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ABSTRACT

Scattering Properties of Oriented Hexagonal Ice Crystals. (August 2009)

Feng Zhang, B.S., Nankai University;

M.S., Nankai University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Ping Yang

To interpret the data from spaceborn lidar measurements, one must have a basic

understanding of the backscattering of oriented ice particles. The conventional ray-

tracing method is not applicable to the scattering of light by oriented particles. In this

study, the dipole approximation (DDA) method is employed to the scattering of light

on oriented hexagonal ice columns and plates with various tilting angles. It is found

that the oriented hexagonal ice particles tend to have strong backscattering intensity

with low depolarization ratios which are strongly dependant on the tilting angle of

oriented particles. The present results show that the effect of particle orientation

plays an important role in determining the optical properties of ice clouds consisting

of horizontally oriented ice crystals.
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CHAPTER I

INTRODUCTION

Cirrus clouds cover more than 20% of the globe [1]. Mainly composed of ice crystals,

cirrus clouds located in the upper troposphere play an important role in the earth’s

climate system [2, 3]. To fully understand the impact of clouds on the climate system,

detailed information about cloud properties, height, temperature and phase must be

known. Due to the high altitude and large scale of cirrus clouds, satellite based remote

sensing is often employed to detect these properties [4].

CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observations)

is a joint effort satellite mission between NASA and CNES, and aimed at improving

our knowledge of the role of aerosols and clouds in climate systems [5]. The primary

instrument on CALIPSO, the Cloud-Aerosol Lidar with the Orthogonal Polarization

(CALIOP), is a dual wavelength lidar designed to acquire the vertical profiles of

backscatter at wavelengths of 532 nm and 1064 nm. Research into cloud-climate

feedback utilizes the information retrieved by CALIOP combined with data from other

”A-Train” satellites to study the relationships between cloud phase, cloud height and

cloud optical thickness. The 532 nm channel of CALIOP has dual polarization and

reports the linear depolarization ratio [5]. The cloud phase can be determined from

the relationship between the lidar depolarization ratio and the effective backscatter.

Hu et al.[6] proposed a method to discriminate the cloud phase based on the

depolarization ratio-effective lidar ratio relation derived from the spaceborn lidar

cloud data. In his paper, layer-integrated depolarization ratio δ and layer-integrated

The journal model is Applied Optics.
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Fig. 1. Schematic curves showing the relationship between integrated depolarization

ratio and integrated attenuated backscatter derived by Hu[7].

attenuated backscatter γ are defined as [7]:

δ =

base∫
top

β
′

⊥(r)dr

/ base∫
top

β
′

//(r)dr (1.1)

γ′ =

base∫
top

(β⊥ + β//)dr (1.2)

Hu et al. [7] derived the relationship between CALIPSO lidar δ and γ for both

ice and water clouds based on the data similar to those shown in Fig. 1 and 2.
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Fig. 2. The relationship between integrated depolarization ratio and integrated atten-

uated backscatter shown by CALIPSO DATA. [Courtesy of Jianxu Lu].
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For water clouds composed of spherical water droplets, δ increases as γ increases.

For ice clouds, δ decreases as γ increases [8, 9]. It should be noted that the single

scattering process by water droplets does not depolarize the backscattered light, but

multiple scattering in water clouds tends to lead to a large depolarization ratio in

the backscattering direction. The lower part of the ice cloud curve in Fig. 1 cor-

responds to the randomly oriented ice crystals in the cloud. The upper left branch

of the ice cloud curve corresponds to high backscatter values and low depolarization

ratios, which are generally believed to be associated with zenith enhanced backscat-

ter (ZEB) from horizontally oriented particles in ice clouds. Many lidar experiments

have observed zenith enhanced backscatter from cirrus clouds at the zenith angle [10].

The ZEB signature is found to be extremely strong when the lidar is pointed directly

at the zenith and decreases quickly when the lidar beam direction is slightly tilted

off the zenith. The measured depolarization ratio of ZEB is approximately zero,

because, while the lidar beam is focused directly downward, the two horizontally

placed faces have a strong effect on backscatter, but the parallel and perpendicu-

lar components of the electric field of the incident lidar beam are indistinguishable

and the backscattered light has a very small depolarization ratio. The existence of

horizontally oriented ice crystals has been confirmed by several lidar observations

[11, 12, 13]. Furthermore, observations by the Polarization and Directionality of the

Earth’s Reflectances (POLDER) instrument have found that approximately 40% of

the ice crystals in cirrus clouds are horizontally oriented [14]. However, in order to

fully understand the relationship between depolarization ratio-effective lidar ratio, a

detailed analysis of the backscattering properties of oriented hexagonal ice crystals is

necessary.
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CHAPTER II

METHODOLOGY

A. Basic scattering parameters

Using a spherical coordinate system associated with a right-handed Cartesian coordi-

nate system with its origin at the observational point shown in Fig. 3, we can define

the propagation direction of a plane electromagnetic wave with a unit vector n. In

this spherical coordinate system, the unit vector n can be specified in terms of θ and

φ. where θ in the range of [0, π] is the azimuth angle and φ in the range of [0, 2π]is

the zenith angle.

The equation of a plane electromagnetic wave in a medium with electric permit-

tivity ε and magnetic permeability µ can be written as

E(r, t) = Ee(ik·r−iωt) (2.1)

where k is the wave vector. E can be decomposed into two components Eθ and Eφ.

Eθ lies in the meridional plane defined by n and the z axis. Eφ is perpendicular to

this plane.

The Stokes parameters are defined as [15]:

I =



I

Q

U

V


=

√
ε

µ



EθE
∗
θ + EφE

∗
φ

EθE
∗
θ − EφE∗φ

−2 Re EθE
∗
φ

2 Im EθE
∗
φ


. (2.2)

From the definition we can see that each component of the Stokes parameters is a

real quantity. The Stokes parameters have the dimension of energy flux so they can
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Fig. 3. The spherical coordinate system associated with a right-handed Cartesian co-

ordinate system.
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be directly measured by optical instruments.

The Stokes parameters associated with the scattering field can be linked to those

of the incident field by a linear transformation.

Is

Qs

Us

Vs


=



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44





Ii

Qi

Ui

Vi


(2.3)

The degree of polarization (DP), degree of linear polarization (DLP) and the

degree of circular polarization (DCP) are defined as follows [16]:

DP =

√
P 2

21 + P 2
31 + P 2

41

P11

(2.4)

DLP = −P21

P11

(2.5)

DCP = −P41

P11

(2.6)

(2.7)

If the laser beam is linear polarized, the linear depolarization ratio can be written

as:

δL =
P11 + P12 − P21 − P22

P11 + P12 + P21 + P22

. (2.8)

In our current research, the lidar beam on CALIPSO is linearly polarized, thus

we only need to consider the linear depolarization ratio and the degree of linear

polarization.

B. The discrete dipole approximation

For scatters such as hexagonal plates, an exact solution of Maxwell’s equations is

difficult to obtain and numerical methods are preferred. The conventional geometric
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optics method (GOM) is not applicable to oriented particles because of its inherent

limits [16]. Specifically, the phase function derived from the GOM is the superposi-

tion of the diffraction contribution and two delta functions, therefore, more rigorous

numerical methods must be applied.

The discrete dipole approximation (DDA) introduced by Purcell and Penny-

packer [17] is a widely used method for computing the electromagnetic wave scattering

problems for particles with arbitrary shapes and composition. The general premise

of the DDA is to replace a scatter with a number of dipoles which interact with both

the incident field and each other. The interaction between dipoles is governed by

a system of linear equations. The dipole polarizations are obtained by solving the

linear equations, and the measurable scattering properties can be derived from these

dipole polarizations. Goedecke and O’Brien [18] demonstrated that the DDA can be

derived from the volume integral equation for the electric field by dividing the scatter

into a set of small sub-volumes. The final equation produced by the integral equation

is essentially the same as the one used for the discrete dipole approximation.

Following Purcell’s original hypothesis, suppose we have a scatter with the inci-

dent field Einc, and we can divide the scatter into a set of dipoles xi, i = 1, 2...., N

with polarizabilities tensor ai. Each dipole’s polarization is Pi = aiEi, where Ei is

the sum of incident field Einc,i and the fields contributed by all the other dipoles.

Ei = Einc, i−
∑
j 6=i

AijPj, (2.9)

where AijPj is the field on dipole xi induced by dipoles Pj including retardation

effects. Each Aij is a 3× 3 matrix given by [19]:

Aij =
expikrij

rij
×

[
k2(r̂ij r̂ij − I3) +

ikrij − 1

r2
ij

(3)(r̂ij r̂ij − I3)
]
, (2.10)

If we define Aii = a−1
j , the problem is reduced to solve 3N complex linear equations
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for Pj:
N∑
j=1

AijPj = Einc,i. (2.11)

The major physics problem in the DDA formulation is to assign the dipole polariz-

abilities to the dipoles in the scatter. The original study by Purcell and Pennypacker

used the Clausius-Mossotti polarizability [17]:

aCMj =
3d3

4π

ε− 1

ε+ 2
, (2.12)

where ε = m2 is the complex dielectric function of the scatter at position r.

The absorption and extinction cross section can be directly calculated from the

internal fields [19]:

Cabs =
4πk

|E0|2
N∑
j=1

(Im(Pj · (a−1
j )
∗
P ∗j )− 2

3
k3|Pj|2), (2.13)

Cext =
4πk

|E0|2
N∑
j=1

Im(E∗inc,j ·Pj). (2.14)

The scattering cross section Csca = Cext − Cabs.

Efforts have been made to improve the DDA since the original paper of Purcell

and Pennypacker. It has been noted by Draine [20, 21] that the Clausius-Mossotti

polarizability does not satisfy energy conservation, which in turn fails at optical the-

orem. A correction to the polarizability for a finite dipole was proposed based on the

radiative reaction relation [?]:

αRR =
αCM

1− 2
3
ik3αCM

(2.15)

In order to get the correct phase of the scattered electromagnetic wave, we need

to make sure that the phase change between two adjoining dipoles is less than 1 rad.
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Thus one can get the following criterion of DDA [19]:

|m|kd ≤ 1, (2.16)

where m is the refractive index, k is the wave number, and d is the dipole size.

It is well known that the errors in the DDA are mainly due to two factors: the

shape of the scatter, and the discretization of the scatter. The first error arises because

the particle shape may not always be described exactly by a set of sub-volumes. To

reduce the shape errors, adaptive discretization can be employed, which uses different

dipole sizes to get a better fit of the scatter shape. The second error is due to the

finite size of each cell and can be reduced by choosing a different dipole polarizability

formula. The DDA code we used in our research is called ADDA, developed by

Yurkin, et al. [23, 24, 25].

C. T-matrix method

The T-matrix approach proposed by Waterman [26] is based on the orthogonal vector

spherical wave function expansion of the incident and scattered electric field vectors.

Einc(R) =
∞∑
n=1

n∑
m=−n

[amnRgMmn(kR) + bmnRgNmn(kR)] (2.17)

Esca(R) =
∞∑
n=1

n∑
m=−n

[cmnRgMmn(kR) + dmnRgNmn(kR)] (2.18)

where amn, bmn, cmn and dmn are the coefficients and are complex numbers. Mmnand

Nmn are vector spherical wave functions of the degree n and the order m. Because

of the linearity of Maxwell’s equations, coefficients of the scattered field cmn and dmn

can be linked to those of the incident field amn and bmn via linear transformation

cmn =
∞∑
n′=1

n′∑
m′=−n′

[T 11
mnm′n′am′n′ + T 12

mnm′n′bm′n′], (2.19)
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dmn =
∞∑
n′=1

n′∑
m′=−n′

[T 21
mnm′n′am′n′ + T 22

mnm′n′bm′n′], (2.20)

or in matrix form  c

d

 = T

 a

b

 =

 T 11 T 12

T 21 T 22


 a

b

 , (2.21)

where we have suppressed the indices of each element. This is the basic equation of

the T-matrix approach. In principle, the matrix, T, can be calculated with a standard

method of calculating the scattering problem by particles, but the most commonly

used method is the extended boundary condition method (EBCM)proposed by Bar-

ber and Yeh [27]. Mischenko [15] further developed this method and wrote a solid

code to be made available to the public. A very important feature of the T-matrix

method is that the T-matrix itself does not depend on either the propagation direc-

tion or polarization states of the incident and scattered waves. It only depends on

the properties of the scatter, such as the shape, size and refraction index. A major

advantage of the T-matrix method is that the T-matrix of a particle at a certain wave-

length only need be calculated once and can then be used to calculate the scattering

process for any orientation and polarization.
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CHAPTER III

NUMERICAL RESULTS

Lidar experiments done by Platt et al. [30] on an altostratus cloud exhibited a layered

structure possessing variable optical properties. The top layer of the cloud was charac-

terized by high backscattering coefficients and very small depolarization ratios within

the range of 0.03 to 0.05. The fundamental electromagnetic wave scattering theory

indicates that spherically symmetrical and homogeneous scatters generate small de-

polarization ratios in the exact backscattering direction. The backscatter from ice

crystals, with the contribution from internal reflection, is thought to generate large

depolarization ratios. From electromagnetic wave theory, the main composition of

the cloud top layer was classified as cloud droplets. The conclusion was supported by

theoretical and experimental field studies [13]. Sassen [4] found the depolarization ra-

tio of water clouds was near zero and of ice clouds approximately 0.5. As a result, the

depolarization ratio was proposed as a tool to determine the cloud phase. It has been

noted that spherical homogeneous particles are not the only scatters that generate

strong backscattering and low depolarization ratios. Horizontally oriented ice crystal

plates also have similar backscattering properties due to the specular reflection off two

large basal faces as shown in Fig. 4. The conventional ray-tracing method fails for

such scattering problem because it leads to singularities in the computation, specif-

ically when dealing with the backscattered rays from the top and bottom surfaces.

Therefore rigorous methods such as DDA or FDTD have to be applied.

A. Comparison between DDA and T-matrix.

In this section, both the T-matrix and the DDA methods are applied to oriented cylin-

ders. By comparing the phase function obtained from both methods, the applicability
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Fig. 4. The backscattering of hexagonal plate.
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of DDA on oriented particles can be determined.

Usually for oriented particles, four angles: θi, φi, θs and φs are used to specify the

scattering configuration. The incident angle θi and the azimuth angle φi define the

incident direction in a laboratory coordinate system. The orientations of cylinders in

the laboratory coordinate system are simplified by choosing the z axis as the symmetry

axis of the two geometries [?].

The cylinder we used has the following properties: D/L = 1; the wavelength

is 0.532µm; and, the corresponding refractive index is 1.3117 + i2.6138 × 10−9. The

geometry of cylinder is shown in Fig. 5.

Fig. 6 shows the phase matrix element P11 calculated from both the T-matrix

and the DDA methods with an incident angle of θ = 0o. From the figure we can

clearly see that there is little difference between the results obtained from the DDA

and T-matrix methods at all scattering angles. Excellent agreement can be found

at the backscattering direction θ = 180o. Here we should notice the ripple structure

of the phase function, pointed out by Mischenko [28], which is mainly due to the

interference between the reflected fields from the two parallel surfaces of the particle.

Such interference is related to the particle size parameter and can be smoothed out

if the phase function is integrated over certain particle size distribution.

Figs. 7, 8 and 9 show P12/P11, P33/P11 and P43/P11 computed from both the

T-matrix and DDA methods, and we can see that they agree very well in the forward

and back scattering directions. We also notice that there is some discrepancy at

around 90 degrees. This is mainly due to the sharp edge of the cylinder because the

T-matrix method approximates the electric field in terms of spherical vector wave

functions.

In general, we can see that the results from the T-matrix and DDA methods agree

very well for non-spherical particles such as cylinders. The comparison illustrates
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Fig. 5. The geometry of cylinder.
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Fig. 7. P12/P11 from the T-matrix and DDA methods for a cylinder with incident angle

θ = 0o.
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Fig. 8. P33/P11 from the T-matrix and DDA methods for a cylinder with incident angle

θ = 0o.
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that we can use the DDA method to study the scattering properties of non-spherical

particles.

B. Application to hexagonal ice plates and columns

Hexagonal prisms are the basic structure of ice crystals in cirrus clouds. Hexagonal

prisms can be totally defined with terms of its side length a and length L. The aspect

ratio of hexagonal prism is defined as 2a/L. When the aspect ratio is larger than 1,

this geometry is a hexagonal plate in which size parameter is defined as ka, where k

is the wave number given by k = 2π/λ. When the aspect ratio is smaller than 1, the

geometry becomes a hexagonal column with size parameter kL. Fig. 10 and 11 show

the geometry of hexagonal plates and hexagonal columns.

Hexagonal ice plates grow in the temperature range from -8 to -25◦Cwith the

largest growth rate occurring in the range from -12 to -15◦C [29]. The plate grows in

three dimensions until its short axis reaches maximal length, after which the growth

occurs mainly along the long axis . In air, the hexagonal ice plates will fall while hav-

ing their longest axis parallel to the horizontal plane due to the mechanical stability

of the system. When the lidar beam is pointing directly downwards, the basal faces

produce specular reflection.

We use the following relationship [30] for the ice plates involved in this study.

L = 2.4883a0.474, 5µm ≤ a ≤ 1500µm, (3.1)

where a is the semi-width of the cross section and L is the thickness of the plate.

Fig. 12 shows the phase matrix element of a hexagonal plate. The incident di-

rection is perpendicular to the top basal face of the plate. There is strong backscatter

in the backscattering direction (θ = 180o). It should be noted that, like cylinders,
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there are also ripples as the scattering angle θ varies from 0o to 180o. The ripples are

caused by the interference between the reflected rays from the two basal faces of the

plate. It should also be noticed that the phase function is periodical with respect to

φ which is caused by the symmetry of the hexagonal plates with the Z axis.

In this study, we chose the aspect ratio 3 for hexagonal plates and 1/3 for

columns.

Fig. 13 shows the phase function for the same plate but with an incident angle

3o. We clearly see some deviation from Fig. 12, especially in the backscattering

direction (θ = 180o).

Fig. 14 shows the phase function of a hexagonal column with an incident angle

0o. The column has its longest axis and one of its side surfaces parallel to the hori-

zontal plane. The phase function, in this case, is quite different from a horizontally

oriented plate. While the phase matrix still shows strong backscattering at θ = 180o,

the periodic behavior in the φ direction is suppressed because we only have mirror

symmetry along the Z axis. The strong backscattering occurs because we have two

relatively large side surfaces parallel to the horizontal plane causing strong reflections.

Fig. 15 shows the phase function of the same hexagonal column but with an

incident angle 3o. The phase function in this case shows some deviation from the

previous direct incident case.

Fig. 16 and 17 show the backscattering cross section for incident angle 0o and

3o. As can be seen from the figures, the backscattering intensity is very sensitive to

the incident angle.

Figs. 18 and 19 show the degree of linear depolarization for incident angle 0o

and 3o. As can be seen from the figures. the degree of linear depolarization is not

sensitive to the incident angle.
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Fig. 10. The geometry for a hexagonal ice plate.
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Fig. 11. The geometry for a hexagonal ice column.
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Fig. 12. The phase matrix element P11 of the horizontally oriented hexagonal plate

with an aspect ratio of 1/3 and a semi-diameter D = 10µm. The wavelength

of the incident beam λ = 0.532µm and the incident angle is 0o.
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Fig. 13. The phase matrix element P11 of the horizontally oriented hexagonal plate

with an aspect ratio of 1/3 and a semi-diameter D = 10µm. The wavelength

of the incident beam λ = 0.532µm and the incident angle is 3o.
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Fig. 14. The phase matrix element P11 of the horizontally oriented hexagonal column

with an aspect ratio of 3 and a semi-diameter D = 6µm. The wavelength of

the incident beam λ = 0.532µm and the incident angle is 0o.
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Fig. 15. The phase matrix element P11 of the horizontally oriented hexagonal column

with an aspect ratio of 3 and a semi-diameter D = 6µm. The wavelength of

the incident beam λ = 0.532µm and the incident angle is 3o.
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Fig. 16. The variation of backscattering cross section versus volume-equivalent size

parameter for an incident angle of θ = 0o.
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Fig. 17. The variation of backscattering cross section versus volume-equivalent size

parameter for an incident angle of θ = 3o.



30

Fig. 18. The variation of the degree of linear depolarization versus volume-equivalent

size parameter for an incident angle of θ = 0o.
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Fig. 19. The variation of the degree of linear depolarization versus volume-equivalent

size parameter for incident angle θ = 3o.
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CHAPTER IV

CONCLUSIONS

Lidar backscattering experiments are of great importance in detecting cloud proper-

ties. It has long been noted that the backscattering depolarization ratio can be used

to determine the cloud phase. However, in order to fully interpret the data from

satellites, the single-scattering properties of ice crystals such as hexagonal plates and

columns must be fully understood. The conventional geometric optics ray-tracing

method has limits in certain directions, particularly for direct backscattering. In

this research, we studied the scattering properties of horizontally oriented hexagonal

plates and columns using the DDA method. The DDA method is a powerful tool

for calculating the light scattering problems associated with arbitrarily shaped parti-

cles. Our results showed that horizontally oriented hexagonal ice plates have strong

backscatter and a nearly zero depolarization ratio in the zenith direction, while hori-

zontally oriented hexagonal columns with random rotations around the particle axes

have much less backscatter in the zenith angle. Thus, when determining the cloud

phase using the CALIPSO data, the effect of horizontally oriented ice plates must be

included to obtain more accurate results. Our current research only investigated the

scattering properties of the oriented hexagonal particles with size parameters around

100. In ice clouds, the size parameter of hexagonal ice plates can reach up to 10,000.

The DDA method is not applicable to such large size parameters and a more advanced

technique should be employed.
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