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ABSTRACT 

 

Synthesis of Titanium Dioxide Hetero-Structures 

for Photovoltaic Energy Conversion. (August 2009) 

Jongbok Park, B.S., Korea Military Academy 

Chair of Advisory Committee: Dr. Choongho Yu 

 

The photovoltaic energy conversion system (PV cells or solar cells) has been 

researched over the last few decades, and new technologies have been proposed.  At the 

same time, the synthesis of nano-scale materials has been investigated intensively from 

the 1990s.  These new types of materials encourage the development of new PV 

technologies with extensive research.  Dye-sensitized solar cells (DSSCs) can be a part 

of these efforts.  Since first presented in 1991, DSSCs have become the center of 

attention due to their great advantages to the traditional silicon solar cells.  However, it 

remains a challenge to develop better performing DSSCs since the efficiency of DSSCs 

is still much lower than that of high performance solar cells.  To meet this challenge, the 

different types of TiO2 nanostructures in DSSCs have been studied. 

This thesis presents the synthesis of TiO2 hetero-structures. These structures can 

achieve two important factors in DSSCs.  One is the electron pathway for high electron 

transport rate, and the other is the large surface area for the dye absorption.  

TiO2 hetero-structures were successfully synthesized by using a simple thermal 

annealing method.  The synthesis method required neither a high reaction temperature 
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nor complicated reaction processes and produced dense TiO2 nanowires and 

incorporating TiO2 nanoparticles with relatively short reaction time.  The key parameters 

of growing 1-D TiO2 nanostructures were the Cu eutectic catalyst, the reaction 

temperatures, and the annealing time.  The repetition time and the reaction temperatures 

were important factors for incorporating TiO2 nanoparticles.   

The structure and composition of as-grown samples were analyzed using an x-ray 

diffractometer, a scanning electron microscope, a field emission scanning electron 

microscope, a transmission electron microscope and an ultraviolet-visible spectroscopy.  

The results showed they were crystalline structures in rutile phase of TiO2. 

From this research, we can utilize hetero-structures as an electrode of DSSCs.  

We also expect that our simple and effective synthesis method can be used for growing 

other kinds of metal oxide nanostructures, especially for those melting temperature are 

high.  



 v

DEDICATION 

 

To my lovely wife Eunei, daughter Jimin, my family 
& 

God 



 vi

ACKNOWLEDGEMENTS 

 

First of all, I really would like to acknowledge my advisor, Dr. Choongho Yu, for 

his guidance and support throughout the entire period of my research.  I also thank to my 

committee members, Dr. Hae-kwon Jeong, and Dr. Xinghang Zhang, for their advice 

and encouragement. 

Thank also goes to my wise and lovely wife Eunei for her dedication, love, and 

patience during my studying. She was the only person who supported me, trusted me, 

and encouraged me when I was undergoing trials and struggling with my experiments. 

Friends made my time at Texas A&M University a great experience.  I will not 

be able to forget them and all the times spent with them at TAMU and College Station. 

At the same time, I would like to thank to my colleagues, Hongjoo Yang, Liang Yin, 

Yunki Gwak, Vinay Narayanunni and Marion Okoth, in the Nano-Energy Laboratory.  

Because of their supports, I could overcome difficult situations during my research.  I 

am also very grateful to Dr. Hansoo Kim for TEM analysis of my samples. 

Finally, I want to extend my gratitude to the Republic of Korea Army for the 

financial support. 



 vii

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

TABLE OF CONTENTS ..........................................................................................  vii 

LIST OF FIGURES ...................................................................................................  viii 

LIST OF TABLES ....................................................................................................  ix 

1. INTRODUCTION ...............................................................................................  1 

  1.1 Motivation ............................................................................................  1 
  1.2 Literature Review .................................................................................  5 
  1.3 Objectives .............................................................................................  6 

2. SYNTHESIS OF 1-D TiO2 NANOSTRUCTURES ...........................................  9 

  2.1 Experimental Details ............................................................................  9 
  2.2 Results and Discussion .........................................................................  13 

3. INCORPORATION OF TiO2 NANOPARTICLES ...........................................  24 

  3.1 Experimental Details ............................................................................  24 
  3.2 Results and Discussion .........................................................................  30 

4. CONCLUSIONS .................................................................................................  39 

5. FUTURE WORK ................................................................................................  41 

REFERENCES ..........................................................................................................  44 

VITA .........................................................................................................................  49 



 viii

LIST OF FIGURES 

 
                                                                                                                                       Page 
 
 Figure 1 Schematic mechanism of dye-sensitized solar cells ..........................  3 
 
 Figure 2  Scheme of proposed TiO2 hetero-structures for DSSCs ...................  7 
 
 Figure 3  Experimental setup to synthesize 1-D TiO2 nanostructures ..............  10 
 
 Figure 4 SEM images of 1-D TiO2 nanostructures grown by using different   
  growth conditions as listed in table 1 ..............................................  14 
 
 Figure 5  Proposed 1-D TiO2 nanostructures growth mechanism ....................  17 
 
 Figure 6 Cross section images of the samples .................................................  19 
 
 Figure 7 TEM images of 1-D TiO2 nanostructures .........................................  22 
 
 Figure 8 XRD pattern of 1-D TiO2 nanostructures ..........................................  23 
 
 Figure 9  Experimental setup to incorporate TiO2 nanoparticles .....................  25 
 
 Figure 10 FE-SEM images of TiO2 hetero-structures grown by using different 

growth conditions as listed in table 2 ................................................  28 
 
 Figure 11  Proposed TiO2 nanoparticles incorporation mechanism ...................  33 
 
 Figure 12 TEM images of nanoparticles ...........................................................  35 
 
 Figure 13 XRD pattern of the TiO2 hetero-structures .......................................  36 

 Figure 14 UV-visible light absorption spectra of TiO2 hetero-structures ..........  37 

 Figure 15 Proposed schematic diagram of backside illuminated dye-sensitized   
  solar cells ...........................................................................................  42 
 
 Figure 16 Proposed direct growth mechanism of TiO2 hetero-structures on  
  TCO substrate ....................................................................................  43 
 



 ix

LIST OF TABLES 

 

                                                                                                                                  Page 

 Table 1 Nine different 1-D nanostructures synthesis conditions ...................  11 

 Table 2 Eight different nanoparticles incorporation conditions .....................  26 

  



1 
 

1. INTRODUCTION* 

 

1.1 Motivation 

Currently, 80% of the total energy consumption relies on fossil fuels.  The 

increment of worldwide energy demand will reach about 70% between 2000 and 2030.  

The problem is that fossil fuels are facing rapid exhaustion and causing environmental 

pollution [1].  Under these circumstances, a new energy technology, which is 

environmentally friendly and has the competitive energy efficiency, is needed in order to 

substitute for fossil fuels in the near future.  Among new technologies, the photovoltaic 

energy conversion system is one of the most promising methods.  The photovoltaic 

energy conversion system (PV cells or solar cells) has been researched over last few 

decades, and new concepts and technologies have been proposed and discovered by 

various approaching methods.  The energy supplied from the sun to the earth is 3×1024 

J/year which is almost 10,000 times larger than the consumption of the global energy.  

Simply speaking, if we cover 1/1000 of the earth with solar cells with 10% efficiency, 

we can satisfy the world energy consumption [2].  

In 1954, the first practical conversion of solar radiation into electric energy was 

demonstrated by using of a p–n junction type of solar cell with 6% efficiency [3].  The 

silicon photovoltaic cells rapidly became a power source for satellites with the 

development of the space project.  Unfortunately, the widespread use of these silicon 

solar cells has been prevented due to their relatively high manufacturing cost and 

____________ 
This thesis follows the style of Nanotechnology. 

 

*Parts of this section reprinted with permission from “Simple and fast annealing 
synthesis of titanium dioxide nanostructures and morphology transformation during 
annealing processes” by Jongbok Park, Yeontack Ryu, Hansoo Kim, Choongho Yu, 
2009, Nanotechnology, 20, 105608, Copyright [2009] by IOP. 
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the toxic chemicals produced from the manufacturing process [4].  These matters drove 

researchers into the field for developing environmentally friendly and low production 

cost alternatives. 

 As a result of these efforts, dye-sensitized solar cells (DSSCs) have been 

presented as promising candidates due to their potential for large scale manufacturing 

with a low cost.  Since the first time presented by O’Regan and Grätzel in 1991, DSSCs 

have become the center of attention due to their great attraction to the conventional 

silicon solar cells [5].  Furthermore, DSSCs offer a suitable energy conversion efficiency, 

up to 11.1% at the condition of air mass(AM) 1.5 full sunlight intensity (1000W/m2) [6].  

This value is comparable to the efficiency of amorphous silicon solar cells.  The main 

difference between DSSCs and conventional silicon solar cells is that DSSCs separates 

light absorption from charge carrier transport.  This kind of a systemic difference means 

that DSSCs can be composed by lowering the manufacturing cost [5].  In addition, non-

toxic materials are used in manufacturing processes which is environmentally friendly.  

 Traditionally, DSSCs consist of crystalline TiO2 nanoparticles between two 

adjacent transparent conducting oxide (TCO) glasses.  Nanoparticles were deposited on 

the TCO and sintered at a moderate temperature to build a continuous network for 

electron transport.  Subsequently, a monolayer of dyes is coated onto this TiO2 film, and 

electrolytes are injected between TCO substrates.  The solar cell, therefore, is formed 

into a thin film shape in several micrometers thick.   

The mechanism of DSSCs is also simple as shown in figure 1 [7].  The photo-

excited dye molecule ejects the electrons to the conduction band of TiO2 during the 
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illumination of the cell, and then the electrons travel along this conduction band.  

Subsequently, those electrons are transferred to the TCO, current collector, and from 

there they pass through the external circuit performing electrical work.  The dye is 

restored to the original state by the electron donation from the I-/I3
- electrolyte reaction 

which continues the energy conversion cycle. 

 

 

 

 
Figure 1. Schematic mechanism of dye-sensitized solar cells. 
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 We should consider the transmittance and the conductivity of the TCO substrate 

[8, 9], the properties of TiO2 structures [10-14] and electrolytes [15-17], and the types of 

dyes [18, 19], all as important factors which affect on the cell performance in energy 

conversion efficiency.  Among these factors, the structural property of TiO2 is 

vigorously investigated to demonstrate the influence of the thin layer structure.  Up to 

now, the most common structure for DSSCs is a porous thin film composed of TiO2 

nanoparticles [5, 20].  There are limitations for these types of DSSCs.  The electron 

recombination with oxidized dyes should be much slower than the electron diffusion to 

guarantee the efficiency.  However, the speed of the electron diffusion through the 

junctions of TiO2 nanoparticles is several orders of magnitude smaller than the bulk 

single crystal TiO2 due to electron traps and boundaries at the junctions of nanoparticles 

[21-25].   

Therefore, new types of thin layer structures are needed to make up for the weak 

point of the DSSCs composed of only nanoparticles.  To satisfy this need, many 

researchers have suggested the thin layer which is composed of one-dimensional TiO2 

nanostructures as new candidates.  Actually, there is a report that DSSCs which consist 

of fully crystalline TiO2 nanotube array films demonstrate much slower recombination 

than the nanoparticle-based DSSCs [26].  One-dimensional (1-D) TiO2 nanostructures 

optimize the conduction pathway to eliminate recombination of the charge carriers by 

transferring the electrons as quickly as possible which is a crucial factor in cell 

performance [27, 28].  In other words, all the electrons injected from the photo-excited 

dye into the TiO2 conduction band are easily transported to the current collector along 1-
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D nanostructures [29].  Furthermore, these kinds of nanostructures can also scatter light 

and this effect causes the augmentation of the light harvesting [12].   

Nevertheless, the only reason why 1-D nanostructures of DSSCs cannot beat the 

performance of nanoparticle-based DSSCs is the smaller surface area for the dye 

absorption than nanoparticle-based DSSCs.  To better this kind of problem, the method 

of incorporating nanoparticles into nanowires have been suggested, recently [12, 14].  

By utilizing this type of film for DSSCs, the enhancement of the light harvesting and the 

increase of the electron transport rate can be achieved by the part of nanowires structure.  

At the same time, the incorporating nanoparticles can provide a large surface area to 

maximize the dye absorption.  There is a report that the energy conversion efficiency 

was enhanced by using this kind of a thin layer [12].  However, the junctions still 

remains as a problem because the nanoparticles and nanowires were sintered after 

mixing together.  Therefore, the new synthesis approach is needed in order to improve 

the junctions between nanoparticles and nanowires. 

 

1.2  Literature Review 

One-dimensional nanostructure forms such as nanowires, nanotubes, and 

nanobelts have been preferred as they often bring performance enhancement for various 

applications including the example mentioned in a previous section [28, 30-32].  Thus, 

many researchers have invested a great deal of effort in the synthesis of 1-D TiO2 

nanostructures [33].  For example, Ti powders were used to deliver Ti on a Au-coated 

TiO2/Si substrate so as to produce nanowires whose lengths are up to ~3 μm in a 
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vacuumed high-temperature tube furnace [34].  Similar synthesis methods that employ a 

vacuumed reaction chamber have been popular for growing a few micron long 

nanowires [35, 36] unless the nanowire growth occurs in a liquid environment.  The 

vacuumed environment often impedes the formation of film-like titanium oxides that 

often hinder titanium nucleations for directional growths due to their high stability and 

high melting temperature (~1870 °C).  Other methods include a sol-gel method with 

anodic alumina membranes [37], a hydrothermal synthesis in high concentration of 

NaOH or dilute HNO3 [38], a reaction between the layered compound Na2Ti3O7 particles 

and the dilute HCl in an autoclave for several days [39], and a fabrication method for 

obtaining nanowire arrays from UV photolithography and subsequent dry-etching of 

TiO2 thin films [40].  These methods often require various chemical reagents, multiple 

processes with relatively long reaction time, careful time-consuming sample 

preparations, or expensive equipment.  For instance, template-based synthesis methods 

using porous alumina membranes require time-consuming and cumbersome processes 

for membrane fabrications [41-43].  Moreover, it is very inconvenient to separate 

nanomaterials from the membrane as this requires extra steps for dissolving alumina and 

subsequent centrifuge processes.  

 

1.3 Objectives 

This thesis presents a simple and fast approach of synthesizing 1-D TiO2 

nanostructures and TiO2 nanoparticles for the DSSCs applications.  The synthesis 

method of 1-D TiO2 nanostructures produced relatively long (~10 μm) nanowires with 
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Moreover, this method does not need an ultra high reaction temperature, 

sophisticated processes, expensive apparatus, a long reaction time, and a vacuum system.  

Particularly, this simple synthesis process has not been addressed in the past due to the 

high melting point (~1668 °C) and strong oxygen affinity of Ti although simple 

annealing processes have recently been adopted for growing several metal-oxide 

nanostructures using low-melting point metals such as Zn, Sn, Mg, In, and Ga [44, 45].  

The following sections describe detail experimental conditions and key parameters, 

including annealing temperatures, reaction time, a catalyst and also present structures 

and morphologies of as-grown TiO2 nanostructures. 
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2. SYNTHESIS OF 1-D TiO2 NANOSTRUCTURES* 

 

2.1 Experimental Details 

Titanium foils (Sigma-Aldrich, purity 99.7 %) were diced into pieces (~0.5 cm × 

0.5 cm × 0.1 mm), and then ultrasonically cleaned in acetone, isopropanol, and 

deionized (DI) water, respectively.  A catalyst solution was prepared by dissolving 

CuCl2⋅2H2O (Acros Organics, purity 99 %) in DI water with a concentration of 0.005M.  

Then, the solution was spin-coated three times at 1500 rpm for 20 seconds.  The spin-

coating process uniformly distributes tiny CuCl2 particles on the foil surface, and makes 

it possible to use a relatively low reaction temperature due to the low Ti-Cu eutectic 

temperature (~870 °C) compared to the Ti melting point [46].  Upon heating, CuCl2 

decomposes into CuCl and gas-phase Cl2 above 493°C (i.e., CuCl2 (s)  CuCl (s/l) + 

0.5 Cl2 (g)) [47].  CuCl reacts with Ti even at low temperature (~250 °C), remaining 

only solid Cu, (i.e., Ti (s) + 4CuCl (s)  TiCl4 (g) + 4Cu (s)) [48, 49].  Consequently, 

this results in uniform Cu particle depositions as the gas-phase TiCl4 moves away from 

reaction sites in Ar flow during reaction processes.  The sample was placed in a covered 

boat that prevents Cu from being lost to the Ar flow and was inserted at the center of a 

quartz tube of ~120 cm in length and ~2.3 cm in inner diameter as shown in figure 3.  

The boat has an opening on the side where a slow Ar flow impinges during synthesis 

processes.  Both ends of the tube were sealed by O-rings and end caps.  Prior to heating 

the tube furnace, ~100 sccm Ar was flowed for 3 minutes in order to remove air or any 

residues that might be present in the tube.  Subsequently, the furnace was heated up to 

 

*This section reprinted with permission from “Simple and fast annealing synthesis of 
titanium dioxide nanostructures and morphology transformation during annealing 
processes” by Jongbok Park, Yeontack Ryu, Hansoo Kim, Choongho Yu, 2009, 
Nanotechnology, 20, 105608, Copyright [2009] by IOP. 
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the growth temperatures (see table 1) with a continuous ~40 sccm Ar flow throughout 

the entire synthesis process.  

 

 

 

 

Figure 3. Experimental setup to synthesize 1-D TiO2 nanostructures. 

 



11 
 

Table 1. Nine different 1-D nanostructures synthesis conditions. One parameter was 

changed at a time from the condition 1 to 7, and the condition 8 is to compare the results 

with the condition 1 and 2. The condition 9 is to find the influence of oxygen contents on 

the nanostructure growth during the reaction. Cu was used as a eutectic catalyst for all 

reactions except for the synthesis condition 5. 

Synthesis 
condition 

Annealing 
Temperature 

(°C) 

Annealing time
(min) 

Ramping time 
(min) Remark 

1 750 30 20  

2 850 30 20  

3 850 30 85  

4 850 120 85  

5 850 120 85 Annealed without 
Cu 

6 850 240 85  

7 850 360 85  

8 950 30 20  

9 850 30 20 Annealed in room 
air 
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Nine different synthesis conditions were tested as listed in table 1 for elucidating 

the influence of three important synthesis parameters, growth temperatures, annealing 

time, and seed catalyst, on nanostructure growth and morphology.  Three different 

annealing temperatures, 750 °C, 850 °C, and 950 °C were used.  These temperatures − 

close to the eutectic temperature, ~100 °C lower or higher than the eutectic temperature 

− were selected so as to find the influence of the catalyst.  In other words, the nanowire 

growth would be the most vigorous at a temperature close to the eutectic temperature if 

the catalyst plays a significant role in the synthesis.  Two different ramping times were 

used to find the response of slow and fast temperature changes, and four different 

annealing times were employed in order to identify any changes in nanowire 

morphologies.  At the end of the annealing, the furnace temperature was set to a room 

temperature for fast cooling, but it was cooled naturally due to no active cooling 

equipment attached to the furnace.  The cooling rate was approximately 10 °C/min 

above ~200 °C and approximately 1 °C/min below ~200 °C.   

The structure and composition of as-grown samples were analyzed by using an 

X-ray diffractometer (Bruker-AXS D8 VARIO), a scanning electron microscope (SEM, 

JEOL JSM-6400), and a field emission scanning microscope (FE-SEM, FEI Quanta 600).  

For the X-ray diffraction (XRD) analysis, nanostructures prepared by using the synthesis 

condition 4 in table 1 were ultrasonically detached from the foil in deionized water.  

Then, the sample-containing solution was dispersed and dried on a quartz substrate 

several times.  The sample was scanned from 2θ = 20° to 60° with a step size and dwell 

time of 0.01° and 0.1 second, respectively.  In addition, they were also used for more 
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detailed analysis in a transmission electron microscope (TEM, JEOL JEM-2010).  The 

nanostructures were detached by sonication in deionized water, and then they were 

dispersed on a thin pure formvar resin coated meshed grids.  High-resolution and 

selected area electron diffraction (SAED) images were also presented.   

 

2.2 Results and Discussion 

1-D TiO2 nanostructures were successfully obtained as shown in figures 4(a), 

(b), (c), (d), and (f) with the growth conditions, 1, 2, 3, 4, and 6 in table 1, respectively. 

The influence of the reaction temperature was studied by comparing the morphology of 

nanowires in figures 4(a), (b) and (h), whose reaction temperatures were 750 °C 

(condition 1), 850 °C (condition 2), and 950 °C (condition 8), respectively.  The 

nanostructures grown at 750 °C were relatively short (~5 μm long) and thin (typically 

smaller than 100 nm in diameter).  The density of wires was lower than that of wires 

grown at the 850 °C reaction temperature, which produced ~10 μm long and ~100 nm in 

diameter nanowires with the same reaction time.  When we increased the annealing 

temperature to 950 °C, however, most of nanostructures were short, thick, and rod-

shaped. The optimum growth temperature close to Ti-Cu eutectic temperature indicates 

that the Cu catalyst plays a major role in the growth of the nanostructures.  Furthermore, 

without using the catalyst, no nanostructures were obtained, as shown in figure 4(e), by 

using simple annealing methods employed for synthesizing other nanostructures [50-52].   
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Figure 4. SEM images of 1-D TiO2 nanostructures grown by using different growth 

conditions as listed in table 1. (a) 20 min ramping/30 min annealing at 750 °C (condition 

1), (b) 20 min ramping/30 min annealing at 850 °C (condition 2), (c) 85 min ramping/30 

min annealing at 850 °C (condition 3), (d) 85 min ramping/120 min annealing at 850 °C 

(condition 4), (e) 85 min ramping/120 min annealing at 850 °C without incorporating Cu 

catalysts (condition 5), (f) 85 min ramping/240 min annealing at 850 °C (condition 6), (g) 

85 min ramping/360 min annealing at 850 °C (condition 7), (h) 20 min ramping/30 min 

annealing at 950 °C (condition 8), (i) 10 min ramping from ~23 °C to 650-670 °C, 

followed by an immediate natural cooling at ~23 °C. The scale bars in the inset of (a) 

and (i) represent 5 μm and 500 nm, respectively. All other scale bars indicate 10 μm.  
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Figure 4. Continued. 
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So far, various growth mechanisms of metal-oxide nanostructures have been 

proposed such as vapor-liquid-solid (VLS) [53], vapor-solid (VS) [54], and solid-liquid-

solid (SLS) [55] growth processes.  The VLS mechanism is common for catalyst-

assisted nanowire syntheses, but catalyst particles were not easily observed at the end of 

the nanowires in this study.  Hence, this method is thought to be rather close to solid-

liquid-solid or/and solid/vapor-liquid/solid phase reactions, but it would be different 

from spontaneous growth mechanisms that have been reported in the past [44, 50, 56, 

57].   

A proposed growth reaction in this study is the following as schematically 

shown in figure 5.  First, a thin layer of Ti reacted with Cu catalysts creating liquid-

phase islands or Ti-Cu interfaces, which were served as seeds for slender nanostructures 

(figure 5(a)).  Oxygen was easily diffused into the liquid phase Ti, producing crystalline 

TiO2.  In addition, Ti particles can be delivered to the seeds by diffusion or/and vapor 

(figure 5(b)).  The nanowire growth in the axial direction requires Ti to be delivered 

from the surface of the foil.  As they become longer, less Ti can be delivered to their tips.  

This often promotes lateral and new growths, resulting in tapered & belt-like 

nanostructures shown in figure 4.  At the same time, oxygen easily diffuses into Ti foil 

surfaces at high temperature, producing oxide layers, due to the strong oxygen affinity of 

Ti.  A merger of the nanowires/belts also occurs due to the high density and lateral 

growth of the nanostructures (figure 5(c)).  Longer reaction at high temperature buries 

nanostructures owing to the slow growth in the axial direction compared to the surface 

oxidation and lateral growth (figure 5(d)).  
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Figure 5. Proposed 1-D TiO2 nanostructures growth mechanism. (a) Ti nucleation 

initiates and liquid phase islands form. (b) Oxygen diffuses into the nucleation sites, 

producing crystalline TiO2. Ti is delivered from the surface of the Ti foil. (c) Further 

reaction produces both axial and lateral growth of the nanostructures and oxidation 

layers from the surface. (d) A long reaction produces a thick layer of TiO2 due to the 

slow reaction of the nanostructures in the axial direction compared to the oxide layer and 

lateral growths. 

 

 

 

In order to elucidate the growth mechanism, we stopped the process at an early 

growth stage.  The furnace temperature was increased for only 10 minutes with the 

fastest ramping rate (~65 °C/min).  When the furnace temperature reached to 

650~670 °C, the sample was immediately taken out from the tube furnace.  As shown in 
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the figure 4(i), nucleation sites were found on the foil surface, and many of them became 

a few hundred nm long nanowires even with such short period reaction time.  Note that 

such nucleation was not observed when the maximum reaction temperature was ~550 °C 

or lower.   

The density of nanostructures was considerably reduced without the boat cover 

and higher for the sample grown on rough-surface foils than smooth ones.  The cover 

would have increased the Ti-Cu reaction probability and facilitated long nanowire 

growths with shorter reaction times than those obtained by using other approaches [50-

52, 58-63]. The rough surface would have promoted the protrusion from the foil surface, 

which helps the slender structure formation. The 950 °C reaction temperature, which is 

much higher than the eutectic temperature, would have hindered the formation of 

isolated nucleation, producing thick-root nanorods as shown in figure 4(h).  A long time 

reaction produced a film-like oxide layer rather than slender nanostructures as shown in 

figure 4(g).  For comparison, the samples grown by synthesis conditions 4 and 7 were 

cold-fractured using liquid nitrogen in order to inspect their cross sections as shown in 

figures 6(a) and 6(b).  The inset of figure 6(a) shows nanostructures embedded in as well 

as protruded from the thick oxide layer, but nanowires over the top of the oxide layer are 

hardly seen in figure 6(b).  Only thin oxide layer was observed on the bottom side of the 

sample grown with the condition 4 while a thick oxide layer was deposited on the 

bottom of the sample grown with the condition 7. 
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Figure 6. Cross section images of the samples. (a) 85 min ramping / 120 min annealing 

at 850 °C (condition 4), (b) 85 min ramping / 360 min annealing at 850 °C (condition 7), 

(c) 20 min ramping / 30 min annealing at 850 °C in room air (condition 9).  The insets 

are enlarged images of the portions enclosed by yellow rectangles. All scale bars other 

than the one in the inset represent 50 μm, and the scale bar of the inset represents 10 μm. 
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This indicates that the long reaction results in a thick oxide layer and hampers 

nanostructure growths.  It should be noted that the catalyst solution was not dispersed on 

the bottom side of the sample.  Therefore, only small amount of catalysts would have 

been delivered to the bottom side.  On the other hand, when the foils were annealed in 

room air, a dense thick oxide film was observed rather than nanostructures (figure 6(c)).  

We believe that, with a plenty of oxygen in room air, the titanium oxidation process is 

intense, resulting in such thick oxide layer within a short period of time.  This excludes 

the possibility of so-called hot plate methods in room air, which were employed for 

growing copper oxide nanostructures [44, 57], for the synthesis of nanostructured TiO2.  

In this study, oxygen was not supplied externally to the furnace tube during the reaction, 

but the oxygen is present from air residues and the Ar gas as impurity (oxygen in the 

99.999% pure Ar gas is typically less than ~5 ppm) or/and native oxide layers on the Ti 

foils.  This result suggests that an external supply of oxygen may not be necessary or 

should be avoided for titanium oxide nanostructure synthesis.   

 When the annealing time was relatively long, 120 min (condition 4), belt-like 

nanostructures were appeared (figure 4(d)).  Note that they are a mixture of both 

nanowires and belts.  The morphology change was manifested when the annealing time 

was extended to 240 minutes (condition 6, figure 4(f)).  The belt-like structures became 

very wide (up to ~2 μm) and their lengths were measured to be up to ~30 μm.  To our 

best knowledge, without varying the growth temperature, such morphology changes by 

simply extending annealing time have not been reported elsewhere.  Nevertheless, it 

would be worthwhile to look into other direct synthesis of belt-like nanomaterials and 
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infer the factors that determine the shape of nanostructures.  For example, MgO 

nanostructure morphology (nanowires or nanobelts) was determined by their growth 

temperatures [64].  In this case, the nanostructure growth was governed by VLS 

mechanisms, which were promoted by Sn particles clearly seen at the end of the 

nanostructures.  At an elevated temperature, the seed particles were merged so as to have 

slender-shape seeds, resulting in belt-like nanostructures.  On the other hand, SnO2 and 

Al2O3 nanobelts have been obtained without using such eutectic materials required for 

VLS methods [65, 66].  The preferential growth directions are associated with surface 

energy and growth kinetics [67].  The growth to the direction normal to the plane with a 

low surface energy can be suppressed while high energy surface is activated for further 

reactions.  While more extensive study in the future would help to better understand the 

mechanism that caused the shape change, a preferential growth in the rutile TiO2 might 

have brought the morphology changes in this study. 

The growth direction of the nanobelts was observed to be <110>, which was 

confirmed with the lattice fringes and the diffraction spots, as shown in figures 7(a), (b), 

and (c).  The growth direction and structure of nanowires were the same as those of 

nanobelts as confirmed in figures 7(d), (e), and (f).  The high resolution images and the 

diffraction patterns are aligned along the 001 zone axis of the rutile titania.  A rutile 

structure of TiO2 is the primitive tetragonal crystal structure with lattice parameters of a 

= 0.4593 and c = 0.2959 nm (JCPDS file number 21-1276).  This growth direction was 

observed in other study that uses a high temperature (~1050 °C) VLS synthesis [34, 68], 

while a moderate temperature (~850 °C) annealing method produced nanowires with a 
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growth direction of <200> [36] and ethanol assisted synthesis method at 750 °C 

produced <001> [35].  This is a strong indication that nanostructure growths are strongly 

affected by various parameters including reaction temperature, pressure, and reaction 

chemistry in addition to the growth kinetics and surface energies.  Note that low 

temperature synthesis methods are not discussed here as they often produced the anatase 

phase rather than rutile [69-73].   

 

 

   
 

   
Figure 7. TEM images of 1-D TiO2 nanostructures. Images of a nanobelt in (a) a low 

magnification, (b) a high magnification, and (c) a selected area electron diffraction 

(SAED) pattern of a nanobelt. Images of a nanowire in (d) a low magnification, (e) a 

high magnification, and (f) a SAED pattern of a nanowire. The sample was prepared at 

850 °C with 120 min reaction time (condition 4).  
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The TiO2 structures were analyzed by XRD as shown in figure 8, XRD peaks 

indicate that the nanostructures are in the rutile structure, which is a common and stable 

form of TiO2 [34, 35] synthesized at a temperature higher than ~600 °C [73, 74].  

Chlorine-containing compounds such as TiCl2, TiCl3, TiCl4, and CuTiCl4 were not 

detected.  In addition, no peaks related to Cu or copper oxides, which may be present as 

they were used as a eutectic catalyst, were observed.  The amount of Cu dispersed on the 

Ti foil from the low concentration solution may be too small to be detected by the XRD 

scan.  
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Figure 8. XRD pattern of 1-D TiO2 nanostructures. The sample was grown at 850 °C 

with 120 minutes annealing time (condition 4).  This result indicates the TiO2 is in the 

rutile structure.  Crystal directions of the rutile structure TiO2 are designated in the figure.  
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3. INCORPORATION OF TiO2 NANOPARTICLES 

 

3.1 Experimental Details 

Titanium powders (Acros Organics, 100mesh, purity 99.7 %) were mixed with 

CuCl2⋅2H2O powders (Acros Organics, purity 99 %) and ground using a mortar.  The 

mixed powders were used in order to develop the gas-phase TiCl4 during the 

experimental stage.  Upon heating, CuCl2 in the mixed powders decomposes into CuCl 

and gas-phase Cl2 above 493°C (i.e., CuCl2 (s)  CuCl (s/l) + 0.5 Cl2 (g)) [47].  CuCl 

reacts with Ti even at low temperature (~250 °C), remaining only solid Cu, (i.e., Ti (s) + 

4CuCl (s)  TiCl4 (g) + 4Cu (s)) [48, 49].  Consequently, the gas-phase TiCl4 is 

delivered to the sites of TiO2 nanowires by Ar flow during reaction processes.  The 

delivered TiCl4 gases are used as a seed material to synthesize the TiO2 nanoparticles.  

As a starting structure, TiO2 nanowires were prepared by using the same 

procedure mentioned in Section 2.1.  The sample and the mixed powders were placed in 

each side of a covered ceramic boat (2.5 inches long) that maintains TiCl4 gases from 

being lost to the environment easily, and the boat was inserted at the center of a quartz 

tube of ~120 cm in length and ~2.3 cm in inner diameter as shown in figure 9.  The boat 

has an opening on the side where a slow Ar flow impinges during synthesis processes.  

Both ends of the tube were sealed by O-rings and end caps connected with flexible 

Teflon tube, which can allow the quartz tube to move freely during the annealing 

processes.  Prior to heating the tube, ~40 sccm Ar was flowed for 2 minutes in order to 

remove air or any residues that might be present in the tube.  Subsequently, the tube was 
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placed in the furnace which is already heated up to the target temperatures (see table 2) 

with a continuous ~40 sccm Ar flow throughout the entire synthesis process.  These 

processes were repeated as followed by the repeated time conditions listed in table 2, and 

when the annealing process was repeated, the same amount of the mixed powders was 

newly loaded.   

 

 

 
Figure 9. Experimental setup to incorporate TiO2 nanoparticles. 
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Table 2. Eight different nanoparticles incorporation conditions.  One parameter was 

changed at a time from the condition 1 to 5, and the condition 6 is to compare the results 

with the condition 4 by the location of the sample in the furnace.  The condition 7, 8 

were examined to find the influence of the loading mixed powders from the beginning of 

the nanowires growth.  Condition 3 and 4 are compared to find the influence of the 

amount of mixed powders. 

Synthesis 
condition 

Incorporating 
temperature 

(°C) 

Initial NWs 
growth 

conditions 
(°C/ min) 

Repetition 
time 
(min) 

Mixed powders 
(Ti/CuCl22H2O) 

(g) 
Remarks 

1 850 850/30 60/30/30 0.024/0.086  

2 750 850/30 60/30/30 0.024/0.086  

3 750 850/30 20/20/20/20 0.024/0.086  

4 750 850/30 20/20/20/20 0.012/0.043  

5 650 850/30 20/20/20/20 0.012/0.043  

6 750 850/30 20/20/20/20 0.012/0.043 Place to 
downstream

7 850 - 30/20/20/20 0.024/0.086 Simultaneous
process 

8 750 - 30/20/20/20 0.024/0.086 Simultaneous
process 
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Eight different synthesis conditions were carried out as listed in table 2 for 

elucidating the influence of three incorporating parameters, reaction temperatures, the 

repetition time, and the amount of mixed powders.  Three different annealing 

temperatures, 650 °C, 750 °C, 850 °C, and three different repetition times were 

employed in order to identify any changes in the size and the density of nanoparticles.  

Especially, the condition 5 and 6 were examined for the purpose of protecting nanowires 

from being destroyed by repeated annealing processes as introducing a comparatively 

lower reaction temperature.  In case of the condition 6, the sample was placed 

downstream and shifted 2.5 inches from the furnace center.  By doing this, the mixed 

powders remain in the active heating area while the sudden temperature drop occurs at 

the site of the sample.  In order to anneal the samples only during the exact repetition 

time in the condition table, the quartz tube was placed and removed from the furnace at 

the targeted annealing temperature and cooled down rapidly at a room temperature right 

after annealing.   

The structure and composition of as-grown samples were analyzed by using an 

X-ray diffractometer (Bruker-AXS D8 VARIO), a field emission scanning electron 

microscope (FE-SEM, FEI Quanta 600).  For the X-ray diffraction (XRD) analysis, 

nanostructures prepared by using the synthesis condition 4 in table 2. The sample was 

scanned from 2θ = 20° to 60° with a step size and dwell time of 0.01° and 0.5 second, 

respectively.  In addition, they were also used for more detailed analysis in a 

transmission electron microscope (TEM, JEOL JEM-2010).  The nanostructures were 

detached by sonication in deionized water, and then they were dispersed on a thin pure 
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formvar resin coated meshed grids.  High-resolution and selected area electron 

diffraction (SAED) images were also presented.   

 

 

 

  

(a) (b) 

Figure 10. FE-SEM images of TiO2 hetero-structures grown by using different growth 

conditions as listed in table 2. (a) An initial nanowires structure (30 min annealing at 850 

°C), (b) 60/30/30min annealing at 850 °C (condition 1), (c) 60/30/30min annealing at 

750 °C (condition 2), (d) 20/20/20/20min annealing at 750 °C (condition 3), (e) 

20/20/20/20min annealing at 750 °C with reduced mixed powders (condition 4), (f) 

20/20/20/20min annealing at 650 °C (condition 5), (g) 20/20/20/20min annealing at 750 

°C/ placed to downstream (condition 6), (h) 30/20/20/20min annealing at 850 °C by 

simultaneous process (condition 7), (i) 30/20/20/20min annealing at 750 °C by 

simultaneous process (condition 8).  The scale bars in the insets represent 20 μm, and all 

other scale bars indicate 5 μm. 
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(c) (d) 

 

  

(e) (f) 

 

(g) 

 

Figure 10. Continued. 
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(h) (i) 

Figure 10. Continued. 

 

 

 

3.2 Results and Discussion 

TiO2 nanowires were prepared according to the same procedure in Section 2.1 as 

shown in figure 10(a).  The process of incorporating nanoparticles was carried out with 

the conditions as listed in table 2.  TiO2 hetero-structures were successfully obtained as 

shown in figures 10(d), (e) with the growth conditions 3, 4.  The different reaction 

temperatures and the repetition times were studied by comparing the size of 

nanoparticles in figures 10(b), (c), (e) and (f), whose conditions were 1, 2, 4, and 5 

respectively.  The sample incorporated at 750 °C with repetition time of 20/20/20/20min 

showed the best result with smaller size of nanoparticles (~150 nm in diameter) and 

higher density than other temperatures. 

Although the synthesis condition 1 showed successfully incorporated particle 

structures as shown in figure 10(b), the TiO2 particles were grown to the micron scales 
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(~2 μm) due to the long repetition time of 60/30/30min.  Furthermore, the repeated 

processes at a high reaction temperature affected the density of nanowires getting 

reduced and thickened.  In order to examine the influence of the annealing temperature, 

only the parameter of the reaction temperature was changed to 750 °C (condition 2).  

However, the nanoparticle size was still large regardless of the reaction temperature 

(figure 10(c)).    This result shows that the size of TiO2 particles is more affected by the 

repetition time than the reaction temperature.  Moreover, it observed that if there are not 

enough initial nanowires on the sample, nanoparticles could not be well-incorporated.  

This result explains that the nanowires grasp the TiCl4 gas flows, and the TiCl4 reacts 

with diffused oxygen to form nanoparticles.  We also examined the effect of the 

repetition time in the process of nanoparticles growth.  When the repetition time was 

changed to 20/20/20/20min, we can clearly see that shorter annealing time in each 

process reduces the sizes of nanoparticles as shown in the figures 10(d), (e). 

The amount of Ti/ CuCl2·2H2O mixed powders was reduced to the half of the 

original amount (See condition 3 and 4) as each reaction time becomes shorter.  We 

observed that there were no big changes according to the amount of mixed powders.  

The half amount of the mixed powders was fully enough to deliver TiCl4 gases for 

incorporating nanoparticles on the nanowires structure as shown in figure 10(e). 

For the further investigation of the temperature effect, the temperature of 650 °C 

was examined during the same repetition processes. By repeating the annealing 

processes, most powders reacted at this temperature as long as the temperature was 

much higher than the temperature that is fore-mentioned in chemical reaction formulas. 
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The nanoparticles, however, were not incorporated successfully.  This result indicates 

that although the temperature of 650 °C saves the nanowires from the repeated annealing 

processes, the temperature is not enough to facilitate the reaction between nanowires and 

TiCl4 vapors to synthesize TiO2 nanoparticles as shown in figure 10(f).  Therefore, the 

minimum annealing temperature (~ 750 °C) should be addressed to incorporate TiO2 

nanoparicles, although the annealing temperature is much higher than the temperature 

that is needed to activate the chemical reaction between Ti and CuCl2⋅2H2O powders.  

As the same purpose, the ceramic boat was shifted 2.5 inches from the center to 

the downstream of the quartz tube to preserve the nanowires as much as possible from 

being destroyed by the repeated processes.  By doing this, the site of the mixed powders 

is still placed on the active heating zone while the sample containing nanowires is 

located at the inactive heating zone.  As a result, this act saved nanowires but caused the 

rapid nucleation of nanoparticle due to the sudden temperature drop.  After all, the big 

size of particle or chuck was formed easily. 

The simultaneous processes were studied, and the mixed powders were contained 

from the initial growth of nanowires in this method. The experiments were carried out at 

750 °C and 850 °C with same repetition time (30/20/20/20min). The results showed that 

TiCl4 vapors interrupted a growth of nanowire structures, and made it difficult for 

nanoparticles to be formed. Once more, this result explains that the initial nanowires 

structure should be formed before the incorporating process of nanoparticles. 
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From considering all the results, the condition of annealing 20/20/20/20min at 

750 °C (condition 4) is the most suitable condition for incorporating TiO2 nanoparticles 

while minimizing the destruction of nanowires. 

 

 

 

 

Figure 11. Proposed TiO2 nanoparticles incorporation mechanism.  (a) TiO2 nanowires 

formed as a base structure.  (b) Oxygen reacts with TiCl4 vapors, producing crystalline 

TiO2 nanoparticles.  TiO2 nanoparticles are naturally merged each other and with the 

nanowires at the elevated temperature.  (c) Further reaction produces the groups of 

nanoparticles on the top side of the nanowires.  
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A proposed mechanism for this reaction is the following as shown in figure 11.  

First, the initial nanowires structure was formed as a base structure (figure 11(a)).  Upon 

a heating process, the mixed powders of Ti and CuCl22H2O bring TiCl4 vapors to pass 

on the site of nanowires structure. At the same time, oxygen easily reacts to TiCl4 vapors, 

producing crystalline TiO2 nanoparticles. TiO2 nanoparticles are naturally welded each 

other and sit on the nanowires structure at the elevated temperature (figure 11(b)). The 

repeated reactions with a relatively short annealing time produce the groups of 

nanoparticles on the top side of the nanowires (figure 11(c)). 

In this experiment, oxygen was not supplied externally to the furnace tube 

during the reaction, but the oxygen is present from air residues and the Ar gas as 

impurity (oxygen in the 99.999% pure Ar gas is typically less than ~5 ppm) and/or TiO2 

nanowires on the Ti foils.  This result suggests that an external supply of oxygen may 

not be necessary or should be avoided for incorporating TiO2 nanoparticles.   

 To our best knowledge, such a vapor phase incorporation of TiO2 nanoparticles 

by simply repeated thermal annealing method has not been reported elsewhere.  

Figure 12 show bright field TEM images of nanoparticles with high resolution 

and two insets of diffraction patterns collected from the particles 1 and 2.  Both particles 

are polycrystalline and the particle 2 displays twin boundaries.  These results are fully 

natural since the nanoparticles were grown by repeated thermal annealing processes.  

The TEM images also show welded junctions between nanoparticles.  This result might 

have occurred due to the direct incorporation at the relatively high reaction temperature.  

Two diffraction patterns were taken from the contact regions to see the orientation 
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relationship.  They are indexed to have the rutile crystal structure while being aligned in 

the same 111 zone axis.  The particles 1 and 2 are found to be oriented at the rotation 

angle of 48° with respect to each other.  All these images and diffraction patterns clearly 

illustrate these nanoparticles grown under current synthesis condition are crystalline 

structures. 

 

 

 

 

 

(b) (a) 

1 2 

 

(c) (d) 

Figure 12. TEM images of nanoparticles. (a) a low magnification and (b) a high 

magnification at the junction of particle, (c) a high magnification of particle 1 with an 

inset of SAED pattern, and (d) a high magnification of particle 2 with an inset of SAED 

pattern.  The sample was prepared at 750 °C with 20/20/20/20 minutes repetition times 

(condition 4).  
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Figure 13. XRD pattern of TiO2 hetero-structures. The nanoparticles were incorporated 

at 750 °C with 20/20/20/20 minutes repetition times (condition 4).  This result indicates 

the TiO2 hetero-structure is in the rutile structure.  Crystal directions of the rutile 

structure TiO2 are designated in the figure.  

 

 

 

The TiO2 hetero-structures were analyzed by XRD as shown in figure 13, XRD 

peaks indicate that the incorporated nanoparticles are also in the rutile structure the same 

as 1-D nanostructures, which is a common and stable form of TiO2 [34, 35] synthesized 

at a temperature higher than ~600 °C [73, 74].  Chlorine-containing compounds such as 

TiCl2, TiCl3, TiCl4, and CuTiCl4 were not detected.  Only small intensity peaks related 
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to Cu were observed. This was caused by the chance that Cu and/ or CuCl2 were 

delivered to the sample as long as CuCl22H2O were used as a catalyst to develop the 

TiCl4 gases from the mixed powders.  
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Figure 14. UV-visible light absorption spectra of TiO2 hetero-structures. 

 

 

In order to get more detail information, the sample was measured by using UV-

visible light absorption spectroscopy (UV-vis).  From this measurement, we may 

confirm that the Cu does not affect TiO2 hetero-structure. Typically, bulk TiO2 in a rutile 
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phase shows the light absorption peak at ~411nm, which corresponds to the band gap 

energy of 3.02 eV.  However, TiO2 hetero-structures show that the main absorption peak 

at 353 nm (3.52 eV) as shown in figure 14.  This peak value is due to the quantum 

confinement effect of TiO2 hetero-structures.  Furthermore, this result also indicates that 

the structures do not contain any copper oxide related compounds, which have the 

smaller energy band gap (1.2 eV ~ 1.9eV) than TiO2.  Therefore, the Cu detected by 

XRD is nothing but just impurity that is spread on the surface of the sample.   
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4. CONCLUSIONS* 

 

Single-crystalline one-dimensional rutile TiO2 nanostructures were successfully 

synthesized from titanium foils by using a simple thermal annealing method at the 

atmospheric pressure.  Moreover, TiO2 nanoparticles were incorporated into 1-D 

nanostructures easily by using repeated thermal annealing processes.  The synthesis 

method requires neither a high reaction temperature nor complicated reaction processes 

and can be used in producing dense nanowires and incorporating nanoparticles with 

relatively short reaction time.  The key parameters of growing 1-D nanostructures are the 

eutectic catalyst, the reaction temperatures, and the annealing time. The reaction 

temperatures and the repetition time are important parameters for incorporating 

nanoparticles. 

In brief, the Cu catalyst is essential to grow 1-D TiO2 nanostructures at a 

temperature much lower than the melting point of Ti.  The nanostructures were densely 

grown on the surface of foils with the use of Cu catalyst, but nanostructures were rarely 

seen on the samples synthesized without the catalyst.  As a result, the reaction 

temperature close to the eutectic temperature of Ti and Cu is the most appropriate in 

growing nanostructures, and only 30 minutes of annealing time at 850 °C was enough to 

produce ~10 μm long and ~100 nm in diameter nanowires.  Longer reaction time 

brought morphology changes from wires to belts as well as produced longer 

nanostructures up to ~30 μm.  This morphology changes by the simple extension of the 

annealing time have not been reported elsewhere, but the change may be due to the 

 

*Parts of this section reprinted with permission from “Simple and fast annealing 
synthesis of titanium dioxide nanostructures and morphology transformation during 
annealing processes” by Jongbok Park, Yeontack Ryu, Hansoo Kim, Choongho Yu, 
2009, Nanotechnology, 20, 105608, Copyright [2009] by IOP. 
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preferential growth of rutile phase titania.  The growth mechanism of 1-D TiO2 

nanostructures is thought to be solid-liquid-solid and/or solid/vapor-liquid/solid phase 

reactions, but it would be different from spontaneous whisker growth mechanisms. 

The same chemical reaction formula was used to incorporate TiO2 nanoparicles. 

Upon heating of Ti/ CuCl22H2O mixed powders, TiCl4 gases were developed according 

to a chemical reaction formula between CuCl and Ti.  The created TiCl4 gases were 

reacted with diffused oxygen to form TiO2 nanoparticles on the nanowires structure.  To 

activate this reaction, the minimum temperature of 750 °C or higher temperatures was 

needed.  Moreover, the controlling of each annealing time in repeated processes affected 

on the size and the density of the nanoparticles.  Consequently, the condition of 

20/20/20/20min annealing at 750 °C was confirmed as the best condition for 

incorporating TiO2 nanoparticles. 

Further analysis using SEM, TEM, XRD, UV-vis was examined for the 1-D 

nanostructures and nanoparticles.  Additionally, our simple and effective method for the 

synthesis of TiO2 hetero-structures can be utilized for growing other types of metal oxide 

nanostructures especially for those whose melting temperatures are high. 
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5. FUTURE WORK 

 

TiO2 hetero-structures were successfully synthesized by using simple thermal 

annealing processes.  These structures were grown at need to be utilized as an electrode 

in the dye-sensitized solar cells.  Because of their structural characteristic, the DSSCs 

should be illuminated through the cathode side.   

Figure 15 shows a proposed schematic diagram of backside illuminated DSSCs. 

Unlike the nanoparticle-based DSSCs, the titanium foil and the directly grown 

nanowires from the foil were used as the anode in the backside illuminated DSSCs.  

Normally, in the DSSCs made of TiO2 nanoparticles, the anode side is deposited on the 

TCO so that the light can be absorbed directly from the front side.  After all, the 

backside illuminated DSSCs have disadvantages, such as the light loss from Pt layer and 

electrolyte.  Therefore, it is very crucial for backside illuminated DSSCs to maximize the 

transmittance.  The thickness of Pt coating, the types of electrolyte, and the gap between 

the Ti foil and TCO will be key factors to reduce such disadvantages.  However, there is 

a report that despite of these limitations, the backside illuminating system exhibits a 

larger open-circuit voltage compared to the front side illuminated DSSCs [27].  This 

result shows a potential for performance improvement in this type of DSSCs. 

 

 



42 
 

 
Figure 15. Proposed schematic diagram of backside illuminated dye-sensitized solar 

cells. 

 

 

 

 As a further step of this synthesis method, the direct growth method of hetero-

structures on the TCO substrate can be suggested.  By using this method, we can 

eliminate the disadvantages on backside illuminating system.  Typically, ITO (idium tin 

oxide) or CNT thin film is used as a TCO substrate these days. ITO has a high melting 

point of ~1600 °C which is durable for the synthesis processes.  Figure 16 depicts a 

proposed direct growth mechanism of TiO2 hetero-structures on the TCO substrate.  The 

Ti layers are deposited on top of the TCO by using a metal deposition (figure 16(b)).  

After that Cu is deposited on top of the Ti layer as a eutectic catalyst (figure 16(c)).  By 

depositing Cu as a thin layer (~5 nm), the Ti-Cu eutectic reaction can be developed 

effectively, and this assists in a stable growth of TiO2 nanowires.  From this, the TiO2 

hetero-structures are synthesized according to the same procedure mentioned in previous 
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sections as shown in figure 16(d).  Finally, transparent DSSCs on both sides are 

constructed, and the light can be absorbed through the front side (anode side) of DSSCs.   

In order to achieve more efficient DSSCs from the TiO2 hetero-structures, the 

further research should be studied.  Especially, more detailed parameters such as the 

deposition thickness of each metal, the types of TCO substrates should be investigated 

for the successful direct growth method. 

 

 

 

 
Figure 16. Proposed direct growth mechanism of TiO2 hetero-structures on TCO 

substrate. 
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