

REAL-TIME NETWORKED CONTROL WITH MULTIPLE CLIENTS

A Thesis

by

MINHYUNG LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2009

Major Subject: Mechanical Engineering

REAL-TIME NETWORKED CONTROL WITH MULTIPLE CLIENTS

A Thesis

by

MINHYUNG LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Kim, Won-jong
Committee Members, Langari, Reza
 Datta, Aniruddha
Head of Department, O’Neal, Dennis

August 2009

Major Subject: Mechanical Engineering

 iii

ABSTRACT

Real-Time Networked Control With Multiple Clients.

(August 2009)

Minhyung Lee, B.S., Korean Military Academy, South Korea

Chair of Advisory Committee: Dr. Won-jong Kim

In this thesis closed-loop control strategies over a communication network with

multiple clients are developed. To accomplish this objective, a steel-ball magnetic-

levitation system, a DC motor speed-control system, and an autonomous wheelchair

robot referred to as Clients 1, 2, and 3, respectively were used as Networked-Based-

control (NCS) test beds to validate the proposed strategies. For real-time operation,

Linux with Real-Time Application Interface (RTAI) and Control and Measurement

Interface (Comedi) were used as the operating system for Clients 1 and 2. Client 3’s

software was written in Microsoft Visual Basic 6.0 on the Windows XP operating

system (OS). User datagram protocol (UDP) was used as the communication network

protocol in this research due to its better real-time performance instead of transmission

control protocol (TCP). Although UDP has no guarantee for transferring data, it has

smaller overheads and less time delay than TCP.

Since the robotic wheelchair and the server are run on different OSs, Samba was

used to put both systems into the same LAN with a fast data-transmission speed. Using

 iv

Samba, the round-trip communication time between the robotic wheelchair and the

server is only 11.2 ms whereas 30.8 ms is taken without using Samba.

When the server receives the sensor data from multiple clients at the same time,

the NCS stability may be deteriorated due to the limitation of the system bandwidth. The

NCS stability is affected by the sampling period of the system, and the reduction of the

sampling period improves the control loop’s performance. However, a shorter sampling

period requires more network bandwidth to transmit more sensor data or control data,

which increases the network traffic load.

Using the PING test, the transmission time for each control loop was measured.

The processing time for each system was also measured by a time-stamp function, and

the operation time for each control loop was obtained. In order to maintain the NCS

stable, several combinations of the sampling periods for each client are suggested and

verified. The bandwidth utilization of Client 1 is set to be 43.5% and the range of the

bandwidth utilization of Client 2 with guaranteed stability was found to be between

9.1% and 45.3%. Thus, the bandwidth utilization of Client 3 is from 11.8% to 46.8%.

The multiple-client NCS test bed could maintain its stability within these ranges of the

bandwidth utilizations of all clients.

 v

To my parents

and

wife Hyekyung Yu

 vi

ACKNOWLEDGMENTS

 I would like to express my sincere gratitude to my advisor Dr. Won-jong Kim

for his time and effort throughout my study at Texas A&M University; without his

guidance this thesis would not have been completed.

I wish to thank Drs. Langari and Datta for serving as my advisory committee

members. I sincerely appreciate their valuable guidance.

I would like to thank Stephen C. Paschall, II and Pin-chun Hsieh for developing

the ball levitation system and the autonomous wheelchair robot that were used as test

beds for the experiments. Ajit Ambike and Kun Ji developed the real-time operating

environment, which was crucial in this research. I would also like to give my special

thanks to Youngchul Na and NaveenKumar Bibinagar for their help in setting up the

real-time operating environment on lab computers and the DC motor speed control

system.

Finally, many thanks to my parents for their immeasurable support through my

life and to my wife for her patience and love. Without their unconditional love,

encouragement, and support, I could have never come so far.

 vii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

CHAPTER

 I INTRODUCTION .. 1

 1.1. Modes of Control on the Network ... 1
 1.2. Objectives .. 4
 1.3. Contributions ... 5
 1.4. Thesis Organization ... 6

 II LITERATURE REVIEW ... 8

 2.1. Modes of Control on the Network ... 8
 2.1.1. Teleoperation .. 8
 2.1.2. Supervisory Control ... 12
 2.1.3. Closed-Loop Control over Networks 15
 2.2. Scheduling for NCSs ... 17

 III TEST-BED SETUP AND ITS CONTROL ... 18

 3.1. Client 1 – Ball-Maglev System ... 19
 3.2. Client 2 – DC Motor Speed Control System 22
 3.3. Client 3 – Autonomous Wheelchair Robot 24

 IV SOFTWARE DESIGN ... 28

 4.1. Computing Environment ... 28

 viii

CHAPTER Page

 4.1.1. Needs for Real-Time Operating System 28
 4.1.2. Operating System Environment 30
 4.1.3. Communication Network Protocols 31
 4.1.4. Integrating the Windows-based Robotic Wheelchair to
 the Linux Server Using Samba 32

 4.2. Development of Software Architecture 35
 4.2.1. Identification of Clients .. 35

 4.2.2. UDP Packet Composition ... 37
 4.2.3. Network Interface for Client 3 38

 V OPERATION AND TESTING .. 46

 5.1. The Operation Time for Each Control Loop 46

 5.1.1. Client 1 ... 49
 5.1.2. Client 2 ... 50

 5.1.3. Client 3 ... 52
 5.1.4. Overall Operation Time for Each System 57

 5.2. Operation for Each Client ... 58
 5.2.1. Client 1 ... 58
 5.2.2. Client 2 ... 60
 5.2.3. Client 3 ... 62

 5.3. Suggestion for Possible Combinations of the Sampling
 Period .. 66

 VI CONCLUSIONS AND SUGGESTED FUTURE WORK 72

 6.1. Conclusions ... 72
 6.2. Suggested Future Works ... 74

REFERENCES .. 75

APPENDIX .. 80

VITA ... 93

 ix

LIST OF FIGURES

FIGURE Page

 1-1 Block diagram of a teleoperaton system .. 2

 1-2 Block diagram of a supervisory control system ... 3

 1-3 Block diagram of a networked feedback control system 3

 1-4 Block diagram of the multiple-client NCS ... 4

 2-1 Brokk - teleoperated robot for demolition [5] .. 9

 2-2 Internet-based multiple-telerobot system architecture [8].......................... 11

 2-3 Overall system architecture of automated telemanufacturing system [9] .. 12

 2-4 Hardware architecture for the supervisory control of the ball-maglev
 system over the Internet [14] .. 14

 2-5 Distributed wireless control system configuration using Bluetooth [15] ... 15

 3-1 Overall system architecture of the multiple-client NCS 18

 3-2 Ball-maglev system used as Client 1 .. 19

 3-3 The schematic diagram of the maglev system [21] 20

 3-4 Block diagram for the feedback control of the ball-maglev system [21] ... 21

 3-5 Block diagram for DC motor speed control ... 23

 3-6 The electric circuit of the armature and the free-body diagram of the rotor
 [24] ... 23

 3-7 Autonomous wheelchair robot used as Client 3 ... 24

 3-8 Sensor system of the autonomous wheelchair robot 25

 4-1 Block diagram of closed-loop NCS ... 29

 x

FIGURE Page

 4-2 Robotic wheelchair and Linux server are in a same LAN using Samba 33

 4-3 Saved result file of Client 3 in a shared folder on Linux server 34

 4-4 Algorithm to identify client on the server side ... 36

 4-5 Modified composition of a sensor data packet from the client to the server
 from [33] .. 37

 4-6 Composition of a control data packet from the server to the client [33] 38

 4-7 Schematic of network interface between Linux server and Client 3 39

 4-8 Block diagram of supervisory control of the robotic wheelchair [22] 39

 4-9 Schematic of feedback control over the Tamulink wireless network of
 Client 3 ... 40

 4-10 Interface of the Client 3 program ... 41

 4-11 Overall data-transmission architecture for Client 3 41

 4-12 UDT sensor data packet created by Gateway ... 42

 4-13 UDT control data packet created by Linux server 43

 5-1 Operation time to performed each control loop i 47

 5-2 Software architecture of measuring the data processing time 48

 5-3 Operation time for Client 3 with Gateway .. 53

 5-4 LAN connections for the multiple-client NCS ... 55

 5-5 Plot of the ball displacement from the equilibrium position with respect
 to time ... 59

 5-6 Results of experiments of Client 2 with the sampling periods of (a) 3 ms,
 (b) 5 ms, (c), 15 ms, (d) 20 ms, (f) 25 ms, and (g) 30 ms 61

 5-7 Testing environment with obstacles for Client 3 60

 xi

FIGURE Page

 5-8 Representing the testing environment in the xy-plane with MATLAB 64

 5-9 Results of experiments of Client 3 with the sampling periods of (a) 50 ms,
 (b) 100 ms, (c), 200 ms, and (d) 300 ms .. 65

 5-10 Performance of suggested combination for Case 1 67

 5-11 Performance of suggested combination for Case 2 68

 5-12 Performance of suggested combination for Case 3 69

 5-13 Performance of suggested combination for Case 4 70

 xii

LIST OF TABLES

TABLE Page

 3-1 Motion of the robotic wheelchair for each sensor signal [22] 26

 4-1 Round-trip time between Window-Based Client 3 and Linux server 34

 4-2 Meanings of UDT control data for movement .. 43

 5-1 Round-trip time from Linux server to Client 1, 49 1,SCT

 5-2 Round-trip time from Client 1 to Linux server, 49 1,CST

 5-3 Data processing time for Client 1 ... 50

 5-4 Round-trip time from Linux server to Client 2, 51 2,SCT

 5-5 Round-trip time from Client 2 to Linux server, 51 2,CST

 5-6 Data processing time for Client 2 ... 52

 5-7 Round-trip time from Linux server to Gateway, 54 3,SGT

 5-8 Round-trip time from Gateway to Linux server, 54 3,GST

 5-9 Round-trip time from Client 3 to Gateway, 56 3,CGT

 5-10 Round-trip time from Gateway to Client 3, 56 3,GCT

 5-11 Data processing time for Client 3 ... 57

 5-12 Overall operation time for each client system ... 58

 5-13 Cases of experiments for Client 2 .. 60

 5-14 Cases of experiments for Client 3 .. 63

 5-15 Suggested combinations of the sampling period for each control loop 66

 1

CHAPTER I

INTRODUCTION

Recent advances in communication, computation, and embedded technologies

have supported the development of NCSs. The NCS is defined as the combined system

of controllers, actuators, sensors, and the communication network that interconnects

them together. This NCS has the advantage of greater flexibility compared to traditional

control systems. It also allows a lower installation cost with reduced wiring and permits

greater agility in diagnosis and maintenance procedures [1].

1.1 Modes of Control on the Network

Many commercial companies and research institutes have shown interests in applying

NCSs for remote industrial control and factory automation. As a result of extensive

research and development in this area, various forms of NCSs exist in the automation

industry. The classification of the modes of control depends on the communication

architecture between the plant and the remote user. These various modes of control over

the network can be classified into teleoperation, supervisory control, and closed-loop

control over the network.

Teleoperation systems allow human operators to execute tasks in remote or hazardous

This thesis follows the style and format of IEEE Transactions on Automatic Control.

 2

environment like in space, underwater, or nuclear applications [2]. In teleoperation

systems, however, the operator must depend on the feedback provided by sensory

feedback systems to perform subsequent actions as shown in Fig. 1-1. Therefore, the

operator’s limited perception of the environment could result in a poor performance. For

this reason, researchers have been focusing their research attention on supervisory

control.

Fig. 1-1. Block diagram of a teleoperation system

Supervisory control is based on a client-server architecture. In supervisory

control, the user on a client station can give symbolic or analogical instructions remotely

to a server computer attached to the manipulator instead of remotely guiding the tele-

manipulator as he does in the teleoperation systems. In supervisory control, the sensors,

controllers, and actuators are located on the plant side as shown in Fig. 1-2. Like a

teleoperation system, the control loop in supervisory control is also closed locally.

 3

Controller actuatorNetwork
Communication

+

-
Client

Sensor

User Side Plant Side

User
Input

Controller ActuatorNetwork
Communication

+

-
Client

Sensor

User Side Plant Side

User
Input

Fig. 1-2. Block diagram of a supervisory control system

In feedback control over the network, the control loop is closed over the network.

Fig. 1-3 describes a block diagram representing feedback control over the Internet. The

controller receives data from the sensors and sends the control data to the actuators over

the network.

Fig. 1-3. Block diagram of a networked feedback control system

The multiple-client NCS used in this research can be one of the applications of

feedback control over the network. A server controller and multiple clients share the

network as a communication medium. A block diagram of the multiple-client NCS is

shown in Fig. 1-4. Success of this multiple-client NCS relies on the system stability.

 4

Thus, network scheduling and optimal bandwidth allocation for these clients are key

issues in this system.

Communication Network

Server
(Controller 1, 2, and 3)

Client 1
(Plant 1)

Client 2
(Plant 2)

Client 3
(Plant 3)

Sensor 2 Actuator 2Sensor 1 Actuator 1 Sensor 3 Actuator 3

Fig. 1-4. Block diagram of the multiple-client NCS

1.2 Objectives

A study of closed-loop real-time control with multiple clients over a network is

the main focus of the research. Following are its main objectives.

1. Establishment of real-time closed-loop control over a network with three

multiple clients, which are a steel-ball maglev system, a DC motor speed-

control system, and an autonomous wheelchair robot.

2. Development of an algorithm that can identify the clients on the server side by

socket programming.

 5

3. Suggestion of the optimal sampling periods for each client system to maintain

the system stability.

1.3 Contributions

The main contribution of this thesis is the implementation of closed-loop control

over a network with multiple clients by experiments. Major accomplishments include (1)

establishment of the network connection of a Window-based personal computer (PC)

with a Linux server using Samba, (2) design of a multiple-client-NCS architecture, (3)

implementation of this NCS’s communication architecture, and (4) suggestion of the

clients’ sampling periods for system stability.

 To establish a multiple-client NCS, a steel-ball maglev system, a DC motor

speed-control system, and an autonomous wheelchair robot are used as NCS test beds to

validate the proposed strategy. The server can identify the clients with their

identification numbers included in the sensor data packets from the clients.

The Windows-based robotic wheelchair is connected with the Linux server with

Samba. The data-transmission time between the robotic wheelchair and the server is

reduced significantly, and the robotic wheelchair can arrive at a destination without any

collision with an obstacle with a certain bandwidth allocation.

 For the network communication, socket programming is used. Since the robotic

wheelchair uses a different type of the data packet from the server, Gateway is

established between both systems to convert the data-packet type to another format.

 6

 With PING tests, the operation times for each client are obtained. Based on these

operation times, the relation between the network bandwidth utilization and the sampling

period is presented. Some possible combinations of the sampling periods are suggested

and verified to maintain the stability of the multiple-client NCS.

1.4 Thesis Organization

This thesis is organized as follows

Chapter I provides a brief introduction of NCSs. The modes of NCSs are also

given. This chapter also describes the objectives and contributions of this research.

Chapter II explains the previous work done by other researchers in the area of

NCSs. The literature review is divided into the modes of control on the network and the

network scheduling.

Chapter III describes in the detail the design of the multiple-client NCS which

used in this research. It gives an overview of the existing experimental setup and its

control scheme.

Chapter IV explains the software design for the NCS. It describes the computing

environment and design of the software architecture.

Chapter V describes how each system can be operated and tested. With a series

of experiments, the possible combinations of the sampling periods for each system are

suggested and verified.

 7

Chapter VI summarizes the achievements of this thesis. The future work towards

further development of this NCS is also given.

 8

CHAPTER II

LITERATURE REVIEW

In this chapter, previous work done by other researchers in the NCS field is

described. Researchers have successfully developed several applications based on

teleoperation and supervisory control. Real-time feedback control over networks also has

been receiving increasing attention in the last few years.

In NCSs, time delays take place due to sharing a common network medium.

These delays may make the system unstable. It is important that the data should be

transmitted within a sampling period and the stability of control systems should be

maintained.

2.1 Modes of Control on the Network

With the advancement in industry automation, the Internet technology led the

shift of the emphasis from centralized to distributed control systems. As a result of

extensive research and development, various forms of NCSs have been performed.

2.1.1 Teleoperation

Early developments on teleoperation system were carried out in the area of space,

underwater, and nuclear applications with the common aim of reducing risk to human

 9

lives. Hirzinger et al. [3] developed a teleoperation-based method of a space flight with a

multisensory gripper technology. This flight is teleoperated by astronauts using a control

ball and a stereo-TV-monitor and can refine gross commands autonomously by local

(shared autonomy) sensory feedback control concepts.

Lin et al. [4] introduced virtual telepresence operation approach of underwater

robots. This virtual telepresence interface takes robot’s position and orientation data

from a sonar navigation system, and generates three dimensional (3D) synthetic images

of the worksite based on its computer aided design (CAD) model using virtual reality

technology. It gives the robot operators with a full perception of its spatial location,

flexible options of viewpoints and functions for teleoperation of underwater robots.

Fig. 2-1. Brokk – teleoperated robot for demolition [5]

The primary use of telerobotics in decommissioning applications is to reduce the

radioactive dose levels to which workers are exposed. An example of teleoperated robot

 10

in this area is remote-control Brokk as shown in Fig. 2-1 [5]. A remote operation

pendant allows the operator to be at a safe distance from high radiation areas and

hazardous or falling debris. The Brokk is rugged enough for demolition work and small

enough to work inside buildings. They are often electrically powered, through an

umbilical cable, to make indoor working easier. A wide range of end-effector tools is

available for most demolition tasks. Such teleoperated robots have become widely

accepted throughout the decommissioning industry.

Teleoperation is also used in the field of surgery. Cohn et al. [6] implemented a

tactile feedback system with tactile sensor and display into a simple force-reflecting

teleoperator. This can be provided by linking a tactile sensor on the manipulator to a

tactile display worn by the user. The display can convey both symbolic and

representational stimuli and human subjects were able to discriminate very small

displacements. Madhani et al. [7] developed Black Falcon, a teleoperated surgical

instrument for minimally invasive surgery (MIS). MIS is the practice of performing

surgery through small incisions using specialized surgical instruments. Using with eight-

degree-of-freedom and cable-driven teleoperator, it allows motion scaling between the

master and the slave. These advantages increase dexterity and enable tasks that were

previously impossible such as suturing along arbitrarily oriented suture lines.

From advanced manufacturing to daily applications, Internet-based telerobotic

systems have the potential to provide significant benefits. Wang et al. [8] developed an

Internet-based multiple-telerobot system as shown in Fig. 2-2. This system includes a

web server, browser client, and local distributed system. Three cameras are also used to

 11

provide online live video display. A browser client can operate, monitor, and simulate

the local distributed system through the Hypertext Transport Protocol (HTTP) server.

The HTTP server runs several threads to handle robot operations and obtain or deliver

video information. Different functional software components are distributed on the host

machine, target machines, and the robot controller.

Fig. 2-2. Internet-based multiple-telerobot system architecture [8]

 12

2.1.2 Supervisory Control

Recently researchers have shown interests in applying supervisory control for

their telerobot and test beds. Luo et al. proposed a desktop rapid prototyping system with

supervisory control and monitoring through the Internet [9]. The user sends a 3D

Computer-Aided Design (CAD) model via the Internet to a telecontrol server. The

telecontrol server transforms the CAD model into a rapid-prototyping (RP) liquid-

crystal-diode (LCD) photomask display. The user can then direct the RP machine to

build the RP part while watching a live image via the Internet. The overall system

architecture of this telemanufacturing system is shown in Fig. 2-3. The online visual

system allows inspection of RP part quality during manufacturing. A pattern matching

algorithm which compares a grabbed image with the photomask monitors the part-

building process.

Fig. 2-3. Overall system architecture of automated telemanufacturing system [9].

 13

Park and Sheridan [10] developed supervisory control of a six-degree-of-freedom

telemaniuplator which was graphically simulated on an IRIS workstation. The system

checks possible manipulator collisions with obstacles in the environment. The operator

can specify intermediate locations that the manipulator tip is to pass through. If the

system detects an impending collision, it uses heuristics to avoid it.

Due to recent developments in the communications technology in the last

decades, discrete-event systems constituted by entities or processes that exchange

messages or coordinate the execution of a task. When a system includes features of both

discrete events and continuous signals, it is called a hybrid system [11].

Garcia et al. [12] developed a supervisory controller for a robotic teleoperation

system with communication time delay, considering the hybrid systems theory. The

discrete-event controller is based on discrete abstractions of the continuous dynamics. A

supervisory control was designed to detect when force and position thresholds were

overcome. The controller was developed to modify the reference sent from the local

station to the remote station when a communication interruption arose.

Wanga et al. [13] developed a hybrid supervisory control system for the optimal

temperature control of a reheat furnace based on expert knowledge and pyrology. The

developed control model can replace the human operator by auto-searching the proper

operation points for the reheating process under variations of boundary conditions. The

preset module can calculate the optimal preset value of the furnace temperature set point

of each zone under different operation modes.

 14

Ji et al. [14] discussed the supervisory control via the Internet of a ball-maglev

system. This supervisory control is based on the client-server architecture, which is used

primarily for computer network communication. The overall system architecture for the

supervisory control of the maglev system over the Internet is depicted in Fig. 2-4. The

maglev system is controlled using a common gateway interface (CGI) and a hypertext

markup language (HTML) interface where a client can operate the maglev system and

move the ball within its travel range. Stochastic nature of the Internet communication

delays was also studied in reference to the various probabilistic models for the time

delays.

Fig. 2-4. Hardware architecture for the supervisory control of the ball-maglev system

 over the Internet [14].

 15

2.1.3 Closed-Loop Control over Networks

While a teleoperation system and a supervisory control system are closed locally,

feedback control allows the controller to be placed over the network, separated from the

controlled process. Eker and Cervin [15] developed distributed wireless control using

Bluetooth radio network. The distributed control configuration is shown in Fig. 2-5. A

rotating inverted pendulum was used in the experiments. The sensor node is time-driven

while the controller and actuator nodes are event-driven. The sensor samples the process

periodically and sends the measurement values to the controller. Upon receipt, the

controller calculates a new control signal and sends it to actuator node which outputs the

value. A dynamic delay compensation scheme was simulated for random delays that

might occur due to retransmissions.

Fig. 2-5. Distributed wireless control system configuration using Bluetooth [15].

 16

Because of some limitations of Bluetooth, such as relatively low throughput and

very limited range, a recent study focuses on the use of TCP/IP and UDP protocol.

Ploplys and Alleyne [16] developed UDP network communications for distributed

wireless control. In this system, sampling and actuation are clock-driven while control is

event-driven, making the controller node a slave to the actuator/sensor node. The

actuator/sensor node has access to a real-time clock, which it uses to send feedback

precisely at each sampling interval. The controller need only wait to receive feedback

from the sensor and quickly reply with a control action for the actuator. The effects of

delayed time and its performance were studied.

In feedback control over the network, there are two classes of time delays and

packet losses in both the sensor feedback and control feedforward paths. Ambike [17]

discussed the closed-loop real-time control over network of a ball-maglev system. An

algorithm using predictors was designed to ensure the system stability in the presence of

network delays and data packet losses. The system output was predicted several steps

ahead and the control output was calculated using these predictions. This control output

was used in the events of excessive network delay to maintain system stability.

Network scheduling and bandwidth allocation is an important issue in NCS

design when a set of plants or processes connected to the same network and share the

limited bandwidth resource. Cervin and Eker [18] proposed a feedback scheduler for

real-time-control tasks. Linear quadratic cost functions are used as performance

indicators. The feedback scheduler calculates an optimal resource-allocation pattern. The

feedback scheduler is demonstrated on a three-control-loop system.

 17

2.2 Scheduling for NCSs

To design an NCS, its control and communication aspects should be considered

because the control performance is limited by the system bandwidth. Therefore, a

network bandwidth allocation must be considered.

Park et al. [19] presented a scheduling method for networked-based control

system with three types of data: periodic data, sporadic data, and messages. All periodic

data have to be transmitted within the respective sampling period to guarantee the

system stability, while guaranteeing real-time transferring of sporadic data and minimum

transmission of messages.

Ji and Kim [20] developed a co-design methodology of dynamic optimal network

bandwidth allocation. This dynamic bandwidth allocation algorithm makes scheduling

decisions based on the quality of performance information of the control loop. With the

consideration of time-varying sampling frequencies, the system can be performed

efficiently.

 18

CHAPTER III

TEST-BED SETUP AND ITS CONTROL

Based on the previous chapter, the multiple-client NCS is proposed in this

research for closed-loop feedback control over the network. A server controller and

multiple clients share the network as a communication medium. The overall system

architecture of this multiple-client NCS is shown in Fig. 3-1.

Fig. 3-1. Overall system architecture of the multiple-client NCS

 19

Three client physical systems are used as test beds in this research: Client 1 - the

single-actuator ball maglev system developed by Paschall [21], Client 2 - a DC motor

closed-loop speed control system, Client 3 - an autonomous wheelchair robot developed

by Hsieh [22]. Each test bed and designed control system is introduced in this chapter.

3.1 Client 1 - Ball-Maglev System

Fig. 3-2. Ball-maglev system used as Client 1

The single-actuator ball maglev system developed by Paschall [21] is used as

Client 1. This test bed can levitate a small steel ball at a predetermined steady-state

operating position with an electromagnet. The maglev system shown in Fig. 3-2 consists

of essentially of a platform test bed and a Linux PC with a data-acquisition board. The

 20

test bed contains an electromagnetic actuator, an optical position sensor, a pulse-width-

modulation (PWM) power amplifier, and power supplies.

This system contains two sub-parts. These are the position-sensing part and the

force-actuating part. The optical position-sensing part consists of a photocell-based

sensor, an incandescent light source, and a 15-V DC power supply. The unit allows the

photocell to be exposed to the bulb light as a function of the ball position. This variable

light exposure on the photocell results in a change of its electrical resistance. The force-

actuating part consists of an electromagnet coil, a PWM amplifier, and a 24-V DC power

supply. The control signal is given to the electromagnet coil through the PWM amplifier

to control the levitated ball’s position.

Fig. 3-3 shows a schematic diagram of the maglev system. The electromagnet

was made by wrapping an iron core of high permeability with a copper wire. When an

electrical current passes through the wire, the actuator creates an attractive force to the

steel ball. A position sensor, the photocell, detects the vertical position of the ball and

passes this information to the controller.

Fig. 3-3. The schematic diagram of the maglev system [21]

 21

The small-sized open-loop plant transfer function developed by Paschall [21] is

2

() 1

()

Y s m
As B AI s

∧

∧

− ⎡ ⎤= ⎢ ⎥− ⎣ ⎦
 (3.1)

with

2

2
I AsA
g m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ (3.2)

I AB
a Y m

⎡ ⎤= ⎢ ⎥+ ⎣ ⎦ , (3.3)

where = 9.81 m/s2 is the gravitational constant, g I = 0.5236 A and Y = 0.005 m are the

operating points, and = 2.49 mm is a geometric constant in the ball maglev system. a

 The position information provided by the photocell sensor is used as feedback to

achieve closed-loop stability. Fig. 3-4 describes a block diagram for the feedback control

of the ball maglev system.

Fig. 3-4. Block diagram for the feedback control of the ball-maglev system [21]

 22

In [21], the controller designed in continuous time domain is given by

2 6

2

33300 2.564 10 1.632 10
700.7 490

s s
s s

− − × − ×
+ +

7

.
 (3.4)

The controller maintained the following transient response requirements.

Settling Time(st) ≤ 1 s

Percentage Overshoot ≤50%

Linux with Real-Time Application Interface (RTAI) is used as the OS. A PCI-

6025E card by National Instruments is used for data acquisition. One of the analog-to-

digital (A/D) converters is used to read the optical sensor input. The voltage output

signal from the digital-to-analog (D/A) converter is fed to the PWM amplifier.

Srivastava [23] designed the digital controller for the 333 Hz sampling frequency

as

2
4

2

1.754 0.769() 4.15 10
0.782 0.13

z zD z
z z
− +

= ×
− −

 . (3.5)

3.2 Client 2 - DC Motor Speed-Control System

A DC motor speed-control system is used as Client 2. A block diagram to

illustrate DC motor closed-loop speed control is given in Fig. 3-5. The speed of a DC

motor is directly proportional to the supply voltage. The speed command is a DC voltage,

which is fed to the PWM amplifier. This drives the motor at a speed dependant on the

 23

commanded voltage. The shaft angular displacement per unit time of the motor is

sampled using the encoder.

Fig. 3-5. Block diagram for DC motor speed control

The electric circuit of the armature and the free-body diagram of the rotor are shown in

Fig. 3-6.

Fig. 3-6. The electric circuit of the armature and the free-body diagram of the rotor [24]

 Using the parameters given the DC motor datasheet [25], the plant transfer

function is obtained as [26]

20.2()
9.92 2.57

G s
s

=
+ . (3.6)

 24

A proportional-integral (PI) controller can be designed as [26]

1.5 5() P IK s K sG s
s s
+ +

= =
. (3.7)

From (3.4), we can get the discrete-time controller as

 () (1) [0.5] () [0.5] (1)P I I Pu k u k K K h e k K h K e k= − + + + − −

 , (3.8) (1) [1.5 2.5] () [2.5 1.5] (1)u k h e k h e k= − + + + − −

where is the sampling period. Various sampling periods will be tested to operate

Client 2. Refer to Section 5.2.2 for details.

h

3.3 Client 3 - Autonomous Wheelchair Robot

Fig. 3-7. Autonomous wheelchair robot used as Client 3

 25

In this research, the autonomous wheelchair robot [22] is used as Client 3 as

shown in Fig. 3-7. The robotic wheelchair is built upon the base frame of an Invacare

Ranger IITM electric powered wheelchair. The frame is 70-cm long and 48-cm wide with

a height of 55cm. This wheelchair is driven by two independent 12-V DC motors for the

front wheels with a diameter of 31.75 cm with built-in reduction gears that provide a

maximum speed of 6 km/hr. Two MC-7 motor controllers are used for motion control.

The stability of the platform is ensured by two 18-cm-diameter castors in rear.

Fig. 3-8. Sensor system of the autonomous wheelchair robot [22]

The sensor bracket is mounted at the front. The wheelchair robot has seven CdS

light-sensitive resistors which are also known as photocells, five distance-measuring

 26

sensors, and two Hall-effect sensors as shown in Fig. 3-8 [22]. The wheelchair robot has

the capability of tracking a motion trajectory defined with a light with the photocells. If

any of the three photocells on the left bracket, then the wheelchair turns left until the

front photocell detects the light. In the opposite way, if any of the three photocells on the

right detects the light, the wheelchair turns right until the front photocell detects the light.

Table 3-1. Motion of the robotic wheelchair for each sensor signal [22]. L, H, F, TR, TL,

 and S are denoted low, high, forward, turn right, turn left, and stop respectively.

(a) The signal of the front GP2D15 is low

Left
GP2D12

L L L L L L L L H H H H H H H H

Left
GP2D15

L L L L H H H H L L L L H H H H

Right
GP2D12

L L H H L L H H L L H H L L H H

Right
GP2D15

L H L H L H L H L H L H L H L H

Movement
of Robot

F TL TL TL TR F F TL TR F F F TR F TR F

(b) The signal of the front GP2D15 is high

Left
GP2D12

L L L L L L L L H H H H H H H H

Left
GP2D15

L L L L H H H H L L L L H H H H

Right
GP2D12

L L H H L L H H L L H H L L H H

Right
GP2D15

L H L H L H L H L H L H L H L H

Movement
of Robot

S TL TL TL TR S S S TR S S S TR S S S

 27

Three GP2D15 and two GP2D12 infrared distance-measuring sensors

manufactured by Sharp are used to detect obstacles. The GP2D15 infrared sensor detects

obstacles at a 25-cm range and the GP2D12 sensor, at 70 cm. The GP2D12 infrared

sensors are assembled on the right and left side. One GP2D15 infrared sensor is mounted

at the front. Two GP2D15 infrared sensors mounted on the right and left side just beside

the GP2D15 infrared sensors. According to each condition of the infrared sensors’ signal,

we can set the movement of the robotic wheelchair as Table 3-1.

The sensors generate the output voltage signals fed to the A/D converters on the

data-acquisition card which is installed on the laptop on the top. The laptop receives

these sensor signals from the card, sends the data to the server over the wireless network.

The server makes control data to avoid the obstacles and sends the data to the laptop

over the network.

The control data from the laptop goes to MC-7 motor controller through the data-

acquisition card. A SuperLogic PCMDIO 24-channel digital I/O type II Personal

Computer Memory Card International Association (PCMCIA) card [27] is used as data-

acquisition card to perform data-acquisition and control performance. Each MC-7

controller drives an electric motor in both the forward and backward directions. By this

function the wheelchair can turn in a circle at an original point with one wheel moving

forward and the other moving backward. Two decade-counter chips are used to count

the pulses generated by the Hall-effect sensors. By this function, it is possible to measure

the moving distance of the wheelchair robot.

 28

CHAPTER IV

SOFTWARE DESIGN

In this chapter the computing environment and software architecture of the

systems are discussed. First, the real-time OSs and the network protocol are described.

The developed software architecture is also presented. The Windows-based wheelchair

robot is integrated to the Linux server using Samba. The socket architectures provided in

the last part of this chapter.

4.1 Computing Environment

The multiple-client NCS consists of one server and three clients. Software codes

for Clients 1 and 2 are written in C language on Linux with RTAI and Comedi. Software

code for Client 3 is written in Microsoft Visual Basic 6.0 on Windows XP and connected

to the server over the wireless network.

4.1.1 Needs for Real-Time Operating System

Fig. 4-1 describes the client-server architecture in the closed-loop control system

over the network. The client side implements the sensor and the actuator. The sampling

is done at a certain fixed frequency. A new sample of the sensor data is taken for every

sampling period. The sensor data by the client are sent to the server which implements

 29

the controller over the network. The server calculates the control data and sends the

message to the client. Before receiving the sensor data from the client, the server side

waits for the arrival of sensor data from the client. As soon as the sensor data arrive, the

control data are calculated and sent by the server. Thus, the sensor and the actuator on

the client side are time-driven whereas the controller is event-driven.

Fig. 4-1. Block diagram of closed-loop NCS

The events have certain deadlines. If these deadlines are missed, the control

system would be lost the system stability. In other words, the feedback control loop

should be completed in these deadlines. Client 1 needs very fast response from the server

to maintain the stability of the system. Srivastava demonstrated the control data should

be arrived from the server in 1.4 ms for 333.333 Hz in [23]. Client 2 also needs fast

response for system stability. However, Client 3 does not need fast response to avoid an

obstacle. In this research, the different sampling periods for each client are suggested

and tested.

 30

4.1.2 Operating System Environment

In order to ensure that Linux server, Clients 1, and 2 perform these tasks at

correct time, real-time OS is needed. Linux with RTAI was found as a competitive OS

environment for Clients 1 and 2 in [17]. The clock resolution of Linux is better than

Windows-based OS. But Linux alone lacks real-time performance. RTAI modifies Linux

kernel to make it a real-time operating environment. RTAI basically supports the same

performances as the Linux kernel core, adding the features of a real-time OS [28].

For data acquisition, Comedi was installed and is used at Clients 1 and 2. Comedi

is a free software project that develops tools, libraries, and drivers for various forms of

data acquisition. Comedi works with standard Linux kernels like RTAI. Comedi consists

of comedi and comedilib. Comedi is a collection of drivers for a variety of common data

acquisition plug-in boards. Comedilib provides the developer-friendly interface to the

Comedi devices [29].

The programs for Linux server, Clients 1, and 2 are written in C programming

language. Client 3 is built on Windows XP. Although Windows XP is not real-time OS,

it is fast enough to control Client 3. In addition, previous software programs of the

robotic wheelchair were written in Microsoft Visual Basic 6.0 on Windows. In the

current research, the software of Client 3 is modified in Microsoft Visual Basic 6.0.

PCMDIO data acquisition-card and the PCMDRIVE data-acquisition software [30] were

made for Windows-based OS only.

 31

4.1.3 Communication Network Protocols

The TCP/IP protocol suite is used in this research. This suite contains two

network protocols, TCP and UDP. The main difference is that TCP is slow, reliable, and

connection-oriented whereas UDP is fast, unreliable, and connectionless.

TCP guarantees delivery of data and also guarantees that packets will be

delivered in the same order in which they are sent. Being connection-oriented means that

before transmitting data, the connection between the server and the client is opened. The

data can be transferred in full duplex. When the transfer is completed, the connection is

closed to free system resources. Handshaking signals are used for making and closing

the connection. If time delay or data loss takes place, the client re-requests the packet to

the server until the whole packet is completed. Although TCP is a reliable protocol for

network communications, it is unsuitable for a client requiring a high sampling

frequency such as Client 1. Due to various services like error checking and ensuring

ordered data delivery, TCP has large overheads and may waste bandwidth. An additional

time delay can be introduced to the system.

UDP can be an alternative network-protocol choice. UDP is connectionless

protocol, and a datagram can be sent at any moment without any preparation. UDP does

not guarantee that the datagram will be delivered to the destination host, and it can also

be delivered in an incorrect order. Although UDP is unreliable protocol, it has fewer

overheads. This makes UDP much faster compared to TCP; it introduces less time delay

than TCP does.

 32

Based on these considerations, UDP is used for Clients 1 and 2 in this research.

Because Client 1 needs a fast response from the server, UDP is more suitable protocol

for it. Since UDP has no guarantees for transferring data, predicted control data is

needed to maintain the stability of the system. If data loss or time delay takes place, the

client uses the predicted control data transmitted in previous data packets.

Ambike designed an 8th order 4-step-ahead predictor for Client 1 using with auto-

regressive (AR) models. The following prediction equations were developed for Client 1

using MATLAB [17].

ˆ(1) 0.8122 () 0.3479 (1) 0.0294 (2) 0.4605 (3)
0.0742 (4) 0.1042 (5) 0.1117 (6) 0.3561 (7)

y t y t y t y t y t
y t y t y t y t

+ = − − − − + −
+ − + − + − − −

−

 (4.1)

ˆ(2) 0.3117 () 0.3119 (1) 0.4366 (2) 0.4482 (3)
0.1645 (4) 0.1964 (5) 0.2653 (6) 0.2892 (7)

y t y t y t y t y t
y t y t y t y t

+ = − − + − + −
+ − + − − − − −

 (4.2)

ˆ(3) 0.0587 () 0.3281 (1) 0.4390 (2) 0.3080 (3)
0.2195 (4) 0.2329 (5) 0.2544 (6) 0.1110 (7)

y t y t y t y t y t
y t y t y t y t

+ = − + − + − + −
+ − − − − − − −

 (4.3)

ˆ(4) 0.2804 () 0.4594 (1) 0.3097 (2) 0.1925 (3)
0.2372 (4) 0.2605 (5) 0.1176 (6) 0.0209 (7)

y t y t y t y t y t
y t y t y t y t

+ = + − + − + −
− − − − − − +

 (4.4)

4.1.4 Integrating the Windows-based Robotic Wheelchair to the Linux Server Using

Samba

Due to the OS mismatch between Linux server and Client 3, Samba [31]

software is used to put both systems together on the same Local Area Network (LAN) as

shown in Fig. 4-2. Samba allows the Linux PC to interact with the Windows-based PC.

 33

Using Samba, the wheelchair robot is connected to the server on the same LAN with a

fast data-transmission speed. With the Packet Internet groper (PING) utility, the round-

trip time of interfacing between Linux server and Client 3 can be measured [32]. PING

is a simple application used to check whether a host PC is online and available. PING

makes Internet Control Message Protocol (ICMP) messages. The purpose of an ICMP is

to inform sending hosts about errors encountered in the IP datagram processing or other

control information by destination hosts. PING sends one or more ICMP Echo messages

to a specified host, requesting a reply.

Fig. 4-2. Robotic wheelchair and the Linux server are on a same LAN using Samba

The round-trip times between Windows-based Client 3 and Linux server with

Samba are compared to those without using Samba as shown in Table 4-1. It takes about

30.8 ms to process a round-trip task between the robotic wheelchair and the server

without Samba whereas just 11.2 ms is taken using Samba. The round-trip time without

 34

Samba is about three times as long as using Samba. This delayed time can have a

negative effect on the system stability.

Table 4-1. Round-trip time between Window-Based Client 3 and Linux server

No.
with Samba without Samba

Min. Max. Avg. Min. Max. Avg.

1 1 ms 47 ms 10 ms 4 ms 156 ms 27 ms

2 2 ms 56 ms 12 ms 5 ms 100 ms 26 ms

3 1 ms 83 ms 14 ms 6 ms 167 ms 38 ms

4 1 ms 53 ms 11 ms 4 ms 162 ms 29 ms

5 2 ms 62 ms 9 ms 5 ms 169 ms 34 ms

Average 1.4 ms 60.2 ms 11.2 ms 4.8 ms 150.8 ms 30.8 ms

Using Samba has two advantages. First, the data-transmission time between the

server and the client with Samba is faster than without it. The data-transmission time is

an important factor for system stability. The wheelchair robot cannot avoid an obstacle

unless it receives the control data from the server in time. The detailed data-transmission

time between the wheelchair robot and the server is provided in Section 5.2.3. The

second advantage of using Samba is that the data file of the wheelchair robot can be

saved on the server side. This data file contains the output signals of the Hall-effect

sensors. The wheelchair robot can read and write the data file in a shared folder on the

Linux server. The user on the server side can access the data file easily as depicted in Fig.

4-3.

 35

Fig. 4-3. Saved data file of Client 3 in a shared folder on the Linux server

4.2 Development of Software Architecture

In order to identify the individual clients, client identification numbers are

needed for the server. Each client sends sensor data packets including its unique

identification number to the server side. The server receives and reads the sensor data

packets and then generates the control data packets for each client. The compositions of

the sensor data packet and the control data packet for the multiple-client NCS are

provided in this section. The developed software architecture is also given in the last part

of this section. For all software codes presented in this section, refer to Appendix.

4.2.1 Identification of Clients

In order for the server to identify the client that sent a data packet, the

identification number of each client is included in the UDP packet from the client side.

 36

Once the sensor data arrive at the server side, the server reads the identification number

and then calculates the control data for the specific client. The algorithm to identify the

client on the sever side is shown in Fig. 4-4.

Fig. 4-4. Algorithm to identify the client on the server side

 37

4.2.2 UDP Packet Composition

With UDP, the composition of IP packet was developed. The composition of a

typical 68-bytes-long sensor data packet going from the client to the server is shown in

Fig. 4-5. It consists of a 20-byte-long IP header, an 8-byte-long UDP header, an 8-byte-

long time stamp, a seven 4-byte-long sensor data values, and a 4-byte-long identification

number. A time stamp is taken on the client side at sampling and the server sends it back

to the client for identifying whether the arrived data packet is the expected data packet or

a delayed one. Delayed data packets are discarded by the client. Using the identification

number, the server can identify the client. Clients 1, 2, and 3 have their unique

identification numbers as 1, 2, and 3, respectively. After sensor data arrive from the

client, the server reads the last section of the data packet and identifies which client sent

the data. Then the server calculates the control data for this client.

0y 1y− 2y− 3y− 4y− 5y− 6y− 7y−

Fig. 4-5. Modified composition of a sensor data packet from the client to the server from

 [33]

 38

The composition of a typical 56-byte-long control data packet transferred from

the server to the client is shown in Fig. 4-6. It consists of a 20-byte-long IP header, an 8-

byte-long UDP header, an 8-byte-long time stamp, one 4-byte-long current control data

value, and four 4-byte-long predicted control data values.

0u 1u 2u 3u 4u

Fig. 4-6. Composition of a control data packet from the server to the client [33]

4.2.3 Network Interface for Client 3

For the network communication, socket programming is used. A client makes a

socket consisting of a sensor signal and sends this socket to the server. After receiving

the socket, the server reads it and makes socket of control data. Then, the server sends

back the socket of control data to the client for its performance.

In this research, the data sockets that are transferred between the server and the

client are of a user defined type (UDT). Client 3 with Microsoft Visual Basic 6.0 uses

Winsock for data transmission. However using Winsock, we can transfer only string-

data-type packets. In order to make network connection between Linux server and Client

3, an additional component that can convert data types is needed. This component is

 39

called as Gateway in this research. Gateway makes UDT sockets for the server using

string-data-type packets from Client 3 and produces string-data-type packets for Client 3

using with UDT sockets from the server. Software code for Gateway is written in C

programming language on Linux. A schematic of network interface between Linux

server and Client 3 is shown in Fig. 4-7.

Fig. 4-7. Schematic of network interface between Linux server and Client 3

Client 3 is controlled by Linux server over a wireless network. Hsieh [22]

developed the wireless connection using with the Tamulink Wi-Fi access as shown in

Fig. 4-8 [34]. The user on the server side could control the robotic wheelchair with

Winsock. Since the controller was placed on the client side as in supervisory control,

however, the server could not receive any feedback signal from the client.

Fig. 4-8. Block diagram of supervisory control of the robotic wheelchair [22]

 40

Fig. 4-9 depicts the feedback control over a wireless network realized in this

thesis of Client 3. The sensor data from Client 3 are sent to Gateway and the control data

from Gateway are transferred to Client 3 over the Tamulink wireless network. Gateway

is connected with Linux server over Tamulink wired network. In this system, the

controller is placed on the server side. Its interface with Client 3 is shown in Fig. 4-9.

The dashed arrows between Gateway and Client 3 indicate the Tamulink wireless

network.

+

-

Controller

Server Side

Sensor
system

Client Side

Robot
wheelchair

Motion

Gateway Wireless
Tamulink

Wired
Tamulink

Gateway Side

Fig. 4-9. Schematic of feedback control over the Tamulink wireless network of Client 3

Fig. 4-10. Interface of the Client 3 program

 41

The software program of Client 3 was written in Microsoft Visual Basic 6.0. Fig.

4-10 shows the user interface when the Client 3 program starts. All sensor signals are

displayed in each window and are sent to Gateway.

Fig. 4-11. Overall data-transmission architecture for Client 3

 42

The overall data-transmission architecture for Client 3 is depicted in Fig. 4-11.

The dashed lines between Gateway and Client 3 indicate actual data-packet

transmissions over the Tamulink wireless network. Gateway creates two sockets; ‘sd’ for

Client 3 and ‘sockid’ for Linux server. The source code to create sockets is given as

sd = socket(AF_INET, SOCK_DGRAM, 0)

sockid = socket(AF_INET, SOCK_DGRAM, 0).

When the sensor data socket arrives from Client 3, Gateway saves it with one socket and

reads the data. The source code to receive packets is shown as

cr = recvfrom(sd, recv_msg, 10, 0, (struct sockaddr *)

&client_addr, &clilen).

The length of sensor data is fixed as 10 bytes which does not include header data. The

UDT packets for Linux server are made and sent as shown in Fig. 4-12.

Fig. 4-12. UDT sensor data packet created by Gateway

 43

The source code for sending UDT packets from Gateway to Linux server is given

as follows.

nw=sendto(sockid, (const void *)send_buffer,

send_buffer_size, 0,(struct sockaddr *) &server_addr,

addrlen)

Linux server receives the UDT packets and makes the control data packets as shown in

Fig. 4-13. The movement-commnad value can be 10, 7, 5, 2, and 0. The meanings of

each value are described in Table 4-2. The UDT control data are converted to the string-

data-type control data by Gateway.

0u

Fig. 4-13. UDT control data packet created by Linux server

Table 4-2. Meanings of UDT control data for movement

value meaning convert as

10 Moving Forward fwd

7 Turn Right right

5 Moving Back back

2 Turn Left left

0 Stop stop

 44

With the UDT control data packets from Linux server, Gateway makes another

control data packets for Client 3. The source code for sending the control data is given as

follows.

Switch(u0){

 Case(10):

 cw = sendto(sd, fwd, 5, 0, (struct sockaddr *)_

&client_addr, clilen);

 break;

 Case(7):

 cw = sendto(sd, right, 5, 0, (struct sockaddr *)_

&client_addr, clilen);

 break;

 Case(5):

 cw = sendto(sd, stop, 5, 0, (struct sockaddr *)_

&client_addr, clilen);

 break;

 Case(2):

 cw = sendto(sd, left, 5, 0, (struct sockaddr *)_

&client_addr, clilen);

 break;

 Case(0):

 45

 cw = sendto(sd, back, 5, 0, (struct sockaddr *)_

&client_addr, clilen);

 break;

}

Client 3 receives and reads the control data with string-data-type. The source code for

receiving and calling the motion function are given as follows.

Dim recData As String

Winsock.GetData recData ‘receiving the data packet

Select Case recData

 Case “fwd”

 Call Front

 Case “right”

 Call TurnRight

 Case “left”

 Call TurnLeft

 Case “back”

 Call Back

 Case “stop”

 Call StopRobot

According to the called motion functions, the robotic wheelchair moves with collision-

avoidance. The Gateway program is included in Appendix of this thesis.

 46

CHAPTER V

OPERATION AND TESTING

In the previous chapter, the designed software programs for each client or server

system are presented. This chapter describes how the sampling period of each system is

determined and tested. In order to obtain the sampling period of each system, the

operation time for each control loop is measured. Based on the relation between the

bandwidth utilization and the sampling period for each control loop, the ranges of the

sampling periods to ensure stability are presented. In the last part of this chapter,

possible combinations of the sampling periods are suggested and experimented.

5.1 The Operation Time for Each Control Loop

From [19], the relation between the bandwidth and the sampling period for each

control loop is given by

 i
i

i

b
h
τ

= , 0 1ib< < , (5.1)

where is assignable partial bandwidth to the i th control loop, and ib iτ is the operation

time to perform each closed-loop operation. The operation time iτ can be expressed as

, ,i i SC i CS iT T T ,Pτ = + + , (5.2)

 47

where is the data-transmission time from the server to the client and is the

data-transmission time from the client to the server as shown in Fig. 5-1. Let be the

time needed for data processing such as sensor sampling, actuator actuating, and

controller calculating the control data for control loop i . The data processing time is

given as

,i SCT ,i CST

,i PT

, , ,i P i PS i PCT T T= + . (5.3)

,i PCT,i PST

,i CST

,i SCT

Fig. 5-1. Operation time to performed each control loop i .

The PING utility is also used to measure and for each system. Because

the sizes of control data and sensor data are different, the PING test was performed

separately. Since the PING measures the round-trip time, and can be obtained

by dividing the round-trip time by 2.

,i SCT ,i CST

,i SCT ,i CST

In order to measure the data-processing time for each system, the functions

timeGetTime() for Client 3 written in Microsoft Visual Basic 6.0 and

 48

rt_get_cpu_time_ns() for a Linux PC are used. The timeGetTime()

function returns the time in milliseconds, and the rt_get_cpu_time_ns() function,

in nanoseconds. The software architecture to measure the data-processing time is

depicted in Fig. 5-2.

Fig. 5-2. Software architecture of measuring the data processing time

 49

5.1.1 Client 1

The round-trip time between Linux server and Client 1 is measured by the PING

test five times. Each PING test takes 100 round-trip times and gives the minimum,

maximum, and average value. The results of these experiments are presented in Tables

5-1 and 5-2.

Table 5-1. Round-trip time from Linux server to Client 1, 1,SCT

Experiment

No.
Bytes in packet

Round-trip times (ms)

Minimum Maximum Average

1 56 0.342 0.441 0.382

2 56 0.362 0.434 0.388

3 56 0.362 0.447 0.397

4 56 0.346 0.472 0.387

5 56 0.354 0.424 0.392

Average 56 0.353 0.443 0.388

Table 5-2. Round-trip time from Client 1 to Linux server, 1,CST

Experiment

No.
Bytes in packet

Round-trip times (ms)

Minimum Maximum Average

1 68 0.352 0.454 0.391

2 68 0.344 0.443 0.392

3 68 0.337 0.473 0.386

4 68 0.363 0.456 0.394

5 68 0.358 0.478 0.402

Average 68 0.351 0.461 0.393

 50

The data-processing time for Client 1 can be obtained as shown in Table 5-3.

Table 5-3. Data processing time for Client 1

No. Server (ms) Client (ms) Total (ms)

1 0.102 0.812 0.914

2 0.115 0.800 0.915

3 0.102 0.832 0.934

4 0.105 0.796 0.901

5 0.117 0.792 0.909

Avg. 0.108 0.806 0.915

Then, we can obtain the total operation time between Linux server and Client 1 as

1 1, 1, 1,SC CS PT T Tτ = + +

 (0.388 0.393) 0.915 1.306
2
+

= + = ms, (5.4)

which is the same result with [23].

5.1.2 Client 2

The round-trip time from Linux server to Client 2 is presented in Table 5-4, and

that from Client 2 to Linux server is shown in Table 5-5. , the transmission time

from Linux server to Client 2 is found to be 0.480 ms, and the transmission time

from Client 2 to Linux server, 0.489 ms.

2,SCT

2,CST

 51

Table 5-4. Round-trip time from Linux server to Client 2, 2,SCT

Experiment

No.
Bytes in packet

Round-trip times (ms)

Minimum Maximum Average

1 56 0.402 0.976 0.512

2 56 0.432 0.554 0.476

3 56 0.378 0.506 0.454

4 56 0.408 0.542 0.478

5 56 0.408 0.512 0.478

Average 56 0.406 0.618 0.480

Table 5-5. Round-trip time from Client 2 to Linux server, 2,CST

Experiment

No.
Bytes in packet

Round-trip times (ms)

Minimum Maximum Average

1 68 0.412 0.532 0.484

2 68 0.432 0.524 0.484

3 68 0.418 0.532 0.492

4 68 0.434 0.522 0.492

5 68 0.410 0.532 0.492

Average 68 0.421 0.528 0.489

The transmission time between Linux server and Client 2 is longer than that of

Client 2 because of the system capability. The PC of Client 1 is a 1.7-GHz Pentium IV

processor whereas the PC for Client 2 is a 133-MHz Pentium III. This difference of

system capacity may introduce the time delay between the server and the client.

 52

The data-processing time of Client 2 was measured as shown in Table 5-6. On

the server side, the processing time is smaller than that of Client 1. It means that the time

to calculate the control data for a DC motor is shorter than that for the ball-maglev

system.

Table 5-6. Data processing time for Client 2

No. Server (ms) Client (ms) Total (ms)

1 0.096 0.771 0.867

2 0.092 0.771 0.863

3 0.088 0.775 0.863

4 0.097 0.772 0.869

5 0.099 0.771 0.87

Avg. 0.094 0.772 0.866

Then, we can obtain the operation time between Linux server and Client 2 as

2 2, 2, 2,SC CS PT T Tτ = + +

 (0.480 0.489) 0.866 1.350
2
+

= + =

,

ms. (5.5)

5.1.3 Client 3

In order to measure the operation time for Client 3, we need to take Gateway into

consideration. Thus, the operation time for Client 3 is given by

3 3, 3, 3, 3, 3SG GS GC CG PT T T T Tτ = + + + + , (5.6)

 53

where is the data-transmission time from Linux server to Gateway, is the data-

transmission time from Gateway to Linux server, is the data-transmission time

from Client 3 to Gateway, and is the data-transmission time from Client 3 to

Gateway.

3,SGT 3,GST

3,GCT

3,CGT

3,PT is data-processing time as given

3, 3, 3, 3,P PS PG PCT T T T= + + . (5.7)

Fig. 5-3 describes the operation time for Client 3 with Gateway.

Fig. 5-3. Operation time for Client 3 with Gateway

The round-trip time between Linux server and Gateway is shown in Tables 5-7

and 5-8. The transmission time between Linux server and Gateway is longer than other

clients since these two PCs are connected with different LANs. Fig. 5-4 describes the

LAN connections for the multiple-client NCS developed in this research. Gateway and

Client 3 are on the same LAN and connected to the default gateway 2 with the IP

address 192.168.2.100 whereas Linux server, Clients 1, and 2 are connected to the

default gateway 1 with the IP address 165.91.95.1. To transfer the data packet over

 54

different LANs, the data pass through these default gateways 1 and 2. That is why the

transmission time between Linux server and Gateway is longer than that between Linux

server and Client 1 or 2. In the case of the transferring the data packet in a same LAN,

the data packet can be transmitted by passing through just its default gateway.

Table 5-7. Round-trip time from Linux server to Gateway, 3,SGT

Experiment

No.
Bytes in packet

Round-trip times (ms)

Minimum Maximum Average

1 56 0.856 1.896 1.133

2 56 0.738 1.289 0.828

3 56 0.735 1.560 0.841

4 56 0.740 1.966 0.925

5 56 0.754 1.291 0.814

Average 56 0.765 1.600 0.908

Table 5-8. Round-trip time from Gateway to Linux server, 3,GST

Experiment

No.
Bytes in packet

Round-trip times (ms)

Minimum Maximum Average

1 68 0.747 1.744 0.962

2 68 0.764 2.680 0.967

3 68 0.752 2.682 0.945

4 68 0.770 1.700 0.934

5 68 0.748 2.503 0.883

Average 68 0.756 2.262 0.938

 55

Fig. 5-4. LAN connections for the multiple-client NCS

The results of the transmission time between Client 3 and Gateway with Samba

is shown in Table 5-9 and Table 5-10. Since Windows-based Client 3 is connected to

Gateway with Tamulink wireless network, the transmission time between Client 3 and

Gateway is very long. Since the wireless network is unstable and the round-trip times

fluctuate widely, each PING test takes 1000 round-trip times in this experiment whereas

other experiments over the wired network take just 100 round-trip times. In order to

reduce the transmission time between Client 3 and Gateway, the both systems were put

on the same LAN using Samba. is measured by Window-based Client 3 with a 1-

ms resolution whereas is measured by Gateway with a 1-ns resolution.

3,CGT

3,CGT

 56

Table 5-9. Round-trip time from Client 3 to Gateway, 3,CGT

Experiment

No.
Bytes in packet

Round-trip times (ms)

Minimum Maximum Average

1 38 1 52 12

2 38 2 45 14

3 38 1 45 11

4 38 1 64 13

5 38 1 63 11

Average 38 1.2 55.8 12.2

Table 5-10. Round-trip time from Gateway to Client 3, 3,GCT

Experiment

No.
Bytes in packet

Round-trip times (ms)

Minimum Maximum Average

1 33 1.063 13.117 10.571

2 33 1.734 19.448 11.646

3 33 1.973 25.723 13.408

4 33 1.104 36.587 12.460

5 33 1.287 38.367 11.763

Average 33 1.432 26.649 11.970

The processing time for Linux server, Gateway, and Client 3 is presented in Table 5-11.

In Gateway, the processing time is the time for converting the data from Client 3 to

Linux server or from Linux server to Client 3. Total processing time is 10.66 ms for the

control loop. The data-processing time for Client 3 was measured by the Windows

timeGetTime() with a 1-ms resolution.

 57

Table 5-11. Data-processing time for Client 3

No. Server (ms) Gateway (ms) Client (ms) Total (ms)

1 0.107 1.312 9 10.419

2 0.110 1.125 10 11.253

3 0.110 1.115 10 11.225

4 0.101 1.112 9 10.213

5 0.112 1.114 9 10.226

Avg. 0.108 1.156 9.400 10.660

We can obtain the operation time between Linux server and Client 3 as

3 3, 3, 3, 3, 3SG GS GC CG PT T T T T ,τ = + + + + (5.8)

0.908 0.938 12.2 11.970 10.660 23.668
2

+ + +⎛ ⎞= +⎜ ⎟
⎝ ⎠

= . (5.9)

5.1.4 Overall Operation Time for Each System

The overall round-trip operation time for each system is shown in Table 5-12.

The operation time for Client 1 is similar with Client 2. It is because both systems are

run on the same computational environment such as OS, programming language, and

LAN. Although Client 3 is connected to Gateway with Samba, the operation time for

Client 3 is about 19 times longer than Clients 1 and 2, Since Client 3 uses wireless

network on Windows-based OS. Using Gateway between Linux server and Client 3 also

can be one of the reasons for this result.

 58

Table 5-12. Overall operation time for each client system

time Client 1 Client 2 Client 3

transmission time (ms) 0.391 0.484 13.008

processing time (ms) 0.915 0.866 10.660

operation time (ms) 1.306 1.350 23.668

5.2 Operation of Each Client

To verify the working of the control strategy, each client is tested in this section.

Based on the operation time, the bandwidth utilization is determined with respect to the

sampling period for each client. With these considerations, the possible combinations of

the sampling period for each client are suggested and tested.

5.2.1 Client 1

The digital controller for the 333.3 Hz sampling frequency was designed in [23]

as

2
4

2

1.754 0.769() 4.15 10
0.782 0.13

z zD z
z z
− +

= ×
− − .

 (5.10)

The sampling frequency was 333.3 Hz, and the test of Client 1 is conducted with

the 3-ms sampling period in the control loop. Fig. 5-5 shows the ball displacement from

its equilibrium position. The system remained stable and the ball did not fall down from

 59

its equilibrium position. From [33], the controller with the 3-ms sampling period is

found as the best sampling period through the simulation. Therefore, the controller with

3-ms sampling period is used for the possible combinations of the sampling period for

Client 1. From (5.4), the bandwidth utilization for Client 1 is given by

 1
1

1

1.306ms 0.435
3ms

b
h
τ

= = = . (5.11)

Thus, 43.5% of the network bandwidth is used to operate Client 1 for the 3-ms sampling

period. Since Client 1 with the 3-ms sampling period has a nice performance, the

bandwidth utilization for Client 1 is fixed as 0.435 in this research.

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3

4

time(s)

D
is

pl
ac

em
en

t f
ro

m
 e

ui
lib

riu
m

 p
os

iti
on

(m
m

)

Fig. 5-5. Plot of the ball displacement from the equilibrium position with respect to time

 60

5.2.2 Client 2

From (3.3), the discrete-time controller for Client 2 is developed as

() (1) [1.5 2.5] () [2.5 1.5] (1)u k u k h e k h e k= − + + − − − . (5.12)

Assume that Client 3 needs at least 10% of the bandwidth utilization. Then the

bandwidth utilization of Client 2 cannot exceed 0.465. With design the discrete-time

controller, the sampling period for Client 2 can be controlled. In order to check the

system stability, seven cases of experiments are designed and performed as depicted in

Table 5-13.

Table 5-13. Cases of experiments for Client 2

No.
Sampling

Period

Operation

time

Bandwidth

utilization
Discrete-time controller u(k) =

1 3 ms 1.36 ms 0.453 (1) 1.5075 () 1.4925 (1)u k e k e k− + − −
2 5 ms 1.36 ms 0.272 (1) 1.5125 () 1.4875 (1)u k e k e k− + − −
3 10 ms 1.36 ms 0.136 (1) 1.5250 () 1.4750 (1)u k e k e k− + − −
4 15 ms 1.36 ms 0.091 (1) 1.5375 () 1.4625 (1)u k e k e k− + − −
5 20 ms 1.36 ms 0.068 (1) 1.5500 () 1.4500 (1)u k e k e k− + − −
6 25 ms 1.36 ms 0.054 (1) 1.5625 () 1.4375 (1)u k e k e k− + − −
7 30 ms 1.36 ms 0.045 (1) 1.5750 () 1.4250 (1)u k e k e k− + − −

The results of the experiments are described in Fig. 5-6. Every case of experiments is

shown as stable system. However, Cases (e), (f), and (g) show a bad system

performance and are eliminated from making combinations with other clients.

 61

0 0.5 1 1.5 2 2.5 3
0

5

10

time(s); (a)
0 0.5 1 1.5 2 2.5 3

0

5

10

time(s); (b)

0 0.5 1 1.5 2 2.5 3
0

5

10

time(s); (c)

Sp
ee

d
of

 D
C

 m
ot

or
(r

ad
/s

)

0 0.5 1 1.5 2 2.5 3
0

5

10

time(s); (d)

0 0.5 1 1.5 2 2.5 3
0

5

10

time(s); (e)
0 0.5 1 1.5 2 2.5 3

0

5

10

time(s); (f)

0 0.5 1 1.5 2 2.5 3
0

5

10

time(s); (g)

Fig. 5-6. Results of experiments of Client 2 with the sampling periods of (a) 3 ms,

 (b) 5 ms, (c) 10 ms, (d) 15 ms, (e) 20 ms, (f) 25 ms, and (g) 30 ms

 62

5.2.3 Client 3

The motion of Client 3 can be represented in the two-dimensional coordinate

system using by Hall-effect sensor readings [35]. Assume that Client 3 begins at (0, 0)

point in the xy-plane. The Hall-effect sensors count the pulses every 100-ms sampling

interval time. At a sampling time i , the distance d between start point and the position

of Client 3 is defined as

2

iLH RHd i+
= , (5.13)

where is the pulse counted by the left-side Hall-effect sensor and iLH iRH is the pulse

counted by the right-side Hall-effect sensor at sampling time i . The point (ix , iy)

represents the position of Client 3 in the xy-plane at sampling time can be found as i

sin
2

i i
i

LH RHx iθ
+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (5.14)

cos
2

i i
i

LH RHy iθ
+⎛ ⎞= ⎜ ⎟

⎝ ⎠
, (5.15)

where iθ is turning angle at sampling time . i

 From (5.9), the suggested sampling periods are presented as shown in Table 5-14.

According to the bandwidth utilization of Clients 1 and 2, the bandwidth utilization of

Client 3 can be varies from 0.110 to 0.474. To check whether the assumption in the

previous section is right or wrong, the 300-ms sampling period is also suggested to test

in case 4.

 63

Table 5-14. Cases of experiments for Client 3

No. Sampling Period Operation time Bandwidth utilization

1 50 ms 23.668 ms 0.473

2 100 ms 23.668 ms 0.237

3 200 ms 23.668 ms 0.118

4 300 ms 23.668 ms 0.079

The experiments of Client 3 are performed in a ground-floor hallway and

Precision Mechatronics Lab inside the Zachery Engineering Center of Texas A&M

University as shown in Fig. 5.7. In order to test its collision-avoidance function, a trash

can is used as an obstacle. The testing environment is represented in the xy-plane with

MATLAB as shown in Fig. 5.8. With the Timer.Interval() function, the sampling

period of robotic wheelchair can be controlled.

column

obstacle

START

Fig. 5-7. Testing environment with obstacles for Client 3

 64

-100 0 100
0

100

200

300

400

500

600

700

800

900

column

obstacle

X-direction(cm)

Y-
di

re
ct

io
n(

cm
)

Fig. 5-8. Representing the testing environment in the the xy-plane with MATLAB

The results of the experiments are descibed in Fig. 5-9. Except for the case of 300-ms

sampling period, the robotic wheelchair could arrive at the destination. Thus, the

sampling period of Client 3 cannot exceed 300 ms.

 65

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction (cm); (a)

Y-
di

re
ct

io
n

(c
m

)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction (cm); (b)
Y-

di
re

ct
io

n
(c

m
)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction(cm) ; (c)

Y-
di

re
ct

io
n(

cm
)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction(cm) ; (d)

Y-
di

re
ct

io
n(

cm
)

 Fig. 5-9. Results of experiments of Client 3 with the sampling periods of (a) 50 ms,

 (b) 100 ms, (c) 200 ms, and (d) 300 ms

 66

5.3 Suggestion for Possible Combinations of the Sampling Period

Based on the results in the previous section, possible combinations of the

sampling period of each client are suggested and verified in this section. The sampling

period for Client 1 is fixed and used as 3 ms. Client 2 needs the bandwidth utilization

from 0.091 to 0.453 for its stability. The bandwidth utilization of Client 3 can be from

0.118 to 0.468. According to these considerations, the combination range of the

sampling period for each client can be obtained. The conditions of the bandwidth

utilization for each client is given as

 2 3 56.5b b+ ≤ (5.16)

 29.1 45.3b≤ ≤ (5.17)

 311.8 46.8b≤ ≤ . (5.18)

Based on these conditions, the combinations of the sampling period for each client are

suggested and tested. Table 5-14 describes the suggested combinations of the sampling

period for each client. In order to check the failed case, Case 4 is added to the tests-set.

Table 5-15. Suggested combinations of the sampling period for each control loop

No.
Bandwidth Utilization Sampling Period

Client 1 Client 2 Client 3 Client 1 Client 2 Client 3

1 43.5% 27.2% 28.9% 3 ms 5 ms 82 ms

2 43.5% 13.6% 43% 3 ms 10 ms 53 ms

3 43.5% 9.1% 47.3% 3 ms 15 ms 50 ms

4 43.5% 45.3% 47.3% 3 ms 3 ms 50 ms

 67

 Case 1 is performed as shown in Fig. 5-10. Client 1 maintains the stability of

system and the ball did not fall down from its equilibrium position. The performance of

Client 2 with the 5-ms sampling period is observed as the stable system. Client 3 also

can arrive at destination without any collision.

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3

4

time(s)

D
is

pl
ac

em
en

t f
ro

m
 e

ui
lib

riu
m

 p
os

iti
on

(m
m

)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

time(s)

Sp
ee

d
of

 D
C

 m
ot

or
(ra

d/
s)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction(cm)

Y-
di

re
ct

io
n(

cm
)

Fig. 5-10. Performance of suggested combination for Case 1

 68

Case 2 also shows the stable system. Fig. 5-11 shows the performances of Clients

1, 2, and 3 as the stable combination.

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3

4

time(s)

D
is

pl
ac

em
en

t f
ro

m
 e

ui
lib

riu
m

 p
os

iti
on

(m
m

)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

time(s)

Sp
ee

d
of

 D
C

 m
ot

or
(ra

d/
s)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction(cm)

Y-
di

re
ct

io
n(

cm
)

Fig. 5-11. Performance of suggested combination for Case 2

 69

 Since the total bandwidth utilization of this case is 99.9%, the stability of Client

1 is affected in Case 3 as shown in Fig. 5-12. Although Client 2 has a overshoot in its

transient response, it is regarded as the stable system. Client 3 also arrived at the

destination without collision.

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3

4

time(s)

D
is

pl
ac

em
en

t f
ro

m
 e

ui
lib

riu
m

 p
os

iti
on

(m
m

)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

time(s)

Sp
ee

d
of

 D
C

 m
ot

or
(ra

d/
s)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction(cm)

Y-
di

re
ct

io
n(

cm
)

Fig. 5-12. Performance of suggested combination for Case 3

 70

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

3

4

time(s)

D
is

pl
ac

em
en

t f
ro

m
 e

ui
lib

riu
m

 p
os

iti
on

(m
m

)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

time(s)

Sp
ee

d
of

 D
C

 m
ot

or
(ra

d/
s)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction(cm)

Y-
di

re
ct

io
n(

cm
)

Fig. 5-13. Performance of suggested combination for Case 4

In Case 4, the total bandwidth utilization is 136.1%. The performance of Case 4

is shown in Fig. 5-13. Client 1 did not maintain its stability and the ball fell down from

 71

its equilibrium position. The performance of Client 2 is observed as the stable system.

However, it is found that the output fluctuation is increased after 1 second. Client 3 did

not arrive at the destination. The wheelchair robot hit the obstacle and stopped in front of

a wall. Cases 1, 2, and 3 are experimented as the stable system whereas Case 4 is found

as unstable. For the system stability, the conditions of combination for the sampling

period should be considered.

 72

CHAPTER VI

CONCLUSIONS AND SUGGESTED FUTURE WORK

6.1 Conclusions

The objective of this research was to demonstrate experimentally the feasibility

of a real-time networked closed-loop control system with multiple clients. A steel-ball

magnetic-levitation system, a DC motor speed-control system, and an autonomous

wheelchair robot referred to as Clients 1, 2, and 3, respectively were used as NCS test

beds to validate the proposed strategy. The multiple-client NCS was demonstrated

successfully in this research.

For real-time operation, computing environments for the clients were discussed.

Clients 1 and 2 need fast response from the server for system stability. Linux with RTAI

and Comedi was used as the OS for them. Client 3’s software was written in Microsoft

Visual Basic 6.0 on Windows XP, modifying the previous code written by Hsieh [22].

Due to its low bandwidth requirement, this operating environment was good enough for

Client 3. In order to convert the data type between Client 1 and Linux server, Gateway is

developed. Using Samba, Client 3 is connected to Gateway on the same LAN with a fast

data-transmission speed. The round-trip time between Client 3 and Gateway is just 11.2

ms with Samba whereas 30.8 ms is taken without using Samba.

UDP was used as the communication network protocol in this research due to its

better real-time performance instead of TCP. Although TCP is a reliable protocol, it has

 73

large overheads for various services and may waste bandwidth and time. While UDP has

no guarantee for transmitting data, it has smaller overheads and less time delay than TCP.

A prediction algorithm [17] was needed to compensate for any delayed or lost data

packet. For the server to identify the clients, the sensor data packets include a client

identification number. After calculating the control data, the server sends back the data

to the identified client.

The feedback control loop is limited by the bandwidth of the communication

network. Therefore the system stability is affected by the sampling period of the system.

The reduction of the sampling period improves the control loop’s performance. However,

a shorter sampling period requires more network bandwidth to transmit more sensor data

or control data, which increases the network traffic load.

The transmission time for each connection is measured by the PING test, and the

processing time for each client was measured by the timeGetTime() function for the

Window-based OS and the rt_get_cpu_time_ns() function for Linux. With the

transmission time and the processing time for each client, the operation time for each

control loop was calculated. Using the operation time for each control loop, the sampling

periods for the system stable were determined.

The sampling period of Client 1 was set to be 3 ms, and Client 1 used 43.5% of

the total bandwidth. The bandwidth utilization of Client 2 with guaranteed stability was

found to be from 9.1% to 45.3%. Thus, the range of the bandwidth utilization of Client 3

was between 11.8% and 46.8%. As long as the bandwidth utilizations of all clients were

 74

within these ranges, the multiple-client NCS could maintain its stability. In order to

verify these conditions, three successful operation cases were suggested and tested.

6.2 Suggested Future Works

In the current system, Gateway converts and transfers the control data and the

sensor data between Linux server and Client 3 because of the difference of their socket

structures. For a sensor, it is waste of time and resource with an intermediary PC. It may

also introduce time delay and data loss between Linux server and Client 3. With Client

3’s programs written in C on Linux OS, the communication efficiency could be

enhanced.

Adding more servers to calculate the control data collaboratively could be a

solution to bandwidth limitation. When one of the servers is busy with calculating the

control data for a client, other servers could communicate with other clients. It could be

seen as increased bandwidth for system performance.

In this research, the combinations of the sampling period for each client system

are suggested statically. However, this static method may not be efficient when network

conditions are changed. For this reason, a dynamic bandwidth-allocation method

according to the control performance of each client could be developed.

 75

REFERENCES

[1] W. Zhang, M. S. Branicky, and S. Phillips, “Stability of networked control

systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84–99, February

2001.

[2] T. B. Sheridan, “Teleoperation, telerobotics and telepresence: A progress report,”

Control Engineering Practice, vol. 3, no. 2, pp.205–214, February 1995.

[3] G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl, “ROTEX – The First

Remotely Controlled Robot in Space,” in Proc. of the IEEE International

Conference on Robotics and Automation, vol. 3, pp.2604–2611, May 1994.

[4] Q. Lin and C. Kuo, “Virtual tele-operation of underwater robots,” in Proc. of the

1997 IEEE International Conference on Robotics and Automation, pp.1022–1027,

April 1997.

[5] M. Evans, “Brokk - the world’s leading supplier of remote controlled demolition

machines,” January 2004. [Online]. Available: http://www.brokk.com, Accessed

on February 11, 2009.

 [6] M. B. Cohn, M. Lam, and R. S. Fearing, “Tactile feedback for teleoperation,” in

Proc. SPIE, vol. 1833, PP.240–254, January 2004.

 [7] A. J. Madhani, G. Niemeyer, and J. K. Salisbury Jr., “The black falcon: A

teleoperated surgical instrument for minimally invasive surgery,” in Proc. of the

IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Victoria, B.C.,

Canada, October 1998, vol. 2, pp. 936–944, October 1998.

 76

 [8] X. Wang, M. Moallem, and R. V. Patel, “An Internet-based distributed multiple-

telerobot system,” IEEE Transations on Systems, Man, and Cyvernetics - Part A :

Systems and Humans, vol. 33, no. 5, pp. 627–633, September 2003.

[9] R. C. Luo, J. H. Tzou, and Y. C. Chang, “Desktop rapid prototyping system with

supervisory control and monitoring through Internet,” IEEE/ASME Transactions

on Mecharonics, vol. 6, no. 4, pp. 399–409, December 2001.

[10] J. H. Park and T. B. Sheridan, “Supervisory teleoperation control using computer

graphics,” in Proc. of 1991 the IEEE International Conference on Robotics and

Automation, Sacramento, CA, vol. 1, pp. 493–498, April 1991.

[11] A. Puri, “Theory of Hybrid Systems and Discrete Systems,” Ph.D. Dissertation,

Department of Electrical Engineering and Computer Sciences, University of

California, Berkeley, CA, 1995.

[12] C. E. Garcia, R. Carelli, J. F. Postigo, and C. Soria, “Supervisory control of a

telerobotic system: A hybrid control approach,” Control Engineering Practice, vol.

11, no. 7, pp. 805–817, July 2003.

[13] W. Wanga, H.-X. Lib, and J. Zhang,” A hybrid approach for supervisory control of

furnace temperature,” Control Engineering Practice, vol. 11, no. 11, pp. 1325–

1334, November 2003.

 [14] K. Ji, W.-J. Kim, and A. Srivastava, “Internet-based real-time control architectures

with time-delay/packet-loss compensation,” Asian Journal of Control, vol. 9, no.

1, pp.47–51, March 2007.

 77

[15] J. Eker and A. Cervin, “Distributed wireless control using Bluetooth,” in Proc. of

IFAC Conference on New Technologies for Computer Control, Hong Kong, P. R.

China, pp. 699–705 November 2001.

[16] N. J. Ploplys and A. G. Alleyne, “UDP network communications for distributed

wireless control,” in Proc. of the American Control Conference, Denver, Co, vol.

4, pp. 3335–3340, June 2003.

[17] A. Ambike, Close-Loop Real-Time Control on Distributed Networks, M.S. Thesis,

Texas A&M University, College Station, TX, August 2004.

[18] A. Cervin and J. Eker, “Feedback scheduling of control tasks,” in Proc.of the 39th

IEEE Conference on Decision and Control. Sydney, Australia, pp. 4871–4876,

2000.

[19] H. S. Park, Y. H. Kim, D. -S Kim, and W. H. Kwon, “A Scheduling Method for

Network-Based Control Systems,” IEEE Transactions on Control System

Technology, vol. 10, no. 3, pp. 318–330, May 2002.

[20] K. Ji and W. -J. Kim, “Optimal bandwidth allocation and QoS-adaptive control co-

design for networked control systems,” International Journal of Control,

Automation, and Systems, vol. 6, no. 4, pp. 596–606, August 2008

[21] S. C. Paschall, II, Design, Fabrication and Control of a Single Actuator Magnetic

Levitation System, Senior Honors Thesis, Texas A&M University, College Station,

TX, May 2002.

[22] P. Hsieh, Autonomous Robotic Wheelchair with Collision-Avoidance Navigation,

M.S. Thesis, Texas A&M University, College Station, TX, August 2008.

 78

[23] A. Srivastava, Distributed Real-Time Control via the Internet, M.S. Thesis, Texas

A&M University, College Station, TX, May 2003.

[24] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic

Systems, 4th Ed., Prentice Hall, December 2002.

[25] Maxon Precision Motors, “A-max 26 series,” maxon DC motor datasheet, July

2004.

 [26] DC Motor Closed-Loop Speed Control, MEEN 667 Laboratory Manual,

Department of Mechanical Engineering, Texas A&M University, TX, 2008.

[27] Superlogics PCMDIO Users Manual, January 2002. [Online] Available :

http://www.SuperLogics.com. Accessed on October 20, 2008.

[28] DIAPM RTAI - real-time application, January 1999. [Online]. Available:

http://www.rtai.org. Accessed on October 10, 2008.

[29] Linux control and measurement device interface, August 1999. [Online].

Available: http://www.comedi.org. Accessed on October 13, 2008.

[30] Superlogics PCMDRIVE® Data Acquisition Software User’s Manual, January

2002. [Online]. Available: http://www.SuperLogics.com. Accessed on October 20,

2008.

[31] Samba - Opening Windows to a Wider World, May 1992. [Online]. Available:

http://www.samba.org. Accessed on December 10, 2008.

[32] A. Acharya and J. Saltz, A Study of Internet Round-Trip Delay, Technical Report

CS-TR-3736, UMIACS and Department of Computer Science, University of

Maryland, College Park, Dec.1996.

 79

[33] K. Ji, Real-Time Control Over Networks, Ph.D. Dissertation, Department of

Mechanical Engineering, Texas A&M University, College Station, TX, May 2006.

[34] TAMUlink – WPA for Windows XP, September 2008. [Online]. Available:

https://hdc.tamu.edu/reference/documentation/?section_id=729. Accessed on

November 10, 2008.

[35] A. Rogers, Precision Mechatronics Lab Robot Development, M.S. Thesis, Texas

A&M University, College Station, TX, December 2007.

 80

APPENDIX

GATEWAY.C

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <signal.h>

#include <string.h>

#include <asm/errno.h>

#include <sys/types.h>

#include <sys/user.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sched.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <errno.h>

 81

#include <inttypes.h>

#include "defines.h"

#define KEEP_STATIC_INLINE

//#include <rtai_lxrt_user.h>

#include <rtai_lxrt.h>

RTIME time_stamp;

double u0, u1e, u2e, u3e, u4e, u5e, u6e, u7e, u8e;

double y_0, y_1, y_2, y_3, y_4, y_5, y_6;

double y_7=3;

double u_1, u_2;

//rtai declarations

unsigned long mtsk_name;

RT_TASK *mtsk;

struct sched_param mysched;

RTIME current_time_stamp;

void terminate_normally(int signo)

{

 fflush(stdin);

 if(signo==SIGINT || signo==SIGTERM)

 {

 printf("Terminating the program normally\n");

 82

 //make the process soft real time process

 rt_make_soft_real_time();

 printf("MASTER TASK YIELDS ITSELF\n");

 rt_task_yield();

 printf("MASTER TASK STOPS THE PERIODIC TIMER\n");

 stop_rt_timer();

 printf("MASTER TASK DELETES ITSELF\n");

 rt_task_delete(mtsk);

 printf("END MASTER TASK\n");
 }

 exit(0);
}

main(int argc, char *argv[])
{

 int sockid, addrlen;

 int sd, clilen;

 struct sockaddr_in gate_addr, server_addr;

 struct sockaddr_in my_addr, client_addr;

 int nw, nr;

 int cw, cr;

 int cnt=0;

 int send_buffer_size, recv_buffer_size;

 unsigned short server_port = 0;

 unsigned short second_port = 0;

 83

 struct send_data *send_buffer = NULL;

 struct recv_data *recv_buffer = NULL;

 double recv_msg[9] =
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}; //client to
gateway

 char fwd[10] = "front";

 char back[10] = "back";

 char stop[10] = "stop";

 char left[10] = "left";

 char right[10] = "right";

 char *server_ip= "165.91.95.40";

 FILE *fp = NULL;

 fp = fopen("result.txt","w");

 if (fp==NULL)

 {

 printf("could not open file\n");

 exit(0);

 }

 RTIME start_time = 0;

 RTIME end_time = 0;

 RTIME actual_period = 0;

 RTIME difference = 0;

 84

 struct sigaction sa;

 sa.sa_handler = terminate_normally;

 sa.sa_flags = 0;

 sigemptyset(&sa.sa_mask);

 if(sigaction(SIGINT, &sa, NULL))

 {

 perror("sigaction");

 }

 if(sigaction(SIGTERM, &sa, NULL))

 {

 perror("sigaction");

 }

 fprintf(stderr, "creating socket\n");

 if ((sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

 {

 perror("1socket() failed ");

 fprintf(stderr, "%s: 1socket error: %d\n", argv[0],

errno);

 exit(2);

 }

 if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

 {

 perror("2socket() failed ");

 85

 fprintf(stderr, "%s: 2socket error: %d\n", argv[0],

errno);

 exit(2);

 }

 fprintf(stderr, "binding sockets\n");

 server_port = 4444;

 second_port = 3333;

 addrlen = sizeof(server_addr);

 clilen = sizeof(my_addr);

 memset((void *) &server_addr, (char) 0, addrlen);

 server_addr.sin_family = AF_INET;

 server_addr.sin_addr.s_addr = inet_addr(server_ip);

 server_addr.sin_port = htons(server_port);

 memset((void *) &my_addr, (char) 0, clilen);

 my_addr.sin_family = AF_INET;

 my_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 my_addr.sin_port = htons(second_port);

 if ((bind(sd, (struct sockaddr *) &my_addr,

 sizeof(my_addr)) < 0))

 {

 perror("2bind() failed ");

 fprintf(stderr, "bind() errno = %d\n", errno);

 exit(4);

 86

 }

 recv_buffer_size = sizeof(struct recv_data);

 if((recv_buffer = (struct recv_data *)calloc(1,

sizeof(struct recv_data))) ==NULL)

 {

 fprintf(stderr, "cannot allocate memory for

buffer!\n");

 exit(4);

 }

 send_buffer_size = sizeof(struct send_data);

 if((send_buffer = (struct send_data *)calloc(1,

sizeof(struct send_data))) ==NULL)

 {

 fprintf(stderr, "cannot allocate memory for

buffer!\n");

 exit(4);

 }

 fprintf(stderr, "%s: starting blocking message read\n",

argv[0]);

 mysched.sched_priority = 99;

 if(sched_setscheduler(0, SCHED_FIFO, &mysched) == -

1) {

 87

 puts(" ERROR IN SETTING THE SCHEDULER UP");

 perror("errno");

 exit(0);

 }

 mlockall(MCL_CURRENT | MCL_FUTURE);

 mtsk_name = nam2num("MTSK");

 if (!(mtsk = rt_task_init(mtsk_name, 0, 0, 0))) {

 printf("CANNOT INIT MASTER TASK\n");

 exit(1);

 }

 start_time = rt_get_cpu_time_ns();

 printf("main: start_time = %lld\n", start_time);

 printf("MASTER TASK STARTS THE ONESHOT TIMER\n");

 //rt_set_oneshot_mode();

 actual_period = start_rt_timer(nano2count(25000));

 printf("actual_period = %lld\n", actual_period);

 printf("MASTER TASK MAKES ITSELF PERIODIC \n");

 rt_task_make_periodic(mtsk, rt_get_time()+

nano2count(3000000),_ nano2count(3000000));

 while(1)

 {

 88

 cr = recvfrom(sd, recv_msg, 10, 0, (struct sockaddr *)

&client_addr, &clilen);

 if(cr <= -1)

 {

 fprintf(stderr, "2recvfrom() errno = %d\n",

errno);

 exit(10);

 }

 start_time = rt_get_cpu_time_ns();

 y_0 = recv_msg[0];

 y_1 = y_2 = y_3 = y_4 = y_5 = y_6 = 0;

y_7 = 3;

u_1 = u_2 = 0;

 send_buffer->y_0 = y_0;

 send_buffer->y_1 = y_1;

 send_buffer->y_2 = y_2;

 send_buffer->y_3 = y_3;

 send_buffer->y_4 = y_4;

 send_buffer->y_5 = y_5;

 send_buffer->y_6 = y_6;

 send_buffer->y_7 = y_7;

 send_buffer->u_1 = u_1;

 send_buffer->u_2 = u_2;

 89

 send_buffer->time_stamp = current_time_stamp;

 nw=sendto(sockid, (const void *)send_buffer,

send_buffer_size, 0,(struct sockaddr *) &server_addr,

addrlen);

 if(nw <= -1)

 {

 perror("1sendto failed ");

 fprintf(stderr, "sendto() errno = %d \n", errno);

 exit(12);

 }

 nr = recvfrom(sockid, (void *)recv_buffer,

recv_buffer_size, 0, (struct sockaddr *) &server_addr,

&addrlen);

 if(nr <= -1)

 {

 fprintf(stderr, "1recvfrom() errno = %d\n",

errno);

 exit(10);

 }

 u0 = recv_buffer->u0;

 u1e = recv_buffer->u1e;

 u2e = recv_buffer->u2e;

 u3e = recv_buffer->u3e;

 90

 u4e = recv_buffer->u4e;

 u5e = recv_buffer->u5e;

 u6e = recv_buffer->u6e;

 u7e = recv_buffer->u7e;

 u8e = recv_buffer->u8e;

 if(u0 == 10.0){

 cw = sendto(sd, fwd, 5, 0, (struct sockaddr *)

&client_addr, clilen);

 }

 else if(u0 == 7.0){

 cw = sendto(sd, right, 5, 0, (struct sockaddr *)

&client_addr, clilen);

 }

 else if(u0 == 2.0){

 cw = sendto(sd, left, 5, 0, (struct sockaddr *)

&client_addr, clilen);

 }

 else if(u0 == 0.0){

 cw = sendto(sd, back, 5, 0, (struct sockaddr *)

&client_addr, clilen);

 }

 else if(u0 == 5.0){

 91

 cw = sendto(sd, stop, 5, 0, (struct sockaddr *)

&client_addr, clilen);

 }

end_time = rt_get_cpu_time_ns();

 send_buffer->time_stamp = recv_buffer->time_stamp;

 printf("end_time - start_time = %lld\n", (end_time -

start_time));

 cnt = cnt +1;

 } //end while

fclose(fp);

 //make the process soft real time process

 //rt_make_soft_real_time();

 printf("MASTER TASK YIELDS ITSELF\n");

 rt_task_yield();

 printf("MASTER TASK STOPS THE PERIODIC TIMER\n");

 stop_rt_timer();

 printf("MASTER TASK DELETES ITSELF\n");

 rt_task_delete(mtsk);

 close(sockid);

close(sd);

free(send_buffer);

free(recv_buffer);

free(recv_msg);

 92

free(recv_msg);

 }

 93

VITA

The author, Minhyung Lee received his Bachelor of Engineering degree in

weapons engineering from Korea Military Academy, Seoul, South Korea in March 2004.

Since Fall 2007 he has been enrolled in the Master of Science degree program in the

Mechanical Engineering Department, Texas A&M University, College Station.

 Mr. Minhyung Lee may be reached at Department of Mechanical Engineering,

3123 TAMU, College Station, TX 77843-3123. His email is c14565@gmail.com.

