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ABSTRACT

Viscoelastic–Viscoplastic Damage Model for Asphalt Concrete. (August 2009)

Michael Anthony Graham, B.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Rashid K. Abu Al-Rub
Dr. Eyad Masad

This thesis presents a continuum model for asphalt concrete incorporating non-

linear viscoelasticity, viscoplasticity, mechanically-induced damage and moisture-

induced damage. The Schapery single-integral viscoelastic model describes the

nonlinear viscoelastic response. The viscoplastic model of Perzyna models the time-

dependent permanent deformations, using a Drucker–Prager yield surface which is

modified to depend on the third deviatoric stress invariant to include more complex

dependence on state of stress. Mechanically-induced damage is modeled using contin-

uum damage mechanics, using the same modified Drucker–Prager law to determine

damage onset and growth. A novel moisture damage model is proposed, modeling

moisture-induced damage using continuum damage mechanics; adhesive moisture-

induced damage to the asphalt mastic–aggregate bond and moisture-induced cohesive

damage to the asphalt mastic itself are treated separately.

The analytical model is implemented numerically for three-dimensional and plane

strain finite element analyses, and a series of simulations is presented to show the

performance of the model and its implementation. Sensitivity studies are conducted

for all model parameters and results due to various simulations corresponding to

laboratory tests are presented.

In addition to the continuum model, results are presented for a micromechanical

model using the nonlinear-viscoelastic–viscoplastic–damage model for asphalt mastic
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and a linear elastic model for aggregates. Initial results are encouraging, showing the

strength and stiffness of the mix as well as the failure mode varying with moisture

loading. These initial results are provided as a an example of the model’s robustness

and suitability for modeling asphalt concrete at the mix scale.
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1 INTRODUCTION

Roadways are designed to last until rehabilitation or replacement, and it is their

degraded performance that dictates the design of pavements. It is, therefore, essential

to be able to predict the degradation of an asphalt concrete through the development

of a robust computational model that can effectively simulate the performance of an

asphalt pavement under mechanical (e.g., traffic) and environmental (e.g., moisture,

temperature) loading.

Although all materials are heterogeneous, continuum models describe many ma-

terials’ behavior in a way that allows computation of much more complex physical

problems than otherwise feasible. To create a model capable of simulating whole

sections of a roadway, this study will use a continuum approach to describe all

facets of material behavior. Many past studies have characterized asphalt concrete

and its phases using various models (some using continuum models and some using

micromechanical approaches), and this section will describe several of these studies

and models.

1.1 Literature Review

1.1.1 Mechanical constitutive modeling of asphalt concrete

Experiments show that asphalt concretes deform in a time-dependent manner with

recoverable and irrecoverable components and that they sustain losses of stiffness when

subjected to extreme loads (for example, see Perl et al. 1983, Sides et al. 1985, Collop

et al. 2003, Grenfell et al. 2008). Cheung and Cebon (1997) and Airey et al. (2002a,b,

2004) studied asphalt binder and determined its response was nonlinear, depending

on a combination of temperature and load rate and level. The irrecoverable dilation

This thesis follows the style of Mechanics of Time-Dependent Materials.
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response of asphalt concrete is overestimated by viscoplasticity with an associated flow

rule, so nonassociated viscoplasticity must be used to achieve accurate predictions

(Masad et al. 2007a).

Sousa et al. (1993) developed a nonlinear viscoelastic model for asphalt concrete

which was improved by Sousa et al. (1994) to include plasticity with a von Mises yield

surface and isotropic and kinematic hardening. However, this model did not include a

pressure-sensitive yield surface or a time-dependent plastic response (viscoplasticity).

Ha and Schapery (1998) developed a nonlinear viscoelastic model with damage for

particulate composites, but did not model permanent deformations. Seibi et al. (2001)

developed a model which used Perzyna’s theory of viscoplasticity with a (pressure-

sensitive) Drucker–Prager yield surface for the irrecoverable component of deformation,

but did not model the time-dependent character of the recoverable response. Lu and

Wright (1998) and Oeser and Moller (2004) developed elastoviscoplastic constitutive

models for asphalt concrete, but did not include a nonassociated plastic flow rule.

Sadd et al. (2004) used the Schapery nonlinear viscoelasticity model to describe the

nonlinear viscoelastic behavior of asphalt concrete with damage in a micromechanical

framework, but did not consider irreversible plastic deformations. Kringos, Scarpas,

and their collaborators modeled asphalt concrete at a micromechanical level including

viscoelasticity and plasticity (for finite strains) and damage, with an emphasis on

moisture-induced damage (Kringos 2007, Kringos and Scarpas 2008, Kringos et al.

2008b).

Tashman (2003) developed a model for hot mix asphalt which utilized a nonasso-

ciated viscoplastic flow rule to describe the irreversible component of the deforma-

tion. This model accounted for damage, work hardening, and material anisotropy.

Levenberg and Uzan (2004) developed a cross-anisotropic viscoelastic-viscoplastic

constitutive model for asphalt concrete, but this model did not include viscoplasticity
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and damage criteria featuring all the dependence on state of stress observed in as-

phalt conrete, nor did it consider nonlinear viscoelastic response. Dessouky (2005)

developed a model that used a modified Drucker–Prager viscoplastic yield surface,

which captures the pressure-sensitivity of asphalt concrete, but did not model the

nonlinear viscoelastic character for the response.

Park et al. (1996) and Park and Schapery (1997) developed a viscoelastic con-

tinuum damage model for asphalt concrete, but neglected permanent deformations

which are observed in experiments, and their model was limited to uniaxial loading.

Chehab et al. (2003) developed a continuum viscoelastoplastic model for undamaged

asphalt concrete, but its scope was also limited to uniaxial characterization. Uzan

(2005) developed a damaged viscoelastic, viscoplastic, continuum model using the

work of Park and Schapery (1997) and Schapery (1999) for asphalt concrete, but did

not model three dimensional response.

Masad, Huang, and their collaborators developed a nonlinear-viscoelastic–visco-

plastic model for asphalt concrete (Masad et al. 2007b, Huang et al. 2007, Huang

2008). Schapery’s single-integral theory modeled the nonlinear viscoelastic character

of the reversible response and Perzyna’s theory modeled the viscoplastic response

using a modified Drucker–Prager yield surface and a nonassociated flow rule. The

Drucker–Prager yield surface was modified to describe the effect of stress state in a

more advanced way than the classical Drucker–Prager yield surface, so that extensions

lead to more viscoplastic flow, apart from hydrostatic pressure state. However, this

model did not include damage to the material.

1.1.2 Moisture damage

Moisture damage of asphalt concrete is the degradation of mechanical properties

due to the presence of moisture. Moisture damage contributes significantly to the

degradation of asphalt pavements; in the US, this leads to additional vehicle costs
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Figure 1.1 Moisture-induced damage in pavements results in raveling (left) and
potholing (right) (Kringos 2007)

over $54 billion annually (Copeland 2005). Moisture damage has been studied using

a microscale perspective since 1932 and in the field since 1967 (Nicholson 1932, Field

and Phang 1967). Much experimental research has sought to determine the degrading

effects of moisture, but all purely empirical studies suffer from inability to predict

performance, so a description of such work is not included here.

An asphalt mix is a composite material comprised of coarse aggregates, fine

aggregates, asphalt binder, and air, and may be understood as a particulate composite

of coarse aggregates and a matrix of asphalt mastic comprised of the other mix

constituents. When an asphalt mix is exposed to moisture through water present at its

surface (e.g. from rainfall), internally from wet constituents, or through environmental

humidity, the moisture disperses through the mix into its air voids and through its

solid portion by diffusion and permeation. Once infiltrated by moisture, the mix may

be degraded due to several processes: chemical, physical, and mechanical (Kandhal

1994, Kassem 2006, Bhasin 2006, Kringos 2007, Kringos and Scarpas 2008, Caro et al.

2008a).
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Figure 1.2 Adhesive and cohesive failure (Kringos 2007)

Figure 1.1 shows the severe moisture damage resulting in raveling, where aggregates

separate from each other individually and potholing, where entire chunks of pavement

are removed. Raveling may occur as adhesive failure, where aggregates separate from

the mastic, or cohesive failure, where fracture occurs in the mastic between aggregates

(Kandhal 1994, Kringos 2007, Caro et al. 2008a). Figure 1.2 illustrates the difference

between adhesive and cohesive failure.

The chemical reactions occurring between moisture and asphalt mix constituents

may lead to loss of material that gives the mix its overall cohesion. The overall

cohesion is due to a combination of the cohesion of the mastic and maintaining the

mastic’s adhesion to the aggregates. The cohesion of the aggregates is not included

because the matrix cohesion is more essential and because aggregates tend to be very

strong and stable compared to the mastic or the aggregate–mastic bond (Little and

Jones 2003, Kringos 2007, Caro et al. 2008a).

Physical moisture-induced damage mechanisms are more readily understood and

have been studied in some detail (Zollinger 2005, Lytton et al. 2005, Bhasin 2006,

Masad et al. 2006c). Physical damage due to moisture occurs when the moisture
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bonds to the asphalt mix, breaking mastic cohesive or aggregate–mastic adhesive

physical bonds. This may lead to debonding of the mastic from aggregates, dispersion

of the mastic, possibly lost to flow, and the formation of microcracks in the mix

(Kringos 2007, Kringos et al. 2008b, Kringos and Scarpas 2008, Caro et al. 2008a).

Moisture-induced mechanical degradation of occurs when the presence of nearly-

incompressible water in air voids leads to fast-flowing water through the mix upon

mechanical loading, which can cause unfavorable stress distributions and erosion of

the mastic (Kandhal 1994, Kringos 2007, Kringos et al. 2008b, Kringos and Scarpas

2008).

Recent work studied the fundamental mechanisms of moisture damage, including

the role of air voids (Masad et al. 2006b, Kassem 2008), the effects of the physical

characteristics of the material and aggregate–binder adhesive bond (Little and Jones

2003, Masad et al. 2006c, Bhasin et al. 2006), and moisture transport in asphalt

concrete (Chen et al. 2006, Kassem 2006, Masad et al. 2006a). Caro et al. (2008a,b)

modeled asphalt concrete microstructurally, with degradation in the mastic and at the

aggregate–mastic interface using cohesive elements to consider the effect of moisture

at the interface and a simple law for damage in the mastic matrix which does not

account for irreversibly of moisture-induced damage.

Kringos, Scarpas, and their collaborators studied asphalt concrete at the microscale,

predicting the infiltration of moisture and the degradation of the material (Kringos

and Scarpas 2005, Kringos et al. 2007, Kringos 2007, Kringos and Scarpas 2008,

Kringos et al. 2008a,b). Asphalt mastic was modeled using a finite deformation,

viscoelastoplastic model. They studied damage at the aggregate–mastic bond and

in the body of the mastic due to direct moisture effects and mechanical–moisture

coupling effects (pumping). This model neglected irreversibility of moisture damage

effects (i.e., moisture-induced damage was recovered upon drying), which is not
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realistic.

Moisture-induced damage in other materials has also been studied, though gen-

erally this research has been microscale rather than continuum modeling. Roy and

Xu (2001) and Roy and Benjamin (2004) studied moisture diffusion and damage for

polymer matrix composites and graphite/epoxy laminate composites with macroscale

application, but this research studied the change in diffusivity of materials due to

damage, not the damaging effects of moisture. Chiarelli et al. (2003) developed an

elastoplastic damage material model for claystone with properties varying on moisture

content, but did not model damage due to moisture independent of mechanical

loading.

Tang et al. (2005) studied diffusion and moisture-induced damage in woven

polymer composites using microscale finite element simulations, but this study focused

on the moisture transport due to the special geometry of woven composites, not

constitutive modeling of moisture-damaged materials. Roels et al. (2006) proposed a

fully coupled mechanical–moisture–damage model and numerical implementation for

porous materials, but this model did not include viscoelastic or viscoplastic effects in

its mechanical response, and cracks were modeled discretely.

1.2 Research Approach

The constitutive model uses continuum damage mechanics (cdm) (Kachanov 1958,

1985), which is a framework for modeling the nucleation, growth, and propagation of

numerous micro-cracks and their evolution into macro-cracks that ultimately leads to

failure. cdm is a robust technique which has been used to model degradation in a

wide range of materials. cdm can be effectively used in predicting the onset (site and

time or where and when) of damage nucleation (cracking potential) and its evolution

(crack propagation).

In cdm, the effects of the material degradation are explained by explicitly modify-
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Figure 1.3 Damaged and effective undamaged configurations (Abu Al-Rub 2004)

ing the stiffness of the material sustaining damage. Two configurations are specified:

the actual configuration and an equivalent, undamaged configuration which obeys

an undamaged material law. The two configurations may be related in various ways,

usually based on the assumption that either the strain or the elastic strain energy of

the two configurations are equal. The difference between the damaged and undamaged

configurations is calculated based on a new parameter, usually called the damage

density (and this thesis will use the more general term damage variable), which can

be calculated due to laws ranging from very simple to laws which incorporate a high

degree of realistic physical information for a given material. See Voyiadjis and Kattan

(1999), Abu Al-Rub and Voyiadjis (2003) and Lemaitre (2005) for a more complete

treatment of continuum damage mechanics.

The simplest example for understanding continuum damage mechanics is the axial

bar. Consider a bar with area A0 and length L subjected to a force F . The stress in

the bar is σ = F/A0. Now suppose that another bar is identical except that it contains
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randomly-distributed microcracks and microvoids, so that a proportion φ (the damage

variable) of the cross-sectional area of the bar is removed, so that the area of that bar

is (1−φ)A0. (See Figure 1.3.) The stress in this bar is σφ = F/[(1−φ)A0] = σ/(1−φ).

Both bars an apparent (nominal) area A0, but because of their different areas that

are effective in resisting loads, the bar with the microcracks and microvoids will be

weaker (lower stiffness and strength).

Since the bars are made out of the same material, they have the same material

(effective) stiffness Eφ, but since they have different areas, they respond differently

to loads, so a damaged bar with area (1− φ)A0 has an apparent (nominal) stiffness

E. Figure 1.4 shows an example stressstrain diagram for a bar that sustains damage
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damage upon increased load. Initially the material is undamaged, so the nominal and

effective stiffness are equal E = Eφ, but upon increased loading the material sustains

damage and its stiffness decreases E < Eφ. Upon unloading, the material remains

damaged and unloads at the (damaged) nominal stiffness E.

How is the difference in the mechanical response quantified? The most classical

assumption (Kachanov 1958, 1985, Lemaitre 2005) to understand the stiffness change

is to hypothesize the strains for the two bars must be equal, so for the strain in the

first bar ε and the strain in the bar with the reduced area εφ,

ε = εφ =⇒ σ0

E
=
σφ
Eφ

=⇒ F/A0

E
=
F/[(1− φ)A0]

Eφ
=⇒ E = (1− φ)Eφ. (1.1)

The relationships ε = εφ, σ = (1− φ)σφ, and E = (1− φ)Eφ define the modified

constitutive law. This is a common description for the effect of damage, but it will

not be used in this research.

Suppose instead that the strain energy densities the two bars are equal. Then

σε = σφεφ =⇒ σ2

E
=
σ2
φ

Eφ
=⇒ σ2

E
=

σ2

(1− φ)2Eφ
=⇒ E = (1− φ)2Eφ, (1.2)

and we also recognise

σφ = Eφεφ =⇒ σ

1− φ
=

E

(1− φ)2 εφ =⇒ εφ = (1− φ) ε0. (1.3)

The relationships (1− φ) ε = εφ, σ = (1− φ)σφ, and E = (1− φ)2Eφ define the

modified constitutive if the strain energy densities for the two cases are equal. For

convenience, we wish to perform computations in terms of the nominal strain ε. To
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do this, we define the effective stress, strain, and stiffness

σ̄ =
σφ

1− φ
=

σ

(1− φ)2

ε̄ = ε

Ē =
E

(1− φ)2

(1.4)

so that

σ̄ = Ēε̄ = Ēε. (1.5)

This definition is consistent hypothesis that the strain energy densities are equal (as

presented in Equations (1.2) and (1.3)), but is expressed in terms of the nominal

(observable) strain.

cdm can be extended to multiple dimensions. The simplest extension is isotropic

damage, in which case (1.4) becomes

σ̄ij =
1

(1− φ)2σij

ε̄ij = εij

Ēijkl =
1

(1− φ)2Eijkl

. (1.6)

(Throughout this thesis, tensors are represented using indicial notation. Repeated

indices imply summation.)

In general, damage need not be isotropic, but can be arbitrarily anisotropic, in

which case in may be represented as a second- or fourth-order tensor. This concept is

explained by Voyiadjis and Kattan (1999), Abu Al-Rub and Voyiadjis (2003) and

Lemaitre (2005). Material isotropy in all facets (viscoelasticity, viscoplasticity, and

damage) is assumed in this study for the sake of simplicity. If experiments show that



12

anisotropic damage is necessary to describe the response of asphalt concrete, the

proposed model can be adapted.

To determine the damage variable φ, material-specific laws govern the evolution

based on loading. Section 3 presents the model for predicting the damage due to

mechanical loading and Section 4 presents the model for predicting the damage due

to the presence of moisture.

1.3 Research Tasks

The research objectives will be accomplished by the following tasks:

• The viscoelastic–viscoplastic response will be modeled using Schapery’s single-

integral nonlinear viscoelastic model and Perzyna’s viscoplasticity model with

a non-associated flow rule, using the same approach as Huang (2008).

• An analytical model for mechanically-induced damage will be developed, pre-

dicting the onset and growth of damage using laws that reflect the physically

expected dependence on loading. In particular, damage will be pressure-sensitive,

state-of-stress–sensitive, and grow with a physically reasonable law which can

be tuned to experimental results.

• An analytical model for damage due to moisture loading will be developed.

The model will meet physical expectations in that the mechanisms of adhesive

damage (degradation of the bond between the aggregates and the mastic)

and cohesive damage (degradation within the asphalt mastic) will be treated

separately, with their initiation and growth described separately, with the option

to have the two phenomena behave differently in the model.

• The undamaged material model will be discretized and implemented for finite

element simulations in the commercial finite element package Abaqus. Guidelines
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for this implementation are provided by Huang (2008).

• The mechanical and moisture damage laws will likewise be discretized and the

undamaged material model implementation will be modified to include damage

effects.

• The model and will be tested by running simulations using the numerical

implementation in Abaqus corresponding to realistic loading conditions for

mechanical tests.

This thesis is organized into five sections. This section has introduced and

motivated the challenge of modeling the response of asphalt concrete. Section 2

presents the undamaged constitutive model (Huang et al. 2007, Huang 2008) featur-

ing nonlinear viscoelasticity and viscoplasticity. Section 3 proposes the model for

mechanically-induced damage and Section 4 proposes the model for moisture-induced

damage. Section 5 reviews the proposed model and suggests future work for modeling

asphalt concrete. Appendix A presents micromechanical simulations which use the

proposed material model to describe asphalt mastic.
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2 VISCOELASTIC–VISCOPLASTIC CONSTITUTIVE MODEL

The proposed damaged constitutive model is based on a model that has been

developed for asphalt concrete mixes which describes its nonlinear viscoelastic and

viscoplastic response. The viscoelastic model is derived by Masad et al. (2007b) and

Huang et al. (2007) and the viscoelastic–viscoplastic model is presented by Huang

(2008), but the model is described in this section for completeness.

Asphalt concretes are modeled as viscoelastic materials because the recoverable

response of asphalt changes with time under constant load and varies for various load

rates (Sides et al. 1985, Grenfell et al. 2008) and specifically as nonlinear viscoelastic

materials because experiments have shown asphalt binder’s response varies with load

level and temperature nonlinearly (Cheung and Cebon 1997, Airey et al. 2002a,b,

2004). It is readily observed that asphalt pavements in service frequently sustain load

and recover deformations, so any accurate model for asphalt concrete must include

viscoelasticity.

Asphalt concretes are modeled as viscoplastic materials because experiments and

observation reveal that asphalt concretes undergo permanent deformation under high

loads, and that the rate at which these permanent deformations accumulate varies

with loading rate (Sides et al. 1985, Sousa et al. 1993, Dessouky 2005, Grenfell et al.

2008). Specifically, a modified Drucker–Prager yield surface and non-associated flow

rule are used to conform to empirical observations of asphalt mix response (Dessouky

2005, Masad et al. 2007a). Because excessive permanent deformations may lead to

unacceptable pavement performance, any accurate model for asphalt concrete must

include viscoplasticity.

The Schapery single-integral nonlinear viscoelastic model (1969) is used for visco-
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elasticity, and Perzyna’s model (1963, 1966, 1971) is used for viscoplasticity. Asphalt

concrete is assumed to be isotropic with constant Poisson’s ratio for the development

of this material model. The nonlinear viscoelastic–viscoplastic material model is

adapted for numerical use using a recursive-iterative numerical algorithm (as proposed

by Haj-Ali and Muliana (2004))and is implemented in the popular finite element

code Abaqus using a user material subroutine UMAT. Results from finite element

simulations in Abaqus are presented.

All values in this section are effective values because this section presents the

model for the undamaged material. The superimposed bars (•̄) will be suppressed

throughout this section for simplicity of notation, but are appropriate for all variables.

2.1 Nonlinear Viscoelasticity

Consider the single-integral, nonlinear viscoelastic response (Schapery 1969),

which predicts the strain

εve(t) = g0D0 σ(t) +

∫ t

0

g1 ∆D(ψ(t)− ψ(τ))
g2 σ(τ)

dτ
dτ , (2.1)

where σ(t) is the stress at time t, D0 is the instantaneous compliance, ∆D is the

transient compliance, ψ(t) is the reduced time, and g0, g1, and g2 are nonlinear

parameters explained on the following page. Time t = 0 is some time before loading.

A nonlinear viscoelastic model was chosen due to the observations of Cheung and

Cebon (1997) and Airey et al. (2002a,b, 2004). Throughout this thesis positive

values of stress and strain represent compression, as is the typical convention for

pressure-sensitive materials.

The reduced time

ψ(t) =

∫ t

0

dξ

aT (ξ) as(ξ)
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adjusts the time the transient compliance is evaluated using the temperature shift

factor aT and the stress or strain shift factor as, and other shift factors may be

postulated if necessary. The reduced time adjusts the predictions of Equation (2.1)

due to the effects of temperature and stress or strain (or any other inputs which are

experimentally observed to modify response in a time-shifting manner) by conforming

to the response predicted for a different loading rate.

The nonlinear parameter g0 relates to the instantaneous compliance, the nonlinear

parameter g1 relates to the transient compliance, and the nonlinear parameter g2

relates to the effect of the loading rate on response. The nonlinear parameters g0, g1,

and g2 may be functions of stress, strain, loading rate, temperature, moisture, etc.,

and may be empirically determined based on observed nonlinearity. g0, g1, and g2 are

positive and for small values of stress should be close to unity; if g0 = g1 = g2 = 1,

Equation (2.1) reduces to the Boltzmann integral in linear viscoelasticity (Haj-Ali

and Muliana 2004).

To use this formulation to solve three-dimensional problems, we recall from

linear elasticity that the strain εveij for an isotropic material may be decomposed into

deviatoric strain eveij and volumetric strain εvekk

εveij =
1

2
JSij︸ ︷︷ ︸
eveij

+
1

3
Bσkk︸ ︷︷ ︸
εvekk

δij, (2.2)

where J is the shear compliance, B is the bulk compliance, Sij is the deviatoric stress

Sij = σij −
σkk
3
δij,

σkk is the volumetric stress, and δij is the Kronecker delta
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δij =

{
1 if i = j

0 if i 6= j
.

Using the Schapery single-integral model (2.1), the viscoelastic deviatoric and volu-

metric strain are expressed as

eveij (t) =
1

2
g0(t) J0 Sij(t) +

1

2
g1(t)

∫ t

0

∆J (ψ(t)− ψ(τ))
d (g2(τ)Sij(τ))

dτ
dτ

εvekk(t) =
1

3
g0(t)B0 σkk(t) +

1

3
g1(t)

∫ t

0

∆B (ψ(t)− ψ(τ))
d (g2(τ)σkk(τ))

dτ
dτ

, (2.3)

where the meanings of the new terms should be obvious: J0 is the instantaneous

shear compliance, ∆J(t) is the transient shear compliance, B0 is the instantaneous

bulk compliance, and ∆B(t) is the transient bulk compliance.

Experimental measurements have shown that the Poisson’s ratio ν for asphalt

concrete varies some with time, temperature, or loading rate, but the simplification

that ν is time-independent is adopted for this material model because the effect of

this small variation is minor compared to other effects (ASTM 1995, Di Benedetto

et al. 2007). This leads to the modulus interrelations

J0 = 2(1− ν)D0 B0 = 3(1− 2ν)D0

∆J(t) = 2(1− ν)∆D(t) ∆B(t) = 3(1− 2ν)∆D(t)
. (2.4)

Note only one independent function of time is part of the analysis.

The transient compliance ∆D(t) is represented by the Prony series

∆D(t) =

Np∑
n=1

Dn

(
1− e−λnt

)
, (2.5)

where for the Np modes, Dn is the coefficient of the Prony series in mode n and λn is



18

the retardation time in mode n.

Substituting the transient compliance from (2.5) into (2.3) yields

eveij (t) =
g0(t)J0Sij(t)

2
+
g1(t)

2

∫ t

0

Np∑
n=1

Jn

(
1− e−λn

(
ψ(t)−ψ(τ)

))
d
(
g2(τ)Sij(τ)

)
dτ

dτ

εvekk(t) =
g0(t)B0σkk(t)

3
+
g1(t)

3

∫ t

0

Np∑
n=1

Bn

(
1− e−λn

(
ψ(t)−ψ(τ)

))
d
(
g2(τ)σkk(τ)

)
dτ

dτ

(2.6)

which serve as the governing equations for the viscoelastic strain.

2.2 Viscoplasticity

In addition to the recoverable viscoelastic strain, experiments indicate some strain

in asphalt concrete is irrecoverable with time-dependent response, so we divide the

strain εij into recoverable viscoelastic strain εveij and irrecoverable viscoplastic strain εvpij

(assuming small strains)

εij = εveij + εvpij . (2.7)

Taking the time derivative of this expression, the strain rate is

ε̇ij = ε̇veij + ε̇vpij , (2.8)

for the viscoelastic strain rate ε̇veij and the viscoplastic strain rate ε̇vpij .

This study uses Perzyna’s model (1963, 1966, 1971) to calculate the viscoplastic

strain rate

ε̇vpij =


Γ

(
f

σ0
y

)N
∂g

∂σij
, if f ≥ 0

0, if f < 0

, (2.9)

where f is the yield surface, g is the viscoplastic potential energy function, Γ is a

viscosity parameter, σ0
y is a parameter which normalizes stress values, and N is a

parameter describing rate-dependence. The rate of viscoplastic strain is controlled by
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the scalar Γ
(
f
σ0

y

)N
when the overstress function

(
f
σ0

y

)N
is positive, and the direction

is controlled by the tensor ∂g
∂σij

. If the yield surface function does not coincide with

the potential energy function (f 6= g), Equation (2.9) is a non-associated viscoplastic

flow rule.

2.2.1 Yield surface

The yield surface determines whether a stress state results in viscoplastic strain.

This study uses a modified Drucker–Prager yield surface

f = τ − αI1 − κ(εvpe ), (2.10)

where τ and I1 are stress invariants, α is a pressure-sensitivity parameter related to

the angle of friction in the mix, and κ is the viscoplastic hardening function, which

depends on the equivalent viscoplastic strain1 εvpe .

Consider τ − αI1. I1 is the first stress invariant

I1 =
1

3
σii, (2.11)

which is the hydrostatic pressure. τ is the deviatoric shear stress modified for the

stress state

τ =

√
J2

2

(
1 +

1

d
+

(
1− 1

d

)
J3√
J3

2

)
, (2.12)

where J2 and J3 are the second and third deviatoric stress invariants

J2 =
3

2
SijSij,

J3 =
9

2
SijSjkSki

, (2.13)

1The equivalent plastic strain is sometimes called the “effective plastic strain”, as in previous
works to model asphalt concrete, but this language is not used to avoid confusion with the use of
the term effective in continuum damage mechanics.
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Figure 2.1 Influence of stress path on the modified Drucker–Prager yield surface
(Huang 2008)

and d is a material parameter describing sensitivity to extension, regardless of

hydrostatic state.

Figure 2.1 shows the influence of stress path on the response using the modified

Drucker–Prager yield surface, plotted in the I1–
√
J2 plane. For a classical Drucker–

Prager yield surface, α = α′ and κ = κ′, but the parameter d causes them to differ,

resulting in a modified Drucker–Prager yield surface.

To better understand the yield surface, consider a body loaded in plane stress
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with principal stresses σ1 and σ2 (all other stress components are zero). Then

I1 =
1

3
(σ1 + σ2)

J2 = σ2
1 − σ1σ2 + σ2

2

J3 =
1

2
(2σ1 − σ2) (σ1 + σ2) (σ1 − 2σ2) ,

(2.14)

so the yield surface in Equation (2.10) becomes

1

1

α = 0

α = 0.3

α = 0.6

σ1/κ

σ2/κ

Figure 2.2 Yield surface for plane stress for d = 0.9 and various values of α
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d = 1

σ1/κ

σ2/κ

Figure 2.3 Yield surface for plane stress for α = 0.3 and various values of d

σ2
1 − σ1σ2 + σ2

2

2

(
1 +

1

d
+

(
1− 1

d

)
(2σ1 − σ2) (σ1 + σ2) (σ1 − 2σ2)

2 (σ2
1 − σ1σ2 + σ2

2)
3/2

)

− α

3
(σ1 + σ2)− κ (εvpe ) = 0. (2.15)

We may now plot the yield surface in the σ1–σ2 plane.

Figures 2.2 and 2.3 show the yield surface for plane stress with principal stresses

σ1 and σ2 normalized by the isotropic hardening function κ(εvpe ).
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2.2.2 Viscoplastic potential energy function

In asphalt concrete, the direction of the viscoplastic strain growth is not normal

to the yield surface, which is called non-associated flow, and an associated flow rule

would overestimate the dilation compared to experimental measurements (Masad

et al. 2007a). This study defines the viscoplastic potential energy function

g = τ − βI1, (2.16)

which is similar to the yield surface, except the material parameter β governs the

pressure sensitivity of the surface.

The derivative in (2.9) is calculated to be

∂g

∂σij
=

1

2

[(
1 +

1

d

)
3Sij

2
√
J2

+

(
1− 1

d

)
3
(

9
2
SikSkj − J2δij

)
J2 − 3SijJ3

J2
2

− 2β

3
δij

]
. (2.17)

2.2.3 Hardening function

The evolution of the yield surface (Equation (2.10)) depends on the isotropic

hardening function κ, for which the isotropic hardening rule

κ(εvpe ) = κ0 + κ1

(
1− exp (−k2ε

vp
e )
)

(2.18)

is used (Lemaitre and Chaboche 1990), where κ0 defines the initial yield stress,

κ1 describes the saturated stress for the fully-hardened material, κ2 describes the

transition rate between κ0 and κ0 + κ1, and

εvpe =

∫ t

0

ε̇vpe dt
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Figure 2.4 The hardening function κ(εvpe )

is the equivalent viscoplastic strain, where time t = 0 is some time before viscoplastic

deformation. Figure 2.4 shows the transition of κ from κ0 to κ1, which is accelerated

for larger values of κ2.

We define the equivalent viscoplastic strain εvpe in terms of the equivalent stress

σe, which in turn is defined by

F (σij) = τ − αI1 = Cσne , (2.19)

where C and n are constants. Considering the case of uniaxial compression in the

1 direction,

I1 =
1

3
σ11, τ = σ11 =⇒

(
1− α

3

)
σ11 = Cσne =⇒ C = 1− α

3
, n = 1. (2.20)
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Uniaxial compression is the mode chosen to define the equivalent plastic strain because

it is the most common laboratory test; uniaxial tension or any other mode could have

been chosen for this definition. Substituting this result into (2.19) yields

τ − αI1 =
(

1− α

3

)
σ1
e =⇒ σe =

3 (τ − αI1)

3− α
. (2.21)

From this equivalent viscoplastic stress we find the equivalent viscoplastic strain

by appealing to the viscoplastic work rate

Ẇvp = σij ε̇
vp
ij = σij

√
ε̇vpkl ε̇

vp
kl√

∂g
∂σmn

∂g
∂σmn

∂g

∂σij
= σeε̇

vp
e . (2.22)

Again considering the case of uniaxial compression,

√
∂g

∂σij

∂g

∂σij
=

(
1− β

3

)2

+ 2

(
1

2
+
β

3

)2

σij
∂g

∂σij
= σ11

(
1− β

3

) , (2.23)

so (2.22) becomes

Ẇvp =
σ11

(
1− β

3

)√(
1− β

3

)2
+ 2

(
1
2

+ β
3

)2

√
ε̇vpij ε̇

vp
ij = σeε̇

vp
e = σ11ε̇

vp
e . (2.24)

Canceling σ11 and rearranging yields the equivalent viscoplastic strain rate

ε̇vpe =

√√√√√√
(

1− β
3

)2

ε̇vpij ε̇
vp
ij(

1− β
3

)2

+ 2
(

1
2

+ β
3

)2 . (2.25)
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2.3 Numerical Implementation of the Viscoelastic–Viscoplastic Model

To numerically calculate viscoelastic–viscoplastic response, the model is discretized

so it can be used in displacement-based finite element simulations. Consider the state

of stress and strain at time t. Assuming small strains, we can express

εtij = εve,tij + εve,tij = εt−∆t
ij + ∆εtij = εve,t−∆t

ij + εve,t−∆t
ij + ∆εve,tij + ∆εvp,tij

εvp,te = εvp,t−∆t
e + ∆εvp,te

σtij = σt−∆t
ij + ∆σtij

, (2.26)

where for some quantity x, ∆xt is the difference xt − xt−∆t. Time superscripts (•t)

indicate a function is evaluated at time t.

2.3.1 Discrete viscoelastic strain

We calculate the incremental viscoelastic shear and volumetric strains

∆etij = etij − et−∆t
ij

∆εtkk = εtkk − εt−∆t
kk

, (2.27)

substituting in (2.6) for the strain to find the strains

eve,tij =
1

2

[
gt0 + gt1g

t
2

Np∑
n=1

Jn

(
1− 1− exp(−λn∆ψt)

λn∆ψt

)]
Stij

− 1

2
gt1

N∑
n=1

Jn

[
exp(−λn∆ψt)qt−∆t

ij,n − gt−∆t
2

1− exp(−λn∆ψt)

λn∆ψt
St−∆t
ij

]

εve,tkk =
1

3

[
gt0 + gt1g

t
2

Np∑
n=1

Bn

(
1− 1− exp(−λn∆ψt)

λn∆ψt

)]
σtkk

− 1

3
gt1

N∑
n=1

Bn

[
exp(−λn∆ψt)qt−∆t

kk,n − g
t−∆t
2

1− exp(−λn∆ψt)

λn∆ψt
σt−∆t
kk

]
, (2.28)
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where

qtij,n = exp
(
−λn∆ψt

)
qt−∆t
ij,n +

(
gt2S

t
ij − gt−∆t

2 St−∆t
ij

) 1− exp (−λn∆ψt)

λn∆ψt

qtkk,n = exp
(
−λn∆ψt

)
qt−∆t
kk,n +

(
gt2σ

t
kk − gt−∆t

2 σt−∆t
kk

) 1− exp (−λn∆ψt)

λn∆ψt

are the discretized hereditary integrals. The incremental strains, then, are

∆etij = Ĵ tStij − Ĵ t−∆tSt−∆t
ij − 1

2

N∑
n=1

Jn

[
gt1

(
e−λn∆ψt

)
− gt−∆t

1

]
qt−∆t
ij,n

− 1

2
gt−∆t

2

N∑
n=1

Jn

(
gt−∆t

1

[
1− e−λn∆ψt−∆t

λn∆ψt−∆t

]
− gt1

[
1− e−λn∆ψt

λn∆ψt

])
St−∆t
ij

∆εtkk = B̂tσtkk − B̂t−∆tσt−∆t
kk − 1

2

N∑
n=1

Bn

[
gt1 exp(−λn∆ψt)− gt−∆t

1

]
qt−∆t
kk,n

− 1

3
gt−∆t

2

N∑
n=1

Bn

(
gt−∆t

1

[
1− e−λn∆ψt−∆t

λn∆ψt−∆t

]
− gt1

[
1− e−λn∆ψt

λn∆ψt

])
σt−∆t
kk

, (2.29)

defining

Ĵ t =
1

2

[
gt0J0 + gt1g

t
2

N∑
n=1

Jn − gt1gt2
N∑
n=1

Jn
1− e−λn∆ψt

λn∆ψt

]

B̂t =
1

3

[
gt0B0 + gt1g

t
2

N∑
n=1

Bn − gt1gt2
N∑
n=1

Bn
1− e−λn∆ψt

λn∆ψt

].

2.3.2 Discrete viscoplastic strain

From (2.9), we approximate the incremental viscoplastic strain

∆εvp,tij = Γ

(
f

σ0
y

)N
∆t

∂g

∂σij
= ∆γvp,t

∂g

∂σij
, (2.30)
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where this gives the definition of the viscoplastic multiplier ∆γvp,t, which can be

calculated discretely as

∆γvp,t = ∆t Γ

(
f(σtij, ε

vp,t
e )

σ0
y

)N
. (2.31)

Substituting into (2.26) yields

εvp,te = εvp,t−∆t
e + ∆γvp,t

√
∂g

∂σij

∂g

∂σij

1 + 2
(

1/2+β/3
1−β/3

)2 . (2.32)

2.3.3 Computational algorithm

For each strain, the algorithm starts with a trial stress (Simo and Hughes 1998)

based on the nonlinear viscoelastic stress. If the trial stress exceeds the yield surface,

the viscoplastic strain increment is calculated based on a dynamic yield surface

(obtained from (2.9) and (2.10)),

χ = τ tr − αI tr1 − κ
(
εvp,t−∆t
e

)
− σ0

y

(
∆γvp,t

∆tΓ

) 1
N

. (2.33)

To use the Newton-Raphson root-finding algorithm, we calculate the derivative

∂χ

∂γvp
= − ∂κ

∂∆εvpe

∂∆εvpe
∂γvp

−
σ0
y

N ∆γvp

(
∆γvp

Γ ∆t

) 1
N

, (2.34)

where we can calculate

∂κ

∂∆εvpe
=

∂

∂∆εvpe
κ
(
εvp,t−∆t
e + ∆εvp,te

)
= κ1κ2 exp

(
−κ2

(
εvp,t−∆t
e + ∆εvp,te

))
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and

∂∆εvpe
∂γvp

=

√
∂g

∂σij

∂g

∂σij√√√√1 + 2

(
1
2

+ β
3

1− β
3

)2
.

After ∂χ
∂γvp is calculated, we can iterate the viscoplastic multiplier for the k + 1th

iteration

(∆γvp)k+1 = (∆γvp)k − χk(
∂χ
∂γvp

)k . (2.35)

To determine convergence, we calculate the residual strain

Rt
ij = ∆εve,tij + ∆εvp,tij −∆εve,tij , (2.36)

which is the difference between the predicted strain and the actual strain (which

is supplied). The trial stress for the next increment is calculated based on residual

strain Rt
ij to be

(
∆σtij

)k+1
=
(
∆σtij

)k − [(∂Rt
ij

∂σtkl

)k]−1(
Rt
kl

)k
, (2.37)

where we can calculate the derivative

∂Rt
ij

∂σtkl
=
∂εve,tij

∂σtkl
+
∂εvp,tij

∂σtkl
, (2.38)

where

∂εve,tij

∂σtkl
= Ĵ tδikδjl +

1

3

(
B̂t − Ĵ t

)
δijδkl +

∂σ̂t

∂σtkl

[
∂Ĵ t

∂σ̂t
+

1

3

(
∂B̂t

∂σ̂t
− ∂Ĵ t

∂σ̂t

)
σtkkδij
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− 1
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δij

]
(2.39)

(where σ̂t is a scalar measure of stress which may be used for the nonlinear and shift

parameters) and

∂εvp,tij

∂σtkl
=

∂

∂σtkl

(
∆γvp,t

∂g

∂σij

)
=

∆tΓN

σ0
y

(
f

σ0
y

)N−1
∂g

∂σij

∂f

∂σkl
+ ∆tΓ

(
f

σ0
y

)N
∂2g

∂σij∂σkl
. (2.40)

Huang (2008) verified this numerical model as derived here and implemented using a

UMAT subroutine in the commercial finite element code Abaqus by comparing it to

analytical results.

Figure 2.5 shows the numerical algorithm for calculating the stress. If viscoplas-

ticity occurs, Figure 2.5 requires calculation of the viscoplastic strain increment, the

calculation of which is illustrated by the flow chart in Figure 2.6.
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Figure 2.5 Flow chart showing the numerical algorithm to calculate the stress
(Huang 2008)
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Figure 2.6 Flow chart showing the numerical algorithm to calculate the viscoplastic
strain increment (Huang 2008)
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Table 2.1 Viscoelastic Material Parameters

n λn (1/s) Jn (1/kPa)

1 1.0 1.15× 10−6

2 0.1 1.49× 10−6

3 0.01 3.17× 10−6

4 0.001 6.37× 10−6

5 0.0001 2.61× 10−6

6 0.00001 96.1× 10−6

J0 — 0.675× 10−6

2.4 Parametric Study

2.4.1 Viscoelastic parameters

This section presents the results of a parametric study of the viscoelastic nonlinear

parameters from a series of compressive creep–recovery simulations in Abaqus. The

results are reported at one integration point subjected to uniaxial stress of 50 kPa for

30 s then allowed to recover for 30 s. The material properties used in the simulations

are presented in Table 2.1.

Figure 2.7 shows the strain response for varying the parameter g0. Figure 2.8

shows the strain response for varying the parameters g1 and g2 coupled as g1g2.

2.4.2 Viscoplastic parameters

This section presents the results of a parametric study for all of the viscoplastic

material parameters from a series of simulations in Abaqus. The results are reported at

one integration point subjected to uniaxial strain at constant strain rate ε̇ = 0.0015 s−1

for 60 seconds. In all cases uniaxial compression is simulated and in some cases it

was deemed important to present results from simulations of uniaxial tension as well.

All material parameters are held constant at the values from Table 2.2 (which may

represent reasonable values for asphalt concrete) except the parameter being studied.

Figure 2.9 shows the effect of the yield surface parameter α, which controls
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Figure 2.9 Effect of the yield surface parameter α
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Figure 2.10 Effect of the yield surface parameter d
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Table 2.2 Viscoplastic Material Parameters

Property Value

α 0.3
d 0.9
σ0
y 35 kPa
β 0.25
Γ 5× 10−7s−1

N 2.0
κ0 35 kPa
κ1 600 kPa
κ2 290
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Figure 2.11 Effect of the yield surface parameter σ0
y

the pressure sensitivity of the yield surface. For lower values of α, the tensile and

compressive responses are more similar. Figure 2.10 shows the effect of the yield

surface parameter d, which serves to constrict the yield surface while the material

undergoes extension, regardless of pressure. Notice that when the material is not
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Figure 2.12 Effect of the viscoplastic potential energy parameter β

being extended, d has no effect on the response. Figure 2.11 shows the effect of the

yield surface parameter σ0
y, which simply amplifies the yield surface.

Figure 2.12 shows the effect of the flow function parameter β, which makes the

flow function pressure sensitive. As β increases, the plastic strain in compression

decreases (i.e. the material is more stiff, as seen on the graph) and the plastic strain

in tension increases (and hence the graph shows a more compliant response for higher

values of β.) Figure 2.13 shows the effect of the viscosity parameter Γ, which controls

the amount of plastic strain based on the energy dissipated. Larger values of Γ

correspond to more flow (and therefore smaller stresses). Figure 2.14 shows the effect

of the strain rate exponent N ; greater values of N result in more flow.

Figures 2.15, 2.16, and 2.17 show the effect of the hardening function parameters

κ0, κ1, and κ2, and are best understood by understanding the hardening function

κ, which is shown in Figure 2.4. The value of the hardening function κ(εvpe ) varies
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Figure 2.17 Effect of the hardening function parameter κ2 on the stress–strain
response

from κ0 when εvpe = 0 (before viscoplasticity occurs) to κ0 + κ1 as εvpe →∞, and κ

approaches the saturated value κ0 +κ1 more quickly as κ2 increases. Figures 2.15 and

2.16 show the effects of κ0 and κ1 on the stress–strain behavior such that a decrease in

either κ0 or κ1 decreases the value of the hardening function κ and results in a more

compliant material. Figure 2.17 shows the effect of κ2 on the stress–strain behavior,

where the material yields more (has more flow) earlier for lower values of κ2.
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3 MECHANICALLY-INDUCED DAMAGE

One major cause of degradation in asphalt pavements is mechanical loading of

the pavements, especially due to trucks driving over asphalt roadways, so a thorough

model describing the degradation of asphalt pavements must include the effects of

mechanical loads. The proposed model uses cdm to model the degradation of an

asphalt concrete body subject to mechanical loads.

Modeling asphalt concrete (and composite materials in general) requires some

generalization of cdm because the it is unreasonable to assume microcracks and

microvoids are distributed completely randomly, since an asphalt mix is very hetero-

geneous at the scale of microcracks. Further, the phases of asphalt concrete mixes

vary greatly in their contributions to the strength and stiffness of a mix, so it is not

reasonable to equate the damage variable to the proportion of the material occupied

by microcracks and microvoids.

However, asphalt concretes exhibit damage behavior like that predicted by cdm:

as loading becomes severe, the material softens and when it is unloaded, its stiffness is

reduced compared to the recovery stiffness after less severe loading. Therefore, cdm

is used, with the damage variable φm which does not indicate any specific volumetric

distribution of microcracks and voids, but instead arises directly from the energy

dissipated through fracture causing loss of strength and stiffness of the material, and

is the proper quantity to indicate the amount of stiffness that is lost.
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3.1 Damage Law

3.1.1 Modified mechanical response

The mechanically-induced damage relates the predicted response to that of the

undamaged material by

σij(t) =
1(

1− φm(t)
)2 σ̄ij(t), (3.1)

where σij is the nominal stress for the body and σ̄ij is the effective stress, which is

the stress level experienced by the material still effective at resisting loads, which is

calculated using the material model presented in Section 2.

The Abaqus UMAT subroutine is modified according to this relation: the stress

used for the finite element mesh is the nominal stress, but the undamaged material

model is used to calculate the effective stress σ̄ij(t). The two relate by φm, which is

calculated as described in this section.

3.1.2 Driving force

The driving force for mechanical damage postulated to be

Y m = τ̄ − αĪ1, τ̄ =

√
3J̄2

2

(
1 +

1

d
+

(
1− 1

d

)
J̄3√
3J̄3

2

)
, (3.2)

where Ī1, J̄2, and J̄3 are stress invariants (calculated from the effective stress σ̄ij) and

α and d are material parameters, and all are defined and described in Section 2. This

form resembles the viscoplastic yield surface and is appropriate because its properties

reflect the physical behavior of asphalt concrete.

The mechanical damage is based on the state of stress, so the driving force

increases more severe states of stress. The mechanical damage is pressure sensitive,

so that for tensile states of stress, the driving force is greater than for an analogous
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compressive state of stress, which in this model is due to the term αI1, such that (for

α > 0) compressive pressures I1 > 0, the damage force is less than τ and for tensile

pressures I1 < 0, the damage force is greater than τ .. The mechanical damage is

sensitive to extension, so that extensions even under hydrostatic compression, the

damage force is greater for extensions in a compressive case than further compressions;

this effect is due to the form of τ and is controlled by the constant d. If d = 1, this

effect vanishes and τ is exactly the von Mises stress; as d decreases, this effect is

amplified. Because the damage surface is analogous to the viscoplastic yield surface,

see Figures 2.1, 2.2, and 2.3 on on pages 20–22 for visualizations of the effects of the

parameters α and d.

3.1.3 Damage evolution

The evolution of damage is treated similarly to plasticity. To determine whether

damage occurs and how it evolves through time, a damage surface G is defined to be

G = Y m − Y m
th ≤ 0, (3.3)

where Y m is the damage force (defined in the previous section) and Y m
th is the threshold

damage force which is the damage force for which damage starts to occur. Should

the damage surface G reach 0, damage occurs, leading to the condition

G = Y m − Y m
th − κφ(φm) = 0, (3.4)

where κφ(φm) is the isotropic damage function, which governs the evolution of the

damage. For this study we choose

κφ(φm) =
Y m

th

km
ln(1− φm), (3.5)
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where km is the mechanical damage growth parameter, which governs the evolution

rate of damage. To gain greater intuition and for implementation, we substitutive

(3.5) into (3.4) and rearrange to yield

φm = 1− exp

(
km

Y m
th − Y m

Y m
th

)
. (3.6)

This model is chosen because it matches the physical expectations that (1) when

damage first occurs, its value is φm = 0, (2) damage accumulates more and more

as loading becomes more severe, and (3) the damage variable will not exceed unity

(φm < 1) and because exponential damage growth has frequently been observed in

experiments for other materials (Cicekli et al. 2007, Abu Al-Rub and Voyiadjis 2009).

3.2 Parametric Study

Two material parameters, Y m
th and km, are introduced for mechanical damage,

and two more, α and d, affect the mechanical damage and are already defined for

viscoplasticity. To understand them, a parametric sensitivity study examines the

various parameters’ effects on the response and their experimental determination is

discussed.

This section presents the results of a parametric study for all of the damage material

parameters from a series of simulations in Abaqus. The results are reported at one

integration point subjected to uniaxial strain at constant strain rate ε̇ = 0.0015 s−1 for

60 seconds (unless otherwise noted). In all cases uniaxial compression is simulated and

in some cases it is deemed important to present results from simulations of uniaxial

tension. All material parameters are held constant at the values from Table 3.1 except

the parameter being studied.

Figure 3.1 shows how the stress–strain response changes due to varying the me-

chanical damage parameter km, and Figure 3.2 shows the evolution of the mechanical
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Table 3.1 Damage Material Parameters

Property Value

Y m
th 2000kPa
km 0.08
α 0.3
d 0.9

damage variable φm through the simulations varying km. After damage begins to

accumulate when the damage force Y m reaches the threshold damage force Y m
th , the

mechanical damage parameter controls the severity of damage, where larger values

of km indicate more damage (larger values of φm) and hence a less stiff material.

Figure 3.3 shows how the stress–strain response changes due to varying the threshold

mechanical damage force Y m
th , and Figure 3.4 shows the evolution of the mechanical

damage variable φm through the simulations varying Y m
th . All else held equal, large

values of Y m
th cause damage to begin later, and to be less severe.

Remember when examining Figures 3.5–3.8 that varying α and d also affects

the viscoplastic response of the material. Figure 3.5 shows how the stress–strain

response changes due to varying the parameter α, and Figure 3.6 shows the evolution

of the mechanical damage variable φm through the simulations varying α. As α

decreases, the compressive and tensile stress–strain behaviors become more similar,

as α introduces pressure sensitivity to the model. Larger values of α result in less

mechanical damage in compression and more mechanical damage in tension.

The results for the effect of d are most clearly seen in a stress-controlled regime,

so Figures 3.7 and 3.8 present the results of constant stress rate tests with the stress

rates σ̇ = 58 kPa/s for compression and σ̇ = 28 kPa/s for tension. Figure 3.7 shows

how the stress–strain response changes due to varying the parameter d, and Figure 3.8
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Figure 3.1 Effect of the mechanical damage growth parameter km on the stress–
strain response from constant strain rate simulations
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shows the evolution of the mechanical damage variable φm through the constant

stress rate simulations varying d.

3.3 Rate Dependence

Experiments have indicated that the damage accumulation in asphalt concrete is

dependent on the load history (Grenfell et al. 2008). Consider the results of uniaxial,

compressive constant strain rate laboratory tests shown in Figure 3.9.

At faster strain rates, the asphalt concrete is more resilient in resisting loads. It

exhibits stiffer initial (viscoelastic) response, then in the viscoplastic–damaged regime,

the same qualitative behavior occurs at higher stresses and slightly higher strains.

The maximum peak of the stress–strain graph relates to Y m
th and the rate of softening

relates to km/Y m
th . An initial attempt to quantify the strain rate effect is a modified
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threshold damage force

Y m
th (ε̇11) = ηφ 2log10 ε̇11 , (3.7)

where ηφ is a material constant, the characteristic viscosity of mechanical damage.

Though this law is probably inappropriate for general loading histories, it provides

some insight into rate effects for damage.

Equation (3.7) is developed specifically for the uniaxial case. For general loading,

a scalar must represent the strain rate, so we define the equivalent total strain rate

ε̇tot
e =

√
ε̇ij ε̇ij, (3.8)

which is analogous to the equivalent viscoplastic strain rate εvpe in (2.25). The measure

of strain used is the total strain εij in place of the viscoplastic strain εvpij , because the
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Figure 3.9 Stress–strain relationship for asphalt from a series of uniaxial, com-
pressive constant strain rate tests at various strain rates. The results of two tests at
each of the strain rates ε̇11 = 0.005, 0.0005, and 0.00005 are presented (Grenfell et al.
2008)

total response will contribute to damage in an asphalt mix, not only the viscoplastic

component. The threshold damage force is

Y m
th (ε̇ij) = A2log10 ε̇

tot
e , (3.9)

for the case of three-dimensional stress states.
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4 MOISTURE-INDUCED DAMAGE

Moisture damage contributes heavily to the premature degradation of asphalt

pavements, resulting in expensive rehabilitation and replacement costs for roadways

and potential hazard in the case of severely damaged roadways (Kandhal 1994,

Copeland 2005, Kringos 2007).

Despite the detrimental effects of moisture damage, no macroscale model exists

to model moisture-induced damage in asphalt concrete. The effect of moisture in

degrading the mechanical properties is observed in two mechanisms: the loss of the

adhesive bond between the aggregates and the mastic and the loss of the cohesive

strength of the mastic (Caro et al. 2008a, Kringos et al. 2007). These mechanisms

are modeled independently, but with the same method.

4.1 Damage Law

The degrading effect of moisture manifests in two physical phenomena: (1) adhesive

moisture damage (corresponding to the damage variable φa) which is the degradation

of the bond strength between the aggregates and the asphalt mastic due to the

existence and diffusion of moisture through the thin films surrounding the aggregate

particles and along the aggregate-mastic interfaces; and (2) cohesive moisture damage

(corresponding to φc) which is the degradation of the cohesive strength of the asphalt

mastic. In this study and for the first time, both of these phenomena are modeled

independently, which allows one to introduce fundamental mechanical properties for

each process (e.g., bond strength and cohesive strength) and model the transition

between adhesive and cohesive damage.

The decay in the aggregate-mastic bond strength and mastic cohesive strength
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due to the presence of moisture is modeled using the evolution law

X i(t) = X i
0 +

∫ t

0

Ẋ i(θ(ξ)) dξ, i = a, c (4.1)

where X i(t) is the average aggregate–mastic adhesive strength of the aggregate-mastic

bond for i = a (adhesive) and the average mastic cohesive strength for i = c (cohesive)

at time t, X i
0 is the initial undamaged adhesive or cohesive strength (for i = a, c),

and Ẋ i(θ(ξ)) is the rate of decay of the average adhesive or cohesive strength for a

normalized moisture content θ at time ξ. Time t = 0 is some time before moisture

diffusion begins.

This evolution equation for degradation of the adhesive and cohesive strength

(which will be used to describe the damage of the mix due to moisture) is an

improvement over past approaches which describe the moisture-induced damage as

dependent on the current state of the moisture only, not the moisture history (Kringos

2007, Kringos et al. 2007). Though some healing is observed for asphalt concrete,

this is not accurately described by an instantaneous, full recovery of strength upon

the change in moisture state.

For simplicity, the rate of decay Ẋ i(θ) is described by the linear equation

Ẋ i(θ(t)) = −kiθ(t), i = a, c , (4.2)

where ki (i = a, c) are material properties describing the rate of degradation of the

adhesive or cohesive strength. Note that the ki should be positive so that the rate

of change in the strength is negative so that the value of the adhesive or cohesive

strength in (4.1) is decreasing, i.e. degradation occurs.
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The value of the corresponding damage variable is

φi = 1− X i(t)

X i
0

, i = a, c , (4.3)

which is the simplest law which performs as expected: if the adhesive or cohesive

strength is its initial value X i(t) = X i
0, there is no damage (φi = 0) and when all

adhesive or cohesive strength is lost X i(t) = 0, the material is completely degraded

(φi = 1), and at intermediate values φi varies from 0 to 1.

4.1.1 Numerical implementation

The Abaqus simulations and UMAT subroutine are modified to consider the effects

of moisture damage. To simulate the dispersion of moisture, the diffusion equation is

solved using Abaqus’s built-in facilities for solving non-steady state heat problems,

where relative humidity is used in place of temperature. The diffusion coefficient for

hot mix asphalt was determined by Kassem (2006).

Equation (4.1) is solved discretely, so that at time t following a time step of ∆t

(substituting the material law in Equation (4.2)),

X i,t = X i,t−∆t − kiθt∆t, i = a, c , (4.4)

with an initial value

X i,t=0 = X i
0, i = a, c (4.5)

indicating a material initially undamaged by moisture.

4.2 Moisture Damage–Mechanical Damage Coupling

It is expected that a material will become more susceptible to mechanical damage

due to moisture exposure, and since there are no special laws postulated for coupling

mechanical and moisture damage is not instantly clear whether this coupling is
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Figure 4.3 The evolution of mechanical damage variable φm due to stress-controlled
loads with time for various moisture exposures

described by the damage model presented here.

In fact, intrinsic coupling exists due to stress-controlled loading, but not strain-

controlled loading, because the mechanical damage is driven by the effective stress σ̄ij

(recall Equation (3.2)). Thus, in the presence of moisture damage an applied stress is

amplified (Equation (3.1)) to calculate the damage driving force, but in the case of

strain-controlled damage, the effective stress is calculated due to the strain, which

does not change because of the formulation ε = ε̄ij (Equation (1.6)).

To illustrate this coupling, several simulations were performed with constant stress

rate loading after moisture exposure at various levels. To isolate damage effects,

the material law used is elastic–damaged, with material properties Young’s modulus

E = 100 MPa, Y m
th = 2 MPa, km = 0.1, Xa

0 = 100.0, ka = 0.01, and kc = 0. The

material is subjected to the specified moisture level for 2000 seconds before loading
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in tension at stress rate σ̇ = 10 MPa/s.

Figure 4.1 plots the resulting stress–strain diagrams, showing the greater the

moisture exposure, the weaker the material is, and that this weakening is more than

proportional to the moisture effects. Figure 4.2 plots the evolution of the damage

variable φ. Before time t = 2000 seconds there is no mechanical loading, so all of the

damage is due to moisture. Some time after mechanical loading starts, mechanical

damage accumulates in all of the samples, with earlier onset and greater growth

of the damage for greater moisture exposure. Figure 4.3 shows the evolution of

the mechanical damage variable φm alone to emphasize the differences between the

mechanical damage in simulations with the same mechanical loading and different

moisture loading.

4.3 Parametric Study

This section presents the results of parametric studies of the material constants

governing moisture damage: the initial undamaged adhesion Xa
0 and cohesion Xc

0 and

the rate parameters for adhesion ka and cohesion kc. Because the functions proposed

for each here are the same, solutions are provided for one X i
0 and one ki.

A series of simulations loads a material point to saturation and plots the declining

bond strength and the moisture induced damage. Figures 4.4 and 4.5 show the bond

strength X i and damage variable φi as a function of time for various values of the

initial bond strength X i
0; this serves to shift the graphs vertically with no change in

slope. Figures 4.6 and 4.7 show the bond strength X i and damage variable φi as a

function of time for various values of the moisture damage rate parameter ki; this

serves to change the slopes of the graphs.

4.4 Results

Several simulations’ results show the function of the complete constitutive model,

featuring viscoelasticity, viscoplasticity, mechanical damage, and moisture damage.
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Figure 4.8 Stress–strain diagrams for constant uniaxial strain rate simulations for
several moisture conditioning levels

The mechanical material parameters are as reported in past sections, and the moisture

damage parameters are as follows: Xa
0 = 100.0, ka = 0.01, and kc = 0 (i.e. there is no

cohesive moisture damage).

4.4.1 Constant strain rate simulations

Figures 4.8 and 4.9 show the results of constant strain rate tests with different

moisture exposures. The normalized moisture content θ is held constant for 2000 s

and then the material is loaded at constant strain rate ε̇ = 0.0015 s−1. Note the effect

of moisture damage, causing the material to become weaker and less stiff. Damage

grows due to the presence of moisture and accelerates due to mechanical loading.

4.4.2 Constant stress rate simulations

Figure 4.10 shows the stress–strain curves for constant compressive stress rate

simulations with different moisture levels. The material is subjected to the moisture
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for several moisture conditioning levels



62

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0

0.002

0.004

0.006

0.008

0.01

0.012

Time (s)

A
xi

al
 te

ns
ile

 s
tr

ai
n

 

 
θ = 1.0
θ=0.5
Dry

Figure 4.11 Strain vs. time for tensile creep–recovery simulations for several
moisture conditioning levels

content specified for 2000 seconds and then subjected to a compressive stress at

constant rate σ̇ = 10 kPa
s

.

4.4.3 Creep–recovery simulations

Figure 4.11 shows the strain response due to constant tensile stress σ = 500 kPa

for 50 seconds then allowed to recover with the load removed for 50 seconds, all after

2000 seconds of moisture exposure at various levels.
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5 CONCLUSION

5.1 Summary

The presented model captures the whole mechanical response of an asphalt mix

subjected to mechanical and moisture loads using a continuum model. The nonlinear

viscoelastic character of the reversible deformations is modeled using Shapery’s theory.

The viscoplastic character of the rate-dependent permanent deformations is modeled

using Perzyna viscoplasticity, with a modified Drucker–Prager yield surface used to

capture the dependence on state of stress anticipated for asphalt concrete and with a

nonassociated flow rule to describe the appropriate volumetric viscoplastic response.

Damage is described due to extreme mechanical loads and due to moisture. The

mechanically-induced damage model predicts degradation due to the same modified

Drucker–Prager surface used for viscoplasticity with an exponential damage evolution

function. Rate-dependence of mechanical damage is presented and a basic adaptation

of the model is provided. Moisture-induced damage is treated realistically as two

mechanisms: degradation of the adhesive bond between the mastic and aggregates

and degradation of the cohesive strength of the mastic. The moisture-induced damage

model is formulated in a novel way, accounting for the gradual, irreversible degradation

of a mix using continuum damage mechanics.

This model is the first continuum model to capture all facets of realistic asphalt

mix response, as described. One major simplification within the proposed model is

anisotropy; all effects are assumed to be isotropic. In the case of moisture-induced

damage this may be realistic, but it is at least somewhat unphysical in the mechanical

laws. This assumption is made to keep from overcomplicating the model, and can be

relaxed if experiments show anisotropy effects are important.
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The nonlinear-viscoelastic–viscoplastic–damage model is implemented numerically

for solving 3D and 2D plane strain problems with arbitrary geometries in the finite

element method, using a UMAT user subroutine for the finite element code Abaqus.

The presented simulation results show the meaning and effect of the various material

parameters governing the nonlinear viscoelastic, viscoplastic, and damage behavior in

the parametric studies, and show the predicted response for various simulated tests

to match the qualitative behavior to experiments.

5.2 Future Work

Fitting experimental data to the model is a nontrivial task, due to the large

number of material parameters and their inter-coupling in tests. Work is currently

underway at Texas A&M University to develop a systematic way to fit all material

parameters in the proposed model for a given asphalt mix.

It has been acknowledged that damage for asphalt concrete has a rate-dependent

character. The model presented here describes damage in a way that is analogous

to plasticity, with only an ad hoc rate dependence in its parameters. It is possible

to formulate damage analogous to viscoplasticity to include rate effects (Voyiadjis

et al. 2004), which would be much more robust and potentially provide an accurate

description of mechanically-induced damage under a wide range of loading conditions.
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APPENDIX A

MICROMECHANICAL SIMULATIONS

Throughout this thesis, a continuum model is used, because continuum models

are able to provide simulations of realistic engineering structures (such as a section

of a roadway) for much less computational expense than microscale models. How-

ever, continuum models are fundamentally incapable of describing effects that are

occurring at a scale smaller than continuity is imposed. The effects of composition

and geometry at a microscale in asphalt concrete mixes lead to their continuum

properties. Micromechanical modeling is beyond the scope of this thesis, but a few

simulations are performed and their results presented here to show the model’s fitness

for micromechanical computational models.

Though the material model presented in this thesis is developed to model asphalt

concretes as continua, it is extremely well-suited to asphalt mastic, which exhibits

time-dependent recoverable and irrecoverable deformations, and degrades with loading

and moisture exposure. The response of aggregates is usually very stiff and time-table,

and may be modeled with a simple linear elastic material law. (Recent work by

Luo and Lytton (2009) suggests a viscoelastic law might be more appropriate for

aggregates, possibly due to binder absorption in the aggregates. This or any other

accessible material model for aggregate would also be simple to incorporate in a finite

element simulation if necessary.)

For these simulations, finite element meshes were constructed with three types of

regions: aggregates, asphalt mastic bulk, and asphalt mastic in the aggregate–mastic

bond region, and all are given different material properties. The aggregates are

modeled as isotropic linear elastic material with Young’s modulus Eagg = 1 GPa and
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Figure A-1 Undeformed finite element mesh for micromechanical simulations
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Figure A-2 Von Mises stress distribution due to compressive loading

Poisson’s ratio νagg = 0.16, and the mastic is modeled with the material parameters in

Tables 2.1, 2.2, and 3.1. Additionally for the mastic, Xa
0 = 100, Xc

0 = 100, kc = 0.01,

and ka = 0.02 in the adhesive zones and ka = 0 outside the cohesive zones. The

normalized diffusivities for the mastic and aggregate are 10−5 m2s−1 and 10−10 m2s−1,

respectively.

A.1 Dry Simulations

Figure A-1 shows a sample of a mesh: the round, relatively course meshes are

aggregates, one ring of elements surrounding them are interface-zone mastic, and

the remaining elements are bulk mastic. Plane-strain linear finite elements model all

regions.
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Figure A-3 Damage distribution due to compressive loading

Figures A-2 and A-3 are contour plots showing the distribution of stress and

damage due to compressive loading at constant average strain rate ε̇ = 0.0015 s−1,

and through the simulation, the geometry of the body causes stress to concentrate in

some parts of the mesh. When the stress becomes very high, the material sustains

damage, and becomes less stiff. Corresponding to this loss in stiffness, the formerly

high-stress material ‘attracts’ less load, and the areas with high deformation have

small values of stress in Figure A-2 and high values of damage in Figure A-3.

Figure A-4 is the resulting average stress–average strain diagram resulting from

the load–displacement relation of the body. The most significant thing about this

plot is that it exhibits yielding and softening, but in a qualitatively different way
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Figure A-4 Average stress–average strain diagram due to compressive loading

than shown in the plots of Section 3.

Figures A-5, A-6, and A-7 are plots with the same meanings as Figures A-2,

A-3, and A-4, but due to tensile constant average strain rate tests at average strain

rate ε̇ = 0.00025 s−1. The average stress–average strain diagram Figure A-7 does not

report values into the softening regime.
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Figure A-5 Von Mises stress distribution due to tensile loading
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Figure A-6 Damage distribution due to tensile loading
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Figure A-7 Average stress–average strain diagram due to compressive loading
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A.2 Moisture-Affected Simulations

Several figures show the result of a simulation featuring both moisture and

mechanical loading. The body is subjected to constant normalized moisture content

θ = 1.0 on its top edge and θ = 0.0 on its bottom edge for 2000 seconds before being

loaded in compression at constant average strain rate ε̇ = 0.0015 s−1. Figure A-8

shows the final moisture distribution, which leads to the moisture-induced damage.

Figure A-9 depicts the stress distribution after some mechanical loading; stress

is concentrated due to geometry and moisture damage effects. Figure A-10 is the

total damage distribution and Figures A-11, A-12, and A-13 are the corresponding

mechanical, cohesive moisture, and adhesive moisture damage distributions. Compare

Figure A-8 Final moisture distribution
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Figure A-9 Von Mises stress distribution due to moisture and compressive loading

Figure A-3 to Figure A-11 on page 82: the degrading presence of moisture has greatly

changed the damage’s location and distribution. Figure A-3 shows large, continuous

damaged regions (cracking) whereas the moisture-exposed body in Figure A-11 shows

more compact, isolated, concentrated damaged regions surrounding the aggregates

(raveling).

Figures A-12 and A-13 show that the model performs as expected: moisture-

induced damage occurs to a greater degree in the areas closer to moisture-exposed

surfaces. The loss of strength at the aggregate-mastic interface in particular is severe,

and the interface zone attracts much of the degradation as seen by the total damage

(Figure A-11).
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Figure A-10 Damage distribution due to moisture and loading (whole body and
inset)
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Figure A-11 Cohesive strength damage due to moisture

Figure A-12 Mechanical damage distribution due to loading with moisture effects
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Figure A-13 Adhesive bond strength damage due to moisture (whole body and
inset)



84

0 0.5 1 1.5 2 2.5 3

x 10
−3

0

500

1000

1500

2000

2500

Average compressive strain

A
ve

ra
ge

 c
om

pr
es

si
ve

 s
tr

es
s 

(k
P

a)

 

 

Dry
Moisture−Exposed

Figure A-14 Average stress–average strain diagram due to compressive loading,
with and without moisture present

Figure A-14 is the average stress–average strain diagram for the body, plotted

for the moisture damaged body and for dry material. The composite stiffness and

ultimate strength are reduced in the moisture-exposed case.

A.3 Conclusions

The results presented here show that the mechanical/moisture damaged non-

linear-viscoelastic–viscoplastic material model presented in this thesis is well-suited

to microscale simulations of asphalt concrete. Future models can use this model with

experimentally-determined material parameters for the constituents to predict the

bulk response of asphalt concrete.



85

VITA

Michael Anthony Graham received his Bachelor of Science degree in civil engi-

neering with a specialty in structures and a minor in mathematics from Texas A&M

University at College Station, TX in May 2007. This thesis marks the completion of

the requirements for his Master of Science degree in civil engineering with a specialty

in structures from Texas A&M University, received in August 2009.

Michael is an experienced engineering researcher and structural engineering con-

sultant and an Engineer in Training in the state of Texas. Contact Michael by postal

mail at the address

Michael Graham
3135 TAMU
College Station, TX 77843–3135
USA

or by email at the address mikegraham@gmail.com.


