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ABSTRACT 

 

Real-Time Networked Control With Multiple Clients. 

(August 2009) 

Minhyung Lee, B.S., Korean Military Academy, South Korea 

Chair of Advisory Committee: Dr. Won-jong Kim 

 

In this thesis closed-loop control strategies over a communication network with 

multiple clients are developed. To accomplish this objective, a steel-ball magnetic-

levitation system, a DC motor speed-control system, and an autonomous wheelchair 

robot referred to as Clients 1, 2, and 3, respectively were used as Networked-Based-

control (NCS) test beds to validate the proposed strategies. For real-time operation, 

Linux with Real-Time Application Interface (RTAI) and Control and Measurement 

Interface (Comedi) were used as the operating system for Clients 1 and 2. Client 3’s 

software was written in Microsoft Visual Basic 6.0 on the Windows XP operating 

system (OS). User datagram protocol (UDP) was used as the communication network 

protocol in this research due to its better real-time performance instead of transmission 

control protocol (TCP). Although UDP has no guarantee for transferring data, it has 

smaller overheads and less time delay than TCP.  

Since the robotic wheelchair and the server are run on different OSs, Samba was 

used to put both systems into the same LAN with a fast data-transmission speed. Using 
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Samba, the round-trip communication time between the robotic wheelchair and the 

server is only 11.2 ms whereas 30.8 ms is taken without using Samba.  

When the server receives the sensor data from multiple clients at the same time, 

the NCS stability may be deteriorated due to the limitation of the system bandwidth. The 

NCS stability is affected by the sampling period of the system, and the reduction of the 

sampling period improves the control loop’s performance. However, a shorter sampling 

period requires more network bandwidth to transmit more sensor data or control data, 

which increases the network traffic load.  

Using the PING test, the transmission time for each control loop was measured. 

The processing time for each system was also measured by a time-stamp function, and 

the operation time for each control loop was obtained. In order to maintain the NCS 

stable, several combinations of the sampling periods for each client are suggested and 

verified. The bandwidth utilization of Client 1 is set to be 43.5% and the range of the 

bandwidth utilization of Client 2 with guaranteed stability was found to be between 

9.1% and 45.3%. Thus, the bandwidth utilization of Client 3 is from 11.8% to 46.8%. 

The multiple-client NCS test bed could maintain its stability within these ranges of the 

bandwidth utilizations of all clients. 
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CHAPTER I 

INTRODUCTION 

 

Recent advances in communication, computation, and embedded technologies 

have supported the development of NCSs. The NCS is defined as the combined system 

of controllers, actuators, sensors, and the communication network that interconnects 

them together. This NCS has the advantage of greater flexibility compared to traditional 

control systems. It also allows a lower installation cost with reduced wiring and permits 

greater agility in diagnosis and maintenance procedures [1].  

 

1.1   Modes of Control on the Network 

 

Many commercial companies and research institutes have shown interests in applying 

NCSs for remote industrial control and factory automation. As a result of extensive 

research and development in this area, various forms of NCSs exist in the automation 

industry. The classification of the modes of control depends on the communication 

architecture between the plant and the remote user. These various modes of control over 

the network can be classified into teleoperation, supervisory control, and closed-loop 

control over the network.  

Teleoperation systems allow human operators to execute tasks in remote or hazardous  

 ___________ 
This thesis follows the style and format of IEEE Transactions on Automatic Control.   
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environment like in space, underwater, or nuclear applications [2]. In teleoperation 

systems, however, the operator must depend on the feedback provided by sensory 

feedback systems to perform subsequent actions as shown in Fig. 1-1. Therefore, the 

operator’s limited perception of the environment could result in a poor performance. For 

this reason, researchers have been focusing their research attention on supervisory 

control.  

 

 

Fig. 1-1. Block diagram of a teleoperation system 

 

Supervisory control is based on a client-server architecture. In supervisory 

control, the user on a client station can give symbolic or analogical instructions remotely 

to a server computer attached to the manipulator instead of remotely guiding the tele-

manipulator as he does in the teleoperation systems. In supervisory control, the sensors, 

controllers, and actuators are located on the plant side as shown in Fig. 1-2. Like a 

teleoperation system, the control loop in supervisory control is also closed locally.  
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Fig. 1-2. Block diagram of a supervisory control system 

 

In feedback control over the network, the control loop is closed over the network. 

Fig. 1-3 describes a block diagram representing feedback control over the Internet. The 

controller receives data from the sensors and sends the control data to the actuators over 

the network.  

 

 

Fig. 1-3. Block diagram of a networked feedback control system 

 

The multiple-client NCS used in this research can be one of the applications of 

feedback control over the network. A server controller and multiple clients share the 

network as a communication medium. A block diagram of the multiple-client NCS is 

shown in Fig. 1-4. Success of this multiple-client NCS relies on the system stability. 
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Thus, network scheduling and optimal bandwidth allocation for these clients are key 

issues in this system.  

 

Communication Network

Server
(Controller 1, 2, and 3)

Client 1
(Plant 1)

Client 2
(Plant 2)

Client 3
(Plant 3)

Sensor 2 Actuator 2Sensor 1 Actuator 1 Sensor 3 Actuator 3

 

Fig. 1-4. Block diagram of the multiple-client NCS 

 

1.2   Objectives 

 

A study of closed-loop real-time control with multiple clients over a network is 

the main focus of the research. Following are its main objectives. 

 

1. Establishment of real-time closed-loop control over a network with three 

multiple clients, which are a steel-ball maglev system, a DC motor speed-

control system, and an autonomous wheelchair robot. 

2. Development of an algorithm that can identify the clients on the server side by 

socket programming.  
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3. Suggestion of the optimal sampling periods for each client system to maintain 

the system stability. 

 

1.3   Contributions 

 

The main contribution of this thesis is the implementation of closed-loop control 

over a network with multiple clients by experiments. Major accomplishments include (1) 

establishment of the network connection of a Window-based personal computer (PC) 

with a Linux server using Samba, (2) design of a multiple-client-NCS architecture, (3) 

implementation of this NCS’s communication architecture, and (4) suggestion of the 

clients’ sampling periods for system stability.  

 To establish a multiple-client NCS, a steel-ball maglev system, a DC motor 

speed-control system, and an autonomous wheelchair robot are used as NCS test beds to 

validate the proposed strategy. The server can identify the clients with their 

identification numbers included in the sensor data packets from the clients.  

The Windows-based robotic wheelchair is connected with the Linux server with 

Samba. The data-transmission time between the robotic wheelchair and the server is 

reduced significantly, and the robotic wheelchair can arrive at a destination without any 

collision with an obstacle with a certain bandwidth allocation.  

 For the network communication, socket programming is used. Since the robotic 

wheelchair uses a different type of the data packet from the server, Gateway is 

established between both systems to convert the data-packet type to another format.  
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 With PING tests, the operation times for each client are obtained. Based on these 

operation times, the relation between the network bandwidth utilization and the sampling 

period is presented. Some possible combinations of the sampling periods are suggested 

and verified to maintain the stability of the multiple-client NCS.  

 

1.4   Thesis Organization 

 

This thesis is organized as follows 

Chapter I provides a brief introduction of NCSs. The modes of NCSs are also 

given. This chapter also describes the objectives and contributions of this research. 

Chapter II explains the previous work done by other researchers in the area of 

NCSs. The literature review is divided into the modes of control on the network and the 

network scheduling.  

Chapter III describes in the detail the design of the multiple-client NCS which 

used in this research. It gives an overview of the existing experimental setup and its 

control scheme. 

Chapter IV explains the software design for the NCS. It describes the computing 

environment and design of the software architecture. 

Chapter V describes how each system can be operated and tested. With a series 

of experiments, the possible combinations of the sampling periods for each system are 

suggested and verified. 
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Chapter VI summarizes the achievements of this thesis. The future work towards 

further development of this NCS is also given. 
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CHAPTER II  

LITERATURE REVIEW 

 

In this chapter, previous work done by other researchers in the NCS field is 

described. Researchers have successfully developed several applications based on 

teleoperation and supervisory control. Real-time feedback control over networks also has 

been receiving increasing attention in the last few years.  

In NCSs, time delays take place due to sharing a common network medium. 

These delays may make the system unstable. It is important that the data should be 

transmitted within a sampling period and the stability of control systems should be 

maintained. 

 

2.1 Modes of Control on the Network 

 

With the advancement in industry automation, the Internet technology led the 

shift of the emphasis from centralized to distributed control systems. As a result of 

extensive research and development, various forms of NCSs have been performed. 

 

2.1.1 Teleoperation 

 

Early developments on teleoperation system were carried out in the area of space, 

underwater, and nuclear applications with the common aim of reducing risk to human 
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lives. Hirzinger et al. [3] developed a teleoperation-based method of a space flight with a 

multisensory gripper technology. This flight is teleoperated by astronauts using a control 

ball and a stereo-TV-monitor and can refine gross commands autonomously by local 

(shared autonomy) sensory feedback control concepts.  

Lin et al. [4] introduced virtual telepresence operation approach of underwater 

robots. This virtual telepresence interface takes robot’s position and orientation data 

from a sonar navigation system, and generates three dimensional (3D) synthetic images 

of the worksite based on its computer aided design (CAD) model using virtual reality 

technology. It gives the robot operators with a full perception of its spatial location, 

flexible options of viewpoints and functions for teleoperation of underwater robots.  

 

 

Fig. 2-1. Brokk – teleoperated robot for demolition [5] 

 

The primary use of telerobotics in decommissioning applications is to reduce the 

radioactive dose levels to which workers are exposed. An example of teleoperated robot 
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in this area is remote-control Brokk as shown in Fig. 2-1 [5]. A remote operation 

pendant allows the operator to be at a safe distance from high radiation areas and 

hazardous or falling debris. The Brokk is rugged enough for demolition work and small 

enough to work inside buildings. They are often electrically powered, through an 

umbilical cable, to make indoor working easier. A wide range of end-effector tools is 

available for most demolition tasks. Such teleoperated robots have become widely 

accepted throughout the decommissioning industry.  

Teleoperation is also used in the field of surgery. Cohn et al. [6] implemented a 

tactile feedback system with tactile sensor and display into a simple force-reflecting 

teleoperator. This can be provided by linking a tactile sensor on the manipulator to a 

tactile display worn by the user. The display can convey both symbolic and 

representational stimuli and human subjects were able to discriminate very small 

displacements. Madhani et al. [7] developed Black Falcon, a teleoperated surgical 

instrument for minimally invasive surgery (MIS). MIS is the practice of performing 

surgery through small incisions using specialized surgical instruments. Using with eight-

degree-of-freedom and cable-driven teleoperator, it allows motion scaling between the 

master and the slave. These advantages increase dexterity and enable tasks that were 

previously impossible such as suturing along arbitrarily oriented suture lines.  

From advanced manufacturing to daily applications, Internet-based telerobotic 

systems have the potential to provide significant benefits. Wang et al. [8] developed an 

Internet-based multiple-telerobot system as shown in Fig. 2-2. This system includes a 

web server, browser client, and local distributed system. Three cameras are also used to 
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provide online live video display. A browser client can operate, monitor, and simulate 

the local distributed system through the Hypertext Transport Protocol (HTTP) server. 

The HTTP server runs several threads to handle robot operations and obtain or deliver 

video information. Different functional software components are distributed on the host 

machine, target machines, and the robot controller.  

 

 

Fig. 2-2. Internet-based multiple-telerobot system architecture [8] 
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2.1.2 Supervisory Control 

 

Recently researchers have shown interests in applying supervisory control for 

their telerobot and test beds. Luo et al. proposed a desktop rapid prototyping system with 

supervisory control and monitoring through the Internet [9]. The user sends a 3D 

Computer-Aided Design (CAD) model via the Internet to a telecontrol server. The 

telecontrol server transforms the CAD model into a rapid-prototyping (RP) liquid-

crystal-diode (LCD) photomask display. The user can then direct the RP machine to 

build the RP part while watching a live image via the Internet. The overall system 

architecture of this telemanufacturing system is shown in Fig. 2-3. The online visual 

system allows inspection of RP part quality during manufacturing. A pattern matching 

algorithm which compares a grabbed image with the photomask monitors the part-

building process. 

 

 
Fig. 2-3. Overall system architecture of automated telemanufacturing system [9]. 
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Park and Sheridan [10] developed supervisory control of a six-degree-of-freedom 

telemaniuplator which was graphically simulated on an IRIS workstation. The system 

checks possible manipulator collisions with obstacles in the environment. The operator 

can specify intermediate locations that the manipulator tip is to pass through. If the 

system detects an impending collision, it uses heuristics to avoid it. 

Due to recent developments in the communications technology in the last 

decades, discrete-event systems constituted by entities or processes that exchange 

messages or coordinate the execution of a task. When a system includes features of both 

discrete events and continuous signals, it is called a hybrid system [11].  

Garcia et al. [12] developed a supervisory controller for a robotic teleoperation 

system with communication time delay, considering the hybrid systems theory. The 

discrete-event controller is based on discrete abstractions of the continuous dynamics. A 

supervisory control was designed to detect when force and position thresholds were 

overcome. The controller was developed to modify the reference sent from the local 

station to the remote station when a communication interruption arose.  

Wanga et al. [13] developed a hybrid supervisory control system for the optimal 

temperature control of a reheat furnace based on expert knowledge and pyrology. The 

developed control model can replace the human operator by auto-searching the proper 

operation points for the reheating process under variations of boundary conditions. The 

preset module can calculate the optimal preset value of the furnace temperature set point 

of each zone under different operation modes.  
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Ji et al. [14] discussed the supervisory control via the Internet of a ball-maglev 

system. This supervisory control is based on the client-server architecture, which is used 

primarily for computer network communication. The overall system architecture for the 

supervisory control of the maglev system over the Internet is depicted in Fig. 2-4. The 

maglev system is controlled using a common gateway interface (CGI) and a hypertext 

markup language (HTML) interface where a client can operate the maglev system and 

move the ball within its travel range. Stochastic nature of the Internet communication 

delays was also studied in reference to the various probabilistic models for the time 

delays. 

 

 

Fig. 2-4. Hardware architecture for the supervisory control of the ball-maglev system 

                  over the Internet [14]. 
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2.1.3 Closed-Loop Control over Networks 

 

While a teleoperation system and a supervisory control system are closed locally, 

feedback control allows the controller to be placed over the network, separated from the 

controlled process. Eker and Cervin [15] developed distributed wireless control using 

Bluetooth radio network. The distributed control configuration is shown in Fig. 2-5. A 

rotating inverted pendulum was used in the experiments. The sensor node is time-driven 

while the controller and actuator nodes are event-driven. The sensor samples the process 

periodically and sends the measurement values to the controller. Upon receipt, the 

controller calculates a new control signal and sends it to actuator node which outputs the 

value. A dynamic delay compensation scheme was simulated for random delays that 

might occur due to retransmissions.  

 

 

Fig. 2-5. Distributed wireless control system configuration using Bluetooth [15]. 
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Because of some limitations of Bluetooth, such as relatively low throughput and 

very limited range, a recent study focuses on the use of TCP/IP and UDP protocol. 

Ploplys and Alleyne [16] developed UDP network communications for distributed 

wireless control. In this system, sampling and actuation are clock-driven while control is 

event-driven, making the controller node a slave to the actuator/sensor node. The 

actuator/sensor node has access to a real-time clock, which it uses to send feedback 

precisely at each sampling interval. The controller need only wait to receive feedback 

from the sensor and quickly reply with a control action for the actuator. The effects of 

delayed time and its performance were studied.  

In feedback control over the network, there are two classes of time delays and 

packet losses in both the sensor feedback and control feedforward paths. Ambike [17] 

discussed the closed-loop real-time control over network of a ball-maglev system. An 

algorithm using predictors was designed to ensure the system stability in the presence of 

network delays and data packet losses. The system output was predicted several steps 

ahead and the control output was calculated using these predictions. This control output 

was used in the events of excessive network delay to maintain system stability.  

Network scheduling and bandwidth allocation is an important issue in NCS 

design when a set of plants or processes connected to the same network and share the 

limited bandwidth resource. Cervin and Eker [18] proposed a feedback scheduler for 

real-time-control tasks. Linear quadratic cost functions are used as performance 

indicators. The feedback scheduler calculates an optimal resource-allocation pattern. The 

feedback scheduler is demonstrated on a three-control-loop system. 
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2.2 Scheduling for NCSs 

 

To design an NCS, its control and communication aspects should be considered 

because the control performance is limited by the system bandwidth. Therefore, a 

network bandwidth allocation must be considered.  

Park et al. [19] presented a scheduling method for networked-based control 

system with three types of data: periodic data, sporadic data, and messages. All periodic 

data have to be transmitted within the respective sampling period to guarantee the 

system stability, while guaranteeing real-time transferring of sporadic data and minimum 

transmission of messages. 

Ji and Kim [20] developed a co-design methodology of dynamic optimal network 

bandwidth allocation. This dynamic bandwidth allocation algorithm makes scheduling 

decisions based on the quality of performance information of the control loop. With the 

consideration of time-varying sampling frequencies, the system can be performed 

efficiently.  
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CHAPTER III  

TEST-BED SETUP AND ITS CONTROL 

 

Based on the previous chapter, the multiple-client NCS is proposed in this 

research for closed-loop feedback control over the network. A server controller and 

multiple clients share the network as a communication medium. The overall system 

architecture of this multiple-client NCS is shown in Fig. 3-1.  

 

 

Fig. 3-1. Overall system architecture of the multiple-client NCS 
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Three client physical systems are used as test beds in this research: Client 1 - the 

single-actuator ball maglev system developed by Paschall [21], Client 2 - a DC motor 

closed-loop speed control system, Client 3 - an autonomous wheelchair robot developed 

by Hsieh [22]. Each test bed and designed control system is introduced in this chapter.  

 

3.1 Client 1 - Ball-Maglev System 

 

 

Fig. 3-2. Ball-maglev system used as Client 1 

 
The single-actuator ball maglev system developed by Paschall [21] is used as 

Client 1. This test bed can levitate a small steel ball at a predetermined steady-state 

operating position with an electromagnet. The maglev system shown in Fig. 3-2 consists 

of essentially of a platform test bed and a Linux PC with a data-acquisition board. The 
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test bed contains an electromagnetic actuator, an optical position sensor, a pulse-width- 

modulation (PWM) power amplifier, and power supplies.  

This system contains two sub-parts. These are the position-sensing part and the 

force-actuating part. The optical position-sensing part consists of a photocell-based 

sensor, an incandescent light source, and a 15-V DC power supply. The unit allows the 

photocell to be exposed to the bulb light as a function of the ball position. This variable 

light exposure on the photocell results in a change of its electrical resistance. The force- 

actuating part consists of an electromagnet coil, a PWM amplifier, and a 24-V DC power 

supply. The control signal is given to the electromagnet coil through the PWM amplifier 

to control the levitated ball’s position. 

Fig. 3-3 shows a schematic diagram of the maglev system. The electromagnet 

was made by wrapping an iron core of high permeability with a copper wire. When an 

electrical current passes through the wire, the actuator creates an attractive force to the 

steel ball. A position sensor, the photocell, detects the vertical position of the ball and 

passes this information to the controller.  

 

 

Fig. 3-3. The schematic diagram of the maglev system [21] 
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The small-sized open-loop plant transfer function developed by Paschall [21] is  

2

( ) 1

( )

Y s m
As B AI s

∧

∧

− ⎡ ⎤= ⎢ ⎥− ⎣ ⎦
                                                (3.1) 

with 

2

2
I AsA
g m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦         (3.2)

 

I AB
a Y m

⎡ ⎤= ⎢ ⎥+ ⎣ ⎦ ,        (3.3) 

where = 9.81 m/s2 is the gravitational constant, g I = 0.5236 A and Y = 0.005 m are the 

operating points, and = 2.49 mm is a geometric constant in the ball maglev system.  a

 The position information provided by the photocell sensor is used as feedback to 

achieve closed-loop stability. Fig. 3-4 describes a block diagram for the feedback control 

of the ball maglev system.  

 

 

Fig. 3-4. Block diagram for the feedback control of the ball-maglev system [21] 
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In [21], the controller designed in continuous time domain is given by 

              

2 6

2

33300 2.564 10 1.632 10
700.7 490

s s
s s

− − × − ×
+ +

7

.
                                    (3.4) 

The controller maintained the following transient response requirements. 

Settling Time( st ) ≤  1  s

Percentage Overshoot ≤50% 

 

Linux with Real-Time Application Interface (RTAI) is used as the OS. A PCI-

6025E card by National Instruments is used for data acquisition. One of the analog-to-

digital (A/D) converters is used to read the optical sensor input. The voltage output 

signal from the digital-to-analog (D/A) converter is fed to the PWM amplifier.   

Srivastava [23] designed the digital controller for the 333 Hz sampling frequency 

as 

            

2
4

2

1.754 0.769( ) 4.15 10
0.782 0.13

z zD z
z z
− +

= ×
− −

 .                            (3.5) 

 

3.2 Client 2 - DC Motor Speed-Control System 

 

A DC motor speed-control system is used as Client 2. A block diagram to 

illustrate DC motor closed-loop speed control is given in Fig. 3-5. The speed of a DC 

motor is directly proportional to the supply voltage. The speed command is a DC voltage, 

which is fed to the PWM amplifier. This drives the motor at a speed dependant on the 
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commanded voltage. The shaft angular displacement per unit time of the motor is 

sampled using the encoder. 

 

 

Fig. 3-5. Block diagram for DC motor speed control 

 

The electric circuit of the armature and the free-body diagram of the rotor are shown in 

Fig. 3-6. 

 

 

Fig. 3-6. The electric circuit of the armature and the free-body diagram of the rotor [24] 

 

 Using the parameters given the DC motor datasheet [25], the plant transfer 

function is obtained as [26] 

20.2( )
9.92 2.57

G s
s

=
+ .                                                     (3.6) 
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A proportional-integral (PI) controller can be designed as [26] 

1.5 5( ) P IK s K sG s
s s
+ +

= =
.                                          (3.7)

 

From (3.4), we can get the discrete-time controller as 

            ( ) ( 1) [ 0.5 ] ( ) [0.5 ] ( 1)P I I Pu k u k K K h e k K h K e k= − + + + − −

                       ,                          (3.8) ( 1) [1.5 2.5 ] ( ) [2.5 1.5] ( 1)u k h e k h e k= − + + + − −

where  is the sampling period. Various sampling periods will be tested to operate 

Client 2. Refer to Section 5.2.2 for details. 

h

 

3.3 Client 3 - Autonomous Wheelchair Robot  

 

 
Fig. 3-7. Autonomous wheelchair robot used as Client 3 
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In this research, the autonomous wheelchair robot [22] is used as Client 3 as 

shown in Fig. 3-7. The robotic wheelchair is built upon the base frame of an Invacare 

Ranger IITM electric powered wheelchair. The frame is 70-cm long and 48-cm wide with 

a height of 55cm. This wheelchair is driven by two independent 12-V DC motors for the 

front wheels with a diameter of 31.75 cm with built-in reduction gears that provide a 

maximum speed of 6 km/hr. Two MC-7 motor controllers are used for motion control. 

The stability of the platform is ensured by two 18-cm-diameter castors in rear. 

 

 
Fig. 3-8. Sensor system of the autonomous wheelchair robot [22] 

 

The sensor bracket is mounted at the front. The wheelchair robot has seven CdS 

light-sensitive resistors which are also known as photocells, five distance-measuring 
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sensors, and two Hall-effect sensors as shown in Fig. 3-8 [22]. The wheelchair robot has 

the capability of tracking a motion trajectory defined with a light with the photocells. If 

any of the three photocells on the left bracket, then the wheelchair turns left until the 

front photocell detects the light. In the opposite way, if any of the three photocells on the 

right detects the light, the wheelchair turns right until the front photocell detects the light. 

 

Table 3-1. Motion of the robotic wheelchair for each sensor signal [22]. L, H, F, TR, TL, 

   and S are denoted low, high, forward, turn right, turn left, and stop respectively. 

(a) The signal of the front GP2D15 is low 

Left 
GP2D12 

L L L L L L L L H H H H H H H H 

Left 
GP2D15 

L L L L H H H H L L L L H H H H 

Right 
GP2D12 

L L H H L L H H L L H H L L H H 

Right 
GP2D15 

L H L H L H L H L H L H L H L H 

Movement 
of Robot 

F TL TL TL TR F F TL TR F F F TR F TR F 

 
(b) The signal of the front GP2D15 is high 

Left 
GP2D12 

L L L L L L L L H H H H H H H H 

Left 
GP2D15 

L L L L H H H H L L L L H H H H 

Right 
GP2D12 

L L H H L L H H L L H H L L H H 

Right 
GP2D15 

L H L H L H L H L H L H L H L H 

Movement 
of Robot 

S TL TL TL TR S S S TR S S S TR S S S 
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Three GP2D15 and two GP2D12 infrared distance-measuring sensors 

manufactured by Sharp are used to detect obstacles. The GP2D15 infrared sensor detects 

obstacles at a 25-cm range and the GP2D12 sensor, at 70 cm. The GP2D12 infrared 

sensors are assembled on the right and left side. One GP2D15 infrared sensor is mounted 

at the front. Two GP2D15 infrared sensors mounted on the right and left side just beside 

the GP2D15 infrared sensors. According to each condition of the infrared sensors’ signal, 

we can set the movement of the robotic wheelchair as Table 3-1. 

The sensors generate the output voltage signals fed to the A/D converters on the 

data-acquisition card which is installed on the laptop on the top. The laptop receives 

these sensor signals from the card, sends the data to the server over the wireless network. 

The server makes control data to avoid the obstacles and sends the data to the laptop 

over the network. 

The control data from the laptop goes to MC-7 motor controller through the data-

acquisition card. A SuperLogic PCMDIO 24-channel digital I/O type II Personal 

Computer Memory Card International Association (PCMCIA) card [27] is used as data-

acquisition card to perform data-acquisition and control performance. Each MC-7 

controller drives an electric motor in both the forward and backward directions. By this 

function the wheelchair can turn in a circle at an original point with one wheel moving 

forward and the other moving backward.  Two decade-counter chips are used to count 

the pulses generated by the Hall-effect sensors. By this function, it is possible to measure 

the moving distance of the wheelchair robot.  
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CHAPTER IV 

SOFTWARE DESIGN 

 

In this chapter the computing environment and software architecture of the 

systems are discussed. First, the real-time OSs and the network protocol are described. 

The developed software architecture is also presented. The Windows-based wheelchair 

robot is integrated to the Linux server using Samba. The socket architectures provided in 

the last part of this chapter.  

 

4.1 Computing Environment 

 

The multiple-client NCS consists of one server and three clients. Software codes 

for Clients 1 and 2 are written in C language on Linux with RTAI and Comedi. Software 

code for Client 3 is written in Microsoft Visual Basic 6.0 on Windows XP and connected 

to the server over the wireless network.  

 

4.1.1 Needs for Real-Time Operating System 

 

Fig. 4-1 describes the client-server architecture in the closed-loop control system 

over the network. The client side implements the sensor and the actuator. The sampling 

is done at a certain fixed frequency. A new sample of the sensor data is taken for every 

sampling period. The sensor data by the client are sent to the server which implements 
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the controller over the network. The server calculates the control data and sends the 

message to the client. Before receiving the sensor data from the client, the server side 

waits for the arrival of sensor data from the client. As soon as the sensor data arrive, the 

control data are calculated and sent by the server. Thus, the sensor and the actuator on 

the client side are time-driven whereas the controller is event-driven.  

 

 

Fig. 4-1. Block diagram of closed-loop NCS 

 

The events have certain deadlines. If these deadlines are missed, the control 

system would be lost the system stability. In other words, the feedback control loop 

should be completed in these deadlines. Client 1 needs very fast response from the server 

to maintain the stability of the system. Srivastava demonstrated the control data should 

be arrived from the server in 1.4 ms for 333.333 Hz in [23]. Client 2 also needs fast 

response for system stability. However, Client 3 does not need fast response to avoid an 

obstacle. In this research, the different sampling periods for each client are suggested 

and tested.  
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4.1.2 Operating System Environment 

 

In order to ensure that Linux server, Clients 1, and 2 perform these tasks at 

correct time, real-time OS is needed. Linux with RTAI was found as a competitive OS 

environment for Clients 1 and 2 in [17]. The clock resolution of Linux is better than 

Windows-based OS. But Linux alone lacks real-time performance. RTAI modifies Linux 

kernel to make it a real-time operating environment. RTAI basically supports the same 

performances as the Linux kernel core, adding the features of a real-time OS [28].  

For data acquisition, Comedi was installed and is used at Clients 1 and 2. Comedi 

is a free software project that develops tools, libraries, and drivers for various forms of 

data acquisition. Comedi works with standard Linux kernels like RTAI. Comedi consists 

of comedi and comedilib. Comedi is a collection of drivers for a variety of common data 

acquisition plug-in boards. Comedilib provides the developer-friendly interface to the 

Comedi devices [29].   

The programs for Linux server, Clients 1, and 2 are written in C programming 

language. Client 3 is built on Windows XP. Although Windows XP is not real-time OS, 

it is fast enough to control Client 3. In addition, previous software programs of the 

robotic wheelchair were written in Microsoft Visual Basic 6.0 on Windows. In the 

current research, the software of Client 3 is modified in Microsoft Visual Basic 6.0. 

PCMDIO data acquisition-card and the PCMDRIVE data-acquisition software [30] were 

made for Windows-based OS only.  
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4.1.3 Communication Network Protocols 

 

The TCP/IP protocol suite is used in this research. This suite contains two 

network protocols, TCP and UDP. The main difference is that TCP is slow, reliable, and 

connection-oriented whereas UDP is fast, unreliable, and connectionless.  

TCP guarantees delivery of data and also guarantees that packets will be 

delivered in the same order in which they are sent. Being connection-oriented means that 

before transmitting data, the connection between the server and the client is opened. The 

data can be transferred in full duplex. When the transfer is completed, the connection is 

closed to free system resources. Handshaking signals are used for making and closing 

the connection. If time delay or data loss takes place, the client re-requests the packet to 

the server until the whole packet is completed. Although TCP is a reliable protocol for 

network communications, it is unsuitable for a client requiring a high sampling 

frequency such as Client 1. Due to various services like error checking and ensuring 

ordered data delivery, TCP has large overheads and may waste bandwidth. An additional 

time delay can be introduced to the system. 

UDP can be an alternative network-protocol choice. UDP is connectionless 

protocol, and a datagram can be sent at any moment without any preparation. UDP does 

not guarantee that the datagram will be delivered to the destination host, and it can also 

be delivered in an incorrect order. Although UDP is unreliable protocol, it has fewer 

overheads. This makes UDP much faster compared to TCP; it introduces less time delay 

than TCP does.  
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Based on these considerations, UDP is used for Clients 1 and 2 in this research. 

Because Client 1 needs a fast response from the server, UDP is more suitable protocol 

for it. Since UDP has no guarantees for transferring data, predicted control data is 

needed to maintain the stability of the system. If data loss or time delay takes place, the 

client uses the predicted control data transmitted in previous data packets.  

Ambike designed an 8th order 4-step-ahead predictor for Client 1 using with auto-

regressive (AR) models. The following prediction equations were developed for Client 1 

using MATLAB [17]. 

ˆ( 1) 0.8122 ( ) 0.3479 ( 1) 0.0294 ( 2) 0.4605 ( 3)
0.0742 ( 4) 0.1042 ( 5) 0.1117 ( 6) 0.3561 ( 7)

y t y t y t y t y t
y t y t y t y t

+ = − − − − + −
+ − + − + − − −

−

  (4.1) 

ˆ( 2) 0.3117 ( ) 0.3119 ( 1) 0.4366 ( 2) 0.4482 ( 3)
0.1645 ( 4) 0.1964 ( 5) 0.2653 ( 6) 0.2892 ( 7)

y t y t y t y t y t
y t y t y t y t

+ = − − + − + −
+ − + − − − − −

  (4.2) 

ˆ( 3) 0.0587 ( ) 0.3281 ( 1) 0.4390 ( 2) 0.3080 ( 3)
0.2195 ( 4) 0.2329 ( 5) 0.2544 ( 6) 0.1110 ( 7)

y t y t y t y t y t
y t y t y t y t

+ = − + − + − + −
+ − − − − − − −

  (4.3) 

ˆ( 4) 0.2804 ( ) 0.4594 ( 1) 0.3097 ( 2) 0.1925 ( 3)
0.2372 ( 4) 0.2605 ( 5) 0.1176 ( 6) 0.0209 ( 7)

y t y t y t y t y t
y t y t y t y t

+ = + − + − + −
− − − − − − +

  (4.4) 

 

4.1.4 Integrating the Windows-based Robotic Wheelchair to the Linux Server Using 

Samba 

 

Due to the OS mismatch between Linux server and Client 3, Samba [31] 

software is used to put both systems together on the same Local Area Network (LAN) as 

shown in Fig. 4-2. Samba allows the Linux PC to interact with the Windows-based PC. 
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Using Samba, the wheelchair robot is connected to the server on the same LAN with a 

fast data-transmission speed. With the Packet Internet groper (PING) utility, the round-

trip time of interfacing between Linux server and Client 3 can be measured [32]. PING 

is a simple application used to check whether a host PC is online and available. PING 

makes Internet Control Message Protocol (ICMP) messages. The purpose of an ICMP is 

to inform sending hosts about errors encountered in the IP datagram processing or other 

control information by destination hosts. PING sends one or more ICMP Echo messages 

to a specified host, requesting a reply.  

 

 
Fig. 4-2. Robotic wheelchair and the Linux server are on a same LAN using Samba 

 

The round-trip times between Windows-based Client 3 and Linux server with 

Samba are compared to those without using Samba as shown in Table 4-1. It takes about 

30.8 ms to process a round-trip task between the robotic wheelchair and the server 

without Samba whereas just 11.2 ms is taken using Samba. The round-trip time without 
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Samba is about three times as long as using Samba. This delayed time can have a 

negative effect on the system stability.   

 

Table 4-1. Round-trip time between Window-Based Client 3 and Linux server  

No. 
with Samba without Samba 

Min. Max. Avg. Min. Max. Avg. 

1 1 ms 47 ms 10 ms 4 ms 156 ms 27 ms 

2 2 ms 56 ms 12 ms 5 ms 100 ms 26 ms 

3 1 ms 83 ms 14 ms 6 ms 167 ms 38 ms 

4 1 ms 53 ms 11 ms 4 ms 162 ms 29 ms 

5 2 ms 62 ms 9 ms 5 ms 169 ms 34 ms 

Average  1.4 ms 60.2 ms 11.2 ms 4.8 ms 150.8 ms 30.8 ms 

 

Using Samba has two advantages. First, the data-transmission time between the 

server and the client with Samba is faster than without it. The data-transmission time is 

an important factor for system stability. The wheelchair robot cannot avoid an obstacle 

unless it receives the control data from the server in time. The detailed data-transmission 

time between the wheelchair robot and the server is provided in Section 5.2.3. The 

second advantage of using Samba is that the data file of the wheelchair robot can be 

saved on the server side. This data file contains the output signals of the Hall-effect 

sensors. The wheelchair robot can read and write the data file in a shared folder on the 

Linux server. The user on the server side can access the data file easily as depicted in Fig. 

4-3.  
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Fig. 4-3. Saved data file of Client 3 in a shared folder on the Linux server 

 

4.2 Development of Software Architecture 

 

In order to identify the individual clients, client identification numbers are 

needed for the server. Each client sends sensor data packets including its unique 

identification number to the server side. The server receives and reads the sensor data 

packets and then generates the control data packets for each client. The compositions of 

the sensor data packet and the control data packet for the multiple-client NCS are 

provided in this section. The developed software architecture is also given in the last part 

of this section. For all software codes presented in this section, refer to Appendix.  

 

4.2.1 Identification of Clients 

 

In order for the server to identify the client that sent a data packet, the 

identification number of each client is included in the UDP packet from the client side. 
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Once the sensor data arrive at the server side, the server reads the identification number 

and then calculates the control data for the specific client. The algorithm to identify the 

client on the sever side is shown in Fig. 4-4.  

 

 

Fig. 4-4. Algorithm to identify the client on the server side 
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4.2.2 UDP Packet Composition 

 

With UDP, the composition of IP packet was developed. The composition of a 

typical 68-bytes-long sensor data packet going from the client to the server is shown in 

Fig. 4-5. It consists of a 20-byte-long IP header, an 8-byte-long UDP header, an 8-byte-

long time stamp, a seven 4-byte-long sensor data values, and a 4-byte-long identification 

number. A time stamp is taken on the client side at sampling and the server sends it back 

to the client for identifying whether the arrived data packet is the expected data packet or 

a delayed one. Delayed data packets are discarded by the client. Using the identification 

number, the server can identify the client. Clients 1, 2, and 3 have their unique 

identification numbers as 1, 2, and 3, respectively. After sensor data arrive from the 

client, the server reads the last section of the data packet and identifies which client sent 

the data. Then the server calculates the control data for this client.  

 

0y 1y− 2y− 3y− 4y− 5y− 6y− 7y−

 
Fig. 4-5. Modified composition of a sensor data packet from the client to the server from 

  [33] 
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The composition of a typical 56-byte-long control data packet transferred from 

the server to the client is shown in Fig. 4-6. It consists of a 20-byte-long IP header, an 8-

byte-long UDP header, an 8-byte-long time stamp, one 4-byte-long current control data 

value, and four 4-byte-long predicted control data values. 

 

0u 1u 2u 3u 4u

 

Fig. 4-6. Composition of a control data packet from the server to the client [33] 

 

4.2.3 Network Interface for Client 3 

 

For the network communication, socket programming is used. A client makes a 

socket consisting of a sensor signal and sends this socket to the server. After receiving 

the socket, the server reads it and makes socket of control data. Then, the server sends 

back the socket of control data to the client for its performance.  

In this research, the data sockets that are transferred between the server and the 

client are of a user defined type (UDT). Client 3 with Microsoft Visual Basic 6.0 uses 

Winsock for data transmission. However using Winsock, we can transfer only string-

data-type packets. In order to make network connection between Linux server and Client 

3, an additional component that can convert data types is needed. This component is 
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called as Gateway in this research. Gateway makes UDT sockets for the server using 

string-data-type packets from Client 3 and produces string-data-type packets for Client 3 

using with UDT sockets from the server.  Software code for Gateway is written in C 

programming language on Linux.  A schematic of network interface between Linux 

server and Client 3 is shown in Fig. 4-7.  

 

 
Fig. 4-7. Schematic of network interface between Linux server and Client 3 

 

Client 3 is controlled by Linux server over a wireless network. Hsieh [22] 

developed the wireless connection using with the Tamulink Wi-Fi access as shown in 

Fig. 4-8 [34]. The user on the server side could control the robotic wheelchair with 

Winsock. Since the controller was placed on the client side as in supervisory control, 

however, the server could not receive any feedback signal from the client.  

 

 
Fig. 4-8. Block diagram of supervisory control of the robotic wheelchair [22] 
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Fig. 4-9 depicts the feedback control over a wireless network realized in this 

thesis of Client 3. The sensor data from Client 3 are sent to Gateway and the control data 

from Gateway are transferred to Client 3 over the Tamulink wireless network. Gateway 

is connected with Linux server over Tamulink wired network. In this system, the 

controller is placed on the server side. Its interface with Client 3 is shown in Fig. 4-9. 

The dashed arrows between Gateway and Client 3 indicate the Tamulink wireless 

network. 

 

+

-

Controller

Server Side

Sensor
system

Client Side

Robot 
wheelchair

Motion

Gateway Wireless
Tamulink

Wired
Tamulink

Gateway Side  

 
Fig. 4-9. Schematic of feedback control over the Tamulink wireless network of Client 3 

 

 
Fig. 4-10. Interface of the Client 3 program 
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The software program of Client 3 was written in Microsoft Visual Basic 6.0. Fig. 

4-10 shows the user interface when the Client 3 program starts. All sensor signals are 

displayed in each window and are sent to Gateway.  

 

 

Fig. 4-11. Overall data-transmission architecture for Client 3 
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The overall data-transmission architecture for Client 3 is depicted in Fig. 4-11. 

The dashed lines between Gateway and Client 3 indicate actual data-packet 

transmissions over the Tamulink wireless network. Gateway creates two sockets; ‘sd’ for 

Client 3 and ‘sockid’ for Linux server. The source code to create sockets is given as  

sd = socket(AF_INET, SOCK_DGRAM, 0) 

sockid = socket(AF_INET, SOCK_DGRAM, 0). 

When the sensor data socket arrives from Client 3, Gateway saves it with one socket and 

reads the data. The source code to receive packets is shown as 

cr = recvfrom(sd, recv_msg, 10, 0, (struct sockaddr *) 

&client_addr, &clilen). 

The length of sensor data is fixed as 10 bytes which does not include header data. The 

UDT packets for Linux server are made and sent as shown in Fig. 4-12. 

 

 

Fig. 4-12. UDT sensor data packet created by Gateway 
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The source code for sending UDT packets from Gateway to Linux server is given 

as follows. 

nw=sendto(sockid, (const void *)send_buffer, 

send_buffer_size, 0,(struct sockaddr *) &server_addr, 

addrlen) 

Linux server receives the UDT packets and makes the control data packets as shown in 

Fig. 4-13. The movement-commnad value can be 10, 7, 5, 2, and 0. The meanings of 

each value are described in Table 4-2. The UDT control data are converted to the string-

data-type control data by Gateway.  

0u

 

Fig. 4-13. UDT control data packet created by Linux server 

 

Table 4-2. Meanings of UDT control data for movement 

value meaning convert as 

10 Moving Forward fwd 

7 Turn Right  right 

5 Moving Back back  

2 Turn Left left 

0 Stop  stop 
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With the UDT control data packets from Linux server, Gateway makes another 

control data packets for Client 3. The source code for sending the control data is given as 

follows. 

Switch(u0){ 

  Case(10): 

    cw = sendto(sd, fwd, 5, 0, (struct sockaddr *)_ 

&client_addr, clilen); 

    break; 

  Case(7): 

    cw = sendto(sd, right, 5, 0, (struct sockaddr *)_ 

&client_addr, clilen); 

    break;  

 Case(5): 

    cw = sendto(sd, stop, 5, 0, (struct sockaddr *)_ 

&client_addr, clilen); 

    break;  

 Case(2): 

    cw = sendto(sd, left, 5, 0, (struct sockaddr *)_ 

&client_addr, clilen); 

    break;  

 Case(0): 
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    cw = sendto(sd, back, 5, 0, (struct sockaddr *)_ 

&client_addr, clilen); 

    break; 

} 

Client 3 receives and reads the control data with string-data-type. The source code for 

receiving and calling the motion function are given as follows. 

Dim recData As String 

Winsock.GetData recData  ‘receiving the data packet 

Select Case recData 

 Case “fwd”  

  Call Front 

 Case “right” 

  Call TurnRight 

 Case “left” 

  Call TurnLeft 

 Case “back” 

  Call Back 

 Case “stop” 

  Call StopRobot 

According to the called motion functions, the robotic wheelchair moves with collision-

avoidance. The Gateway program is included in Appendix of this thesis.  
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CHAPTER V 

OPERATION AND TESTING 

 

In the previous chapter, the designed software programs for each client or server 

system are presented. This chapter describes how the sampling period of each system is 

determined and tested. In order to obtain the sampling period of each system, the 

operation time for each control loop is measured. Based on the relation between the 

bandwidth utilization and the sampling period for each control loop, the ranges of the 

sampling periods to ensure stability are presented. In the last part of this chapter, 

possible combinations of the sampling periods are suggested and experimented.  

 

5.1 The Operation Time for Each Control Loop 

 

From [19], the relation between the bandwidth and the sampling period for each 

control loop is given by  

    i
i

i

b
h
τ

= ,   0 1ib< < ,                                                   (5.1) 

where  is assignable partial bandwidth to the i th control loop, and ib iτ  is the operation 

time to perform each closed-loop operation. The operation time iτ  can be expressed as 

, ,i i SC i CS iT T T ,Pτ = + + ,                                                     (5.2) 
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where  is the data-transmission time from the server to the client and is the 

data-transmission time from the client to the server as shown in Fig. 5-1. Let be the 

time needed for data processing such as sensor sampling, actuator actuating, and 

controller calculating the control data for control loop i . The data processing time is 

given as 

,i SCT ,i CST

,i PT

, , ,i P i PS i PCT T T= + .                                      (5.3) 

 

,i PCT,i PST

,i CST

,i SCT

 

Fig. 5-1. Operation time to performed each control loop i . 

 

The PING utility is also used to measure  and  for each system. Because 

the sizes of control data and sensor data are different, the PING test was performed 

separately. Since the PING measures the round-trip time,  and can be obtained 

by dividing the round-trip time by 2.  

,i SCT ,i CST

,i SCT ,i CST

In order to measure the data-processing time for each system, the functions 

timeGetTime() for Client 3 written in Microsoft Visual Basic 6.0 and 
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rt_get_cpu_time_ns() for a Linux PC are used. The timeGetTime() 

function returns the time in milliseconds, and the rt_get_cpu_time_ns() function, 

in nanoseconds. The software architecture to measure the data-processing time is 

depicted in Fig. 5-2.  

 

 

Fig. 5-2. Software architecture of measuring the data processing time 
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5.1.1 Client 1 

 

The round-trip time between Linux server and Client 1 is measured by the PING 

test five times. Each PING test takes 100 round-trip times and gives the minimum, 

maximum, and average value. The results of these experiments are presented in Tables 

5-1 and 5-2.   

 

Table 5-1. Round-trip time from Linux server to Client 1,  1,SCT

Experiment 

No. 
Bytes in packet

Round-trip times (ms) 

Minimum Maximum Average 

1 56 0.342 0.441 0.382 

2 56 0.362 0.434 0.388 

3 56 0.362 0.447 0.397 

4 56 0.346 0.472 0.387 

5 56 0.354 0.424 0.392 

Average 56 0.353 0.443 0.388 

 

Table 5-2. Round-trip time from Client 1 to Linux server,  1,CST

Experiment 

No. 
Bytes in packet 

Round-trip times (ms) 

Minimum Maximum Average 

1 68 0.352 0.454 0.391 

2 68 0.344 0.443 0.392 

3 68 0.337 0.473 0.386 

4 68 0.363 0.456 0.394 

5 68 0.358 0.478 0.402 

Average 68 0.351 0.461 0.393 
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The data-processing time for Client 1 can be obtained as shown in Table 5-3.  

 

Table 5-3. Data processing time for Client 1 

 

No. Server (ms) Client (ms) Total (ms) 

1 0.102 0.812 0.914 

2 0.115 0.800 0.915 

3 0.102 0.832 0.934 

4 0.105 0.796 0.901 

5 0.117 0.792 0.909 

Avg. 0.108 0.806 0.915 

Then, we can obtain the total operation time between Linux server and Client 1 as 

1 1, 1, 1,SC CS PT T Tτ = + +  

    (0.388 0.393) 0.915 1.306
2
+

= + = ms,      (5.4) 

which is the same result with [23]. 

  

5.1.2 Client 2 

 

The round-trip time from Linux server to Client 2 is presented in Table 5-4, and 

that from Client 2 to Linux server is shown in Table 5-5. , the transmission time 

from Linux server to Client 2 is found to be 0.480 ms, and  the transmission time 

from Client 2 to Linux server, 0.489 ms. 

2,SCT

2,CST
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Table 5-4. Round-trip time from Linux server to Client 2,  2,SCT

Experiment 

No. 
Bytes in packet 

Round-trip times (ms) 

Minimum Maximum Average 

1 56 0.402 0.976 0.512 

2 56 0.432 0.554 0.476 

3 56 0.378 0.506 0.454 

4 56 0.408 0.542 0.478 

5 56 0.408 0.512 0.478 

Average 56 0.406 0.618 0.480 

 

Table 5-5. Round-trip time from Client 2 to Linux server,  2,CST

Experiment 

No. 
Bytes in packet 

Round-trip times (ms) 

Minimum Maximum Average 

1 68 0.412 0.532 0.484 

2 68 0.432 0.524 0.484 

3 68 0.418 0.532 0.492 

4 68 0.434 0.522 0.492 

5 68 0.410 0.532 0.492 

Average 68 0.421 0.528 0.489 

 

The transmission time between Linux server and Client 2 is longer than that of 

Client 2 because of the system capability. The PC of Client 1 is a 1.7-GHz Pentium IV 

processor whereas the PC for Client 2 is a 133-MHz Pentium III. This difference of 

system capacity may introduce the time delay between the server and the client.  
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The data-processing time of Client 2 was measured as shown in Table 5-6. On 

the server side, the processing time is smaller than that of Client 1. It means that the time 

to calculate the control data for a DC motor is shorter than that for the ball-maglev 

system.  

 

Table 5-6. Data processing time for Client 2 

 

No. Server (ms) Client (ms) Total (ms) 

1 0.096 0.771 0.867 

2 0.092 0.771 0.863 

3 0.088 0.775 0.863 

4 0.097 0.772 0.869 

5 0.099 0.771 0.87 

Avg. 0.094 0.772 0.866 

Then, we can obtain the operation time between Linux server and Client 2 as 

2 2, 2, 2,SC CS PT T Tτ = + +  

    (0.480 0.489) 0.866 1.350
2
+

= + =

,

ms.      (5.5) 

 

5.1.3 Client 3 

 

In order to measure the operation time for Client 3, we need to take Gateway into 

consideration. Thus, the operation time for Client 3 is given by 

3 3, 3, 3, 3, 3SG GS GC CG PT T T T Tτ = + + + +  ,      (5.6) 
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where is the data-transmission time from Linux server to Gateway, is the data-

transmission time from Gateway to Linux server,  is the data-transmission time 

from Client 3 to Gateway, and  is the data-transmission time from Client 3 to 

Gateway.  

3,SGT 3,GST

3,GCT

3,CGT

3,PT  is data-processing time as given 

3, 3, 3, 3,P PS PG PCT T T T= + +  .       (5.7) 

Fig. 5-3 describes the operation time for Client 3 with Gateway. 

 

 

Fig. 5-3. Operation time for Client 3 with Gateway 

 

The round-trip time between Linux server and Gateway is shown in Tables 5-7 

and 5-8. The transmission time between Linux server and Gateway is longer than other 

clients since these two PCs are connected with different LANs. Fig. 5-4 describes the 

LAN connections for the multiple-client NCS developed in this research. Gateway and 

Client 3 are on the same LAN and connected to the default gateway 2 with the IP 

address 192.168.2.100 whereas Linux server, Clients 1, and 2 are connected to the 

default gateway 1 with the IP address 165.91.95.1. To transfer the data packet over 
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different LANs, the data pass through these default gateways 1 and 2. That is why the 

transmission time between Linux server and Gateway is longer than that between Linux 

server and Client 1 or 2. In the case of the transferring the data packet in a same LAN, 

the data packet can be transmitted by passing through just its default gateway.  

 

Table 5-7. Round-trip time from Linux server to Gateway,  3,SGT

Experiment 

No. 
Bytes in packet

Round-trip times (ms) 

Minimum Maximum Average 

1 56 0.856 1.896 1.133 

2 56 0.738 1.289 0.828 

3 56 0.735 1.560 0.841 

4 56 0.740 1.966 0.925 

5 56 0.754 1.291 0.814 

Average 56 0.765 1.600 0.908 

 

Table 5-8. Round-trip time from Gateway to Linux server,  3,GST

Experiment 

No. 
Bytes in packet 

Round-trip times (ms) 

Minimum Maximum Average 

1 68 0.747 1.744 0.962 

2 68 0.764 2.680 0.967 

3 68 0.752 2.682 0.945 

4 68 0.770 1.700 0.934 

5 68 0.748 2.503 0.883 

Average 68 0.756 2.262 0.938 
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Fig. 5-4. LAN connections for the multiple-client NCS 

 

The results of the transmission time between Client 3 and Gateway with Samba 

is shown in Table 5-9 and Table 5-10. Since Windows-based Client 3 is connected to 

Gateway with Tamulink wireless network, the transmission time between Client 3 and 

Gateway is very long. Since the wireless network is unstable and the round-trip times 

fluctuate widely, each PING test takes 1000 round-trip times in this experiment whereas 

other experiments over the wired network take just 100 round-trip times. In order to 

reduce the transmission time between Client 3 and Gateway, the both systems were put 

on the same LAN using Samba.  is measured by Window-based Client 3 with a 1-

ms resolution whereas  is measured by Gateway with a 1-ns resolution. 

3,CGT

3,CGT
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Table 5-9. Round-trip time from Client 3 to Gateway,  3,CGT

Experiment 

No. 
Bytes in packet 

Round-trip times (ms) 

Minimum Maximum Average 

1 38 1 52 12 

2 38 2 45 14 

3 38 1 45 11 

4 38 1 64 13 

5 38 1 63 11 

Average 38 1.2 55.8 12.2 

 

Table 5-10. Round-trip time from Gateway to Client 3,  3,GCT

Experiment 

No. 
Bytes in packet 

Round-trip times (ms) 

Minimum Maximum Average 

1 33 1.063 13.117 10.571 

2 33 1.734 19.448 11.646 

3 33 1.973 25.723 13.408 

4 33 1.104 36.587 12.460 

5 33 1.287 38.367 11.763 

Average 33 1.432 26.649 11.970 

 

The processing time for Linux server, Gateway, and Client 3 is presented in Table 5-11. 

In Gateway, the processing time is the time for converting the data from Client 3 to 

Linux server or from Linux server to Client 3. Total processing time is 10.66 ms for the 

control loop. The data-processing time for Client 3 was measured by the Windows 

timeGetTime() with a 1-ms resolution. 
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Table 5-11. Data-processing time for Client 3 

No. Server (ms) Gateway (ms) Client (ms) Total (ms) 

1 0.107 1.312 9 10.419 

2 0.110 1.125 10 11.253 

3 0.110 1.115 10 11.225 

4 0.101 1.112 9 10.213 

5 0.112 1.114 9 10.226 

Avg. 0.108 1.156 9.400 10.660 

 

We can obtain the operation time between Linux server and Client 3 as 

3 3, 3, 3, 3, 3SG GS GC CG PT T T T T ,τ = + + + +                    (5.8) 

    

0.908 0.938 12.2 11.970 10.660 23.668
2

+ + +⎛ ⎞= +⎜ ⎟
⎝ ⎠

=  .          (5.9) 

 

5.1.4 Overall Operation Time for Each System 

 

The overall round-trip operation time for each system is shown in Table 5-12. 

The operation time for Client 1 is similar with Client 2. It is because both systems are 

run on the same computational environment such as OS, programming language, and 

LAN. Although Client 3 is connected to Gateway with Samba, the operation time for 

Client 3 is about 19 times longer than Clients 1 and 2, Since Client 3 uses wireless 

network on Windows-based OS. Using Gateway between Linux server and Client 3 also 

can be one of the reasons for this result.  
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Table 5-12. Overall operation time for each client system 

time Client 1 Client 2 Client 3 

transmission time (ms) 0.391 0.484 13.008 

processing time (ms) 0.915 0.866 10.660 

operation time (ms) 1.306 1.350 23.668 

 

5.2 Operation of Each Client 

 

To verify the working of the control strategy, each client is tested in this section. 

Based on the operation time, the bandwidth utilization is determined with respect to the 

sampling period for each client. With these considerations, the possible combinations of 

the sampling period for each client are suggested and tested.  

 

5.2.1 Client 1 

 

The digital controller for the 333.3 Hz sampling frequency was designed in [23] 

as  

2
4

2

1.754 0.769( ) 4.15 10
0.782 0.13

z zD z
z z
− +

= ×
− −   .                                 

 (5.10) 

The sampling frequency was 333.3 Hz, and the test of Client 1 is conducted with 

the 3-ms sampling period in the control loop. Fig. 5-5 shows the ball displacement from 

its equilibrium position. The system remained stable and the ball did not fall down from 



 59

its equilibrium position. From [33], the controller with the 3-ms sampling period is 

found as the best sampling period through the simulation. Therefore, the controller with 

3-ms sampling period is used for the possible combinations of the sampling period for 

Client 1. From (5.4), the bandwidth utilization for Client 1 is given by 

                                          1
1

1

1.306ms 0.435
3ms

b
h
τ

= = =  .                                              (5.11) 

Thus, 43.5% of the network bandwidth is used to operate Client 1 for the 3-ms sampling 

period. Since Client 1 with the 3-ms sampling period has a nice performance, the 

bandwidth utilization for Client 1 is fixed as 0.435 in this research.  
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Fig. 5-5. Plot of the ball displacement from the equilibrium position with respect to time  
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5.2.2 Client 2 

 

From (3.3), the discrete-time controller for Client 2 is developed as 

( ) ( 1) [1.5 2.5 ] ( ) [2.5 1.5] ( 1)u k u k h e k h e k= − + + − − −  .                       (5.12) 

Assume that Client 3 needs at least 10% of the bandwidth utilization. Then the 

bandwidth utilization of Client 2 cannot exceed 0.465. With design the discrete-time 

controller, the sampling period for Client 2 can be controlled. In order to check the 

system stability, seven cases of experiments are designed and performed as depicted in 

Table 5-13. 

 

Table 5-13. Cases of experiments for Client 2 

No. 
Sampling 

Period 

Operation 

time 

Bandwidth 

utilization 
Discrete-time controller u(k) = 

1 3 ms 1.36 ms 0.453 ( 1) 1.5075 ( ) 1.4925 ( 1)u k e k e k− + − −  
2 5 ms 1.36 ms 0.272 ( 1) 1.5125 ( ) 1.4875 ( 1)u k e k e k− + − −  
3 10 ms 1.36 ms 0.136 ( 1) 1.5250 ( ) 1.4750 ( 1)u k e k e k− + − −  
4 15 ms 1.36 ms 0.091 ( 1) 1.5375 ( ) 1.4625 ( 1)u k e k e k− + − −  
5 20 ms 1.36 ms 0.068 ( 1) 1.5500 ( ) 1.4500 ( 1)u k e k e k− + − −  
6 25 ms 1.36 ms 0.054 ( 1) 1.5625 ( ) 1.4375 ( 1)u k e k e k− + − −  
7 30 ms 1.36 ms 0.045 ( 1) 1.5750 ( ) 1.4250 ( 1)u k e k e k− + − −  

 

The results of the experiments are described in Fig. 5-6. Every case of experiments is 

shown as stable system.  However, Cases (e), (f), and (g) show a bad system 

performance and are eliminated from making combinations with other clients. 
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Fig. 5-6. Results of experiments of Client 2 with the sampling periods of (a) 3 ms,  

   (b) 5 ms, (c) 10 ms, (d) 15 ms, (e) 20 ms, (f) 25 ms, and (g) 30 ms 
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5.2.3 Client 3 

 

The motion of Client 3 can be represented in the two-dimensional coordinate 

system using by Hall-effect sensor readings [35]. Assume that Client 3 begins at (0, 0) 

point in the xy-plane. The Hall-effect sensors count the pulses every 100-ms sampling 

interval time. At a sampling time i , the distance d  between start point and the position 

of Client 3 is defined as  

   
2

iLH RHd i+
=  ,    (5.13) 

where is the pulse counted by the left-side Hall-effect sensor and iLH iRH  is the pulse 

counted by the right-side Hall-effect sensor at sampling time i . The point ( ix , iy ) 

represents the position of Client 3 in the xy-plane at sampling time  can be found as i

sin
2

i i
i

LH RHx iθ
+⎛ ⎞= ⎜ ⎟

⎝ ⎠
    (5.14) 

cos
2

i i
i

LH RHy iθ
+⎛ ⎞= ⎜ ⎟

⎝ ⎠  
,       (5.15) 

where iθ  is turning angle at sampling time . i

 From (5.9), the suggested sampling periods are presented as shown in Table 5-14. 

According to the bandwidth utilization of Clients 1 and 2, the bandwidth utilization of 

Client 3 can be varies from 0.110 to 0.474. To check whether the assumption in the 

previous section is right or wrong, the 300-ms sampling period is also suggested to test 

in case 4.  
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Table 5-14. Cases of experiments for Client 3 

No. Sampling Period Operation time Bandwidth utilization 

1 50 ms 23.668 ms 0.473 

2 100 ms 23.668 ms 0.237 

3 200 ms 23.668 ms 0.118 

4 300 ms 23.668 ms 0.079 

  

The experiments of Client 3 are performed in a ground-floor hallway and 

Precision Mechatronics Lab inside the Zachery Engineering Center of Texas A&M 

University as shown in Fig. 5.7. In order to test its collision-avoidance function, a trash 

can is used as an obstacle.  The testing environment is represented in the xy-plane with 

MATLAB as shown in Fig. 5.8. With the Timer.Interval() function, the sampling 

period of robotic wheelchair can be controlled. 

 

 

column

obstacle

START 

Fig. 5-7. Testing environment with obstacles for Client 3  
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Fig. 5-8. Representing the testing environment in the the xy-plane with MATLAB 

 

The results of the experiments are descibed in Fig. 5-9. Except for the case of 300-ms 

sampling period, the robotic wheelchair could arrive at the destination. Thus, the 

sampling period of Client 3 cannot exceed 300 ms.  



 65

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction (cm); (a)

Y-
di

re
ct

io
n 

(c
m

)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction (cm); (b)
Y-

di
re

ct
io

n
(c

m
)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction(cm) ; (c)

Y-
di

re
ct

io
n(

cm
)

-100 0 100
0

100

200

300

400

500

600

700

800

900

X-direction(cm) ; (d)

Y-
di

re
ct

io
n(

cm
)

 Fig. 5-9. Results of experiments of Client 3 with the sampling periods of (a) 50 ms,  

              (b) 100 ms, (c) 200 ms, and (d) 300 ms 
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5.3 Suggestion for Possible Combinations of the Sampling Period 

 

Based on the results in the previous section, possible combinations of the 

sampling period of each client are suggested and verified in this section. The sampling 

period for Client 1 is fixed and used as 3 ms. Client 2 needs the bandwidth utilization 

from 0.091 to 0.453 for its stability. The bandwidth utilization of Client 3 can be from 

0.118 to 0.468. According to these considerations, the combination range of the 

sampling period for each client can be obtained. The conditions of the bandwidth 

utilization for each client is given as 

                    2 3 56.5b b+ ≤        (5.16) 

    29.1 45.3b≤ ≤                  (5.17) 

   311.8 46.8b≤ ≤ .      (5.18) 

Based on these conditions, the combinations of the sampling period for each client are 

suggested and tested. Table 5-14 describes the suggested combinations of the sampling 

period for each client. In order to check the failed case, Case 4 is added to the tests-set.  

 

Table 5-15. Suggested combinations of the sampling period for each control loop 

No. 
Bandwidth Utilization Sampling Period 

Client 1 Client 2 Client 3 Client 1 Client 2  Client 3 

1 43.5% 27.2% 28.9% 3 ms 5 ms  82 ms 

2 43.5% 13.6% 43% 3 ms 10 ms  53 ms 

3 43.5% 9.1% 47.3% 3 ms 15 ms  50 ms 

4 43.5% 45.3% 47.3% 3 ms 3 ms  50 ms 
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 Case 1 is performed as shown in Fig. 5-10. Client 1 maintains the stability of 

system and the ball did not fall down from its equilibrium position. The performance of 

Client 2 with the 5-ms sampling period is observed as the stable system. Client 3 also 

can arrive at destination without any collision. 
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Fig. 5-10. Performance of suggested combination for Case 1 
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Case 2 also shows the stable system. Fig. 5-11 shows the performances of Clients 

1, 2, and 3 as the stable combination.  
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Fig. 5-11. Performance of suggested combination for Case 2 
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 Since the total bandwidth utilization of this case is 99.9%, the stability of Client 

1 is affected in Case 3 as shown in Fig. 5-12. Although Client 2 has a overshoot in its 

transient response, it is regarded as the stable system. Client 3 also arrived at the 

destination without collision.   
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Fig. 5-12. Performance of suggested combination for Case 3 
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Fig. 5-13. Performance of suggested combination for Case 4 

 

In Case 4, the total bandwidth utilization is 136.1%. The performance of Case 4 

is shown in Fig. 5-13. Client 1 did not maintain its stability and the ball fell down from 
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its equilibrium position. The performance of Client 2 is observed as the stable system. 

However, it is found that the output fluctuation is increased after 1 second. Client 3 did 

not arrive at the destination. The wheelchair robot hit the obstacle and stopped in front of 

a wall. Cases 1, 2, and 3 are experimented as the stable system whereas Case 4 is found 

as unstable. For the system stability, the conditions of combination for the sampling 

period should be considered.  
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CHAPTER VI 

CONCLUSIONS AND SUGGESTED FUTURE WORK 

 

6.1 Conclusions 

 

The objective of this research was to demonstrate experimentally the feasibility 

of a real-time networked closed-loop control system with multiple clients.  A steel-ball 

magnetic-levitation system, a DC motor speed-control system, and an autonomous 

wheelchair robot referred to as Clients 1, 2, and 3, respectively were used as NCS test 

beds to validate the proposed strategy. The multiple-client NCS was demonstrated 

successfully in this research.  

For real-time operation, computing environments for the clients were discussed. 

Clients 1 and 2 need fast response from the server for system stability. Linux with RTAI 

and Comedi was used as the OS for them. Client 3’s software was written in Microsoft 

Visual Basic 6.0 on Windows XP, modifying the previous code written by Hsieh [22]. 

Due to its low bandwidth requirement, this operating environment was good enough for 

Client 3. In order to convert the data type between Client 1 and Linux server, Gateway is 

developed. Using Samba, Client 3 is connected to Gateway on the same LAN with a fast 

data-transmission speed.  The round-trip time between Client 3 and Gateway is just 11.2 

ms with Samba whereas 30.8 ms is taken without using Samba.  

UDP was used as the communication network protocol in this research due to its 

better real-time performance instead of TCP. Although TCP is a reliable protocol, it has 
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large overheads for various services and may waste bandwidth and time. While UDP has 

no guarantee for transmitting data, it has smaller overheads and less time delay than TCP. 

A prediction algorithm [17] was needed to compensate for any delayed or lost data 

packet. For the server to identify the clients, the sensor data packets include a client 

identification number. After calculating the control data, the server sends back the data 

to the identified client.  

The feedback control loop is limited by the bandwidth of the communication 

network. Therefore the system stability is affected by the sampling period of the system. 

The reduction of the sampling period improves the control loop’s performance. However, 

a shorter sampling period requires more network bandwidth to transmit more sensor data 

or control data, which increases the network traffic load.  

The transmission time for each connection is measured by the PING test, and the 

processing time for each client was measured by the timeGetTime() function for the 

Window-based OS and the rt_get_cpu_time_ns() function for Linux. With the 

transmission time and the processing time for each client, the operation time for each 

control loop was calculated. Using the operation time for each control loop, the sampling 

periods for the system stable were determined.  

The sampling period of Client 1 was set to be 3 ms, and Client 1 used 43.5% of 

the total bandwidth. The bandwidth utilization of Client 2 with guaranteed stability was 

found to be from 9.1% to 45.3%. Thus, the range of the bandwidth utilization of Client 3 

was between 11.8% and 46.8%. As long as the bandwidth utilizations of all clients were 
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within these ranges, the multiple-client NCS could maintain its stability. In order to 

verify these conditions, three successful operation cases were suggested and tested. 

 

6.2 Suggested Future Works 

 

In the current system, Gateway converts and transfers the control data and the 

sensor data between Linux server and Client 3 because of the difference of their socket 

structures. For a sensor, it is waste of time and resource with an intermediary PC. It may 

also introduce time delay and data loss between Linux server and Client 3. With Client 

3’s programs written in C on Linux OS, the communication efficiency could be 

enhanced. 

Adding more servers to calculate the control data collaboratively could be a 

solution to bandwidth limitation. When one of the servers is busy with calculating the 

control data for a client, other servers could communicate with other clients. It could be 

seen as increased bandwidth for system performance.  

In this research, the combinations of the sampling period for each client system 

are suggested statically. However, this static method may not be efficient when network 

conditions are changed. For this reason, a dynamic bandwidth-allocation method 

according to the control performance of each client could be developed.  
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APPENDIX 

GATEWAY.C 

 

#include <stdio.h> 
 
#include <stdlib.h> 
 
#include <unistd.h> 
 
#include <signal.h> 
 
#include <string.h> 
 
#include <asm/errno.h> 
 
#include <sys/types.h> 
 
#include <sys/user.h> 
 
#include <sys/mman.h> 
 
#include <sys/stat.h> 
 
#include <fcntl.h> 
 
#include <sched.h> 
 
#include <sys/socket.h> 
 
#include <netinet/in.h> 
 
#include <arpa/inet.h> 
 
#include <netdb.h> 
 
#include <sys/ioctl.h> 
 
#include <sys/time.h> 
 
#include <errno.h> 
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#include <inttypes.h> 
 
#include "defines.h"  
 
#define KEEP_STATIC_INLINE 
 
//#include <rtai_lxrt_user.h> 
 
#include <rtai_lxrt.h> 
 
 
RTIME time_stamp; 
 
double u0, u1e, u2e, u3e, u4e, u5e, u6e, u7e, u8e; 
 
double y_0, y_1, y_2, y_3, y_4, y_5, y_6; 
 
double y_7=3; 
 
double u_1, u_2; 
 

//rtai declarations 

unsigned long mtsk_name; 

RT_TASK *mtsk; 

struct sched_param mysched; 

RTIME current_time_stamp; 

void terminate_normally(int signo) 

{ 

 fflush(stdin); 

 if(signo==SIGINT || signo==SIGTERM) 

 { 

  printf("Terminating the program normally\n"); 
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  //make the process soft real time process 

  rt_make_soft_real_time(); 

  printf("MASTER TASK YIELDS ITSELF\n"); 

  rt_task_yield(); 

  printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 

  stop_rt_timer(); 

  printf("MASTER TASK DELETES ITSELF\n"); 

  rt_task_delete(mtsk); 

  printf("END MASTER TASK\n"); 
 } 
 
 exit(0); 
} 
 
main(int argc, char *argv[]) 
{ 
 
   int sockid, addrlen; 
 
   int sd, clilen; 
 
   struct sockaddr_in gate_addr, server_addr; 
 
   struct sockaddr_in my_addr, client_addr; 
 
   int nw, nr; 
 
   int cw, cr; 
 
   int cnt=0; 
 
   int send_buffer_size, recv_buffer_size; 
 
   unsigned short server_port = 0;  
 
   unsigned short second_port = 0; 
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   struct send_data *send_buffer = NULL; 
 
   struct recv_data *recv_buffer = NULL; 
 
   double recv_msg[9] = 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}; //client to 
gateway 
 
   char fwd[10] = "front"; 
 
   char back[10] = "back"; 
 
   char stop[10] = "stop"; 
 
   char left[10] = "left"; 
 
   char right[10] = "right"; 
 
   char *server_ip= "165.91.95.40"; 
 
   FILE *fp = NULL; 
 
   fp = fopen("result.txt","w"); 
 

   if (fp==NULL) 

   { 

 printf("could not open file\n"); 

 exit(0); 

   } 

 RTIME start_time = 0; 

 RTIME end_time = 0; 

 RTIME actual_period = 0; 

 RTIME difference = 0; 
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 struct sigaction sa; 
 
 sa.sa_handler = terminate_normally; 

 sa.sa_flags = 0; 

 sigemptyset(&sa.sa_mask); 

 if(sigaction(SIGINT, &sa, NULL)) 

 { 

  perror("sigaction"); 

 } 

 if(sigaction(SIGTERM, &sa, NULL)) 

 { 

  perror("sigaction"); 

 } 

   fprintf(stderr, "creating socket\n"); 

   if ( (sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0)  

   {  

     perror("1socket() failed "); 

     fprintf(stderr, "%s: 1socket error: %d\n", argv[0], 

errno);  

     exit(2);  

   } 

   if ( (sd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)  

   {  

     perror("2socket() failed "); 
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     fprintf(stderr, "%s: 2socket error: %d\n", argv[0], 

errno);  

     exit(2);  

   } 

   fprintf(stderr, "binding sockets\n"); 

   server_port = 4444; 

   second_port = 3333; 

   addrlen = sizeof(server_addr); 

   clilen = sizeof(my_addr);  

   memset((void *) &server_addr, (char) 0, addrlen); 

   server_addr.sin_family = AF_INET; 

   server_addr.sin_addr.s_addr = inet_addr(server_ip); 

   server_addr.sin_port = htons(server_port); 

   memset((void *) &my_addr, (char) 0, clilen); 

   my_addr.sin_family = AF_INET; 

   my_addr.sin_addr.s_addr = htonl(INADDR_ANY); 

   my_addr.sin_port = htons(second_port); 

   if ( (bind(sd, (struct sockaddr *) &my_addr,  

      sizeof(my_addr)) < 0) ) 

   {  

     perror("2bind() failed "); 

     fprintf(stderr, "bind() errno = %d\n", errno);  

     exit(4);  
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   } 

   recv_buffer_size = sizeof(struct recv_data);  

   if(( recv_buffer = (struct recv_data *)calloc(1, 

sizeof(struct recv_data))) ==NULL) 

   { 

        fprintf(stderr, "cannot allocate memory for 

buffer!\n"); 

 exit(4); 

   } 

   send_buffer_size = sizeof(struct send_data);  

   if(( send_buffer = (struct send_data *)calloc(1, 

sizeof(struct send_data))) ==NULL) 

   { 

        fprintf(stderr, "cannot allocate memory for 

buffer!\n"); 

 exit(4); 

   } 

 

   fprintf(stderr, "%s: starting blocking message read\n", 

argv[0]); 

 mysched.sched_priority = 99; 

 if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -

1 ) { 
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 puts(" ERROR IN SETTING THE SCHEDULER UP"); 

 perror( "errno" ); 

 exit( 0 ); 

  }        

 

 mlockall(MCL_CURRENT | MCL_FUTURE); 

 mtsk_name = nam2num("MTSK"); 

  if (!(mtsk = rt_task_init(mtsk_name, 0, 0, 0))) { 

  printf("CANNOT INIT MASTER TASK\n"); 

  exit(1); 

 } 

 start_time = rt_get_cpu_time_ns(); 

 printf("main: start_time = %lld\n", start_time); 

 printf("MASTER TASK STARTS THE ONESHOT TIMER\n"); 

 //rt_set_oneshot_mode(); 

 actual_period = start_rt_timer(nano2count(25000)); 

 printf("actual_period = %lld\n", actual_period); 

 printf("MASTER TASK MAKES ITSELF PERIODIC \n"); 

 rt_task_make_periodic(mtsk, rt_get_time()+ 

nano2count(3000000),_ nano2count(3000000));  

   while( 1 ) 

   { 
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 cr = recvfrom(sd, recv_msg, 10, 0, (struct sockaddr *) 

&client_addr, &clilen); 

 if( cr <= -1 )  

 {  

  fprintf(stderr, "2recvfrom() errno = %d\n", 

errno); 

  exit(10); 

 } 

 start_time = rt_get_cpu_time_ns(); 

 y_0 = recv_msg[0]; 

 y_1 =  y_2 = y_3 = y_4 = y_5 = y_6 = 0; 

y_7 = 3; 

u_1 = u_2 = 0; 

 send_buffer->y_0 = y_0; 

 send_buffer->y_1 = y_1; 

 send_buffer->y_2 = y_2; 

 send_buffer->y_3 = y_3; 

 send_buffer->y_4 = y_4; 

 send_buffer->y_5 = y_5; 

 send_buffer->y_6 = y_6; 

 send_buffer->y_7 = y_7; 

 send_buffer->u_1 = u_1; 

 send_buffer->u_2 = u_2; 
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 send_buffer->time_stamp = current_time_stamp; 

 nw=sendto(sockid, (const void *)send_buffer, 

send_buffer_size, 0,(struct sockaddr *) &server_addr, 

addrlen);  

     if( nw <= -1 ) 

    { 

       perror("1sendto failed "); 

       fprintf(stderr, "sendto() errno = %d \n", errno);  

       exit(12);  

     } 

 nr = recvfrom(sockid, (void *)recv_buffer, 

recv_buffer_size, 0, (struct sockaddr *) &server_addr, 

&addrlen); 

 if( nr <= -1 )  

 {  

  fprintf(stderr, "1recvfrom() errno = %d\n", 

errno); 

  exit(10); 

 } 

     u0 = recv_buffer->u0; 

 u1e = recv_buffer->u1e; 

 u2e = recv_buffer->u2e; 

 u3e = recv_buffer->u3e; 
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 u4e = recv_buffer->u4e; 

 u5e = recv_buffer->u5e; 

 u6e = recv_buffer->u6e; 

 u7e = recv_buffer->u7e; 

 u8e = recv_buffer->u8e; 

 if(u0 == 10.0){ 

  cw = sendto(sd, fwd, 5, 0, (struct sockaddr *) 

&client_addr, clilen); 

 } 

 else if(u0 == 7.0){ 

  cw = sendto(sd, right, 5, 0, (struct sockaddr *) 

&client_addr, clilen); 

 } 

 else if(u0 == 2.0){ 

  cw = sendto(sd, left, 5, 0, (struct sockaddr *) 

&client_addr, clilen); 

 } 

 else if(u0 == 0.0){ 

  cw = sendto(sd, back, 5, 0, (struct sockaddr *) 

&client_addr, clilen); 

 } 

 else if(u0 == 5.0){ 
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  cw = sendto(sd, stop, 5, 0, (struct sockaddr *) 

&client_addr, clilen); 

 } 

end_time = rt_get_cpu_time_ns(); 

 send_buffer->time_stamp = recv_buffer->time_stamp; 

    printf("end_time - start_time = %lld\n", (end_time - 

start_time)); 

 cnt = cnt +1; 

   } //end while 

fclose(fp); 

 //make the process soft real time process 

 //rt_make_soft_real_time(); 

 printf("MASTER TASK YIELDS ITSELF\n"); 

 rt_task_yield(); 

 printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 

 stop_rt_timer(); 

 printf("MASTER TASK DELETES ITSELF\n"); 

 rt_task_delete(mtsk); 

  close(sockid); 

close(sd); 

free(send_buffer); 

free(recv_buffer); 

free(recv_msg); 
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free(recv_msg); 

 } 

 

 

 



 93

VITA 

 

The author, Minhyung Lee received his Bachelor of Engineering degree in 

weapons engineering from Korea Military Academy, Seoul, South Korea in March 2004. 

Since Fall 2007 he has been enrolled in the Master of Science degree program in the 

Mechanical Engineering Department, Texas A&M University, College Station.  

 Mr. Minhyung Lee may be reached at Department of Mechanical Engineering, 

3123 TAMU, College Station, TX 77843-3123. His email is c14565@gmail.com. 


