velocity observations for vertical z=0 m at P. Nuovo gauged station and 

estimation using Tsallis entropy based 2-D velocity equation and Chiu’s 2-D velocity 

equation 

y u (Observed) u (TS) u(Chiu) 
ε 

(m) (m/s) (m/s) (m/s) 

6.01 0.99 1.546  1.568  0.562  

5.95 0.99 1.552  1.573  0.568  

5.75 1.29 1.572  1.591  0.215  

4.95 1.23 1.642  1.652  0.338  

3.95 1.71 1.700  1.702  -0.007  

2.95 1.70 1.701  1.703  0.004  

1.95 1.56 1.599  1.614  0.024  

0.95 1.14 1.283  1.317  0.122  

0.35 1.01 0.834  0.821  -0.172  

0.15 0.72 0.547  0.470  -0.238  

0 0.00 0.000  0.000  0.000  

Table A36 Velocity observations for unsteady flows at t=120s (Tu 1995) and estimation 

using Tsallis entropy based 2-D velocity equation and Chiu’s 2-D velocity equation 

y 

(cm) 

u (Observed) 

(cm/s) 

u (TS) 

(cm/s) 

u (Chiu) 

(cm/s) ε 

1.00 53.300 49.844 53.200 -0.065 

1.50 55.500 54.397 56.456 -0.020 

2.00 58.000 57.057 58.112 -0.016 

2.50 59.100 58.485 58.885 -0.010 

3.00 58.000 59.055 59.100 0.018 

3.50 59.000 59.009 58.928 0.000 

4.00 57.000 58.512 58.474 0.027 

4.50 57.800 57.684 57.805 -0.002 

5.00 56.000 56.615 56.966 0.011 

5.50 55.000 55.372 55.991 0.007 

6.00 54.000 54.009 54.904 0.000 

6.50 54.200 52.567 53.724 -0.030 
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Table A37 D estimated by Eq. (68) in comparison with actual values 

 

D(computed) D(Actual) ε 

0.285 0.392 -0.273 

0.274 0.381 -0.281 

0.231 0.378 -0.389 

0.241 0.364 -0.338 

0.356 0.470 -0.242 

0.343 0.470 -0.270 

0.298 0.455 -0.345 

0.397 0.447 -0.113 

0.343 0.432 -0.205 

0.263 0.397 -0.337 

0.496 0.582 -0.148 

0.382 0.399 -0.043 

 

Note:ε=(D(computed)-D(Actual))/(D(Actual)) 
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