
 

 

 

PROBING THE BIOSYNTHESIS AND  

MODE OF ACTION OF AZINOMYCIN B 

 

 

 

A Dissertation 

by 

GILBERT THOMSON KELLY 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

 

August 2009 

 

 

 

Major Subject: Chemistry 



 

PROBING THE BIOSYNTHESIS AND  

MODE OF ACTION OF AZINOMYCIN B 

 

 

A Dissertation 

by 

GILBERT THOMSON KELLY 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

Approved by: 
 

Chair of Committee,  Coran M. H. Watanabe 
Committee Members,  Frank M. Raushel 
    Daniel A. Singleton 
    Michael D. Manson 
Head of Department,  David H. Russell 
 

 

August 2009 

 

 

Major Subject: Chemistry 



 iii

ABSTRACT 

 

 

Probing the Biosynthesis and 

Mode of Action of Azinomycin B.   (August 2009) 

Gilbert Thomson Kelly, B.S., Centre College 

Chair of Advisory Committee:  Dr. Coran M. H. Watanabe 

 

 

Since the isolation of azinomycins A and B in 1954 from the soil bacterium, 

Streptomyces sahachiroi, these natural products have been synthetic targets.  Both compounds 

exhibit in vitro cytotoxic activity at submicromolar levels and demonstrate anti-tumor activities 

comparable to that of mitomycin C in vivo.  Unique to this class of natural products is the 

presence of an aziridine [1,2-a] pyrrolidine ring system. Coupled with an epoxide moiety, these 

structural functionalities impart the ability to form interstrand cross-links with DNA via the 

electrophilic C10 and C21 carbons of azinomycin and the N7 positions of suitably disposed 

purine bases.   

  This dissertation investigates the global impact of azinomycin B treatment in a yeast 

model with special emphasis on DNA damage response, the resulting cell cycle effects, and 

cellular localization of the compound.  The results provide the first demonstration of the in vivo 

actions of azinomycin B and are consistent with the proposed role of the drug as a DNA cross-

linking agent.  Biosynthesis of azinomycin B was investigated and appears to have polyketide, 

non-ribosomal peptide synthetase and alkaloid origins.  In pursuit of elucidating the biosynthetic 

origin we developed both a cell culturing system and a cell-free extract procedure capable of 

supporting azinomycin synthesis; we used these.  These were employed with labeled metabolites 

to probe the biosynthetic origins of the molecule.  Investigations with this enzyme preparation 

imparted important information regarding the substrate and cofactor requirements of the 

pathway.  These results supported the premise of a mixed origin for the biosynthesis of the 

molecule and paved the way for expansive stable isotope labeling studies, which largely revealed 

the biosynthetic precursors and probable construction of the azinomycins.  Some of these studies 

corroborate while other results conflict with initial proposed biosynthetic routes based upon the 

azinomycin biosynthetic gene cluster sequence. 



 iv

Future azinomycin biosynthetic gene cluster enzyme characterization, mechanistic 

investigations, and genetic modifications will ultimately provide definitive proof for the 

intermediacy of proposed biosynthetic precursors and the involvement of specific cofactors.  

Better understanding of how nature constructs unique molecule may provide insight into eventual 

chemoenzymatic/gene thearapy based approaches toward cancer therapy.   
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CHAPTER I 

 

INTRODUCTION 

 

INTRODUCTION 

 

Azinomycin B is a naturally produced secondary metabolite produced by two species of 

Streptomyces bacteria, S. sahachiroi [1] and S. griseofuscus [2].  This molecule (Figure 1) is of 

particular interest to the scientific community because of its proven ability as an anticancer and 

antibacterial agent [1, 3].  This ability is attributed to the DNA cross linking action from the 

epoxide and aziridine moieties in the molecule.  The unique structure of the aziridino[1,2-

a]pyrrolidine (1-azabicyclo[3.1.0]hexane) ring system and functionality of the molecule have 

made this natural product a popular topic of research. Mode of action, total synthesis of 

azinomycin and derivatives, and investigation of the molecule’s biosynthesis have comprised the 

focus of recent research. Accessing the unique functionality in this molecule via synthesis, 

elucidation of its biosynthesis, and biosynthetic gene cluster manipulation could eventually lead 

to more effective antibiotic and cancer treatments. 

 

 

 
Figure 1.  Azinomycin B. 
 

 

MAN, NATURAL PRODUCTS, AND STREPTOMYCES 

Since antiquity, people have used natural sources for pharmacological benefit.  Plants have long 

been a resource for medicinal treatment for a myriad of ailments as well as a source of poisons.  

Microorganisms have also been a resource and a problem for the same reason. As scientific,  
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medicinal, and industrial knowledge have increased, so have the numbers and types of natural 

products available for pharmaceutical use.  In the mid-20th century, the search for new sources of  

drugs was  investigated with  industrial vigor and  scale.  Streptomyces  species, which are 

primarily terrestrial soil bacteria, were of particular interest to screeners looking for unique 

natural  products  due  to  their  renowned  ability  to  produce  diverse  secondary  metabolites.  

Collecting and screening these microorganisms reached a fevered pitch in the late 1960s.  

Investigators’ efforts ranged from local collections of rural soil, soil samples collected while on 

vacation [4], and industrial scale collection and screening by pharmaceutical companies.   

Although the rate at which new and effective pharmaceuticals strictly isolated from 

nature has decreased, natural products still provide a significant source of inspiration to the drug 

industry.   According to a 2007 report by Newman and Cragg, over the past 25 years 47% of new 

drugs in the US marketplace were natural products or their derivatives [5].  However, 73% of 

these new drugs were derivatives or were based upon the basic skeleton of natural products 

previously discovered [5].  Many of these drugs are aimed at cancer treatment.  In addition, 

antibacterial/antifungal activity is another prized property, especially with the rise of multi-drug 

resistant microorganisms [6]. 

 

CARZINOPHILLIN/AZINOMYCINS 

It was during one of the aforementioned soil screens that the initial activities of the 

“carzinophilins” were first described along with the previously unnamed producing organism, 

Streptomyces sahachiroi [1].  The strain was isolated from a soil sample collected in Tokyo in 

January 1951.  The initial culture broth of S. sahachiroi was shown to have a pronounced 

inhibitory affect on Gram positive and Gram negative bacteria, but not fungi.  The culture broth 

was screened against a Yoshida sarcoma, a malignant rat tumor, and showed an inhibitory growth 

effect.  Culture broth treatment resulted in prolonged life for the treated rat.   These encouraging 

results led to further investigation and isolation of the “causative agent.” From subsequent 

investigations, only indirect evidence of the structure was gained: the substance was white, and 

acidic; it was susceptible to change in pH and temperature; it formed salts with sodium, 

potassium, calcium, etc.; it was soluble in water, alcohols, acetone, butyl acetate, chloroform, but 

not petroleum ether. 

In 1955, improvements in purification, characterization, and tests upon live rats and mice 

with tumor cells demonstrated the effectiveness of azinomycin B and helped to establish it as a 
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molecule of interest [7].  In 1956, reports on the effect of carzinophilin on malignant tumors [8] 

and the clinical and histological studies on the cases treated by carzinophilin [9] were published. 

 

 

 
Figure 2.  Suggested Structures for Carzinophilin A/Azinomycin B. 

 

 

Characterization of azinomycin B/carzinophilin A has been an ongoing process with 

several suggested structures based on chemical and spectroscopic investigations (Figure 2).  The 

original report suggested a molecular formula C60H60O21N6 [7] but Tanka et al. [10, 11] 

suggested it should actually be C50H58O18N5.  The authors further reported alkaline hydrolysis of 

carzinophilin that yielded 3-methoxy-5-methylnaphthalene-2-carboxylic acid.  Additional reports 

by Hata and others in 1969 [12] clarified the structure of naphthoate portion of the molecule 

resulting in the assignment indicated in Figure 2A Ib and asserted that the related primary amide 

had the structure indicated in Figure 2A II.  Lown and Hanstock reported further 

characterization of the molecule in a 1982 report [13] claiming a dimeric arrangement of the 

molecule (Figure 2B).  This claim is based largely upon proton and carbon NMR, nuclear 
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Overhauser effect (NOE) experiments previously reported molecular mass, and chemical 

degradation experiments [13].  The 1982 report, in addition to a 1977 report by Lown [14], 

indicated the DNA alkylating and fluorescence properties of carzinophilin A [14], suggesting a 

molecule containing two aziridine moieties.  Shortly thereafter, another report [15] suggested a 

different structure (Figure 2C) with a molecular formula C31H33O12N3.  A subsequent report by 

the same authors [16] suggested the stereochemistry seen in Figure 2D.   

The structure’s true conformation was determined in 1986 and reported by Yokoi et al. 

[17].  This analysis reassigned the designation of carzinophilin A to azinomycin B.  They 

reported structures with a corrected molecular formula C31H33O11N3.  In addition, the 

investigators reported finding azinomycin A, which contains a methylene (CH2) group instead of 

the enol group found in azinomycin B (Figure 3A&B).  Naphthoate derivatives were also 

isolated, including one that contained the epoxide portion (Figure 3C) seen in azinomycin A, 

azinomycin B, methoxy-naphthoate (Figure 3D), naphthamide (Figure 3E), and the 3-methoxy-

5-methylnaphthalene-carboxylic acid (Figure 3F). 

 

 

 
Figure 3.  Corrected Structures for Carzinophilin A/Azinomycin B.  
Compounds isolated from Streptomyces sahachiroi culture broths and identified: (A) azinomycin A (B) 
azinomycin B and naphthoate group derivatives (C-F) adapted from Yokoi et al. 1986 [17]. 
 

 

After complete structural characterization, research interest in the azinomycins and 

derivatives turned toward total synthesis and mode of action.  Efforts towards synthesizing 

azinomycin B were unsuccessful.  However, in 2001 Coleman et al. reported the total synthesis 

of azinomycin A [18].  Several derivatives and portions of the azinomycin skeleton have been 

synthesized and investigated for structure activity relationship [19-29].  Despite interest in the 

unique synthetic challenge, investigations of the biosynthetic origin of these molecules were not 

reported until 2004 [30, 31], fifty years after the molecule’s discovery.   
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STREPTOMYCES AND BIOSYNTHESIS 

Streptomyces species have a well established reputation as a source for many pharmacological 

compounds.  The Streptomyces are primarily soil dwelling bacteria, with the exception of a few; 

largely eradicated species and related mycobacteria: Mycobacterium tuberculosis and 

Mycobacterium leprae, the causative agents in tuberculosis and leprosy, respectively [4].  The 

Streptomyces bacteria were long considered to be an evolutionary link between bacteria and 

fungus.  Their filamentous appearance, differential morphology producing roots, branches, spores 

similar in structure to fungi, and resistance too many antibiotics contributed to this 

misunderstanding.  Further research, aided by advances in genetics, led to the recognition of their 

distinct identity.  The bacteria seem to have evolved to suit their exact situation both 

morphologically and chemically.  The soil environment puts selective pressure upon its 

inhabitants to be versatile in adapting to environmental changes and to competitors.  Its ability to 

consume simple and complex nutrient sources, adapt to drought and deluge and to cold and heat, 

in addition to its ability to compete with all the other forms of life, has enabled Streptomyces 

species to occupy a unique niche in soil.  The Streptomyces are mostly non-motile, but eminently 

adaptable.  They grow in contiguous segments sharing cell walls with neighboring cells.  It has 

been speculated that the contiguous nature of Streptomyces colony growth is a particularly useful 

adaptation for the soil environment, allowing for the ability to span gaps, and the stability to 

provide attachment to other cells [4].  The growth of these colonies, especially in liquid media, 

results in a macroscopic appearance of irregular spheres and a microscopic appearance of tangled 

filaments (Figure 4).  On solid media, the Streptomyces colonies pass through several 

developmental stages and variations during on the maturation of the colony, ultimately leading to 

the production of aerial spores.  Although the differentiation in Streptomyces colonies gives it the 

appearance of a multi-cellular organism, any portion of the “mycelia” may be removed to give 

rise to new colonies.  Multiple signaling pathways result in cascades of gene expression changes 

both spatially and temporally in the entire mycelia bunch. Tied to the growth and differentiation 

of the mycelia is the production of a variety of secondary metabolites.  Streptomycetes’ complex 

ability to adjust expression of genes in concert with, or in response to, environmental conditions 

is thought to be a result of a very sensitive and complex system of sigma and transcription 

factors.  The microorganism’s ability to adjust of gene expression enables it to adapt to a variety 

of different environmental conditions and to exploit a wide range of available resources.  

Production of secondary metabolites in Streptomyces is known to be largely tied to the formation 

of spores. 
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Figure 4.  Streptomyces sahachiroi Mycelia. 
S. sahachiroi mycelia branches in liquid media (seen here at 1000X magnification) grown from spores.  
Picture taken by the author. 
 

 

Streptomyces tend to dominate the conversation on natural products because of their 

proven performance as “the antibiotic producers.” Over the past 70 years, the genus of 

Streptomyces has been the predominant source of readily discoverable antibiotics and other 

natural products.  The true richness of Streptomyces species was further disclosed in 2002 with 

the public revealing of the Streptomyces coelicolor A3 (2) genome sequence [32].  Since this 

date, Streptomyces avermitilis (2003) [33], an industrial microorganism producing the macrolide 

avermectins, Streptomyces scabies (2007), and Streptomyces griseus (2008) [34] have had their 

genome sequence published.  Many more genomes have been sequenced but have not been 

publicly released.  A significant number of sequences for biosynthetic pathways or key proteins 

have been available.  The full complexity of Streptomyces and the nature of the production of 

their secondary metabolites is being revealed slowly.  Genome sequencing increases the 

accessibility of Streptomyces species as a source of cryptic or silent metabolic pathways.  The 

advent of cheaper genome sequencing has led to a revolution in the analysis of natural product 

biosynthesis.   

 

NATURAL PRODUCT PATHWAYS 

A survey of isolated natural products will yield a menagerie of varied and distinct molecules, yet 

the origin of these molecules flows from basic pathways related to primary metabolism.  Primary 
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metabolites include amino acids, nucleotides, fatty acids, and vitamin complexes which produce 

proteins, nucleic acids, and cell membranes.   Secondary metabolites are typically classified upon 

the basic origin of their construction from both the metabolic building blocks and the molecular 

machinery that assembles the units.  Natural products, also known as secondary metabolites, are 

by definition not required for the survival of the organism. These natural products are produced 

by a few pathways including the non-ribosomal peptide synthetase (NRPS), alkaloid, shikimate, 

isoprenoid, fatty acid synthase (FAS), and polykedtide synthase (PKS) pathways.  Polyketide 

synthases (PKS) are similar to fatty acid synthases (FAS), producing carbon chains of repeating 

units in various states of oxidation.  PKS pathways are constructed with structurally diverse 

starting units with subsequent 2 or 3 carbon extension units.  NRPS pathways provide a route for 

the formation of polypepetide units from natural and unnatural amino acids.   Alkaloids are 

organic, nitrogenous bases found mostly in plants, but also to some extent in microorganisms.  

Shikimate derivatives are often aromatic amino acids as they are from variations on the 

biosynthesis of L-phenylalanine, L-tyrosine, and L-tryptophan.  Terpenes are constructed from 5 

carbon isoprene starting units.   

Figure 5 illustrates some proto-typical molecular examples of products derived from 

different natural product pathway classes.  Aflatoxin B1, a highly toxic compound produced by 

Aspergillus fungi, is a polyketide, having been constructed from acetate building blocks (Figure 

5A) [35-41].  Cocaine, an addictive analgesic drug, is an alkaloid made by the coca plant, 

Erythroxylon coca (Figure 5B) [42].   Vancomycin, a glycopeptide antibiotic used in the 

prophylaxis and treatment of infections caused by Gram-positive bacteria shown in Figure 5C 

[43, 44], is NRPS derived [35].  The drug Taxol, isolated from the bark of the Pacific yew tree, is 

a common pharmaceutical used in cancer treatment, due to its terpenoid skeleton (Figure 5D) 

[45].   Chloramphenicol, a bacteriostatic antimicrobial produced by Streptomyces venezuelae, is a 

shikimate pathway derived (Figure 5E) [46].  Although the origin, producing organisms, and 

effects of these molecules are quite different, the construction of these molecules share common 

characteristics. 
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Figure 5.   Typical Examples of Natural Product Structures from the Polyketide, Alkaloid, NRPS, 
Terpene, and Shikimate Pathway Families.  
(A) Aflatoxin B1, a polyketide,  (B) Cocaine, an alkaloid,  (C)  Vancomycin, a non-ribosomal peptide.   
(D)  Taxol, a terpene, and (E) Chloramphenicol, a shikimate pathway derived natural product. 
 

 

 Often in microorganisms, but not in plants, the genes coding for the biosynthesis of a 

natural product tend to be clustered in the same region of the genome.  Consequently, when they 

are transcribed all appropriate components are produced.  These genes work in cis.  The large 

multi-domain enzymes produced are also accompanied with efflux proteins or other resistance 

proteins, and modifying enzymes.  Some genes or related elements of natural product 

biosynthesis are not clustered, but work in trans requiring coordination of several distantly 

located genes or in conjunction with primary metabolic pathways.  The pathways are defined by 

the origin of their primary building blocks.  While some significant types of pathways include 

fatty acid synthesis, polyketide synthases, non-ribosomal peptide synthetases, terpenes, alkaloids, 

or modifications of shikimate biosynthesis, the end product skeleton is rarely unmodified.  

Synthases use acyl-CoA subunits while synthetases require ATP in the biosynthetic process.  

Oxidation/reduction (changing of the oxidative state), glycosylation (addition of sugar 

subsitiuents), transamination (the removal or addition of an amino group), alkylation (such as 

addition of a methyl group), and acylation (such as addition of an acetyl group) are among the 

standard modifications.  Some natural products have portions of their skeletons from completely 

different pathway types.  This leads to the hybrid origin of many natural product molecules, 

including azinomycin B. 
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THE TERPENES 

Terpene biosynthesis is resembles that of a simple metabolic pathway (Figure 6).  Unlike PKS 

and NRPS pathways, there is no multi-active site and no megasynthase assembly-line; each 

enzyme acts independently [47].  Most terpenes undergo oxidation by various oxidases to 

generate alcohols and ketones.  In addition, they are frequently acylated, glycosylated, and 

alkylated.  Terpenes are most often associated with plant natural product biosynthesis, where 

terpene biosynthesis is related to the mevalonate pathway [47].  In Streptomyces, most terpenes 

are derived from the nonmevalonate pathway [47, 48].  The structure of azinomycin B is not 

consistent with the standard, 5 carbon isoprene unit patterns associated with terpene natural 

products and is not isoprenoid derived. 

 

 

 
Figure 6.  The Building Blocks, Arrangement, and Nonmevalonate Biosynthesis of Terpenes. 
(A) 5 carbon Isoprene unit, starting unit include dimethylallyl pyrophosphate and isopentenyl 
pyrophosphate.   (B) Typical patterning, in red, seen in a limonene, a terpene.   (C)  The biosynthesis of 
terpenes from the nonmevalonate pathway [47]. 
 

 

THE ALKALOIDS 

The alkaloids are a group of natural products that contain basic nitrogen atoms having earned 

their name from the term alkaline which used to refer to any nitrogen containing base.  Alkaloids 

are often identified by the skeletal nitrogenous base from which they are most closely related.  

The amino acid building blocks of alkaloids are modified by decarboxylation, aldol 
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condensation, reductive amination or methylation. Successive alterations using these relatively 

few biosynthetic transformations lead to alkaloids in which the original amino acid building 

block is often hard to identify.  Cocaine is an example of an L-ornithine derived tropane alkaloid 

[49].  Figure 7 illustrates the modification to the original L-ornithine (methylation, 

transamination, addition of two carbon acetate units, oxidation, and cyclization) to ultimately 

biosynthetically produce cocaine. 

 

 

 
Figure 7.  The Biosynthesis of the Plant Derived Alkaloid Cocaine. 
The biosynthesis of cocaine from the coca plant, Erythroxylon coca [49]. 
 

 

Production of modified amino acids or subunits which undergo further modification is an 

alternate description of the alkaloids.  Several alkaloid type natural products produced by 

Streptomyces species have been reported such as the benzodiazepine anthramycin in 

Streptomyces refuineus [50] (Figure 8).  L-tryptophan, L-tyrosine, and the methyl group from L-

methionine are modified by enzymes in the antramycin biosynthetic gene cluster to produce 

antramycin and related natural products. 
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Figure 8.  The Biosynthesis of the Streptomyces refuineus Derived Alkaloid Anthramycin. 
The biosynthesis of the alkaloid natural product anthramycin as determined by isotopic feeding 
experiments. Figure after Hu et al. [50]. 

 

 

It is possible to envision the production of a modified unit for attachment to the 

azinomycin backbone to produce the main portion of the aziridinopyrrolidine ring from L-

ornithine.  Figure 9 path A envisions the main aziridinopyrrolidine ring forming from the five 

carbons and the primary nitrogen of L-ornithine, after biosynthetic modifications.  Figure 9 path 

B envisions modification of L-ornithine to produce part of the backbone of azinomycin with two 

additional carbon units and a nitrogen being added to complete the pyrrolidine and aziridine 

rings.  Figure 9 path C envisions modification of L-tyrosine, similar to that which helped form 

anthramycin in Figure 8, where decarboxylation, transamination, and other modification 

reactions could lead to the formation of an aziridinopyrollide amino acid. Whereas most of the 

azinomycin molecule does not appear to be alkaloid derived, it is likely that a portion of the 

molecule could have alkaloid biosynthetic origins before incorporation into the larger natural 

product. 
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Figure 9.  An Outline of Potential Alkaloid-type Biosyntheses of Aziridinopyrrolidine Moiety of 
the Azinomycins. 
 

 

FATTY ACID BIOSYNTHESIS 

Fatty acid biosynthesis is part of the primary metabolism responsible for the synthesis of lipids.  

Fatty acid construction begins with a keto starting unit, often acetate, attached to the fatty acid 

synthase (FAS) enzyme.  A unit is added by the keto synthase (KS) when the malonyl unit 

decarboxylates, leading to the attack of the carbonyl carbon on the starter unit, resulting in 

detachment from the enzyme.  Next, the unit that has been extended then undergoes a reduction 

via the ketoreducase (KR) to the resulting alcohol.  Next the alcohol is turned into an alkene via 

the dehydratase (DH) and finally is reduced by the enoylreductase to the alkane.  If the unit is 

further extended, the process is repeated after transfer of the molecule to the enzyme from the 

phosphopantetheinyl arm.  This cycle is illustrated in Figure 10.  Chain extension proceeds until 

a native limit, when the acyl thioester is released or, in the case of some fatty acid synthesis, 

terminated by a thioesterase (TE) domain. 
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Figure 10.   Fatty Acid Biosynthesis. 
Fatty acid biosynthesis proceeds through a cyclic mechanism, beginning with a Claisen condensation-like 
carbon-carbon bond forming reaction, then proceeding through a reduction, dehydration, and a second 
reduction to generate a saturated chain.   KS - ketosynthase, KR - ketoreducatse, DH - dehydratase, ER -
enoyl reductase, SPP - phosphopantetheine thiol, SEnz - enzyme bound cysteine.  Path A adds additional 2 
carbon units to the growing chain.  Path B releases the fatty acid by way of the TE – thioesterase domain.  
Adapted from Dewick, 2002 [35]. 
 

 

THE PHOSPHOPANTETHEINE ARM 

The phosphopantetheine arm is a common and essential feature in the biosynthesis found in fatty 

acid biosynthesis, non-ribosomal peptides, and often polyketide biosynthesis.  4'-

Phosphopantetheine, derived from coenzyme A, is an essential prosthetic group in biosynthetic 

pathways.  Domains carrying the molecule under construction, including the acyl carrier protein 

(ACP), peptidyl carrier proteins (PCP), and aryl carrier proteins (ArCP), all contain this 

prosthetic group.  These carrier domains are referred to as thiolation domains (T) (Figure 11B) 

once the prosthetic group is attached (Figure 11A).   

The phosphopantetheine arm fulfills two demands: First, the intermediates remain 

covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage; Secondly, 

the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the 

covalently tethered intermediates to have access to spatially distinct enzyme active sites.  

Phosphopantetheine is covalently linked via a phosphate ester to a serine hydroxyl of the acyl 

carrier protein, also known as the thiolation domain of Fatty Acid Synthase. 
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Figure 11.  Structure of Coenzyme A and Phosphopantetheine Arm Attached to the Acyl Carrier 
Protein/Thiolation Domain. 
Adapted from Figures after Dewick, 2002 and Walsh et al., 2006, [35, 51]. 
 

 

THE POLYKETIDES 

The wide varieties of compounds that share the polyketide origin share a common skeletal 

design.  The differences in these compounds result from the flexibility of their construction and 

modifications.  Polyketide compounds have several major categories such as aromatic, 

macrolactone, and polyene molecules.  Examples of each of these different types are seen in 

Figure 12.  These differences reflect the construction of the molecules.  Polyketide synthase 

genes for most polyketides are organized in a single operon in bacteria or in gene clusters in 

eukaryotes.  From an initial analysis, it would appear that the naphthoate group of azinomycin B 

could be derived from an aromatic polyketide pathway. 
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Figure 12.   Selected Examples of Aromatic, Macrolactone, and Polyene Polyketides.  
(A)  Nystatin A1, a polyene produced by Streptomyces noursei [52].   (B)  Erythromycin A, a 
macrolactone is produced from a strain of the actinomycete Saccharopolyspora erythraea, formerly known 
as Streptomyces erythraeus [53].   (C)  Actinorhodin an aromatic polyketide from Streptomyces coelicolor 
A3(2) [54]. 
 

 

Polyketide construction is most clearly understood to parallel fatty acid biosynthesis.  In 

fatty acid biosynthesis, smaller units like malonyl CoA units are added stepwise onto a growing 

chain and are subsequently reduced from keto form to an alkane.  The first step in this process is 

the loading of malonate onto a coenzyme A molecule.  The next step involves the addition of the 

malonyl-CoA unit onto the fatty acid biosynthesis enzyme’s phosphopantetheine arm. The 

differences between PKS and FAS biosynthesis diverge after this point upon the degree to which 

the units are processed (Figure 13).  Polyketide construction differs from the FAS model in the 

degree of reduction and the repetitive nature of the process.  Some polyketides are simply 

modular for each step while others are iterative, like the FAS model.   Instead of being fully 

processed each time, the process may be cut short.  Polyketide biosynthesis also differs from 

fatty acid biosynthesis in that the starting units in polyketides vary widely.  PKS are also 

commonly extended by methyl malonate units, rather than malonate units, which results in a 

branched natural product chain.  Although FAS produce straight chain fatty acids in an iterative 

process, PKS construction is not always iterative.  PKS is often modular, with different enzymes 

processing each additional unit to the molecule.   



 16

 

 

 
Figure 13.   Comparing PKS and FAS Biosynthesis. 
 

 

There are different classes of polyketides: type I, type II, and type III (Figure 14A).  

Type I polyketide synthases are large, highly modular proteins.  Type II polyketide synthases are 

aggregates of monofunctional proteins.  Type III polyketide synthases lack ACP domains; they 

are iterative, homodimeric enzymes that directly catalyze the condensation of the acyl-CoA unit 

[55], and are highly divergent from either type I or type II synthases.  Type I PKSs are further 

subdivided: iterative PKSs, which reuse domains in a cyclic fashion, and modular PKSs, which 

contain a sequence of separate modules and do not repeat domains.  Aromatic PKSs consist of 

iteratively used active sites that are on a group of separate proteins encoded by clustered genes 

(bacterial PKS) or on a single protein (fungal PKSs) [56].  Although PKS starting units can be 

quite structurally diverse (propionate, acetate), the extending units are predominantly malonyl-

CoA or methylmalonyl-CoA (Figure 14B).  After incorporation onto a growing chain powered 

by decarboxylation, these extension units effectively add acetate or propionate units (Figure 

14C).   
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Figure 14.   PKS Model Diagrams. 
(A) Fatty acid synthase/ Polyketide synthase models.  (B) Common starter and extender units in PKS 
systems.  Starter units are variable in structure.  (C) Loading and elongation of PKS type 1 models occur in 
the minimal model.  Figures after Walsh et al., 2006 [51]. 
 

 

Evaluation of the naphthoate group of azinomycin B suggests that the 12 carbon skeleton 

of the naphthoate could result from the condensation of 5 malonyl-CoA units with a starting 

acetate unit.  This hexaketide could undergo an intramolecular aldol condensation with the 

resulting aromatization yielding the naphthoate skeleton (Figure 15).  Such a construction could 

be attributed to a number of PKS types.  The closest parallel found is the similarly structured 

naphthoate group in neocarzinostatin (Figure 16) [57, 58].   The neocarzinostatin naphthoate was 

determined to originate from a type I iterative pathway [57, 58]. 

 

 

 
Figure 15.   Possible PKS Origins for the Azinomycin Naphthoate. 
Analysis of the naphthoate structure would indicate that it could originate from a PKS hexaketide product.   
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Figure 16.   Structural Similarity in Neocarzinostatin and Azinomycin B. 
(A) Neocarzinostatin and (B) azinomycin B share a similarly structured naphthoate group (in brackets).   
 

 

 
Figure 17.   Type 1 Iterative PKS Producing 6-methylsalicyclic Acid and Chlorothricin. 
(A) 6-methylsalicyclic acid synthase (ChlB1) involved in the biosynthesis of (B) 6-methyl salicyclic acid 
in Pennicillium patulum and (C) chlorothricin from S. antibioticus [59].   
 

 

NEOCARZINOSTATIN 

Neocarzinostatin (Figure 16A) is a potent DNA-damaging bicyclic dienediyne antibiotic 

produced by Streptomyces carzinostaticus [57, 58].  Attached to the bicyclic dienediyne 

“warhead” portion of the molecule is a naphthoate moiety.  Its biosynthesis has been determined 

to include a type 1 iterative polyketide synthase with high homology to the most investigated 

type 1 iterative PKS, the multifunctional 6-methylsalicyclic acid synthase gene from the fungus 

Pennicillium patulum [56, 57, 60, 61].  A 6-methylsalicyclic acid synthase has also been isolated 

from Streptomyces antibioticus involved in the chlorothricin biosynthesis [59] (Figure 17).  The 
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genes responsible for neocarzinostatin’s naphthoate are a single PKS gene, NNS, flanked by an 

O-methyl transferase gene (O-MT) and a gene for an ATP-dependent adenylate/thioester-forming 

enzyme (A) in Figure 18 [57].  Presumably there would be an oxygenase that would produce the 

two hydroxyl groups, one of which gets methylated in neocarzinostatin.  The similarity to the 

azinomycin naphthoate moiety cannot be overlooked.  There are, however, alternative models to 

consider. 

 

 

 
Figure 18.   Type 1 Iterative PKS Producing the Neocarzinostatin Naphthoate Moiety. 
(A) Type 1 iterative PKS and flanking genes involved in the biosynthesis of (B) the naphthoate of 
neocarzinostatin in Streptomyces carzinostaticus.   
 

 

MODULAR PKS MODEL 

It is reasonable to consider the non-iterative type I PKS biosynthesis in relation to azinomycin B.  

Construction of 6-deoxyerythronolide B is the best-characterized example of PKS construction.  

The construction of 6-deoxyerythronolide B, essentially the skeleton of the effective antibiotic 

erythromycin, exemplifies variations seen in molecules with polyketide origin.  Methylmalonyl 

Co-A units are used to construct this molecule and are subsequently reduced to varying degrees.  

The entire 7-unit molecule then undergoes a cyclization via macrolactonization.  Analysis of the 

biosynthetic genes for the production of 6-Deoxyerythronolide B revealed the three DEBS PKS 

genes, each containing the distinct modules seen in Figure 19.  Other types of multimodular PKS 

enzymes contain non-functioning domains, disabling the particular unit reduction.  If azinomycin 

B would follow the type I format, the construction of the hexaketide would occur using five 

successive modules using an acetate unit as a starting unit. 

 



 20

 

 
Figure 19.   Modular Structure of DEBS (6-Deoxyerythronolide) Synthetase. 
After Khosla, et al., 2007 [53]. 
 

 

Considering the known biosynthetic structure of DEBS synthetases, we could postulate 

what the biosynthetic design for the naphthoate construction would entail.  As mentioned 

previously, the naphthoate could originate from any type of PKS.  It is most likely that the 

naphthoate originates from either a traditional type I or type I iterative PKS similar to that 

discovered in neocarzinostatin’s naphthoate biosynthesis (Figure 20). 
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Figure 20.   Possible Modular Structures of a Naphthoate PKS Synthase. 
Possibilities for PKS involvement in construction of the naphthoate include (A) an iterative type I 
PKS like the iterative type I from neocarzinostatin or (B) minimal modular type I, 5 module PKS 
producing (C) the hexaketide proposed intermediate of the naphthoate. 
 

 

THE NON-RIBOSOMAL PEPTIDES 

Non-ribosomal peptides are produced through a series of acylation reactions on a large, 

multifunctional protein complex [62].  NRPS pathways incorporate amino acids and aryl acids 

onto a growing chain.  This process largely mimics the PKS paradigm.  There are three different 

classes of NRPS pathways: types A, B, and C.  Type A are linear, containing the three core 

domains; the sequence of the peptide produced depends on the number and order of the modules.  

This is much like the PKS pathway seen in the production of 6-Deoxyerythronolide B.  Type B 

are iterative, using domains or modules more than once for a single peptide and often using the 

TE domain as a tether domain for the growing peptide.  Type C is non-linear, containing at least 

one unusual arrangement of the core domains and often incorporating small molecules.  

Evaluation of azinomycin B indicates that it is likely to have NRPS origins. 
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Figure 21.   NRPS Chemistry. 
(A) Chemistry of amino acid activation and loading a modular NRPS with starter units for NRPS 
construction, amino and aryl acids [35, 51].  (B) Chemistry of chain elongation on a modular NRPS. 
 

 

Differences with the PKS model include the use of amino acids or aryl acids as units 

(Figure 21A), the peptidyl carrier protein (PCP) or thiolation (T) domain instead of the ACP, and 

ATP as the loading molecule for the unit in lieu of coenzyme A resulting in an AMP ester amino 

acid.  A core NRPS module is comprised of three principle domains:  the adenylation domain 

(A), the condensation domain (C), and the thiolation (T) domain.  The initiation of the peptide 

begins in the A domain.  The A domain is responsible for recognizing the appropriate amino acid 

and subsequently activating it with an ATP molecule to form the AMP ester, which is added to 

the T domain via a thioester linkage to the attached pantetheinyl arm (Figure 21A).   

The elongation is catalyzed by the C domain.  The amino group nucleophile of the 

neighboring aminoacyl thioester attacks the carbonyl group, resulting in a new peptide bond 

(Figure 21B).  The molecule may finally be cut loose or cyclized by a terminal thioesterase (TE) 

or cyclization (Cy) domain, respectively.  Nonribosomal peptides are often dimers or trimers of 

identical sequences chained together, cyclized, or even branched.   
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Additional modifying domains are found in NRPS biosynthesis for modification of or 

production of unnatural amino acids.  These domains include epimerization (E) into D-amino 

acids, internal cyclization (Cy), oxidation (Ox), formylation (F), reduction (Red), and reduction 

(R) to terminal aldehyde or alcohol.  The A domain is not limited to the proteinogenic amino 

acids, allowing for diverse NRPS products.  Non-proteinogenic amino acids include D-amino 

acids, carry modifications like N-methyl and N-formyl groups, or are glycosylated, acylated, 

halogenated, or hydroxylated.  Additionally aryl acids are also incorporated.  The variety of 

NRPS products possible is quite large.  Azinomycin B appears to involve the incorporation of at 

least 3 amino acids, although one could consider the naphthoate group as an aryl acid starting 

group.   To understand this construction we turn to a well characterized NRPS based natural 

product with type A construction, the calcium dependent antibiotic.    

 

CALCIUM DEPENDENT ANTIBIOTIC 

A direct example of the type A NRPS model can be found in the biosynthesis of the calcium 

dependent antibiotic(s) (CDA) (Figure 22) produced by Streptomyces coelicolor A3(2).  As one 

of the three main antibiotic products (the others being actinorhodin and undecylprodigiosin from 

this prototypical Streptomyces) CDA and its biosynthesis has been thoroughly investigated [63].  

The production of the molecule(s) involves many common steps in NRPS-containing pathways, 

including, presumably azinomycin B.  CDA is comprised of a cyclic lactone undecapeptide with 

an N-terminal 2,3-epoxyhexanoyl fatty acid side chain.  CDA contains several D-configured and 

unusual amino acids including D-4-hydroxyphenylglycine, D-3-phosphohydroxyasparagine, and 

L-3-methylglutamic acid.  Evaluation of azinomycin B indicates all 3 amino acids are unusual.  

The amino acids required for biosynthesis are tyrosine, aspartate, asparagines, tryptophan, 

threonine, glycine, serine, glutamate, and oxoglutarate [63].  Several modifications are necessary 

to produce various alterations found within CDA molecules.  The combination of the possibilities 

at these positions results in the variation seen in CDA (Figure 22). 
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Figure 22.  Structure of CDA, the Calcium Dependent Antibiotic(s), Produced by Streptomyces 
coelicolor A3(2).  
Adapted from Micklefield et al. [64]. 
 

 

The construction of the NRPS portion of CDA begins with an unusual starter unit.  The 

2,3-epoxyhexanoyl fatty acid is initially condensed with the first amino acid, L-serine.  The next 

amino acid added is L-threonine.  Subsequent amino acids (D-tryptophan, L-aspartic acid, D-4-

hydroxyphenylglycine) are added via the large multi-domain NRPS gene product of cdaPS1.  L-

aspartic acid, glycine, and D-asparagine are then incorporated by the NRPS gene product of 

cdaPS2.  The subsequent incorporation of L-3-methylglutamic acid, and finally L-tryptophan,is 

guided by cdaPS3.  This is illustrated in Figure 23.  The epimerization units change the 

stereochemistry of three incorporated amino acids.  The molecule is subsequently cyclized into a 

macrolactone. 
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Figure 23.  Modular Structure of the NRPS Portions of Streptomyces coelicolor Calcium 
Dependent Antibiotic Biosynthesis. 
Adapted from Micklefield et al. [64]. 
 

 

MODIFICATIONS OF CDA REFLECTING NRPS CONSTRUCTION 

Alterations and nonproteogenic amino acids enable NRPS natural products to evade the natural 

peptidases and may be at the very core of their activities.  The nonproteogenic amino acids in 

CDA include 4-hydroxyphenylglycine and 3-methyl-glutamic acid (Figure 24A and B).  These 

two amino acids are specifically produced by genes found in the CDA biosynthetic cluster [64].  

Additional modifications occur after the decapeptide is produced, including oxidation of the 

asparagine residue, and subsequent phosphorylation (Figure 24C) [64].   
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Figure 24.  Modifications found in CDA. 
(A) Biosynthesis of nonproteogenic amino acids 4-hydroxyphenylglycine and (B) 3-methyl-glutamic 
acid.  (C) Modification of l-tryptophan and d-asparagine residues in CDA.  (D) Formation of the trans-
2,3-epoxyhexanoyl-coA CDA starting unit.  Adapted from Micklefield et al., 2002 [64]. 
 

 

The trans-2,3-epoxyhexanoyl-coA starting unit is produced specifically by genes in the 

gene cluster.  The production of the six carbon chain results from fatty acid genes.  These are 

then transferred from an ACP to the coenzyme A and subsequently oxidized to the enone by the 

FAD assisted HxcO seen in Figure 24D.  The molecule is then epoxidized by HcmO, a 

monooxygenase [64].   

Analysis of the gene cluster reveals groups of related genes, such as those for amino acid 

biosynthesis, fatty acid biosynthesis, regulation, resistance, as well as three NRPS genes, and 

several genes of unknown function (Figure 25) [64].  This clustering reflects the common 

arrangement of natural product genes.    
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Figure 25.   Diagram of the Gene Cluster Responsible for the Biosynthesis of CDA. 
Adapted from Micklefield et al. [64]. 
 

 

Additional modifications involved in the production of Streptomyces coelicolor A3(2)’s 

calcium dependent antibiotic offer an example of prototypical modifications in the production of 

natural products of hybrid origin.  Azinomycin B also appears to have a similar composition, 

containing a non-PKS starting unit plus additional units with a modified amino acid appearance.  

Like CDA, the unit may be modified before or after incorporation into the growing chain.  The 

curious azabicycle unit is of particular interest as there are few parallels in natural product 

chemistry.  Figure 26 presents one possible arrangement of modules for the construction of the 

NRPS portion of azinomycin B. 

 

 

 
Figure 26.   Possible Arrangement for the NRPS Portion of Azinomycin B. 
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PKS-NRPS HYBRID PATHWAYS 

Considering the similarities involved in PKS and NRP biosynthesis, it is possible for the two 

systems to interact.  In fact, the two may be viewed with the same basic logic.  The individual 

units or domains within modules in the pathway may be viewed as “pearls on a string,” reflecting 

the PKS type 1 model.  Figure 27 illustrates the several types of domains that are found in either 

NRPS or PKS systems.  Evaluation of azinomycin B would indicate that its biosynthesis likely 

has hybrid origins, with the left half portion reflecting PKS origins and the right half NRPS 

origins.  There are many examples of such hybrid pathways.   

 

 

 
Figure 27.   Key Domains Found in the NRPS-PKS Biosynthesis Which May be Involved in 
Azinomycin B Biosynthesis. 
Adapted from Walsh et al. [51].  Core domains are seen in yellow, green, and red with dark letters.  
The additional modifying domains are seen in blue and pink with light colored letters. 
 

 

 
Figure 28.   Examples of NRPS-PKS Natural Product Molecules. 
(A) FK506 (B) Tallysomycins (C) Leinamycin.  Adapted from Shen et al. 2005 [65]. 
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Hybrid NRPS-PKS molecules include FK506, Tallysomycins, and leinamycin (Figure 

28).  FK506 is an immunosuppressive drug whose primary function is to reduce the risk of organ 

rejection following a transplant [66].  It was discovered from a soil bacteria fermentation screen, 

performed with Streptomyces tsukubaensis [66].  Tallymycins A and B are antibiotic/anticancer 

natural products [65].  Leinamycin, produced by Streptomyces atroolivaceus S-140, is a DNA 

alkylating agent [65]. 

 

TRADITIONAL METHODS OF BIOSYNTHETIC INVESTIGATION 

There are several methods for approaching and deciphering the biosynthesis of a natural product 

such as azinomycin B.  Isolation and characterization of the compound of interest is of 

paramount importance.  Isolation and characterization usually occur as a result of a screen for 

biological activity.  Once the active component is isolated, other components are also analyzed.  

This can be an important step in understanding the biosynthesis, as biosynthesis of many natural 

products is “leaky,” resulting in a number of molecules of related structure.  This is attributed to 

evolutionary bet-hedging.  The various molecules produced may have different positive attributes 

making the metabolic expenditure worth the price.  Variation on molecular structure were shown 

earlier with the calcium dependent antibiotic’s variable structure.  However, the very “leakiness” 

of the pathway yields insights into the biosynthesis of the molecule.  Following isolation of the 

compound(s), a next logical step is to optimize culture conditions to achieve maximal metabolite 

production.  With microorganisms this involves variations in media, temperature, oxygenation, 

and other factors.  Once these conditions are firmly established, it sets the stage for direct inquiry 

of the pathway with isotopically labeled precursors (2H, 13C, 14C, 15N, 18O, etc.).  Stable isotopes, 

often 13C or 2H, can be employed to investigate molecules spectroscopically, usually with nuclear 

magnetic resonance (NMR) spectroscopy.  If higher sensitivity is required, radioactive isotopes, 

often 3H or 14C, are used.  Incorporation of “labeled” metabolic precursors or synthetic 

derivatives into the molecule yield greater insight into the molecule’s biosynthetic origin.  

Additionally, inhibitors can also be employed to query pathways.   

Another approach to accessing biosynthetic pathways includes “fishing” experiments to 

isolate the proteins involved in the biosynthesis.  These experiments use compounds attached to a 

solid support that mimic a portion of the natural product or molecule of interest to extract 

associated proteins from a cellular preparation of the producing organism. This technique is 

similar to a nickel affinity column to trap proteins with histidine tags.  Isolation of these enzymes 

enables one to study the mechanisms of the biosynthesis in greater detail.  In addition, one can 
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sequence the proteins involved, and reverse engineer a DNA probe to search for the original 

sequence in a genomic library of the targeted organism. Advances in gene sequencing and 

analysis have identified sequence commonalities in biosynthetic gene pathways.  These sequence 

patterns enable investigators to search for similar unidentified pathways by design of degenerate 

DNA primers to probe genomic libraries for the desired pathway (PKS, NRPS, terpene, etc.).  

These probes are used to screen a prepared genomic library, often a library of substantial size 

such as a bacterial artificial chromosome (BAC), fosmid (FOS), or cosmid (COS) library.  

Additionally, with the recent reduction in cost of genome sequencing, a new option to researchers 

is to simply get the organism sequenced commercially.  From the sequence information, in 

addition to known public databases, the sequence for the desired biosynthetic pathway may be 

discerned.  This approach will increasingly be a starting point, but will not replace the previously 

mentioned techniques for elucidating the biosynthesis of the natural product of interest.  This 

approach is currently being used in Dr. Coran Watanabe’s group to investigate not only the 

azinomycin B biosynthesis, but myriad marine and terrestrial microorganisms producing natural 

products of interest. 

 

STATEMENT OF PURPOSE 

Natural products have long been of interest for a multitude of reasons.  The azinomycins have 

been a target for total synthesis and have been evaluated for their mode of action due to the 

attractive anti-tumor and anti-biotic effects that these compounds exhibit.  Interest in this 

molecule has now been redirected towards its biosynthesis.  In parallel, the field of biosynthetic 

research in natural product chemistry has slowly shifted from a focus on the chemical 

characterization and synthesis towards the genes that result in the natural product’s production.  

Analysis of the biosynthesis of the azinomycins and their unique construction may yield insights 

that allow access to an additional set of modules for the production of custom or combinatorially 

produced natural products.  Ultimately, manipulation of the biosynthetic genes involved with 

azinomycin biosynthesis increases the available tools to apply towards medicinal ends. 
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CHAPTER II 

 

CELLULAR EFFECTS INDUCED BY THE ANTITUMOR AGENT 

AZINOMYCIN B *               

 

 

 
Figure 29.   Structures of Azinomycin A and B. 
 

 

INTRODUCTION 

Azinomycins A and B (Figure 29) are naturally occurring anti-tumor agents that are among a 

small set of molecules that interact with DNA in the major groove [67].  Azinomycin B was 

originally isolated from Streptomyces sahachiroi in 1954 as carzinophilin A [1] and subsequently 

re-isolated from another Streptomyces strain, S. griseofuscus, in 1986, along with  the related 

natural product azinomycin A [2].  The total synthesis of azinomycin A was achieved in 2001 

[18], and numerous reports on synthetic approaches to these natural products have been reported 

[27, 68]. 

The seminal discovery that azinomycin B interacts with DNA, forming interstrand cross-

links without prior activation, was achieved by Lown and Majumdar in 1977 [14].  Since this 

initial demonstration, a substantial number of in vitro studies have revealed both the 

regioselectivity and apparent sequence selectivity of the compound [69-73].  Azinomycin B 

interacts with the duplex DNA sequence 5′-d(PuNPy)-3′ [71, 74], forming covalent interstrand  

 
*Reprinted with permission from “Cellular Effects Induced by the Antitumor Agent Azinomycin 
B” by Kelly, G. T., Liu, C., Smith, R., 3rd, Coleman, R.S., and Watanabe, C. M. H., 2006. 
Chemistry and Biology, 13, 485-492, Copyright [2006] by Cell Press and Elsevier. 
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cross-links via the electrophilic C10 and C21 carbons of azinomycin and the N7 positions of 

suitably disposed purine bases [69] (Figure 30).  Kinetic assays together with synthetic work 

further suggested that the monoalkylated product is formed first through reaction with the 

aziridine, followed by cross-linking with the epoxide.  The highest levels of cross-linked product 

are attained with the DNA recognition sequence 5′-d(GGC·CCG)-3′ [69] (Figure 30).  

 

 

 

 
Figure 30.  Azinomycin B DNA Cross-linking Preference.   
In vitro incubations of azinomycin B with 15 base pair (bp) strands of double stranded DNA (here colored 
red and blue) revealed a preferred site of cross-linking as reported by Coleman, et al. [69]. 
 

 

Viscometry, fluorescence contact energy transfer, and DNA unwinding experiments to 

probe the role of the azinomycin naphthoate point to a non-intercalative binding (not stacking 

between DNA bases) mode for this group [69].  This is in contrast to the neocarzinostatin 

naphthoate, which despite structural similarity with the azinomycin naphthoate seen in Figure 

31, has been demonstrated to exhibit an intercalative binding mode [75].  In support of these 

results, computer-modeling studies point to a non-intercalative binding mode for azinomycin B 

[74, 76].  These results, however, still leave unanswered the question of whether DNA is the 

relevant cellular target of this agent. 
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Figure 31.  Neocarzinostatin and Azinomycin B.  
Two DNA alkylating agents that contain a naphthoate group (A) neocarzinostatin and (B) azinomycin B.  
The brackets highlight the naphthoate portions of the molecules. 
 

 

Despite extensive work to characterize the interaction of azinomycin B with its DNA 

receptor in vitro, data on the in vivo actions of the molecule are limited to the initial description 

of its cytotoxicity in microorganisms [1, 7] and in early phase clinical investigations in Japan [3, 

77].  In Ishizeki et al.’s report, the natural products were shown to exhibit potent cytotoxic 

activity with a half maximal inhibitory concentration, IC50, of 0.07 μg/mL for azinomycin A 

(Figure 29A) and 0.11 μg/mL for azinomycin B (Figure 29B)] against the leukemia cell line 

L5178Y.  Azinomycin B (Figure 29B) provided a 193% increased life span, ILS, at 32 μg/kg/d 

(3/7 survivors) against an intraperitoneal, IP, implanted P388 leukemia mouse model.  In the 

same system, mitomycin C exhibited a 204% ILS, but at 1 mg/kg/d.  This reinforced interest in 

this compound as a legitimate pharmaceutical target.   A preliminary clinical investigation by 

Shimada, et al. with carzinophilin (azinomycin B (Figure 29B)) gave favorable results in 36 

cases of malignant neoplasms [3].  Intravenous injection of a solution of azinomycin B resulted 

in a better treatment mode than subcutaneous or intramuscular injection due to side effects 

including indurnation, a hardening of an area of the body as a reaction to inflammation, 

hyperemia, or neoplastic infiltration, necrosis, and ulcer.    Remarkable efficacy was observed in 

a case of squamous cell carcinoma (a form of skin cancer).   Local administration of azinomycin 

B led to rapid reduction of the ulcer surface and eventual disappearance of the tumor cells [3].   

In this chapter, the first evidence for in vivo DNA damage by azinomycin B using 

cellular localization studies and transcriptional profiling experiments across the yeast 

(Saccharomyces cerevisiae) genome is presented.   The results suggest that the well-established 
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DNA alkylation and cross-linking exhibited by this agent in vitro is likely the biologically 

relevant lesion in vivo. 

 

RESULTS AND DISCUSSION 

In the original 1987 report, azinomycin B was found to have no biological effect against yeast 

[77].  We have examined azinomycin B against cultures of Saccharomyces cerevisiae and 

observed cytotoxic activity at moderate concentrations (ED50 = 10 μg/mL).  In pharmacology, 

effective dose is the minimal dose that produces the desired effect of a drug.  The effective dose 

is often determined based on analyzing the dose-response relationship specific to the drug.  The 

dosage that produces a desired effect in half the test population is referred to as the ED50, for 

“effective dose, 50%.” In this chapter, yeast, as a eukaryote, is used as a model organism to 

establish the cellular origin of cytotoxicity exhibited by this agent. 

 

CELLULAR LOCALIZATION OF AZINOMYCIN B 

(THE AUTHOR)* 

In efforts to substantiate the purported biological role of azinomycin B as a DNA cross-linking 

agent, we initially examined the localization pattern of the agent in yeast using fluorescence 

microscopy.  In earlier work, Coleman and co-workers reported the following Ultraviolet/visual 

spectrum for the azinomycin naphthoate: λmax (MeOH/H2O, 1:1) 240 (ε 34,000), 298 (ε 6,300), 

338 nm (ε 7,400); and described fluorescence contact energy transfer experiments where 

emission by the naphthoate was observed at 435 nm [69].  This fluorescence range is comparable 

to that exhibited by the fluorescent stain DAPI, which has excitation and emission wavelengths 

of 345 nm and 455 nm, respectively. 

 Evaluation of cellular localization in live cells required controls to ensure reliable results 

in addition to simply treating with azinomycin B (Figure 32A).  Since azinomycin B is dissolved 

in ethanol for treatment, treatment with ethanol only (Figure 32B) was used as a negative 

control.  To ensure specificity, the naphthoate fragment of azinomycin (Figure 32C) was 

synthesized by Dr. Chaomin Liu as a second control.  Propidium iodide (PI) (Figure 32D) binds 

to DNA by intercalating between the bases with little or no sequence preference and with a 

stoichiometry of one dye per 4–5 base pairs of DNA.  As propidium iodide is not taken in by live 

cells, treatment is used upon killed or membrane compromised cells. 

 
* Denotes major contributer(s) to each section. 
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Figure 32.  Molecules Used in Cellular Localization Experiments.   
In addition to (A) azinomycin B a treatment of (B) ethanol (negative control) and (C) fluorescent 
naphthoate group of azinomycin were used to evaluate cellular localization.  (D) Propidium iodide was 
used as a control to identify patterning of nuclear staining in ethanol fixed (killed) yeast cells. 
 

 

 
Figure 33.  Cellular Localization of Azinomycin B in Yeast Cells. 
Evaluation of cellular localization of azinomycin B included: (A) ethanol at 50µg/mL (B) azinomycin B at 
100µg/mL (C) higher treatment of ~4000µg/mL ethanol (negative control) and (D) fluorescent naphthoate 
group at 500µg/mL (E) Propidium iodide staining in ethanol fixed (killed) yeast cells treated.  Yeast cells 
are seen here at 1000X magnification. 
 

 

At 1000X amplification, yeast treated with azinomycin B exhibited localized binding and 

fluorescence (Figure 33).   Saccharomyces cerevisiae were treated with azinomycin B (100 
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μg/mL and a blast treatment of 4000 μg/mL; Figure 33A and B, respectively) or the naphthoate 

core of azinomycin (DNA non-binder; 500 μg/mL; Figure 33D), and were compared to ethanol-

fixed yeast cells (Figure 33C), and fixed cells stained with the DNA intercalator propidium 

iodide (1 ng/mL; Figure 33E).  After incubation for 4 h, cells were centrifuged and re-suspended 

in phosphate buffered saline.  Cells were viewed with a Zeiss fluorescence microscope and the 

images captured digitally, under constant image capture conditions. 

The pattern of fluorescence exhibited by azinomycin B paralleled that exhibited by 

propidium iodide, where staining of the nuclear region of the cell was observed (i.e., the area of 

the cell that surrounds the central body or vacuole storage organelle of yeast).  In contrast, 

control cells treated with ethanol showed diffuse background fluorescence (Figure 33C), as did 

yeast cells treated with the azinomycin naphthoate (a DNA non-binder; Figure 33D).  These 

results provide evidence that azinomycin B is concentrated in the cell nucleus, which would be 

expected for an agent that interacts covalently with duplex DNA. 

 

DNA DAMAGING EFFECT OF AZINOMYCIN B 

(COLLABORATION BETWEEN DR. CORAN M. H. WATANABE AND THE AUTHOR) 

The targeting of nucleic acids, in particular DNA, by azinomycin B in live yeast cells was further 

corroborated by evaluation of yeast DNA damage that resulted with azinomycin exposure.   

Genomic DNA isolated from yeast treated with the natural product demonstrated increased 

shearing of the DNA as compared to yeast cells incubated with ethanol alone (Figure 34).   In 

this gel, a dose dependent response in DNA damage and shearing was observed.  This damaged 

or increasingly fragile DNA isolated from treated yeast cells indicates clear effects attributable to 

azinomycin B treatment.   
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Figure 34.  Yeast DNA Damaged Observed on an Agarose Gel. 
Analytical 1% agarose gel stained with SYBR green DNA dye visualized using ultraviolet backlight: (1) 
1kb DNA ladder, (2) ethanol control, (3) 10µg/mL azinomycin B, and (4) 100µg/mL azinomycin B.   
 

 

TRANSCRIPTIONAL RESPONSE AND CELL CYCLE ANALYSIS 

(COLLABORATION BETWEEN DR. CORAN M. H. WATANABE AND THE AUTHOR) 

Transcriptome analysis, essentially monitoring the expression of mRNA produced by a cell 

population or tissue sample, has been a recent innovation only possible with the sequencing of 

the genome of target organisms.  The principle behind microarray analysis is based upon using 

sets of arrays containing hundreds of thousands of chemically synthesized oligonucleotides that 

have homology (match) or non-specific homology (mismatch) to specific gene transcripts.  The 

match refers to a 25 nucleotide oligomer that is directly homologous to sequence in the gene of 

interest.   The mismatch is identical to the match, except for a single base pair difference at the 

13th position.  Total RNA is isolated from the sample of interest using a hot phenol method and 

reverse transcription used to make cDNA, which is subsequently made into biotin labeled cRNA 

via in vitro transcription (Figure 35).  The biotinylated cRNA is fragmented and subsequently 

hybridized to the microarray plate where the fragmented, biotinylated cRNA hybridizes with the 

probe sets or DNA imprinted upon the chip surface.  The use of sets of oligonucleotides for each 

open reading frame (ORF) provides redundancy in detection and analysis of data, helps alleviate 

false positives by cross hybridization, and ensures that all probes do not have to bind identically 
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to obtain quantitative information.  The light intensity of the streptavidin fluorescent stain, which 

binds tightly to the biotinylated cRNA, highlights areas of cRNA hybridization to the gene chip 

probes.  The intensities of the match and mismatch are compared to ensure proper true 

hybridization.  The data for the sets are evaluated and intensity levels compared to control levels.  

It is important to note that, while a high correlation between the relative levels of transcripts of 

particular genes often corresponds to higher expression of the end product, what we are able to 

measure using transcriptional array profiling gives us insight only to the level of mRNA 

expression. 

The effect of azinomycin B on the yeast transcriptome was examined using Affymetrix 

oligonucleotide microarrays (Yeast S98 Array).  The GeneChip® Yeast Genome S98 Array 

contains probe sets for approximately 6,400 Saccharomyces cerevisiae (S288C strain) genes 

identified in the Saccharomyces Genome Database by December 1998.  This array also contains 

approximately 600 additional probe sets representing putative ORFs identified by SAGE 

analysis, mitochondrial proteins, TY proteins, plasmids, and a small number of ORFs for strains 

other than S288C.  ORFs recognized are detailed on both SGD (Saccharomyces Genome 

Database) and MIPS (Munich Information center for Protein Sequences) databases.  The current 

Affymetrix oligonucleotide microarrays for yeast is the yeast Genome 2.0 Array which contains 

probe sets to detect transcripts from both Saccharomyces cerevisiae and Schizosaccharomyces 

pombe, the two most commonly studied species of yeast. 
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Figure 35.  GeneChip DNA Microarray Gene Expression Monitoring. 
 

 

Data were obtained at two concentrations of azinomycin B (Table 1and Table 2).  Drug 

treatment was carried out in duplicate at the ED50 concentration (10 μg/mL) and 10-fold higher 

concentration (100 μg/mL) for 6 H. The data in Table 1 and Table 2 are remarkably consistent 

with the proposed mode of action of azinomycin B as a DNA-damaging agent.  Differential 

mRNA gene expression (≥2-fold) was observed in 47 transcripts out of approximately 6200 

genes that comprise the yeast genome.  Approximately 57% of those differentially expressed 

transcripts were nuclear-related, including genes involved in DNA repair, DNA maintenance, cell 

cycle control, and genes for transposons.  The remaining genes included ribosomal proteins, 

mitochondrial genes, transporter proteins, and a few unclassified genes. 
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Table 1.  Up-regulated Gene Expression in Response to Azinomycin B Treatment. 
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Table 2.  Down-regulated Gene Expression in Response to Azinomycin B Treatment.  
 

 
 

 

The transcriptional array results were compared with transcriptional array results from 

other known DNA damaging agents calicheamicin γ1
I and methyl methanesulfonate (MMS).  

Transcriptional array profile studies involving yeast and calicheamicin γ1
I were performed by the 

author’s primary research advisor as reported in Watanabe et al., 2002 [78].  Calicheamicin γ1
I is 

an antibiotic including an unprecedented enediyne “warhead” region with a safety catch trisulfide 

region to prevent premature misfiring of the warhead.  The adjacent oligosaccharide/aromatic 

portion of the molecule serves as a guide for the high sequence selectivity of this agent for DNA, 

similar to azinomycin B.  After reductive cleavage of the polysulfide and formation of a 

dihydrothiophene anchor, the enediyne moiety reorganizes itself following the dicta of Bergman 

cyclization, to produce C2 from C1 (Figure 36) [79].  The 1,4-diyl in C2 cleaves double stranded 

DNA through a radical process.   
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Figure 36.  DNA Damaging Agents Used in Previous Studies with Affymetrix Oligonucleotide 
Microarrays, GeneChip® Yeast Genome S98 Array. 
(A) Calicheamicin γ1

I and (B) methyl methanesulfonate (MMS) are DNA damaging agents that showed 
similar DNA damage response, but not similar TY element gene changes observed with azinomycin B 
treatment.  MMS is a DNA methylating agent.  (C) Calicheamicin γ1

I acts via a “warhead” to result in a 
radical induced double strand cleavage of DNA.  Adapted from Wilson and Danishefsky, 2007 [79]. 
 

 

MMS methylates DNA on N7-deoxyguanine and N3-deoxyadenine.  Originally, this 

action was believed to directly cause double-stranded DNA breaks, because homologous 

recombination-deficient cells are particularly vulnerable to the effects of MMS [80].  However, it 

is now believed that MMS stalls replication forks, and cells that are homologous recombination-

deficient have difficulty repairing the damaged replication forks [80].  Comparing results of 

previous mode of action studies of these DNA damaging agents will yield further information 

about the in vivo actions of azinomycin B. 

Among the nuclear effects, Ty elements were largely affected with azinomycin 

treatment.   Another example of a eukaryotic transposable element is the Ty element of yeast.  

This element has several features that are unique, and it appears to resemble a primitive 

retrovirus [81].  A retrovirus is an RNA virus that, after being uncoated in the host cell, converts 

its RNA to a DNA copy by the enzyme reverse transcriptase.  This enzyme is encoded by the 

retroviral polymerase gene.  The DNA copy of the retrovirus is inserted into the eukaryotic 

genome, and it remains there as a provirus until it is excised and undergoes transcription to 

produce new viral particles [81].  While the expression of Ty4 LTR (YGLCTAU3) and Ty1 LTR 

(YHLWDELTA2) were up-regulated by a remarkable 15- and 24-fold, respectively, most 

transposition elements (a total of 7) were repressed 3- to 6-fold.  LTR-retrotransposons have been 
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extensively studied in Saccharomyces cerevisiae, and five distinct families have been identified 

in this organism, designated Ty1, Ty2, Ty3, Ty4 and Ty5 [82].   The Ty elements transpose 

through an RNA intermediate by reverse transcription [83].   While differential expression of 

these genes could reflect a general cellular stress response, differential expression was not 

observed with other DNA damaging agents including the DNA alkylating agent methyl 

methanesulfonate and the DNA cleaving agent calicheamicin γ1I [78] (Figure 36).    Moreover, 

recent studies have shown that when DNA replication is compromised in yeast, Ty elements 

constitute a preferred site for double-strand DNA breaks, analogous to fragile sites observed in 

mammalian chromosomes [84]. 

Additionally, classification and correlation of the majority of the gene changes revealed 

activation of genes in the MEC1 checkpoint or sensory pathway involved in DNA double-strand 

break repair (Figure 37).   DUN1, a serine-threonine kinase required for DNA damage-induced 

transcription, plays a pivotal role in the MEC1 pathway and was enhanced in its expression by 4-

fold.  The cell cycle checkpoint protein induces G2/M arrest after DNA damage and controls 

post-replicative DNA repair [85].   In accordance with this, we observed down-regulation of 

TOM1 (YDR457W), a ubiquitin ligase required for the G2/M transition [86, 87].  Down-

regulation implies that the transition from G2 to M was halted at this transition or during S phase.  

The yeast pheromones α-mating factor and a-mating factor were up-regulated 6- and 10-fold in 

expression.  Both pheromones act by G1 phase synchronization of cell populations in preparation 

for mating [88].   The expression of MF(ALPHA)2 (YGL089C) was up-regulated 2-fold and 6-

fold at 10 μg/mL and 100 μg/mL, and MFA1 (YDR461W) was up-regulated 10-fold.   Cells 

respond to these pheromones during conjugation and cellular fusion, and they interact to induce 

cell cycle arrest [89, 90].   Tos4 (TLR183C), a transcription factor that binds promoter regions of 

genes involved in pheromone response and cell cycle, was up-regulated 22-fold at 100 μg/mL.   

Expression of TOS4 is induced in G1 by bound SBF (Swi4-Swi6 cell cycle box binding factor) 

[91, 92].   The SBF factors bind the promoters of genes with roles in G1/S events including DNA 

replication, bud growth, and spindle pole complex formation, as well as the general activities of 

mitochondrial function, transcription, and protein synthesis [93].   DUN 1, up-regulated at 100 

μg/mL 3-fold, has also been shown to regulate the expression of HUG1 (YML058-A).   HUG1 is 

a protein involved with the DNA damage checkpoint response, controlling replication arrest; it 

was up-regulated 16-fold and 73-fold at 10 μg/mL and 100 μg/mL, respectively [94]. 
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Figure 37.  Diagram of Gene Changes Observed from Azinomycin B Treatment. 
 

 

Similarly, DUN1 has been shown to regulate double strand break repair, resulting in 

activation of DNA damage repair genes, a major mechanism to providing genomic stability.  

Critical DNA repair genes were up-regulated in response to azinomycin B treatment.  The DNA 

strand exchange protein RAD51 (YER095W), which is involved in recombinational repair of 

double-strand breaks [95], was enhanced in expression by 3-fold at 100 μg/mL.  Deletion of this 

gene has been demonstrated to give rise to the accumulation of double-strand breaks, and the 

resulting lesions are both radiation-sensitive and defective in gene conversions [96].  PLM2 

(YDR501W), a transcription factor involved with plasmid stability and maintenance, was up-

regulated in its expression, exhibiting a dose dependent response [91]: mRNA expression of this 

gene product was enhanced almost 3-fold and 9-fold at 10 µg/mL and 100 µg/mL, respectively.  

HST4 (YDR191W), a member of the SIR2 family of protein deacetylases [91], was increased in 

expression 9-fold at 100 μg/mL.  This protein has a variety of biological roles, including double-

strand break repair, silencing of telomeres, cell cycle progression, radiation resistance, genomic 

stability, and involvement in short-chain fatty acid metabolism [97].  Likewise, expression of 

MIP6 (YHR015W), a DNA helicase and DNA dependent ATPase involved in DNA/double 
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strand break repair by non-homologous end-joining [98, 99], was up-regulated more than 3-fold 

at 100 μg/mL.  ALK2 (YBL009W), a protein with strong similarity to the DNA damage response 

element, was enhanced 4-fold at 100 μg/mL azinomycin B. 

Genes involved in DNA synthesis and replication were also affected by azinomycin 

exposure, consistent with the DNA damage and cross-linking effects demonstrated for the agent 

in vitro.  For example, the expression of the chromosomal DNA replication protein CDC45 

(YLR103C) [100, 101] was up-regulated more than 6-fold at 100 μg/mL.  The expression of 

ribonucleotide reductase subunits RNR1 and RNR3 were up-regulated 3-fold at 100 μg/mL and 

2.5-fold at 10 μg/mL.  These subunits comprise components of the ribonucleotide-diphosphate 

reductase (RNR) large subunit, which catalyzes the rate-limiting step in dNTP and DNA 

synthesis, and which is tightly regulated by DNA replication and DNA damage checkpoint 

pathways [102].   DUN1 null mutants, for example, have been shown not only to be defective in 

DNA damage repair, but also to be defective in DNA damage-responsive induction of RNR 

genes.  

 

 
Figure 38.  Illustration of the Damage and Induction of Observed Gene Expression in Response 
to Azinomycin B Exposure in an Example Yeast Cell in S Phase. 
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Figure 38 illustrates the gene changes observed by the transcriptional array profiling as 

they are related in a yeast cell.  Much of the information about the genes was initially gathered 

from SGD, Saccharomyces Genome Database. 

  

 

 
Figure 39.  Diagram of the Yeast Cell Cycle and the Observed Impact of Azinomycin B 
Treatment. 
Figure adapted from van der Kuyl et al. [103]. 
 

 

CELL CYCLE EFFECTS 

(COLLABORATION BETWEEN DR. ROGER SMITH III AND THE AUTHOR) 

When the gene-profiling results are interpreted, the transcriptional effects of azinomycin B 

treatment in yeast suggest a G1/S phase shift.  The yeast cultures treated with azinomycin B were 

not synchronized with any particular drug before treatment in the 6 hour exposures used in the 
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transcriptional array profiles.  As such, the populations were an asynchronous population 

distributed throughout the cell cycle seen in Figure 39.  As such, any immediate impact upon the 

population would have an array of results, likely resulting in a large distribution of expressed 

mRNAs.  Cells in different stages of the cell cycle would respond differently.  The results from 

the transcriptional array profile that suggest a G1/S phase shift indicate that the yeast population 

was effectively halting replication responding to the assault by azinomycin B.  In order to 

corroborate these findings, we examined the effects of azinomycin B on the yeast cell cycle by 

using flow cytometry. 

Flow cytometry is a method used to examine, count, and sort microscopic particles in a 

suspended liquid.  It allows for multi-parameter optical detection methods, flow rates, and real-

time analysis on samples.  This method allows for analysis of individual cells as they pass 

through the detector, resulting in a detection event.  This allows for analysis of mixtures, 

exclusion of non-conforming particles, and accumulation of resulting data.  One typical approach 

in analysis is to use a fluorescently tagged marker to differentiate cell populations.  This can 

provide additional quantitative data.  As such, for analysis we were interested in differentiating 

our cell population based upon the distribution in the cell cycle.  One way to access this is to 

measure the quantity of DNA in each cell.  In G1 or G0 the diploid yeast have half as much DNA 

as when the cells are in G2 or M (before separation of the daughter cell).  In S phase, the amount 

of DNA is somewhere in between as the 13 mega base pair genome is twice copied.  For an ideal 

detection, the agent used would need to target the DNA and be highly detectable.   

Propidium iodide and SYTOX® Green dye (Molecular Probes) are healthy membrane-

impermeable nuclear stains that mark cells with compromised cell membranes.  Both dyes target 

DNA for intercalation.  Unlike propidium iodide, which stains nuclear material red, the 

SYTOX® Green cyanine dye emits a bright green color, making it suitable for use with Cy3 and 

Cy5 labels.  The SYTOX dye is completely excluded from live eukaryotic and prokaryotic live 

cells and apoptotic cells, but stains necrotic or ethanol killed (fixed) cells with intense green 

fluorescence [Excitation (max): 502nm; Emission (max): 523nM] [104, 105].  SYTOX® Green 

stain is readily excited by the 488-nm line of the argon ion laser.  This type of laser was used in 

the detection method we employed.  SYTOX® Green stain also enabled us to analyze the 

live/dead ratio of the yeast population of the treated samples.    

Yeast was treated with azinomycin B at concentrations of 10 μg/mL and 100 μg/mL for 

6 h and 12 h, respectively, and was examined by flow cytometry (Figure 40) [106].  Figure 40A 

shows wild-type yeast cells stained with SYTOX® Green.  Figure 40B depicts the cell cycle  
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Figure 40.  Flow Cytometry Analysis of Azinomycin B Treated Yeast Cultures. 
(A) Wild-type yeast cells stained with SYTOX® Green (Molecular Probes) DNA binding dye measured by 
flow cytometry.  (B) Cell cycle analysis [using ModFit LT® software (Verity Software House)] of wild-
type yeast cells revealing normal asynchronous distribution in the cell cycle.  (C) Cell cycle profile of yeast 
cultured for 6 h: control (pink), 10 µg/mL of azinomycin (blue), and 100 µg/mL of azinomycin (green).  
(D) Cell cycle profile of yeast cultured for 12 h: control (pink), 10 µg/mL of azinomycin B (blue), and 100 
µg/mL of azinomycin B (green). 
 

 

analysis of these cells.  Figure 40C and D show the cell cycle profile of yeast cells at 6 h and 12 

h, with and without azinomycin B treatment.  When compared to the wild-type cells, azinomycin 

B treated cells exhibited a predominant S phase shift.   A decrease in the G2/M population was 

apparent at 12 h at both concentrations of agent.  An increase in the S phase population would 
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logically reflect pausing to repair damage from azinomycin B and an accumulation of individuals 

undergoing this repair process.  DNA damage repair is required before the cell can enter G2 or 

M. It is also possible that not all of the cells in the population were affected enough to fully 

impact the procession of the cell cycle.  Treated cultures continued to grow during the 6 or 12 

hours of treatment, though at a slightly lower rate than those treated with an ethanol control 

treatment.  It should be noted that the transcriptional array profiles were conducted with a 6 hour 

exposure to azinomycin B.  To observe detectable differences by flow cytometry, we needed to 

extend the exposure to 12 hours. 

 

 

 
Figure 41.  Closer Inspection of Flow Cytometry Data Analysis of 12hr Azinomycin B Treatment 
Set. 
(A) Raw data sets overlaid.  (B) Control treatment, show normal distribution.  (C) 10µg/mL treatment.  (D) 
100µg/mL treatment.   
 



 50

A closer analysis with ModFit LT software of the 12 hour treatments, seen overlaid in 

Figure 41A, revealed the large extent to which the 100 μg/mL azinomycin B treated population 

was distributed in S phase (Figure 41D).  The Modfit LT analysis revealed a significant portion 

of defined “debris” in all three samples.  Remarkably the control (Figure 41B) and the 10 μg/mL 

treatment of azinomycin B (Figure 41C) have very similar profiles and population distributions.  

This result is similar to the observed effects and analysis of the 10 μg/mL treatment level 

azinomycin B transcriptional array results, which displayed few gene changes.  The 12 hour, 100 

μg/mL azinomycin B treated yeast population displayed significantly more “aggregates.” This 

may reflect a significant part of the population with cells connected to an extent that a pepsin 

digest failed to part them. These cells would also overlap with a population usually detected as 

G2/M. The large population of cells in the S phase at this highest treatment level indicates 

significant effect of azinomycin B to halt the population at this critical time of DNA replication.  

This evidence supports our 100μg/mL transcriptional array profile results. 

 

CONFIRMATION OF SELECTED GENE CHANGES BY RT-PCR 

(COLLABORATION BETWEEN DR. CORAN M. H.WATANABE AND THE AUTHOR) 

Validation of the transcriptional effects induced by azinomycin B treatment was demonstrated by 

semi-quantitative reverse-transcriptase PCR (abbreviated (RT)-PCR) of an arbitrary subset of the 

gene changes, including HUG1, RAD51, TOM1, and PLM2.  (RT)-PCR is a technique that uses 

RNA, not DNA, as the initial template and employs an initial reverse transcriptase to convert the 

RNA of interest to a DNA template.  This is not to be confused with the technique real-time 

PCR, (abbreviated qPCR for quantitative PCR).  Frequently, real-time polymerase chain reaction 

is combined with reverse transcription polymerase chain reaction to quantify low abundance 

messenger RNA (mRNA), enabling one to quantify relative gene expression at a particular time.  

(RT)-PCR, while less sensitive and quantitative than real-time PCR is capable of confirming a 

transcriptional response, the presence or absence of a transcriptional effect.  Normalization of the 

RNA/cDNA was based upon glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that was 

unaffected by drug exposure.  Total RNA was extracted from control cells and cells treated with 

azinomycin B (10 μg/mL and 100 μg/mL).  First strand cDNA synthesis of the DNA was 

performed followed by PCR analysis.  The PCR primers were specifically designed to avoid 

redundancy in other possible transcript sequences.  The exponential phase of each PCR product 

was estimated by varying the number of PCR cycles for each template or gene of interest [107].  

PCR products were stained with SYBR Green and fluorescence was measured with a micro plate 
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reader (Figure 42).  The results reinforce the effects and levels of expression observed in the 

transcriptional microarray analysis. 

 

 

 
Figure 42.  Semi-quantitative Reverse Transcriptase (RT)-PCR Analysis of the Selected Genes: 
HUG1, RAD51, PLM2, and TOM1. 
 

 

SIGNIFICANCE 

The azinomycins A and B are natural products that possess promising antitumor activity.  Central 

to the biological action of these molecules is the presence of two electrophilic carbons present 

within the epoxide moiety and the structurally and functionally unique aziridino[1,2-

a]pyrrolidine core substructure.   Evaluation of the azinomycins in vitro has demonstrated that 

the molecules bind to DNA within the major groove and form covalent interstrand cross-links.  

The exquisite ability of these natural products to functionalize and append to DNA 

notwithstanding, the cellular target of these molecules in vivo had not previously established.  In 

efforts to address this issue, we have examined the cellular localization pattern of azinomycin B 

in Saccharomyces cerevisiae, which paralleled that of the DNA intercalator propidium iodide.    

Additionally, genomic DNA isolated from drug treated cells showed significant shearing 

of the DNA, and experiments with oligonucleotide microarrays revealed transcriptional effects 

that were closely associated with DNA damage and repair.   Genes involved in DNA synthesis 

and the cell cycle were altered in their expression, reflecting an S phase shift.   This effect was 
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further substantiated in flow cytometry experiments.   Some genes differentially expressed in 

response to azinomycin B treatment were also induced by calicheamicin γ1I or methyl 

methanesulfonate exposure, although a significant number of the genes that were affected by 

azinomycin B were not common to these other agents.   Transcriptional profiling could prove to 

be a definitive tool in the study of the mechanism of action of DNA damaging agents. 

These results provide the first demonstration of the in vivo actions of azinomycin B.   

While the experiments presented here are consistent with the proposed role of the drug as a DNA 

cross-linking agent, definitive proof for this mechanism must come from experiments that can 

conclusively demonstrate drug•DNA adduct formation. 

 

EXPERIMENTAL PROCEDURES 

INSTRUMENTATION AND GENERAL METHODS 

Yeast cell cycle experiments were performed with a Becton-Dickinson FACS Calibur flow 

cytometer.  (RT)-PCR reactions were carried out with an MJ Research PT600 PCR machine and 

fluorescence measurements were made with a Biotek FL800 fluorescence microplate reader.  

Cellular localization studies were conducted with a Zeiss microscope, and the Affymetrix 

platform was used in all GeneChip experiments.   Unless otherwise specified, biochemical 

reagents were obtained from Sigma Biochemicals (St.  Louis, MO). 

 

ORGANISMS 

The yeast Saccharomyces cerevisiae wild-type strain [#404; BY4741; MATa his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0] was obtained from Dr. Michael Kladde at the Department of Biochemistry, 

Texas A&M University.  Streptomyces sahachiroi (NRRL 2485) was obtained from the 

American Type Culture Collection (ATCC; Manassas, VA). 

 

CULTURE CONDITIONS 

(THE AUTHOR) 

Saccharomyces cerevisiae was maintained on YPD plates and subsequently cultured at 30 °C and 

250 rpm in YPD medium [108].  Streptomyces sahachiroi was initially cultured on GYM plates 

until sporulation, typically 5-7 days at 28 °C.  GYM agar plates contained the following 

components per liter: glucose monohydrate, 4 g; yeast extract, 4 g; malt extract, 10 g; CaCO3, 2 

g; agar, 12 g; and tap water adjusted to pH 6.8 with 1 M NaOH prior to sterilization [109].  A 
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starting culture of Streptomyces sahachiroi in PS5 medium (100 mL) was prepared by 

inoculation of a loop of spores from the GYM plates.  PS5 medium was prepared from 5 g/L of 

Pharmamedia (yellow cotton seed flour, Traders Protein; Memphis, TN) and 5 g/L of soluble 

starch, adjusted to pH 7.0.  Following 24 h growth at 30 °C and 250 rpm, 25 mL of the starting 

culture was used to inoculate 500 mL of PS5 in 2 L baffled Erlenmeyer flasks.  The cultures were 

grown for 64 h at 30 °C and 250 rpm [109]. 

 

AZINOMYCIN B ISOLATION 

(THE AUTHOR, INITIAL SAMPLE PROVIDED BY DR. ROBERT S. COLEMAN) 

The natural product was isolated with slight modification of literature protocols [1, 17].  

Following fermentation, culture broths of Streptomyces sahachiroi were harvested by 

centrifugation (8,000 rpm).  The supernatant was extracted once with an equal volume of 

chloroform. The chloroform extract was concentrated to 5 mL and diluted with hexane (30 mL).  

The resulting suspension was centrifuged (3,000 rpm), giving a white azinomycin-containing 

precipitate that was further purified by washing with ether (10 mL) followed by dissolution in 

chloroform (50 mL).  Hexane was added gradually, and with the initial addition of hexane, a 

precipitate was generated and discarded.  Further addition of hexane resulted in the precipitation 

of azinomycin B as a white amorphous solid.  The azinomycin was collected by centrifugation 

and stored under anhydrous diethyl ether at -80 °C. 

 

NUCLEAR LOCALIZATION EXPERIMENTS 

(THE AUTHOR) 

Yeast was grown at 30 °C in liquid culture to an OD600 of 1.0.  Samples (1 mL) were centrifuged 

and the cell pellets re-suspended in 1 mL sterile Dulbecco’s phosphate buffered saline.  The cells 

were centrifuged, and treated as follows: azinomycin treated live cells (at 100 µg/mL and 4000 

µg/mL), naphthoate treated cells (500 µg/mL) [18, 110] and propidium iodide (1 µg/mL).  

Propidium iodide stained cells were fixed by addition of 70% ethanol (final volume, 30 min 

incubation at room temperature) prior to re-suspension in Dulbecco’s phosphate buffered saline 

and treatment with propidium iodide.  After 4 h incubation at room temperature, the cells were 

centrifuged, the supernatant was removed, and the cells were re-suspended in Dulbecco’s 

phosphate buffered saline.  The cells were viewed on slides with a Zeiss fluorescence microscope 

and the images captured digitally at 1000X magnification.  The exposure times were kept 

constant. 
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GENOMIC ANALYSIS 

(COLLABORATION BETWEEN DR. CORAN M. H. WATANABE AND THE AUTHOR) 

Saccharomyces cerevisiae was cultured in 10 mL aliquots at 30 °C to an OD600 of 1.0 and 

subsequently treated with either 100 μL of azinomycin B (to give final concentrations of 10 

μg/mL and 100 μg/mL, respectively) or ethanol.   The cells were cultured for an additional 12 h 

with shaking, centrifuged, and the genomic DNA was isolated as follows.   The cells were re-

suspended in 500 μL of solution consisting of 1 M sorbitol and 0.2 M EDTA, pH 7.5 at which 

point 5 μL of zymolyase (0.5 mg/mL) was added, and the suspension was incubated at 37 °C for 

60 min.  The cells were centrifuged, re-suspended in 500 μL of 50 mM Tris pH 7.4, 20 mM 

EDTA, and 25 μL of 20% SDS added.    Following incubation of the mixture at 50 °C for 30 

min, to the solution was added 5 μL of proteinase K (10 mg/mL) and 200 μL of 5 M potassium 

acetate.   The reaction was placed on ice for 60 min, and the cellular debris was removed by 

centrifugation.   The supernatant was transferred to a new tube, and one volume of isopropanol 

was added.   The mixture was allowed to stand at room temperature for 5 min.  The DNA was 

isolated by centrifugation (5 min) and dissolved in 100 μL of TE buffer containing 1 μL of 

RNase.   The suspension was incubated at 37 °C for 30 min; then the DNA was precipitated by 

addition of 400 μL 5 M NH4OAc and 200 μL of isopropanol, centrifuged, washed with 1 mL of 

80 % EtOH, dried and dissolved in 100 μL of TE buffer.   The DNA, 5 μL of each sample, was 

analyzed by standard 1% agarose gel electrophoresis and stained with SYBR green dye following 

the manufacturer’s protocol (Molecular Probes, Invitrogen; Carlsbad, CA).   

 

YEAST SAMPLE PREPARATION AND GENECHIP EVALUATION 

(COLLABORATION BETWEEN DR. CORAN M. H. WATANABE AND THE AUTHOR) 

Yeast was cultured overnight in YPD broth [108] to an OD600 of 1.0.  Total RNA was extracted 

with an SDS/hot phenol extraction method.  Yeast cell samples were centrifuged and the 

supernatant was decanted.  Each cell sample was washed with 30 mL of de-ionized distilled 

water and subsequently centrifuged (repeated 3X).  Yeast pellets were frozen in liquid nitrogen 

and lysed by the following protocol: Each cell pellet was treated with 10X high-salt solution (3 

M NaCl, 200 mM Tris, pH 8.0, 100 mM EDTA) and de-ionized distilled water to a final volume 

of 700 µL.  Each sample was brought to 1% SDS by the addition of 10% SDS (70 μL), at which 

time hot phenol (65 °C, 600 μL) was added.  Samples were vortexed, incubated at 65 °C for 4 

min, and then chilled on ice for 2–4 min. Samples were microcentrifuged for 2 min, and the 
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supernatant was transferred to new tubes.  The phenol extraction procedure was repeated, and 

was followed by extraction with a 25:24:1 phenol: chloroform: isoamyl alcohol.  After 

centrifugation, the supernatant of each sample was transferred to new tubes.  The RNA was 

precipitated by the addition of ethanol to the top of each microfuge tube.  Samples were mixed by 

vortexing, stored at 20 °C for 1 h, and then pelleted by centrifugation.  The supernatant was 

decanted, and the pellet from each sample was washed twice with 70% ethanol.  Residual ethanol 

was removed, and the cell pellet was re-suspended in 100 µL water.  The resulting total RNA 

was then treated with DNase: total RNA (30 µL) was incubated at room temperature with 5 µL 

of first strand buffer (Gibco BRL cDNA Superscript Choice Kit) and 1 µL of DNAse I (RNAse-

free, Ambion).  Samples were heat-inactivated at 75 °C for 15 min and purified with an RNeasy 

kit (Qiagen).  Samples (15 µg of total RNA per sample) were provided to the Texas A&M 

GeneChip facility, where they were amplified, biotinylated, and hybridized to GeneChips 

according to the protocol detailed by Affymetrix (Santa Clara, CA).   Microarray data are 

available through the NCBI Geo Database (Accession number: GSE4311). 

 
GENECHIP EVALUATION BY (RT)-PCR 

(COLLABORATION BETWEEN DR. CORAN M. H. WATANABE AND THE AUTHOR) 

(RT)-PCR analysis of a subset of the genes including HUG1, RAD51, TOM1, and PLM2, was 

carried out as follows.  Total RNA (10 µg) was extracted and transcribed into single stranded 

cDNA using the Superscript Choice system (GIBCO/BRL).  The cDNA was purified with a 

Qiagen nucleotide removal kit.  Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 

employed as an endogenous amplification standard (i.e., used to normalize the amount of RNA in 

control and treatment samples).  PCR conditions were optimized so that amplification of both 

GAPDH and the cDNA of interest were in the exponential phase.  PCR cycles consisted of Step 

1: 5 min denaturation at 95 °C; Step 2: 1 min of denaturation at 95 °C; Step 3: 1 min of primer 

annealing at 55 °C; Step 4: 1 min of extension at 72 °C.  Steps 2–4 were repeated for the requisite 

number of cycles. 

 

PRIMERS 

HUG1 (YML058W-A) 

Forward: 5′-ATGACCATGGACCAAGGCCTTAACC-3′ 

Reverse: 5′-TTAGTTGGAAGTATTCTTACCAATG-3′ 

RAD51 (YER095W) 



 56

Forward: 5′-CGGATGTGAAAAAACTAAGGGAGAG-3′ 

Reverse: 5′-TCTTAACTGATGATCGGCGTTATAG-3′ 

TOM1 (YDR457W) 

Forward: 5′-AACAGCTCGGTTCCATGAATTTGAT-3′ 

Reverse: 5′-TAATTACGGAACGTGCTAGCATTCC-3′ 

PLM2 (YDR501W) 

Forward: 5′-TTGGCTAAAGGTGAAACTGTTACTT-3′ 

Reverse: 5′-GCGAAAGATTCTTCTTCATTAATGC-3′ 

GAPDH (YJR009C) 

Forward: 5′-ACATTGACATCGCCATTGACTCCAC-3′ 

Reverse: 5′-TTTCATCGTAGGTGGTTTCCTTGTT-3′ 

 

Following PCR, each reaction was visualized by agarose gel electrophoresis (15 μL per lane) and 

stained with ethidium bromide.  The resulting PCR products were sliced out of the gel and 

dialyzed against TAE buffer.  The dialyzed gel pieces were stained with SYBR Green (Molecular 

Probes, Invitrogen; Carlsbad, CA), placed in a 96-well plate, and fluorescence was measured 

with a Biotek FL800 micro plate reader (filters: 485/30 for excitation and 528/20 for emission). 

 

CELL CYCLE ANALYSIS BY FLOW CYTOMETRY 

(COLLABORATION BETWEEN DR. ROGER SMITH III AND THE AUTHOR) 

Yeast were grown at 30 °C in liquid culture to an OD600 of 1.0 and exposed to azinomycin B (10 

and 100 µg/mL, in triplicate) for 6 and 12 h. The yeast population was asynchronous.  Cells were 

centrifuged, the medium was removed, and the cells were washed with 10 mM Tris, pH 7.5.  The 

cells were fixed by treatment with 70% ethanol for 1 h at room temperature.  Cells were 

centrifuged, the supernatant was discarded, and the pellet was incubated with 0.5 mL of 50 mM 

Tris pH 7.5 supplemented with 2 mg/mL RNase A at 37 °C for 2-12 h. Following incubation, 

cells were centrifuged, and the supernatant was discarded.  The cells were re-suspended in 0.2 

mL proteinase solution (5 mg/mL pepsin, 4.5 μl/mL concentrated HCl in H2O) for 15-20 min at 

37 °C.  The cells were centrifuged, the supernatant was discarded, and the cells were re-

suspended in 0.5 mL Tris pH 7.5, 1X SYTOX Green (100 nM; Molecular Probes, Invitrogen; 

Carlsbad, CA).  The samples proceeding directly to the analysis step [111]. 
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NAPHTHOATE SYNTHESIS 

(DR. CHAOMIN LIU) 

Details provided in Appendix. 
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CHAPTER III 

 

IN VITRO BIOSYNTHESIS OF THE ANTITUMOR AGENT AZINOMYCIN B* 

 

 

INTRODUCTION 

Azinomycins A  and B (Figure 43) are antitumor antibiotics isolated from two Streptomyces 

species, S. sahachiroi [1] and S. griseofuscus, [2, 17] respectively.  Both compounds exhibit in 

vitro cytotoxic activity at submicromolar levels and demonstrate antitumor activities comparable 

to that of mitomycin C in vivo [77].  Unique to this class of natural products is the presence of an 

aziridino[1,2-a]pyrrolidine (1-azabicyclo[3.1.0]hexane) ring system, coupled with an epoxide 

moiety.  These structural functionalities impart the ability to form interstrand cross-links with 

DNA via the electrophilic C10 and C21 carbons of azinomycin and the N7 positions of suitably 

disposed purine bases [14, 27, 69, 71-73, 112].   

 

 

 
Figure 43.  Structures of Azinomycin A and B. 
 

 

The novel architecture, intricate functionalization, and mode of action of the 

azinomycins have made these agents attractive targets from both a synthetic and a biosynthetic 

perspective.  Synthetic routes to the azabicyclic system have been reported including total 

.   

*Reprinted with permission from “In Vitro Biosynthesis of the Antitumor Agent Azinomycin B” 
by Liu, C. M., Kelly, G. T., and Watanabe, C. M. H., 2006. Organic Letters, 8, 1065-1068, 
Copyright [2006] by American Chemical Society. 
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synthesis of azinomycin A [18, 27, 68].  A variety of synthetic analogues have also been 

generated [26, 27, 113].  Considerably less is known about the biosynthetic origin of these 

compounds. 

In this chapter, the details of the first cell-free system capable of supporting in vitro 

biosynthesis of azinomycin B are presented.  Investigations of natural product biosynthesis have 

used the cell-free enzyme (CFE) preparation approach to study a number of natural products 

[114-117].  These investigations have yielded insight into both the substrates and types of 

enzymes and cofactors involved in the natural product’s biosynthesis.  Investigations of the 

biosynthetic steps from the initial construction of the naphthoate fragment of the molecule to the 

formation of the azabicyclic ring system have been achieved using a cell-free protein extract 

(CFE) of Streptomyces sahachiroi.  We have used this method of CFE preparation to investigate 

inhibition of the pathway and the cofactor as well as substrate requirements of the pathway.   

 

RESULTS AND DISCUSSION 

 

DEVELOPMENT OF THE CELL FREE EXTRACT SYSTEM 

(COLLABORATION BETWEEN DR. CHAOMIN LIU, DR. CORAN M. H. WATANABE 

AND THE AUTHOR)* 

As the production of azinomycin B from live culture was erratic, our interests turned to making 

use of the productive cell cultures by producing a cell free extract to investigate the natural 

product’s biosynthesis.  Reconstruction of a functional biosynthetic pathway in an artificial 

environment provides numerous challenges.  Ensuring a proper ratio of necessary substrates, 

cofactors, and maintaining the biosynthetic enzymes in a functional state are significant 

challenges.  Rendering functional enzymes from whole cells is a process requiring great care.  It 

poses the innate requirement that the isolated enzymes function in an artificial environment.  If 

the enzymes are removed in the process, incomplete or no biosynthesis will result.    

The fortified crude enzyme preparation was generated by culturing S. sahachiroi (Figure 

44A) and flash freezing the cells from azinomycin B producing cultures in liquid nitrogen 

(Figure 44B).  The frozen material was transferred to a bead beater containing cell-free extract 

buffer (pH 7.5) and glass beads.  The cells were pulverized (utilizing 10 intermittent cycles) and 

centrifuged to generate the crude cell-free extract (Figure 44C).   

 
* Denotes major contributer(s) to each section. 
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Figure 44.  Preparation and Analysis of the Cell Free Extract (CFE). 
(A) Azinomycin B producing cultures of S. sahachiroi are centrifuged and (B) Cell pellet collected and 
flash frozen in liquid nitrogen.  (C) Frozen pellets are homogenized and lysed using a bead-beater and (D) 
Lysate is centrifuged and supernatant retained.  (E) Supernatant was then incubated with radioactive 
substrates, with the control being a heat denatured supernatant.  (F) The incubation is halted by extraction 
with CH2Cl2 and the organic extract separated by TLC and analyzed using liquid scintillation counting. 
 

 

Initially, we examined the cell-free preparation for its ability to support synthesis of the 

naphthoate core of azinomycin A and azinomycin B.  The enzyme assay was performed in 

duplicate by incubating the protein extract with acetyl-CoA, cofactors (nicotinamide adenine 

dinucleotide phosphate (NADPH), S-adenosylmethionine (SAM), and flavin adenine 

dinucleotide (FAD)), and radiolabeled [1-14C] malonyl-CoA for 24 h. NADPH was added to 

ensure reductive equivalents were available for the anabolic enzymes involved with azinomycin 

B’s construction.  Because S-adenosylmethionine was thought to be involved in the biosynthesis 

of azinomycin B’s methoxy group of the naphthoate [31], additional S-adenosylmethionine was 

included.  This involvement was confirmed; it prevents the concentration of SAM from being a 

limiting factor.  FAD was added to provide additional redox equivalents.  Although the 

production of azinomycin B is not produced in copious amounts, it is not considered a trace 

natural product, therfore no additional Mg2+ or NADH were included to inhibit acetate diversion 

in the citric acid cycle, as they are often added in CFE systems interested in trace natural 
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products [114].  Following incubation, the reactions were quenched by vortexing with 

dichloromethane and centrifuged (Figure 44E).  The dichloromethane fraction was transferred to 

new tubes and evaporated to dryness.  The organic residue was resolubilized in a minimal 

volume of dichloromethane containing standards of azinomycin B or naphthoate.  Regions of the 

TLC plate corresponding to products with appropriate Rf values (as observed by UV analysis) 

(Figure 44F) were scraped from the plate and analyzed by scintillation counting (Figure 44G).   

 

 

 
Figure 45.  Demonstration of In Vitro Biosynthesis. 
Controls: cpm ± 10.  Experimental: cpm ± 50.  (1) Conversion to the naphthoate.  (2) Conversion to 
azinomycin B.  Reaction conditions: CFE + [1-14C] malonyl-CoA, acetyl-CoA, SAM, FAD, NADPH. 
 

 

The results of this initial experiment are depicted in Figure 45 (reaction 1, conversion to 

the naphthoate; reaction 2, conversion to azinomycin B).  The control experiment for these 

reactions consisted of boiled cell-free extract (5 mL) incubated with test substrates and cofactors 

as detailed above.  The incorporation of [1-14C] malonyl-CoA into the naphthoate portion of the 

molecule (Figure 45:1) and azinomycin B (Figure 45:2) was observed by scintillation counting 

and confirmed by HPLC co-injection.  The relative strength of incorporation which appeared to 
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be higher in the naphthoate was likely due to two factors: 1) biosynthesis of azinomycin B 

involves many more enzymatic steps, thus fewer molecules might have been produced in the 

incubation period, resulting in merely a product concentration issue; and 2) it is possible that 

naphthoate moiety of the isolated azinomycin B could have originated before the introduction of 

[1-14C] malonyl-CoA.  These successful initial incorporation experiments provide a basis of 

comparison for the naphthoate and azinomycin B biosynthetic steps from which we may compare 

with additional results obtained from probing substrates, cofactors, biosynthesis inhibitors. 

 

INHIBITORS 

As an additional control for these experiments, we examined the effect of the FAS/PKS inhibitor 

cerulenin (Figure 46A) [118, 119] on these reactions as well as that of P-450 inhibitors 

chloramphenicol (Figure 46B)  [120], miconazole (Figure 46C)  [121, 122], and metyrapone 

(Figure 46D)  [123].  Cerulenin is known to inhibit fatty acid biosynthesis by covalently binding 

to the β-keto-acyl-ACP synthase, blocking the addition of malonyl-CoA units [118, 124].  A 

covalent thioacylation of the enzyme’s residue and the epoxide of cerulenin render the enzyme 

permanently inactivated.  Cerulenin inactivates PKS enzymes in a similar fashion.  Cerulenin has 

been shown to specifically inhibit the formation of several PKS natural products such as: 

leucomycin, a macrolide antibiotic [125, 126]; 6-methylsalicylic acid [127]; esperamicin A1 

[128]; the mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) [129] and 

aflatoxin B1  [130].  If the production of the naphthoate portion of the molecule truly has 

polyketide origins, we would expect to see its formation inhibited by cerulenin. 

Miconazole is notably used as an antifungal agent used to inhibit the biosynthesis of 

ergosterol, a component of fungal cell walls.  Metyrapone blocks cortisol synthesis by inhibiting 

steroid 11 β-hydroxylase in people.  Metyrapone was found to inhibit the action of P-450 

enzymes in biosynthesis [131, 132].  Chloramphenicol is a bacteriostatic antimicrobial originally 

isolated from Streptomyces venezuelae [46].  Chloramphenicol was found to have an inhibitory 

effect on human cytochrome P-450 isoforms [120].  Inhibition of P-450 enzymes would 

potentially impact azinomycin B biosynthesis if the P-450 enzymes are involved in the oxidative 

modifications required to produce both the naphthoate moiety and azinomycin B.  It is also 

possible that P-450 enzymes are involved in the formation of the epoxide moiety and the 

hydroxylations in the aziridinopyrrolidine moiety of the azinomycin molecule. 
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Figure 46.  Structures of Biosynthesis Inhibitors Used in this Study. 
 

 

Oxidative modifications in natural products involve ‘mixed-function oxidases,’ the most 

prevalent of which are cytochrome P-450-dependent mono-oxygenases.  These are involved in 

hydroxylations and other oxidative modifications (Figure 47).  The iron-porphyrin complex 

(heme) is bound to the enzyme which carries a redox charge involving the Fe atom allowing 

binding and cleavage of an oxygen atom. NADPH is usually the hydrogen donor. 

 

 

 
Figure 47.  Mono-oxygenases. 
Mono-oxygenases have been found to perform many types of oxygen additions: (A) Simple hydroxylation  
(B) hydroxylation of an aromatic group  (C) epoxide formation from an alkene. 
 

 

 The aromatic naphthoate group is likely to have been modified by a mono-oxygenase.  In 

2004, Lowden and coworkers fed a series of naphthoate derivatives with various deuterated 

positions to whole cells of  S. sahachiroi (Figure 48A-E) [31].  The result of their study 

indicated that the molecule with the highest rate of incorporation was the most advanced 

precursor.  Additionally the movement of the deuterium in molecule D, indicated an ‘NIH shift’ 

type mechanism, implying the action of a P-450 oxygenase.  The NIH shift, discovered by 
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research scientists at the National Institutes of Health, is illustrated in Figure 49 with the 

naphthoate group. 

 

 

 
Figure 48.  Naphthoate Compound Series Fed by Lowden, et al. 
 

 

 
Figure 49.  Hydroxylation of the Naphthoate Involving the NIH Shift Associated with Mono-
oxygenases. 
 

 

Table 3.  Effect of Enzyme Inhibitors on Naphthoate Production. 
Reaction 

condition 
Inhibitor 

CPM       

(10 μM) 

CPM       

(100 μM) 

1 (Cont.) — 59 59 

1 (Expt.) — 945 945 

2 (Cont.) miconazole 37 37 

2 (Expt.) miconazole 38 43 

3 (Cont.) metyrapone 34 34 

3 (Expt.) metyrapone 41 91 

4 (Cont.) chloramphenicol 32 26 

4 (Expt.) chloramphenicol 73 93 

5 (Cont.) cerulenin 33 38 

5 (Expt.) cerulenin 55 47 



 65

 

 

 

 
Figure 50.  Effect of Enzyme Inhibitors on Naphthoate Production. 
Reaction 1 experimental: cpm ± 50.  Reactions 1-5: cpm ± 10.  Inhibitors used miconazole (2), metyrapone 
(3), chloramphenicol (4), and cerulenin (5). 
 

 

Our reactions were incubated with 10 and 100 μM of each inhibitor, respectively, and 

assayed for both naphthoate and azinomycin B production (Figure 50, Figure 51, Table 3 and 

Table 4).  As expected, cerulenin exhibited inhibition against formation of the naphthoate (the 

putative PKS product) and azinomycin B.  Likewise, all P-450 inhibitors had a marked effect on 

both naphthoate and azinomycin production.  This suggests minimally the involvement of a P-

450 oxygenase in the first step of the biosynthesis to generate what becomes the 3'-hydroxyl of 

the naphthoate fragment (Figure 43), which is subsequently methylated, via a SAM-dependent 

process likely involving a methyltransferase, to give the final product, supporting previous 

reports [30, 31].  Completion of the biosynthesis of azinomycin B requires a number of oxidative 

transformations and could also involve other P-450-dependent processes. 
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Table 4.  Effect of Enzyme Inhibitors on Azinomycin B Production. 
 

Reaction 

condition 
Inhibitor 

CPM    

(10 μM) 

CPM    

(100 μM) 

1 (Cont.) — 40 40 

1 (Expt.) — 714 714 

2 (Cont.) miconazole 32 32 

2 (Expt.) miconazole 360 164 

3 (Cont.) metyrapone 36 30 

3 (Expt.) metyrapone 348 292 

4 (Cont.) chloramphenicol 36 30 

4 (Expt.) chloramphenicol 523 307 

5 (Cont.) Cerulenin 38 95 

5 (Expt.) Cerulenin 178 119 

 

 

 
Figure 51.  Effect of Enzyme Inhibitors on Azinomycin B Production. 
Controls: cpm ± 10.  Experimental: cpm ± 50.  Inhibitors used miconazole (2), metyrapone (3), 
chloramphenicol (4), and cerulenin (5). 
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COFACTOR REQUIREMENTS 

The cell-free system was used to probe the cofactor requirements of the azinomycin biosynthetic 

pathway.  Enzyme assays were performed as previously described varying only the cofactor 

preparation.  Cofactors are shown in Figure 52.  The results are shown in Figure 53.  Not 

surprisingly, elimination of NADPH from the reaction mixture abolished production of 

azinomycin B.  NADPH is tied directly to both oxidative processes, such as the action of P-450 

enzymes as their inhibition was shown to abolish azinomycin production.  Neither the removal of 

THF or FAD appeared to have an effect.  FAD could have been a cofactor to a dehydrogenase 

enzyme, but it is also possible that formation of any alkenes in the biosynthesis of azinomycin B 

follows a different route.  Azinomycin production thus requires the involvement of two cofactors, 

NADPH and SAM. The participation of SAM in the biosynthesis has been demonstrated by 

Lowden and co-workers through feeding experiments and later confirmed in our laboratory [30, 

31] [133].  Both NADPH and SAM can be projected to play critical roles in the construction of 

the naphthoate fragment of the molecule.  ATP (a necessary cofactor in NRPS biosynthesis) had 

a marginal effect on azinomycin B production.  Presumably, ATP levels in the cell extract were 

near saturation, negating a conclusive result.   

 

 

 
Figure 52.  Cofactors Used in Probing Cofactor Requirements of Azinomycin B Biosynthetic 
Pathway (Conversion to Azinomycin B). 

  = 14C 
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Figure 53.  Cofactor Requirements of Azinomycin B Biosynthetic Pathway (Conversion to 
Azinomycin B). 
Controls: cpm ± 10.  Experimental ± 50.  (1) Reaction conditions: CFE + [1-14C] malonyl-CoA, acetyl-
CoA, SAM, FAD, and NADPH. (2) Reaction conditions: CFE + [1-14C] malonyl-CoA, acetyl-CoA, SAM, 
and NADPH. (3) Reaction conditions: CFE + [1-14C] malonyl-CoA, acetyl-CoA, ATP, SAM, FAD, and 
NADPH. (4) Reaction conditions: CFE + [1-14C] malonyl-CoA, acetyl-CoA, THF, SAM, FAD, and 
NADPH. (5) Reaction conditions: CFE + [1-14C] malonyl-CoA, acetyl-CoA, THF, SAM, and FAD. 
 

 

 

 

 
Figure 54.  Substrates Used to Probe Azinomycin B Biosynthesis. 
   = 14C 



 69

SUBSTRATE REQUIREMENTS 

The cell-free enzyme system was further exploited to investigate the substrate requirements of 

the azinomycin biosynthetic pathway.  Proposed intermediate building blocks are represented in 

Figure 54.  Enzyme assays were performed as previously described with the following 

modification: With the exception of the CFE enzyme control reaction (reaction 1), to each 

protein extract was added unlabeled malonyl-CoA, acetyl-CoA, and radiolabeled substrate.  The 

results are depicted in Figure 55 and Table 5.   

 

 

 
Figure 55.  Investigation of the Principle Building Blocks of the Azinomycin B Pathway. 
Controls:  cpm ± 10.  Experimental: cpm ± 50.   (1) [2-14C] malonyl-CoA, (2) [1-14C] DL-ornithine, (3) [U-
14C] glycine, (4) [U-14C] L-valine, (5) [U-14C] L-ornithine, (6) [U-14C] L-threonine, (7) [U-14C] L-lysine, 
and (8) [U-14C] L-tyrosine. 
 

 

All suspected intermediates (as shown in Figure 55) showed positive incorporation, 

except for tyrosine (an amino acid with no suspected involvement in the pathway) and lysine, 

which were included as negative controls.  Although lysine could be projected to give rise to the 

azabicyclic ring system of azinomycin B (Figure 56), lack of incorporation of S-

adenosylmethionine (by way of [13C-methyl]-methionine) [109] [134] and background level 

counts observed in vitro with radiolabeled lysine contradict such a mechanism.  Moreover, THF, 

a cofactor that can also facilitate methyl transfer, did not exhibit an effect in vitro.  The higher 

levels of incorporation observed with malonyl-CoA versus other amino acid substrates are a 
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reflection of the multiple malonyl units (five) incorporated into the naphthoate fragment of the 

molecule.  All other substrates are represented only once.  It should be noted that the results of 

this assay do not specifically imply location of incorporation into the molecule.  The location is 

implied largely by deduction and implication of previously reported stable isotope feeding 

studies by Lowden and coworkers [30, 31].  Incorporation of stable isotopes for direct location 

information is explored in a subsequent chapter of this dissertation. 

 

 

Table 5.  Investigation of the Principle Building Blocks of the Azinomycin B Pathway. 
Reaction 

condition 
Substrate Azinomycin B Production (CPM) 

   

1 (Cont.) [2-14C] malonyl CoA 103 

1 (Expt.) [2-14C] malonyl CoA 1694 

2 (Cont.) [1-14C] DL-ornithine 182 

2 (Expt.) [1-14C] DL-ornithine 548 

3 (Cont.) [U-14C] glycine 92 

3 (Expt.) [U-14C] glycine 352 

4 (Cont.) [U-14C] L-valine 92 

4 (Expt.) [U-14C] L-valine 460 

5 (Cont.) [U-14C] L-ornithine 144 

5 (Expt.) [U-14C] L-ornithine 378 

6 (Cont.) [U-14C] L-threonine 109 

6 (Expt.) [U-14C] L-threonine 403 

7 (Cont.) [U-14C] L-lysine 97 

7 (Expt.) [U-14C] L-lysine 94 

8 (Cont.) [U-14C] L-tyrosine 72 

8 (Expt.) [U-14C] L-tyrosine 81 
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Figure 56.  Possible Formation of the Azabicyclic Ring from Lysine. 
 [U-14C] L-lysine showed no incorporation into azinomycin B. 
 

 

SIGNIFICANCE 

These experiments taken together indicate the origins of azinomycin B as conveyed in Figure 57, 

with color coded substrates.  These results support previously reported origins for the naphthoate 

group, a putative PKS product, but indicate more specifically the origin of the right hand part of 

the molecule, a putative NRPS product.  These insights played a large role in shaping the series 

of stable isotope feeding experiments we subsequently pursued. 

 

 

 
Figure 57.  Diagram Depicting Possible Substrate Requirements of Azinomycin B Biosynthetic 
Pathway. 
 

 

The results provide the first demonstration of a cell-free enzyme system that supports 

biosynthesis of the interstrand DNA cross-linker azinomycin B.  Investigations with this enzyme 

preparation rendered important information regarding the inhibition of and the substrate and 
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cofactor requirements of the pathway, corroborating our hypothesis of the PKS-NRPS hybrid 

origin of azinomycin B biosynthesis. 

 

 

EXPERIMENTAL PROCEDURES 

GENERAL 

Radiolabeled substrates including: [2-14C] malonyl-CoA, [U-14C] L-lysine, and [U-14C] L-proline 

were obtained from Moravek Biochemicals (Brea, CA).  All radiolabeled substrates including: 

[1-14C] DL-ornithine, [U-14C] glycine, [U-14C] L-valine, [1-14C] DL-glutamic acid, [U-14C] L-

tyrosine, [U-14C] L-threonine, and [U-14C] L-ornithine were acquired from American 

Radiolabeled Chemicals (St.  Louis, MO). 

TLC plates were purchased from Analtech (Newark, DE).  Co-factors (SAM, FAD, and 

NADPH) and all cell media and buffer components were obtained from Sigma Biochemicals (St.  

Louis, MO) unless otherwise specified.  OPTI-Fluor O was purchased from Perkin Elmer 

(Wellesley, MA).  The FAS/PKS inhibitor cerulenin was purchased from Sigma Biochemicals 

(St.  Louis, MO).  All cytochrome P-450 enzyme inhibitors (metyrapone, chloramphenicol., and 

miconazole) were obtained from Aldrich (Milwaukee, WI).   

 

INSTRUMENTATION 
 1H and 13C NMR spectra were recorded on either a Varian Inova 500 or Varian Inova 300.  1H 

NMR chemical shifts are reported as δ values in ppm relative to CDCl3 (7.26 ppm) and coupling 

constants (J) are reported in Hertz (Hz).  Infrared spectra were recorded on a Bruker Tensor 27 

spectrometer.  Unless otherwise indicated, deuterochloroform (CDCl3) served as an internal 

standard (77.0 ppm) for all 13C spectra.  Mass spectra (ESI) were obtained at the Laboratory for 

Biological Mass Spectrometry at the Department of Chemistry, Texas A&M University using an 

API QStar Pulsar, MDS Sciex (Toronto, ON, Canada), or Quadrupole-TOF hybrid spectrometer.  

Gas chromatography/low resolution mass spectra were recorded on a Trace DSQ GCMS 

spectrometer from ThermoElectron Corporation (Austin, TX, USA).  APCI was recorded on a 

Thermofinnigan LC-Q DECA mass spectrometer.  Radioactive products were measured on a 

Beckman LS5810 scintillation counter.   The Bead Beater used in the preparation of cell-free 

extracts was purchased from Biospec (Bartlesville, OK). 
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ORGANISM 

Streptomyces sahachiroi (NRRL 2485) was obtained from the American Type Culture Collection 

(ATCC; Manassas, VA). 

 

CULTURE CONDITIONS 

(THE AUTHOR) 

Streptomyces sahachiroi was initially cultured on GYM plates until sporulation, typically 5-7 

days at 28 °C.  GYM agar plates contained per liter: glucose monohydrate, 4 g; yeast extract 

(Difco), 4 g; malt extract (Difco), 10 g; CaCO3, 2 g; Bacto-agar (Difco), 12 g; and tap water 

adjusted to pH 6.8 with 1 M NaOH prior to sterilization.  A starting culture of Streptomyces 

sahachiroi in PS5 medium (100 mL) was prepared by inoculation of a loop full of spores from 

the GYM plates.  PS5 medium was prepared from 5 g/L of Pharmamedia (yellow cotton seed 

flour; Traders Protein; Memphis, TN) and 5 g/L of soluble starch, adjusted to a pH of 7.0.  

Following 24 h of growth at 30 °C, 250 rpm, 25 mL of the starting culture was used to inoculate 

500 mL of PS5 in 2 L baffled Erlenmeyer flasks.  The cultures were grown for 64 h (30 °C, 250 

rpm).  The cells were harvested by centrifugation, and the cell pellet was frozen in liquid nitrogen 

(in aliquots) and stored at -80 °C. 

 

CELL-FREE EXTRACT PREPARATION 

(DR. CHAOMIN LIU) 

The cell-free extract was prepared by combining frozen cells (13-15 g), glass beads (28 g; 0.1 

mm), and cell-free extract buffer (100 mM potassium phosphate, pH 7.5; 50% glycerol, 2 mM 

dithiothreitol, and 1 mM EDTA; 80 mL; 4 °C) in a bead beater equipped with an ice water jacket.  

The cells were pulverized employing ten 1 min. cycles separated by 1 min. intervals to prevent 

warming of the protein extract.  The lysate was centrifuged (7,660 G, 15 min) to give the crude 

cell-free extract. 

 

ENZYME ACTIVITY ASSAYS 

(DR. CHAOMIN LIU) 

To each aliquot of the protein extract (5 mL) was added 1 µL of acetyl-CoA (1 mg/1 mL), 80 µL 

of co-factor solution (FAD, 1 mg; SAM, 1 mg; NADPH, 1 mg in 1 mL of deionized distilled 

water), and 0.25 μCi of 14C-radiolabeled material.  The resulting reaction mixture was incubated 

at 37 °C for 24 h. The reactions were vortexed with dichloromethane (3 mL); organics were 



 74

transferred to fresh tubes and evaporated to dryness.  The organic residue was resolubilized in a 

minimal volume of dichloromethane (60 µL) and applied to TLC (5:0.3; 

dichloromethane:methanol; Rf = 0.25, naphthoate; Rf = 0.37, azinomycin B) to which was added 

unlabeled naphthoate or azinomycin B (isolated from Streptomyces sahachiroi cultures).  

Samples (TLC spots) with appropriate Rf values were scraped from the TLC plate, transferred to 

vials containing OPTI-Fluor O, and analyzed by scintillation counting. 

 
HPLC COINJECTION ASSAYS 

(COLLABORATION BETWEEN DR. CHAOMIN LIU AND THE AUTHOR) 

Enzyme activity assays were performed as detailed above.  Following extraction and evaporation 

of the samples to dryness, the organic residue was solubilized in methanol (100 µL), to which 

was added unlabeled naphthoate or azinomycin B, and analyzed by Reverse Phase HPLC with a 

Phenomenex C8 column (250 x 4.6 mm), employing a gradient of acetonitrile/water.  Conditions 

are listed in Table 6. 

 
 Table 6.  HPLC Conditions for the Separation of Naphthoate and Azinomycin B. 
 
 

 

  

 

 

 

 

 

 

 
Retention times were 14.9 min. (naphthoate) and 16.2 min. (azinomycin B), respectively.  The 
corresponding peaks were collected, and the samples were evaporated, transferred to vials containing 
OPTI-Fluor O, and analyzed by scintillation counting. 
 

HPLC conditions 

Minutes % acetonitrile % water 

0 10 90 

1 10 90 

5 35 65 

14 95 5 

15 95 5 

20 10 90 

25 10 90 
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PROTEIN INHIBITION ASSAYS 

(DR. CHAOMIN LIU) 

To each aliquot of the protein extract (3 mL) was added 1 µL of acetyl-CoA (1 mg/1 mL), 0.25 

µCi of [2-14C] malonyl-CoA, 80 µL of cofactor solution (FAD, 1 mg; SAM, 1 mg; NADPH, 1 

mg in 1 mL of deionized distilled water) in addition to 10 µM or 100 µM inhibitor. 

 

NAPHTHOATE SYNTHESIS 

(DR. CHAOMIN LIU) 

Details provided in Appendix. 
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CHAPTER IV 

 

AN IMPROVED METHOD FOR CULTURING STREPTOMYCES SAHACHIROI 

FOR THE PRODUCTION OF AZINOMYCIN B * 

 

 

INTRODUCTION 

The azinomycins (Figure 58 A and B) comprise a family of aziridine-containing natural products 

produced by Streptomyces sp. that possess potent anti-tumor activity [2, 17, 77].   In vitro 

experiments reveal the inherent ability of azinomycin B to bind within the major groove of DNA.   

The electrophilic C-10 and C-21 carbons contained within the aziridino[1,2a]pyrrolidine (1-

azabicyclo[3.1.0]hexane) and epoxide fragments impart the ability of the natural product to form 

interstrand crosslinks with the N7 positions of suitably disposed purine bases of DNA [14, 69-

73].   Recent studies with DNA microarrays and fluorescence imaging with the natural product 

provide the first demonstration of DNA damage caused by azinomycin B in whole cells, 

correlating in vitro DNA cross-linking observed with the metabolite with an in vivo cellular 

response [135]. 

 

 

 
Figure 58.  Structures of Azinomycin A and B. 
 

 

 
*Reprinted with permission from “An Improved Method for Culturing Streptomyces sahachiroi: 
Biosynthetic Origin of the Enol Fragment of Azinomycin B” by Kelly, G. T., Sharma, V., and 
Watanabe, C. M. H., 2008. Bioorganic Chemistry, 36, 4-15, Copyright [2008] by Cell Press and 
Elsevier.  
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The unusual architecture of the azinomycins, coupled with their potent anti-tumor 

activity, has captured the attention of both the biosynthetic and synthetic communities.   The total 

synthesis of azinomycin A was achieved in 2001 by Coleman and co-workers and a number of 

synthetic analogues have also been reported [18].  Notwithstanding these gains, even after 50  

years beyond its initial isolation [1] and more than two decades of structure correction[2] [17, 

77], there is no total synthesis yet reported for azinomycin B.  This is a major barrier to in-depth 

studies involving biological activity of the natural product.  In addition, biosynthetic 

investigations on the compound have lagged considerably.   While some gains have been made to 

establish the polyketide origin of the naphthoate moiety [30, 31], and while a cell-free system has 

been developed to support synthesis of azinomycin B in vitro [110], progress in this area has 

been impeded primarily by difficulties with the culture method and and by the lack of a 

consistent source of the natural product.   Following literature protocols [2], we found production 

of the natural product by Streptomyces sahachiroi to be inconsistent.  As a great majority of 

biosynthetic studies, including isotopic labeling studies and gene disruption experiments, hinge 

upon having reliable production of the natural product, a new culture method has been needed.   

Here we present details of experiments performed to achieve optimized growth conditions for the 

production of azinomycin B. 

 

RESULTS AND DISCUSSION 

DEVELOPMENT OF THE CULTURE SYSTEM 

(THE AUTHOR)* 

In the course of evaluating solid and liquid media types, the production of azinomycin was erratic 

when literature protocols were followed [1, 2, 30].  A collaborator, Dr. Robert Coleman of The 

Ohio State University Department of Chemistry, had similar problems when he attempted to get 

azinomycin A and B for mode of action studies and spectroscopic comparison in his efforts 

towards total synthesis of both azinomycin A and B.  Dr. Coleman had been using The Ohio 

State University’s fermentation facility to have the culture grown to produce the azinomycins.  

They observed production from the Streptomyces sahachiroi strain once, but could not reproduce 

this result.  We obtained both Streptomyces sahachiroi (NRRL 2485) and Streptomyces 

griseofuscus (NRRL B-5429) strains reported to produce azinomycins from American Type 

Culture Collection (ATCC) [2, 136].  From these two strains we followed literature protocols and  

 
* Denotes major contributer(s) to each section. 
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found Streptomyces sahachiroi to be a better producer of the natural product.  Therefore we set 

out to improve the cell culture conditions of this strain.  

 

SOLID MEDIA EVALUATION 

(THE AUTHOR) 

As the production of secondary metabolites from Streptomyces frequently coincides with or 

precedes the formation of aerial hyphae on solid media [137], we initially examined a variety of 

media conditions including LB, ISP+ [138], NB+, YPD [108], TO [139], GYM [69], PS5 [69],  

MS [140], YEME [140], and R2YE [140].  Several solid media conditions were evaluated by 

streaking a loop full of S. sahachiroi spore stock upon prepared plates.  The growth was 

evaluated at regular intervals.  All plates showed growth of Streptomyces; however, only cultures 

grown on GYM, MS, PS5, PS5+, TO, and YPD plates exhibited sporulation (see Table 7).   As 

azinomycin B production was undetectable in organic extracts of the spores, the plates were 

inoculated into Erlenmeyer flasks containing 100 mL of PS5 medium.  After a 72 h post-

inoculation period at 30°C, the cultures were extracted with dichloromethane, concentrated, and 

analyzed by TLC and mass spectrometry.  Results revealed that while the MS plates showed 

traces of azinomycin B production, the GYM plates produced the most robust and productive 

spores at 5-7 days growth, especially when inoculated from spores stocks generated from spores 

stored on dehydrated GYM plates. 

 

DEHYDRATED PLATES 

(THE AUTHOR) 

After evaluating several media types and selecting GYM as the best solid medium for inoculation 

of liquid culture for production of the azinomycins, some erratic behavior with production was 

observed, where production would have been seen then lost for several weeks to months.  Several 

experimental avenues were explored to account for these losses of production: plate to plate 

spore transfer, spore stock analysis, and use of dehydrated culture plates.  Continual transfer of 

productive spores from one plate to another seemed to maintain a productive line.  This method 

of preparation of plates was pursued for a period of time.  However, this approach suffered from 

the problem of genetic drift, wherein particular traits in the spore population may become more 

rare or common.  Chromosomal instability and end deletion of the linear chromosome have been 

reported in Steptomyces species [141, 142].  Since production of azinomycin is not a trait which 

is maintained by selection in continuing growth on the GYM plate, there is no barrier to the loss  
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Table 7.  Evaluation of Solid Media for Growth and Production of Azinomycin B. 
 

 
Plates shown at 60 hours’ growth after streaking plate with a loop full of Streptomyces sahachiroi spore 
stock made from spores originally isolated from a desciated solid GYM media plate. 
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of this trait to genetic drift.  When erratic production occurred after several generations of 

successive plate-to-plate transfer, the original spore stocks we purchased from ATCC were 

evaluated.  The purchased spore stocks were dehydrated, and stored in a sealed glass vial.  

Glycerol stocks were made from these dehydrated spores and stored at -80 °C.   Cultures grown 

on GYM media from this stock were not consistently productive.   

 

 

 

 

 
 
 
 
 

 

 

Figure 59.  Making Effective Spore Stocks. 
(A) Parts of a dehydrated GYM agar plate with S. sahachiroi culture.  (B) S. sahachiroi culture spread 
upon a GYM plate (3 days growth).  (C) Concentrated spore stock originating from dehydrated plates.   
  

 

In an effort to reproduce previous levels of production, portions of dehydrated S. 

sahachiroi cultures grown on GYM plates which had been productive months earlier were used 

to inoculate a culture and to transfer spores to a fresh GYM plate for subsequent cultures.  While 

the cultures produced azinomycin consistently, the source of dehydrated plates was limited.  

Thus a set of spore stocks was made from these spores using an MS plate.  The resulting spore 

stocks were successfully used thereafter (see Figure 59). 

 

LIQUID MEDIA EVALUATION 

(THE AUTHOR) 

A variety of media formulations (YPD, R2YE, PS5, PS5+, LB, TO, GYM, MS, YEME, NB+, 

and ISP+) [108, 138-140] were examined for their ability to support azinomycin production by S. 

sahachiroi in shake flasks and by fermentation, as summarized in Table 8.   Since secondary 

metabolite production is generally confined to the stationary phase of the growth curve, in shake 

culture (Erlenmeyer flasks or baffled flasks) we evaluated each medium composition by 
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generating a first stage culture (from GYM plates), which was used to inoculate and produce the 

culture in modest to large scale (in 0.5, 1, 2 or 4 Liter Erlenmeyer flasks or 2 Liter baffled 

flasks).    The cells were harvested at a fixed time of 72 h.  The cultures were centrifuged and 

extracted with dichloromethane, then concentrated.  Under these growth conditions, azinomycin 

B production was observed in YPD, R2YE, PS5, and PS5+, but not in LB, TO, GYM, MS, 

YEME, NB+, and ISP+ as determined by TLC, mass spectrometry, 1H-NMR and 13C-NMR 

spectroscopy.   

 

WATER SOURCE 

(THE AUTHOR) 

Another variable explored was the source of water used in the media.  Tap water, distilled, and 

distilled/de-ionized/sterile filtered water were used.  The main difference between these waters 

was the presence or absence of trace metals and additives, in particular extra calcium in tap 

water.  There was also a difference in the pH of these waters.  After some initially more 

encouraging results from the use of tap water, the best, most consistent production results in 

shake flasks, and later in the fermenter system, was from the distilled/de-ionized/sterile filtered 

water. 

 

BIO-AVAILABLILITY 

(THE AUTHOR) 

The nutritional content of the medium is a significant factor in deciding what medium might be 

optimal for the production of a natural product.  Streptomyces are very sensitive to their 

environment, resulting in culture wide adjustment in response.  The availability of key nutrient 

groups is important.  Although wild type Streptomyces are often fully capable of biosynthesizing 

their own primary metabolites if they are not present in the environment, nutrient shortage has 

often been shown to prompt production of secondary metabolites.  Secondary metabolites often 

are present in higher production when the growth of the mycelia is in a stationary phase of 

growth. The production of these metabolites is thought to be a measure of defense against growth 

of nearby organisms [4].  Competition over limited resources in the soil is thought to have 

pressured these microorganisms to develop such a diverse and potent range of secondary 

metabolites.  Nutrient limitation and varying the culture period from 1-6 days were investigated.   

In all cases, azinomycin production was low and/or inconsistent. 
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Table 8.  Liquid Culture and Fermentation Conditions. 
 

Entry Conditions Resultb 
 Media Screen  

1  100 mL Erlenmeyer PS5 culture, 24 h, 250 rpm, 30ºC Traces 

2  250 mL Erlenmeyer various mediasc, 72 h, 250 rpm, 30ºC PS5 media showed maximum production 

 Increased culture size of secondary culturesd  

3  500 mL Erlenmeyer PS5 2nd culture, 72 h, 250 rpm, 30ºC Inconsistent 

4  400 mL-1000 mL Erlenmeyer PS5 2nd culture, 24-144 h, 250 rpm, 30ºC Inconsistent 

5  2500 mL Erlenmeyer PS5 2nd culture, 72 h, 250 rpm, 30ºC Low yields 

 Fernbach (baffled flask for greater aeration)  

6  400 mL Fernbach PS5, 2nd culture, 72 h, 200-250 rpm, 28-30ºC Higher than 1-5, but inconsistent 

7  500 mL Fernbach PS5, 2nd culture, 72 h, 200-250 rpm, 28-30ºC Higher than 1-6, but inconsistent 

8  600 mL Fernbach PS5, 2nd culture, 72 h, 200-250 rpm, 28-30ºC Higher than 1-7, but inconsistent 

 pH adjustment  

9  Adjust 450-600 mL Fernbach PS5 media to pH 6.0-8.0 with HCl/NaOH 
pre-sterilization, 72 h, 250 rpm, 30ºC Inconsistent 

10  Adjust 450, 600 mL Fernbach PS5 media with phosphate buffer to pH 
8.0, 10.0, 72 h, 250 rpm, 30ºC No production 

11  Adjust 450, 600 mL Fernbach PS5 media to pH 8.0 with NaOH at regular 
intervals during growth, 72 h, 250 rpm, 30ºC No production, pH reset 

 Increase size of culture using fermenter  

12  1st stage culture 3X100mL PS5, 24 h, 30ºC; 2nd stage culture 15L PS5 in 
fermenter, 72 h, 10L/min aeration, 250 rpm, 28ºC 

Over bubbling, uncontrolled foaming, no 
production 

13  
1st stage culture 1X100mL PS5, 24 h, 30ºC; 2nd stage culture 2X600mL 
PS5 Fernbach, 24 h, 30ºC; 3rd stage culture 10L PS5 in fermenter, 72 h, 
10L/min aeration, 250 rpm, 28ºC 

Over bubbling, uncontrolled foaming, no 
production 

14  
1st stage culture 3X100mL PS5, 24 h, 30ºC; 2nd stage culture 6X600mL 
PS5 Fernbach, 24 h, 30ºC; 3rd stage culture 8L PS5 in fermenter, 72 h, 
10L/min aeration, 250 rpm, 28ºC 

foaming issues, ~25 mg azinomycin B 

 Nutrient deprivation  

15  2nd stage 600 mL Fernbach 50-100% PS5 reduction, 72 h, 30ºC No production 

16  2nd stage 600 mL Fernbach PS5, 24 h, 30ºC; Pellet transfer (2nd stage to 
3rd stage); 3rd stage  600 mL Fernbach PS5, 72 h, 250 rpm, 30ºC No production 

17  2nd stage culture 2X600mL Fernbach PS5, 24h; 3rd stage culture 10L 
50% PS5 reduction in fermenter, 48h, 8L/min aeration, 250 rpm, 28ºC ~15mg azinomycin B 

18  2nd stage culture 2X600mL Fernbach PS5, 24h; 3rd stage culture 10L 
50% PS5 reduction in fermenter, 72h, 8L/min aeration, 250 rpm, 28ºC ~12mg azinomycin B 

19  2nd stage culture 2X600mL Fernbach PS5, 24h; 3rd stage culture 10L 
75% PS5 reduction in fermenter, 72h, 8L/min aeration, 250 rpm, 28ºC ~40mg azinomycin B 

20  2nd stage culture 2X600mL Fernbach PS5, 24h; 3rd stage culture 10L 
75% PS5 reduction in fermenter, 72h, 8L/min aeration, 250 rpm, 28ºC ~30mg azinomycin B 

21  2nd stage culture 2X600mL Fernbach PS5, 24h; 3rd stage culture 10L 
90% PS5 reduction in fermenter, 72h, 8L/min aeration, 250 rpm, 28ºC ~17 mg azinomycin B 

      

 
(a) Innoculation using ¼ GYM plate spread with S. sahachiroi spores, 5 days growth, 37ºC; (b) extracted 
with dichloromethane, dried over MgSO4 or NaSO4, concentrated, then analyzed by TLC, APCI-MS, 1H 
NMR; c: Liquid media: GYM, ISP+, LB, MS, NB+, PS5, PS5+, TO, R2YE, YEME, and YPD; d: 
Inoculation using 25mL of 1st stage culture shaken at 250 rpm, 30 ºC, 24 h. 
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LARGE SCALE FERMENTATION SYSTEM 

(THE AUTHOR) 

As modifying liquid shake culture protocols did not give much improvement, a large scale 

fermentation system was explored (Figure 60A).   Such an approach affords more control over 

several factors not easily controlled with shake flasks, such as degree of aeration and foaming.  

Initially the fermenter (15 L capacity) was inoculated with two 24 h first stage cultures (100 mL, 

generated from GYM plates), agitated at 250 rpm, and aerated at 6 L/min with sterile filtered air 

for 72 H. The experiment resulted in considerable foaming, leading to loss of culture and low 

production of the azinomycins.   The volume of medium was therefore decreased to 10 L and the 

experiment was repeated, inoculating with two 24 h second stage cultures (600 mL each) that 

were generated by inoculating 2 L baffled flasks with 25 mL of a 24 h first stage culture.   As 

azinomycin production was minimal, nutrient starvation was explored (see Table 8, entries 15-

21).   The component composition of the PS5 medium (10 L) was reduced by 50% and 

inoculated with two 600 mL second stage cultures.   After 72 h, the cells were harvested and 

approximately 30 mg of azinomycin B was obtained from 10 L.  To further investigate the stress 

imposed by medium deprivation, the medium composition was reduced by 75%, inoculated with 

two second stage cultures (600 mL), and harvested after 72 H.  This sequence yielded 

approximately 40 mg of azinomycin B from 10 L of culture.   By increasing nutrient deprivation 

to 90%, we isolated only 17mg of pure azinomycin B out of 65mg of crude material extracted.  

Further reduction of the PS5 medium composition resulted in lower levels of azinomycin 

production (Figure 60C).  By increasing the volume of the two second stage cultures to 1 L and 

the aeration rate to 8 L/min, we can now obtain reliably about 60 mg of azinomycin from 10 L.  

Interestingly, the pH of the cell culture steadily increased to ~8.0 over a period of 4 days.   

Figure 60B and D show the pH profile and the amount of azinomycin B produced as functions of 

time.  Optimal production of the natural product was observed between 64-72 h (Figure 60D) 

corresponding to pH 7.4-7.8 (Figure 60B), probably due to instability of the molecule under 

strongly acidic or alkaline conditions.   Manual adjustment of the pH throughout the culture 

period with bicarbonate did not have a dramatic effect on production levels, and 40-60 mg of 

azinomycin was obtained by this method. 
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Figure 60.  Evaluation of Fermentation System. 
(A) Sequence of fermentation system: Culture of S. sahachiroi.  (3) pH profile as a time course.  (C) Effect 
of nutrient deprivation on production of azinomycin B.  (D) Time course production of azinomycin B with 
75% nutrient deprivation (second stage culture, 600 mL baffled flask).  Crude yield of azinomycins and 
purified azinomycin B are shown as a function of time. 
 

 

SIGNIFICANCE 

While in vivo applications and experiments with azinomycin B show significant promise, the 

clinical potential of the agent remains largely unexplored due to a dearth of synthetic procedures 

for the molecule as well as unreliable culture methods for the producing organism. Our reliable 

fermentation procedure for S. sahachiroi, the azinomycin producer, yields up to 60 mg of 

purified compound can be obtained from 10 L of culture.  This system has been employed 
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successfully to investigate the biosynthetic origin of azinomycin B using stable isotope studies 

described in subsequent chapters in this dissertation. 

 

EXPERIMENTAL PROCEDURES 

 

INSTRUMENTATION AND GENERAL METHODS 
 1H & 13C NMR spectra were recorded on either a Varian Inova 500 or Varian Inova 300.  1H 

NMR chemical shifts are reported as δ values in ppm relative to CDCl3 (7.26 ppm) and coupling 

constants (J) are reported in Hertz (Hz).  Infrared spectra were recorded on a Bruker Tensor 27 

spectrometer.  Unless otherwise indicated, deuterochloroform (CDCl3) served as an internal 

standard (77.0 ppm) for all 13C spectra.  Mass spectra (ESI) were obtained at the Laboratory for 

Biological Mass Spectrometry at the Department of Chemistry, Texas A&M University, with an 

API QStar Pulsar, MDS Sciex (Toronto, ON, Canada), or Quadrupole-TOF hybrid spectrometer.  

Gas chromatography/low resolution mass spectra were recorded on a Trace DSQ GCMS 

spectrometer from ThermoElectron Corporation (Austin, TX, USA).  APCI was recorded on a 

Thermofinnigan LC-Q DECA mass spectrometer.  Fermentations were run on Fermentation 

Design Inc.  Model # MS21(Allentown, PA, USA).  The total capacity of the fermentation 

system is 15 L. 

 

ORGANISM 

Streptomyces sahachiroi (NRRL 2485) and Streptomyces griseofuscus (NRRL B-5429) were 

obtained from the American Type Culture Collection (ATCC). 

 

SPORE STOCKS 

Streptomyces sahachiroi spores from dehydrated GYM (Glucose, Yeast Extract, and Maltose 

Extract) plates (per liter of medium: glucose monohydrate, 4 g; yeast extract, 4 g; malt extract, 10 

g; CaCO3, 2 g; and tap water adjusted to pH 6.8 with 1 M NaOH prior to sterilization) were 

streaked onto large MS (Mannitol Soya flour, per liter medium: Mannitol, 20 g; Soya flour, 20 g; 

and deionized water) plates and allowed to incubate at 30 ºC for 15 days.  At this time the grey 

spores were removed with sterile water and agitation.  The spores were filtered through sterile 

cotton, washed three times with sterile water, centrifuged at 3000 rpm, re-suspended in a minimal 

amount of 10% glycerol solution, flash frozen, and stored at -80 ºC. 
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MEDIA CONDITIONS 

GYM ( Glucose, Yeast Extract, and Maltose Extract) agar plates contained the following 

components per liter:  glucose monohydrate, 4 g; yeast extract, 4 g; malt extract, 10 g; CaCO3, 2 

g; and tap water; adjusted to pH 6.8 with 1 M NaOH prior to sterilization [69]. 

PS5 (Pharmamedia/Starch) medium contained the following components per liter:  5 g/L of 

Pharmamedia (yellow cotton seed flour) 5 g/L of soluble starch, and deionized water adjusted to 

pH 7.0 prior to sterilization [69]. 

PS5+ (Pharmamedia/Starch plus additives) medium contained the following components per 

liter:  Pharmamedia (yellow cotton seed flour), 5 g; soluble starch, 5 g; Glucose, 2 g; Casein 

hydrolysate, 2 g; NH4SO4, 0.5 g; lysine, .5 g; ornithine, .5 g; glycine, .5 g; and deionized water 

adjusted to pH 7.0 prior to sterilization.   

NB+ (Nutrient Broth plus additives ) medium contained the following components per liter:  

Beef Extract, 3 g; Bacto-peptone, 5 g; NH4SO4, 2 g; Glucose, 2 g; 1 mM All 20 amino acids; 1 

mM ornithine; and deionized water.   

ISP+ (International Streptomyces Protocol Broth plus additives) medium contained the following 

components per liter:  Yeast Extract, 4 g; Oxoid malt extract, 10 g; Glucose, 4 g; NH4SO4, 2 g; 1 

mM All 20 amino acids; 1 mM ornithine; and deionized water [138]. 

LB (Luria-Bertani) medium contained the following components per liter:  Bacto-peptone, 10 g; 

Yeast extract, 5 g; Sodium chloride, 5 g; and deionized water.   

TO (Tomato Paste/Oatmeal) medium contained the following components per liter:  Tomato 

Paste, 10 g; Ground Oatmeal, 10 g; and deionized water [139]. 

YPD (Yeast Peptone Dextrose)medium contained the following components per liter:  Yeast 

extract, 5 g; Bacto-peptone, 5 g; Glucose, 20 g; and deionized water [108]. 

MS (Mannitol Soya Flour ) medium contained the following components per liter:  Mannitol, 20 

g; Soya flour, 20 g; and deionized water [140]. 

YEME (Yeast Extract/Maltose Extract)medium contained the following components per liter:  

Yeast extract, 3 g; Bacto-peptone, 5 g; Oxoid malt extract, 3 g; Glucose, 10 g; Sucrose, 340 g; 

After autoclaving, add: 2 ml MgCl2•6H2O (2.5M) and deionized water [140]. 

R2YE (Required Growth factors added/Yeast Extract)medium contained the following 

components per liter:  Yeast extract, 4 g; Bacto-peptone, 4 g; Bacto-tryptone, 2 g; Glucose, 10 g; 

Sucrose, 103 g; K2SO4, 0.25 g; MgCl2.6H2O, 10.12 g; Casaminoacids, 1 g; 10 mL KH2PO4 

(0.5%); 80 mL CaCl2.2H2O (3.68 %); 15 mL L-proline (20%);  2 mL *Trace element solution; 5 

mL NaOH (1N); 25 mL Tris-HCl (1M, pH 7.5); Adjust to pH 6.8 with HCl or NaOH. *Trace 
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element solution contained the following components per liter: ZnCl2, 40 mg; FeCI3 •6H2O, 200 

mg; CuCl2 •2H2O, 10 mg; MnCl2•4H2O, 10 mg; Na2B4O7• 10H2O, 10 mg; (NH4)6Mo7O24 • 4H2O, 

10 mg; and deionized water [140]. 

Agar plates of the above media were prepared by adding 20 g/L bacto-agar.  All media were 

autoclaved at 121 ºC for 20 minutes. 

 

SOLID PLATES 

Solid media formulations were evaluated by streaking a loop full of S. sahachiroi spore stock 

onto prepared plates.  The plates were grown at 30 °C in a Fisher Scientific Isotemp incubator for 

5-7 days.  Once grown, ¼ of the plate was inoculated into Erlenmeyer flasks containing 100 mL 

PS5 medium and shaken at 250 rpm at 30 oC.   First and second stage cultures were prepared by 

streaking a 5 μL aliquot of the S. sahachiroi spore stock suspension onto the surface of the GYM 

plates. 

 

DEHYDRATED PLATES 

Dehydrated plates were prepared by streaking a loop full of S. sahachiroi spore stock onto the 

surface of the GYM plate, incubating at 37 ºC, and storing them at room temperature to dryness 

(either over a period of weeks at 37 ºC or several months at RT).    

 

FIRST STAGE CULTURE 

 Streptomyces sahachiroi (inoculated from spore stock derived from dehydrated plates) was 

grown on GYM plates for 5-7 days at 37 ºC.   A 1 cm2 piece of the GYM plate was used to 

inoculate 100 mL of PS5 media (Pharmamedia (yellow cotton seed flour), 5 g; soluble starch, 5 

g) in a 250 mL Erlenmeyer flask.   The culture was incubated at 30 °C for 24 h at 250 rpm.    

 

SECOND STAGE CULTURE 

The second stage culture was prepared by inoculating 2 L Erlenmeyer baffled flasks (Fernbach; 

containing 600 mL of PS5 medium) with 25 mL of the first stage culture.  The culture was 

incubated at 30 °C for 24 h at 250 rpm.  

 

FERMENTATION 

The fermenter containing 10 L of the 75% reduced concentration PS5, per liter of medium: 

Pharmamedia (yellow cotton seed flour), 1.25 g; corn starch, 1.25 g;) medium  was autoclaved at 
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121 ºC for 20 min, then quick cooled to room temperature.   Following inoculation (with two 600 

mL second stage cultures), the fermenter was agitated at ~300 rpm and aerated with sterile 

filtered air (8 L/min) for 72 h. 

 

ISOLATION AND PURIFICATION OF AZINOMYCIN B 

Following fermentation, the cultures were centrifuged at 7,000 rpm at 4 oC.   The cell pellets 

were discarded, and the medium was extracted with an equal volume of methylene chloride 

(CH2Cl2).   The organic layer was collected, dried over anhydrous magnesium sulfate, and 

concentrated in vacuo.   The resulting crude extract was stored under diethyl ether at -80 °C.  The 

solid was dissolved in a minimal amount of dichloromethane and precipitated with the addition 

of hexane to give a ratio of 1:29 CH2Cl2/hexane.   The resulting suspension was centrifuged at 

1,500 rpm, and the supernatant was discarded.  Diethyl ether (2 mL) was added to the pellet, 

which was subsequently agitated, centrifuged at 3000 rpm, and the supernatant was discarded.  

The resulting residue was dissolved in dichloromethane (600 μL) to which hexanes (2 mL) was 

added.  The heterogeneous mixture was centrifuged at 3,000 rpm, and the supernatant was 

retained.   To the solution was added hexanes (4 mL), and the suspension was centrifuged at 

3,000 rpm to give azinomycin B as a solid.    

When full purification was not achieved, azinomycin B was further purified by flash 

column chromatography (95: 5 CH2Cl2: methanol).  Azinomycin exhibits an Rf of 0.23.   A short 

column was used to minimize overall contact with the silica gel and degradation by hydrolysis.  

The process can be repeated if necessary.   The compound was stored at -80 ºC under anhydrous 

diethyl ether when necessary.  The azinomycin B we isolated in this manner matched the NMR 

spectrum provided by Yokoi et al. [17]. 

 

AZINOMYCIN B 

Pale-white amorphous powder (1:9 CH2Cl2:hexane); IR (neat) νmax 3338.4(br), 2957.1, 2925.3, 

2872.8, 1725.92(br), 1619.3, 1601.7, 1511.2, 1417.6 cm-1;1H NMR (300MHz, CDCl3) δ 

12.40(1H, br), 12.32(1H, s), 8.54 (1H, dd, J=3.6, 7.0Hz,), 8.20 (1H, br), 7.94 (1H, d, J=2.9Hz), 

7.46 (1H, d, J=2.9Hz), 7.32 (1H, s), 7.32 (1H, s), 7.32 (1H, s), 5.50 (1H, d, J= 4.0Hz), 5.12 (1H, 

s), 4.64 (1H, dd, J= 4.0, 4.8Hz), 3.96 (3H, s), 3.96 (1H, br), 3.36 (1H, m), 2.98 (1H, d, J=4.3Hz), 

2.80 (1H, d, J= 4.3Hz), 2.70 (1H, s), 2.66 (3H, s), 2.30 (1H,s), 2.24 (1H, s), 2.18 (1H, s), 1.52 

(1H, s); 13C NMR (75MHz, CDCl3) δ 191.5, 173.0, 165.7, 164.0, 162.0, 156.0, 153.0, 150.8, 

134.5, 133.3, 128.1, 127.9, 127.0, 125.4, 123.9, 122.3, 119.3, 118.6, 108.5, 84.4, 77.4*, 77.1*, 
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56.2, 55.7, 53.9, 46.4, 36.7, 24.5, 21.0, 20.3, 17.2.  APCI-MS (LRMS) 624.2, found 624.2 (* 

obscured by CDCl3 solvent peak). 
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CHAPTER V 

 

 STABLE ISOTOPE FEEDING STUDIES* 

 

 

INTRODUCTION 

 

The unusual architecture of the azinomycins (Figure 61A and B), coupled with its potent anti-

tumor activity, has captured the attention of both the biosynthetic and synthetic communities.   

The total synthesis of azinomycin A was achieved in 2001 by Coleman and co-workers, and a 

number of synthetic analogues have also been reported [18].  The overall structure of azinomycin 

B suggests a mixed biosynthetic origin based upon a polyketide synthase (PKS)/Non-ribosomal 

peptide synthetase (NRPS) skeleton (Figure 61).  Formation of the naphthoate ring system can 

be rationalized by the successive condensation of acetate and malonate units by a PKS.   Further 

functionalization of the natural product by the action of an NRPS and various tailoring enzymes 

would give the epoxide, enol, and azabicycle.  Biosynthetic investigations on the compound have  

 

 

 
Figure 61.  Azinomycin A and B. 

 

 

 
*Reprinted with permission from “An Improved Method for Culturing Streptomyces sahachiroi: 
Biosynthetic Origin of the Enol Fragment of Azinomycin B” by Kelly, G. T., Sharma, V., and 
Watanabe, C. M. H., 2008. Bioorganic Chemistry, 36, 4-15, Copyright [2008] by Elsevier.  
 
*Reprinted with permission from “Exploration of the molecular origin of the azinomycin 
epoxide: Timing of the biosynthesis revealed” by Sharma, V., Kelly, G. T., and Watanabe, C. M. 
H., 2008. Organic Letters, 10, 4815-4818, Copyright [2008] by American Chemical Society. 
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lagged considerably.  While some gains have been made to establish the polyketide origin of the 

naphthoate moiety [30, 31], and while a cell-free system has been developed to support synthesis 

of azinomycin B in vitro [110], progress in this area has been impeded largely by difficulties with 

the culture method and difficulties in securing a consistent source of the natural product.    

As discussed in the previous chapter of this dissertation, following literature protocols 

[2], we found production of the natural product by Streptomyces sahachiroi to be highly erratic 

(production would be observed once then not seen for three weeks or more).   As a great majority 

of biosynthetic studies hinge upon having reliable production of the natural product, including 

isotopic labeling studies and gene disruption experiments, the development of a new culture 

method discussed in chapter III was necessary.   Using stable isotopes and our refined culture 

conditions, we aimed to confirm and further explore the results of our in vitro cell free extract 

system to reconfirm the building blocks of azinomycin B.   

As is the standard course of action in studying biosynthesis, several previously suspected 

metabolic building blocks were investigated.  Incorporation of a labeled compound often 

produces a yes or no result.  Carbon 14 radioactively labeled compounds were used for the in 

vitro biosynthesis studies.  The benefit of using the radioactively labeled compounds was that it 

was a very sensitive method which was required for our cell free extract system.  However, this 

approach has its limitations, as the radioactivity may only indicate incorporation of labeled 

carbons, not necessarily intact incorporation of the substrate.  Metabolic processing, even in the 

cell free extract, is a concern.  To truly match a position to a labeled compound, one requires 

spectroscopically observable labels.  Singly labeled carbon-13 compounds are particularly 

attractive for this application, because there is a relatively large increase in the carbon signal 

compared with neighboring carbon signals; the other carbons have a relatively low natural 

abundance of carbon-13, specifically 1.109%.   This low abundance of carbon 13 in the molecule 

has several consequences of interest: 13C-NMR spectra require much longer than 1H-NMR 

spectra to obtain, and have a lower signal to noise ratio.  13C-NMR spectra are decoupled to avoid 

multiple splitting of the signals by 1H signals.  Signal splitting is a consequence one encounters 

when there are two or more carbon 13 atoms next to each other in a molecule.  The split patterns 

can be difficult to decipher and may overlap other signals of natural abundance.  On the other 

hand, incorporation of multiple position labeled compounds can provide an extra level of detail 

of the fate of the entire molecular building block.  In the case of 15N-labeled compounds, 

detection is rarely performed with 15N-NMR, but rather indirectly using 1H-NMR (where the 1H 

signal is split) or 13C-NMR.  Often, because of the low signal in natural abundance, 15N-labeled 
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compounds are double labeled in adjacent carbons with 13C to ensure detection.  In the case of 

some substrates the 15N/13C double label is a way to measure retention of the particular carbon or 

nitrogen in the molecule.  Other labels that are commonly used include 18O and 17O.  17O is NMR 

active with a spin of 5/2 and is found at 0.037% of natural abundance.   18O is not NMR active 

and is found at 0.2% of natural abundance.  18O produces an upfield shift in NMR signals relative 

of the atoms next to it. 

 

 

 
Figure 62.  Azinomycin B Proton Spectrum. 
1H NMR for azinomycin B isolated from fermentation of S. sahachiroi. 
 

 

Analysis of 13C-NMR signals may be interpreted through integration or peak height.  

While integration of carbon spectra for abundance analysis is not directly comparative within a 

spectrum, the integrals of carbon spectra can be compared against the same signals in a different 

spectra provided the compound concentration and spectra development time were the same.  This 

yields difficult results when issues of sample concentration and carbon types vary.  Making sure 

that there is an extended relaxation time between pulses is critical for observing some carbons to 
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get a true reading that could be comparable to unlabeled samples without signal interference from 

protons.  Early on, this was our approach.  This approach is less reliable and difficult if 

significant incorporation interferes with proper phasing of the resulting spectrum.  However, a 

more commonly used approach is to consider the peak height of the carbon signal when 

comparing the incorporation of the carbon labels.  By checking the peak height for a particular 

carbon in the molecule we were able to generate a set of peak heights for “unlabeled” azinomycin 

B in comparison to spectra resulting from azinomycin B produced from a “labeled compound 

feeding” using a particular carbon as a control.  Depending on the calculation, one can determine 

fold incorporation or percent incorporation.  Using this approach we were able to determine 

relative amounts of incorporation of labeled compounds into the natural product.  To determine 

the relative amount of incorporation of carbons into azinomycin B, we first obtained spectra of 

natural-abundance or “unlabeled” azinomycin B.  Examples of these spectra,1H and 13C-NMR, 

are seen in Figure 62 and Figure 63, respectfully. 

 

 

 
Figure 63.  Azinomycin B Carbon Spectrum and Assignment. 
13C NMR spectrum for azinomycin B isolated from fermentation of S. sahachiroi. 
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METABOLISM IN STREPTOMYCES 

Metabolism in Streptomyces is slowly becoming more understood and appreciated [143, 144].  

With the analysis of several Streptomyces species genomes, the broad capabilities of the 

organisms have been revealed.  Streptomyces share metabolic pathways common in most 

microorganisms.  A comparison of known and reported metabolic pathways and identification of 

corresponding Streptomyces known genes can be found in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and the web interface (http://www.genome.jp/kegg/).  Metabolic pathway 

maps and genes from the relevant microorganisms are available.  Until the genome of 

Streptomyces sahachiroi is fully sequenced and available, this method provides the means to 

check for possible for the pathways in sahachiroi.   

Understanding pathways is crucial to evaluate the fate of labeled metabolic precursor 

molecules in the organism and to determine incorporation into the natural product.  Major 

metabolic considerations in feeding experiments include competition from unlabeled molecules 

made by the microorganism or available from the environment (media) and metabolic 

“scrambling” of the labeled portion of the molecule.  Consider pyruvate and its relationship to 

gluconeogenesis and the citric acid cycle (Figure 64).  In a single pass through the citric acid 

cycle, carbons originating from pyruvate, oxaloacetate, and bicarbonate ion are potentially 

scrambled.  Given the centrality of the citric acid cycle in both anabolism and catabolism, the 

potential for ambiguous results is high.  The natural flux of molecular resources in bacteria is 

sensitive to their environment and reacts dynamically in response to changing conditions.  

Streptomyces are equipped to adapt.  As soil dwelling organisms, they have the ability to break 

down and consume a wide variety of nutrient sources ranging from complex plant matter to 

simple sugars.  Additionally, they are able to biosynthesize basic metabolites, amino acids, lipids, 

nucleic acids, and sugars from the simplest organic compounds.  However, the bacteria do not 

often employ biosynthetic pathways if they are not necessary.  In the case of the media 

conditions we have employed to induce the production of azinomycin B, there are many 

dynamics involved which have consequences for our “feeding studies.” The reduced medium in 

the fermenter/3rd stage of the culture relative to the 1st and 2nd stage cultures resulted in a slightly 

altered environment for the bacterial culture.  As the bacteria grew and the culture matured 

beyond the exponential growth or log phase into the stationary phase, the concentration of 

available nutrients was reduced.  It was at this point, as is often observed with Streptomyces, that 

the production of the secondary metabolites, azinomycins, was produced in greater quantities. 
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Figure 64.  Scrambling of Carbons in Metabolism.  
Metabolic scrambling of carbons from pyruvate, oxaloacetate, and bicarbonate ion occurs in the 
citric acid cycle.   
 

 

RESULTS AND DISCUSSION 

 

SYSTEM FOR STUDIES 

(THE AUTHOR)* 

The amount of isotopically labeled compound administered to the Streptomyces sahachiroi 

culture in the fermenter was determined from a combination of a number of factors principally 

the small material costs and the amount of available compound in the medium (from  

 
* Denotes major contributer(s) to each section. 
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manufacturer analysis mitigating dilution issues).  Labeled compounds were supplied to the 

fermenter in two lots at 24 and 48 h post-inoculation.  The culture was harvested 72 h post-

induction (inoculation of the second stage culture into the fermenter).  This procedure was the 

standard procedure in all compound feedings.   

 

 

INCORPORATION OF METHIONINE 

(THE AUTHOR) 

For our first feeding experiment we turned to what seemed to be one of the easiest targets, the 

C3'-O-methoxy carbon.  As we suspected the naphthoate group to have PKS origins, typical O-

methoxy groups have been found to originate from the co-factor SAM (S-adenosylmethionine).  

This is typically a post PKS assembly modification of the PKS backbone [35]. 

 

 

 

 
Figure 65.  Incorporation of [13C-methyl] L-methionine. 
(A) Incorporation of the [13C-methyl] L-methione into only the C3' methoxy position precludes (B) the 
origin of the aziridine carbon, C10, from originating from a biosynthesis involving SAM and ornithine. 
 

 

We fed [13C-methyl] methionine to cell suspensions of S. sahachiroi.   The feedings of 

500 and 50 mg [13C-methyl] methionine to cultures of S. sahachiroi gave an unambiguous clear 

enhancement of signal (nearly 100% and 57% incorporation respectively, Figure 65A) at the 

methoxy carbon of the molecule.   The finding not only supports the involvement of the co-factor 

SAM (S-adenosylmethionine) in the biosynthesis of the methoxy group of the naphthoate, but 
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also excludes the involvement of SAM in the formation of the aziridinopyrrolidine ring system 

(specifically, the electrophilic C-10 carbon does not arise from SAM) (Figure 65B).  These 

results support a previously reported incorporation of [13C-methyl] methionine into azinomycin B 

[30]. 

 
INCORPORATION OF ACETATE 

(THE AUTHOR) 

The next natural substrate we explored was acetate by way of sodium acetate.  Acetate is a 

central player in metabolism as a byproduct and building block in the activated form of acetyl-

CoA.  Acetate is derived from many pathways including glycolysis/gluconeogenesis, the citric 

acid cycle, pyruvate metabolism, and multiple amino acid metabolisms.  The activated acetate, 

acetyl-CoA, plays a significant role in nearly every type of metabolism including fatty acid 

biosynthesis/metabolism.  Due to the centrality of this metabolism and its close association with 

polyketide biosynthesis, we were interested in tracking acetate incorporation into azinomycin B. 

 

 

Table 9.  Percent Incorporation of [1-13C] acetate (1g) into azinomycin B. 
Due to signal overlap with CDCl3, C12 and C18’s percent incorporation could not be calculated. 
Incorpration at C12 was observed. 
 

Carbon Reference Carbon 
Position shift ppm 3'OCH3 C20 

C1 24.5 4.9 4.8 
C2 191.5 2.3 2.3 
C4 150.8 5.0 4.9 
C6 162 5.0 4.9 
C12 77.4 seen seen 
C14 173 5.7 5.7 

C1' CO 165.7 3.7 3.6 
C2' 122.3 5.1 5.0 
C4' 108.5 6.0 5.9 
C5' 133.3 5.2 5.1 
C7' 125.4 6.4 6.3 
C8'a 127 4.1 4.0 

 

 

We fed [1-13C] acetate to cell suspensions of Streptomyces sahachiroi.   The isotopically-

labeled compound was provided to the cultures in two separate aliquots (in equal 500 mg 

portions), the first after 24 h of incubation and the second 24 h later.   As expected, whole cell 

feeding of [1-13C] acetate (Table 9) gave rise to an alternate labeling pattern within the 
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naphthoate fragment owing to its PKS origin and confirming the results reported by Lowden [30] 

(Figure 66 and Figure 67, blue; C2'-C8a', 3.7.9-6.4% incorporation).   Furthermore, both 

carbons C1 and C4 revealed moderate incorporation (Figure 66 and Figure 67, blue, C1, 4.9%; 

C2, 2.3%;  and C4, 5.0%), supporting the hypothesis that scrambling of label could occur to give 

threonine via oxaloacetate in the citric acid cycle [145] or that threonine via glycine and acetate.  

The results further suggest that C-14 (Figure 66 and Figure 67, blue, 8.2%) of the molecule is 

derived from acetate and does not arise from rearrangement of a more advanced precursor or 

Baeyer-Villiger oxidation. 

 

 

 
Figure 66.  Incorporation of [1-13C] Sodium Acetate into Azinomycin B.  
[1-13C] sodium acetate incorporates at C1, C2, C4, C6, C12 (obscured by CDCl3 solvent signal), C14, 
C1'CO-, C2', C4', C5', C7', and C8a' as reported by Kelly, et al. al.  [133]. 

 
 
 

 
 
Figure 67.  Incorporation of [1-13C], [2-13C], and [1, 2-13C] Sodium Acetate into Azinomycin B.  
As reported by Lowden, et al. [30]. 
 

 

Our data mirrored Lowden’s work, giving us confidence in our fermentation and feeding 

regimen, and led us to speculate further upon the metabolic origins of the whole molecule.  As 

one evaluates the incorporation patterns observed in the feeding of labeled acetates, a picture of 

direct and secondary incorporation appears.  As acetate units are a common denominator in 

catabolism and anabolism, their incorporation may only be secondary to the primary route of 
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incorporation.  As suggested by Lowden [30], acetate units could easily be scrambled in 

subsequent rounds of incorporation into the citric acid cycle seen in Figure 68.  It is suggested 

that the enol fragment is likely derived from oxaloacetate and subsequently through the amino 

acid threonine as the right hand portion of the molecule appears to display NRPS morphology.  

In addition the acetate incorporation pattern seen in the aziridine fragment appears to display the 

pattern one would see in an α-ketoglutarate derivative. 

 

 

 
Figure 68.  Incorporation of Labeled Acetate into the Citric Acid Cycle Byproducts. 
Oxaloacetate  (and subsequently threonine and the enol) and α-ketoglutarate (and subsequently into the 
aziridine fragment) as suggested by Lowden, et al. [30].   
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Figure 69.  Biosynthesis of the Amino Acid L-valine as Determined from Analyzed 
Streptomyces Species Sequence Information. 
Biosynthesis of basic molecules, such as L-valine, is common in Streptomyces once scavenging resources 
are depleted.   
 

 

BIOSYNTHETIC ROUTE TO THE EPOXIDE MOIETY 

(COLLABORATION BETWEEN DR. VASUDHA SHARMA, DR. CHAOMIN LIU, AND 

THE AUTHOR) 

We explored the biosynthetic route to the azinomycin epoxide, where exact timing of individual 

enzymatic transformations and intermediacy of metabolites were substantiated by whole cell 
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feeding studies with isotopically labeled substrates.   Structural evaluation and results from the 

recent cell-free study [146] would suggest that L-valine serves as a logical precursor.  After the 

incorporation of labeled acetate did not yield incorporation into the epoxide moiety of 

azinomycin B, metabolically related units were eliminated from consideration for the origin of 

the epoxide.  Valine is biosynthesized from pyruvate starting units and is therefore fairly 

removed from the typical flow of acetate metabolism (Figure 69). 

We decided to initially feed 100 mg of [1-13C] L-valine to the Streptomyces sahachiroi 

culture, using the culture and feeding conditions we had previously employed to replicate the [1-
13C] sodium acetate and [13C-methyl] methionine isotope incorporation studies.  Incorporation of 

[1-13C] L-valine into the azinomycin B molecule was apparent and specific in the 13C NMR.  The 

singular enrichment of signal at C-17, 164.0 ppm was nearly 8.71 % (Figure 70).  This 

incorporation confirmed our cell free work [146].   

 

 

 
Figure 70.  Incorporation of [1-13C] L-valine into Azinomycin B. 
 

 

However, our curiosity was piqued by the promiscuity of the pathway with respect to the 

timing of the pathway’s incorporation of L-valine and the modifications towards the epoxide 

moiety.  These modifications include: transamination (removal of the native amine and 

replacement with a ketone), reductions, oxidation, dehydration, activation, addition to the 

naphthoate group, and addition to the rest of the azinomycin molecule.  To evaluate these stages 

a series of related, [1-13C] molecules were synthesized initially by Dr. Chaomin Liu, but 

primarily by Dr. Vasudha Sharma.   
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Figure 71.  Possible Paths of Valine Modifications to Produce the Azinomycin Epoxide. 
In this version, valine remains tethered to the NRPS domain as it is modified before incorporation into the 
natural product.   

 
 
 

 
Figure 72.  Incorporation of a Modified Valine Substrate into Cereulide. 

 
 
 
There are a variety of scenarios in which the L-valine is transformedand incorporated 

into the epoxide moiety of the azinomycins.  One possibility is that valine or respective advanced 

precursors are converted to the epoxide while tethered to the NRPS (Figure 71, path A), and 

catalysis is achieved by modifying enzymes either contained within NRPS domains or elsewhere 

within the gene cluster.   In cereulide biosynthesis (Figure 72), for example, a reductase module 

found within NRPS adenylation domains, reduces  tethered α-keto acids (α-ketoisocaproic acid 
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and α-ketoisovaleric acid)  to  α-hydroxy acids, while still bound to their respective PCP 

domains [147]. 

Alternatively, it is conceivable that the epoxide moiety is fully constructed by other 

biosynthetic pathway enzymes prior to activation by its respective adenylation module.  For 

instance, the epoxide might be derived from radical cyclization of a terminal alcohol (Figure 71, 

path B) [148, 149].  In contrast, the epoxide might originate from reaction with molecular oxygen 

via oxygen insertion into an olefin [150].  This olefin might in turn be derived from a terminal 

alcohol (Figure 71, path C) [151].  In either case (Figure 71, path B or C), the amino group of 

valine also requires biochemical conversion to give the α-hydroxy group of the epoxide fragment 

V9, presumably arising by transamination and subsequent reduction of the resulting ketone to 

give the alcohol.  The exact timing of these biosynthetic transformations and feasibility of the 

overall route can only be resolved through experimentation.   Therefore, to test our hypotheses, 

we exogenously fed valine and a variety of synthesized advanced precursors in isotopically 

labeled form to whole cells (Table 10). 

 

 

 
Figure 73.  Incorporation of [1-13C] Sodium Allylketocarboxylate into Azinomycin B. 

 

 

One of the first derivatives that we fed to the culture was the sodium salt of [1-13C] 

allylketocarboxylate (3-methyl-2-oxobutenoic acid).  Incorporation of this molecule could 

indicate the ability of the pathway to take up an intermediate that has already been de-aminated 

in the process of epoxide formation.  This was clearly the case as we saw an incorporation of 

~4.5 fold at the C-17 position.  This was repeated a second time with the same result.  It should 

be noted that the acid version did not incorporate (Error! Reference source not found.).  This 

might be due to the stability of the sodium salt versus the acid form or better transport across the 

bacterial membranes of the charged salt species.  Salts are able to traverse this barrier easier than 
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neutral species.  To test this hypothesis we prepared and fed [1-13C] valine trifluoroacetic acid 

salt.  We saw an incorporation rate of the same magnitude as the [1-13C] valine. 

 

 

Table 10.  Percent Incorporation at C-17 of Azinomycin B and the Epoxyamide. 
Samples were prepared as detailed in Kelly et al. [133] and chapter IV of this dissertation.  L-Valine TFA 
salt showed an overall incorporation of 6.97%.  The R-keto carboxylic acid (V11) degraded rapidly.  The 
percent incorporation is [(A - B)/B] × 1.10 where A) intensity of labeled carbon normalized to the intensity 
of the 3′OCH3 of azinomycin B and the C18 of the epoxyamide; B) intensity of normalized unlabeled 
carbon; 1.10) natural abundance of 13C.  The table entry reads n.d.  if incorporation was not detected by 13C 
NMR. 

 
 

 
 

 

We continued to investigate the valine series by examining incorporation of [1-13C] 

isodehydrovaline (V10), [1-13C] allyhydroxy carboxylate valine (V11), [1-13C] hydroxy epoxide 

valine (V9), and [1-13C] keto epoxide valine (V8).  None of these substrates incorporated into 

azinomycin at the C-17 position or any other position and were each supplied as salts.  There are 

several implications from these results.  No incorporation of the [1-13C] isodehydrovaline 

indicates that the molecule is not incorporated at that point in modification into the epoxide 
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moiety.  It is possible that the pathway has such an intermediate type sequestered, although the 

incorporation of the [1-13C] allylketocarboxylate implies that entry to the pathway is not 

restricted to valine exclusively.  Additionally, it does not appear that [1-13C] allyhydroxy 

carboxylate valine plays a role in the production of the epoxide. 

[1-13C] γ-hydroxy-α-keto-carboxylate valine, [1-13C] γ-hydroxy L-valine and [1-13C] γ-

hydroxy D-valine were fed on different occasions to the Streptomyces sahachiroi culture with 

mixed results.  The feeding of the [1-13C] γ-hydroxy-α-keto-carboxylate valine synthesized by 

Dr. Chaomin Liu resulted in non-incorporation into the whole azinomycin, but rather resulted in 

incorporation into a related truncated metabolite, epoxyamide (Table 10).  This truncated 

metabolite was first reported by Nakashima, et al. in 1986 [17].  Additionally, it was observed in 

two separate feeding experiments that [1-13C] γ-hydroxy L-valine incorporated into this 

metabolite as well as in the first feeding case, whole azinomycin.  On the other hand, feeding of 

[1-13C] γ-hydroxy D-valine resulted in no incorporation into either whole azinomycin or the 

related truncated metabolite. 

Each of the modified valine derivatives was synthesized in 13C-labeled form (at C-1) and 

fed separately to whole cell suspension cultures as detailed previously.  Table 10 provides the 

feeding results for all of the amino acid precursors.  In addition to valine V2, only substrates V3, 

V5, and V12 resulted in site-specific incorporation above background at 164.0 ppm.  

Interestingly, incorporation was also observed at 168.7 ppm corresponding to the epoxyamide 

(Table 10), a metabolite that frequently accompanies production of the azinomycins.  We were 

gratified to find that L-γ-hydroxyvaline V3 was unambiguously incorporated, substantiating its 

involvement in either forming the epoxide directly (Figure 71, path B) or generating an olefin 

where subsequent oxygen insertion would give the epoxide (Figure 71, path C).  As expected, 

only the L-isomer V3 served as a substrate over its corresponding D-isomer V3*, confirming the 

stereospecific nature of these reactions.  The site-specific incorporation of R-keto hydroxy acid 

V5 was also observed and is suggests that hydroxylation of valine (to V3) precedes 

transamination.  Reconstitution of the enzymes involved in these transformations will, however, 

be required to rigorously establish this notion.  The most advanced putative precursor shown to 

be processed by the azinomycin biosynthetic machinery was 3-methyl-2-oxobutenoic acid V12, 

negating direct formation of the epoxide from the alcohol (Figure 71, path B).  In contrast, 

isodehydrovaline V10 failed to incorporate, further substantiating the order of biosynthetic steps 

(favoring Figure 71, path C), where dehydration of the γ-alcohol to the double bond is 

suggested to follow transamination.   



 105

Interestingly, neither of the epoxide derivatives showed incorporation into the natural 

product.  This is likely attributed to their instability in aqueous medium, which increased 

dramatically over time (Figure 74), with ring opened products and considerable lactonization 

occurring over a 24 h period at room temperature (data not shown).  Notwithstanding the 

instability of epoxide V8 and V9, the lifetimes of the other amino acid derivatives in aqueous 

media were sufficient, under the conditions of our feeding regimen (two separate and equal 

aliquots fed 24 h apart pH 7.1-7.5, 30 °C), to yield reliable incorporation data [133]. 
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Figure 74.  Stability Profile of V3-V12. 
 Stability tests were performed by shaking samples for 48 h in aqueous medium at pH 7-7.5 at 30 oC. 

 
 
 

 
Figure 75.  Biosynthetic Route to the Epoxide Moiety in the Azinomycins. 
The failure to incorporate V11 suggests that 3-methyl-2-oxobutenoic acid V12 is epoxidized to V8 which 
is then reduced to V9. 
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In this investigation, we demonstrated timing and intermediacy of several metabolites 

along the biosynthetic route to the epoxide moiety (Figure 75).  We were intrigued to find that 

the majority, if not all, of the enzymatic steps required to generate the epoxide fragment occur 

prior to loading onto the NRPS machinery (invalidating Figure 71, path A). 

 

BIOSYNTHETIC ROUTE TO THE ENOL FRAGMENT 

(COLLABORATION BETWEEN DR. VASUDHA SHARMA AND THE AUTHOR) 

Considering what we had already learned through previous feeding studies, we decided to probe 

the biosynthesis of the late stages of the pathway in the construction of the enol fragment of 

azinomycin B.  Previous studies had indicated a secondary acetate incorporation into the keto 

enol moiety such that it appeared to be derived from oxaloacetate [30].  The structure of the enol 

fragment suggests that it might originate from (L)-threonine (Figure 76); the β-alcohol of the 

amino acid would require oxidation and the terminal carboxylate reduction (Figure 77A).  Our 

earlier results from cell-free extract studies [110] and acetate labeling experiments support such 

an argument.  Neither approach has shown, however, that the amino acid is site-specifically 

incorporated into the enol fragment of the natural product. 
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Figure 76.  Incorporation of Labeled Acetate into the Krebs Cycle Byproducts Oxaloacetate (and 
Subsequently Threonine then the Enol Moiety). 
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Therefore we examined uptake of [U-13C] L-threonine (T2, Figure 77A).  The 

experiment resulted in labeling of all four carbons (C1-C4) of the enol fragment (Figure 77A, 

red).  This ‘tail-to-tail’ incorporation clearly suggested that threonine was site-specifically 

incorporated.  Close inspection of the 13C NMR indicated intact incorporation (C1-C4, 7.9-11.7% 

incorporation calculated by extended carbon relaxation signal integration) of the [U-13C] labeled 

threonine.  Isotopic labeling was evident at C1 as a doublet of a doublet (J1=55.8, J2=180.0 Hz) 

flanking the natural abundance peak at 24.1 Hz (see Figure 77 and Figure 134).  Similarly, C4 

gave a doublet of doublet (J1=38.7, J2=324.6 Hz) flanking the natural abundance peak (see 

Figure 137).  C2 and C3 showed multiple splitting patterns, indicating intact incorporation (see 

Figure 135 and Figure 136). 
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Figure 77.  Summary of Feeding Studies Targeting Enol Fragment. 
(A) [U-13C] threonine, T2, incorporates C1-C4 (B) % incorporation = [(A-B)/B]*1.07; where A= intensity 
of labeled Carbon, B=intensity of unlabeled Carbon, 1.07 is the natural abundance of 13C; n.d.: not 
detectable by 13C NMR (C) Representative comparison of C1 of azinomycin B via feeding of [U-13C] -
labeled threonine, T3, T4 and T5 to that of the negative control peak at 149.5 Hz.   Multiplets were 
observed for carbons C2 and C3 probably owing to extensive 13C-13C coupling. 
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Figure 77.  Continued. 
 

 

To address the order of events in the timing of the biosynthesis in the oxidation of the 

alcohol and reduction of the carboxylate of T2, we synthesized β-ketoamino acid T3, β-

hydroxyamino aldehyde T4, and β-ketoaminoaldehyde T5 in labeled form (Figure 78).   

Synthesis of such precursors is important to establish whether the enol fragment or its respective 

intermediates are pre-formed prior to loading onto the NRPS or generated at a later stage in the 

biosynthesis.    

 

 
Figure 78.  Proposed Biosynthetic Routes to the Enol Fragment of Azinomycin B. 
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 The results (Figure 77 B and C) clearly indicate that only L-threonine (T5) is 

incorporated rather than any advanced precursors.  This indicates the redox modifications that 

produce the keto enol moiety of azinomycin B are performed either while L-threonine is attached 

to the NRPS domain or after the natural product is released by the NRPS. 

 

BIOSYNTHETIC ROUTE TO THE END FRAGMENT OF AZINOMYCIN A 

(COLLABORATION BETWEEN DR. VASUDHA SHARMA, JENNIFER FOULKE-ABEL 

AND THE AUTHOR) 

 

Several different biosynthetic scenarios can be envisioned to give the aminoacetone fragment of 

azinomycin A.   One possibility is that threonine undergoes modification while tethered to the 

NRPS and azinomycin B gets modified to provide azinomycin A (Figure 79, path A).  

Alternatively, azinomycin A could arise by hydrolysis from PCP, followed by oxidation, and 

decarboxylation (Figure 79, path B).  Another possibility is that the terminal aminoacetone 

moiety is fully constructed prior to being incorporated in the natural product.  For instance, 

aminoacetone might be derived from threonine where threonine dehydrogenase (Figure 79, path 

C) catalyzes the formation of a β-keto amino acid followed by subsequent decarboxylation to 

give aminoacetone [152-154].  In contrast, aminoacetone might also originate from glycine 

through action of 2-amino 3-ketobutyrate CoA ligase, facilitating a condensation reaction with 

acetyl CoA and loss of CO2 (Figure 79, path D) [155-157].   
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Figure 79.  Proposed Biosynthetic Routes for Production of the Aminoacetone Moiety of 
Azinomycin A.   
M1, M2 = modifying enzymes; Ox = Oxidase/Dehydrogenase. 
 

 

In either case (Figure 79, path C or D), the β−keto amino acid AA4 must be formed in 

situ to give aminoacetone AA5 by decarboxylation.  Metabolic enzymes mediating the 

biosynthesis of L-2-amino-3-ketobutyrate AA4 from both threonine AA3 and glycine AA6 have 

been reported in other Streptomyces species, S. coelicolor, S. griseus, and S. avermitilis (Figure 

80), where the aminoacetone generated is utilized in porphyrin biosynthesis and pyruvate 

metabolism [32, 34, 158-160] .  We have identified the genes for L-threonine 3-dehydrogenase 

and 2-amino-3-ketobutyrate CoA ligase via genomic sequencing of S. sahachiroi (Figure 110 

and Figure 111), supporting the possibility of aminoacetone formation from either threonine or 

glycine.  
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Figure 80.  Biosynthetic Pathways Linking Conversion of Glycine and Threonine to L-2-amino-
3-ketobutyrate, Which Decarboxylates to Form Aminoacetone. 
 

 

To distinguish between these mechanistic hypotheses, we fed isotopically labeled (15N, 

and 13C) threonine, glycine and aminoacetone (Table 11 and Table 12) exogenously to whole 

cells.   When [U-13C] threonine was administered to cultures of S. sahachiroi, “end-to-end” 

enrichment was observed at C-1 through C-4 of azinomycin B, corroborating our earlier cell-free 

experiments with [1-14C] threonine [133, 146].  Interestingly, incorporation of [U-13C] threonine 

was observed at C-1 through C-3 of azinomycin A, as detected by 13C NMR (Figure 138). 

This suggests direct involvement of threonine in the biosynthesis of the terminal end of 

azinomycin A, either by modification of azinomycin B (Figure 79, path A) or via generation of 

a β-keto aminoacid, (Figure 79, path B or C).  In order to test the possible role of glycine 

(Figure 79, path D) we also evaluated a series of precursors as shown in Table 11 and Table 12. 



 112

Table 11.  Percent Incorporation at C-2 of Azinomycin A and B. 
1 incorporation at C-3 of azinomycin A, label scattered through the molecule (see Figure 143 and Figure 
144).  2 incorporation at C-4 of azinomycin B.  % incorporation =[(A-B)/B] X 1.10 where A, intensity of 
labeled carbon; B, intensity of unlabeled carbon; 1.10, natural abundance of 13C; n.d.  = not detected by 

APCI Mass Spec or 13CNMR. 
 
 

Entry Compound % incorporation in
azinomycin A 

(AA1) 

%  incorporation in 
azinomycin B 

(AA2) 
1 [U-13C] L-threonine(AA3) 1.9 12 

2 [2-13C] aminoacetone(AA5)  26.3 n.d. 

3 [2-13C] glycine(AA6)1 <1 1.8 

4 [1-13C] glycine(AA6)2 n.d n.d 
    

 

 

Table 12.  Feeding Results for [15N] –threonine and [15N]- glycine. 
% incorporation =[(A-B)/B] X 1.10 where A, intensity of peak for labeled material; B, intensity of peak for 
unlabeled material; 1.10, natural abundance of  13C; n.d.  not detected by  APCI Mass Spec.  *Detected by 
1H NMR seen in Figure 81.   
 

Entry Compound % incorporation in 

azinomycin A 

%  incorporation in 

azinomycin B 

1 [15N] Threonine n.d. 5.5* 

2 [15N]-Glycine 1.49 1.41 
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Figure 81.  15N-L-threonine Incorporation into the Azinomycin B Detected by 1H NMR. 
The nearby 15N atom results in splitting of the proton signal normally seen at 12.414 ppm (1H, d, J=90Hz). 
 

 

 
Scheme 1.  Synthesis of Aminoacetone Hydrogen Chloride. 
(a) SO2Cl2, 0oC, 36h; (b) 2 equiv.  conc.  H2SO4, aq.  THF, reflux; (c) Potassium phthalimide, DMF, 16h; 
(d) conc.  HCl, reflux, 7h. 

 

 

Isotopically labeled [2-13C]aminoacetone was synthesized as its hydrochloride salt from 

[3-13C]ethylacetoacetate as depicted in Scheme 1.  Briefly, ethyl acetoacetate was treated with 

SO2Cl2 giving ethyl 2-chloroacetoacetate (AA7), [161] which when hydrolyzed with conc.  

H2SO4 gave chloroacetone (AA8) upon decarboxylation.  Chloroacetone was treated with 

potassium phthalimide to give N-acetonyl phthalimide (AA9), which upon acidic hydrolysis 

afforded [2-13C]aminoacetone hydrochloride (AA5) in four steps with an overall ~75% yield.   

When [2-13C]aminoacetone (entry 2, Table 13 and Figure 149) was supplied to whole 

cells, unambiguous incorporation (26%) was observed in azinomycin A but not in azinomycin B.  
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Direct incorporation of [2-13C]aminoacetone (AA5) discounts the modification of intact 

azinomycin B (AA2) to produce azinomycin A (1) (Figure 79, paths A and B).  When [2-
13C]glycine was provided in cell culture, enrichment of signal was observed at C-3 of azinomycin 

A, albeit low (<1%) suggesting a possible role for glycine in the formation of aminoacetone via 

α-C-acylation followed by decarboxylation (Figure 79, path D).  Azinomycin B was also labeled 

at C-3 (1.8%) as threonine can be biosynthesized from glycine [32, 34, 133, 158-160].   As 

expected, metabolic scattering was observed as exhibited by the incorporation of label at other 

sites within the molecule and contributing to the low levels of incorporation at C-3 (<1%).  These 

results were further substantiated by the lack of any measurable incorporation seen in azinomycin 

A when [1-13C]glycine was supplied to whole cells.   This is presumably due to the loss of 

labeled carbon as CO2.  Moreover, feeding of 2, 2-D, D-glycine to S. sahachiroi led to an 

observed decrease in the production of azinomycin A by 66% as compared to the unlabeled 

control.  This suggests that deprotonation at α-C of glycine is kinetically significant in the 

production of AA4.   The crystal structure of E  coli 2-amino-3-ketobutyrate CoA ligase 

complexed with the L-2-amino-3-ketobutyrate and pyridoxal 5’-phosphate (PLP) in the active 

site suggests a reaction mechanism in which PLP-activated glycine is deprotonated by a lysine 

residue [162].  Conceivably, the rate of deprotonation could be kinetically controlled, but such 

studies in the enzyme have not been undertaken.   Since 2-amino-3-ketobutyrate CoA ligase is 

evolutionarily conserved, a similar mechanism would likely be at work in S. sahachiroi 

aminoacetone biosynthesis.    

Upon feeding [U-13C]-AA4, we did not observe any enhancement of signal either in 

azinomycin A or B [133].  Kinetic data on 2-amino-3-ketobutyrate CoA ligase, the enzyme 

catalyzing the transition between glycine and L-2-amino-3-ketobutyrate reveals that it has a 50-

fold preference for L-2-amino-3-ketobutyrate cleavage over formation, and favors the reaction 

equilibrium towards glycine production [163].  The enzyme binds coenzyme A (CoA), the acetyl 

acceptor in the L-2-amino-3-ketobutyrate cleavage reaction, more tightly than acetyl-CoA; this 

competitive inhibition promotes turnover with respect to glycine formation [163, 164].   In E.  

coli, the presence of glycine and absence of threonine slows growth, whereas cells grown in the 

presence of threonine and absence of glycine thrive at a normal rate, indicating a primarily 

catabolic role for this enzyme in threonine metabolism [163].  Thus, feeding S. sahachiroi with 

L-2-amino-3-ketobutyrate, AA4 would most likely form glycine before decarboxylation occurs, 

and hence, could be scrambled into a number of primary metabolic pathways.  These studies 

suggest that the most advanced putative precursor in the biosynthesis of azinomycin A is 
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aminoacetone (5), as derived from glycine (AA6) (Figure 79, path D) and threonine(AA3) 

(Figure 79, path C) through the intermediate L-2-amino-3-ketobutyrate(AA4). 

 

 

Table 13.  Feeding Details and Conditions of All Compounds Fed for Biosynthetic Route to the 
End Fragment of Azinomycin A Section. 
Note: Entries 1-9 were administered as described previously in Kelly, et al. [133] and chapter IV. Briefly, 
the labeled material was weighed in equal portions and solubilized in autoclaved distilled water. The first 
aliquot was administered after 24 h, followed by addition of the second provided 24 h later. The culture 
was harvested 72 h post-induction (inoculation of the second stage culture into the fermenter) 
*Entry 10: fed in 72 lots of 3 mg/mL starting 24 h after fermenter inoculation, the lot administration time 
accelerated to peak at 48 hours post inoculation. 
**Entry 11-13: The compound was dissolved in autoclaved distilled water  and aliquoted in eight equal 
portions at 3 mg.mL-1.The first aliquot was administered after 24 h, followed by addition of the subsequent 
lots every 5 hours. The culture was harvested 72 h post-induction (inoculation of the second stage culture 
into the fermenter). 
 

Entry Compound fed Total amount fed  

1 [U-13C] L-threonine (AA3) 100 mg @ 0.8 mmol per 10L culture 

2 [15N] L-threonine (AA3) 230 mg@ 1.9 mmol per 10L culture 

3 [U-13C] 2-amino-3ketobutyrate (AA4) 114 mg @ 0.9 mmol per 10L culture 

4 [2-13C] glycine (AA6) 1g @13.1 mmol per 10L culture 

5 [1-13C] glycine (AA6) 1g @13.1 mmol per 10L culture 

6 [1-13C] glycine (AA6) 1g @13.1 mmol per 10L culture 

7 [15N] glycine (AA6) 1g @13.1 mmol per 10L culture 

8 [2,2-D2] glycine (AA6) 1g @13.1 mmol per 10L culture 

9 

10* 

aminoacetone•HCl (AA5) 

[2-13C] aminoacetone•HCl (AA5) 

1.25 g @ 14.3 mmol per 10L culture 

0.3 g@ 2.7 mmol per 10L culture 

11** aminoacetone•HCl (AA5) 0.3 g@ 2.7 mmol per 10L culture 

12** aminoacetone•HCl (AA5) 0.7 g@ 6.4 mmol per 10L culture 

13** aminoacetone•HCl (AA5) 1.0 g @ 11.4 mmol per 10L culture 
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Representative dosage profile for aminoacetone (300 mg)
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Figure 82.   Dosage Profile for Aminoacetone (AA5) within the Optimized Range for Production 
of Azinomycins. 

 

 

Intrigued by these results, we reasoned that the availability of aminoacetone in the cell 

might compete with threonine impacting the ratio of azinomycin A to B produced in S. 

sahachiroi.  Aminoacetone is implied to produce oxy radicals and cytotoxic oxidative stress via 

production of methyl glyoxal in various species of bacteria [165-169].  S. sahachiroi was no 

exception.   Production of natural product was not observed when aminoacetone was supplied at 

high concentrations (Table 14, entry 5).  Hence, in order to prevent toxicity in bacterial culture, 

we decided to control the amount of aminoacetone that would be available at any given time.  

Consequently, unlabeled aminoacetone was provided to suspension cells in eight aliquots, which 

was supplied over a period of 2 days (Table 14 and Figure 82).  The percentage of azinomycin 

A produced relative to B was calculated for each amount of aminoacetone fed (Table 14, Figure 

83).   

 

 

Table 14.  Production of Azinomycin A as a Function of Amount of Aminoacetone Fed Per 10 
Liters of Culture. 
* feeding done in two lots of 0.25 g/mL each, all other amount feedings lots  were at 0.003g/mL and fed in 
eight lots over 40 hours.  ∇ % azn A  = [azn A/(azn A + azn B)]. 

 

 
Entry 

Amount of aminoacetone 
(AA5) fed (mg) 

% azn A (AA1) produced∇ 

1 0 28 
2 300 52 
3 700 80 
4 1000 79 
5 1250* No production 
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Figure 83.  Production of Azinomycin A as a Function of the Amount of Aminoacetone, AA5 
Fed Per 10 Liter Culture. 
 ∇ % azn A (1) = [azn A/(azn A + azn B)]   

 

 

Under native conditions, azinomycin A comprises about 28% of the total mixture (A and 

B) isolated from the organism.   The amount of azinomycin A produced was found to be directly 

proportional to the amount of aminoacetone fed.  Increasing amounts of supplied aminoacetone 

resulted in enhanced production of azinomycin A, which is suggestive of a competitive role 

between aminoacetone and threonine for the NRPS module.   Saturation occurs at higher 

concentrations (Figure 83) and could be attributed to the low levels of threonine contained 

within the Pharmamedia, a major component in our culture medium, or that produced by the 

organism to maintain primary metabolic processes.   

In this investigation, we have demonstrated the dependency of azinomycin A production 

on availability of aminoacetone, a metabolite whose production has been confirmed in several 

microorganisms but can cause oxidative stress and cytotoxicity at high concentrations.   A 

proposed biosynthetic route for the formation of aminoacetone and its subsequent incorporation 

into azinomycin A is provided in Figure 84.   We were intrigued to find that aminoacetone can 

compete directly with threonine to favor the production of azinomycin A over azinomycin B.  It 

is likely that the adenylation domain of the threonine NRPS module for azinomycin would be 

able to accept both threonine and aminoacetone.  We attribute the observed production 

preference for azinomycin B to the limited native concentration of aminoacetone. 
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Figure 84.  Proposed Biosynthetic Route for the Formation of Aminoacetone and Its Subsequent 
Direct Incorporation into Azinomycin A. 
Positional incorporation of threonine, glycine in azinomycin A suggests convergent synthesis of 
aminoacetone via L-2-amino-3-ketobutyrate. 

 

 

INCORPORATION OF MOLECULAR OXYGEN INTO AZINOMYCIN B 

(THE AUTHOR) 

The origin of the oxygen atoms in the azinomycins informs the biosynthetic origin of the 

molecule.  Some of these atoms, such as the carbonyl oxygen atoms, are considered to be derived 

from the original metabolic building blocks, acetate units and amino acids.  Our previous 

experiments with the cell free extract S. sahachiroi system indicated that known P450 inhibitors 

metyrapone, chloramphenicol, and (+)-miconazole inhibited azinomycin biosynthesis [146]. The 

oxygen atoms in the keto enol moiety next to C2 and C4 are derived from L-threonine which 

itself is derived from oxaloacetate (Figure 85).  The acetate feeding studies revealed the origin of 

carbons C6, C14, and the C1’ carbonyl carbon; therefore the oxygen atoms also originate from 

these acetate units.  Feeding of [1-13C] L-valine revealed that the origin of the C17 oxygen atom 

is derived from valine.  The additional derivative studies suggest a possible transamination where 

the oxygen atom next to C18 might be derived from, H2O.  The oxygen atom next to C3′ appears 

to originate from an oxidative modification of the naphthoate by the action of a mixed function 

oxidase.  This would suggest that the oxygen atom would originate from molecular oxygen (O2).  

The epoxide moiety’s oxygen atom also appears to be from a mixed function oxidase.  The origin 

of the oxygen atoms next to C12 and C13 is unclear.  The acetate incorporation pattern observed 

[30] would indicate that the original metabolite was a α-ketoglutarate derivative, which would 

indicate that the oxygen atoms might result from oxidative modifications, perhaps from a mixed 

function oxidase such as a cytochrome P450 oxidase.  However, these oxygen atoms may 

originate from hydroxyl oxygen atoms on a sugar that is modified to produce the 

aziridinopyrollidino moiety.   
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Figure 85.  Origin of Oxygen Atoms in Azinomycin B. 

 

 

 
Figure 86.  Active Site of a Cytochrome P450 Monooxygenase During Oxygen Insertion. 
Cytochrome P450 mechanism.  These enzymes bind O2 and use one oxygen atom to hydroxylate or 
epoxidate their substrates [170]. 

 

 

CYTOCHROME P450 MONOOXYGENASE 

Cytochrome P450 enzymes are a family of enzymes well known for their role in detoxification 

and modification of substrates through redox reactions.  These enzymes are from an expansive 

and diverse superfamily of hemoproteins found in nearly every form of life [170, 171].  Usually 

they form part of multicomponent electron transfer chains, called P450-containing systems.  The 

active site of cytochrome P450 contains a heme iron center.  The iron is tethered to the P450 

protein via a thiolate ligand derived from a cysteine residue.  This cysteine and several flanking 

residues are highly conserved in known cytochrome P450 enzymes [170].  Bacterial cytochrome 

P450s are often soluble enzymes and are involved in critical metabolic processes and secondary 

metabolism.  These enzymes are also well characterized in an actinomycetes such as 
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Streptomyces [172].  The cytochrome P450 iron and heme-containing active site facilitates the 

use of molecular oxygen to introduce an oxygen atom into a molecule (Figure 86).  The ability 

of the iron atom to exist in several oxidative states allows the transfer of electrons that enables 

the separation and activation of the oxygen atoms. 

Incorporation of molecular oxygen into azinomycin B may be traced using the heavy 

isotope from 18O2 (*O) and observed via a shift in the 13C NMR signal of the neighboring carbon 

atoms.  It has been proposed that a cytochrome P450-like monooxygenase is responsible for the 

insertion of an oxygen atom into O1 to form the epoxide, O2, (Figure 87) and the subsequent 

hydroxyl naphthoate, O5, resulting in the 3′ methoxy oxygen atom via an “NIH shift” passing 

from O3 to O4 then to O5 and subsequently to the 3′ methoxy naphthoate O6.  Evidence of the 

NIH shift mechanism in the formation of the azinomycin naphthoate O6 was reported by Lowden 

et al. [30] in experiments with naphthoate groups decorated with deuterated C3′ position.  The in 

vitro study also indicated that known cytochrome P450-like monooxygenase enzyme inhibitors 

successfully diminished azinomycin B or naphthoate production [146].  

 

 

 
Figure 87.  Oxygen Insertion by a Monooxygenase to Produce the C3’ Methoxy Oxygen. 

 

 

HEAVY OXYGEN INTRODUCTION 
18O2 is quite expensive, currently selling for approximately $500 per liter at 98% purity.  This 

expense imposed a financial limitation on the experimental design for oxygen incorporation 

experiments.  As the typical rate of air flow through the fermenter is 8 liters per minute, it is 

obvious that a sealed oxygen gas atmosphere recirculation system is required to make the 

experiment economically feasible.  Retention of the expensive 18O2 and avoiding diffusion 

exchange with air require a completely sealed system.  These types of systems have been used 

before for examination of heavy oxygen uptake [151, 173].  Typically, a recirculation system 

involves a looped system with a point of introduction for oxygen and heavy oxygen.  A basic 

design of a recirculation system (Figure 88) shows the flow of the atmosphere which is bubbled 
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through 5M KOH, as a scrubber for carbon dioxide, and water to moisten the atmosphere and 

catch any aerosol spill over from the 5M KOH. 
 

 

 
 
Figure 88.  A Standard Oxygen Recirculation System. 

 

 

Our case was a bit more complicated as it was not simply a problem of recirculating an 

atmosphere through a single shaking flask.  The basic set-up for our fermenter based 

recirculation system is shown in Figure 89.  The volume of the fermenter and associated 

atmosphere introduction required a large volume of atmosphere increasing the basic cost and 

heightening concerns over leak points.  The fermenter design includes several designed exit 

points, seals, and a central rotating rod upon which the paddles are attached.  As our standard 

practice of sterilizing the fermenter includes a cycle through the autoclave while containing 

medium, the fermenter seals and bearings are degraded over time.  These were initially replaced 

in October 2006, but after about 160 runs, these were replaced in early September 2008 (Figure 

90D & E).  Additionally, the welding seals were re-welded, and silicone sealant was applied.  

Additionally the main seal at the interface of the glass container and the lid was replaced and 

greased.  These adjustments resulted in negligible leaking.  Leaking was measured by applying 

pressure on each component and measuring the volume lost.  This was essential as quantifying 

the amount of oxygen consumed by the system during the production of a batch of azinomycin is 

critical for deciding the volume of 18O2 to acquire.   
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Figure 89.  Our Fermenter Culture Based Oxygen Recirculation System. 

 

 

A strong pump is needed to continue to push the atmosphere through the ten plus liters of 

culture, maintain an equal flow balance so the system has an equal flow of atmosphere and no 

build-up or pressure drop resulting in undo atmosphere pull from the atmosphere reservoirs. 

Additionally, foaming of the culture and over-bubbling of the 5M KOH and water bubblers can 

be an issue.  Therefore traps A and B were added to the system although it does increase the 

amount of atmospheric space that must be balanced with added 18O2.  The traps protect the 

culture and pump from KOH spill over complications. 

 The ideal experiment would involve incorporating heavy oxygen into a molecule and 

using 13C NMR to analyze the result would use an equal mixture of 18O2/16O2.  This allows one to 

have an internal standard carbon 13 signal next to the shifted signal of the carbon next to a heavy 

oxygen atom.  To ensure this volume, several trial runs were conducted monitoring the oxygen 

consumed and replacing it with additional oxygen.  The optimal time of exposure to the heavy 

oxygen and the recirculation system was also a priority.  Initially, an exposure time of 

approximately 48 hours was considered as it mirrors the feeding types typically employed with 

the administration of the previous isotopically labeled substrates.  By avoiding the first 24 hours 

in the fermenter, one avoids the substrates being consumed for growth purposes rather than for 

production of the natural products.  Consumption of oxygen is a requirement for living, as is 
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avoiding built-up levels of carbon dioxide or exposure of the culture to high pressures or high 

levels of oxygen.   

 The initial trials indicated a total oxygen consumption of approximately 5.5-6 liters for 

44-48 hours.  In the initial attempt of an incorporation experiment we used 3 liters of 18O2 and 3 

liters of regular oxygen.  The material isolated in this experiment was of poor quality; the pH of 

the culture had dropped.  Even our analysis attempts by mass spectrometry were not useful.  This 

was a failed run. 

 After this disappointment, we turned to evaluating ways to ensure a better productive run 

to ensure that the system itself was not causing the poor yield and material.  New trials revealed 

that the system had developed some leak points; these were addressed with the replacement of 

bearings, oil seals, main lid seal, and sealing the edges of the features of the lid with silicone 

caulk.  Additionally, rubber gaskets were added to the rotating rod buffering the oil seals.  The 

equipment was also carefully cleaned with soap and bleach.   
 

 

 
Figure 90.  Improvements to the Fermenter Culture Based Oxygen Recirculation System. 
Modifications included: (A) the ability to introduce liquid materials without causing a leak in the sealed 
system using a syringe and rubber sealing material, (B) a stopcock enabling sterile culture sampling, (C) 
replacement of the rubber gasket underneath the screw cap used for 2nd stage culture introduction, (D) 
replacement of the oil seals and (E) bearings about the central rod. 

 

 

Modification to the experimental design for the second attempt included improvements 

to pH monitoring and adjustment and production of the natural product.  Modifications (Figure 

90) included an option to introduce material such as alkaline buffer (1M sodium bicarbonate) or 

supplemental substrate (Figure 90A), a stopcock for sterile sampling of the culture (Figure 

90B), replacement of the gasket material underneath the screw cap used for inoculation of the 
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fermenter culture (Figure 90C), and replacement of seals, bearings, (Figure 90D & E) and the 

central rod.   

The system, now completely sealed, was ready for trials.  The amount of oxygen 

consumed and added to the system was monitored to ensure proper amounts, duration, and 

production before the expensive heavy oxygen was used.  Trials from the final 48 hours to 68 

hours of growth under the system were evaluated.  Additionally, supplements of unlabeled 66 mg 

L-methionine and 120 mg L-valine were used to increase the single yield of azinomycin B.  This 

boost in production had been noted with previous supplemental experiments with the production 

system.   

 

 

Table 15.  Oxygen Consumption Trials with the Recirculation System. 
 * 18O2/O2 (50:50) was used in this trial.  V = L-valine, M = L-methionine. 
 

Trial 
Entry 

Oxygen 
consumed 

(mL) 

Total 
Oxygen 
Added 
(mL) Hours 

Rate of 
consumption 

(mL/Hour) 
Final 
pH 

Added 
Supplement 

Production 
Result 

1 4800 5440 48.75 98.4 7.87 none normal 

2 7220 7680 63.00 114.6 8.54 none marginal 

3 8220 9120 64.75 126.9 8.43 none marginal 

4 5740 6780 47.75 120.2 7.79 
100mg V, 
60mg M better 

5 10300 10300 68.00 151.5 9.00 
100mg V, 
60mg M poor 

6 9680 10080 69.50 139.3 8.66 
120mg V, 
66mg M marginal 

7* 6540 6900 57.00 114.7 8.00 
120mg V, 
66mg M better 

 

 

The trials revealed that oxygen consumption is greater early in the 72 hour period.  

Following 2nd stage inoculation into the fermenter; there is a phase of growth and increased 

oxygen consumption.  It was also observed that under the recirculation system, the pH of the 

culture rose beyond that of the normal pH profile with longer duration under the atmosphere 

recirculation system (Table 15, entries 2, 3, 5, and 6).  The addition of supplemental amino acids 
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(L-valine and L-methionine) improved the production of azinomycin B.  The supplemental runs 

best coupled with shorter exposure time to the system (Table 15, entry 4).  Theoretically, 

increasing the time of exposure time of the Streptomyces sahachiroi culture to the mixed isotope 

atmosphere increases the probability to incorporate the 18O isotope into azinomycin.  We had 5 

liters of compressed 18O2 available for the experiment and wanted to be conservative on the use 

of the 18O2 gas we chose an optimal route: exposure for 57 hours with the 18O2/O2 (50:50) and 

adding supplemental L-valine and L-methionine (in three lots) (Table 15, entry 7).  These 

conditions yielded a very healthy, azinomycin B producing culture.  The final culture’s pH was 

8.00, and the yield was good (crude: 107.6 mg, purified for azinomycin B: 35.9 mg). 

 

ANALYSIS OF 18O2/O2 EXPOSED AZINOMYCIN B 

Extraction and purification of azinomycin B from the media afforded approximately 35.9 mg of 

purified natural product.  The sample was analyzed by proton decoupled 13C-NMR spectroscopy 

as isotopic substitution with 18O gives rise to an upfield shift in the position of resonances of 

directly bound carbon atoms [174].  The 13C- {1H}-NMR spectrum of 18O:16O-labeled 

azinomycin B revealed that four of the eleven oxygen atoms were derived from molecular 

oxygen corresponding to those at carbon centers C3′, C3′OCH3, C21, C19, C13, C14, and C12.   

The sample was analyzed initially by 300 MHz NMR, but this did not fully resolve the 

signals.  500 MHz NMR provided resolution.  Table 16 reports the shifts seen in the carbons 

next to heavy oxygen atoms affected, and  

Figure 91 displays the 13C NMR signals observed.  The analysis reveals incorporation of 

4 heavy oxygen atoms into azinomycin B from molecular oxygen (Figure 92).  The shifts 

reported are in line with previously reported carbon shifts for single 13C-18O bonds [174].  

Incorporation of the heavy atoms into azinomycin B was also confirmed through APCI mass 

spectrometry.  
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Figure 91.  13C Signals Displaying a Shift from 18O2 Incorporation. 
Shifts were observed in carbons 12, 13, 14, 19, 21, 3’ and the 3’ methoxy. 
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Table 16.  13C Shifts Observed in Carbons Next to Oxygen in Azinomycin B. 
 CDCl3 was used to obtain all spectra except for *C12 observed in CD2Cl2.  Azinomycin B carbon shifts in 
CD2Cl2 have been previously reported by Lowden, et al. al.  [30, 109].   
 

Carbon position 
δ/ppm 

16O 
δ/ppm 

18O δ difference (ppm) 
3' 155.964 155.952 0.012 

3'OCH3 55.700 55.676 0.024 
21 53.885 53.855 0.030 
19 56.198 56.161 0.037 
13 84.389 84.358 0.030 
14 172.913 172.901 0.012 
12 76.974 76.955 0.019 

 

 

 
Figure 92.  Positional Incorporation of Heavy Oxygen Atoms from 18O2. 

 

 

 

The pattern of incorporation suggests the operation of a cytochrome P450-like 

monooxygenase for the incorporation of the oxygen atoms in the methoxy and the epoxide.  

Given the previous evidence of allylketocaroboxylate (V12) as the most advanced precursor for 

incorporation into the azinomycin backbone [175], it is reasonable to envision a monooxygenase 

inserting an oxygen atom from molecular oxygen into the double bond to produce the epoxide 

moiety (Figure 93).   
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Figure 93.  A Proposed Mechanism for the Insertion of a Heavy Oxygen Atom Via a 
Monooxygenase for the Formation of the Epoxide Moiety. 
The mechanism could take one of two paths to generate the epoxide.  (A) Radical mechanism where the 
charge resulting charge transfer complex has a FeVI or (B) an electron pair transfer with the charge transfer 
complex with a FeIII.  Adapated from Gruschow et al. [150].   
 

 

 
 
 Figure 94. Proposed Mechanisms for the Hydroxylation of the Pyrrolide Ring at C12 and C13. 
 

 

The most revealing result was the incorporation of molecular oxygen at both positions on 

the aziridinopyrollidine ring.  The equal incorporation of oxygen 18 relative to oxygen 16 
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eliminates a route that would involve formation of an epoxide and subsequent formation of a diol 

via hydrolysis by water (Figure 94, path a).  If this is the case, one oxygen atom would originate 

from molecular oxygen (18O2/16O2) and the other from natural abundance water, predominantly 

H2
16O. The anti-stereochemistry of the oxygen atoms suggests the either the oxygen atoms are 

inserted sequentially by two cytochrome P450-like monooxygenases before or after ring closure 

(Figure 94, path b) or a dioxygenase acts before ring formation allowing bond rotation and the 

alternating stereochemistry (Figure 94, path c or path d). Given the dearth of examples  

dioxygenases acting in this manner, it suggest that the route sequential cytochrome P450-like 

monooxygenases would be more likely, though a determination from these results is not definite. 

 
BIOSYNTHETIC ROUTE TO THE AZIRIDINO[1,2A]PYRROLIDINE MOIETY 

(THE AUTHOR) 

The results of the cell free system suggested incorporation of sodium acetate, L-ornithine, and 

glycine (Figure 95).  The cell free system did not, however, provide information regarding 

molecular location.  This ambiguity led to a series of stable isotope feedings with decidedly 

mixed results.  The origin of the acetate in this portion of the molecule was determined with the 

[1-13C] sodium acetate feeding experiment.  Our feeding of the [1-13C] sodium acetate did not, 

however, have a significant incorporation in the aziridino [1,2a] pyrrolidine fragment.  We did 

see some incorporation at C6 and C12 (though it was obscured by solvent).  This incorporation 

pattern is consistent with incorporation of glycine as the amino acid is closely related 

metabolically to acetate.  Considering the results of Lowden, et al. [30] with their [1-13C], [2-
13C], and [1, 2-13C] sodium acetate incorporation studies, the incorporation pattern seen suggests 

that the major part of the aziridine fragment’s backbone was derived from α-ketoglutarate 

(Figure 68).  Interestingly, the acetate incorporation reflected here does not suggest significant 

incorporation into C10 or C11.  This incorporation pattern is consistent with the incorporation 

pattern observed with acetate that occurs in a number of metabolites in their respective 

biosynthesis. 
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Figure 95.  Biosynthetic Routes to the Aziridino[1,2a]pyrrolidine Fragment of Azinomycin B 
Indicated by Results from the Cell Free Extract Experiments. 
The incorporation of [1-14C] L-ornithine, [U-14C] L-ornithine, [2-14C] malonyl-CoA, and [U-14C] glycine, 
as described in Table 5 and Figure 55, indicate the incorporation of these metabolites leading to a possible 
incorporation scenario seen above. 
 

 

 
Figure 96.   Possible Mechanism for the Formation of Aziridino-pyrrolidine Containing Amino 
Acid. 
 
 

Construction possibilities based on the results of the cell free extract experiments could 

proceed down several different avenues.  One possibility is that the 1-azabicyclo[3.1.0]hexane 

ring is pre-assembled and then coupled to oxamic acid by nucleophilic addition (Figure 96A).  

However, the 1-azabicyclo[3.1.0]hexane alcohol unit could also be coupled to glycine by SN2 

attack (Figure 96B) to generate a unique amino acid containing the aziridino-pyrrolidine ring 

which can be incorporated by the NRPS biosynthetic machinery.  The molecule is subsequently 

modified by oxidation and acetylation (Figure 96C). 
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There are several possible routes to the 1-azabicyclo[3.1.0]hexane ring.  As shown in 

Figure 97, biosynthesis can originate from ornithine whereby the aziridine ring is formed though 

loss of water, followed by transamination and formation of the hemiaminal to give the alcohol 

(blue pathway in Figure 97A).  Alternatively, formation of the 1-azabicyclo[3.1.0]hexane ring 

could originate from proline forming the aziridine ring after reduction (green pathway Figure 

97B).   Or the reaction could initiate from ornithine or glutamate to give glutamate γ-

semialdehyde, proceeding through proline (Figure 97C).  This approach is limited as the 

formation of the aziridine carbon, C10, would have to originate from a single carbon source.  As 

SAM was eliminated as a possibility (Figure 65), this would require a more exotic origin for this 

single carbon not derived from acetate or methionine.   

 

 

 
Figure 97.   Potential Routes for the Formation of the 1-azabicylo[3.1.0]hexane Ring Involving 
Formation of the Pyrollidine Ring Before Attachment to the Natural Product Backbone. 
 

 

An alternative biosynthesis could originate from ornithine whereby the ornithine 

comprises the backbone (C6-C8, C12, and C13) of the aziridinopyrrolidine modified amino acid 

(Figure 98).  This arrangement would be most in line with the acetate incorporation pattern for 

an amino acid derived from α-ketoglutarate (Figure 68) and postulated by Lowden [30].  The 

aziridine ring is formed though an addition of a 2 carbon phosopho-diol unit (Figure 98A) with 
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subsequent transamination at C11, followed by oxidative modifications to yield the oxygen 

atoms on C12 and C13 (Figure 98B) permitting the appropriate stereochemistry to be set before 

ring closure.  The pyrrolidine ring is formed via the amine attack upon the double bond between 

C7 and C8 (Figure 98B).  The aziridine ring is subsequently formed after a sulfotransferase 

transfers a sulfate to the C10 alcohol, resulting in the formation of the aziridine ring (Figure 

98C).  This modified amino acid would then be added upon the growing molecule via a NRPS 

mechanism (Figure 98C).  The acetylation would occur as a post assembly modification (Figure 

98C). 

 

 

 
Figure 98.   Potential Routes for the Formation of the 1-azabicylo[3.1.0]hexane Ring from a 
Glutamate Derivative, Two Carbon Sugar Derivative, Sulfotransferase, and Formation of the 
Diol from Molecular Oxygen. 
 

 

While these possibilities seem to be logical extensions from previous experimental 

evidence, it is still possible that the ring has decidedly different origins.  The alternate 

stereochemical arrangement of the oxygen atoms on the ring suggests that a modified sugar 

might be a possibility.  Additionally, other amino acids such as aspartate, serine, lysine, and 
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arginine should not be ignored, even though initial investigations do not indicate their 

involvement. 

 

THE SUBSTRATES 

A series of isotopically labeled substrates were administered to cultures of Streptomyces 

sahachiroi and the resulting azinomycin B produced analyzed by NMR or mass spectrometry for 

isotopic incorporation.  These substrates (Figure 99) included: proteogenic amino acids, non- 

 

 

 
Figure 99.  Stable Isotope Substrates Employed in Exploring the Biosynthesis of the 
Azirdinopyrollidine Moiety. 
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proteogenic amino acids, a range of synthetic derivatives (AZ1-5), natural sugars, and the 

previously discussed heavy oxygen gas.  The amount used for these feedings was initially based 

upon feedings and incorporations seen in other parts of the molecule. 

 

ORNITHINE 

(THE AUTHOR) 

In an effort to confirm the incorporation of L-ornithine observed in the in vitro biosynthesis 

(experiments discussed in chapter III) and to identify the specific position of incorporation of L-

ornithine into azinomycin B, we fed 13C enriched L-ornithine.  We administered 100 mg of [1,2-
13C] L-ornithine•HCl, but did not observe incorporation of the labeled carbons specifically into 

the carbon skeleton such as C6-C7 as in Figure 98  or C8-C13 as in Figure 97A and 

subsequently in Figure 96B.  The non-significant incorporation indicates one of two 

possibilities: that ornithine is not a true precursor or the amount used was not significant enough 

to be incorporated.  Ornithine is a closely related derivative of glutamic acid which is highly 

involved in metabolic processes.  Due to the prohibitively high costs of feeding larger amounts of 

L-ornithine, we proceeded to examine other substrates. 

 

GLYCINE 

(THE AUTHOR) 

Another substrate observed to be involved in construction of the azinomycins in the cell free 

extracts experiments was glycine.  We fed 100 mg [1-13C] glycine, but did not see any specific 

incorporation.  We then we fed 900 mg [1-13C] glycine with 100 mg [1-13C] L-valine control.  

Evaluation of this double feeding revealed no specific incorporation at C6 as speculated from the 

cell free extract experiments.  We later fed 1 gram [1-13C] glycine by itself, but again, did not 

observe specific incorporation.  We then fed 1 gram  [2-13C] glycine and observed significant 

scattering effects and high incorporation into the 3′OCH3 indicating that the glycine C1 

underwent decarboxylation and the C2 was reconstituted into [1,2-13C] acetate units (Figure 100, 

Figure 143, and Figure 144).  Overall incorporation of the 13C labeled glycines is seen in Table 

17. 

We also evaluated [15N] glycine.  We were able to observe incorporation of this labeled 

nitrogen into not only azinomycins A and B, but also into the epoxyamide, indicating that glycine 

may easily serve as a source of nitrogen perhaps by transamination for the construction of these 
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molecules.  Multiple incorporation of label was observed by mass spectrometry, evidenced by 

M+H+1 and M+H+2 (see Figure 148).   

 

 

 
Figure 100.  Observed Incorporation of Various Isotopically Labeled Glycines into Azinomycin 
B. 
 

 

 
Figure 101.  Formation of Aminoacetone from [2,2-D2] Glycine. 

 

 

[2,2-D] glycine was also evaluated.  Interestingly, this resulted in a reduced overall yield 

of azinomycins, particularly azinomycin A.  This indicates the construction of the molecule 

requires a rate limiting step involving one of the deuterium atoms from glycine.  In the case of 

azinomycin A, the construction of the aminoacetone unit could be envisioned to have a rate 

limiting step involving the removal of a deuterium (Figure 101).  It could be envisioned that the 

construction of acetate units from glycine could also involve such a step as suggested by the [2-
13C] glycine patterning and incorporation pattern observed in Figure 100.  Incorporation of [15N] 

glycine into azinomycin A and B observed by mass spectrometry indicated incorporation higher 

than unlabeled for single incorporation (1.4%, .96%) and double incorporation (4.24% and 

5.51%) respectively (Figure 147 and Figure 148).  This indicates that it is possible that any of 

the 3 nitrogen atoms in the molecule could originate from glycine, but more likely that the 

aziridine and end fragment nitrogen atoms may originate from glycine, perhaps by a simple 
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transamination or specific incorporation as in the construction of L-threonine or aminoacetone 

(Figure 101).   

 

 
Table 17.  Percent Incorporation into Azinomycin B for 13C Labeled L-proline and Glycine. 
*Incorporation based upon stated reference carbon and calculated as previously mentioned. 
 

 
 

 

PROLINE 

(THE AUTHOR) 

We also examined L-proline.  It could be envisioned (Figure 97B and C) for proline to be 

involved in the formation of the ring system.  It could also be suggested that proline would be 

converted into another α-ketoglutarate derivative.  This could also be considered (along with 

other α-ketoglutarate derivatives) to extend into the backbone of azinomycin.  We fed 100 mg L-

proline, but we did not observe any significant incorporation (Table 17).   

 

CARBOHYDRATES 

(THE AUTHOR) 

To ensure that the aziridine was not derived from a modified sugar, we investigated a few sugars.  

Initially we examined D-arabinose and D-xylose as it could be envisioned that the ring system 

could be derived from the five carbon sugar D-arabinose and attached to a glycine unit for the 
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modified amino acid (Figure 102).  This would explain the origin of the oxygen atoms and the 

specific stereochemistry of the diol.  A transamination and subsequent ring closure by a 

sulfotransferase would produce the aziridine ring.  To balance the results we also fed D-xylose as 

a control, as the stereochemistry is different at the carbons.  Feeding 900mg each, we did not 

observe any specific incorporation, only lower level increases in the naphthoate carbons signals 

indicating metabolic scrambling of the label into acetate.  We also examined [U-13C6] D-

glucose’s incorporation into azinomycin.  The curious origin of the carbons 10 and 11 with no 

incorporation of acetate could indicate an origin from a sugar derivative.  We fed 1 gram of [U-
13C6] D-glucose and did not observe specific incorporation by signal increase at any particular 

position by carbon or by mass spectrometry.  13C labeled sugar incorporatinon results for the 

azabicyle fragment are sumaraized in Table 18.  It is possible that the addition of sugar 

substrates to the nutrient deprived medium resulted in the sugars being completely consumed for 

mere nutrition without any diversion to azinomycin biosynthesis.  While no incorporation was 

observed (either single incorporation or multiple labels (which results in signal splitting)) it does 

not elimate completely the possibility of a sugar related metabolite being involved in azinomycin 

biosynthesis. 

 

 

Table 18.  Percent Incorporation into Azinomycin B for 13C Labeled D-arabinose, D-xylose, and 
D-glucose. 
*Incorporation based upon stated reference carbon and calculated as previously mentioned. 
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Figure 102.  Possible Formation of the 1-azabicyclo[3.1.0]hexane Ring from D-arabinose and 
Glycine. 
No specific incorporation was observed. 
 

ASPARTATE, ASPARAGINE, LYSINE, ARGININE, AND SERINE 

(THE AUTHOR) 

After failing to see incorporation of the previous substrates we examined possible incorporation 

of seemingly less likely substrates, given the carbon length.  We examined the incorporation of 

[3-13C] L-aspartate.  As we had become concerned with the possibility of decarboxylation of the 

amino acids and loss of the labeled carbon, we decided, given the positional isotope price, that 

100 mg [3-13C] L-aspartate was a reasonable option.  One could envision incorporation of L-

aspartate into different positions in the 1-azabicyclo[3.1.0]hexane ring (Figure 103).  No specific 

incorporation was observed.  [U-15N2] L-asparagine (230mg) was also fed to observe possible 

incorporation of the nitrogen atoms into the aziridinopyrrolidine unit or the whole molecule.  

Interestingly, by mass spectrometry, only a slightly higher than normal shift in M+1 and M+2 

was observed, indicating generic or secondary incorporation into azinomycin A or azinomycin B. 

 

 

 
Figure 103.  Possible Formation of the 1-azabicyclo[3.1.0]hexane Ring from [3-13C] L-aspartate. 
No specific incorporation was observed. 
 

 

 [1-13C] L-lysine (100 mg) was also examined for incorporation into the azinomycins.  As 

the cell free extract experiments indicated, there was no observed incorporation into the 

azinomycins.  Although it could be envisioned to incorporate (Figure 65B), this is even more 

doubtful given non-incorporation of the labeled [13C methyl] L-methionine into the C10 position.  
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[U-13C6] L-arginine (100mg) was also examined for incorporation into the aziridinopyrrolidine 

unit.  No major incorporation was observed by mass spectrometry or by 13C NMR except for C11 

as referenced to C20.  We also examined [2-13C] L-serine (100 mg) as a possible precursor.  It 

could be envisioned that the [2-13C] L-serine labeled carbon would incorporate at C8, C13, or 

C11 (Figure 104).  We did not observe these increases.  The only result we observed was a 

signal increase at C8′a, C5′, C12 and C18.  Scattering could explain these results, but it is also 

possible that L-serine could participate in the ring construction.  13C labeled apartate, lysine, 

arginine, and serine incorporatinon results for the azabicyle fragment are sumaraized in Table 

19.  It is possible that the amounts fed were not sufficient to observed significant incorporation. 

 

 

Table 19.  Percent Incorporation into Azinomycin B for 13C Labeled Aspartate, Lysine, Arginine, 
and Serine. 
*Incorporation based upon stated reference carbon and calculated as previously mentioned. Scattering into 
the naphthoate region or contaminating naphthamide signal overlap also observed. 
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Figure 104.  Possible Formation of the 1-azabicyclo[3.1.0]hexane Ring from [2-13C] L-serine. 
No incorporation at the indicated positions was observed. 
 

 

SYNTHETIC PRECUSOR SERIES FOR THE DISCRETE FORMATION OF THE 1-

AZABICYCLO[3.1.0]HEXANE RING 

(COLLABORATION BETWEEN DR. VASUDHA SHARMA AND THE AUTHOR) 

In view of the non incorporation of simple amino acid and sugar incorporation into the 

azabicycle scaffold, we evaluated a series of more advanced precursors. The azabicycle can be 

envisioned to form from an aldol-type condensation between glycine and pyroglutamate derived 

azabicycle, AZ4, in Figure 105. 

 

 

 
Figure 105. Possible Scaffolds Contributing towards Origin of Azabicycle, AZ3. 
 

 

The azabicycle itself can be seen to originate from either path A, wherein D-glutamic 

acid, AZ6 can undergo cyclization to afford pyroglutamic acid which after series of reduction 

could generate the nascent bicycle AZ4. The nascent bicycle could undergo functionalization to 

generate AZ3.  Alternatively, AZ3 could be generated by path b, wherein a functionalized 

structure such as AZ8, could undergo cyclization followed by reduction to provide an azasugar, 

AZ7. During the preparation of this manuscript, Liu et al. have proposed the possible role of 
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glutamic acid in the NRPS segment of the molecule [176]. Our in vitro studies however, have 

shown a role of glycine in the fragment [146].   

The relatively inexpensive DL-glutamic acid (1g for $485 from Cambridge Isotopes) 

became available in mid 2007.  Our previous interest in glutamic acid and synthetic derivatives 

had been tempered by the prohibitive cost of materials and synthesis.  All synthetic aziridine 

derivatives described below were synthesized by Dr. Vasudha Sharma and were administered 

and analyzed by the author in the same manner as previously described in Kelly et al. [133]. 
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Scheme 2. Synthesis of D-glutamic acid, AZ6. 
(a) (i) SOCl2, MeOH, reflux, 2h.(ii) Boc2O, NaHCO3, 36h. (b) 2-methoxy propene, CSA, 3h. (c) LiAlH4, 
THF:MeOH (3:2) (d) IBX, EtOAc, reflux, 3.5 h.(e) (OEt)2P(O)CH2

13COOEt, NaH, THF.(f) H2 (1 atm), 
10% Pd/C, MeOH. (g) Jones’ reagent, acetone, 12h then iPrOH, 15’. (h) NaOH(aq.) , EtOH (6:1) then 
acidify. 
 

 

(SYNTHESIS BY DR. VASUDHA SHARMA) 

Garner aldehyde, AZ11 was prepared using a modification of procedure by Dondoni et al. [177]. 

We have previously utilized this strategy for the synthesis of threonine analog of Garner’s 

aldehyde [133].  Briefly, serine, AZ9 was methylated to afford the methyl ester hydrochloride 

which was N-protected with Boc2O. N-Boc protected methyl ester of serine was then treated with 

2-methoxypropene under mildly acidic conditions to afford the acetonide methyl ester, AZ10. 

Upon reduction of the ester group to provide the alcohol, followed by mild oxidation with IBX, 

the Garner’s aldehyde, AZ11 was achieved. This set the stage for a HWE reaction with 

triethylphosphite[178] using NaH as the base to provide the alkene unit as a mixture of cis-trans 

isomers as well as rotamers. The product was subjected to hydrogenation using 10%Pd/C as the 

catalyst. This C-4 substituted acetonide unit was then treated with Jones’ reagent [179] to 
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facilitate hydrolysis of acetonide followed by oxidation of the primary alcohol and provide the N-

Boc protected 5-ethyl ester of D-glutamic acid, AZ12 (Scheme 2).  

Retrosynthetic analysis of AZ4 (Figure 105) suggests its formation from chiral glutamic 

acid after cyclization to provide pyroglutamate, followed by reduction and intra-molecular 

nucleophilic substitution. D-glutamic acid, AZ6 was converted into chiral pyroglutamic acid by 

dehydration, which after methylation afforded the methyl pyroglutamate AZ13.  Subsequently, 

reduction of the ester group using NaBH4 generated the primary alcohol (Scheme 3). The 

primary alcohol was protected by TsCl to afford the tosylate AZ14 which upon treatment of a 

strong base such as KH afforded facilitated the nucleophilic attack of the N on the methylene 

leading to loss of the tosyl group and generation of the azabicycle scaffold AZ4 [180]. Similar 

attempts with Ms group as the leaving group did not provide the desired azabicycle and lead to 

decomposition of starting material. The formation of the aziridine ring was detected on TLC by 

disappearance of starting material. Infrared analysis of the crude reaction mixture revealed a 

carbonyl absorption at 1743 cm-1 by IR indicating the presence of N-acylaziridine [180].  

 

 

 
Scheme 3.  Synthesis of the Azabicycle AZ4. 
(a) H2O, sealed tube, 15h, 130 °C (b) AcCl, MeOH, 0oC  r. t. (c) NaBH4 (3 eq.), THF: MeOH (3:2) (d) 
TsCl, Et3N, CH2Cl2 (e) KH, THF(anhyd.). 
 

 

However, as anticipated, the azabicycle AZ4, proved to be very unstable to aqueous 

conditions even at room temperature and readily suffered a nucleophilic attack by water at the 

methylene carbon to give pyroglutaminol (Scheme 4).  
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Scheme 4.  Ring Opening of Azabicycle AZ4. 

 

 

Since the azabicycle did not prove to be stable, we pursued (Figure 105, path b) in 

synthesizing the 3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-one and 2-amino-3,4-

dihydroxypentanedioic acid  as potential biosynthetic precursors for the azabicycle pendant in the 

azinomycin scaffold. The trihydroxylated pyrrolidin-2-ones AZ16a and AZ16b as well as the 

dihydroxylated glutamic acids AZ15a and AZ15b, could be useful intermediates in the synthesis 

of various interesting compounds.  AZ16a and AZ16b can be envisioned to lead to the 

corresponding pyrrolidines which are known as azasugars and have shown promising activities as 

glycosidase inhibitors [181-183].  Further, they constitute a chiral template in the synthesis of 

more complex pyrrolizidine alkaloids such as alexine, australine, and 3-epi-analogues [184, 185].  

Finally, the specificity of the enzyme could be probed by feeding labeled diastereomeric forms 

AZ15a, AZ15b and AZ16a, AZ16b (Figure 106). 

 

 

 
Figure 106. Proposed Aza-sugars AZ15a, AZ15b and Dihydroxy Glutamic Acids AZ16a and 
AZ16b.  
 

 

AZ16a and AZ16b can be envisioned to be synthesized starting from pyroglutamic acid, 

AZ17 and converting it into ester, AZ13 and subsequently reducing to a primary alcohol, 

pyroglutaminol, AZ7.  The nucleophilic groups could be suitably protected as an N, O-acetal, 

AZ18 [186] which could be converted into the versatile α,β-unsaturated lactam, AZ19, Scheme 

5. This unsaturated lactam upon epoxidation followed by subsequent region-and stereo-selective 

ring opening could provide entry to access the pyrrolidinone units as described earlier by 

Langlois et al. [187]. 
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Scheme 5. Synthesis of 2-(hydroxymethyl) 3, 4- dihydroxy Pyrrolidinone Unit.  
(a) AcCl, MeOH, 0oC  r. t. (b) NaBH4 (3 eq.), THF: MeOH (3:2) (c) PhCHO, p-TsOH, benzene, reflux. 
 

 

However, in our hands, yields for the conversion of AZ18 to AZ19 were low, a result not 

desirable for reactions involving isotopically labeled compounds. Further, purification of labeled 

N,O-acetal AZ19 via distillation became challenging at a small scale and effected further steps.  

Hence, the failure of the strategy described above prompted us to use tartaric acid to 

access the dihydroxy glutamic acid units AZ15a and AZ15b as well as the trihydroxy 

pyrrollidinones AZ16a and AZ16b using a modified strategy of Nishiyama et al. [188, 189]. 

Starting with L or D tartaric acid which provides the desired stereochemistry of the hydroxy 

groups for either AZ15a or AZ15b and AZ16a or AZ16b, the optically active cyclic imides 

AZ20 were derived as shown in Scheme 6. The cyclic imides were then reduced with NaBH4 and 

converted into acetoxylactams, AZ21. Treatment with in situ generated Me3SiCN afforded the 

cyano diacetoxy lactams, AZ22 which upon deprotection of PMB group followed by hydrolysis 

afforded the dihydroxy glutamic acids AZ15a or AZ15b. Methanolysis of cyano group in AZ22 

after deprotection of PMB followed by reduction afforded the desired trihydroxy pyrrollidinones 

AZ16a or AZ16b. 
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Scheme 6. Synthesis of AZ15a, AZ15b, AZ16a, AZ16b. 
 (a) PMB-NH2, xylenes, 36h, reflux. (b) (i) NaBH4, THF. (ii) Ac2O, Pyridine. (c)(i) BF3-OEt2 (ii) 
K13CN/TMSCl, KI. (d) Ce(NH4)2(NO3)6, 4h. (e) 6N HCl, reflux. (f) (i) SOCl2, MeOH, reflux. (g) NaBH4, 
THF. Use of L-tartaric acid generated the opposite isomers required. 

 

 

 
Figure 107. 13C labeled Substrates Synthesized for Feeding to S. sahachiroi Cultures for 
Potential Incorporation into Azinomycin B. 
 

 

The precursors synthesized (Figure 107) were administered in the same manner as 

previously described in Kelly et al. [133].  The substrates AZ5, AZ17, AZ16a, AZ16b, AZ15a, 

and AZ15b were fed, but no incorporation was observed by mass spectrometry or 13C NMR into 

the azabicycle moiety carbons C6-C13 (Table 20).  Only a scattering incorporation into the 
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naphthoate portion of the molecule was observed.  The lack of incorporation of these precursors 

cast doubt on the discrete formation of the 1-azabicyclo[3.1.0]hexane ring and attachment to a 

glycine unit as in Figure 105 path a or b. 

 

 

Table 20. Positional Percent Incorporation of Labeled Precursors into Azinomycin B.  
*Positional incorporation of the labeled subsrate into azinomycin B. % incorporation = [(A-B)/B] X 1.10 
where A, intensity of labeled carbon; B, intensity of unlabeled carbon; 1.10, natural abundance of 13C; n/a 
= not detected due to solvent overlap in 13C NMR.   
**small C20 signal threw off percent incorporation calculations. 
 

 
 

 

GLUTAMIC ACID 

With the lack of incorporation of the synthesized azabicycle derivatives, we considered that such 

advanced precursors may not be readily incorporated into the azinomycin natural product.  We 
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also considered the alternative scenario presented in Figure 98 and in the following Figure 108 

path a whereby the origin of the azirdinopyrollidine amino acid moiety’s attachment to the 

molecule is through a glutamic acid derivative rather than by glycine or other unit as originally 

suggested in Figure 96 and subsequently in Figure 105 path a or path b.  No incorporation into 

C10 was detected by mass spectrometry or 13C NMR.  [1-13C] DL-glutamic acid was examined in 

an initial dosage of 230 mg, discounting Figure 108 path b.  Incorporation into C6 was detected 

at 5.2%, Table 20.  Subsequent feeding of 1 gram [1-13C] DL-glutamic acid resulted in a detected 

incorporation at C6 of 5.2% with reference to C20 carbon, Table 20.  The specific % 

incorporation of the label indicates that there is metabolic interference (glutamic acid is readily 

used in many metabolic processes) or we are observing the effect of a secondary incorporation.  

Glutamic acid and glutamine are readily used in many metabolic processes and are found in 

highest concentration of amino acids (22.4%) in the fermentation media.  Such key metabolites 

are particularly susceptible to metabolic scattering and lower rates of incorporation [174].  This 

could mean that the previous feedings of ornithine were unsuccessful because of scattering and 

the smaller amount.   

 

 

 
Figure 108. Possible Formation of the 1-azabicyclo[3.1.0]hexane Ring from [1-13C] DL-glutamic 
Acid. 

 

 

  This does, however, indicate that the construction of the 1-azabicyclo[3.1.0]hexane ring 

and subsequent attachment to a glycine unit appears to be unlikely (Figure 96& Figure 97).  

Given the incorporation of [1-13C] DL-glutamic acid and the previously mentioned oxygen 

incorporation results, the proposed construction appears to closer to what was suggested in 

Figure 98. 
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Figure 109. Biosynthesis of the Azinomycins as Indicated by Stable Isotope Feeding Studies. 
 

 

SIGNIFICANCE 

The azinomycins represent a structurally unusual class of DNA cross-linking agents produced by 

nature.  Investigation of the biosynthesis of the azinomycins was affected by use of stable isotope 

enriched substrates.  This series of stable isotope feeding experiments has revealed a more 

detailed biosynthetic origin for the azinomycins.  The current view of azinomycin biosynthetic 

precursors is displayed in Figure 109.  Nearly all portions of the molecule were attributed to one 

or more precursor sources.  The remaining C10 and C11 stand out as their origin was not 

revealed.  It is possible that their source may not be easily uncovered using stable isotope feeding 

studies.  It is likely that analysis of the sequence of the genes encoding enzymes used in 

azinomycin biosynthesis will shed light upon their origin.  The numerous molecules fed and 

subsequently incorporated or rejected have revealed much about the construction units and have 

shed light on the probable mechanisms for construction.  This knowledge provides insight to the 

complex biosynthesis of unique molecules, and combined with future full characterization of the 

biosynthetic enzymes, may lead to custom design of natural products and pharmaceuticals. 
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EXPERIMENTAL PROCEDURES 

INSTRUMENTATION AND GENERAL METHODS 
1H & 13C NMR spectra were recorded on either a Varian Inova 500 or Varian Inova 300.  1H 

NMR chemical shifts are reported as δ values in ppm relative to CDCl3 (7.26 ppm) and coupling 

constants (J) are reported in Hertz (Hz).  Infrared spectra were recorded on a Bruker Tensor 27 

spectrometer.  Unless otherwise indicated, deuterochloroform (CDCl3) served as an internal 

standard (77.0 ppm) for all 13C spectra.  Mass spectra (ESI) were obtained at the Laboratory for 

Biological Mass Spectrometry at the Department of Chemistry, Texas A&M University, with 

API QStar Pulsar, MDS Sciex (Toronto, ON, Canada) Quadrupole-TOF hybrid spectrometer.  

Gas chromatography/low resolution mass spectra were recorded on a Trace DSQ GCMS 

spectrometer, ThermoElectron Corporation (Austin, TX, USA).  APCI was recorded on a 

Thermofinnigan LC-Q DECA mass spectrometer.  Fermentations were run on Fermentation 

Design Inc.  Model # MS21 (Allentown, PA, USA).  The total capacity of the fermentation 

system is 15 L. 

 

MATERIALS 

All 2H (D), 13C, and 15N materials were obtained from Cambridge Isotope Laboratories, Inc.  

Andover, MA 01810-5413.  The 18O2 was obtained from ICON Services Summit, NJ 07901.  Dr. 

Vasudha Sharma and Dr. Chaomin Liu synthesized the 13C derivatives. 

 

ORGANISM 

Streptomyces sahachiroi (NRRL 2485) was obtained from the American Type Culture Collection 

(ATCC). 

 

CULTURE CONDITIONS 

(THE AUTHOR) 

Spore stocks: Streptomyces sahachiroi spores prepared from dehydrated GYM (glucose, yeast 

extract, and maltose extract) plates (per liter of medium: glucose monohydrate, 4 g; yeast extract, 

4 g; malt extract, 10 g; CaCO3, 2 g; and tap water; adjusted to pH 6.8 with 1 M NaOH prior to 

sterilization) were streaked onto large MS (mannitol Soya flour, per liter medium: mannitol, 20 

g; Soya flour, 20 g; and deionized water) plates and allowed to incubate at 30 ºC for 15 days.  At 

this time the grey spores were removed with sterile water and agitation.  The spores were then 
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filtered through sterile cotton, washed three times with sterile water, centrifuged at 3000 rpm, re-

suspended in a minimal amount of 10% glycerol solution, flash frozen, and stored at -80 ºC. 

i) Solid medium.  Solid medium cultures were inoculated by streaking a loop full of S. 

sahachiroi spore stock onto prepared GYM plates.  The plates were grown at 30 ºC in a Fisher 

Scientific Isotemp incubator for 5-7 days before use in the first stage culture.   

ii) First Stage Culture.   Streptomyces sahachiroi (inoculated from dehydrated plates) was grown 

on GYM plates for 5-7 days.   A 1 cm2 piece of the GYM plate was used to inoculate 100 mL of 

PS5 media in a 250 mL Erlenmeyer flask.   The culture was incubated at 30 °C for 24 h at 250 

rpm.    

ii) Second Stage Culture.  The second stage culture was prepared by inoculating 2 L 

Erlenmeyer baffled flasks (Fernbach; containing 600 mL of PS5 medium) with 25 mL of the first 

stage culture.  The culture was incubated at 30 °C for 24 h at 250 rpm.   

 iv) Fermentation. The fermenter containing 10 L of the reduced PS5 medium 

(Pharmamedia/Starch plus additives, per liter of medium: Pharmamedia (yellow cotton seed 

flour), 12.5 g; soluble starch, 12.5 and deionized water adjusted to pH 6.5 naturally prior to 

sterilization) reduced by 75% compared the concentration of the first and second stage cultures 

was autoclaved at 121 ºC for 20 min.  Following inoculation (with two 600 mL second stage 

cultures) the fermenter was agitated at ~300 rpm and aerated with sterile filtered air (8 L/min) for 

72 h. 

 

GENERAL FEEDING CONDITIONS 

(THE AUTHOR) 

The labeled material was weighed in equal portions and solubilized in autoclaved distilled water.  

The first aliquot was administered after 24 h, followed by addition of the second provided 24 h 

later.  The culture was harvested 72 h post-induction (inoculation of the second stage culture into 

the fermenter).  Note: Compound T4 and T5 were administered in D2O immediately after 

synthesis.  Supporting information in chapter V appendix provides details on the amounts of each 

compound fed.   

 

ISOLATION AND PURIFICATION OF AZINOMYCIN B 

(THE AUTHOR) 

Following fermentation, the cultures were centrifuged at 7,000 rpm at 4 oC.   The cell pellets 

were discarded and the medium extracted with an equal volume of methylene chloride (1X).   
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The organic layer was collected, dried over anhydrous magnesium sulfate, and concentrated in 

vacuo.   The resulting crude extract was stored under diethyl ether at -80 °C.  The solid was 

dissolved in a minimal amount of dichloromethane and precipitated with the addition of hexane 

to give a ratio of 1:29 CH2Cl2/hexane.   The resulting suspension was centrifuged at 1,500 rpm 

and the supernatant discarded.  Diethyl ether (2 mL) was added to the pellet, which was 

subsequently agitated, centrifuged at 3000 rpm and the supernatant discarded.  The resulting 

residue was dissolved in dichloromethane (600 µL) to which hexanes (2 mL) was added.  The 

heterogeneous mixture was centrifuged at 3,000 rpm and the supernatant retained.   To the 

solution was added hexanes (4 mL) and the suspension centrifuged at 3,000 rpm to give 

azinomycin B as a solid.    

If full purification is not achieved, azinomycin B can be further purified by flash column 

chromatography (95: 5 CH2Cl2: methanol).  By TLC azinomycin exhibits an Rf of 0.23.   A short 

column should be utilized to minimize overall contact with the silica gel and degradation by 

hydrolysis.  The process can be repeated if necessary.   The compound can be safely stored at -80 

ºC under anhydrous diethyl ether.  For shorter periods of time it may be stored as a precipitant 

from a solution of 20:1 hexanes:chloroform/dichloromethane.  The azinomycin B isolated 

matched the NMR spectrum provided by Yokoi et al. [17]. 

 

AZINOMYCIN A  

Pale-white amorphous powder (1:9 CH2Cl2:hexane); IR (neat) νmax 3450.1, 3323.2, 3025.3, 

2972.8, 1735.4(br), 1660.4, 1618.6, 1601.1, 1531.4, 1417.6 1242.3, 1090.7, 1043.6 cm-1; 1H 

NMR (300MHz, CDCl3) δ 10.09(1H, dd, J=5.1, 5.1), 8.56 (1H, dd, J=5.9, 3.3Hz,), 8.54 (1H, s), 

7.93 (1H, d, J=2.6Hz), 7.48 (1H, d, J=2.6Hz), 7.35 (1H, dd, J=5.9, 5.9), 7.34 (1H, dd, J=5.9, 

3.3), 5.53 (1H, d, J= 3.8Hz), 5.01 (1H, s), 4.62 (1H, dd, J= 5.4, 3.8Hz), 4.28 (1H, dd, J= 19.8, 

5.1Hz), 3.98 (3H, s), 3.98 (1H, s), 3.23 (1H, m), 3.00 (1H, d, J=4.4Hz), 2.84 (1H, d, J= 4.4Hz), 

2.67 (3H, s), 2.53 (1H, d, J= 5.1Hz), 2.21 (1H, d, J= 4.5Hz), 2.20 (1H, s), 2.19 (1H, s), 1.52 (1H, 

s); 13C NMR (75MHz, CDCl3) δ 202.6, 172.7, 165.7, 163.8, 163.2, 156.0, 149.6, 134.4, 133.1, 

128.4, 127.7, 126.9, 125.1, 123.9, 121.8, 120.1, 108.6, 84.0, 76.9*, 76.7*, 56.0, 55.6, 53.7, 50.6, 

45.4, 35.8, 27.2, 20.7, 20.0, 17.0.  (* obscured by CDCl3 solvent peak).  TOF-MS (APCI), m/z 

596.22 (calcd for C30H33N3O10+ H: 596.22). 

 

 

 



 152

AZINOMYCIN B  

Pale-white amorphous powder (1:9 CH2Cl2:hexane); IR (neat) νmax 3338.4(br), 2957.1, 2925.3, 

2872.8, 1725.92(br), 1619.3, 1601.7, 1511.2, 1417.6 cm-1; 1H NMR (300MHz, CDCl3) δ 

12.40(1H, br), 12.32(1H, s), 8.54 (1H, dd, J=3.6, 7.0Hz,), 8.20 (1H, br), 7.94 (1H, d, J=2.9Hz), 

7.46 (1H, d, J=2.9Hz), 7.32 (1H, s), 7.32 (1H, s), 7.32 (1H, s), 5.50 (1H, d, J= 4.0Hz), 5.12 (1H, 

s), 4.64 (1H, dd, J= 4.0, 4.8Hz), 3.96 (3H, s), 3.96 (1H, br), 3.36 (1H, m), 2.98 (1H, d, J=4.3Hz), 

2.80 (1H, d, J= 4.3Hz), 2.70 (1H, s), 2.66 (3H, s), 2.30 (1H,s), 2.24 (1H, s), 2.18 (1H, s), 1.52 

(1H, s); 13C NMR (75MHz, 125MHz, CDCl3) δ 191.5, 173.0, 165.7, 164.0, 162.0, 156.0, 153.0, 

150.8, 134.5, 133.3, 128.1, 127.9, 127.0, 125.4, 123.9, 122.3, 119.3, 118.6, 108.5, 84.4, 77.4*, 

77.1*, 56.2, 55.7, 53.9, 46.4, 36.7, 24.5, 21.0, 20.3, 17.2.  (* obscured by CDCl3 solvent peak).  
13C NMR (125MHz, CD2Cl2) δ 191.3, 172.8, 165.8, 164.3, 162.2, 156.2, 154.1, 150.6, 134.6, 

133.7, 128.4, 127.9, 126.9, 125.3, 123.8, 122.3, 191.3, 118.6, 108.4, 84.5, 76.9, 77.0, 56.1, 55.8, 

53.8, 46.9, 36.9, 24.4, 20.9, 20.1, 17.1.  APCI-MS (LRMS) 624.2, found 624.2. 
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CHAPTER VI 

 

CONCLUSION 

 

Tremendous advances have occurred in the field of natural products in the last century.  It has 

developed from rare medicines to industrially produced pharmaceuticals.  The study of 

metabolism and biosynthesis has led to the discovery of exotic pathways that produce amazingly 

bioactive compounds.  Currently the power of genomic sequencing, cell-based screens, and gene 

overexpression have enabled discovery of rare or silent natural product pathways from even 

uncultivable natural sources.  It is in this realm that the azinomycins live. 

 The unique aziridinopyrollidine ring and the DNA cross-linking activity of the 

azinomycins have long been of synthetic, medicinal, and biosynthetic interest.  Given the 

advances in gene sequencing and gene manipulation, it is only a matter of time before systems 

amenable to modular swaps for mixed PKS/NRPS and other biosynthetic systems are developed 

and used industrially to produce custom pharmaceuticals or other byproducts.  The development 

of such systems has resulted in a keen interest in the biosynthesis of natural products with unique 

spatial or chemical structures.   

 The path towards understanding the azinomycins has been a long one reflecting the 

trends of the times.  The isolation of the azinomycins and the producing bacteria were a product 

of an expansive concerted effort of microorganism screening and natural product isolation.  

Additionally the first clinical uses of azinomycins reflected the needs of the times in Japan.  The 

anti-tumor property of the azinomycins was investigated on real patients with real cancers.  

Although the toxic effects of the natural product were revealed, interest in its potential has 

remained, inspiring many to move forward again by focusing on structural characterization of the 

molecule and then efforts towards total synthesis and exploration of the structure-activity 

relationships of derivatives of azinomycin.  Although this work culminated with the total 

synthesis of azinomycin A [190], the efforts in this have been significantly explored [20-25, 27, 

28, 68, 70, 113, 191-213].  Synthetic efforts yielded many variations upon the azinomycin 

structure.  The mode of action of the azinomycins was explored in vitro using many of these 

derivatives [28, 29, 69, 70, 112, 193, 214-219].  The mode of action of the azinomycins has been 

explored increasingly in silico (performed on computer or via computer simulation) [74, 76].  

Our in vivo mode of action studies with yeast supported the suspected DNA damaging and cross-
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linking action of the azinomycins [135] using transcriptional array profiling, flow cytometry, 

microscopy, and nucleic acid isolation.  The use of state of the art methods has provided a greater 

understanding of this unique set of natural products. 

 As the interest in this natural product has moved into the genetic and molecular origins 

of azinomycin biosynthesis, both traditional and state of the art methods were implemented.  The 

first studies on the biosynthesis of the azinomycins used a traditional method of feeding 

isotopically enriched isotopes [109, 220].  Our cell free extract system revealed specific cofactors 

and substrates involved in the biosynthesis as well as inhibitors capable of disrupting the 

biosynthesis [146].  Using traditional methods of culture and production improvement, a 

consistent system for the production of azinomycin B was established [133].  This system was 

subsequently used to explore multiple possible stable isotope substrates for azinomycin 

biosynthesis.  The origin of the naphthoate portion, the epoxide fragment, the enol fragment, and 

the origins of the oxygen atoms in azinomycin B were revealed.  Additionally the origin of the 

end fragment of azinomycin A and a means to modulate the ratio of azinomycin A: azinomycin B 

was revealed.  Significant work has been done to examine the origin of the aziridinopyrollidine 

fragment; results indicate this highly modified alkaloid-type amino acid was derived from a 

glutamate-related molecule and additional two carbon subunits, possibly sugar derived.  The 

results of heavy oxygen incorporation in the aziridinopyrollidine ring indicate that modifications 

are made before the incorporation of an intact pyrollidine amino acid subunit into the azinomycin 

molecule. 

 While we have pursued biosynthetic studies of the azinomycins, we and others have also 

pursued the genetic basis for azinomycin biosynthesis.  The identification and sequencing of the 

azinomycin biosynthetic gene cluster was a challenging goal.  Our approach initially was based 

upon state of the art approach at the time: production of a genomic library and screening with 

degenerate probes.  This approach was problematic as production of Streptomyces sahachiroi 

genomic libraries in a bacterial artificial chromosome (BAC, 100-250 kilo bases), cosmid (COS, 

30-50 kilo bases), or fosmid (FOS, 30-50 kilo bases) all have size restrictions and construction 

biases.  The potential size of the azinomycin biosynthetic gene cluster could be near the 

maximum capacity of cloning vectors. The result is a series of statistical problems involving an 

array of potential clones that must be overcome to obtain the full sequence.  My involvement in 

this portion of the project was limited and ultimately ended as the entire project scope grew.  As 

efforts towards isolating the cluster and important genes within proceeded, advances in state of 

the art cluster isolation, cluster analysis, and DNA sequencing evolved the approach to these 
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problems.  Significant improvement in DNA probe specificity for a particular biosynthetic gene 

type was possible after analysis and integration of increasingly available sequence information 

from the analysis of other natural products.  Additionally, the analysis of the genomic DNA of 

more Streptomyces species has improved the field of gene analysis.  As analysis of the in-house 

genomic libraries from Streptomyces sahachiroi went forward, we also prepared to explore 

genomic sequencing for this microorganism. The advances in genomic sequences, particularly 

for sequencing organisms with high GC content genomic DNA, have enabled whole organism 

sequencing to be an economically viable and scientifically desirable goal. With complex 

biosynthetic construction, determining the outer limits of the gene cluster is difficult. Having the 

organism’s entire sequence eliminates problems associated with loss of genes on the periphery of 

gene clusters. 

During the process of our sequencing efforts (and the preparation of this dissertation), an 

article by Zhao, et al. appeared revealing the putative azinomycin biosynthetic cluster [176]. The 

authors report the sequence and a cursory analysis of the genes with a proposed biosynthesis 

based on the analyzed sequence similarity to publicly available genes.  The authors identified the 

cluster by designing targeted PCR primers for a type I iterative PKS, much like the previously 

identified type I iterative PKS discussed in the introduction of this work (Figure 18 & Figure 

20A).   Zhao, et al. primarily examined a knock-out and heterologous expression of the PKS 

gene to prove its role in azinomycin production and as a proof for the identification of the correct 

biosynthetic cluster.  While initial inspection of the gene cluster reveals a number of genes whose 

role could be linked to azinomycin biosynthesis, their experiments warrant some concern related 

to their transformations or conjugation procedure.  Putative genetic knockouts were compared to 

the wild-type strain and not to the wild-type strain housing an empty vector.  In the Watanabe 

lab’s hands, including the author’s own hands, protoplasting procedures that have enabled 

transformation with empty vectors have also abolished production of azinomycin B.  Moreover, a 

postdoctoral fellow in our lab who is well-versed with Streptomyces conjugation procedures has 

not yet been able to successfully repeat their conjugation procedure, while has been able to 

successfully transform other Streptomyces strains including another azabicycle producting 

microorganism, Streptomyces ficellus.  To ensure the proper localization of the pathway and/or 

that the pathway does not act in trans, the Watanabe lab is in the process of sequencing the 

genome of S. sahachiroi.  

Zhao, et al.’s proposed biosynthesis falls short of truly revealing the exact biosynthetic 

construction of the azinomycins.  The reported gene cluster misses key elements and is 
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incongruent with our empirical feeding experiment results.  Zhao, et al. contends that α-

ketoisovaleric acid is the substrate incorporated for the formation of the epoxide moiety.  Zhao’s 

findings partially corroborate our discovery of the modification of valine, but our results show 

the most advanced putative precursor shown to be processed by the azinomycin biosynthetic 

machinery was 3-methyl-2-oxobutenoic acid.  Additionally, Zhao’s characterization of the origin 

of the hydroxyl groups of the aziridinopyrollidine ring is inconsistent with our molecular oxygen 

feeding results as they propose the C12 hydroxyl arises from the reduced end portion of a 

glutamate derivative. The enol moiety which we showed was derived from whole incorporation 

of L-threonine is theorized by Zhao, et al. to be modified, as our results indicated, post 

incorporation by an “acyl-CoA dehydrogenase.”  Interestingly Zhao, et al. also attribute to a 

similar “acyl-CoA dehydrogenase” the modification of the epoxide unit to a double bond before 

introduction of the oxygen of the epoxide.  Zhao, et al. then suggest that decarboxylation at the 

C3 position by an unidentified enzyme could lead to azinomycin A, whereas our results suggest a 

direct competition between aminoacetone and L-threonine for incorporation into the end unit of 

the azinomycins yielding azinomycin A and B, respectively.  While our results cannot 

completely eliminate modifications of azinomycin B to yield azinomycin A (with the 

incorporation of [U-13C] L-threonine into azinomycin A) the direct incorporation of 

aminoacetone clearly supports an incorporation competition model. 

 As discussed earlier, there are definite limitations to whole cell feeding studies.  One is 

limited in determination of the exact mechanism for biosynthesis.  Analysis, combined with 

knowledge of previously reported systems, may yield a strong case for the biosynthetic 

construction and the employed mechanisms.  The complete characterization of the construction 

of the unique moieties of the azinomycins will require full and thorough sequence analysis in 

combination with enzymatic reconstitution.  This work is an ongoing endeavor in the laboratory 

of Dr. Coran M. H. Watanabe.  While we have no doubt made some inroads to understanding the 

mode of action and biosynthesis of the azinomycins, much remains to be done and discovered. 

The potential knowledge and insight gained from understanding the mode of action and 

biosynthetic construction of the azinomycins could be of great significance.  This unique natural 

product with PKS, NRPS, and alkaloid construction may serve as a model hybrid system.  Future 

analysis of the construction of each moiety of the azinomycins could yield understanding of the 

nature of modular construction and its amenability toward modification for use in novel hybrid 

natural product biosynthesis.  The promise of modular construction of natural products is that one 

would be able to specifically construct custom and novel natural products.  Such hybrid natural 
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products, produced by rational or combinatorial methods, may help address the growing problem 

of antibiotic resistant microorganisms or the need for other pharmaceuticals.  The greater 

understanding of natural product construction, the closer we are to advancing the ancient 

tradition of beneficial use of natural products.   The research and results discussed in this 

dissertation aim to enhance our understanding and to help achieve this goal. 
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SUPPLEMENTARY DATA FOR CHAPTER II AND CHAPTER III 

 

NAPHTHOIC ACID SYNTHESIS 

COMPOUND USED IN CHAPTER II AND CHAPTER III 

(SYNTHESIZED BY DR. CHAOMIN LIU) 

 

 
Scheme 7.  Synthesis of 1-o-Tolyl-propan-2-ol. 
 

 

To a solution of 2-Bromotoluene, 1, (171 mg, 1.0 mmol) in dry ethyl ether (5 mL) at -78 °C was 

added butyllithium (0.46 mL, 2.5 M in hexane) drop wise.  Following addition, the cold bath was 

removed, and the reaction mixture was allowed to warm to room temperature (RT).  After an 

additional 3 h of stirring, the reaction mixture was cooled to -78 °C, and a solution of propylene 

oxide (0.14 mL in 0.14 mL of ethyl ether) was added drop wise.  Stirring was continued at -78 °C 

for an additional hour, and then the reaction was allowed to warm to RT.  The reaction was 

allowed to stir overnight and subsequently was quenched by the addition of water.  The resulting 

mixture was extracted with ethyl acetate (10 mL x 3), and the organic phase was dried over 

MgSO4 and concentrated.  The crude product was purified by flash silica chromatography (230-

400 mesh), eluting with EtOAc/hexanes (1:6), to afford 2 as a colorless oil (514 mg, yield 63%) 

(Scheme 7).   1-o-Tolyl-propan-2-ol 1H NMR (300 MHz, CDCl3, 25 ºC)) δ: 7.15 (m, 4H), 4.00 

(m, 1H), 2.77 (dd, J = 5.4, 13.8 Hz, 1H), 2.73 (dd, J = 7.8, 1H,13.8 Hz), 2.33 (s, 3H), 1.25 (d, J = 

6.3 Hz, 3H)  13C NMR (75 MHz, CDCl3, 25 ºC) δ: 137.0 (C), 136.8 (C), 130.7 (CH), 130.3 (CH), 

126.8 (CH), 126.2 (CH), 68.1 (CH), 43.1 (CH2), 23.2 (CH3), 19.8 (CH3).    
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Scheme 8.  Synthesis of 1-o-Tolylpropan-2-one. 
 

 

To a solution of 1-o-Tolyl-propan-2-ol, 2, (50 mg, 0.33 mmol) in ethyl acetate (2.5 mL) was 

added 1-hydroxy-1,2- benziodoxol-3(1H)-one-1-oxide (IBX), (280 mg, 1.0 mmol), and the 

reaction was stirred vigorously at 80 ºC for ca.  5 h. [222] [223].  The resulting suspension was 

filtered, and the filter cake was rinsed three times with ethyl acetate.  The combined filtrate was 

concentrated to afford the crude product, which was then purified by flash silica chromatography 

[ethyl acetate and hexane (1:6)] to afford 3 as a colorless oil (44.5 mg, yield 91%) (Scheme 8).  

1-o-Tolylpropan-2-one 1H NMR (300 MHz, CDCl3, 25 ºC) δ: 7.20 (m, 4H), 3.72 (s, 2H), 2.25 (s, 

3H), 2.15 (s, 3H) 13C NMR (75 MHz, CDCl3, 25 ºC) δ: 206.6 (C), 137.0 (C), 133.3 (C), 130.7 

(CH), 130.5 (CH), 127.6 (CH), 126.4 (CH), 49.3 (CH2), 29.4 (CH3), 19.8 (CH3).   

 

 

 
Scheme 9.  Synthesis of 2-Hydroxy-4-oxo-5-o-tolyl-pent-2-enoic acid ethyl ester. 
 

 

A solution of 1-o-Tolylpropan-2-one, 3, (1.9 g, 12.8 mmol) in diethyl ether (60 mL) was cooled 

to 0 ºC to which a solution of sodium ethoxide, NaOEt,  (294 mg sodium metal, 12.8 mmol in 5 

mL of ethanol) was added dropwise.  The reaction was allowed to stir for about 30 min. at 0 ºC, 

followed by the dropwise addition of diethyl oxalate (1.87 g, 12.8 mmol).  The reaction mixture 

was subsequently stirred at RT for 24 h.  The resulting pale yellow solid product was collected by 

filtration and washed with cold ethyl ether, giving the desired product 4 as its sodium enolate in 

85% yield (2.9 g) (Scheme 9).  The enolate was directly used in the next step without further 
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purification.  Sodium enolate salt 1H NMR (300 MHz, CDCl3, 25 ºC) δ: 6.97-7.01 (m, 4H), 5.76 

(s, 1H), 3.97 (q, 2H, J = 7.2 Hz), 3.38 (s, 2H), 2.11 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H).   
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Scheme 10.  Synthesis of 3-Hydroxy-5-methyl-naphthalene-1-carboxylic acid ethyl ester. 
 

 

Concentrated sulfuric acid (0.5 mL) was added slowly to a chilled solution of the sodium enolate 

of  4 (65.7 mg, 0.24 mmol) in chloroform (9 mL), with vigorous stirring.  Following addition, the 

reaction mixture was stirred continuously at 0 ºC for about 20 min. The reaction was then 

warmed to RT and stirred for an additional 30 min. The reaction mixture was poured into ground 

ice (25 mL), extracted with methylene chloride (25 mL x 4), dried over MgSO4, and concentrated 

in vacuo.  The organic residue was subsequently purified by flash silica chromatography (1:5 

EtOAc/Hexanes) to generate the desired product 3-hydroxy-5-methyl-naphthalene-1-caboxylic 

acid ethyl ester 5 (38.7 mg, 71% yield) (Scheme 11).  3-hydroxy-5-methyl-naphthalene-1-

caboxylic acid ethyl ester 1H NMR (300 MHz, CDCl3, 25 ºC) δ: 8.61 (m, 1H), 7.81 (d, J = 2.7 

Hz, 1H), 7.54 (dd, J = 0.75, 2.7 Hz, 1H), 7.34-7.38 (m, 2H), 5.81 (bs, 1H, OH), 4.50 (q, J = 7.2 

Hz, 2H), 2.63 (s, 3H), 1.48 (t, J = 7.2 Hz, 3H) 13C NMR (75 MHz, CDCl3, 25 ºC)) δ: 168.0 (C), 

152.2 (C), 134.8 (C), 133.2 (C), 130.2 (C), 127.8 (CH), 127.1 (C), 125.1 (CH), 124.1 (CH), 121.1 

(CH), 111.7 (CH), 61.7 (CH2), 20.2 (CH3), 14.6 (CH3).   

 

 

 
Scheme 11.  Synthesis of 3-Methoxy-5-methyl-naphthalene-1-carboxylic acid (naphthoate). 
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To a solution of 3-Hydroxy-5-methyl-naphthalene-1- caboxylic acid ethyl ester 5 (101 mg, 1.0 

mmol) and dimethyl sulfate (142.3 mg, 1.1 mmol) in 0.5 mL of dioxane was added a 25% 

solution of aqueous sodium hydroxide (1.5 mL).  After stirring at RT for 30 min, the mixture was 

heated to ~100 ºC for 6 h and cooled to RT. 

The resulting basic mixture was extracted with dichloromethane (3 mL x 2).  The 

aqueous phase was acidified to pH 5 by addition of concentrated hydrochloride and extracted 

with ethyl acetate (5 mL x 3).  The organics were dried over MgSO4 and concentrated in vacuo to 

afford the final product 6 as a pale white solid in quantitative yield (Scheme 11).  3-Methoxy-5-

methyl-naphthalene-1-carboxylic acid (naphthoate) 1H NMR (300 MHz, CDCl3, 25 ºC) δ: 8.30 

(m, 1H), 8.05 (d, J = 2.4 Hz, 1H), 7.54 (d, J = 2.4 Hz, 1H), 7.38-7.43 (m, 2H), 3.99 (s, 3H), 2.69 

(s, 3H) 13C NMR (75 MHz, CDCl3, 25 ºC) δ: 172.9 (C), 155.8 (C), 134.4 (C), 133.2 (C), 127.8 

(C), 127.6 (CH), 127.1 (C), 125.2 (CH), 123.9 (CH), 122.8 (CH), 109.3 (CH), 55.5 (CH3), 20.2 

(CH3). 
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SUPPLEMENTARY DATA FOR CHAPTER V 

 

FramePlot and alignment details: 

S. sahachiroi genomic sequence was analyzed using FramePlot 3.0beta and NCBI BLAST.  The 

protein sequences for L-threonine-3-dehydrogenase and 2-amino-3-ketobutyrate CoA ligase from 

other Streptomyces species were obtained through StrepDB, the Streptomyces Annotation Server 

(http://strepdb.streptomyces.org.uk/cgi-bin/search_by_kegg_pathway.pl), which organizes genes 

according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [159-161]. 

Alignments were performed with CLUSTALW [224].  

 

 

 
Figure 110.  FramePlot analysis of a contig from genomic sequencing of S. sahachiroi. 
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Figure 111.  CLUSTALW alignment of threonine-3-dehydrogenases and 2-amino-3-ketobutyrate 
CoA ligases in Streptomyces sp. 
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Table 21.   Stable isotope compounds and amounts administered. 
 

Substrate  ID  Amount administered 

    mg  mmoles 

[Methyl‐13C] L‐methionine    50  0.333 

[1‐13C] sodium acetate    1000  12.044 

Epoxide Moiety Series       

[1‐13C] L‐valine  V2  100  0.847 

[1‐13C] L‐valine TFA  V2  100  0.847 

[1‐15N] L‐valine  V2  250  2.119 
[1‐13C] L‐γ‐hydroxyvaline ((2S)‐2‐amino‐4‐hydroxy‐3‐

methylbutanoic acid) 
V3  140  1.045 

[1‐13C] D‐γ‐hydroxyvaline ((2R)‐2‐amino‐4‐hydroxy‐3‐
methylbutanoic acid) 

V3*  140  1.045 

[1‐13C] R‐keto hydroxy acid (4‐hydroxy‐3‐methyl‐2‐oxobutanoic 
acid) 

V5  166  1.239 

[1‐13C] epoxy‐keto acid (2‐(2‐methyloxiran‐2‐yl)‐2‐oxoacetic acid)  V8  90  0.687 
[1‐13C] epoxy‐hydroxy acid ((2S)‐2‐hydroxy‐2‐(2‐methyloxiran‐2‐

yl)acetic acid) 
V9  75  0.564 

[1‐13C] isodehydrovaline HCl  (2‐amino‐3‐methylbut‐3‐enoic acid 
hydrochloride) 

V10  90  0.596 

[1‐13C] allyl‐hydroxy acid (2‐hydroxy‐3‐methylbut‐3‐enoic acid)  V11  100  0.855 
[1‐13C] sodium allylketocarboxylate (sodium 3‐methyl‐2‐oxobut‐3‐

enoate) 
V12  127  0.927 

[1‐13C] allylketocarboxylate (3‐methyl‐2‐oxobut‐3‐enoate)  V12  127  0.927 

Enol and azinomycin A end fragment Series 
     

[U‐13C4] L‐threonine  T2/AA3  97  0.708 
[U‐13C4] Ketocarboxylate threonine TFA ((S)‐2‐amino‐3‐

oxobutanoic acid)  
T3/AA4  124  0.569 

[U‐13C4] Hydroxy aldehyde threonine TFA ((2S)‐2‐amino‐3‐
hydroxybutanal) 

T4  163  0.799 

[U‐13C4] Keto aldehyde threonine TFA ((R)‐2‐amino‐3‐oxobutanal)  T5  169  0.837 

[1‐13C] L‐Threonine  T2/AA3  100  0.746 

[15N] L‐Threonine  T2/AA3  230  1.716 

[2‐13C] glycine  AA6  1000  13.146 

[1‐13C] glycine  AA6  100  1.315 

[1‐13C] glycine  AA6  1000  13.146 

[15N] glycine  AA6  1000  13.146 

[2,2‐D2] glycine  AA6  1000  12.975 

[2‐13C] aminoacetone (1‐aminopropan‐2‐one)  AA5  300  4.049 
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Table 22.   Stable isotope compounds and amounts administered (continued). 
 

Substrate  ID  Amount administered 

    mg  mmoles 

Oxygen Origin Series 
     

[U‐18O2] oxygen gas    3 Liters  133.929 

[U‐18O2] oxygen gas    3.7 Liters  165.179 

Azabicycle Moiety Series       

[3‐13C] L‐aspartate    100  0.746 

[U‐15N2] L‐asparagine    220  1.641 

[1,2‐13C2] L‐ornithine    100  0.745 

[1‐13C] L‐proline    100  0.862 

[1‐13C] L‐lysine    100  0.680 

[2‐13C] L‐serine    100  0.943 

[U‐13C6] L‐arginine    100  0.555 

[1‐13C] D‐arabinose    900  5.955 

[1‐13C] D‐xylose    900  5.955 

[U‐13C6] D‐glucose    1000  5.372 

[1‐13C] pyroglutamic acid, 17  AZ17  160  1.230 

[1‐13C] pyroglutaminol, 5  AZ5  140  1.206 

[1‐13C] (3S,4R)‐3,4‐dihydroxy‐5‐(hydroxymethyl)pyrrolidin‐2‐one, 
16a   

AZ16a  200  1.350 

[1‐13C] (3R,4S)‐3,4‐dihydroxy‐5‐(hydroxymethyl)pyrrolidin‐2‐one, 
16b   

AZ16b  200  1.350 

[1‐13C] 3, 4 dihydroxy glutamic acid ((3S,4R)‐2‐amino‐3,4‐
dihydroxypentanedioic acid), 15a  

AZ15a  200  1.110 

[1‐13C] 3, 4 dihydroxy glutamic acid ((3R,4S)‐2‐amino‐3,4‐
dihydroxypentanedioic acid), 15b 250mg  

AZ15b  250  1.388 

[1‐13C] DL‐glutamic acid  AZ6  231  1.559 

[1‐13C] DL‐glutamic acid  AZ6  1000  6.751 
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Figure 112.  Major species identified in the purification of the azinomycins with carbon 
positional number assignment. 
Many of these species were found in crude extract spectra from S. sahachiroi.  13C shifts are reported in 
Table 23. 
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Table 23.  Carbon shifts (ppm) for azinomycin B and related compounds. 
Carbon positions as numbered in Figure 112. 
 

Carbon 
Position 

Azinomycin 
B 

Azinomycin 
B, azirdine 
hydrolyzed 

Azinomycin 
A 

Epoxyamide  Naphthamide 

  ppm  ppm  ppm  ppm  ppm 

C1  24.5  24.3 27.2    
C2  191.5  191.3 202.6    
C3  118.6  118.1 50.6    
C4  150.8  149.7      
C6  162.0  166.2 163.2    
C7  119.3  93.0 120.1    
C8  153.0  157.2 149.6    
C10  36.7  63.3 35.8    
C11  46.4  43.7 45.4    
C12  77.4  73.9 76.9    
C13  84.4  81.2 84.0    
C14  173.0  171.6 172.7    
C15  21.0  21.2 20.7    
C17  164.0  168.6 163.8 168.7   
C18  77.1  77.6 76.7 75.9   
C19  56.2  56.4 56.0 55.8   
C20  17.2  18.0 17.0 17.6   
C21  53.9  54.1 53.7 53.3   
C1'  128.1  128.4 128.4 128.3  133.6 
C1' CO  165.7  166.9 165.7 165.6  173.3 
C2'  122.3  122.5 121.8 122.0  117.5 
C3'  156.0  156.1 156.0 155.9  156.6 

C3' OCH3  55.7  55.9 55.6 55.6  55.6 

C4'  108.5  108.9 108.6 108.5  105.7 
C4'a  134.5  134.7 134.4 134.4  134.6 
C5'  133.3  133.5 133.1 133.2  133.6 

C5' CH3  20.3  20.5 20.0 20.0  20.0 
C6'  127.9  128.1 127.7 127.8  128.0 
C7'  125.4  125.6 125.1 125.2  124.6 

C8'  123.9  124.2 123.9 123.8  123.7 
C8'a  127.0  127.2 126.9 126.9  125.9 
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Spectral Data for Isotopically Labeled Compound Feeding Experiments. 
*X denotes impurity. 
 

 
Figure 113.  1H Spectra standard for azinomycin B.  
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13C SPECTRA 
*X denotes hydrolyzed azinomycin B, azinomycin A, or other impurity. 
 
 

 
Figure 114.  Standard azinomycin B carbon spectrum with numbers assigned. 
Run 10 hours, ~30mg material, cleaned up. Pulse delay time = 2 seconds. 
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Figure 115.  Representative APCI Mass Spectrometry Spectrum detecting azinomycin B and 
related structures. 
A typical analysis of an azinomycin sample using atmospheric pressure chemical ionization mass 
spectrometry (APCI-MS). Key species observed (structures shown below) include: 216 (naphthamide + 
H+); 330 (epoxyamide + H+); 556 (azinomycin A + H+); 614 (azinomycin A (with 1 ring hydrolyzed) + 
H+); 632 (azinomycin A (with 2 rings hydrolyzed) + H+); 624 (azinomycin B + H+); 642 (azinomycin B 
(with 1 ring hydrolyzed) + H+); 660 (azinomycin B (with 2 rings hydrolyzed) + H+).  
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Figure 116.  Azinomycin B, fed [Methyl-13C] L-methionine 50mg. 
 

 
Figure 117.  Azinomycin B, fed [1-13C] sodium acetate 1000mg.  
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BIOSYNTHETIC ROUTE TO THE EPOXIDE MOIETY INCORPORATION SERIES 

 
Figure 118.  Azinomycin B, fed [1-13C] L-valine (V2) 100mg. 
 

 

 
Figure 119.  Azinomycin B, fed [1-13C] L-γ-hydroxyvaline ((2S)-2-amino-4-hydroxy-3-
methylbutanoic acid) (V3) 140mg.  
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Figure 120.  Azinomycin B, fed [1-13C] D-γ-hydroxyvaline ((2R)-2-amino-4-hydroxy-3-
methylbutanoic acid) (V3) 100mg. 
 

 

 
Figure 121.  Azinomycin B, fed [1-13C] R-keto hydroxy acid (4-hydroxy-3-methyl-2-oxobutanoic 
acid) (V5) 150mg. 
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Figure 122.  Azinomycin B, fed [1-13C] epoxy-keto acid (2-(2-methyloxiran-2-yl)-2-oxoacetic 
acid) (V8) 90mg. 
 

 

 
Figure 123.  Azinomycin B, fed [1-13C] epoxy-hydroxy acid ((2S)-2-hydroxy-2-(2-methyloxiran-
2-yl)acetic acid) (V9) 75mg. 
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Figure 124.  Azinomycin B, fed [1-13C] Isodehydrovaline (2-amino-3-methylbut-3-enoic acid 
hydrochloride) (V10) 90mg. 
 

 

 
Figure 125.  Azinomycin B, fed [1-13C] allyl-hydroxy acid (2-hydroxy-3-methylbut-3-enoic acid) 
(V11) 100mg. 
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Figure 126.  Azinomycin B, fed [1-13C] sodium allylketocarboxylate (sodium 3-methyl-2-oxobut-
3-enoate) (V12) 127mg. 
 

 

 
Figure 127.  Epoxyamide ((S)-2-amino-1-((S)-2-methyloxiran-2-yl)-2-oxoethyl 3-methoxy-5-
methyl-1-naphthoate) (Supplied pure courtesy of Dr. Robert Coleman). 
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Figure 128.  Overlay of Azinomycin B 13C-NMR Spectra at 164.0 ppm and 168.9 ppm for all the 
fed valine derivative series and the epoxyamide. 
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BIOSYNTHETIC ROUTE TO THE ENOL MOIETY INCORPORATION SERIES. 

 

 
Figure 129.  Azinomycin B, fed [1-13C] L-threonine (T2) 100mg with [1-13C] L-Valine (V2) 
100mg.  
 

 
Figure 130.  Azinomycin B, fed [U-13C] L-threonine (T2) 97mg.   
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Figure 131.  Azinomycin B, fed [U-13C] ketocarboxylate threonine TFA ((S)-2-amino-3-
oxobutanoic acid) (T3) 124mg.  
 

 
Figure 132.  Azinomycin B, fed [U-13C] hydroxy aldehyde threonine TFA ((2S)-2-amino-3-
hydroxybutanal) (T4) 163mg.   
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Figure 133.  Azinomycin B, fed [U-13C] keto aldehyde threonine TFA ((R)-2-amino-3-
oxobutanal) (T5) 169mg.  
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Figure 134.  Overlay of Azinomycin B 13C-NMR Spectra for [U-13C] L-threonine derivative 
series (T2-T5), incorporation into azinomycin C1 of azinomycin B. 
Splitting of the C1 signal seen in the feeding of [U-13C] L-Threonine (T2) only. 
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Figure 135.  Overlay of Azinomycin B 13C-NMR Spectra for [U-13C] L-threonine derivative 
series (T2-T5), incorporation into azinomycin C2 of azinomycin B. 
Splitting of the C2 signal seen in the feeding of [U-13C] L-Threonine (T2) only. 
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Figure 136.  Overlay of Azinomycin B 13C-NMR Spectra for [U-13C] L-threonine derivative 
series (T2-T5), incorporation into azinomycin C3 of azinomycin B. 
Splitting of the C3 signal seen in the feeding of [U-13C] L-Threonine (T2) only. 
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Figure 137.  Overlay of Azinomycin B 13C-NMR Spectra for [U-13C] L-threonine derivative 
series (T2-T5), incorporation into azinomycin C4 of azinomycin B. 
Splitting of the C4 signal seen in the feeding of [U-13C] L-Threonine (T2) only. 
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BIOSYNTHETIC ROUTE TO THE END FRAGMENT OF AZINOMYCIN A. 

INCORPORATION SERIES 

 
Figure 138.  Azinomycin A 13C-NMR Spectra for [U-13C] L-threonine (T2/AA3), incorporation 
into C1-3 of azinomycin A. 
Splitting of the carbon signals seen in the feeding of [U-13C] L-Threonine (T2-5) from the threonine series 
into azinomycin A. No splitting signals were seen with the feeding of 2-amino-3-ketobutyrate (T3/AA4). 
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Figure 139.  Azinomycin B, fed [15N] L-threonine (AA3) 230mg.  
 

 
Figure 140.  Azinomycin B, fed [15N] threonine (AA3) 230mg 1H-NMR.  
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Figure 141.  Azinomycin B, fed [1-13C] glycine (AA6) 100mg.  
 
 

 
Figure 142.  Azinomycin B, fed [1-13C] glycine (AA6) 1000mg.  



 217

 
Figure 143.  Azinomycin B, fed [2-13C] glycine (AA6) 1000mg.  
 
 

 
 
Figure 144.  Azinomycin B, fed [2-13C] glycine (AA6) 1000mg spectral blow ups 
The following are blow ups of the above 1g [2-13C] glycine incorporation into azinomycin B spectra 
showing the observed splitting pattern indicative of neighboring labled units, such as being converted to 
[1,2-13C2] Acetyl-CoA units, or simply into 13C labeled methyl groups to for the C3’OCH3. 
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Figure 144. Splitting patterns observed in Azinomycin B fed [2-13C] glycine (AA6) 1000mg, 
Continued. 
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Figure 144. Splitting patterns observed in Azinomycin B fed [2-13C] glycine (AA6) 1000mg, 
Continued.
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Figure 145.  Azinomycin B, fed [2,2-D2] glycine (AA6) 1000mg.  
 

 
Figure 146.  Azinomycin B, fed [15N] glycine (AA6) 1000mg.  
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Figure 147.  APCI-Mass Spectrometry for 15N-glycine (AA6) incorporation into the epoxyamide. 
Epoxyamide (M+H = 330, M+H+1 = 331). This may idicate that the 1gram introduction of nitrogen 
labeled glycine served as a general source of extra nitrogen for transamination reactions. 
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Figure 148.  APCI-Mass Spectrometry for 15N-glycine (AA6) incorporation into the azinomycin 
A & B. 
Azinomycin A (M+H = 596, M+H+H2O = 614) & azinomycin B (M+H = 624, M+H+H2O = 642,  
M+H+2H2O = 660). Incorporation seen at: 597 & 598,  (Azinomycin A [M+H+1] and [M+H+2]); 615,  
(Azinomycin A [M+H2O+H+1]); 625 & 626,  (Azinomycin B [M+H+1] and [M+H+2]); 643 & 644,  
(Azinomycin B [M+H2O+H+1] and [M+H2O+H+2]); and 661 & 662,  (Azinomycin B [M+2H2O+H+1] 
and [M+2H2O+H+2]). 
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Figure 149.  Spectral overlay of feeding 300mg aminoacetone (AA5): [2-13C] aminoacetone 
purified for azinomycin A, [2-13C] aminoacetone purified for azinomycin B, and unlabeled 
aminoacetone purified both azinomycins. 
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Figure 150.  Azinomycin B, fed aminoacetone HCl (AA5) 1250mg. 
Fed in two 625mg parts, essentially only naphthamide (3-methoxy-5-methyl-1-naphthamide) and silicone 
grease present.  
 

 
Figure 151.  Azinomycin B, fed aminoacetone HCl (AA5) 700mg. 
Fed in eight 87.5 mg parts from a 3mg/ml solution of aminoacetone HCl. Contaminating solvent, 
naphthamide (3-methoxy-5-methyl-1-naphthamide), and silicone grease are present.  Culture was 
reasonably healthy. 
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Figure 152.  Azinomycin B, fed aminoacetone HCl (AA5) 1000mg. 
Fed in eight 125 mg parts from a 3mg/ml solution of aminoacetone HCl. Contaminating solvent, 
naphthamide (3-methoxy-5-methyl-1-naphthamide), and silicone grease are present.  Culture was 
reasonably healthy. 
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INCORPORATION OF MOLECULAR OXYGEN INTO AZINOMYCIN B. 

COMPOUND FEEDING SPECTRA SERIES 

 

 
Figure 153.  APCI-Mass Spectrometry for 18O2 incorporation into azinomycins A and B from 
crude extract. 
Azinomycin A (M+H = 596, M+H+H2O = 614) & azinomycin B (M+H = 624, M+H+H2O = 642,  
M+H+2H2O = 660). Incorporation seen at: 598 & 600,  (Azinomycin A [M+H+2] and [M+H+4]); 616 & 
618,  (Azinomycin A [M+H2O+H+2] and [M+H2O+H+4]); 626 & 628,  (Azinomycin B [M+H+2] and 
[M+H+4]); 644 & 646 & 648,  (Azinomycin B [M+H2O+H+2], [M+H2O+H+4], and [M+H2O+H+6]). 

 

 

  
Figure 154.  18O Incorporation into truncated Naphthoate moiety detected by APCI-MS. 
Truncated naphthoate = [M+H] = 199, [M+H+2] = 201 indicating incorporation of an oxygen atom at the 
C3’OCH3. 
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Figure 155.  1H Spectra of 18O2 incorporated azinomycin B. 
 

 

 
Figure 156.  13C Spectra of 18O2 incorporated azinomycin B. 
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BIOSYNTHETIC ROUTE TO THE AZIRIDINO[1,2A]PYRROLIDINE (1-

AZABICYCLO[3.1.0]HEXANE) MOIETY OF AZINOMYCIN B. 

COMPOUND FEEDING SPECTRA SERIES 

 
Figure 157.  Azinomycin B, fed [3-13C] L-aspartate 100mg. 
 

 
Figure 158.  Azinomycin B, fed [U-15N2] L-asparagine 220mg. 
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Figure 159.  Azinomycin B, fed [U-15N2] L-asparagine 220mg. 
Incorporation into azinomycin A & B observed, lower than that of 1g 15N glycine. 
Azinomycin A (M+H = 596, M+H+H2O = 614) & azinomycin B (M+H = 624, M+H+H2O = 642,  
M+H+2H2O = 660). Incorporation seen at: 597 & 598,  (Azinomycin A [M+H+1] and [M+H+2]); 625 & 
626,  (Azinomycin B [M+H+1] and [M+H+2]); and 643 & 644,  (Azinomycin B [M+H2O+H+1] and 
[M+H2O+H+2]). 
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Figure 160.  Azinomycin B, fed [1,2-13C2] L-ornithine•2HCl 100mg. 
Poor yielding culture, no intelligible incorporation, 12/12/2005. 
 

 
Figure 161.  Azinomycin B, fed [1,2-13C2] L-ornithine•2HCl 100mg. 
Poor yielding culture, no intelligible incorporation, 2/8/2006. 
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Figure 162.  Azinomycin B, fed [1-13C] L-proline 100mg. 
 

 
Figure 163.  Azinomycin B, fed [1-13C] L-lysine•HCl 100mg co-fed with [1-13C] L-valine 
100mg. 
[1-13C] L-valine appears to have been incorporated in to the epoxyamide derivative with C17 at 168.7ppm, 
with some incorporation C17 of azinomycin B at 164.0 ppm.  No obvious incorporation of [1-13C]lysine. 
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Figure 164.  Azinomycin B, fed [2-13C] L-serine 100mg. 
 

 
Figure 165.  Azinomycin B, fed [U-13C6] L-arginine 100mg. 
No splitting patterns observed to indicate incorporation of the universally labeled substrate. 
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Sugars 

 
Figure 166.  Azinomycin B, fed [1-13C] D-arabinose 900mg. 
No Incorporation observed. 
 
 
 

 
Figure 167.  Azinomycin B, fed [1-13C] D-Xylose 900mg. 
No significant incorporation seen. Azinomycin B aziridine ring hydrolyzed product isolated and seen in 
above spectrum.  
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Figure 168.  Azinomycin B, fed [U-13C6] D-Glucose 1000mg. 
No splitting patterns are observed in the carbons, azinomycin B, azinomycin A, naphthamide are present in 
the sample. 
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Synthesized azabicycle compounds 

 
Figure 169.  Azinomycin B, fed [1-13C] Pyroglutaminol (5-(hydroxymethyl)pyrrolidin-2-one), 
(AZ5) 140mg. 
 

 
Figure 170.  Azinomycin B, fed [1-13C] Pyroglutamic acid  (5-oxopyrrolidine-2-carboxylic acid), 
(AZ17) 160mg. 
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Figure 171.  Azinomycin B, fed [1-13C] (3S,4R)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-
one, (AZ16a)  200mg. 
 

 

Figure 172.  Azinomycin B, fed [1-13C] (3R,4S)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-
one, (AZ16b)  200mg. 
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Figure 173.  Azinomycin B, fed [1-13C] 3, 4 dihydroxy glutamic acid ((3S,4R)-2-amino-3,4-
dihydroxypentanedioic acid) (AZ15a)  200mg. 
 

 
Figure 174.  Azinomycin B, fed [1-13C] 3, 4 dihydroxy glutamic acid (3R,4S)-2-amino-3,4-
dihydroxypentanedioic acid) (AZ15b)  200mg. 
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Figure 175.  Azinomycin B, fed [1-13C] DL-glutamic acid (AZ6) 231mg. 
Incorporation into C6 of azinomycin B observed. 
 

 

 
Figure 176.  Azinomycin B, fed [1-13C] DL-glutamic acid (AZ6) 1000mg. 
Incorporation into C6 of azinomycin B observed. 
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PERCENT INCORPORATION NUMERICAL DATA FOR ISOTOPICALLY LABELED 

COMPOUND FEEDING EXPERIMENTS. 

 
Table 24.   Stable isotope compounds and the calculated % Incorporation as calculated in 
standardized reference to C3′OCH3 or C20. 
% Incorporation is defined as [AC#N - BC#N]/[BC#N] X 1.10 for 13C carbons where AC#N is the given # 
carbon’s signal peak height normalized to the stated reference carbon (in this case C3′OCH3 or C20) for 
the labeled compound feeding treatment and BC#N is the given # carbon’s signal peak height normalized to 
the stated reference carbon (in this case C3′OCH3 or C20) for unlabeled (natural abundance) azinomycin 
B. 1.10 is the % of 13C standardly found.  In most cases when the molar amount of compound series was 
not exactly on standard, the culture volume was adjusted to make up for a lower amount of labeled 
compound.  In the few cases when a larger than normal amount was administered, a numberical 
normalization factor (N) is added to the calculation, to adjust downwards the impact of adminstered 
compound.  As this is only used in comparative series, the normalization factor (N) is not usually 
employed. 
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Table 25.   Stable isotope compounds and the calculated % Incorporation as calculated in 
standardized reference to C3′OCH3 or C20. 
% Incorporation is defined as [AC#N - BC#N]/[BC#N] X 1.10 for 13C carbons where AC#N is the given # 
carbon’s signal peak height normalized to the stated reference carbon (in this case C3′OCH3 or C20) for 
the labeled compound feeding treatment and BC#N is the given # carbon’s signal peak height normalized to 
the stated reference carbon (in this case C3′OCH3 or C20) for unlabeled (natural abundance) azinomycin 
B. 1.10 is the % of 13C standardly found.  In most cases when the molar amount of compound series was 
not exactly on standard, the culture volume was adjusted to make up for a lower amount of labeled 
compound.  In the few cases when a larger than normal amount was administered, a numberical 
normalization factor (N) is added to the calculation, to adjust downwards the impact of adminstered 
compound.  As this is only used in comparative series, the normalization factor (N) is not usually 
employed. 
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Table 26.   Stable isotope compounds and the calculated % Incorporation as calculated in 
standardized reference to C3′OCH3 or C20. 
% Incorporation is defined as [AC#N - BC#N]/[BC#N] X 1.10 for 13C carbons where AC#N is the 
given # carbon’s signal peak height normalized to the stated reference carbon (in this case 
C3′OCH3 or C20) for the labeled compound feeding treatment and BC#N is the given # carbon’s 
signal peak height normalized to the stated reference carbon (in this case C3′OCH3 or C20) for 
unlabeled (natural abundance) azinomycin B. 1.10 is the % of 13C standardly found.  In most 
cases when the molar amount of compound series was not exactly on standard, the culture 
volume was adjusted to make up for a lower amount of labeled compound.  In the few cases 
when a larger than normal amount was administered, a numberical normalization factor (N) is 
added to the calculation, to adjust downwards the impact of adminstered compound.  As this is 
only used in comparative series, the normalization factor (N) is not usually employed. 
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Table 27.   Stable isotope compounds and the calculated % Incorporation as calculated in 
standardized reference to C3′OCH3 or C20. 
% Incorporation is defined as [AC#N - BC#N]/[BC#N] X 1.10 for 13C carbons where AC#N is the given # 
carbon’s signal peak height normalized to the stated reference carbon (in this case C3′OCH3 or C20) for 
the labeled compound feeding treatment and BC#N is the given # carbon’s signal peak height normalized to 
the stated reference carbon (in this case C3′OCH3 or C20) for unlabeled (natural abundance) azinomycin 
B. 1.10 is the % of 13C standardly found.  In most cases when the molar amount of compound series was 
not exactly on standard, the culture volume was adjusted to make up for a lower amount of labeled 
compound.  In the few cases when a larger than normal amount was administered, a numberical 
normalization factor (N) is added to the calculation, to adjust downwards the impact of adminstered 
compound.  As this is only used in comparative series, the normalization factor (N) is not usually 
employed. 
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Table 28.   Stable isotope compounds and the calculated % Incorporation as calculated in 
standardized reference to C3′OCH3 or C20. 
% Incorporation is defined as [AC#N - BC#N]/[BC#N] X 1.10 for 13C carbons where AC#N is the given # 
carbon’s signal peak height normalized to the stated reference carbon (in this case C3′OCH3 or C20) for 
the labeled compound feeding treatment and BC#N is the given # carbon’s signal peak height normalized to 
the stated reference carbon (in this case C3′OCH3 or C20) for unlabeled (natural abundance) azinomycin 
B. 1.10 is the % of 13C standardly found.  In most cases when the molar amount of compound series was 
not exactly on standard, the culture volume was adjusted to make up for a lower amount of labeled 
compound.  In the few cases when a larger than normal amount was administered, a numberical 
normalization factor (N) is added to the calculation, to adjust downwards the impact of adminstered 
compound.  As this is only used in comparative series, the normalization factor (N) is not usually 
employed. 
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Table 29.   Stable isotope compounds and the calculated % Incorporation as calculated in 
standardized reference to C3′OCH3 or C20. 
% Incorporation is defined as [AC#N - BC#N]/[BC#N] X 1.10 for 13C carbons where AC#N is the given # 
carbon’s signal peak height normalized to the stated reference carbon (in this case C3′OCH3 or C20) for 
the labeled compound feeding treatment and BC#N is the given # carbon’s signal peak height normalized to 
the stated reference carbon (in this case C3′OCH3 or C20) for unlabeled (natural abundance) azinomycin 
B. 1.10 is the % of 13C standardly found.  In most cases when the molar amount of compound series was 
not exactly on standard, the culture volume was adjusted to make up for a lower amount of labeled 
compound.  In the few cases when a larger than normal amount was administered, a numberical 
normalization factor (N) is added to the calculation, to adjust downwards the impact of adminstered 
compound.  As this is only used in comparative series, the normalization factor (N) is not usually 
employed. 
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Table 30.   Stable isotope compounds and the calculated % Incorporation as calculated in 
standardized reference to C3′OCH3 or C20. 
% Incorporation is defined as [AC#N - BC#N]/[BC#N] X 1.10 for 13C carbons where AC#N is the given # 
carbon’s signal peak height normalized to the stated reference carbon (in this case C3′OCH3 or C20) for 
the labeled compound feeding treatment and BC#N is the given # carbon’s signal peak height normalized to 
the stated reference carbon (in this case C3′OCH3 or C20) for unlabeled (natural abundance) azinomycin 
B. 1.10 is the % of 13C standardly found.  In most cases when the molar amount of compound series was 
not exactly on standard, the culture volume was adjusted to make up for a lower amount of labeled 
compound.  In the few cases when a larger than normal amount was administered, a numberical 
normalization factor (N) is added to the calculation, to adjust downwards the impact of adminstered 
compound.  As this is only used in comparative series, the normalization factor (N) is not usually 
employed. 
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PERCENT INCORPORATION GRAPHICAL DATA FOR ISOTOPICALLY LABELED 

COMPOUND FEEDING EXPERIMENTS. 

 

 

Positional Percent Incorporation Graphs. 

As a standard reference carbon, the C3′OCH3 and C20 were considred. Incorporation into C1-

C8′a was considered significant. Some scattering in the napthoate region was observed and may 

in part be attributed with possible naphthamide contanmination. % Incorporation is defined as 

[A-B]/[B] X 1.10 for 13C carbons where A and B the carbon signal peak height normalized to the 

stated reference carbon for the labeled compound feeding treatment and unlabeled, respectively. 

Incorporation for MS is calculated by comparing observed M+H, M+1+H, etc. to the expected 

value. If these values are low or negative values, they are consired as n.d. or not detected. 

 

 

 
[Methyl-13C] L-methionine 50 mg (incorporation seen). 
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[1-13C] sodium acetate 1 gram (incorporation seen). 
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[1-13C] L-valine (V2) 100mg. 
 
 

 
[1-13C] L-γ-hydroxyvaline ((2S)-2-amino-4-hydroxy-3-methylbutanoic acid) (V3) 140mg. 
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[1-13C] R-keto hydroxy acid (4-hydroxy-3-methyl-2-oxobutanoic acid) (V5) 166mg. 
 

 
[1-13C] epoxy-keto acid (2-(2-methyloxiran-2-yl)-2-oxoacetic acid) (V8) 90mg, culture 
adjusted. 
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[1-13C] epoxy-hydroxy acid ((2S)-2-hydroxy-2-(2-methyloxiran-2-yl)acetic acid) (V9) 75mg, 
culture adjusted. 
 

 
[1-13C] isodehydrovaline HCl (2-amino-3-methylbut-3-enoic acid hydrochloride) (V10) 
90mg, culture adjusted. 
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[1-13C] allyl-hydroxy acid (2-hydroxy-3-methylbut-3-enoic acid) (V11) 100mg. 
 
 

 
[1-13C] sodium allylketocarboxylate (sodium 3-methyl-2-oxobut-3-enoate) (V12) 165mg. 
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[1-13C] L-threonine (T2/AA3) 100mg with L-valine (V2) 100mg. 
 
 

 
[2-13C] glycine 1g, Incorporation into the C3’OCH3. Splitting pattern seen mulitple carbons 

see Figure 143 and Figure 144. 
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 [1-13C] glycine 1g, low incorporation (with C20 reference carbon) into C2, C6, C15 and 

into the naphthoate carbons indicating acetate unit type scattering or napthamide 

contaminant signal overlap. 

 

 
[1-13C] glycine 100mg, low incorporation into C2 and C6’. 
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[3-13C] L-aspartate, 100mg. Incorporationg observed relative to C20 found C19 and 
multiple incorporation into the naphthoate carbons. 
 

 
[1-13C] L-lysine100mg with [1-13C] L-valine100mg. Major incorporation into  C17 from L-
valine. 
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[1-13C] proline 100mg 

 

 
[U-13C6] L-arginine 100mg, metabolic scattering and or naphthamide signal overlap.  
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 [1-13C] D-arabinose 900mg, low, non specific incorporation into most carbons. 

 
 

 
[1-13C] D-xylose 900mg, azinomycin B with aziridine ring opened. 
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[1-13C] D-glucose 1000mg, Minimal scattering in naphthoate region. 

. 

 
[2-13C] L-serine 100mg. 
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[1-13C] Pyroglutamic acid, AZ17 160mg, metabolic scattering and or naphthamide signal 

overlap. 

 
[1-13C] pyroglutaminol, AZ5 140mg. 
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[1-13C] (3R,4S)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-one, 16a  ~200mg. 

 

 
[1-13C] (3R,4S)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-one, 16b  ~200mg, Low C20 
signal, metabolic scattering and or naphthamide signal overlap. 
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Azinomycin B not produced! 

[1-13C] 3, 4 dihydroxy glutamic acid, 15a 200mg, Low C20 signal, metabolic scattering and 
or naphthamide signal overlap. 
 

 

 
[1-13C] 3, 4 dihydroxy glutamic acid, 15b 250mg.  Mostly not azinomycin B produced. (C20 

peak was very small, throwing off calculations), metabolic scattering and or naphthamide 

signal overlap. 
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[1-13C] DL-glutamic acid 231 mg, with apparent incorporation into C2, C6, C19 and 
naphthoate region. Possible metabolic scattering and or naphthamide signal overlap. 

 
[1-13C] DL-glutamic acid 1g, with apparent incorporation into C6 and naphthoate region. 

Possible metabolic scattering and or naphthamide signal overlap. 
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Synthesis of fed compounds (as reported by Dr. Vasudha Sharma) 

 

Epoxide Moiety related compounds. As reported in supporting information of Sharma, et 

al. [225]* 

*Reprinted with permission from “Exploration of the molecular origin of the azinomycin 
epoxide: Timing of the biosynthesis revealed” by Sharma, V., Kelly, G. T., and Watanabe, C. M. 
H., 2008. Organic Letters, 10, 4815-4818, Copyright [2008] by American Chemical Society. 
 
**Note: Spectral data of compounds V10, V16,V18-22,V24,V25,V31-33 were compared and found 
identical to those previously reported by others. 
 

2-hydroxy-3-methylbut-3-enenitrile, V14 

HO CN  
A suspension of NaCN (0.6g, 12.5mmol) in dry ethyl ether (10ml) was maintained at 0 °C in an 

ice bath. Glacial acetic acid (0.7ml, 12.9mmol) was added drop-wise and the mixture was  stirred 

at 0°C for 30 min. Methacrolein (Aldrich)(0.5g, 7.1mmol), was added drop-wise and the 

temperature was allowed to rise to room temperature overnight. A thick white precipitate was 

formed which was filtered under vacuum, and washed with dry ethyl ether. The filtrate was 

evaporated on a rotary evaporator to yield the crude cyanohydrin as a colorless oil in ~82% yield. 
1H NMR & COSY (CDCl3, 300MHz) 1.82 (s, 3H), 4.20 (bs, 1H), 4.82 (s, 1H,), 5.05 (s,1H), 5.24 

(s, 1H). 13C NMR & HMQC (CDCl3, 300MHz): δ17.8, 64.6, 115.3, 118.2, 139.7. IR (NaCl, thin 

film) cm-1: 3415.8(br), 2922.4, 2854.3, 2250.3, 1661.2, 1448.0, 1054.3. MS (EI+)C5H7NO (M), 

97.0, found, 70.9 (M-CN).  

 

Methyl 2-hydroxy-3-methylbut-3-enoate, V15 

HO COOMe  
Anhydrous methanol (9 ml) was cooled to -5 °C. SOCl2 was added drop-wise and allowed to stir 

for 10 minutes. Cyanohydrin, V14 (100mg, 1.03mmol) in 1ml methanol was added drop-wise 

and refluxed for 12h. The solvent was evaporated in vacuo and replenished and refluxed for 

another 10h. A white precipitate separated which was filtered. The filterate was evaporated on a 

rotary evaporator to yield a thick buff colored oil. 1H NMR & COSY (CDCl3, 300MHz) 1.73 (s, 

3H), 2.57 (br, 1H), 3.79 (s, 3H), 4.54 (s, 1H), 5.01 (s, 1H), 5.11 (s, 1H). 13C NMR (CDCl3, 
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300MHz) 17.7, 52.9, 74.8, 115.3, 141.7, 174.0. IR (NaCl, thin film) cm-1: 3141.4, 2922.4, 

2854.3, 1741.1, 1403.6. HRMS (ESI+): m/z calcd for C6H10O3 (M+Li), 137.0790 found, 

137.0793.  

 

2-hydroxy-3-methylbut-3-enoic acid, V11 

HO COOH  
A solution of α-hydroxy ester, V15 (350 mg, 2.67 mmol) in methanol (1ml) was stirred with 2N 

LiOH in water (8 ml) for 12 h. The solution was then washed with ether. The aqueous layer was 

collected and acidified with 1M KHSO4 to pH ~3. The aqueous layer was then extracted with 

ethyl acetate (3X, 30 ml). The organic layer was dried over sodium sulfate and concentrated in 

vacuo to give a thick brown oil in 90% yield. 1H NMR & COSY (CDCl3, 300MHz) 1.77 (s, 3H), 

4.64 (s, 1H), 5.04 (s, 1H), 5.15 (s, 1H), 9.52 (s, br, 1H). 13C NMR (CDCl3, 300MHz) 17.7, 74.5, 

115.6, 141.3, 177.8. IR (NaCl, thin film) cm-1: 3425.6(br), 3301.3(br), 2922.4, 2857.2, 1723.3, 

1652.3, 1208.2. HRMS (ESI-): m/z calcd for C5H8O3 (M-H), 115.0395 found, 115.0399.  

 

Methyl 3-methyl 2-oxo- but-3-enote, V16 

O COOMe  
In a flame-dried flask, a solution of hydroxyl ester, V15 (100 mg, 0.763 mmol) in anhydrous 

ether (0.8 ml) was stirred at room temperature away from light. Activated MnO2 (0.39 g, 4.58 

mmol) was added and the suspension stirred at room temperature for 1.5h. Another lot of MnO2 

was added and the reaction stirred for 0.5 h. The reaction was then filtered using glass wool and 

solvent evaporated under a gentle stream of N2 to afford the pure product in 91% yield. Note: the 

mild alkaline nature of Celite caused extensive decomposition of the product upon filteration. 

The product was used within 12-15 h.  1H NMR & COSY (CDCl3, 300MHz) 1.89 (s, 3H), 3.84 

(s, 1H), 6.06 (m, 1H), 6.14 (m, 1H). 13C NMR (CDCl3, 300MHz) 16.1, 52.5, 132.9, 140.9, 164.2, 

188.6. IR (NaCl, thin film) cm-1: 2925.3, 2848.4, 1729.3, 1681.9, 1264.5. HRMS (ESI+): m/z 

calcd for C6H6O3 (M+ Li), 135.0633 found, 135.0631.  
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3-methyl 2-oxo-but-3-enoic acid, V12 

O COO-Na+
 

A solution of keto ester, V16 (100 mg, 0.763 mmol) in acetone (0.5 ml) and 3 ml Phosphate 

Buffer (1X, pH=8.0) was stirred at 28 °C. Esterase (120 mg, 2X 900 U) was added in two lots 

every 8 hours and the reaction stirred for 16 h. The precipitating salts were centrifuged and the 

supernatant lyophilized to afford the product in ~85% yield. 1H NMR(CDCl3, 300MHz) 1.72 (s, 

3H), 5.93 (m, 1H), 6.11 (m, 1H). 13C NMR (CDCl3, 300MHz) 15.0, 133.5, 140.3, 173.7, 199.8. 

IR (NaCl, thin film) cm-1: 3425.6(br), 2925.3, 2845.4, 1700.7-1637.5 (br), 1596.0, 1415.5. 

HRMS (ESI+): m/z calcd for C5H5O3Na (M+H), 137.0215, found, 137.0211; (M-CO2-Na), 

69.0340 found, 69.0341.  

 

Ethyl 2-(Diethyl phosphoryl)acetate 

P COOEt
O

EtO OEt  
A mixture of ethyl bromoacetate (2.2g, 13.2 mmol) and triethylphosphite (2.19g, 13.2 mmol) was 

heated in a flame-dried flask to 130 °C for 10h. The mixture was allowed to cool down to room 

temperature to afford the desired product in 98% yield (2.83g) as a mixture of rotamers. 1H NMR 

(CDCl3, 300 MHz): δ 0.94 (m, 9H), 2.57(d, 2H, J=21.3 Hz), 3.81(m, 6H) 13C NMR (CDCl3, 300 

MHz): δ 13.24, 15.51, 32.6, 34.3, 60.6, 61.69, 164.8, 164.9. IR (NaCl, thin film) cm-1: 29371.9, 

1745.3, 1468.1 HRMS (ESI+): m/z calcd for C8H17O5P (M+Li), 231.0974, found, 231.0977.  

 

Ethyl 3-methyl 2-butenoate, V18 

EtOOC  
In a sealed tube, under a steady stream of N2, NaH (0.14 g, 3.59 mmol) was washed with dry 

hexanes. Ethyl 2-(diethylphosphoryl)acetate V10(0.87 g, 3.87 mmol), dissolved in dry  

tetrahydrofuran (10 ml) was added at 0 °C. The mixture was stirred for 15 minutes. Acetone 

(0.15 g, 2.58 mmol) was added to the reaction mixture and stirred at 0 °C for 30 min, then at 

room temperature for 6h. The reaction was quenched by addition of a saturated NH4Cl solution 

(5 ml). The aqueous layer was extracted with diethyl ether (3 X40 ml) and the organic fractions 

were collected, dried with MgSO4, and filtered. Evaporation of the solvent in vacuo yielded the 
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desired product 11 as a light-yellow oil (0.29 g, 90%). 1H NMR (300 MHz, CDCl3): δ 1.21 (t, 

3H, J=7.2 Hz) 1.89(d, 3H, J=1.2 Hz) , 2.11 (d, 3H, J=1.2 Hz), 4.08 (q, 2H, J= 7.2 Hz), 5.61 (m, 1 

H). 13C NMR (75 MHz, CDCl3): δ 14.2, 20.0, 27.3, 59.3,116.0,156.3,166.6. IR (NaCl, thin film) 

cm-1: 2929.2, 2849.0, 2250.7, 1730.3, 1377.9, 1255.9. LRMS (GC-MS): m/z calcd for C7H12O2 

(M+H), 129.0, found, 129.0.  

 

Benzyl 3-methylbut-2-enoate 

COOBn  
A solution of ethyl 3,3 dimethyl acrylate V18 (300 mg, 2.34 mmol) in ethanol (0.5 ml) was 

stirred with an aqueous solution of LiOH (2N, 4ml) for 10h at room temperature. The solution 

was acidified with 1M KHSO4 to pH=4.0 and extracted with ethyl acetate (4X, 50 ml). The 

organic extracts were combined, dried over Na2SO4 and concentrated in vacuo. 1HNMR (300 

MHz, CDCl3) δ 1.90(s, 3H), 2.15 (s, 3H), 5.67-5.68 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 20.7, 

27.9, 115.9, 160.1, 172.6. IR (NaCl, thin film) cm-1: 3239.1(br), 2928.3, 2857.2, 1702.6, 1643.4. 

HRMS (ESI+): m/z calcd for C5H8O2 (M+Li), 107.0684, found, 107.0689; LRMS (ESI-) calcd for 

C5H8O2 (M-H), 99.0, found 99.0.  

A stirred solution of 3,3-dimethylacrylic acid (0.22 g, 2.22 mmol) and Bu4N+Br- (0.06 g, 0.19 

mmol) in CHCl3 (4 ml) at room temperature was mixed with an aqueous solution of KOH (0.13 

g, 2.39 mmol in 1 ml water). Benzyl bromide (0.32 g, 0.19 m mol) was added drop-wise and the 

reaction refluxed for 18h. On cooling, water (15 ml) was added and the reaction mixture 

extracted with CH2Cl2 (3 X 40 ml). The organic extracts were combined and dried with 

anhydrous Na2SO4, filtered and concentrated in vacuo to yield the desired product  as a pale 

yellow liquid which upon column chromatography (5% EtOAc/hexane) gave the product in 

nearly quantitative yield (417 mg). 1HNMR (500 MHz, CDCl3) δ 1.91(s, 3H), 2.21 (s, 3H), 5.16 

(s, 2H), 5.75-5.77 (m, 1H), 7.32-7.39(m, 5H). 13C NMR (75 MHz, CDCl3) δ 20.4, 27.7, 65.7, 

116.1, 128.3, 128.7, 128.8, 136.9, 157.7, 166.7. IR (NaCl, thin film) cm-1: 3034.9, 2966.8, 

2877.9, 1720.4, 1649.3, 1453.9. HRMS (ESI): m/z calcd for C12H14O2 (M+Li), 197.1154, found, 

197.1151.  
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(R)-benzyl 2,3-dihydroxy-3-methylbutanoate, V19 

COOBnHO

HO

 
A solution of AD-mix-α (2.21 g), methanesulfonamide (0.15 g, 1.58 mmol) and NaHCO3 (0.39 

g, 4.73 mmol) in tert-butyl alcohol (6 ml) and water (6 ml) was maintained at room temperature. 

The reaction mixture was then cooled to 0 °C. Benzyl 3-methylbut-2-enoate (0.3g, 1.58 mmol) 

was added in one portion and the orange heterogeneous slurry stirred at 0 °C for 60 h. Anhydrous 

Na2SO3 (2.36 g, 18.8 mmol) was added at 0 °C and the reaction mixture  was allowed to warm to 

room temperature and stirred further for 1 h. During this period the reaction mixture developed a 

pale-greenish brown color. The reaction mixture was extracted with ethyl acetate (3 × 40 ml). 

The combined organic extracts were washed with 2 M aqueous KOH (15 ml, 1X), dried over 

Na2SO4 and concentrated in vacuo to give a colorless oil in 88% yield (312 mg).  1HNMR (500 

MHz, CDCl3) δ 1.17(s, 3H), 1.26 (s, 3H), 2.81( br, 1H), 3.46(br, 1H), 4.01(s, 1H), 5.24 (2H, q, 

J=12.5 Hz), 7.36-7.38(m, 5H). 13C NMR (75 MHz, CDCl3) δ 25.0, 25.9, 67.8, 72.3, 77.4, 128.7, 

128.8, 128.8, 134.9, 173.1. IR (NaCl, thin film) cm-1: 3446.4, 3416.8, 2975.7, 2928.3, 2851.3, 

1729.3, 1462.8. HRMS (ESI): m/z calcd for C12H16O4 (M+Li), 231.1209, found, 231.1206.  

 

(R)-1-((benzyloxy)carbonyl)-2-hydroxy-2-methylpropyl methanesulfonate 

COOBnMsO

HO

 
 
A stirred solution of the diol V19 (0.16 g, 0.74 mmol) and triethylamine (0.11 g, 1.12 mmol) in 

dry CH2Cl2 (2 ml) was maintained at 0 °C under a nitrogen atmosphere. Methanesulfonyl chloride 

(0.09 g, 0.78 mmol) was added dropwise to the reaction mixture. The reaction mixture was 

stirred at 0 °C for 3 h and then quenched with saturated NaHCO3(aq.) (20 ml). The organic layer 

was separated and the aqueous layer extracted 

with CH2Cl2 (3 × 40 ml). The combined organic extracts were then dried over Na2SO4 and 

concentrated in vacuo to give yellow oil. The product was purified by column chromatography 

(10% EtOAc/CH2Cl2), which initially provided the bis-protected ester(2.5%); further elution 

provided the mono mesylate  in 80% yield (180 mg). 1HNMR (300 MHz, CDCl3) δ 1.32(s, 3H), 

1.33 (s, 3H), 2.81( br, 1H), 3.08(s, 3H), 4.88(s, 3H), 5.29 (2H, q, J=12.5 Hz), 7.30-7.41(m, 5H). 

13C NMR (75 MHz, CDCl3) δ 25.6, 25.7, 38.9,  67.9, 71.5, 82.5, 128.6, 128.7, 128.8, 134.5, 
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167.4. IR (NaCl, thin film) cm-1: 3523.4, 2922.4, 2851.3, 1750.0, 1462.8. 1356.3, 1172.7.HRMS 

(ESI): m/z calcd for C13H18O6S (M+Li), 309.0984, found, 309.0987.  

 
(S)-benzyl 3,3-dimethyloxirane-2-carboxylate, V20 

COOBn
O

 
A stirred suspension of mesylate  (75 mg, 0.25 mmol) and anhydrous potassium (264.2 m g, 2.5 

mmol) in dry CH3CN (4 ml) was heated at reflux under a nitrogen atmosphere for 48 h. The 

resulting pale yellow heterogeneous mixture was quenched with water (10 ml) and extracted with 

CH2Cl2 (3X, 20 ml). The combined organic extracts were dried (Na2SO4) and concentrated in 

vacuo to give a yellow liquid. The crude material was purified via a flash plug (10% EtOAc–

hexanes) to give epoxide V20 (46 mg, 90%) as a colorless liquid; [α]D
20 7.34 (c 2.0, EtOH); 

1HNMR (500 MHz, CDCl3) δ 1.36 (s, 3H), 1.42 (s,3H), 3.38(s, 1H), 5.18-5.24 (2H, m), 7.38–

7.40(5H, m); 13C NMR (125 MHz, CDCl3) δ 18.4, 24.4, 59.5, 60.7, 67.3, 128.8, 128.8, 128.9, 

135.4, 168.7; IR (NaCl, thin film) cm-1: 2922.4, 2854.3, 1732.2, 1575; HRMS (ESI): m/z calcd 

for C12H14O3 (M+Li), 213.1103, found, 213.1104.  

 
(S)-benzyl 2-hydroxy-3-methylbut-3-enoate, V21 

COOBnHO  
A stirred mixture of epoxide, V20 (0.13 g, 0.66 mmol) and pTsOH (anhydrous) (0.018 g, 0.11 

mmol) in dry benzene (70 ml) was heated at reflux under a nitrogen atmosphere for 10 h. On 

cooling, the heterogeneous mixture was filtered and concentrated in vacuo to give a pale yellow 

oil. Column chromatography (5% ethyl acetate–light petroleum) gave allylic alcohol (0.10 g, 

77%) as a colourless oil, V21; 1HNMR (500 MHz, CDCl3) & gCOSY: δ 1.72 (s, 3H), 3.18(br, 

1H), 4.64(s, 1H), 5.04 (1H, m), 5.15 (1H, m) 5.24-5.30 (2H, m), 7.33–7.42(5H, m); 13C NMR 

(125 MHz, CDCl3) δ 17.9, 67.7, 75.0, 115.4, 128.3, 128.6, 128.7, 134.5, 141.9, 173.6; IR (NaCl, 

thin film) cm-1: 3490.8, 2925.3, 2860.2, 1735.2, 1459.9; HRMS (ESI): m/z calcd for C12H14O3 

(M+Li), 213.1103, found, 213.1105.  
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(S)-benzyl 2-hydroxy-2-((S)-2-methyloxiran-2-yl)acetate, V22 

COOBnHO

O

 
A stirred solution of (2S)-allylic alcohol, V21(59mg, 0.28mmol) and vanadyl acetylacetonate 

(7.6 mg, 0.028 mmol) in dry CH2Cl2 (3.5 ml) at -20 °C under a nitrogen atmosphere was added a 

solution of anhydrous tert-butyl hydroperoxide (5–6 M in n-decane, 0.114 ml, ca. 0.578 mmol) 

drop-wise causing a color change from dark green to dark brown. The reaction mixture was 

allowed to warm to 0 °C and stirred for 18 h during which time the color turned to orange. After 

quenching with water (2 ml), the organic layer was separated and the aqueous layer extracted 

with dichloromethane (3 × 50 ml). The combined organic extracts were dried with Na2SO4 and 

concentrated in vacuo. Column chromatography (20% ethyl acetate–hexanes) provided 

(2S,3S)epoxy alcohol as a white foamy solid (41.3 mg, 65%) and as a single diastereomer, 22; 

[α]D
20 (Lit)11.1 (c 1.9, EtOH), 16.5 (c 2.0, EtOH); 1HNMR (500 MHz, CDCl3) δ 1.32 (s, 3H), 

2.65(d, J=5.0 Hz, 1H), 2.86(d, J=5.0, 1H), 2.90(br, 1H), 4.00(s, 1H), 5.28(dd, J=12, 33 

Hz),7.38(m,5H); 13C NMR (125 MHz, CDCl3) δ 17.4, 51.8, 57.0,67.9, 74.1, 128.3, 128.5, 

128.6,135.1, 172.2; IR (NaCl, thin film) cm-1: 3367.1, 2919.3, 2854.1, 1711.8, 1453.9, 1113.7. 

 

(S)-2-hydroxy-2-((S)-2-methyloxiran-2-yl) acetic acid, V9 

COOHHO

O

 
A stirred slurry of benzyl ester, V22 (30 mg, 0.134 mmol) and 10% Pd-C (10% w/w) was added 

in methanol was maintained at room temperature. H2 (1 atm, r.t.) was passed and the reaction was 

continued to stir at room temperature for 2h. The reaction was filtered through glass wool and 

dried under a gentle stream of nitrogen enough to concentrate the sample but not dry out 

completely. [α]D 20 5.3 (c 0.05, CH3OH); 1HNMR & gCOSY (500 MHz, CD3OD) δ 1.35 (s, 3H), 

2.62(d, J=4.5 Hz, 1H), 2.84(d, J=4.5, 1H), 3.88(s, 1H); 13C NMR (125 MHz, CD3OD) δ 17.4, 

52.5, 58.3, 75.1, 170.0; IR (NaCl, thin film) cm-1: 3419.8, 2925.3, 2851.3, 1729.3; HRMS (ESI): 

m/z calcd for C5H8O4 (M+Li), 139.0583, found, 139.0586. ESI(-):m/z calcd for C5H8O4 (M+Li), 

131.0344, found, 131.0342. 
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Benzyl 2-((S)-2-methyloxiran-2-yl)-2-oxoacetate 

COOBnO

O

 
A stirred mixture of α-hydroxy benzyl ester, V22 (35mg, 0.156 mmol) and IBX (297.6 mg (45% 

by weight), 0.48 mmol) in EtOAc (4 ml) was heated at reflux under a nitrogen atmosphere for 5 

h. On cooling, the heterogeneous mixture was filtered and concentrated in vacuo to give a pale 

yellow oil in 95% yield V18(33 mg); 1HNMR(300 MHz, CDCl3) δ 1.56 (s, 3H), 2.96(d, J=4.5 

Hz, 1H), 3.46(d, J=4.5, 1H), 5.26(s, 2H), 7.34-7.40(m, 5H); 13C NMR (75 MHz, CDCl3) δ 15.8, 

53.3, 57.7, 67.7, 128.4, 128.8, 129.4,141.9, 166.0, 194.6; IR (NaCl, thin film) cm-1: 2925.3, 

2842.2, 1702.6-1684.9 (br); HRMS (ESI): m/z calcd for C12H12O4 (M+Li), 227.0896, found, 

227.0903.  

 
2-((S)-2-methyloxiran-2-yl)-2-oxoacetic acid, V8 

COOHO

O

 
A stirred slurry of benzyl ester (33 mg, 0.149 mmol) and 10% Pd-C(10% w/w) was added in 

ethyl acetate (2 mL) was maintained at room temperature. H2 (1 atm, r.t.) was passed and the 

reaction was continued to stir at room temperature for 2h. The reaction was then filtered through 

glass wool and ultracentrifuged. The supernatant was collected and dried under a gentle stream of 

nitrogen to provide the product in 98% yield, V8 (19 mg). 1HNMR (500 MHz, CD3OD) δ 1.27(s, 

3H), 2.91(d, J=6.0 Hz, 1H), 3.08(d, J=5.5, 1H); IR (NaCl, thin film) cm-1: 3446.4, 2925.3, 

2833.6, 1729.3-1684.9(br); LRMS (ESI+): m/z calcd for C5H6O4 (M+(MeOH-H2O)+H), 145.03, 

found, 145.05. 

 

 
Scheme 12.    Synthesis towards V10 



 270

 

 

Ethyl 3-methyl-2-nitrobut-2-enoate, V28 

EtOOC NO2  
A solution of 2.94 ml of 90% fuming nitric acid and 0.4 ml of water was cooled to 0 °C. 

Ethyl 3,3-dimethylacrylate V18 (1g, 7.8 mmol) was added over 1.25 h with vigorous stirring. 

The solution was stirred for 1.25 h at 0°C and 1 h at room temperature, then poured onto 400 ml 

of crushed ice and extracted CHCl3 (100 ml, 4X). The chloroform  extracts were combined and 

washed with water (100 ml, 4X), saturated NaHCO3 (70 ml, 7X), and brine( 100ml, 2X), dried 

over MgSO4, and concentrated to provide 89% V28 (1.2g) of the desired product (Scheme 12). 
1H NMR (300 MHz, CDCl3): δ 1.07(t, 3H, J=7.2 Hz ), 1.76(s, 3H), 2.038(s, 3H), 4.22( q, 2H, 

J=7.2 Hz) 13C NMR (75 MHz, CDCl3): δ 13.8, 20.6, 22.4, 62.0, 141.5, 148.4, 158.9.  IR (NaCl, 

thin film) cm-1: 2991.2, 2851.0, 1741.1, 1369.2, 1234.7. LRMS (ESI): m/z calcd for 

C7H11O2N(M+Li), 180.0848, found, 180.0851.  

 

Potassium Salt of Ethyl 2-aci-Nitro-3-methylbut-3-enoate, V29 

N+EtO

O

O-

O-
+K

 
In a dry, N2-flushed, 250-ml flask, ether-washed potassium hydride (1.99g, 15 mmol, 30% by 

wt.) was suspended in dry THF (50 ml) with vigorous stirring. The suspension was cooled to 0°C 

and a solution of 2.59 g (15 mmol) of the nitro ester V28 in 5 ml of THF added over 1 h followed 

by an additional 2 ml of THF. After stirring at 0°C for 2 h the paste was filtered, washed three 

times with ether, and dried in vacuo to give 18.6 g (91.2 %) of V29 as yellow crystals. m.p. 224-

226 °C decompose (Scheme 12). 1HNMR (300 MHz, D2O) δ 1.11 (t, J = 7.2 Hz, 3 H), 1.77 (s, 

3H), 4.08(q, J=7.2 Hz, 2H), 4.99 (s, 1H), 5.09 (m, 1H). 13C NMR (75 MHz, D2O): δ 13.5, 20.1, 

62.1, 117.1, 118.1, 136.7, 165.5. IR (NaCl, thin film) cm-1: 2922.4, 2851.0, 1661.2, 1409.5. 

HRMS (ESI+): m/z calcd for C7H10O4NK(M+H), 212.0325, found, 212.0330. LRMS (ESI-): m/z 

calcd for C7H10O4NK (M-K), 172.0 found, 172.0. 
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Ethyl 2-Nitro-3-methylbut-3-enoate, V30 

EtOOC NO2  
A solution of the potassium salt of the nitro-ester V29 (0.073 g, 3.4 mmol) in 1ml of water was 

stirred while 1N HC1 (0.5 ml) was added drop-wise at room temperature. The reaction was 

stirred for 10 minutes and the resulting oil was extracted with 10 ml of ice- cold ether (3X), and 

the extracts were combined, dried over Na2S04, and concentrated to give 0.058 g (97%) of 

colorless oil V30, used directly without purification (Scheme 12). 1HNMR (300 MHz, CDCl3) δ 

1.28(t, J=6.9 Hz, 3H), 1.89 (d, J = 2 Hz, 3H), 4.47 (q, J = 6.9 Hz, 2H), 5.23(s, 1H), 5.35(m, 1H), 

5.60 (s, 1H). 13C NMR (75 MHz, CDCl3) δ 13.8, 19.0, 63.0, 92.2, 123.1, 134.3, 163.5. IR (NaCl, 

thin film) cm-1: 2950, 2853.0, 1741.1, 1680.0, 1444.4. LRMS (GC-MS): m/z calcd for C7H11NO4 

(M+H), 174.1, found, 174.1. 

 

(±)-Isodehydrovaline Hydrochloride, V10 

HOOC NH2.HCl  
In a round-bottom flask, concentrated HC1 (2.5 ml) was maintained at 50-65 °C. Nitro-ester 

V30(0.25g, 1.45 mmol) was added in one portion, and 20 mesh Sn metal (0.6g, 5.3 mmol) was 

added in small portions, with constant stirring to keep the temperature at 50-65 °C. After the 

addition was complete, the mixture was heated to 100°C for about 50 min until all the tin had 

dissolved, then cooled and concentrated to dryness. The residue was dissolved in the minimum 

amount of water, saturated with H2S (to precipitate Sn) and filtered. The precipitated tin sulfides 

washed three times with water, and the filtrate concentrated to dryness. The residue was dried in 

vacuo, washed with dry acetone, and then with dry ether to give 0.2 g (77%) of amino acid 

hydrochloride, V10 as a buff-white solid m.p. 206-207°C dec (Scheme 12). 1HNMR (500 MHz, 

D2O) δ 1.67(s, 3H), 4.35 (s, 1H), 5.11(s, 1H), 5.15(m, 1H). 13C NMR (75 MHz, D2O) δ 18.0, 

58.7, 120.3, 136.1, 169.3. IR (NaCl, thin film) cm-1: 3242.1, 2919.4, 2853.0, 1723.4, 1650.0, 

1406.6. LRMS (ESI): m/z calcd for C5H10NO2Cl (M+H), 116.1, found, 116.1. ESI-, 35, 37 for Cl-

. 
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Note 1. 

Various methods such as treatment with 9BBN [226, 227], MgI2/ether [228, 229] followed by 

reductive ring opening with Bu3SnH etc. were employed to regioselectively open the epoxide 

ring in V8 and generate V5. However, all of the pursued conditions either gave a mixture of 

products with undesired regiochemistry, degraded products or extremely low yields, making the 

routes cost-ineffective with respect to labeled material. 

 

Diethyl 2-methylmaleate, V24 

O

OEt
OEt

O

 
In a sealed tube, under a steady stream of N2, NaH (0.07 g, 1.76 mmol) was taken and washed 

with dry THF. Ethyl 2-(diethylphosphoryl)acetate (0.4 g, 1.78 mmol), dissolved in dry THF (8 

mL) was added at 0 °C. The mixture was stirred for 30 minutes. Ethyl pyruvate (0.2 g, 1.76 

mmol) was added to the anion of the phosphonate and stirred at 0 °C for 5 min, then warmed to 

50 °C for 1h. The reaction was quenched by addition of a saturated NH4Cl solution (5 mL). The 

aqueous layer was extracted with diethyl ether (3 X40 mL) and the organic fractions were 

collected, dried with MgSO4, and filtered. Evaporation of the solvent in vacuo yielded the 

desired product as pale yellow oil. The crude product was subjected to column chromatography 

(EtOAc: hexane, 1:10) to afford V24 (82%, 0.27g) of the product. 1H NMR (300 MHz, CDCl3): δ 

1.24 (t, 3H, J=7.2 Hz) 1.33(t, 3H, J=7.2 Hz), 2.06 (s, 3H), 4.18 (q, 2H, J= 7.2 Hz), 4.26(q, 2H, J= 

7.2Hz), 5.85 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ 14.1, 14.2, 20.6, 60.7, 61.4, 121.1, 145.5, 

163.0,169.1. IR (NaCl, thin film) 2962.9, 2851.3, 1739.5, 1729.3, 1652.3, 1445.1 cm-1. HRMS 

(ESI): m/z calcd for C9H14O4(M+Li), 193.1052 found, 193.1057. 

 
2-methylmaleic acid anhydride (citraconic anhydride), V25 

O

O

O

 
A solution of diethyl 2-methyl maleate, V24 in THF was maintained at 0 °C. 2N LiOH was 

added and the ice bath removed. The reaction mixture was allowed to stir for 8h at room 
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temperature. The solvent was removed and reaction mixture acidified with 1N HCl at 0 °C. The 

mixture was extracted with EtOAc to provide 1:2 mixture of anhydride and diacid which upon 

prolong standing and concentration yielded the cis-diacid in 84% yield. 1H NMR (CDCl3, 500 

MHz) δ 2.16 (s, 3H), 6.05 (m, 1H), 9.05(br,1H); NOESY 1D, 1.4% between H and CH3. 
13CNMR (CDCl3, 500MHz) δ 21.7, 122.7, 147.1, 169.6,171.8; IR (NaCl, thin film) 3458.2, 

2928.3, 2857.2, 1737.5,1735.2, 1465.8 cm-1. HRMS (ESI-): m/z calcd for C5H6O4(M-H), 

129.0188 found, 129.0191.  

Diacid (1.21g, 9.3 mmol) was stirred with trifluoroacetic anhydride (93.04 mmol) overnight at 

room temperature. The resulting solution was evaporated in vacuo to provide the product, V25 in 

99% yield. 1H NMR (CDCl3, 500 MHz) δ 2.21 (d, J=1.5 Hz, 3H), 6.65 (q, J=1.5 Hz, 1H); 
13CNMR (CDCl3, 500MHz) δ 11.5, 129.9, 149.7, 164.4, 166.6; IR (NaCl, thin film) 3105.1, 

2924.1, 1843.1, 1772.8, 1648.4 cm-1. HRMS (ESI): m/z calcd for C5H4O3(M+H), 113.0239 

found, 113.0239. 

 

4-methylfuran-2(5H)-one, V25 

O

O  
 

A stirred solution of anhydride, V25 (100 mg, 0.89 mmol) in THF (2 mL), was maintained at 0 

°C. NaBH4 (84.5 mg, 2.22 mmol) was added in one lot and the reaction allowed to stir at 0 °C for 

2 h. The reaction was quenched with water, acidified with dilute HCl and extracted with ethyl 

acetate (3X50 mL). The organic layer was washed with water, brine and dried over Na2SO4. 

Concentration of the organic layer in vacuo followed by silica gel column chromatographic 

purification of the residue using a mixture of ethyl acetate and petroleum ether (3:7) furnished 

pure product as a thick oil in 87% yield. 1H NMR (CDCl3, 500 MHz) δ 1.99 (s, 3H), 4.60 (s, 2H), 

5.69 (m, 1H); 13CNMR (CDCl3, 500MHz) d 13.8, 73.9, 115.8, 166.9, 174.6; IR (NaCl, thin film) 

1780, 1750, 1647, 1246 cm-1. LRMS (CI): m/z calcd for C5H6O2(M+ Li), 105.05 found, 

105.05. 
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Dihydro-4-methylfuran-2(3H)-one, V26 

O

O  
A stirred solution of lactone, (100 mg, 1.08 mmol) and 10%Pd/C (10% wt/wt) in EtOAc (2 mL) 

was subjected to H2 (1atm, 24 °C) for 12h. The reaction was passed through celite and washed 

with hot EtOAc (2X, 10mL), The solvent was evaporated off to afford a pale yellow oil as the 

product V26 in 97% yield. 1H NMR& gCOSY (CDCl3, 300 MHz) δ (0.98)1.17 (d, J=6.6 Hz, 

3H), 2.16 (m, 1H), 2.66 (m, 2H), 3.88(m, 1H), 4.44(m, 1H); 13CNMR (CDCl3, 500MHz) 

δ18.1(18.2), 30.5(30.9),36.3(36.4) 74.9,177.7; IR (NaCl, thin film) 2925.3, 2809.9, 1729.3 cm-1. 

LRMS (CI): m/z calcd for C5H8O2(M+H), 101.0 found, 101.0. 

 

Dihydro-3-hydroxy-4-methylfuran-2(3H)-one, V27 

O

OHO
 

A solution of the saturated lactone V26 (83mg, 0.83 mmol) in THF was maintained at -78 °C. 

LiHMDS (2.5 eq.) was added and the reaction mixture allowed to stir for 30 minutes. Solid 

freshly prepared Vedej’s reagent [230, 231], MoOPH (0.43g, 0.996 mmol) was added in a single 

batch and the oxidation allowed to  proceed at -60 °C for 50 minutes. The reaction was then 

poured in to ether (50 mL) and freshly prepared saturated Na2SO3. The organic layer was 

collected, washed with NaCl(1X). The organic layer was washed dried over Na2SO4 and the 

solvent evaporated in vacuo. The product V27 was obtained after purification from flash 

chromatography as a pale yellow oil in 64% yield. 1H NMR & gCOSY (CDCl3, 300 MHz) δ 

(1.04)1.11 (d, J=7.2 Hz, 3H), (2.2)2.75 (m, 1H), 4.02-4.5(m, 3H); 13CNMR (CDCl3, 300MHz) 

δ11.8(11.8), 29.8(29.9), 70.3(70.9), 72.1(72.1), 177.9(178.8); IR (NaCl, thin film) 3449.3, 

2928.3, 2845.4, 1767.8(br), 1456.9 cm-1. HRMS (ESI+): m/z calcd for C5H8O3(M+Li), 123.0633 

found, 123.0632. 
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Dihydro-4-methylfuran-2, 3- dione 

O

OHO

O

OO
 

A solution of the α-hydroxylactone(0.1g, 0.86 mmol) in EtOAc (10 mL) was refluxed gently 

with IBX (3 eq, 1.6 g of 45 % by wt) for 4.5 hours. The reaction was allowed to cool down. The 

white precipitate was removed by filteration. The reaction mixture was washed with NaHCO3 

(3X) and 1% cold HCl(1X,10mL). The organic layer was collected, and dried to yield the 

product. 1H NMR (DMSO-d6, 500 MHz) δ 1.82 (m, 3H), 4.59 (m, 2H); 13CNMR (DMSO-d6, 

500MHz) δ9.7, 70.2, 129.2, 137.3, 170.7; IR (NaCl, thin film) 3404.9, 2928.3, 2851.3, 1785.5, 

1758.9,1225 cm-1.LRMS (ESI): m/z calcd for C5H6O3(M+Li), 121.0 found, 121.0. 

 

3-(hydroxymethyl)-2-oxobutanoic acid, V5 

OH

O
O

OH
OH

O
HO

OH

 
A solution of the α-ketolactone in taken in a mixture of 6N HCl and HOAc (2:1(v/v)) and the 

reaction mixture was refluxed gently for 4.5 hours. The reaction was allowed to cool down and 

filtered. The solvent was evaporated to yield the desired product 5 in near quantitative yield. 1H 

NMR (CDCl3, 500 MHz) δ 1.79 (br, 2H), 1.97 (m, 3H), 4.65(m, 2H), 5.82(br,1H); 13CNMR 

(CDCl3, 300 MHz) δ9.8, 71.0, 129.3, 137.3, 171.7; IR (NaCl, thin film) 3437.5, 2928.3, 2848.4, 

1755.3, 1643.4,1221.0 cm-1.HRMS (ESI+): m/z calcd for C5H8O4(M+Li), 139.0584 found, 

139.0583. 

 
 

Note 3: 

Effort was made to access γ-hydroxyvaline V3 by subjecting intermediate V21 to a Mitsonobu 

reaction to give the azide, which upon reduction could provide access to precursor V3 (by 

epoxidation and regioselective ring opening of the epoxide or hydroboration of the olefin). 

However, the reaction afforded a mixture of products substituted at the α- or γ-position. 

Hydroboration of isodehydrovaline, V10 also resulted in low yields of the product. Likewise, 

attempts to access γ-hydroxyvaline V3 via condensation of acetylated acetol with the azlactone 
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of hippuric acid with TiCl4/Py, [232] Pb(OAc)4 [233, 234] and subsequent hydrolysis generated 

upto only 20% of the desired product in our hands on this substrate. 

 

 
Scheme 13.    Synthesis towards V3 
 

 

 (E)-But-2-enyl 2-aminoacetate, V31 

-TsO+H3N
O

O  
A suspension of glycine (1g, 13.3 mmol), crotyl alcohol(4.75 g, 66.6 mmol) and  p-

TsOH.H2O(2.53 g, 13.3 mmol) was refluxed in benzene using a Dean-Starks apparatus for ~ 10 

h. The reaction was cooled and the solvent evaporated to yield the desired product 31 as its 

tosylate salt (Scheme 13). 1H NMR (500 MHz, CDCl3): δ 1.61 (d, 3H, J=6.5 Hz) 2.27(s, 3H), 

3.61 (s, 2H), 4.33 (d, 2H, J= 6 Hz), 5.35 (m, 1 H), 5.63(m, 1H), 7.03(d, 2H, J=7 Hz), 7.64(d, 2H, 

J=7 Hz), 7.94(br, 3H). 13C NMR (125 MHz, CDCl3): δ 17.9, 21.4, 40.6, 66.8, 124.3, 126.1, 

129.1, 132.3, 140.5, 141.3, 167.5. IR (NaCl, thin film) 3150.3(br), 2863.2, 1750.0, 1625.7, 

1223.0 cm-1. HRMS (ESI+): m/z calcd for C6H11NO2(M+Li), 136.0948 found, 136.0950. 

 

(E)-but-2-enyl 2-(2,2,2-trifluoroacetamido)acetate, V32 

N
H

O

O
F3C

O

 
A suspension of allyl glycine ester V31 (0.53g, 4.1 mmol) in pyridine (1.63g, 20.7 mmol) was 

maintained at 0 °C. Trifluroacetic anhydride (4.35g, 20.7 mmol) was added dropwise and the 
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reaction allowed stirring overnight at room temperature. The reaction mixture was quenched with 

water and extracted with ether (3X). The organic layer was washed once with 2% HCl solution to 

remove traces of pyridine and provide the product as mixture of two rotamers, V32 (Scheme 13). 
1H NMR (500 MHz, CDCl3): δ 1.73 (m, 3H) 4.11(d, 2H, J=5 Hz), 4.61 (d, 2H, J=5 Hz ), 5.57(m, 

1H), 5.82 (m, 1H), 7.1(br, -NH). 13C NMR (125 MHz, CDCl3): δ 17.9, 41.5(42.6), (66.3)67.1, 

115.1(q)(115.4 (q)), (123.8)123.9, 133.3(134.5), 157.6(q) (157.2(q)),168.4. IR (NaCl, thin film) 

3339.8, 2934.2, 2851.3, 1744.1, 1720.4, 1675.9, 1554.6, 1178.6 cm-1. HRMS (ESI-): m/z calcd 

for C8H10O3NF3(M-H), 224.0535 found, 224.0539. 

Note: values in parentheses are the chemical shifts of the rotamer 

 

(2R,3S)-2-(2,2,2-trifluoroacetamido)-3-methylpent-4-enoic acid, V33 

HN
OH

O
O

F

F

F  
LiHMDS solution in THF was maintained at -78 °C. The allylic ester V32 (1g, 4.42 mmol), Al(-

iOPr)3(0.99g, 4.86 mmol) and quinidine(2.8g, 8.84mmol) were added at -78 °C and the reaction 

mixture stirred. The reaction mixture was allowed to warm to room temperature for 24h. The 

reaction was diluted with 200 mL ether and hydrolyzed by 100 mL 1M aq.KHSO4. The organic 

layer was washed with 1M KHSO4 again and the reaction mixture extracted with 3X 100 mL sat. 

NaHCO3. The basic solution was acidified by careful addition of solid KHSO4 (pH=1) and 

extracted 3X with ether. Dried and concentrated to provide the desired product V33 in 74% yield 

(0.74g) (Scheme 13). 1H NMR (500 MHz, CDCl3): δ 1.09 (d, 3H, J=5 Hz), 2.78(m, 1H), 4.58 (s, 

1H), 5.10 (m, 2H), 5.26 (br, 1H), 5.69(m, 1H), 7.20(br, 1H). 13C NMR (125 MHz, CDCl3): δ 

15.2(16.1), (39.9)40.3, (55.8)56.2, (117.7)117.8, (136.4)137.1, 157.3(q), 173.5(173.9). IR (NaCl, 

thin film) 3342.7(br), 2928.3, 2860.2, 1723.4, 1675.9, 1211.2 cm-1. HRMS (ESI-): m/z calcd for 

C8H10NO3F (M-H), 224.0535 found, 224.0528. 

Note: Quinine was employed to get the R-configuration amino acid V34 
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γ-hydroxyvaline, V3 

COOHH2N

HO

 
A solution of the amino acid (300 mg, 1.32 mmol) in MeCN:H2O (6:1, 9mL) at room 

temperature was mixed with RuCl3.3H2O(3.5 mol% ) and NaIO4
 (0.56 g, 2.65 mmol) and allowed 

to stir for 12 minutes. The reaction was monitored by TLC for appearance of the aldehyde. 

NaBH4 (0.15 mg, 3.96 mmol) was added in one lot and the reaction was stirred at 50 °C for 6h. 

Cooled the reaction and adjusted the pH to 5.0 and the reaction was passed through Celite to 

remove the white precipitate. The solvent was evaporated off to provide the product in ~85% 

yield (Scheme 13). 1H NMR (500 MHz, CDCl3): δ 1.26 (d, 3H, J=6.5 Hz), 2.37(m, 1H), 3.21(br, 

1H), 3.32(dd, J=4.5, 11.5 Hz), 3.52(dd, J=5.5, 11.5 Hz), 4.57(dd, J=7.5, 11.5 Hz), 7.15(br, 1H). 

1H NMR (300 MHz, D2O): δ 1.00(d, 3H, J=6Hz), 2.42 (m, 1H), 3.51(m, 1H), 3.99(m,1H); 13C 

NMR (75 MHz, D2O): δ 14.0, 37.0, 59.7, 66.7, 177.0; IR (NaCl, thin film) 3428.6(br), 3300(br), 

2925.3, 2854.3, 1678.9(br), 1422.1, 1214.1 cm-1. LRMS (ESI+): m/z calcd for C5H11NO3 

((M+Li)-H), 139.08 found, 139.09. 
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Figure 177.  Stability profile of V3-12. 
 Stability tests were done by shaking samples for 48h under aqueous conditions at pH 7-7.5 at 30 °C. 
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SYNTHESIS INFORMATION 

BIOSYNTHETIC ROUTE TO THE ENOL FRAGMENT OF AZINOMYCIN B 

(SYNTHESIS BY DR. VASUDHA SHARMA) 

*Reprinted with permission from “An Improved Method for Culturing Streptomyces sahachiroi: 
Biosynthetic Origin of the Enol Fragment of Azinomycin B” by Kelly, G. T., Sharma, V., and 
Watanabe, C. M. H., 2008. Bioorganic Chemistry, 36, 4-15, Copyright [2008] by Elsevier.  
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Scheme 14.    Proposed biosynthetic routes to the enol fragment of azinomycin B 
 
 
The synthetic routes were designed to allow easy and efficient preparation in high yields, 

selective deprotection of O- and N-functional groups and minimal chromatographic separations 

to afford synthesis of the molecules in a cost effective manner for the implementation of stable 

isotopes.  The availability of synthetic routes to α-amino compounds (T8, Scheme 15), aminals 

(T11, Scheme 15), and ketoamino alcohols (T17,) is of additional importance as they can serve 

as models for stereochemical studies [235-237] as well as serve as building blocks in the 

synthesis of amino-sugars [238, 239], aza-sugars [240], sphingosines [241-245], and unnatural 

amino acids/derivatives [246-249].  

The syntheses of all three precursors T3, T4 and T5 began from commercially available 

(L)-threonine. Threonine, T2 was converted into its methyl ester hydrochloride using SOCl2 in 

MeOH under reflux conditions. The methyl ester T6 was then protected with Boc-anhydride in 

THF in the presence of triethylamine to provide the Boc-protected methyl ester of threonine T7 

in ~88% yield. This Boc-protected methyl ester T7 served as the common substrate for all 

precursors (Scheme 15).  
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β-Keto Amino Acid ((S)-2-amino-3-oxobutanoic acid), T3 

Upon oxidation with Dess-Martin periodinane, Boc-protected threonine methyl ester was 

converted into the corresponding Boc-protected keto-ester T8 in 91%, which when hydrolyzed 

with TFA/H2O under reflux afforded the desired compound T3 in an overall 72% yield (Scheme 

14).  

 

Hydroxy-aldehyde ((2S)-2-amino-3-hydroxybutanal), T4 

The hydroxy-aldehyde T4 (Scheme 14) was synthesized over six steps by modification of the 

synthesis of Garner’s aldehyde. The N-Boc 2,2-dimethyl oxazolidine ring constituted a 

convenient masked modified amino acid that was expected to tolerate synthetic elaboration. 

Thus, Boc-protected amino acid methyl ester, T7 was protected completely as an oxazolidine T9 

which when subjected to reduction by LiAlH4 afforded the protected alcohol T10 in excellent 

yields. The alcohol was further oxidized to the threonine analog of Garner’s aldehyde T11 in 

98% yield. The protected amino-aldehyde was not stable over long periods of time and was 

immediately subjected to deprotection by treatment with TFA/D2O. This TFA salt of the aminal 

hydrate system generated was unstable to isolation and was characterized and directly utilized in 

feeding experiments. 

 

 

Scheme 15.   Synthesis of threonine derivatives 
a) MeOH, HCl (dry) reflux, 2h. b) Boc2O, Et3N, THF, 0 °C → r.t. 14h, then 50 °C 3h. c) Dess-Martin 
Periodinane, CH2Cl2, r.t., 1h d) TFA(aq.), reflux e)2-methoxypropene,acetone, r.t., 3h f)LiAlH4, THF, 40’ 
g)IBX, EtOAc, reflux, 3h h) TFA, water, 25 °C. 
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Scheme 16.   Synthesis of threonine derivatives 
a)TBDMSCl, DMAP, Et3N, dry DMF, 0 °C → r.t., 36h. b) LiAlH4, THF, -50 °C, 30’ c) 2-
methoxypropene,acetone, r.t., 2h d) TBAF,THF, 8h e) Dess-Martin Periodinane, CH2Cl2, r.t., 1h f) 0.5M 
TFA, CH2Cl2, r.t., 15’ g) IBX, DCE, 3h, cool, filter then TFA, H2O, 15’. 

 

β-ketoaminoaldehyde ((R)-2-amino-3-oxobutanal), T5   

We next examined a synthetic route for the preparation of β-ketoaminoaldehyde T5. Since the β-

ketoenamine system is synthetically equivalent to the corresponding ketoaldehyde, we expected 

it to be directly formed via oxidation of the corresponding 1,3 diol system. Treatment with 

TPAP/NMO [250], PCC [251], PDC [252], Dess-Martin [253], and IBX(2-iodoxy benzoic acid) 

[223], however, resulted in a complex mixture of products unstable to column chromatography. 

Alternatively, access to the Boc-protected aminoaldehyde using reduction of Boc-protected esters 

or Weinreb amides [254] led to overreduction to the corresponding alcohol or complicated and 

tedious column chromatographic separations, not suitable for implementation of stable isotopes. 

Based on synthesis and stability studies of T3, we envisaged N-Boc-protected acetyl glycinol 

T17 (Scheme 16) as a convenient moiety to undergo oxidation and subsequent deprotection. 

Thus, chiral acetyl oxazolidine T16 was synthesized from the common precursor tert-

butoxycarbonyl-protected methyl L-threoninate T7 using a modified procedure employed by 

Dondoni et al. [255] This ester was first transformed into the alcohol T13 by silylation (91%) of 

the secondary hydroxyl group with tert-butyldimethylsilyl chloride (TBDMSCl) and subsequent 

reduction of the ester group with LiAlH4. Our earlier efforts and studies by others [255] revealed 

that the selective step-wise protection of the two hydroxyl groups was important.   Acetonation 

with 2-methoxypropene (95%) and desilylation (n- Bu4N+F-) converted T13 into the (R,R)-

hydroxyethyl oxazolidine T15 (88%) in rotameric forms. The secondary alcohol was then 

subjected to oxidation with Dess-Martin periodinane to yield T16. Use of PCC for oxidation 
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gave a complex mixture of products that remained impure even after column chromatography. 

The oxazolidine ring was cleaved with very dilute TFA (boc group still intact) to yield the 

desired acetyl Boc-protected glycinol T17.  Alternatively, the acetyl Boc-protected glycinol was 

also synthesized starting from N-Boc-protected serine, which was converted into its Weinreb 

amide. Further acetonation with 2-methoxypropene, followed by treatment with organolithium 

(MeLi) in presence of CH3MgBr as the sacrificial base provided acetylation of the α−C [256, 

257]. However, overall yields from this methodology and purification were not found to be cost-

effective in our hands.  This primary alcohol was now ready for oxidation and subsequent final 

deprotection. Heterogenous IBX oxidation [223] provided a mild method to form the aldehyde, 

however, all efforts to isolate the keto-aminal resulted in rapid decomposition of the product. 

Hence, the reaction was simply filtered and treated with TFA/H2O for 25 min. at room 

temperature to afford final deprotection, producing the desired keto-aminal T5. 

Each of the threonine derivatives (compounds T3, T4, and T5) were synthesized in universally 

labeled form and fed individually to whole cell suspension cultures as detailed previously.  

Interestingly, none of these amino acid precursors gave any site-specific incorporation above 

background (Figure 134, Figure 135, Figure 136, and Figure 137).  As a control for cellular 

uptake, since the majority of the amino acid derivatives were synthesized as their respective TFA 

salts, we fed [methyl-13C] methionine as its TFA salt and monitored its incorporation ([methyl-
13C]-methionine labels specifically the methoxy group of azinomycin B, Figure 116).  Intact 

incorporation was observed as reported previously, confirming that the TFA salts of amino acids 

are capable of penetrating the cell membrane of the producer strain, S. sahachiroi.  As noted 

previously [258, 259], both of the enol systems (T4 and T5) were found to be relatively unstable 

as compared to the corresponding acetylglycine T3. Figure 3 illustrates the stability analysis of 

the compounds. After 48 h at room temperature under aqueous conditions, only 70% of the 

hydroxyl-aminal T4 and 35% of the keto-aminal T5 were detected (Table 31).  
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Figure 178.  Stability curve as a function of time for T3, T4, T5. 
 
  

Table 31.   Stability of compounds T3, T4, T5 after 48 h under aqueous conditions as judged by 
NMR spectroscopy 

 

Stability % observed after 48h at r.t.
T3

T5

93
70
35

T4

 
 
 
Synthesis of isotopically labeled compounds T3, T4 and T5. 
 
Threonine methyl ester hydrochloride, T6 

Thionyl chloride (398.5 mg, 3.4 mmol) was added drop-wise to cold anhydrous methanol (15 

mL) at 0 °C. The solution was allowed to stir at 0 °C for 10 min.  Threonine, T2 (0.4 g, 3.35 

mmol) was added and the reaction mixture allowed to reflux for 1h. The reaction was allowed to 

cool and the solvent evaporated in vacuo. A 2N solution of anhydrous HCl in methanol was 

generated and the reaction was again refluxed for 1h. The solution was allowed to cool and the 

solvent evaporated in vacuo on a rotary evaporator. A foamy solid was obtained in quantitative 

yield.  IR (NaCl, thin film) νmax 3375.3, 3236.2, 2960.6(br), 1744.1, 1599.0, 1516.1, 1240.9 cm-1; 
1H NMR (CD3OD, 500 MHz) δ 1.35 (d, 3H, J = 6.5 Hz), 3.87 (s, 3H), 3.97(d, 1H, J= 4.5 Hz), 

4.29 (dq, 1H, J1= 6.5 Hz, J2 = 4.0 Hz), 13C NMR and DEPT(CD3OD, 500MHz) δ 20.5, 53.7, 

59.7, 66.3,169.6; HRMS (ESI+): m/z calcd for C5H12NO3Cl (M+H), 134.0818, found, 134.0812. 

ESI-(LRMS): m/z 34.96, 36.99.  
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Boc-protected Threonine methyl ester, T7 

Method A: A flame dried 25 mL three-necked round-bottomed flask, equipped with a magnetic 

stirring bar, thermometer, reflux condenser (protected from moisture by a calcium chloride-filled 

drying tube), and a pressure-equalizing dropping funnel connected to a N2-line was charged with 

a solution of di-tert-butyl dicarbonate (0.34 g, 1.56 mmol) in THF (2.5 mL). A suspension of 

methyl threoninate hydrochloride T6 (0.27 g, 1.59 mmol) in THF (5 mL) and  triethylamine 

(0.34 g, 3.4 mmol) was maintained at 0 °C and allowed to stir for 5 min. The solution of di-tert-

butyl dicarbonate was added dropwise over a period of 1 h at 0 °C. After 10 min of additional 

stirring, the ice-water bath was removed and the suspension was stirred overnight (14 h) at room 

temperature, then warmed at 50 °C for a further 3 h. The solvent was removed under reduced 

pressure and the residue was partitioned between diethyl ether (20 mL) and saturated aqueous 

bicarbonate solution (25 mL). The aqueous phase was extracted with ether 3X15 mL. The 

combined organic phases were dried with anhydrous Na2SO4 and concentrated under reduced 

pressure to give 0.33 g (88% yield) of N-Boc-L-threonine methyl ester, T7 as a thick colorless oil 

that was used without further purification. 

Method B: Threonine methyl ester hydrochloride salt, T6 (3.0 g, 17.7 mmol) and NaHCO3 (4.6 

g, 53.2 mmol) were dissolved in a 1:1 (v/v) mixture of water and methanol (36 mL). (Boc)2O 

(5.8 g, 26.6 mmol) was added drop-wise and the solution was stirred at room temperature for 20 

h.  The reaction mixture was concentrated under vacuum. The reaction mixture was then 

acidified with aqueous citric acid (1 M) to pH 4.5. The reaction mixture was extracted with ethyl 

acetate (30 mL x 4). The organic layers were combined, dried with MgSO4, filtered and 

concentrated in vacuo to obtain the product T7 in quantitative yield and was used without further 

purification. 

IR (NaCl, thin film) νmax 3432.1, 2982.4, 2853.2, 1753.4, 1719.9, 1510.4, 1365.2, 1172.4 cm-1; 
1H NMR (CDCl3, 500 MHz) and gCOSY δ 1.21 (d, 3H, J = 7 Hz), 1.45 (s, 9H), 2.23(br, 1H), 

3.74 (s, 3H), 4.22 (d, 1H, J= 9 Hz), 4.26 (d, 1H, J= 6 Hz), 5.41 (d, 1H, J = 7 Hz). 13C NMR 

(CDCl3, 500MHz) and gHMQC δ 19.8, 28.2, 52.5, 58.6, 68.1, 80.1, 156.1, 172.0; HRMS (ESI+): 

m/z calcd for C10H19NO5 (M+Li), 240.1423, found, 240.1415. 
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tert-butyl 1-(methoxycarbonyl)-2-oxopropylcarbamate (Boc-protected β-keto-Threonine 

methyl ester), T8. 

A solution of Boc-protected threonine methyl ester, T7 (0.1 g, 0.43 mmol) and Dess-Martin 

periodinane (0.22 g, 0.52 mmol) in dichloromethane (2 mL), was stirred for 1 h at room 

temperature. The reaction was then quenched with 15 mL of 1:1 v/v solution of NaHCO3 and 

10% Na2S2O3 and extracted with ethyl acetate (3X, 30 mL). The organic phase was collected, 

dried over Na2SO4 and concentrated in vacuo to afford the product (T8) as a low melting white 

solid in 91% yield (92 mg). M.P. =61 °C ; [α]D=-3.8(c=2.5 ,CHCl3); IR (NaCl, thin film) νmax 

3384.2, 2931.2, 2851.3, 1758.9, 1720.4, 1708.6, 1483.6, 1365.1, 1157.9 cm-1; 1H NMR (CDCl3, 

300MHz) δ 1.42 (s, 9H), 2.35 (s, 3H), 3.78 (s, 3H), 5.02 (d, 1H, J= 7.2Hz), 5.74 (br, 1H). 13C 

NMR (CDCl3, 300MHz) δ 27.8, 28.1, 53.2, 64.2, 80.8, 154.9, 166.9, 198.8; HRMS (ESI+): m/z 

calcd for C10H17NO5 (M+H), 232.1185, found, 232.1178. 

 

2-amino 3-oxobutanoic acid TFA salt, T3. 

A solution of tert-butyl 1-(methoxycarbonyl)-2-oxopropylcarbamate, T8 (0.13 g, 0.56 mmol) in 5 

mL TFA:H2O (v/v 1:1) was refluxed for 8 h and allowed to stir for an additional 5 h. The solvent 

was evaporated in vacuo to give the desired triflate salt as a light yellow sticky solid, T3.  [α]D=-

3.24(c 0.4, MeOH); IR (NaCl, thin film) νmax 3422.7, 3014.1, 2857.2, 1732.2, 1693.4, 1675.9, 

1199.0 cm-1; 1H NMR (D2O, 500MHz) δ 2.06(s, 3H), 3.89 (s, 1H); 13C NMR (D2O + 1drop 

CD3OD, 500MHz) δ 26.6, 47.7, 116.4 (q, JC-F = 1160 Hz), 162.8(q, JC-F = 141 Hz), 171.6, 204.03; 

HRMS (ESI+): m/z calcd for 13C4H7NO3 ((M+H)-H2O), 104.0, found, 103.99. 

 

(4S,5R)-3-tert-butyl 4-methyl 2,2,5-trimethyloxazolidine-3,4-dicarboxylate, T9.  

2-methoxypropene (0.31 g, 4.29 mmol) and camphor sulphonic acid (6.7 mg, 0.02 mmol) was 

added to a solution of N-Boc-L-threonine methyl ester, T7 (0.1 g, 0.43 mmol) in acetone (2 mL). 

The resulting orange solution was stirred at room temperature for 3.5 h (TLC analysis indicated 

completion of reaction). The reaction mixture was quenched with 10 μL of triethylamine and the 

solvent removed under reduced pressure. The residual brown syrup was partitioned between 

diethyl ether (20 mL) and saturated aqueous sodium bicarbonate solution (30 mL). The aqueous 

layer was extracted with diethyl ether (2 × 30 mL) and the combined organic phases were dried 

with anhydrous sodium sulfate and concentrated under reduced pressure to give 105 mg (90%) of 

oxazolidine methyl ester, T9 as a yellow oil in both rotameric forms (3:1). IR (NaCl, thin film) 
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νmax 2984.5, 2928.3, 2857.2, 1755.9, 1720.4, 1376.9, 1362.2, 1258.6 cm-1; 1H NMR & gCOSY  

(CDCl3, 300MHz) δ 1.31,1.32(s, 9H), 1.41 (s, 3H), 1.49-1.57(m, 6H), 3.69(s, 3H), 3.83, 3.91(d, 

2H, J=7.5 Hz)  4.05-4.09(m, 1H); 13C NMR (CDCl3, 300MHz) & DEPT δ 18.7, 18.5, 23.9,24.7, 

26.4, 27.7, 28.1, 28.2, 52.1, 52.3, 65.9, 66.1, 73.4,73.7, 80.2, 80.7, 94.4, 95.0, 151.2, 152.3, 

171.0, 171.5; HRMS (ESI+): m/z calcd for C13H23NO5, (M+H), 274.1654, found, 274.1645.  

 

(4R,5R)-tert-butyl 4-(hydroxymethyl)-2,2,5-trimethyloxazolidine-3-carboxylate, T10 

A 25-mL, two-necked, round-bottomed flask was equipped with a magnetic stirring bar, reflux 

condenser bearing a drying tube and a pressure-equalizing dropping funnel fitted with a rubber 

septum. The flask was charged with 10 mL of tetrahydrofuran and 20.9 mg (0.55 mmol) of 

lithium aluminum hydride. While the suspension in the flask was stirred, a solution of the 

oxazolidine ester, T9 (100 mg, 0.37 mmol) in tetrahydrofuran (1 mL) was added dropwise over 

20 min. The dropping funnel was washed with two 1-mL portions of tetrahydrofuran and the 

suspension stirred for an additional 20 min, when TLC analysis showed the complete formation 

of the alcohol. The reaction mixture was cooled with an ice-water bath while 1 mL of a 10% 

aqueous KOH solution was added drop-wise over 10 min. Caution! The reaction is exothermic. 

The reaction was stirred for another hour at room temperature, and filtered through a Celite pad 

(1 cm X 2.5 cm) that was subsequently rinsed with diethyl ether (3X, 10mL). The combined 

organic filtrates were washed with 25 mL of aqueous phosphate buffer (pH=7.0), and the 

aqueous layer extracted with diethyl ether (3 × 30 mL). The combined organic phases were dried 

with anhydrous sodium sulfate, filtered and concentrated in vacuo to give 85.1 mg (~95%) of the 

desired product, T10 as a pale yellow oil which was used without further purification. IR (NaCl, 

thin film) νmax 3437.5, 2978.6, 2928.3, 2875.0, 1696.7, 1670.1, 1456.9, 1406.6, 1255.6 cm-1; 1H 

NMR & gCOSY (CDCl3+1drop D2O), 300MHz) δ 1.32(d, 3H, J=6 Hz), 1.44 (s, 3H), 1.47(s, 

3H,), 1.55 (s, 3H), 3.49(m, 1H), 3.62(d, 2H, J=3 Hz)  3.71(m, 1H); 13C NMR (CDCl3, 300MHz) 

& HMQC δ 18.1, 25.9, 27.8, 28.3, 64.7, 67.2, 71.9, 81.3, 94.1, 154.2; HRMS (ESI+): m/z calcd 

for C12H23NO4, (M+H), 246.1705, found, 246.1699. 

 

(4S,5R)-tert-butyl 4-formyl-2,2,5-trimethyloxazolidine-3-carboxylate, T11 

 Oxazolidine alcohol T10 (85 mg, 0.35 mmol) was dissolved in ethyl acetate (2.5 mL, 0.14 M 

final concentration), and IBX (307.2 mg, 1.1 mmol) was added. The resulting suspension was 

refluxed in an oil bath set to 80 °C with vigorous stirring. After 2 h (TLC monitoring), the 

reaction was cooled to room temperature and filtered through a medium glass frit. The filter cake 
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was washed with ethyl acetate (3X, 2 mL), and the combined filtrates washed with pre-chilled 

NaHCO3 (1X). The organic layer was collected, dried over Na2SO4, filtered and concentrated in 

vacuo to yield 82 mg (98% yield) of the desired product T11 as a mixture of rotomers (2:1). 

Note: the aldehydes were immediately used for deprotection. Prolonged storage in an organic 

solvent led to decomposition of the product. IR (NaCl, thin film) νmax 2963.8, 2860.2, 1717.4, 

1684.9, 1374.0, 1264.5 cm-1; 1H NMR & gCOSY (CDCl3), 300MHz) δ 1.34(d, 3H, J=6 Hz), 

1.41, 1.49 (s, 9H,), 1.55-1.64(m, 6H), 4.02-4.08, 4.19-4.26(m, 1H), 3.68, 3.80 (dd, 1H, J=2.4, 2.7 

Hz), 9.37, 9.46(d, 1H, J=1.8 Hz); 13C NMR (CDCl3, 300MHz) & gHMQC δ 17.6, 17.7, 25.0, 

25.8, 26.2, 27.3, 28.1, 28.2, 69.8, 70.0, 70.9, 71.0, 81.4, 81.5, 94.1, 94.9, 150.9, 152.5, 197.5; 

HRMS (ESI+): m/z calcd for C12H21NO4 (M+H), 244.1549, found, 244.1546.  

 

(R)-2-aminobutane-1,1,3-diol trifluroacetate salt, T4 

A solution of aldehyde T11 (0.14g, 0.58 mmol) was stirred in deuterated acetone (15% in D2O) 

at room temperature. Trifluoroacetic acid (N2 flushed, Aldrich, 0.21g, 1.84 mmol) was added 

drop-wise to this solution. A brown grease-like material separated instantaneously. The slurry 

was stirred for 20 min to yield the product as a triflate salt, T4 in the D2O layer. Note: All 

attempts to concentrate the product led to decomposition of the material. This adduct was used 

for feeding studies immediately. Stability studies indicated the presence of ~70% of the 

compound after 48 h in D2O at room temperature. IR (NaCl, thin film) νmax 3393.1, 1675.9 cm-1; 
1H NMR & gCOSY(D2O, 500MHz) δ 1.01(d, 3H, J=6.5 Hz), 2.76-2.80(m,1H), 3.76-3.84(m, 

1H), 4.08(d,1H, J=5 Hz). 13C NMR (D2O, 500MHz) δ 19.2, 61.1, 63.9, 86.6, 116.0 (q, JC-F = 

1153 Hz), 162.2(q, JC-F = 139.5 Hz); HRMS (ESI+) m/z calcd for C4H11NO3 (M+H), 121.0739, 

found 122.0819; C4H9NO2 (M+H) 104.0712, found, 104.0715.  

 

Methyl (2S,3R)-2-(tert-Butoxycarbonylamino)-3-O-(tert-butyldimethylsilyl) butanoate, T12 

A mixture of Boc-protected methyl ester T7 (1.0 g, 4.29 mmol), triethylamine (0.99 mL, 6.86 

mmol), 4-N,N-(dimethylamino)pyridine (52.3 mg, 0.42 mmol) in anhydrous DMF (16 mL) was 

cooled at 0 °C. tert-butyldimethylsilyl chloride (0.84 g, 5.57 mmol) was added and the mixture 

was stirred for 1.5 h. The ice-bath was removed and the reaction mixture was stirred at room 

temperature for 36 h. The reaction was quenched with methanol (1mL), stirred for an additional 

30 min, diluted with Et2O (100 mL), and washed with saturated aqueous NH4Cl (3X 25mL). The 

organic phase was dried (NaSO4), filtered and concentrated in vacuo to give the corresponding 

silyl derivative, T12 (1.35 g, 91.2%). [α]D=-28.6(c 0.73, MeOH); IR (NaCl, thin film) νmax 
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2916.3, 2860.0, 1757.8, 1713.3, 1380.2, 1162.2 cm-1; 1H NMR& gCOSY  (CDCl3, 500MHz) δ 

0.01(s, 3H), 0.06(s, 3H), 0.87(s, 9H), 1.21(d, 3H, J=6.5 Hz), 1.48(s, 9H), 3.74(s, 3H), 4.24(dd, 

1H, J=2, 8 Hz),  4.44(m, 1H), 5.20(1H, J= 8Hz); 13C NMR (CDCl3, 500MHz) δ -5.2, -4.3,17.9, 

20.7, 25.5, 28.3, 52.1, 59.5, 68.8, 79.7, 156.2, 171.7; HRMS (ESI+): m/z calcd for (M+H) 

C16H33NO5Si, 348.2206, found, 348.2208.  

 

(2R,3R)-2-(tert-Butoxycarbonylamino)-3-O-(tert-butyldimethylsilyl)-1,3-butandiol, T13. 

A well–stirred suspension of LiAlH4 (0.59 g, 15.5 mmol) in anhydrous THF (24 mL) was 

maintained at -50 °C. Boc-protected silyl derivative, T12 (1.35g, 3.88 mmol) in anhydrous THF 

(2 mL) was added over a period of 20 min. The mixture was stirred at -50 °C for an additional 30 

min, diluted with 1 M phosphate buffer at pH = 7 (3 mL) and EtOAc (30 mL), warmed to room 

temperature, and filtered through a pad of Celite. The organic layer was collected and 

concentrated.  The residue was eluted from a column of silica gel with 4:1 cyclohexane-AcOEt to 

give product T13 (0.99 g, 80 %) as a thick colorless oil. [α]D=-6.9(c 0.8, CHCl3) Lit. [α]D=-7.5(c 

0.8, CHCl3); IR (NaCl, thin film) νmax 3446.3, 2929.1, 2850.6, 1702.7, 1504.2, 1169.2 cm-1; 1H 

NMR & gCOSY  (CDCl3, 500MHz) δ 0.09(s, 3H, Si-CH3), 0.1(s, 3H, Si-CH3), 0.90(s, 9H, Si-

C(CH3)3), 1.19(d, 3H, J= 6Hz), 1.47(s, 9H), 3.52-3.70(m, 3H),  4.06-4.11(m, 1H), 4.91(1H, J=8 

Hz); 13C NMR (CDCl3, 500MHz) δ -5.3, -4.3, 17.8, 20.8, 26.0 , 28.3, 57.3, 64.2, 67.7,79.7, 

156.8; HRMS (ESI+): m/z calcd for (M+H) C15H33NO4Si, 320.2257, found, 320.2260.  

 

(4R)-4-[(R)-1-O-(tert-butyldimethylsilyl)ethyl]-2,2-dimethyl-N-(tert-butoxycarbonyl)-1,3-

oxazolidine, T14 

A solution of Boc-protected silyl alcohol, T13 (0.85 g, 2.66 mmol) and 2-methoxypropene (1.73 

g, 23.98 mmol) in acetone (10 mL) was maintained at 0 °C. 10-camphorsulfonic acid (61.79 mg, 

0.26 mmol) was added and the mixture stirred for 1 h at 0 °C, followed by 30 min at room 

temperature. The reaction was quenched with Et3N (0.2 mL, color changes from dark red to 

yellow) and the solvent was removed under reduced pressure.  The residual brown syrup was 

partitioned between diethyl ether (50 mL) and saturated aqueous sodium bicarbonate solution (4 

X 30mL). The organic layer was collected and washed once with brine. The organic phase was 

dried (Na2SO4) and concentrated to give the desired product T14 as a mixture of rotamers (2:1) 

(0.9g, 95%). IR (NaCl, thin film) νmax 2929.3, 2856.7, 1705.9, 1471.3, 1381.9, 1256.2 cm-1; 1H 

NMR & gCOSY (CDCl3, 500MHz) δ 0.07(m, 6H), 0.88(s, 9H), 1.09(d, 3H, J= 

6.5Hz),1.27,1.34(s, 3H), 1.47,1.49(s, 9H), 1.56,1.62(s, 3H), 3.78-3.82, 3.92-3.96(m, 1H), 3.87-
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3.92, 4.14-4.19(m, 1H) 4.22-4.28, 4.31-4.37(m, 1H); 13C NMR (CDCl3, 500MHz) δ -4.8, -4.7, 

17.8, 22.6,22.7, 25.7, 28.1, 28.3, 28.6, 28.6, 29.7, 60.6, 61.2, 62.8, 63.0, 66.2, 66.9, 79.7, 79.9, 

94.6, 93.9, 152.3, 152.7; HRMS (ESI+): m/z calcd for (M+H) C18H37NO4Si, 360.2570, found, 

360.2580.  

 

(4R)-4-[(R)-1-Hydroxyethyl]-2,2-dimethyl-N-(tert-butoxycarbonyl)-1,3-oxazolidine, T15 

A solution of the silyl ether derivative (0.9 g, 2.82 mmol) in anhydrous THF (10 mL) was treated 

with n-Bu4N+F-.3H2O (3.38 mL (1M in THF), 3.39 mmol) at room temperature for 8 h and 

concentrated. The residue was dissolved in CH2Cl2 (20 mL), washed with H2O (2X, 20 mL), 

dried (Na2SO4), and concentrated to give the crude product as a dark yellow oil. The residue was 

eluted from a plug of silica gel with 4:1 hexane-AcOEt (containing 0.3% of Et3N) to afford the 

product (T15) as a white solid (0.55 g, 88%).  IR (NaCl, thin film) νmax 3443.4, 2972.7, 2827.3, 

1696.7, 1379.9 cm-1; 1H NMR(CDCl3, 500MHz) δ 1.14(d, 3H, J=6.5Hz), 1.46(s, 3H),1.47(s, 9H), 

1.55 (s, 3H), 3.78-3.98, 4.11-4.19(2m, 4H); 13C NMR (CDCl3, 500MHz) δ 24.4, 25.9, 28.2, 28.3, 

28.4, 29.8, 63.2, 64.7, 70.1, 81.3, 94.0,152.3; HRMS (ESI+): m/z calcd for (M+H) C12H23NO4, 

246.1705, found, 246.1697.  

 

(4R)-4-Acetyl-2,2-dimethyl-N-(tert-butoxycarbonyl)-1,3-oxazolidine, T16 

A mixture of alcohol 15 (0.19 g, 0.79 mmol), and Dess-Martin reagent (0.37 g, 0.88 mmol) in 

anhydrous CH2Cl2 (10 mL) was stirred at room temperature for 2 h away from light. The reaction 

was quenched with a 1:1 solution of cold Na2S2O3 and NaHCO3 (v/v) and extracted in ether (3X, 

30mL). The organic layer was collected, dried over Na2SO4, filtered and concentrated in vacuo to 

give crude product T16 as mixture of rotamers as a thick yellow oil (0.17 mg, 90%). IR (NaCl, 

thin film) νmax 2917.2, 2847.7, 1732.6, 1697.8, 1366.3 cm-1; 1H NMR(CDCl3, 500MHz) δ 

1.43,1.51(s, 9H),1.48,1.54(s, 3H), 1.66,1.72 (s, 3H), 2.20,2.22(s, 3H), 3.93,3.98(dd, 1H, J=3.0, 

6.5 Hz), 4.10-4.18(m,1H), 4.28,4.42(dd, 1H, J=3.0,5.5 Hz);13C NMR (CDCl3, 500MHz) δ 24.7, 

25.6, 25.4,25.9,26.3, 26.5, 28.3, 28.2, 65.1, 65.5, 65.5, 65.6, 81.1, 80.7, 94.5, 95.2, 151.4, 152.4, 

206.5, 207; HRMS (ESI+): m/z calcd for (M+H) C12H21NO4, 244.1549, found, 244.1537.  

 

 

Tert-butyl (S)-1-hydroxy-3-oxobutan-2-ylcarbamate, T17 

A solution of ketone T16 (0.17 g, 0.71 mmol) in CH2Cl2 (1 mL) was mixed with 0.5 M TFA in 

anhydrous CH2Cl2 (15 mL) and stirred at room temperature for 15 min. The reaction was 
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quenched with cold NaHCO3 (30 mL) and extracted in ether (3X, 30 mL). The organic layer was 

collected, dried over Na2SO4, filtered and concentrated in vacuo to give the crude product as a 

thick yellow oil. The crude material was then purified by column chromatography by eluting 

with ethyl acetate:hexane (1:3) Rf=0.25 to yield acetyl glycinol T17(0.12g, 85%). IR (NaCl, thin 

film) νmax 3418.4, 2919.2, 2851.1, 1711.9, 1687.7, 1366.7 cm-1; 1H NMR(CDCl3, 500MHz) δ 

1.46(s, 9H), 2.29(s, 3H), 3.96(ddd, J=4, 8, 25 Hz), 4.32(m, 1H), 5.68(br,1H);13C NMR (CDCl3, 

500MHz) δ 27.3, 28.2, 62.1,62.9, 80.2, 155.9, 205.6; HRMS (ESI+): m/z calcd for (M+H) 

C9H17NO4, 204.1236, found, 204.1239.  

 

3-amino-4-hydroxy but-3-en-2-one trifluoroacetate salt 

A suspension of ketone T17 (0.08 g, 0.4 mmol) in dichloroethane (2 mL) was refluxed gently 

with IBX (0.7 g, 1.2 mmol, 45%) for 3 h. The suspension was allowed to cool to room 

temperature and further cooled at -20 °C for 20 min. The resulting white precipitate was filtered. 

The filtrate was mixed with aqueous TFA (50 mg in 1 mL water) and allowed to stir for 25 min 

at room temperature. The aqueous layer was collected and characterized. Note: the keto-aldehyde 

and keto-aminal were found to be unstable to isolation conditions. Any attempts to concentrate 

this material led to extensive decomposition of the product. This precursor was used for feeding 

studies immediately. Stability studies indicated the presence of ~35% of the compound after 48 h 

in D2O at room temperature. 1H NMR(D2O, 500MHz) δ 1.69(s, 3H), 1.83 (s, 3H),4.69 (s, 1H), 

5.06(s, 1H). HRMS (ESI+): m/z calcd for (M+H) C4H7NO2, 102.0555, found, 102.0551.  
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BIOSYNTHETIC ROUTE TO THE END FRAGMENT OF AZINOMYCIN A 

(SYNTHESIS BY DR. VASUDHA SHARMA) 

 

 
Scheme 17.   Synthesis of Aminoacetone Hydrogen Chloride 
(a) SO2Cl2, 0 °C, 36h; (b) 2 equiv.  conc.  H2SO4, aq.  THF, reflux; (c) Potassium phthalimide, DMF, 16h; 
(d) conc.  HCl, reflux, 7h. 
 

 

Ethyl 2-Chloroacetoacetate (AA7) 

Sulfuryl chloride (322µL) was added drop-wise via a dropping funnel to ethyl acetoacetate (500 

mg) maintained at 0°C. The mixture was stirred overnight at room temperature. The product, 

AA7 was obtained by evaporation in vacuo of the formed SO2 and HCl (0.62 g, 98%) as a 

slightly yellow liquid (Scheme 17). Both the 1H NMR spectrum and the 13C NMR spectrum 

showed a keto-enol mixture of ethyl 2-chloroacetoacetate. 1H NMR (300 MHz, CDCl3): δ 4.76 

(m, 1H), 4.18-4.27 (m, 4H (keto/enol)), 2.38 (s, 3H ), 2.19 (s, 3H (enol)), 2.16 (s (br), OH, 1H 

(enol)), 1.30 (m, 6H (keto/enol)). 13C NMR (300 MHz, CDCl3): δ 196.8, 172.7, 169.3, 164.9, 

96.6, 63.1, 61.3, 26.2, 20.1, 14.1.  

 

Chloroacetone (AA8) 

A solution of ethyl 2-chloroacetoacetate, AA7 (0.62g, 3.74 mmol) dissolved in 3mL of THF was 

mixed with and 0.27 mL water. Concentrated H2SO4 (2 eq.) was added and the reaction mixture 

was refluxed for 40 h. Subsequently, the mixture was cooled to room temperature followed by 

the addition of 15 mL of water and 25 mL of diethyl ether. The aqueous layer was extracted with 

50 mL (3X) of diethyl ether. The combined organic layers were washed with saturated NaHCO3 

solution and brine. The organic layer was dried over Na2SO4, filtered and diethylether was then 

removed via distillation at atmospheric pressure due to volatility of the product. The resulting 

solution of chloroacetone AA8 in THF was used in the following step (Scheme 17). 1H NMR 
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(500 MHz, CDCl3): δ 4.09 (s, 2H), 2.30 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 200.5, 48.9, 

27.2. 

 

N-acetonyl phthalamide (AA9) 

In a dried flask, to a solution of chloroacetone , AA8 (1g, 10.8 mmol) in DMF (10 mL) was 

added potassium phthalimide (2.20g,11.8 mmol) with constant stirring (potassium phthalimide 

was not completely soluble in the DMF). The reaction was stirred at room temperature for 16h 

and monitored by TLC. After the reaction was complete, the reaction mixture was poured into 

water (250 mL). Ivory-white colored solid (AA9) precipitated (2.17 g, 99.3%) which was filtered 

and dried (Scheme 17). 1H NMR (CDCl3, 300MHz) 2.25(s, 3H), 4.48 (s, 2H), 7.72(dd, 2H, J1= 

2.7 Hz, J2=5.4 Hz), 7.85(dd, 2H, J1= 2.7 Hz, J2=5.4 Hz). 13C NMR (CDCl3, 300MHz) δ 27.1, 

47.3, 123.9, 132.2, 134.6, 167.8, 199.9. IR (NaCl, thin film) cm-1: 3055.6, 2925.3, 2860.2, 

1770.7, 1729.3, 1616.7, 1418.4, 1190.8. HRMS (ESI+) C11H9NO3 (M+Li), 210.0742, found, 

210.0739.  

 

Aminoacetone hydrochloride (AA5) 

A suspension of N-acetonylphthalimide, AA9 in aqueous solution (1:1) of conc. HCl was heated 

to reflux for 7h. The solution was allowed to cool down. The precipitated phthalic acid was 

filtered and washed once with cold water (2 mL). The solvent was evaporated from the filterate 

to yield the desired product AA5 in 77% yield as its hydrochloride salt. 1H NMR (D2O, 300MHz) 

2.10 (s, 3H), 3.92 (s, 2H), 6.70 (br, NH2, exchangeable) (Scheme 17). 13C NMR (D2O, 300MHz) 

δ 26.4, 47.4, 203.3. IR (NaCl, thin film) cm-1: 3422.7(br), 2919.4, 2848.3, 1729.3, 1590.1; MS 

(ESI+) C3H7NO (M+H), 74.0606, found, 74.0609.  Note: the product was freeze dried and kept at 

-20 °C away from light for prolonged storage. 
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BIOSYNTHETIC ROUTE TO THE AZIRIDINO[1,2A]PYRROLIDINE (1-

AZABICYCLO[3.1.0]HEXANE) MOIETY 

(SYNTHESIS BY DR. VASUDHA SHARMA) 

 

Serine methyl ester hydrochloride 

Methanol (10 mL) was cooled to 0 °C, and thionyl chloride (0.69 mL, 9.52 mmol) was added 

dropwise. To the resultant solution of HCl in methanol was added L-serine (1.0 g, 9.52 mmol), 

and the reaction mixture was heated under reflux for 1 h. The solvent was removed in vacuo, 

another 10 mL of a 2 M solution of HCl in methanol, prepared in the same manner as before, was 

added, and the reaction mixture was heated under reflux for another 1 h. The solvent was 

removed in vacuo to yield the title compound (1.48 g, quant.) as a white solid.  1H NMR (300 

MHz, CDC13) δ 3.85(s, 3H) 3.99-4.02 (m, 2H), 4.11(m, 1H), 5.48 (br, -NHs); 13C NMR (500 

MHz; CDC13) δ 53.7, 55.9, 60.9,169.3; IR (NaCl, thin film) cm-1: 3428.6, 2928.3, 2848.35, 

1741.1, 1476.7; HRMS (ESI+): m/z calcd for C4H10NO3Cl (M+Li), 120.0661, found, 120.0662.  

 

Boc-protected serine methyl ester 

A flame dried 25 mL three-necked round-bottomed flask, equipped with a magnetic stirring bar, 

thermometer, reflux condenser (protected from moisture by a calcium chloride-filled drying 

tube), and a pressure-equalizing dropping funnel connected to a N2-line was charged with a 

solution of di-tert-butyl dicarbonate (2.02 g, 9.31 mmol) in THF (30 mL). A suspension of 

methyl serinate hydrochloride (1.48 g, 9.5 mmol) in THF (30 mL) and  triethylamine (2.07 g, 

20.4 mmol) was maintained at 0 °C and allowed to stir for 5 min. The solution of di-tert-butyl 

dicarbonate was added drop-wise over a period of 1 h at 0 °C. After 10 min of additional stirring, 

the ice-water bath was removed and the suspension was stirred overnight (14 h) at room 

temperature, then warmed at 50 °C for a further 3 h. The solvent was removed under reduced 

pressure and the residue was partitioned between diethyl ether (25 mL) and saturated aqueous 

bicarbonate solution (25 mL). The aqueous phase was extracted with ether 3X25 mL. The 

combined organic phases were dried with anhydrous Na2SO4 and concentrated under reduced 

pressure to give1.84 g (88% yield) of N-Boc-L-serine methyl ester, as a thick colorless oil that 

was used without further purification. 1H NMR & gCOSY (300 MHz, CDC13) δ 1.42(s, 9H), 

3.47(br, 1H), 3.75(s, 3H) 3.82-3.92 (m, 2H), 4.36(m, 1H), 5.66 (br, -NH); 13C NMR & gHMQC 

(300 MHz; CDC13) δ 52.4, 55.9, 63.2, 80.0, 155.9, 171.5; IR (NaCl, thin film) cm-1: 3446.4, 
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3404.9, 2978.6, 2928.3, 1747.0, 1714.5, 1519.1; HRMS (ESI+): m/z calcd for C9H17NO5 (M+Li), 

220.1185, found, 220.1181.  

 

(S)-3-tert-butyl 4-methyl 2,2-dimethyloxazolidine-3,4-dicarboxylate, AZ10 

2-methoxypropene (3.2 g, 45 mmol) and camphor sulphonic acid (9.3 mg, 0.04 mmol) was added 

to a solution of N-Boc-L-serine methyl ester, (1g, 4.5 mmol) in acetone (20 mL). The resulting 

orange solution was stirred at room temperature for 3.5 h (TLC analysis indicated completion of 

reaction). The reaction mixture was quenched with 100 μL of triethylamine and the solvent 

removed under reduced pressure. The residual brown syrup was partitioned between diethyl ether 

(50 mL) and saturated aqueous sodium bicarbonate solution (50 mL). The aqueous layer was 

extracted with diethyl ether (2 × 50 mL) and the combined organic phases were dried with 

anhydrous sodium sulfate and concentrated under reduced pressure to give 1.06 g (90%) of 

oxazolidine methyl ester as a yellow oil in both rotameric forms (3:1). IR (NaCl, thin film) νmax 

2981.6, 2886.8, 1758.9, 1714.5, 1385.9, 1095.7 cm-1 1H NMR & gCOSY  (CDCl3, 500MHz) 

δ 1.22,1.31(s, 9H), 1.38, 1.40 (s,3H), 1.54,1.56(m, 3H), 3.69(s, 3H), 3.95-4.11(m, 2H), 4.33-

4.40(m, 1H); 13C NMR (CDCl3, 125MHz) δ 24.3, 24.9, 25.1, 25.9, 28.2, 28.3, 52.2, 52.3, 59.1, 

59.2, 65.8, 66.2, 80.3, 80.9, 94.3, 95.0, 151.2, 152.1, 171.0, 171.6 HRMS (ESI+): m/z calcd for 

C12H21NO5, (M+H), 266.1580, found, 266.1583.  

 

 (R)-tert-butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate 

A 25-mL, two-necked, round-bottomed flask was equipped with a magnetic stirring bar, reflux 

condenser bearing a drying tube and a pressure-equalizing dropping funnel. The flask was 

charged with 10 mL of tetrahydrofuran and 20.9 mg (0.55 mmol) of LiAlH4. While the 

suspension in the flask was stirred, a solution of the oxazolidine ester (100 mg, 0.38 mmol) in 

tetrahydrofuran (1 mL) was added dropwise over 20 min. The dropping funnel was washed with 

two 1-mL portions of tetrahydrofuran and the suspension stirred for an additional 20 min, when 

TLC analysis showed the complete formation of the alcohol. The reaction mixture was cooled 

with an ice-water bath while 1 mL of a 10% aqueous KOH solution was added drop-wise over 10 

min. Caution! The reaction is exothermic. The reaction was stirred for another hour at room 

temperature, and filtered through a Celite pad (1 cm X 2.5 cm) that was subsequently rinsed with 

diethyl ether (3X, 10mL). The combined organic filtrates were washed with 25 mL of aqueous 

phosphate buffer (pH=7.0), and the aqueous layer extracted with diethyl ether (3 × 30 mL). The 

combined organic phases were dried with anhydrous sodium sulfate, filtered and concentrated in 
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vacuo to give 85.1 mg (~95%) of the desired product as a pale yellow oil which was used without 

further purification. IR (NaCl, thin film) νmax 3446.4, 2972.7, 2872.0, 1699.7(br), 1670.1, 1462.8 

cm-1 1H NMR (CDCl3, 500MHz) δ 1.38, 1.42 (s, 3H), 1.45, 1.46(s, 9H), 1.51,1.68 (s, 3H), 

3.53(m, 1H), 3.72(m, 2H)  3.99(m, 3H) 13C NMR (CDCl3, 125 MHz) δ 24.3, 24.4, 27.2, 28.3, 

28.4, 59.3, 59.5, 64.9, 65.3, 65.4, 65.8, 81.1, 81.2, 94.1, 94.4, 153.9,154.2; LRMS (ESI+): m/z 

calcd for C11H21NO2, (M+Li), 238.2, found, 238.2. 

 

(S)-tert-butyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate, AZ11 

Oxazolidine alcohol (85 mg, 0.36 mmol) was dissolved in ethyl acetate (2.5 mL, 0.14 M final 

concentration), and IBX (307.2 mg, 1.1 mmol) was added. The resulting suspension was refluxed 

in an oil bath set to 80 °C with vigorous stirring. After 2 h (TLC monitoring), the reaction was 

cooled to room temperature and filtered through a medium glass frit. The filter cake was washed 

with ethyl acetate (3X, 2 mL), and the combined filtrates washed with pre-chilled NaHCO3 (1X). 

The organic layer was collected, dried over Na2SO4, filtered and concentrated in vacuo to yield 

82 mg (98% yield) of the desired product AZ11 as a mixture of rotomers (2:1). Note: the 

aldehydes were immediately used for deprotection. Prolonged storage in an organic solvent led 

to decomposition of the product. IR (NaCl, thin film) νmax 2981.6, 2928.2,1739.0, 1705.6, 1684.9, 

1453.9 cm-1 1H NMR(CDCl3, 500MHz) δ 9.33, 9.42(d, 1H, J=1.8 Hz), 4.03(m, 1H), 3.78-

3.67(m, 2H),1.62(s, 3H),1.48, 1.56(s, 3H), 1.39(s, 9H) LRMS (ESI+): m/z calcd for C11H19NO2 

(M+Li), 236.2, found, 236.2.  

 
Ethyl 2-(Diethyl phosphoryl)acetate 

A mixture of ethyl bromoacetate (2.2g, 13.2 mmol) and triethylphosphite (2.19g, 13.2 mmol) was 

heated in a flame-dried flask to 130 °C for 10h. The mixture was allowed to cool down to room 

temperature to afford the desired product in 98% yield (2.83g) as a mixture of rotamers. 1H NMR 

(CDCl3, 300 MHz): δ 0.94 (m, 9H), 2.57(d, 2H, J=21.3 Hz), 3.81(m, 6H) 13C NMR (CDCl3, 300 

MHz): δ 13.24, 15.51, 32.6, 34.3, 60.6, 61.69, 164.8, 164.9. IR (NaCl, thin film) cm-1: 29371.9, 

1745.3, 1468.1 HRMS (ESI+): m/z calcd for C8H17O5P (M+Li), 231.0974, found, 231.0977.  

 
2-(tert-butoxycarbonylamino)-5-ethoxy-5-oxopentanoic acid, AZ12 

Step A: N-tert-butyl 4-(3-ethoxy-3-oxoprop-1-enyl)-2,2-dimethyloxazolidine-3-carboxylate: 

In a sealed tube, under a steady stream of N2, NaH (0.14 g, 3.59 mmol) was washed with dry 

hexanes. Ethyl 2-(diethylphosphoryl)acetate (0.87 g, 3.87 mmol), dissolved in dry  
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tetrahydrofuran (10 ml) was added at 0 °C. The mixture was stirred for 15 minutes. Garner’s 

aldehyde (0.59 g, 2.58 mmol) was added to the reaction mixture and stirred at 0 °C for 30 min, 

then at room temperature for 6h. The reaction was quenched by addition of a saturated NH4Cl 

solution (5 ml). The aqueous layer was extracted with diethyl ether (3X40 ml) and the organic 

fractions were collected, dried with Na2SO4, and filtered. Evaporation of the solvent in vacuo 

yielded the desired product as a mixture of cis and trans diastereomers as well as rotamers as a 

light-yellow oil which was used further without purification  (0.46 g, 60%). 1H NMR (300 MHz, 

CDCl3): δ 1.20(m, 3H), 1.40,1.43,1.44,1.52(s,9H), 1.62, 1.66,1.69,1.70(s, 6H), 1.72, 1.73, 

1.75,1.78(s, 6H),3.81-4.05(m,1H), 4.13(m, 2H), 4.31-4.49(m, 2H),5.61, 5.65, 5.77, 5.71(m, 

1H),6.03, 6.066.09, 6.20 (m, 1 H). IR (NaCl, thin film) cm-1: 2954.9, 2869.1, 1732.2, 1717.4, 

1462.8, 1166.8. HRMS (ESI+): m/z calcd for C15H24NO5(M+Li), 306.1893, found, 306.1886. 

 

Step B: N-tert-butyl 4-(3-ethoxy-3-oxopropyl)-2, 2-dimethyloxazolidine-3-carboxylate:  

The mixture of isomers of the alkene were dissolved in MeOH and hydrogenated at 1 atm at 

room temperature for 24 h in presence of 10% Pd/C as the catalyst (1:1 w/w).The reaction slurry 

was filtered through celite and washed with warm EtOAc twice. The solvent was evaporated off 

to afford the product are a dark yellow oil. 1H NMR (300 MHz, CDCl3) δ 4.12 (q, J=8.8 Hz, 

2H), 3.94–3.71 (m, 2H+1H), 2.32 (m, 2H), 2.03–1.89 (m, 2H), 1.59–1.43 (m, 6H), 1.46 (s, 9H), 

1.25 (t, J=8.8 Hz, 3H). IR (NaCl, thin film) cm-1: 2960.6, 2929.7, 2867.9, 1709.9, 1703.7, 

1656.3, 1374.1. HRMS (ESI+): m/z calcd for C15H26NO5(M+Li), 308.2049, found, 308.2047. 

 

Step C: A stirring solution of oxazolidinone ester (692 mg, 2.3 mmol) in 5 mL of acetone, was 

maintained at 0 °C. Jones’ reagent (1.73 mL, 4.6 mmol) was added and the reaction mixture was 

allowed to warm to room temperature and the stirring was continued for 12 h. The mixture was 

then transferred to a larger flask and then Celite and isopropyl alcohol were added. The mixture 

was stirred for 15 min and the precipitate was filtered, washed with acetone, and made alkaline 

by the addition of sat. NaHCO3(aq). The solution was concentrated to remove organic solvents 

and washed with Et2O (3X25 mL). The aqueous layer was acidified to a pH=3 by the addition of 

solid Citric acid and extracted with CHCl3 (5X25 mL). The combined extracts were washed with 

brine (1X15 mL) and dried over solid Na2SO4. The solvent was concentrated to afford 252 mg 

(40%) of a semi-solid as mixture of rotamers. 1H NMR (300 MHz, CDCl3) δ 5.25 (br, 1H), 4.35 

(m, 1H), 4.12 (q, J=7.8 Hz, 2H), 2.44 (m, 2H), 2.25 (m, 1H), 2.06 (m, 1H), 1.45 (s, 9H), 1.26 (t, 

J=7.8 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ176.2, 175.7, 173.2, 172.9,156.9,155.8,82.1, 80.5, 
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60.9, 60.7, 53.9, 52.9, 30.6, 30.2, 28.4, 28.0, 27.6,14.3. IR (NaCl, thin film) cm-1: 3363.5, 2922.4, 

2851.3, 1732.2, 1720.4, 1696.7, 1166.8. HRMS (ESI+): m/z calcd for C12H21NO6(M+Li), 

282.1529, found, 282.1517. 

 

D-Glutamic acid , AZ 6 

A solution of boc-protected glutamic acid ethyl ester (200 mg, 0.73 mmol) was maintained at 0 

°C in ethanol (0.5 mL). NaOH (2.1 eq, 3 mL H2O) was added and the reaction was allowed to stir 

at room temperature for 9h. The reaction was washed with hexanes(1X) and the aqueous layer 

was collected and acidified with TFA at 10 °C with constant stirring to pH~2. The solvent was 

removed to afford the glutamic acid as its triflate salt in 86% yield. 1H NMR (300 MHz, D2O) 

δ3.85(m, 1H), 2.16-2.34(m, 4H); 13C NMR (75 MHz, D2O) δ181.2, 180.8, 53.8, 32.5, 29.8. IR 

(NaCl, thin film) cm-1: 3235.0, 2962.4, 2890.3, 1650.0, 1600.0, 1410.0.  

 

Pyroglutamic acid, AZ17 

Glutamic acid, AZ6 (1g, 6.8 mmol) was heated in water (10 mL) for 15 hours in a sealed tube. 

The solvent was evaporated to afford the pure product in quantitative yields (0.876 g). 1H NMR 

(500 MHz, D2O+2 drops of CD3OD) δ1.99-2.06 (m, 1H), 2.24-2.42(m, 3H), 4.22(m, 1H); 13C 

NMR (500 MHz, D2O+2 drops pf CD3OD) δ 25.5, 30.3, 56.9, 177.5, 182.9; HRMS (ESI+): m/z 

calcd. for C5H7NO3 (M+H), 130.0504, found, 130.0506. 

 

(S)-methyl 5-oxopyrrolidine-2-carboxylate, AZ13 

Acetyl chloride (0.53g, 6.82 mmol) was added drop-wise to 10 mL MeOH at 0°C. Pyroglutamic 

acid, AZ17 (800 mg, 6.2 mmol) was added in one lot and the reaction was stirred at 0 °C for 1h. 

The temperature was allowed to rise and the reaction was stirred at room temperature. The 

solvent was evaporated and the residue washed with NaHCO3 (3X, 20 mL). The reaction was 

extracted with EtOAc(3X, 50 mL). The organic layer was collected, dried over Na2SO4, filtered 

and concentrated in vacuo to yield the product AZ13 as a thick colorless oil in 87% yield (0.77g). 
1H NMR (300 MHz, CDCl3) δ2.05-2.40 (m, 4H), 3.69(s, 3H), 4.22(m, 1H), 7.05(br, 1H, -NH); 
13C NMR (500 MHz, CDCl3) δ 24.6, 29.2, 52.4, 55.3, 172.5, 178.3; LRMS (ESI+): m/z calcd for 

C6H9NO3 (M+H), 144.06, found, 144.06. 
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(S)-5-(hydroxymethyl)pyrrolidin-2-one, AZ5   

A solution of methyl 5-oxopyrrolidine-2-carboxylate, AZ13 (0.7g, 4.89 mmol) in THF:MeOH 

(3:2) was maintained at  0°C. NaBH4 (0.55g, 14.67mmol) was added in small lots and allowed to 

stir for 2h. The slurry was allowed to warm up to room temperature after which conc. HCl was 

added drop-wise such that the pH=4. The reaction was stirred for 1h at room temperature after 

which if was neutralized to pH=7 with solid NaHCO3. Filtered the slurry through celite and 

extracted the aqueous layer with EtOAc(2X). The organic layer was collected, dried over 

Na2SO4, filtered and concentrated in vacuo to yield the product AZ5 as a thick colorless oil in 

85% yield (0.48g). 1H NMR (300 MHz, CD3OD) δ1.86-1.88 (m, 1H), 2.18-2.37(m, 3H), 3.46-

3.59(m, 2H), 3.72-3.76(m,1H); 13C NMR (500 MHz, CD3OD) δ 23.7, 31.03, 57.6, 65.9,181.3; 

HRMS (ESI+): m/z calcd for C5H9NO2 (M+H), 116.0711, found, 116.0700. 

 

(R)-(5-oxopyrrolidin-2-yl)methyl 4-methylbenzenesulfonate, AZ14 

A solution of (R)-5-(hydroxymethyl)pyrrolidin-2-one  AZ5 (0.1g, 0.87 mmol) and TEA (0.093 g, 

0.91 mmol) in CH2Cl2 (10 mL) was maintained at  0 °C. TsCl (0.17 g, 0.91 mmol) was added and 

allowed to stir overnight. The slurry was allowed to warm up to room temperature after which 

the solution was washed with dil. HCl (2X, 20 mL) and then with sat. NaHCO3 (1X, 15 mL). The 

organic layer was collected, dried over Na2SO4, filtered and concentrated in vacuo to yield the 

product as a white solid in 80% yield (0.19g). 1H NMR  & gCOSY (500 MHz, CDCl3) δ1.77-

1.80 (m, 1H), 2.22-2.37(m, 3H), 2.47(s, 3H), 3.89(dd, J1=7.5Hz, J2= 9.5 Hz)  3.91-3.94(m,1H), 

4.05 (dd, J1=4Hz, J2= 9.5 Hz), 6.22(s, br, -NH), 7.37(d, 2H, J=7.2Hz), 7.79(d, 2H, J=7.2Hz); 13C 

NMR (500 MHz, CDCl3) δ 21.6, 22.7, 29.2, 52.5, 71.9, 127.9, 130.0, 132.3, 145.3,177.8; HRMS 

(ESI+): m/z calcd for C12H15NO4S (M+H), 270.0800, found, 270.0786. 

 

(3S,7aR)-3-phenyltetrahydropyrrolo[1,2-c]oxazol-5(1H)-one, AZ18 

A mixture of 0.4g (3.4 mmol) of alcohol 5, 0.54 g (4.5 mmol) of benzaldehyde, and 1.6 g (0.003 

mmol) of p-TsOH in toluene (10 mL) was refluxed under a Dean-Stark water separator with 

vigorous stirring in an oil bath. After 9 h the reaction was stopped and cooled. The reaction 

mixture was washed with 5% NaHCO3 solution (2 X 5 mL), saturated NaHSO3 solution (4 X 5 

mL), water (2 X 5 mL), and brine (1 X 5 mL). The organic layer was dried over Na2SO4 and 

concentrated to afford a yellow oil, which on distillation afforded 0.23 g (33%) of AZ9 as a 

colorless liquid. 1H NMR (CDC13) 7.66-7.61 (2 H, m), 7.46-7.23 (3 H, m), 6.34 (1 H, s), 4.22 (1 

H, dd, J = 8.0 and 6.4 Hz), 4.2-4.12 (1 H, m), 3.48 (1 H, t, J = 8.0 Hz), 2.85-2.76 (1 H, m), 2.58-
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2.50 (1 H, m), 2.41-2.32 (1 H, m) and 1.98-1.88 (1 H, m); 13C NMR (500 MHz, CDCl3) δ 178.3, 

139.1, 128.8, 126.3, 88.6, 71.8, 58.9, 33.7, 23.1; IR (neat) 1702 cm-1. LRMS (ESI+): m/z calcd 

for C12H13NO2 (M+Li), 210.1114 found, 210.1106.  Note: characterization matches the data 

reported by Thottahil  et al. [187]. 

 

(3R,4R)-1-(4-methoxybenzyl)-3,4-dihydroxypyrrolidine-2,5-dione, AZ20.  A suspension of 

L-tartaric acid (2g, 13.4 mmol) and p-methoxybenzylamine (2.09g, 15.3 mmol) was taken in 

50% MeOH(aq.)(10 mL) and warmed to 50 °C. The reaction was mildly exothermic. The solvent 

was removed in vacuo and replaced with xylene (50 mL) and the reaction mixture was heated to 

reflux for 14h. The reaction was cooled and solvent removed in vacuo to isolate the product as a 

white solid in 74%.  1H NMR (300 MHz, DMSO-d6) δ 3.70(s, 3H), 4.33(s, 2H), 4.45(d, J=3 Hz, 

2H), 6.24 (br, -OH) 6.86(d, J=1.5 Hz, 2H), 7.17(d, J=1.5 Hz, 2H); 13C NMR (300 MHz, DMSO-

d6) δ 40.7, 55.1, 74.6,113.9, 128.0,129.2, 158.7,174.6; IR (NaCl, thin film) cm-1: 3286.5, 2925.3, 

1700.0, 1646.4; LRMS (ESI+): m/z calcd for C12H13NO5Cl (M+Li-H), 257.1, found, 257.1. 

 

(3R,4R)-1-(4-methoxybenzyl)-3,4-diacetoxypyrrolidine-2,5-dione 

A suspension of pyrrolidinone AZ20 (0.8 g, 3.18 mmol) in pyridine (3 mL) was stirred with 

acetic anhydride (0.68 g, 6.69 mmol) for 10h. The solvent was removed in vacuo. The reaction 

mixture was taken up in dichloromethane and was successively washed with 1N HCl and 

saturated NaHCO3 (aq.).The organic layer was collected, dried and solvent was evaporated to 

provide the product in 94% yield  1H NMR (300 MHz, CDCl3) δ 2.13(s, 6H), 4.61(dd, J1=6 Hz, 

J2=19.6 Hz , 2H), 5.48 (s,2H), 6.86(d, J=3 Hz, 2H), 7.27(d, J=3 Hz, 2H); 13C NMR (300 MHz, 

CDCl3) δ 15.3, 20.4(20.0), 42.6(42.4), 55.3, 66.1(65.9),72.7(72.4), 114.1(114.0), 126.8, 

130.4(130.5), 159.5(159.1), 166.3(166.0), 169.0(169.2),169.9(170.2); IR (NaCl, thin film) cm-1: 

2940.1, 2833.6, 1755.9, 1729.3, 1510.2, 1246.7; HRMS (ESI+): m/z calcd. for C16H17NO7 

(M+Li), 342.1165, found, 342.1163. Note: values in parentheses belong to the rotamers. 

 

(3S,4S)-3, 4, 5-Triacetoxy-1-(4-methoxybenzyl)-2- pyrrolidinone, AZ21 

A solution of (3S, 4S)-3, 4-diacetoxy- 1-(4-methoxybenzyl)-2,5-pyrrolidinedione (2.6 g, 7.76 

mmol), in methanol (50 mL) was maintained at 0 °C. NaBH4 (1.47 g, 38.8 mmol) was added and 

the reaction was stirred for 1 h. The reaction mixture was then quenched with saturated aqueous 

NaHCO3 and extracted with dichloromethane (2X). The organic layer was dried over Na2SO4 and 

evaporated to dryness to give the hydroxylactam as a white solid. This solid was then taken in 



 300

pyridine (5 mL) and acetic anhydride (3.9g, 38.8 mmol) was added, and the reaction mixture was 

stirred at room temperature overnight. After evaporation of the solvent, the residue was extracted 

with chloroform (1X). The organic layer was washed successively with 1 M HCl and saturated 

aqueous NaHCO3, dried over Na2SO4, filtered and evaporated. The crude product was purified by 

column chromatography on silica gel (hexane/EtOAc=1:1) to give the desired compound 

21(mixture of diastereomers) in 94% yield as a colorless oil. 1H NMR (CDCl3) δ 1.86 (s, 3H), 

1.97 (s, 3H), 2.08 (s, 3H), 3.70 (s, 3H), 4.14 (d, J=15 Hz, 1H), 4.57 (d, J=15 Hz, 1H), 5.11 (dd, 

J=4, 2 Hz, 1H), 5.25 (d, J=4 Hz, 1H), 5.95 (d, J=2 Hz, 1H), 6.73 (m, 2H), 7.08 (m, 2H). 13C 

NMR (CDCl3) δ 20.8 (2 C), 21.4, 44.5, 55.5, 73.5, 76.2, 83.5, 114.3, 127.4, 129.9, 159.5, 167.9, 

169.8, 169.9, 170.0. LRMS (ESI+): m/z calcd. for C18H21NO8 (M+H), 380.1, found, 380.1. 

 

(3S, 4S)-3, 4, -Diacetoxy-3-cyano-1-(4-methoxybenzyl)-2- pyrrolidinone, AZ22 

 A solution of acetoxylactam AZ21 (0.6 g, 1.6 mmol) and trimethylsilyl cyanide (0.23 g, 2.38 

mmol) in dichloromethane (3 mL) was maintained at 0 °C added a solution of boron trifluoride 

etherate (0.44 g, 3.1 mmol) in dichloromethane (5 mL) under an argon atmosphere, and stirred 

for 5 min. Allowed to temperature to rise upto room temperature and stirred for 1 h, after which 

the reaction mixture was quenched with saturated aqueous Na2CO3 and extracted with 

dichloromethane. The organic layer was dried over Na2SO4 and concentrated in vacuo. The crude 

product was purified by column chromatography on silica gel (hexane:EtOAc=1:1) to give the 

desired compound AZ22 as a mixture of diastereomers in 92% yield. 1H NMR (CDCl3) δ 2.03 (s, 

3H), 2.12 (s, 3H) (2.07 (s, 6H)), (3.68), 3.74 (s, 3H), 3.97(3.99) (d, J=15 Hz, 1H), 4.00 (4.60) (d, 

J=5 Hz, 1H), (4.84) 5.11 (d, J=15 Hz, 1H), (5.22) 5.28 (m, 1H), 5.42 (5.47) (m, 1H), 6.79-6.84 

(m, 2H), 7.13- 7.17 (m, 2H). 13C NMR (CDCl3) δ 20.1(20.3), 20.2(20.4), 42.9(43.8), 44.5(44.9), 

55.5(55.6), 71.1(71.7), 72.4(73.2), 114.2(114.3), 114.6(114.7), 125.5 (125.8), 129.3(129.4), 

159.4 (159.9), 166.8 (167.4), 169.8 (170.2), 170.6(170.8).  

Note: 13C labeled TMSCN was generated by reacting 13C labeled KCN with TMSCl in catalytic 

amounts of KI at room temperature for 20 hours. 

 

3, 4 dihydroxy glutamic acid, AZ15a/b 

A suspension of cyanolactam AZ22 (0.48 g, 1.1 mmol) and ceric ammonium nitrate (1.2 g, 2.2 

mmol) in acetonitrile/ water mixture (3:1, 4.4 mL) at room temperature, and the resulting mixture 

was stirred for 4 h. The reaction mixture was then diluted with ethyl acetate, washed with water, 

and dried over Na2SO4. After removal of the solvent, the residue was hydrolyzed in refluxing 6 
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M HCl (30 mL) overnight. The cooled aqueous solution was washed with chloroform and 

concentrated to dryness. The residue was submitted to ion exchange column chromatography  by 

stirring with Dowex 50W-X8 to furnish the mixture of diastereomers AZ15b (0.18 g, 71%) as 

off-white powder 1H NMR (D2O) δ 3.96(4.05) (m, 1H), 4.2 (4.24) (m, 1H), 4.51(4.60) (m, 1H). 

LRMS (ESI-): m/z calcd. for C5H9NO6 (M-H2O), 161.0, found, 161.0. Note: According to the 

procedure for the preparation of compound AZ15b, deprotection and hydrolysis of cyanolactam 

gave the title compound AZ15a (~53%) as white powder. The spectral data of compound was 

identical to AZ15a and previously published [189, 190].  

 

(3R,4S)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-one, AZ16a/b. 

A solution of the cyanolactam AZ22 (0.4g, 1.1 mmol) in methanol and maintained at 0 °C. 

SOCl2 (1.1 eq.) was added dropwise and the reaction was refluxed overnight. The solvent was 

evaporated and the solvent /SOCl2 replenished. The reaction mixture was again refluxed for 10h. 

The solvent was evaporated and the residue was treated with ceric ammonium nitrate (2 eq.). The 

reaction was stirred for 4 h at room temperature after which the reaction was diluted with ethyl 

acetate and washed with water (3X, 20 mL). The organic solvent was evaporated and the residue 

was dissolved in THF. NaBH4 was added and the reaction allowed to stir for 3 h at room 

temperature after which conc. HCl was added drop-wise such that the pH=4. The reaction was 

stirred for 1h at room temperature after which if was neutralized to pH=7 with solid NaHCO3. 

Filtered the slurry through celite and extracted the aqueous layer with EtOAc(2X). The organic 

layer was collected, dried over Na2SO4, filtered and concentrated in vacuo to yield the product as 

buff colored solid in (0.11g) ~70% yield. 1H NMR (CD3COCD3, 500 Hz) δ7.88(br, 1H), 5.90(br, 

1H), 4.35(m, 2H), 3.25(d, J=11.5 Hz, 1H), 2.9(br, 1H) 2.60(br, 1H), 2.53(m,1H), 1.52( m, 1H). 

Note: According to the procedure for the preparation of compound AZ16a, methaolysis, 

deprotection and reduction of cyanolactam gave the title compound AZ16b (~43%) as  buff-

white powder. The spectral data of compound was identical to AZ16a. 
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