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ABSTRACT 

 

Wind Farm Diversification and Its Impact on Power System Reliability. (August 2009) 

Yannick Degeilh, Graduate in Engineering, Ecole Spéciale des Travaux Publics, Paris 

Chair of Advisory Committee: Dr. Chanan Singh 

 

 As wind exploitation gains prominence in the power industry, the extensive use 

of this intermittent source of power may heavily rely on our ability to select the best 

combination of wind farming sites that yields maximal reliability of power systems at 

minimal cost.  

 This research proposes a general method to minimize the wind park global power 

output variance by optimally distributing a predetermined number of wind turbines over 

a preselected number of potential wind farming sites for which the wind patterns are 

statistically known. The objective is to demonstrate the benefits of diversification for the 

reliability of wind-sustained systems through the search for steadier overall power 

outputs.  

 Three years of wind data from the recent NREL/3TIER study in the western US 

provides the statistics for evaluating each site for their mean power output, variance and 

correlation with each other so that the best allocations can be determined. Some 

traditional reliability indices such as the LOLP are computed by using sequential Monte 

Carlo simulations to emulate the behavior of a power system uniquely composed of wind 

turbines and a load modeled from the 1996 IEEE RTS.  

 It is shown that configurations featuring minimal global power output variances 

generally prove the most reliable for moderate load cases, provided the sites are not 

significantly correlated with the modeled load. Under these conditions, the choice of 

uncorrelated/negatively correlated sites is favored. The correlations between the 

optimized global wind power outputs and the modeled load are studied as well. 
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NOMENCLATURE 

 

     Total number of wind farms considered 

     Total number of wind turbines to be dispatched 

   Number of wind turbines belonging to wind farm i 

    Random variable describing the power output (MW) of farm 

   number i 

    Random variable describing the power output in MW of a single 

   wind turbine located in farm i. Assuming perfect correlation of 

   wind turbines belonging to the same site, the following relation 

   holds:  

    Random variable describing the global power output in MW, i.e. 

   the sum of the power outputs supplied by the n wind farms; 

     ∑  

      Desired global power output mean value 

         Expected value operator 

      Variance operator 

     Standard deviation operator 

  ,   Covariance operator 

  ,   Correlation operator 

…    The gradient vector of function f with respect to each element  

     Failure rate of a wind turbine (per hour) 

    Time before failure (hours) 

    Recovery rate of a wind turbine (per hour) 

    Time before recovery (hours) 

   Average mean down time of a WT (hours) 
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   Average mean up time of a WT (hours) 

   Frequency of failure/recovery of a WT (per hour) 

   Loss of load probability estimate over an iteration of MCS 

    Total number of system down hours over an iteration of MCS 

   Loss of load probability estimate over all the MCS iterations 

   carried out up to that time 

    Number of system down times (all iterations taken into account) 

    System down times (hours) (all iterations taken into account) 

    Actual simulation time (number of hours simulated up to that 

   time) 

    Actual estimate of the system mean down time (hours) (calculated 

   over all iterations up to that time) 
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I. INTRODUCTION 

 

 

 The basic goal of wind power exploitation lies in the economical, sustainable and 

environmentally-friendly replacement of conventional energy sources such as fossil fuels 

or nuclear. However, such ambitions assume large scale deployments of wind turbines in 

order to significantly impact national economies. Many developed countries are already 

engaged in policies privileging high wind power penetration, setting objectives to be 

achieved in the decades to come.  

 Due to the intermittent nature of the wind itself and the lack of efficient way of 

storing energy, the main challenge lies in ensuring power system reliability standards. 

This research investigates a methodology to achieve this by exploiting wind park 

diversification as a means to reduce wind power unpredictability and as shown later, loss 

of load indices for moderate load cases. Besides, the methods presented in this study 

should also permit an efficient and reasoned partition of wind turbines across the land, 

which is of interest for large scale wind power integration studies.  

 To the author’s knowledge, no paper published in the literature has previously 

investigated how different wind parks could, through the correlations of their power 

outputs, complement each other so as to ultimately smooth the global power output. 

Reported studies are generally concerned about the selection of a given potential wind 

farming site based on its wind patterns [1], but not about the beneficial interactions that 

various power outputs from various wind parks may yield. Estimating the wind capacity 

of a large system area, in the following case a country, has already been investigated in 

[2]: the wind speed characteristic of each Belgian geographical area was taken into 

account so as to reflect the power production capacity of each region. From this 

information, a global wind power distribution was then convoluted considering two 

cases: the first case assumed that the wind parks belonging to the same region were 

totally correlated, while the second case assumed their independence, which gave 

This thesis follows the style of  IEEE Transactions on Power Systems. 
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slightly (but not significantly) better results in terms of capacity credit according to the 

reported study.  

 The mix of various wind speed patterns originating from various regions is the 

basic idea of the present research: to examine if it is possible to take advantage of the 

diversity of wind speed profiles among various sites in order to balance the global wind 

power output. The main purpose of this study is to find the best distribution of a given 

number of wind turbines over preselected sets of potential wind farming sites so that the 

global wind power output gets smoother and thus more predictable and reliable in the 

long run. The sole enhancement of wind power output predictability is in itself desirable, 

as it would permit the accurate design of thermal conventional units dedicated only to 

the compensation of wind power erratic behavior. 

 The turbines used in the studies are 3 MW Vestas V90. For illustrating the 

methodology, two sets of 7 sites have been investigated. In one set, wind farm wind 

distributions/power outputs are relatively positively correlated to each other whereas in 

the other set, they appear almost completely uncorrelated. It is assumed that power 

outputs supplied by wind turbines belonging to the same site are perfectly correlated. 

This is not strictly true on a very short term basis according to [3, 4, 5, 6] as land 

features, hub heights, wind turbulence, wake effects and spacing between wind turbines 

(among other reasons) affect the particular power output of any individual unit [5, 6]. 

However, it is a reasonable assumption here since this study addresses planning issues 

and as such is based on 10 minute step data, as seen later in Part II.4, to consider overall 

correlation effects on an hourly basis. In addition, data is generally scarce or unknown in 

the planning stages, which underlines the practical aspect of the hypothesis. 

  The final goal is to outline the benefits of wind farm diversification on the results 

provided by both sets of analysis and provide more insights for the selection and 

combination of suitable wind farming sites. Although generally wind farms would be 

embedded in a power grid containing conventional units, here we assume wind power to 

be the only source of power in order to more clearly observe the advantages and 
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disadvantages of diversification. The primary purpose of this study being early stage 

planning, no power transmission considerations have been made. 

 The presentation in the thesis proceeds as follows. In the second section, the 

basic ideas promoting a diversification of the wind farms are discussed and formalized 

mathematically so as to provide the third section with the basic elements necessary for a 

clear and rigorous definition of the wind farm optimal distribution problem. This part 

also discusses the supporting data from the NREL/3TIER project [3] and the main 

hypothesis consisting in assuming that wind power outputs from turbines of the same 

farm are perfectly correlated. In the third section, the optimization process is described, 

analyzed and implemented. The fourth section gathers numerous application studies. The 

first study introduces figures providing visualization of the various possible 

configurations including the optimal one(s). In the second application study, a sequential 

Monte Carlo simulation emulates the failures and recoveries of every single wind turbine 

to finalize their behavioral model and permits an accurate simulation of 3 years of wind 

turbine power output history. The reliabilities of the configurations are then analyzed in 

the third application study and compared using the hourly load model proposed in the 

1996 IEEE Reliability Test System [7], which also permits the search for the best 

configurations in terms of loss of load probability LOLP. The last application study 

compares wind power outputs behaviors with that of the modeled load. Their correlation 

is notably studied. 
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II.   WIND FARM DIVERSIFICATION THEORY 

 

 

II. 1. The Concept of Diversification: Dice Game Illustration 

 

 Diversifying wind farming shares many similarities with diversifying one’s 

investment portfolio through methods developed by the Mean-Variance Portfolio Theory 

[8]; the basic idea consists in avoiding a risky dependence on only one source 

profit/power because of its unpredictability. Drawing upon many independent or 

negatively correlated sources helps ensure a steady, more predictable outcome. Such a 

phenomenon directly results from a good diversification and can be illustrated by dice 

games. 

 Consider two simple dice games of same expected outcome: Game A consists in 

rolling an unbiased die of 6 faces, twice the result of which gives the amount of tokens a 

player earns. Similarly, Game B has the player roll two unbiased dice of 6 faces; the sum 

of their rolls gives the player’s gain. Note that the dice rolls are supposed independent 

from each other. Both games obviously have the same expected outcomes, i.e. 

7 (tokens), where A is the random variable representing Game A outcome, and 

B the random variable for Game B outcome. 

 Yet, do these games “feel” the same? Are their results equivalent? The answer is 

no, as the probability distribution of their outcome present some differences. Let us have 

a look at the variance (standard deviations) of their outcomes to get a better idea of the 

gain dispersion around their mean: 

 

 In Game A, the outcome A has the following variance and standard deviation: 

 

 1
6

2 11.667 (1) 
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Where  is a possible outcome. 

 

 3.416 (2) 

 

 In Game B, the outcome B has the following variance and standard deviation: 

 

 1
36

5.833 (3) 

 

Where x is a possible outcome of the first die and y a possible outcome of the 

second die. Note that the dice outcomes are supposed independent from each 

other, though their probabilistic distributions are the same. 

 

 2.415 (4) 

 

 The standard deviations of both games differ, although they feature the same 

expected outcomes. Game B actually proves more predictable, or less “risky”, as shown 

by its lower standard deviation. One can expect Game B outcomes to be, in a large 

number of occurrences, closer to their mean than Game A outcomes. Game B 

incorporates in fact more diversification than Game A as it calls for two independent 

dice rolls (which may yield different results each time) whereas game A can be seen as 

the throw of two dice that will always yield the same result for a given occurrence. As 

such, these two imaginary dice could be said perfectly positively correlated. If we now 

introduce random variable X, designating the outcome of Game X consisting in rolling a 

single unbiased die of 6 faces, the result of which gives the number of tokens earned, 

one can rewrite results for Games A and B the following way: 
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 2 7 (5) 

 2 4 4 2.917 11.667 (6) 

 2 5.833 (7) 

 2   and  √2  (8) 

 

 If we now generalize the previous equations to order n, i.e. a gain multiplier n for 

Game A and n dice rolls for Game B, one finally obtains:  

 

   and  √  (9) 

 

The above relations are true provided each dice roll is independent from the others 

(Game B). What if they were not? In the case of Game B, which calls for the sum of n 

random variables, the variance would be given as follows: 

 

 
2 ,  (10)

 

Where ,  is the covariance of random variables  and . 

 

 One can observe that if the sum of the covariance terms is negative, the variance 

of B can decrease even further. This remark prompts the wind farm diversification 

theory: if one diversifies farms, i.e. distributes the wind turbines in various geographical 

areas featuring different wind patterns, one can expect a lowering of the variance of the 

global power output. 
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II.2. Diversification Applied to Wind Farm Planning 

 

 Diversification is therefore of interest in reducing the variance of a sum of 

random variables, provided they are uncorrelated/negatively correlated. What if we now 

replace the number of rolls (or dice) by wind turbines? Power outputs of these latter 

heavily depend on the localization of the wind turbine itself as wind patterns differ from 

one region to another. One can make the most of this observation by distributing wind 

turbines in such a way that their power outputs eventually prove uncorrelated/negatively 

correlated with respect to each other. 

 Hence for a given hour of the day, wind-deficient farms could be compensated 

by wind-benefiting farms, thus always securing a minimum global power output at 

anytime. Intuitively, two positively correlated wind farms - i.e. wind farms showing very 

similar wind patterns over time- will behave much the same way, meaning that a drop in 

the wind speed will cause a drop in global power production and vice versa. On the 

contrary, two negatively correlated wind farms, showing almost complete opposite wind 

patterns, will compensate each other all the time, meaning that the power output will 

remain almost constant around its mean value (assuming wind farms of comparable 

power outputs). Intuitively, the second situation is much more satisfying in terms of 

reliability as the power output remains steady all the time. The lower the correlation 

coefficient of two statistical series (here wind speed or power output of wind farms), the 

better it is for steadiness and reliability. 

 Correlation is not all, however. The power output of a given wind farm also tends 

to vary around its mean value according to the wind pattern. The variance of a statistical 

series is a good indicator of how much the statistical values are distributed around their 

mean. The greater the variance, the more dispersed the values around the mean. The 

lower the variance, the more concentrated the values around the mean. Once again, it 

seems preferable to favor wind farms showing smaller power output variance, as it 

means a steadier power output. 
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 The concepts of individual wind farm power output variance and wind farm 

correlation both appear in the quantification of global power output variance, i.e. “the 

variance of the sum of the various wind farm power outputs”. The formula of the global 

power output variance , considering n wind farms, is then given by the 

following: 

 

 
 (11)

 

Now, knowing that: 

 

 
2 ,  (12)

 

We eventually have: 

 

 
2 ,  (13)

 

The covariance between the power outputs of two wind farms is related to their 

correlation coefficients ,  as follows: 

 

 
,

,
 (14)
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It is obvious from (13) and (14) that the smaller the correlations between sites (between -

1 and 1), the smaller the global variance, and intuitively, the steadier the global power 

output. Same remarks can be made concerning the individual variances. An appropriate 

way of distributing wind turbines over a preselected number of sites would then consist 

in dispatching them so that the global power output variance is eventually as small as 

possible. As a matter of fact, if in (13) we detail the expressions of the variances 

 and covariances ,  by introducing the number  of wind turbines 

belonging to farm i, we obtain: 

 

 
2 ,  (15)

 

Equation (15) is only valid assuming a complete correlation of wind turbines within a 

wind farm/site. Otherwise, one cannot write the following equation relating a wind farm 

power output to the power outputs of its wind turbines:     1… ,    The 

relevance of such a hypothesis is in fact a sensitive question that is discussed in Part II.4 

right after the presentation of the NREL/3TIER supporting data. 

 It can be seen from (15) that the wind turbine distribution has a considerable 

influence on the global power output variance, not making its minimization trivial. If we 

are to map what one can expect from the best allocation of m wind turbines (the total 

number of wind turbines  standing for a constraint) over n sites, we have to minimize the 

global variance for as many mean global power output values as desired (introduction of 

a second constraint). This mapping aims at illustrating the best wind turbine 

configurations in terms of small variance - and supposedly better reliability and 

predictability - with respect to their average power output levels. To proceed, we need 

data from multiple wind farming sites. The knowledge of the statistical power outputs  

from single wind turbines located in farms 1…  is required so as to assess terms 

such as  ,   ,  and  (expected value of  being necessary for the 

formulation of the global mean value constraint).  
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II.3. The NREL/3TIER Data 

 

 The recent Western Wind and Solar Integration Study conducted by the National 

Renewable Energy Laboratory (NREL) in collaboration with the group 3TIER [3] can 

provide the aforementioned information for more than 30,000 US western sites over a 

period of 3 years. Figure 1 depicts the interface through which the data can be accessed. 

 

 

Fig. 1. Interface granting access to the 30,000 sites for which NREL/3TIER offer wind 
power output data [9] 

 
 Wind speed and power output data was actually mesomodeled, meaning it is 

based on the output of a numerical weather prediction model relying on physical 
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conservation equations [3]. The weather was realistically recreated from year 2004 to 

2006 so that wind speeds and 3MW Vestas V90 wind turbine power outputs (each site 

comprising of 10 turbines) were eventually estimated for every 10 minutes span of the 

covered period. These assessments were then adjusted by MOS-correction [3] in order to 

be as close as possible to the actual measurements (few being actually available).  

 Absolute power output measurements are not critical here, for in this thesis, we 

primarily strive to show the benefits of wind farming using geographical diversification. 

Realistic power output time series are largely sufficient for the job as we only need some 

coherent estimations of the wind behavior over many areas to assess variances and 

correlations. 

 With availability of 3 years of power output data from 30,000+ wind farming 

sites, reasonable estimates of the expected value and variance of a site power output can 

be statistically computed, as well as the correlation coefficient (and covariance) between 

any pair of wind farms. This can be easily achieved thanks to software such as 

MATLAB. With such information available, minimizing the global variance by picking 

the best wind turbine configuration over a preselection of wind farms becomes possible. 

The thesis will then focus on the general method to optimize the distribution of m wind 

turbines over n preselected sites and discuss the optimal distributions of 40 wind turbines 

(3 MW Vestas V90) over 2 different sets of 7 sites, the sites being strongly positively 

correlated in the first case, almost uncorrelated in the second.  

 It should be noted that in order to simplify the notation, further references to the 

sample estimates of mean values, variances and so on will be simply named or noted by 

their probabilistic counter parts i.e. “expected value”, “variance” etc., of a random 

variable. This makes sense in regard of the law of large numbers and the very large and 

representative samples we are dealing with. As a result, operator notation such as   , 

  ,  ,  or  ,  are used throughout the study, although in practice they 

represent sample estimates. 
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II.4. Discussion Over “the Perfect Correlation of Wind Turbine Power Outputs within 

the Same Wind Farm” Hypothesis 

 

 The NREL/3TIER wind turbine power output data has been assessed for groups 

of 10 turbines in order to better account for smoothing effects that affect the global 

power output of wind turbines pertaining to a same wind farm. Individual wind turbines 

actually show independent power output at the minute scale because of numerous factors 

(detailed later in this part) in addition to the fact that the conversion from wind speed to 

power output is not entirely deterministic, as shown in Figure 2. 

 

 

Fig. 2. The conversion of wind to power. (wind turbine of 1.75 MW max capacity) [10] 
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These facts have many consequences upon the validity of our assumption stating that the 

wind turbine power outputs within a given wind farm are perfectly positively correlated 

with each other. Few in the literature have actually numerically assessed the correlations 

among different wind turbines within a wind farm but all agree that on short times 

(second-minute scale essentially [4] and [6], though none of the references clearly define 

shorter and longer scales), the wind turbine power outputs are not correlated, thus 

leading to the smoothing of the wind park global power output on short time spans 

[1,3,4,5,6]. 

 The whole problem primarily lies in the fact that it is necessary, for practical and 

financial reasons, to evaluate a site based on some very scarce data. Land features, hub 

heights, wind turbulence, wake effects, spacing between wind turbines are some 

parameters (among others) that need to be considered in the assessment of an aggregated 

power output (i.e. the power output of a wind park) [1,5,6]. This is why at first sight 

(statistical sight) wind turbine power outputs are statistically independent for very shorts 

time spans (minute scale time). This also means that at the minute scale, their aggregated 

power output will tend to be smoother, thus making the output actually closer to its mean 

value. So over 10 minutes (which is the step time of our data), these statistically 

independent variations actually tend to make a 10 minute estimation more representative 

of the minute scale trend and thus more reliable. All in all, it does not really hurt the 

practicality of our hypothesis of perfect correlation. This proves probably more 

problematic when working on very short terms operations. This thesis however solely 

focuses on wind power planning issues and thus on the long term. 

 The MATLAB program used to process the data assesses one site’s 

characteristics based on the power output expected value, variance and covariances of a 

single wind turbine of reference. To do so, the program simply takes the 10th of the 

NREL/3TIER power output series of 10 wind turbines for a given site. We finally get an 

estimation of what the time series of a single wind turbine would be. Given the non 

perfect correlation of wind turbines within a site, this evaluation is not completely 

correct. However, it acts like a mean value of what can be expected from a wind turbine 
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of a given site in terms of wind power. Nevertheless, the power output of a small number 

of installed wind turbines may appear excessively smooth, therefore reducing the overall 

variance and making our evaluation optimistic. For 10 installed wind turbines, this 

would be a perfect match with the NREL/3TIER data. For more, the aggregated power 

output would in reality keep getting smoother and smoother (as a result of the increase in 

the number of wind turbines) which could actually benefit the global reliability, thus 

making our evaluation rather pessimistic. For a number of wind turbine so large that 

space may be lacking, meaning by that that the wind patterns may significantly change 

over the same wind park because of its size, then a new wind park with its own data 

should be defined and the process executed again. 

 As stated previously, the impact of these variations should be minimal on the 

long term analysis presented in this thesis. The optimization process as presented later 

clearly cannot be executed if we do not assume perfect correlation of the wind turbines 

within a site which leads to the relation:     1… , . The hypothesis of 

perfect correlation seems however strong for the kind of long term studies investigated 

in the thesis. 

 The impact of these minute scale variations could be verified as follows, 

provided the necessary data was actually available: after optimization, we could enhance 

the Monte Carlo simulations (introduced in Section IV.2) by not only emulating the 

mechanical/electrical failures of the wind turbines, but also by simulating their minute 

scale statistical behavior (meaning that we would not work any more on hourly or 10-

minute scale data, but on minute scale data whose mean value would have to be 

interpolated from the greater time scales). To do so, we could then define the minute 

scale statistical behavior by Gaussian probabilistic distributions having for mean values 

the numbers used until now in the more simplistic simulations (10 minute scale data) and 

for variance a quantity that needs to be defined from what operators actually observe on 

site (the literature does not tell much about it). With such a Gaussian distribution, we can 

then pick random values and match simulated power output values via the 

aforementioned probabilistic distributions. A minute scale Monte Carlo simulation can 
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then be performed, leading to the creation of one minute scale power output series for 

every single wind turbines that can be thereafter aggregated to obtain the minute scale 

wind park power output series. The problem is, when it comes to compare such a minute 

scale power series to an hourly scale load series, it cannot be done seriously without 

knowing the minute variations of the load itself. 
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III.   FORMALIZATION AND TREATMENT OF THE OPTIMIZATION PROBLEM 
 

 

III. 1. Problem Formalization 

 

 Now that the main ideas have been outlined, let us define the optimization 

problem mathematically. Essentially the problem is finding the optimal distribution of m 

wind turbines of the same kind over n sites. We consequently have n unknowns 

describing the number of wind turbines actually assigned to a given site. The global 

power output variance  is the objective function to be minimized with respect to 

the wind turbine dispatch. The constraints consist of the total number of wind turbines m 

to be installed and the global power output mean value EXP (EXP standing for Expected 

Power) the configuration is expected to supply. As a matter of fact, this optimization 

needs to be carried out many times for different mean values EXP so as to make clear 

what can be expected from the optimal distribution of m wind turbines. This will be 

illustrated later in Section IV in the figures on pp.24 and 25 respectively. 

 If we now formalize the problem mathematically, we have: 

 

 
        2 ,                      (16)

 

subject to 

 

 
 (17)

 

 
(18)
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 1… , 0 (19)

 

           Here ∑  by linearity of the “expected value” operator   . 

 

The problem clearly calls for the optimization of a quadratic objective function (16) 

subject to a set of two linear equality constraints (17) and (18) and n linear inequalities 

(19). In the next part, we shall determine whether we are dealing with a maximization or 

a minimization. 

 

 

III. 2. Nature of the Optimization 

 

 Our problem qualifies as a convex programming problem. This particular setting 

comes with two notable properties: first, any stationary point within the feasible region 

is deemed to be a local minimizer; second, a local minimizer of the problem is also a 

global minimum [11]. In other words, the finding of a stationary point within the feasible 

region supposes the finding of the problem global minimum. Let us now show that our 

problem abides by the criteria defining a convex programming problem. 

An optimization problem is said convex if the objective function is convex over a 

convex feasible region. In our problem, the feasible region is defined by a set of linear 

constraints (no matter what their nature, i.e. equality or inequality) that inherently makes 

it convex. This is straightforward since the intersection of convex subspaces (defined by 

the linear constraints) results in a convex subspace (the feasible region). Mathematically, 

the convexity of a subspace can be written as follows: 

 

A set (of constraints in our case) S is convex if, for any elements x and y of S: 

 

 1 0 1 (20)
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One can then easily verify that subspaces defined by linear constraints abide by that 

definition, and so does their intersection, the feasible space. 

The convexity of the objective function can be established by looking at its 

Hessian matrix, which, in the multi-dimensional case, contains the second derivative 

information needed to conclude. The Hessian of an n-dimensional function  is defined 

as follows: 

 

 

. .

. .

. .

 (21)

 

 In the case of a one dimensional function , the Hessian matrix reduces to the 

second derivative . Such a function  can easily be determined to be convex if it has 

two continuous derivatives and verifies:  

   

 0  (22)

 

Similarly, a multi-dimensional function  is convex on set S if its Hessian matrix is 

positive semi-definite for all . In the case of objective function , the 

Hessian calculation yields: 

 2  (23)

 

With CovM the covariance matrix of the statistical single wind turbine power outputs  
(i designating the farm number): 
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 , ,

, .

. ,
, ,

 (24)

 

Objective function  is, therefore, convex because of the positive semi-

definiteness of any covariance matrix. This concludes the proof that our optimization 

problem is convex. Let us now focus on a method searching efficiently for the feasible 

stationary point that will prove to be the global minimizer of our problem.  

  

 

III. 3. Resolution of the Optimization Problem 

 

 The optimization problem can be solved efficiently by one of the many quadratic 

programming algorithms available today. For instance, MATLAB features a built-in 

function called quadprog that resorts to an active set method to solve such problems. 

The active set method is a procedure that searches for a stationary point along a set of 

supposedly active constraints (i.e. equality plus “activated” inequality constraints). The 

active set constraint is appropriately redefined until obtaining of an optimum. This 

method works consistently well for both sets of potential wind farming sites tested later 

in the thesis. 

Another resolution method has also been implemented to solve this kind of 

problem. It experimentally yields the same results as the MATLAB active set method 

while remaining perhaps easier to understand. Note however, that the program has only 

been tested on the experimental sets of wind farming sites discussed later in the thesis 

and that it has not been shown to converge for any general case. The procedure 

extensively uses the Lagrange multipliers theory and its first order necessary condition 

to find stationary points on equality constrained sets updated after each iteration. 
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Practically, the inequality constraints are first assumed to be inactive. If after resolution, 

the optimal solution is not feasible (i.e. some  - number of wind turbines at site i - are 

found negative), the appropriate inequality constraints are activated by setting the 

negative  to 0. This comes down to eliminate the poor sites by literally removing them 

from the process, thus reducing the dimension of the problem. The procedure must then 

be reiterated until a feasible optimum that verifies the KKT first order necessary 

conditions of the initial (convex) problem is eventually found, i.e. in our case: 

… …         1; , 0        0 (f is taken as the 

objective function,  as the constraints,  as the vector of corresponding Lagrangian 

multipliers). Note that the maximum iteration number of such an algorithm is n (n being 

the number of selected sites) if one site is to be removed at each iteration (if not then the 

algorithm terminates with a solution). Moreover, it may be preferable to solely remove 

the worst site at each iteration (instead of removing all negative  sites) so as to make 

sure the program strives for a diversification that includes a maximum number of sites. 

This last approach has finally been retained for the tests. 

 Next follows a complete description of how the algorithm finds a stationary point 

at the first iteration. The method is exactly the same for later iterations, except that some 

variables  will have been set to 0, ultimately reducing the problem dimension.  

If  … , , designates the Lagrangian with     and     the multipliers, we 

then have: 

 

 
… , ,    (25)

 

With the following notations for the objective function and the constraints: 

, ∑   and ∑    , Equation (25) 

can be rewritten: 
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 … , , … … …  (26)

 

And the optimization problem comes down to solving the following system (first order 

necessary condition): 

 

 … 0
0

µL 0
 (27)

 … … …

 (28)

 2 2 , 0

 (29)

 

System (29) actually makes up a system of (n+2) linear equations that can be 

reformulated into the following matrix equation (30): 

 

 . . 1
2 

. . 1
1 1 0 0

0 0

0

0  (30)
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 . . 1
2

. . 1
1 1 0 0

0 0

0

0  (31)

 

 As seen previously, the solution vector … … , ,  may contain some 

negative  values, which suggests that some sites are of no interest compared to the 

others. This may be due to a high variance and/or a low mean power output along with a 

high correlation with the other sites. As a matter of fact, some site wind turbine numbers 

 are found negative so as to provide the best sites with even more wind turbines 

despite the limitation number m. In this case, the wind turbine numbers  previously 

found negative must be set to 0 and the optimization process reiterated until a feasible 

solution is reached (i.e. 1… ,    0 and first order necessary KKT conditions 

satisfied). This way, the “poor sites” are basically removed from the preselected set. 

 The  can also be rounded up so as to obtain an exact number of wind turbines 

to be installed in every site (keeping in mind that m must remain the total number of 

wind turbines). Nevertheless, the decimal part of  can also be interpreted as the max 

capacity (in percent of 3MW) of a smaller wind turbine which features a proportional 

characteristic and that could be installed in addition to the usual 3MW Vestas V90 (and 

so on with other types of turbines). In the rest of the study, however, the calculations will 

be made on the basis of the rounded up results. 

 The resolution method can also be extended to m wind turbines of different 

characteristics, provided their power output statistical data is available. In this case, n 

takes on a more general meaning as it then designates the total number of wind/power 

output patterns to be considered. As a matter of fact, these patterns differ according to 

the geographical location (site), but also to the wind turbine characteristics. Each turbine 

type possesses its own statistical series  (also depending on the place) and must be 

consequently included in the equations formulating the optimization problem. 
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IV.   APPLICATION STUDIES 

 

 

 The main goal of these application studies is to eventually compare the optimal 

distributions of 40 wind turbines over two different sets of 7 potential sites. The sets 

differ in the type of correlation the potential sites feature with respect to each other. Set 

#1 features positively correlated sites whereas Set #2 features uncorrelated sites. 

 

 

IV. 1. Visualization of Optimal and Random Configurations in Terms of Global Power 

Output Coefficient of Variation vs. Expected Value  

 

 In this study, the optimization process was applied for the distribution of 40 wind 

turbines over two different sets of 7 preselected sites. The set/site characteristics will be 

thoroughly discussed and analyzed in the following section. The results are shown in 

Figures 3 and 4. The “dot cloud” is made of 15000 random distributions of 40 wind 

turbines, presumably accounting for the space of possible solutions. The plain line 

edging the bottom of the cloud (red thick line) is made of points obtained by running the 

optimization process for EXP values ranging from 48 to 57 MW (EXP lower and upper 

bounds in this case) with incremental steps of 0.1MW. The resulting line can be seen as 

the efficient frontier [8] standing for the optimal solutions given by the process described 

above. This mapping of configurations according to their coefficient of variation 

(defined by Standard Deviation/Expected Value) and their expected value for global 

wind power output is the key contribution of the present research, as it yields least 

variance configuration for any expected value of power output. The most reliable 

configurations, or at least the most predictable, are believed to be and will be searched 

for, in the later sections, on the efficient frontier. 

 As shown on the graphs and as expected, the optimal solutions show the lowest 

possible global variance (or on the graph, coefficient of variation) for a given global 
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mean power output value and number of installed wind turbines, i.e. 40 here. One can 

observe that the efficient frontier also features a minimum. It may not be always the 

case, depending on the site selection. It will be also shown later that this is not always 

the most reliable configuration as a result of a trade-off between global power output 

maximization and global variance minimization. Computationally, the easiest way to get 

the most reliable configuration (which is not always the minimum of the efficient 

frontier as seen later) consists in asking the computer program to look for and store “the 

best /  minimum” as it is solving system (30) for different power output 

mean value EXP. Directly dealing with the optimization of the coefficient of variation 

would yield a non linear system which would be much less practical to solve. 

 

 

Fig. 3. Optimal and random configuration characteristics for set # 1 (positively 
correlated sites) 
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Fig. 4. Optimal and random configuration characteristics for set # 2 (uncorrelated sites) 

 
 Note that the first set of sites features mostly positively correlated sites in terms 

of power output, whereas the second comprises almost totally uncorrelated sites. It is 

already obvious from Figures 3 and 4 that the optimal configurations of Set #2, i.e. 

uncorrelated sites, have much smaller variances than their counter parts of Set #1 for the 

same expected values. One can then expect the uncorrelated sites to offer a much better 

reliability than more positively correlated configurations. 

 

 

IV. 2. Sequential Monte Carlo Simulation Aimed at Emulating the Mechanical/Electrical 

Failures and Recoveries of Wind Turbines 

 

 Several methods have been proposed [12 – 15 are some examples] for the 

reliability analysis of wind power systems. Some methods use analytical approach and 
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others use Monte Carlo Simulation. Here sequential Monte Carlo is used for its ease of 

implementation and because it also generates plausible histories that could prove useful 

in further research. It is possible to simulate the global power output of a so-called 

“optimal configuration” for every single hour of the 2004-2006 period. In the end, a 

comparison between global power output and load over the 3 years period will determine 

the level of reliability one can expect from a given configuration. However, wind 

turbines being vulnerable to mechanical and electrical failures as any other systems, their 

actual availability still remains to be modeled.  

 The basic idea here consists in running a sequential Monte Carlo Simulation over 

the 3 year period to emulate the potential failures and recoveries of every single wind 

turbine. To this end, Next Event procedure is implemented on MATLAB. The program 

basically samples (or updates) the system state every time a wind turbine fails or 

recovers; as such it waits for the next event. The system state is therefore known at all 

time during the simulation and the actual global wind power output originally calculated 

from the NREL/3TIER data is adjusted to take into accounts wind turbines that may be 

down. The time to next event is calculated as follows: let  be the failure rate of a wind 

turbine and  its recovery rate. The probabilistic distribution characterizing the time 

before failure/recovery of a wind turbine can be modeled as an exponential law: 

 

 1  (32)

 1  (33)

 

If we now express  and  respectively as a function of  and , it comes: 

 

 1
 (34)

 1
 (35)
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Here the notation ln designates the natural logarithm. 

 

Using equations (34) and (35), one can simulate wind turbine times before failure ( ) 

and recovery ( ) by randomly drawing  and  between 0 and 1 when necessary, i.e. 

after an actual failure/recovery, a new time before recovery/failure is to be calculated. 

The MATLAB program can therefore be used to generate a complete history of any 

wind turbine provided  and  are known.  

 Reference [16] can help establish some estimates of MW class wind turbine 

transition rates based on German extended experience of wind turbine operation. B. 

Hahn et al. provides the annual frequency of failure f of various wind turbine power 

classes for up to 14 years of operability (7 years for the MW class) and the machine 

downtimes for every possible mechanical or electrical causes of failure, along with their 

statistical occurrence. From this information, we can compute the average mean down 

time (MDT) of a wind turbine and deduce its average mean up time (MUP): 

 

 1
 (36)

 

Which leads us to  and , knowing that per definition: 

 

 1
 (37)

 1
 (38)

 

 Downtimes due to preventive maintenance were not considered here. In a fully 

integrated power system, they should not significantly affect the wind park capacity 

credit as one can proceed to the preventive maintenance of one unit at a time, when the 
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contribution of this latter is least needed, or plan for a conventional unit to compensate 

temporarily. 

  The following data (Table 1) describe the behavior of a MW class wind turbine 

in its first three years of operation (during which the failures are most frequent): 

 

Table 1: Failure/recovery characteristics of a MW class wind turbine 

 MUP MDT f   

1st year 0.1430 years 

1254.73 h 

0.00695 years 

60.89 h 

6.663 /year 

0.00076 /h 

6.98158 /year 

0.000797 /h 

143.866 /year 

0.016423 /h 

2nd year 0.176607 years 

1548.14 h 

Same 5.448 /year 

0.000621 /h 

5.66228 /year 

0.000646 /h 

Same 

3rd year 0.151157 years 

1325.04 h 

Same 6.325 /year 

0.000722 /h 

6.61566 /year 

0.000755 /h 

Same 

 
 

With the knowledge of wind turbine statistical power outputs  and the failure/recovery 

rate  and , we can obtain a complete reconstitution of the behavior of any of the m 

wind turbines distributed over the n preselected sites during the 2004-2006 period. 

Practically, the statistical power outputs  are extracted from the NREL/3TIER study. 

The sequential Monte Carlo simulation is then run so as to determine the hours during 

which a wind turbine should be declared out of order and its power output consequently 

set to 0.  

 With this data, the following step consists in assessing the wind turbine 

distribution loss of load probability (LOLP) by comparing the global power output to a 

given level of load. To this end, the 1996 IEEE Reliability Test Study [7] can be used to 

accurately model the hourly variation of the load over the 3 years and MATLAB be 

programmed to review the 26304 hours (about 3 years) of data and determine the 

number of hours  the system (solely composed of the m wind turbines) did not manage 

to meet the load. As a result, the LOLP estimates of any configurations over any one 

iteration of MCS, are computed as follows: 
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26304

 (39)

 

Other estimates such as the expected unserved energy, the system mean up/down time or 

the failure frequency can similarly and straightforwardly be evaluated. 

 The Sequential Monte Carlo Simulation is run as many times as required by the 

convergence criterion formalized in inequality (40), though a minimum of 10 iterations 

is imposed in order to ensure the plausibility of the results. In this study, the LOLP has 

been chosen as the reliability index to be used for judging the convergence of the 

simulation. As a matter of fact, the condition under which the simulation is 

acknowledged to have converged is given by: 

 

 
 (40)

 

Where  stands for the estimate of the standard deviation of the LOLP 

estimate  and tol designates the tolerance (fixed at 2.5% in the rest of the study). 

Also note that in (40), all the estimators are assessed upon the results provided by the 

current number of MCS iterations carried out up to that time. 

 This criterion is derived from the following consideration: its goal being to make 

sure the simulation provide realistic and reliable figures, it strives to get the standard 

deviation of the LOLP estimate (the true value being unavailable) to be tol % inferior to 

the estimate of its expected value, which basically means that once this criterion is 

satisfied, the value of the reliability index LOLP is very unlikely to vary significantly 

with further rounds of simulation. The reliability index is then seen as representative of 

the system overall behavior. 

 Inequality (40) can be rewritten the following way; starting with: 
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 1
 (41)

 

With   as the number of system down times , observed during the actual simulation 

time T encompassing all the iterations already run at this point. We obtain, after 

simplification (and denoting  the actual estimate of the system mean down time): 

 

 
∑

 (42)

 
∑

∑
 (43)

 

 The last lines of the tables on pp.34 and 35 indicate the number of iterations that 

have been carried out right before the criterion was found satisfied with a tolerance tol of 

2.5% and convergence has been achieved. Notice that high  actually cause the 

Monte Carlo simulations to converge fast, so that 10 minimum iterations usually suffice. 

 

 

IV. 3.  Wind Park Global Power Output vs. Load 

 

a. Characteristics of the potential wind farming sites studied in this research  

 

 This research primarily examines 2 configurations of m=40 Vestas V90 wind 

turbines (3MW capacity) scattered over n=7 sites. The sites show very similar mean 

power outputs (about 1.3MW for an installed capacity of 3MW per turbine) and 

variances (each wind turbines having a standard variation of about 1 MW) for us to 

better highlight the influence of diversification. The first set of preselected sites shows 
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some strong positive correlation between every local power output (see correlation 

matrix CorrM1, fig 5), all sites being chosen in west Texas. The second configuration 

consists of sites distributed all over the West US (namely in Oklahoma, California, 

Oregon, Wyoming, Montana and North Dakota). As a consequence, the power outputs 

of these sites appear almost completely uncorrelated (see correlation matrix CorrM2, fig 

6). 

 































1.0000    0.8911    0.9393    0.9080    0.7830    0.7248    0.7383    

0.8911    1.0000    0.9502    0.8971    0.8276    0.6833    0.7610    

0.9393    0.9502    1.0000    0.9179    0.8022    0.6932    0.7625    

0.9080    0.8971    0.9179    1.0000    0.8681    0.6985    0.7154    

0.7830    0.8276    0.8022    0.8681    1.0000    0.7016    0.6614    

0.7248    0.6833    0.6932    0.6985    0.7016    1.0000    0.5544    

0.7383    0.7610    0.7625    0.7154    0.6614    0.5544    1.0000    

1CorrM

 

Fig. 5. Correlation matrix of set #1 - positively correlated sites 

 































1.0000    0.3057    0.0925    0.2545    0.0999-   0.0434    0.0553-   

0.3057    1.0000    0.1862    0.4411    0.0717-   0.0496    0.0981-   

0.0925    0.1862    1.0000    0.2476    0.0401-   0.1472    0.1562    

0.2545    0.4411    0.2476    1.0000    0.0583-   0.1494    0.0307    

0.0999-   0.0717-   0.0401-   0.0583-   1.0000    0.0854-   0.0635-   

0.0434    0.0496    0.1472    0.1494    0.0854-   1.0000    0.2157    

0.0553-   0.0981-   0.1562    0.0307    0.0635-   0.2157    1.0000    

2CorrM

 

Fig. 6. Correlation matrix of set # 2 - uncorrelated sites 

 
 Tables 2 and 3 outline the main characteristics of each site (within each set) by 

giving, over the 2004-2006 period, the mean power output    of a single wind 

turbine, as well as its standard deviation  and its coefficient of variation 

  /   (which permits to assess relatively the dispersion of statistical values 

around their mean). 
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Table 2: Characteristics of set #1 (positively correlated sites) in terms of wind turbine 
power output mean value, standard deviation and ratio Std(pi)/E(pi) 

Set #1 
Site # 
763 
(TX) 

Site # 
5073 
(TX) 

Site # 
2296 
(TX) 

Site # 
1884 
(TX) 

Site # 
1329 
(TX) 

Site # 
1368 
(TX) 

Site # 
1506 
(TX) 

Set 
Mean 

E(pi) (MW) 1.2670 1.2062 1.2080 1.3342 1.3420 1.2970 1.3740 1.2901 

Std(pi) 
(MW) 

1.0590 0.9704 1.1120 1.0788 1.0560 1.0747 1.0298 1.0546 

Std(pi)/E(pi)  0.8350 0.8045 0.9200 0.8085 0.7870 0.8287 0.7495 0.8191 

 

Table 3: Characteristics of set #2 (uncorrelated sites) in terms of wind turbine power 
output mean value, standard deviation and ratio Std(pi)/E(pi) 

Set #2 
Site # 
4262 
(CA) 

Site # 
7186 
(OK) 

Site # 
23098 
(OR) 

Site # 
20179 
(WY) 

Site # 
26796 
(OR) 

Site # 
28134 
(MT) 

Site # 
30353 
(ND) 

Set 
Mean 

E(pi) (MW) 1.2621 1.2081 1.4223 1.3263 1.2666 1.3317 1.2111 1.2897 

Std(pi) 
(MW) 

1.2018 1.0133 1.1319 1.1128 1.1261 1.1881 1.0124 1.1123 

Std(pi)/E(pi)  0.9522 0.8388 0.7959 0.8391 0.8890 0.8922 0.8359 0.8633 

 

 One can notice that both configurations are very comparable in terms of mean 

power output and standard deviation (see “Set Mean” in Tables 2 and 3). Set #1 even 

looks slightly better on the whole, especially in terms of ratio   / . The main 

difference actually comes from the site correlation, as shown by the correlation matrices 

CorrM1 and CorrM2. (Resp. fig 5 & 6) 

 

b. Simulation results 

 

 Now if we run the simulation for various peak loads ranging from 5MW to 

120MW (120MW being the installed capacity), compute reliability indexes and search 

for the optimal configurations in terms of LOLP (and therefore, in a way, reliability), we 

can assess and compare the capacity credits of both sets. The following estimates 
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(Tables 4 and 5) were derived for the most reliable configuration that could be found on 

the efficient frontier (the program being asked to compute the LOLP for every point of 

the efficient frontier and then find the best match), as well as for 50 random 

configurations for which the power output expected values were in the vicinity of the 

efficient frontier best configuration’s. The four most reliable random configurations were 

eventually retained so as to figure in Tables 4 and 5 and illustrate the fact that the 

efficient frontier best solution generally stands for one of the most reliable possible 

distribution, if not the best of all.  

 Practically, the indexes were calculated based on the comparison of the hourly 

available global power output with the corresponding load. The hourly global power 

output was taken as the minimum value of the six 10 min-span power output estimations 

so as to be as close to the reality as possible. As a matter of fact, it would not have been 

relevant to compare power output and load every 10 minutes because of the given hourly 

scale of the load data. Furthermore, from an operational point of view, it seems hard to 

exploit an energy so inherently intermittent that it may be able to supply the entire 

system for 20 or 30 minutes before fading again… Consequently, if the global power 

output was found unable to supply the entire load for a given 10 minutes span, it was 

declared unable to do so for the whole corresponding hour (this is a pessimistic model at 

worst, a realistic one at best). 
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Table 4: Simulated indexes for period 2004 to 2006 – set #1 (positively correlated sites) 

 

5 10 25 50 75 100 120

Wind Turbine # Site 763 (TX) 11 12 9 9 0 0 0
Wind Turbine # Site 5073 (TX) 16 18 13 11 0 0 0
Wind Turbine # Site 2296 (TX) 0 0 0 0 0 0 0
Wind Turbine # Site 1884 (TX) 0 0 0 0 0 0 0
Wind Turbine # Site 1329 (TX) 0 0 0 0 0 0 0
Wind Turbine # Site 1368 (TX) 0 0 0 0 0 0 0
Wind Turbine # Site 1506 (TX) 13 10 18 20 40 40 40

Mean Power Output  without 
Mechanical/Electrical failures 
(MW)

51.1086 50.6667 51.8245 52.1601 54.9619 54.9619 54.9619

Mean Power Output  with 
Mechanical/Electrical failures MPO 
(MW)

43.458 43.0179 44.0553 44.3935 46.893 46.8368 46.8368

Ratio: Standard Deviation / MPO 0.7687 0.7701 0.7707 0.7728 0.8262 0.8258 0.8258

LOLP 0.0852 0.1419 0.2752 0.4317 0.5441 0.6365 0.7057
Failure Frequency (per year) 163.3667 226.1667 308.1333 351.2333 418.2667 398.8333 378.5667
Mean Up Time (hours) 147.0061 99.9838 63.0331 42.8289 28.5178 23.8229 20.5513
Mean Down Time (hours) 13.7223 16.5068 23.4953 32.3344 34.2158 41.9829 49.041
Expected Unserved Energy (EUE) 
(*10^4 MWh/year)

0.1517167 0.4821333 2.3400667 7.4203333 14.984 23.227 30.703333

Mean Power Output  without 
Mechanical/Electrical failures ExP 
(MW)

51.1139   
51.5164   
51.6433   
51.4530

51.0836   
51.5293   
52.4014   
52.2612

51.5003   
50.1736   
50.6955   
50.9845

53.5868   
54.0032   
53.9015   
54.1442

54.7739   
54.9619   
54.5179   
54.5255

54.6485   
54.6511   
53.9611   
54.6699

53.4567   
53.3026   
53.9611   
53.4405

Mean Power Output  with 
Mechanical/Electrical failures MPO 
(MW)

43.3881   
43.7853   
44.1132   
43.8963

43.4442   
43.8354   
44.6789   
44.5414

43.9305   
42.7013   
43.2166   
43.4528

45.6557   
46.0684   
46.0981   
46.1390

46.8181   
46.9132   
46.5701   
46.4797

46.7598   
46.7148   
46.3707   
46.7079

45.9576   
45.7721   
46.3707   
45.9484

Ratio: Standard Deviation / MPO

0.7859    
0.7912    
0.7992    
0.8182

0.7724    
0.7846    
0.7866    
0.7942

0.7782    
0.7850    
0.7987    
0.7985

0.7984    
0.8077    
0.8095    
0.8133

0.8250    
0.8259    
0.8258    
0.8215

0.8258    
0.8250    
0.8369    
0.8183

0.8785    
0.8816    
0.8369    
0.8597

LOLP

0.0959    
0.1038    
0.1041    
0.1065

0.1456    
0.1536    
0.1567    
0.1601

0.2817    
0.2901    
0.2945    
0.2953

0.4350    
0.4355    
0.4379    
0.4386

0.5432    
0.5438    
0.5454    
0.5465

0.6348    
0.6360    
0.6366    
0.6377

0.7033    
0.7043    
0.7053    
0.7063

Failure Frequency (per year)

185.1667  
197.1333  
182.8333  
184.7667

217.2667  
231.3000  
231.3667  
228.6333

300.0333  
300.0667  
318.3333  
299.7667

386.2000  
394.6667  
374.2333  
393.0000

403.0333  
419.2333  
396.4667  
406.4333

374.9667  
385.7333  
357.8000  
387.8000

345.5000  
341.9000  
334.4333  
343.0000

Mean Up Time (hours)

128.4336  
119.5915  
128.8989  
127.1998

103.4474   
96.2576   
95.8810   
96.6322

62.9759   
62.2309   
58.2960   
61.8407

38.4856   
37.6226   
39.5060   
37.5738

29.8120   
28.6254   
30.1622   
29.3510

25.6218   
24.8211   
26.7142   
24.5744

22.5937   
22.7532   
23.1781   
22.5237

Mean Down Time (hours)

13.6276   
13.8454   
14.9772   
15.1676

17.6245   
17.4673   
17.8133   
18.4190

24.6982   
25.4338   
24.3393   
25.9089

29.6260   
29.0279   
30.7831   
29.3604

35.4543   
34.1197   
36.1866   
35.3696

44.5323   
43.3727   
46.8054   
43.2561

53.5445   
54.1853   
55.4781   
54.1674

Expected Unserved Energy (EUE) 
(*10^4 MWh/year)

0.1721    
0.1884    
0.1869    
0.1958

0.4943    
0.5369    
0.5497    
0.5619

2.3992    
2.4645    
2.5165    
2.5577

7.7263    
7.8520    
7.8803    
7.9610

14.9660   
14.9767   
15.0013   
14.9770

23.1930   
23.2213   
23.4443   
23.1227

31.6427   
31.7587   
30.8917   
31.3903

10 10 10 10 10 10 10

4 "Most Reliable" 
Configurations 

picked among 50 
random 

Configurations

Number of Iterations at MCS convergence - 
Tolerance=2.5% - 10 iterations minimum

Set #1 - Positively Correlated sites -  Total Number of Wind Turbines: 40 units  
Annual Peak Load (MW)

"Efficient Frontier" 
Most Reliable 
Configuration
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Table 5: Simulated indexes for period 2004 to 2006 – set #2 (uncorrelated sites)

5 10 25 50 75 100 120

Wind Turbine # Site 4262 (CA) 6 6 6 6 3 0 0
Wind Turbine # Site 7186 (OK) 8 7 6 5 0 0 0
Wind Turbine # Site 23098 (OR) 8 9 10 12 20 40 40
Wind Turbine # Site 20179 (WY) 2 2 3 4 8 0 0
Wind Turbine # Site 26796 (OR) 4 4 4 3 1 0 0
Wind Turbine # Site 28134 (MT) 3 3 4 5 8 0 0
Wind Turbine # Site 30353 (ND) 9 9 7 5 0 0 0

Mean Power Output  without 
Mechanical/Electrical failures 
(MW)

51.3 51.444 51.8938 52.4993 54.7617 56.8901 56.8901

Mean Power Output  with 
Mechanical/Electrical failures MPO 
(MW)

44.9044 45.1838 45.6387 46.1553 48.3441 50.6961 50.725

Ratio: Standard Deviation / MPO 0.4036 0.399 0.3948 0.4024 0.5201 0.85 0.8505

LOLP 0.0012 0.0061 0.0441 0.2244 0.4832 0.5884 0.6464
Failure Frequency (per year) 4.1533 17.0175 74.1667 265.1333 334.1667 253.6 262.7333
Mean Up Time (hours) 6569.3 1508.5 341.1448 78.8698 39.627 42.2308 36.1392
Mean Down Time (hours) 7.3602 9.4078 15.6364 22.2693 38.0413 61.0356 64.7152
Expected Unserved Energy (EUE) 
(*10^4 MWh/year)

0.0009249 0.0111676 0.2205933 2.0967 8.7503333 23.082333 29.943333

Mean Power Output  without 
Mechanical/Electrical failures ExP 
(MW)

53.0139   
50.5193   
52.2024   
52.5537

51.1510   
52.0712   
52.6013   
52.2957

51.0688   
52.9844   
51.0234   
51.3078

53.2869   
53.8303   
53.1953   
53.5125

54.1772   
53.7089   
53.6960   
53.4548

56.3870   
56.0577   
55.8344   
55.8605

56.7300   
56.3282   
55.8475   
52.9873

Mean Power Output  with 
Mechanical/Electrical failures MPO 
(MW)

46.6427   
43.8906   
46.2162   
46.6240

44.7205   
45.6516   
46.1857   
46.0175

44.3877   
46.6410   
45.0780   
45.3940

46.8488   
47.5348   
47.0984   
47.2317

47.8433   
47.3906   
47.3909   
47.1080

50.2745   
49.8974   
49.7171   
49.7532

50.6319   
50.2270   
49.7040   
46.4282

Ratio: Standard Deviation / MPO

0.4302    
0.5044    
0.4491    
0.4696

0.4180    
0.4058    
0.4305    
0.4371

0.4577    
0.4826    
0.4736    
0.5065

0.4611    
0.4635    
0.5049    
0.4832

0.5608    
0.4904    
0.4645    
0.4830

0.7706    
0.7314    
0.7550    
0.7200

0.8300    
0.7705    
0.6776    
0.8912

LOLP

0.0018    
0.0021    
0.0024    
0.0027

0.0074    
0.0083    
0.0114    
0.0114

0.0730    
0.0757    
0.0774    
0.0912

0.2483    
0.2576    
0.2718    
0.2769

0.4812    
0.4880    
0.4904    
0.4906

0.5959    
0.6024    
0.6024    
0.6031

0.6503    
0.6654    
0.6975    
0.7036

Failure Frequency (per year)

6.4444    
7.2989    
5.9042    
7.3180

19.5088   
22.6842   
24.8070   
25.2281

127.6667  
121.6000  
127.1333  
140.3000

279.3667  
281.6667  
257.9000  
275.0333

359.0333  
334.0333  
373.7333  
345.0667

259.0333  
268.9000  
264.7333  
268.9333

265.0667  
265.4000  
274.7000  
275.5667

Mean Up Time (hours)

4097.0    
3625.9    
4464.9    
3601.3

1340.7    
1151.3    
1050.0    
1031.7

191.0610  
199.9900  
191.0003  
170.4112

70.7834   
69.3348   
74.2723   
69.1658

38.0099   
40.3234   
35.8674   
38.8340

41.0380   
38.8994   
39.5074   
38.8192

34.7033   
33.1607   
28.9729   
28.2912

Mean Down Time (hours)

7.3823    
7.5906   

10.7082    
9.5908

9.9326    
9.6290   

12.0827   
11.9004

15.0449   
16.3723   
16.0152   
17.0970

23.3850   
24.0586   
27.7274   
26.4909

35.2617   
38.4258   
34.5190   
37.4015

60.5127   
58.9294   
59.8604   
58.9969

64.5399   
65.9560   
66.7901   
67.1663

Expected Unserved Energy (EUE) 
(*10^4 MWh/year)

0.0016    
0.0016    
0.0032    
0.0028

0.0135    
0.0156    
0.0221    
0.0221

0.3806    
0.4448    
0.3837    
0.4820

2.5890    
2.6763    
3.1726    
3.1567

9.3187    
8.4327    
8.1463    
8.4107

21.5813   
20.9120   
21.4093   
20.6390

29.5967   
28.6327   
27.0960   
31.2787

87 19 10 10 10 10 10

4 "Most Reliable" 
Configurations 

picked among 50 
random 

Configurations

Number of Iterations at MCS convergence - 
Tolerance=2.5% - 10 iterations minimum

Set #2 - Uncorrelated sites -  Total Number of Wind Turbines: 40 units  
Annual Peak Load (MW)

"Efficient Frontier" 
Most Reliable 
Configuration
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c. Interpretation and comments 

 

 Tables 4 and 5 highlight the results of the optimization process and the 

advantages of wind farm diversification across uncorrelated (or probably even better: 

negatively correlated) sites. The indexes are significantly improved when considering 

Set #2 configurations, especially for reasonable peak loads. A small power output 

variance will certainly improve the reliability of systems whose load is less than the 

power output expected value; however, for higher loads, it is unlikely to go well beyond 

its power output mean value, thus meaning it may never have the opportunity to catch up 

with the load, contrarily to a high variance system which is so unpredictable that it can 

go anywhere. Still, the small variance system remains preferable in terms of operability 

as it proves more predictable, though this may be at the price of some power capacity. 

Figures 7 and 8 respectively depict the probability densities of global power output of 

Set #1 and Set #2 based on the NREL/3TIER statistical data for years 2004 to 2006. The 

graphs were plotted for the optima curve most reliable dispatch and random 

configurations of m=40 wind turbines given a peak load of 50MW. It appears that the 

optimal configuration (red thick curve) features smaller probabilities for supplying very 

small or very high amount of power than the others. However, the probabilities for 

delivering medium amount of power are far greater. This illustrates what was previously 

said: small variance means staying close to the mean value most of the time. Also note 

that in the case of Set #2, the probabilistic distribution of the optimal configuration looks 

like a Weibull distribution, or perhaps even a Normal Gaussian distribution, which hints 

at the Central Limit theorem stating that the sum of a large number of random variable 

(with finite variances) tends to a Normal distribution. Here, the number n of random 

variables  may not be sufficient to shape a nice Gaussian (or the  may not have the 

same importance enough in the sum, thus jeopardizing the sum of large number of 

uncorrelated random variables), but the probabilistic distribution of the global power 

output of a large number of uncorrelated sites may indeed be modeled as a Normal 

distribution. 
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Fig. 7. Global power output and load probability densities for set #1 (positively 
correlated sites) - Efficient frontier distribution and some random configurations for a 

peak load of 50 MW 

 

 

Fig. 8.  Global power output and load probability densities for set #2 (uncorrelated sites) 
- Efficient frontier distribution and some random configurations for a peak load of 50 

MW 
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 As for the search for the most reliable configuration, one can observe (Tables 4 

and 5) that different peak loads call for different optimal configurations, which actually 

highlights an optimization trade-off between minimization of the global variance and 

maximization of the global expected value. As a matter of fact, for small and medium 

peak loads, the efficient frontier most reliable dispatch can usually be considered as the 

best configuration in terms of LOLP. Reasonable loads can be met by the many 

configurations featuring a medium power output mean value. Such a large number of 

possible combinations favors diversification and thus allows significant reductions of 

variance. Hence, as small variances tend to prevent the power output from falling behind 

a too small value, the most suitable configuration for low-medium loads turns out to be 

the one that best minimizes the variance. However, for high peak loads, the best possible 

reliability can only be achieved via high power output mean values. This considerably 

limits the number of possible combinations and consequently hinders the diversification 

process. Actually, the constraint on mean power output is so important that it completely 

overshadows variance reduction. This is illustrated by cases for which peak loads exceed 

100 MW: the load is so high that the 40 wind turbines are attributed to wind farm #3 (Set 

#2 case), the site showing the best power output mean value per turbine (1.4223MW). 

Even then, the global power output expected value does not go beyond 57 MW, which is 

small compared to load values revolving around 100 MW. Here then, a high variance 

may be desirable so as to reach (at least occasionally) very high values and catch up with 

the load. Minimizing the variance does improve the reliability when the power output 

expected value is comfortably greater than load values. This can be seen as well on 

Figure (8): the method presented in this paper actually strives to reduce the overlap 

between power output and load probabilistic densities as long as the power output is well 

ahead in terms of Mega Watts. 

 The optimization process can also be made slightly more efficient (as of the 

search for the optima curve) by integrating the load data into the equations depicted in 

Section III. Instead of solely minimizing the global power output variance, one can strive 

to minimize the variance of the random variable defined by the difference between the 
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power output and the load (provided this latter is statistically well known) under the 

same constraints as previously described. This method has the advantage of taking into 

account the correlation between the load and the wind turbine power output profiles. 

However, correlation coefficient calculations show that (in this case at least, the load 

being taken from the 1996 IEEE RTS), load and power outputs are uncorrelated, which 

eventually comes down to solve the optimization problem described in Section III. 

 Back to Tables 4 and 5, one can also examine the wind distributions of Sets #1 

and #2 and see that some sites remain unused within a set showing too much positive 

correlation (Set #1). In this case, it seems the best sites are selected because of their 

small ratio   /  and relatively small correlation with each other. On the other 

hand, Set #2 features a quite homogeneous repartition of its sites for small-medium peak 

loads, meaning the site non-correlation fact is fully exploited. 

 

d. Conclusion 

 

 On the whole however, wind-sustained systems do not score very well in terms 

of reliability. Even by selecting uncorrelated sites (and better if possible: negatively 

correlated) and proceeding to the optimization of their wind turbine repartition, the loss 

of load probability (LOLP) remain high despite low peak loads. Referring to Table 5, 

one can observe that for a peak load of 50 MW, which is less than half of the installed 

capacity of 120 MW, the LOLP is still greater than 20%, while the system failure 

frequency amounts to about 265 loss of load events a year (not that far from a loss event  

per day!). A solution to these poor ratings may lie in the selection of a higher number of 

sites n, knowing that the more negatively correlated, the better. 

 However, the main interest in diversification may rather lie in the enhanced 

predictability and stability of wind power outputs. In a fully integrated system, some 

thermal conventional units will be committed to the compensation of wind erratic 

behavior. The main question remains the design of these generators, which heavily 

depends on potential wind fluctuations. As such, a decrease in wind power variance 



40 
 

should alleviate system rates requirements and “bound” them. Some more studies could 

be envisioned so as to evaluate ramping, i.e. the variation speeds of power swings. 

 Note that the results of the optimization process are intimately related to the 

mean values, variances and covariances used into equations (30). Also, if these values 

are calculated for one year instead of three (as it is done in this paper), the optimal 

configurations may significantly change. Tables 6 and 7 show the optimal configurations 

given by the optimization process for both sets with data based solely on year 2004, 

2005 or 2006 and a peak load of 50 MW. 

 

Table 6: Optimal distributions for set #1 (total of 40 wind turbines) 

Set 
#1 

Site 
# 

763 
(TX)

Site 
# 

5073 
(TX)

Site 
# 

2296 
(TX)

Site 
# 

1884 
(TX)

Site 
# 

1329 
(TX)

Site 
# 

1368 
(TX)

Site 
# 

1506 
(TX) 

2004 8 7 0 0 0 0 25 

2005 5 12 0 0 0 0 23 

2006 10 7 0 0 0 0 23 
3 

years 
9 11 0 0 0 0 20 

 

Table 7: Optimal distributions for set #2 (total of 40 wind turbines) 

Set 
#2 

Site 
# 

4262 
(CA) 

Site 
# 

7186 
(OK)

Site # 
23098 
(OR) 

Site # 
20179 
(WY) 

Site # 
26796 
(OR) 

Site # 
28134 
(MT) 

Site # 
30353 
(ND) 

2004 7 5 12 4 3 5 4 

2005 9 2 12 6 2 7 2 

2006 4 5 13 4 3 5 6 
3 

years 
6 5 12 4 3 5 5 

 

 The results actually change considerably from year to year, though some 

tendencies remain. It proves that in the long run, it is important to have statistical data 

over as many years as possible to obtain a well optimized system. But once again, this is 

a long run consideration based on the assumption that history will repeat itself. 
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IV. 4. Correlation between Load and Global Wind Power Output as Given by Optimal 

Configurations  

 

 The NREL/3TIER data coupled with the 1996 IEEE RTS can also be of use in 

the study of the correlation relating wind power with load. MATLAB can directly 

calculate the correlation coefficient characterizing the statistical hourly global power 

output and load data. The results of such a calculation prove unequivocal for both sets: 

about 0.0594 for Set #1 and 0.0516 for Set #2 on average (the hourly global power 

output was derived from the optimal configurations seen in Tables 4 and 5). This means 

that wind power, as given by the aforementioned configuration, and load behave 

independently over the course of the year. In other words, they are totally uncorrelated. 

Though this is the case over long time periods such as a year, this may not be true for 

smaller time spans, as suggested by Figures 9 and 10, representing the mean values of 

the load (for a peak load of 50MW) and the global power outputs of Sets #1 and #2 most 

reliable configurations with respect to hours of the day and weeks of the year.  

 

Fig. 9. Wind power output and load with hours of the day (respectively sets #1 and #2 
most reliable configurations for a peak load of 50MW)  
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Fig. 10. Wind power output and load with weeks of the year (respectively sets #1 and #2 
most reliable configurations for a peak load of 50MW) 

 
 
 One can quickly notice the reduction in variance induced by the good 

diversification of wind farming sites in the case of Set #2 with respect to that of Set #1, 

while the expected global power output remains almost the same in both cases. Note that 

the global power output and load averages calculated for a given time slot are based on 

the mean of all the corresponding values available over the 3 years of data. All graphs 

exhibit (about equally distributed) time periods for which wind power and load show 

positive or negative correlation. However, on the scale of a year, these “alternating” 

correlations cancel each other out so that the yearly correlation eventually goes to 0. 

Still, Figures 9 and 10 can help predict some overall loss-of-load patterns for short spans 

of time. For example, a positive correlation between wind power and load may indicate 

that the loss of load frequency should be about the same from one hour (resp. week) to 

another. Conversely, negative correlation may point at a worsening in existing 

discrepancies. These tendencies may be visualized in Figures 11 and 12 respectively 

depicting estimations of Sets #1 and #2 annual loss of load frequency for any hour of the 

day (most reliable configurations) in two cases: one for which the load sticks to its usual 

pattern (fig 11) (the peak load being fixed at 50MW) and the other for which the load is 

kept constant throughout the year (fig 12) (fixed at 30.7MW, which is the mean value of 

the load throughout the year given a peak load of 50MW). 
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Fig. 11. Annual loss of load frequency for any hour of the day (respectively based on 
sets #1 and #2 results, most reliable configurations); usual load pattern 

 

Fig. 12. Annual loss of load frequency for any hour of the day (respectively based on 
sets #1 and #2 results, most reliable configurations); constant load of 30.7 MW 
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another. Between 17:00 and 20:00 however, power output and load show some positive 

correlation, which results in much less significant variation of the mean loss of load 

frequency. As a matter of fact, one can see the negative correlation between wind power 

and load as a sign of fast change of the current system state, thus designating “hot spots” 

to the system operators. On the other hand, positive correlation accounts for stability, 

steadiness of the situation. 

 Figure 12 roughly illustrates the fact that wind is generally more powerful at 

night, which could be seen as another incentive for wind energy night storage. In any 

case, it shows that wind patterns statistically differ over time. Figures 13 and 14 describe 

the same thing as Figures 11 and 12, but at weekly (season) scale. In this case however, 

given the few differences between graphs of a same case, it seems like the load has less 

influence over the loss of load frequency than the wind which varies more intensely and 

“dictates” the system state. 

 

Fig. 13. Annual loss of load frequency for any week of the year (respectively based on 
sets #1 and #2 results, most reliable configurations); usual load pattern 
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Fig. 14. Annual loss of load frequency for any week of the year (respectively based on 
sets #1 and #2 results, most reliable configurations); constant load of 30.7 MW 

  

 These graphs could prove useful in a thorough planning study that would 

consider distributing wind turbines in order to alleviate “hot spots” threats in priority. As 

a matter of fact, it appears, on the overall and given the particular wind farming locations 

that have been studied in this thesis, that wind mainly blows in the night while slightly 

abating when most needed before the load peaking of 8:00 pm. Also, on a seasonal scale, 

wind power tends to decrease in summer. It could then be interesting to run the 

optimization on fragments of data that mainly includes day “hot spot” hours in summer 

time and see if the reliability gets improved. 
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V.   CONCLUSION 

 

 

 This research has introduced a general method for improving wind energy based 

system reliability through the optimal distribution of a given number of wind turbines 

over a given number of preselected sites. The illustration of the method is based on 3 

years of projected wind power output statistics provided by the NREL/3TIER Western 

Wind and Solar Integration Study. The optimization process strives to minimize the 

global power output variance for fixed expected power, primarily taking advantage of 

uncorrelated or negatively correlated sites to “smooth” the global power output and 

make it more predictable.  

 It has been shown that the global minimum of the (convex) optimization problem 

could be found via the use of an active set method or similar algorithm that proceeds by 

activating progressively the inequality constraints. The latter procedure has then been 

applied to two sets of potential sites featuring various degrees of correlation. The first set 

consists of highly positively correlated sites while the second comprises almost 

independent sites so as to study the potential benefits of diversification relatively to 

system reliability.  

 After obtaining the optimal partitions of 40 wind turbines for both sets, a 

sequential Monte Carlo simulation has been run so as to take into account the 

mechanical/electrical failures any wind turbine may undergo throughout its operational 

period. Various reliability indexes such as the loss of load probability LOLP have been 

calculated by recreating 3 years of statistical wind power output and comparing it to the 

yearly load model proposed the 1996 IEEE RTS. A search for the most reliable 

distribution has also been carried out and it has been determined that configurations 

featuring the lowest power output variances also yielded the smallest LOLP for peak 

loads of the same (or lesser) order as their mean power output.  

 Optimal wind power outputs from both sets and the load model from the 1996 

IEEE RTS have been compared over different time scales and their correlation has been 
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found to be close to 0 on the overall. However, some specific time spans have been 

shown to pose more threats than others to the system reliability, and further research 

could be made on optimizations primarily prone to deal with those hot spots. 

 In the end, the results of this study show that the correlations between wind farm 

global power outputs significantly impact the system reliability. Sets of 

uncorrelated/negatively correlated sites are to be preferred in the planning of large wind 

turbines installments. Some more research on the nature of low variance power outputs 

can be done in order to establish if they can improve the success rates of actual wind 

predictors and help design conventional units dedicated to wind power output swings 

compensation. 
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