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ABSTRACT

Copula Based Hierarchical Bayesian Models. (August 2009)

Souparno Ghosh, B.S., University of Calcutta;

M.S., University of Calcutta

Chair of Advisory Committee: Dr. Bani K. Mallick

The main objective of our study is to employ copula methodology to develop Bayesian

hierarchical models to study the dependencies exhibited by temporal, spatial and

spatio-temporal processes. We develop hierarchical models for both discrete and

continuous outcomes. In doing so we expect to address the dearth of copula based

Bayesian hierarchical models to study hydro-meteorological events and other physical

processes yielding discrete responses.

First, we present Bayesian methods of analysis for longitudinal binary outcomes using

Generalized Linear Mixed models (GLMM). We allow flexible marginal association

among the repeated outcomes from different time-points. An unique property of this

copula-based GLMM is that if the marginal link function is integrated over the dis-

tribution of the random effects, its form remains same as that of the conditional link

function. This unique property enables us to retain the physical interpretation of the

fixed effects under conditional and marginal model and yield proper posterior distri-

bution. We illustrate the performance of the posited model using real life AIDS data

and demonstrate its superiority over the traditional Gaussian random effects model.

We develop a semiparametric extension of our GLMM and re-analyze the data from

the AIDS study.

Next, we propose a general class of models to handle non-Gaussian spatial data. The
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proposed model can deal with geostatistical data that can accommodate skewness,

tail-heaviness, multimodality. We fix the distribution of the marginal processes and

induce dependence via copulas. We illustrate the superior predictive performance

of our approach in modeling precipitation data as compared to other kriging vari-

ants. Thereafter, we employ mixture kernels as the copula function to accommodate

non-stationary data. We demonstrate the adequacy of this non-stationary model by

analyzing permeability data. In both cases we perform extensive simulation studies

to investigate the performances of the posited models under misspecification.

Finally, we take up the important problem of modeling multivariate extreme values

with  copulas.  We  describe,  in  detail, how  dependences  can be induced in the

block maxima approach and peak over threshold approach by an extreme value copula.

We prove the ability of the posited model to handle both strong and weak extremal

dependence and derive the conditions for posterior propriety. We analyze the extreme

precipitation events in the continental United States for the past 98 years and come

up with a suite of predictive maps.
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CHAPTER I

INTRODUCTION

Copulas are essentially multivariate distribution functions with univariate standard

uniform marginals. Thus from the basic definition, we can see, copulas provide a

natural way of describing dependence among random variables. The past decade has

seen a growing interest in employing copula methodology to capture the dependence

structure among random variables. Consequently, copula based approaches have be-

come a well-established tool for working with multivariate distributions.

Copulas are implicitly contained in every multivariate distribution and they do

not depend on the marginal distribution of the individual components of the random

vector under consideration. As a result of these two unique properties, the marginal

processes and dependence structures can be modeled independently of one another.

These consist of the main advantages of copula methodology.

Note that copulas require the marginals to be standard uniform distribution.

But, in many situations, working with uniform marginals is neither comfortable nor

justifiable. In such situations, we resort to the technique of Probability Integral Trans-

formation (PIT) in order to transform the marginals to standard uniform distribution.

However, we can show, using copulas, transforming the marginals of a random vec-

tor via PIT leaves the dependencies between the components of the random vector

unchanged. In general, the dependence measures associated with copulas are nonpara-

metric and hence can be used to capture the non-linear dependence present among

the random variables. Thus, as an added benefit, the copulas provide an alternative

This dissertation follows the style of the Journal of the Royal Statistical Society.
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to the Pearson correlation coefficient too. Frees and Valdez (1998), Nelsen (1999),

Genest & Favre (2007) and the references therein provide a comprehensive review on

this topic.

Although, copulas have found application in almost all fields to science, but their

usage to study hydro-meteorological phenomena are limited. Among others, Coles

& Tawn (1996a, 1996b), Dupuis (2007), Renard & Lang (2007) developed copula

based methodologies to study hydrological phenomena in frequentist paradigm. But,

apart from Coles & Tawn (1996b, 2005) and Sang & Gelfand (2009), no copula

based models for hydro-meteorological events has been developed in the Bayesian

paradigm. Neither has the copula methodology been extensively applied to study the

dependence between discrete random variables. Song (2000), Li et al., (2006) adopted

frequentist approach to develop Gaussian copula based model to combine discrete

marginals. However, apart from the model developed by O’Brien and Dunson (2004),

no Bayesian hierarchical approach employing copula technique to combine discrete

marginals exists.

The main objective of our study is to employ copula methodology to develop

Bayesian hierarchical models to study the dependencies exhibited by different physical

processes. In particular, we concern ourselves in modeling the dependence prevalent

in temporal, spatial and spatio-temporal processes. We develop hierarchical models

for both discrete and continuous outcomes. In doing so we expect to address the

dearth of copula based Bayesian hierarchical models to study hydro-meteorological

events and other physical processes yielding discrete responses.

We now go through the content of this dissertation in greater detail. In Chapter

II, we introduce the concept of copula mathematically and postulate main related

results. In Chapter III, we present Bayesian methods of analysis for longitudinal

binary outcomes using Generalized Linear Mixed models (GLMM). The proposed
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copula model allows a very flexible marginal association among the repeated outcomes

from different time-points. A unique property of this copula-based GLMM is that if

the marginal link function is integrated over the distribution of the random effects,

its form remains same as that of the conditional link function. The proposed models

for random effects vector, viz., multivariate bridge and positive stable distributions,

enable us to retain the physical interpretation of the fixed effects under conditional

and marginal model. We also extend this model to a semiparametric set-up with non-

parametric time-effect. We obtain several properties including the proper posterior of

the fixed effects in presence of noninformative priors. Finally we illustrate our models

and associated methodologies with the analysis of the longitudinal binary data from

two AIDS studies.

In Chapter IV, we propose a general class of models to handle non-Gaussian

spatial data. The proposed model can deal with geostatistical data that can accom-

modate non-Gaussianity in all its forms, viz., skewness, tail-heaviness, multimodal-

ity. We differ markedly from the earlier approaches by fixing the distribution of the

marginal processes. These marginal processes are allowed to follow a non-Gaussian

distribution. The spatial dependence among them is achieved via copulas (Joe, 1997;

Nelsen, 1999). The idea of a copula makes our model more flexible in the sense that

we allow the marginal distributions to follow any desired distribution and yet achieve

dependence among them. As stated before, one of the main advantages of using copu-

las lies in the fact that marginal distributions may be investigated separately. The use

of latent variables to transform each marginal distribution to a desired distribution is

the basic tool of this modeling. We have used the multivariate elliptical distribution

as the distribution of the latent variable and prove that it satisfies Kolmogorov’s di-

mensional consistency conditions with any arbitrary marginal distribution as long as

the inverse of the distribution function exists. The adoption of Bayesian approach to
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perform inference about the model parameters as well as to obtain the spatial predic-

tion at unobserved locations allows us to quantify the uncertainties associated with

these estimates and predictions naturally. Furthermore, we extend this model to a

mixture model framework using mixture kernels as the copula function to accommo-

date non-stationary data. Simulations and real data analysis show the ability of the

model to identify spatial clusters. Finally, we develop a class of non-elliptical copula

based models which can support a valid random field and use it to model extreme

value processes.

In Chapter V, we develop copula based models for analyzing spatio-temporal

dependence. In particular, we describe necessary methodologies required to model

multivariate extreme values with copulas. We deal with both componentwise maxima

and exceedances over thresholds. The first part of the chapter introduces the concept

of extreme value copula and explains the basic methodology for studying multivariate

maxima. Then we describe two traditional approaches to model maxima, viz., the

block-maxima approach and the peak-over-threshold approach. We also describe how

exceedances over thresholds can be approximated by an extreme value copula.

We also explore the issues of asymptotic (in)dependence in analysis of extreme

values distributed over space. While asymptotically independent models are bound

not to fit data that show asymptotic dependence, asymptotically dependent models

can be poor approximation for asymptotically independent variables, especially for

finite samples (Ledford and Tawn; 1996, 1997). In the Bayesian paradigm, the most

common technique to model extreme events, distributed over space, is to assume con-

ditional independence at the data layer (Cooley et al., 2007, Huerta and Sanso, 2007).

In order to incorporate dependence information at the data level, Sang and Gelfand

(2009) combined univariate extreme value distribution with a Gaussian copula and

developed a valid random field with unrestricted correlation structure.
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We shall show that the assumption of conditional independence at the data layer

or usage of Gaussian copula to model the data layer leads to asymptotic independence.

An immediate implication is that, these models cannot explain the dependence of very

rare events at two specified sites, no matter how close they are. In order to circumvent

this problem, we show that the proposed copula based model for extreme events is

flexible enough to handle both asymptotic dependence and independence and at the

same time allows unrestricted correlation structure. We illustrate our methodology

by analyzing spatially distributed time series of extreme values. The model is fitted

to a gridded precipitation data set collected over 99 years across the continental

U.S. Predictive maps of precipitation extremes and the associated uncertainties are

obtained thereafter.
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CHAPTER II

COPULAS

In this chapter we introduce the concept of copula and describe some of its basic

properties. The main textbook references on copulas are Joe (1997), Nelsen (1999)

and Cherubini, Luciano & Vecchiato (2004). Throughout this dissertation, we use

copulas for exploring and describing multivariate distribution function.

II.1. Definition and basic properties

The joint distribution function of a random vector can be thought of as a combination

of the univariate marginals of its individual components and a dependence structure

describing the interactions among these marginals. Broadly speaking, copulas are

functions that bind together the marginal distributions in such a manner as to form

valid joint distribution function. From the formal definition below we shall see that

copulas are implicitly contained in every multivariate distribution functions and can

be identified with these dependence structures

Definition 1 (copula): A d dimensional copula is the distribution function of a random

vector with Uniform (0,1) marginals. The copula function C : [0, 1]d → [0, 1] satisfies

the following properties.

(1) C(u1, · · · , ud) = 0 whenever ui = 0 for at least one i = 1, 2, · · · , d.

(2) C(1, · · · , 1, ui, 1, · · · , 1) = ui for all i ∈ {1, · · · , d}, ui ∈ [0, 1].

It is evident from the definition and the properties that any m− variate marginal of

a d− variate copula (2 ≤ m < d) is itself a copula.
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The Sklar’s theorem (Sklar, 1959), described below, shows us how any multi-

variate distribution function can be described through its marginals and a copula,

thereby, providing a justification for using copulas when working with multivariate

distribution functions.

Theorem 1 (Sklar): Let F be a d− dimensional distribution function with margins

F1, · · · , Fd. Then there exists a copula C such that for all Y ∈ [−∞,∞]d,

F (y1, · · · , yd) = C(F1(y1), · · · , Fd(yd)) (2.1)

If F1, · · · , Fd are all continuous, then C is unique; otherwise, C is uniquely determined

on Range(F1)×· · ·×Range(Fd). Conversely, for a copula C and continuous margins

F1, · · · , Fd the function F defined in (2.1) is a d− dimensional distribution function

with margins F1, · · · , Fd.

Proof. See Nelsen (1999)

The implications of the above theorem are as follows:

(1) From the decomposition (2.1) we can study the behavior of random vectors by

considering the copula and the marginals separately.

(2) Since (2.1) defines a proper distribution function for any choice of the cop-

ula C and marginals F1, · · · , Fd, we can construct new families of multivariate

distribution with desired properties.

Property 1.1: Uniqueness. Let Y1×d ∼ F with continuous marginals F1, · · · , Fd.

Define the quantile function as

F−(u) = inf{y|F (y) ≥ u}.
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Since Fi’s are continuous and strictly increasing function, Fi(F
−
i (y)) = y and by

Probability Integral Transform Fi(y) ∼ Uniform [0,1]. According to Sklar’s Theo-

rem F (y1, · · · , yd) = C(F1(y1), · · · , Fd(yd)). Then, if U = (F1(Y1), · · · , Fd(Yd)) ∼ C,

then (F−
1 (U1), · · · , F

−
d (Ud)) ∼ F , i.e., C(u1, · · · , ud) = F (F−

1 (u1), · · · , F
−
d (ud)) is the

unique copula of F . Another interpretation of the joint distribution function of the

random vector Y obtained via copula C is the probability that each of its component

is smaller than its uthi quantile, independently of the marginals of its other compo-

nents.

Property 1.2: Invariance. Let (Y1, · · · , Yd) be a random vector with continuous

marginals and copula C. Let T1 · · · , Td be strictly increasing functions R → R. Then

(T1(Y1), · · · , Td(Yd)) also has copula C.

Proof. See Nelsen (1999)

The implication of this property is very important. The fact that strictly in-

creasing transformation of the marginal distribution of a random vector does not

influence the copula essentially implies that copulas capture all the information on

the dependence structure without being affected by the marginal distributions.
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CHAPTER III

BAYESIAN ANALYSIS OF LONGITUDINAL BINARY DATA WITH THE SAME

MARGINAL AND CONDITIONAL LINK

In this chapter we formulate a Generalized Linear Mixed Model (GLMM) for longitu-

dinal data, using copulas to handle the dependencies. The analysis goal is to ensure

an easy interpretation of the effect of the regression variable x(t) on the response Y (t)

at any time t. In the GLMM approach, the joint distribution of the response vec-

tor Y = (Y (t1), · · · , Y (tm)), measured at possibly irregularly spaced m time points

t1, · · · , tm, conditional on the subject-specific mean zero vector b of correlated random

effects, is specified by

τ{E[Y|b;X]} = β0 + X1×pβp×m + b1×m , (3.1)

where τ is a known link function, X = (x(t1), · · · , x(tm))T is the regression vec-

tor, β is the corresponding vector of regression parameters (fixed effects) and β0 =

(β0(t1), · · · , β0(tm))T is either a vector of known functions of time (with unknown pa-

rameter) or a vector of unknown intercepts. Given the subject-specific b, the within

subject responses from m time points are assumed to be independent. Particularly

for continuous data, we have the Linear Mixed model (LMM),

E[Y|b;X] = β0 + X1×pβp×m + b1×m , (3.2)

is a special case of (3.1) with τ as the identity function.

In practice, we are often interested in the marginal regression functionE[Y (t)|X(t)]

to understand the marginal effect of the regression coefficient x(t) at time t on the pop-
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ulation mean response, obtained via integrating out the unobservable random effect

b. Under the LMM of (3.2), the regression parameter β is the same as the marginal

regression parameter associated with the marginal expectation E[Y|X]. However,

this is not true in general for all link functions. For example, with the Gaussian

random effects for b in (3.1) for longitudinal binary responses (Chib and Greenberg,

1998), the marginal probability of response E[Y (t)|x(t)] = P [Y (t) = 1|x(t)], after

integrating over the unobservable random effects b, in general does not follow an in-

terpretable regression function with any familiar link function, unless we use a probit

link for τ . Currently popular frequentist as well as Bayesian methods of analysis of

longitudinal and repeated binary outcomes using GLMMs rely heavily on either the

probit link or logistic link. While the regression coefficients for the probit model have

similar conditional and marginal interpretations, they do not have simple odds-ratio

or relative risk type interpretations either conditionally or marginally.

We propose a class of GLMMs in which both the conditional and marginal re-

gression parameters are easily interpretable quantities. We point out that if the

distribution of b and the link τ are chosen properly for a GLMM in (3.1), we can

ensure that

τ{E[Y|X]} = β∗
0 + X1×pβ∗p×m , (3.3)

for some link function τ . The marginal regression parameters β∗
0 and β∗ may differ

from β0 and β in (3.1), but both are readily interpretable. In particular, we can ensure

that the structure of the marginal link in (3.3) to be same as the conditional link τ

in (3.1), thereby preserving the physical interpretation of the regression coefficients.

We present these marginally consistent models for different non-linear link functions

including the logistic and complementary log-log links for binary responses and log

link for count responses.
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A particular choice of τ is often determined by the relevance of the link τ for

useful physical interpretations of the regression effects for the practical application at

hand. For example with certain studies involving binary responses, the logit is often

preferred over the probit due to the log-odds interpretation of the regression effects,

particularly in dose-response and exposure-response studies. As an alternative link

function for binary response, a log-log link may capture the skewness of the response

data better than a probit link in some applications. In essence we show that, to

preserve the marginally consistent structure and simple physical interpretation of the

regression coefficients in (3.1), we need not go beyond our preferred class of GLMMs.

We only need to choose the distribution of b and the link τ judiciously. In addition

to having marginal interpretations, a major advantage of our method over ordinary

Bayesian GLMMs is that, under mild regularity conditions, the posterior is proper

even when we use a uniform improper prior for the fixed effects.

Our methods also allow the b within a subject to have a very wide class of

associations while the marginal density for the outcome-specific random effects will

follow a certain density, for example positive stable, to assure a preferred (for ex-

ample, complementary log-log link) τ ∗ for the marginal response in (3.3). We use

a copula structure for the modeling of the vector of subject-specific b to guarantee

a flexible longitudinal association structure as well as assuring a desired density for

the marginal distribution of each component of b. To alleviate the restriction of

a completely parametric approach for modeling the time-dependent intercept term

(β(t1), · · · , β(tm)) in (3.1), we extend our methods to a class of semiparametric re-

gression models, called partially linear models by Wang et al. (2005), Lin and Carroll

(2006), where the time-dependent vector β = (β(t1), · · · , β(tm))T is a nonparametric

function of time (t1, · · · , tm).

If the investigator is only interested in estimation of the marginal regression
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parameters of E[Y|X] then the generalized estimating equation (GEE) technique

(Zeger and Liang, 1986; Zeger et al. 1988; Fitzmaurice et al. 1993; Fitzmaurice,

1995; Diggle et al. 2002) can be used. These GEE methods treat the within subject

association, joint distribution of responses and prediction of responses over time as

beyond the goals of the analysis. Due to our interest in these latter three quantities

as well as the marginal regression parameters, we pursue a novel class of GLMMs.

III.1. Random effects model

Our modeling goal is to define a multivariate density for b for the GLMM such

that τ{E[Y|X]} has a linear structure while the density of b can accommodate a

vast range of association structures among longitudinal responses measured at m dif-

ferent time-points. Wang and Louis (2003) have presented the theory behind the

class of GLMMs τ{E[Yj|b,X]} = β0 + β1X + b for clustered multivariate responses

Y = (Y1, · · · , Ym)T , in which the marginal response E[Yj|X] of each component Yj,

integrated over the common scalar random intercept b, can preserve the structure of

the link as τ{E[Yj|X]} = β∗
0 + β∗

1X. This is possible only using a particular ran-

dom effect density fBτ (·) unique to the chosen link τ (called the “bridge” density

of τ). However, the regression parameters β∗ of the marginal function may turn

out to be different from the β of the conditional GLMM. Every link τ has its own

bridge density, however, the bridge density of a link may not be unique. The gen-

eral formulation for the density fBτ is given as a Fourier Information transformation

fBτ (u) = (1/2π)
∫

exp(i(k/η − u)v){F(τ(v/u))/F(τ(v))}du based on the character-

istic function F(τ(v)) of τ . The multivariate model of Wang and Louis (2003) ac-

commodates a single scalar random intercept B shared by all m components within

a cluster, and does not allow a broader class of a vector of correlated random effects

within each cluster. For longitudinal studies, the restriction to models with one scalar
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random intercept shared by all responses within a subject is unappealing as associa-

tions among the repeated measures may depend on time separation. We may expect

the within subject association between the responses from any two time-points to

depend on the gap between time points.

We assume that the subject-specific random effects bt1, · · · , btm at m time points

are different, however, they follow the same bridge density fbτ (b|η0, η) corresponding

to the link τ . This ensures that τ{E[Y (t)|X]} = η0 + η(β0 +Xβ), where 0 < η < 1 is

an attenuation parameter (Neuhaus et al., 1991) of the density fb(bt). For standard

links such as the logit and the log-log links, η0 = 0 and we can also find closed form

expressions of the corresponding bridge densities fbτ , their respective cdf Fbτ (·) and

their quantile functions F−1
bτ . In principle, we can use any τ and find its corresponding

bridge density, however, we focus here only on common link functions for binary and

count data to develop flexible multivariate extensions of the univariate bridge densities

corresponding to these links.

To define a suitable multivariate bridge density which can accommodate a vast

range of association structures within a vector b while ensuring the desired univariate

marginal bridge density fbτ (b) at any time point t, we use the probability integral

transform (Hoel, et. al., 1971) bt = F−1
bτ (Φ(Zt)), where Φ(·) is the standard normal

cdf, Z = [Zt1, ..., Ztm ]T is multivariate normal with mean vector 0 and covariance

matrix Σ. The joint density of the cluster-specific bi vector is given by the copula

fbτ (bit1, · · · , bitm) = Φ′
Σ,T (Φ−1(FB(bit1)), · · · ,Φ

−1(Fb(bitm)))
tm∏

t=t1

fb(bit|η)

φ (Φ−1(Fb(bit)))
,

(3.4)

where Φ′
Σ,m represents the m dimensional multivariate normal density with zero mean

vector and variance-covariance matrix Σ such that the diagonal elements equal 1 and

the off-diagonal elements are Σist = Cov(Zis, Zit). Since the diagonal elements equal 1,
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Σist = ρist = Corr(Zis, Zit) is also the correlation between Zis and Zit. Also, φ is the

pdf of the standard Normal distribution and fb(bit|η) is the univariate bridge density

corresponding to the link τ . For simplicity of presentation, we have suppressed in

the notation the dependence of the bridge density on the corresponding link τ , and

we assume that all subjects are measured at time points (t1, · · · , tm). However, our

methodology can be applied to data with a subject-specific observation schedule.

For longitudinal data, the AR(1) correlation structure

ρist = ρ|t−s|

with unknown correlation parameter ρ common to every subject will be one appropri-

ate choice for ρist. In principle, any suitable correlation structure and even a subject-

specific association parameter ρi can be assumed. The linear correlation coefficient

ρi fails to capture the true dependence structure between two observable responses

(Yi(s), Yi(t)). As a result, one looks for a non-parametric measure of dependence like

Kendall’s τ for (Yi(s), Yi(t)). One advantage of copula modeling is that, we can eval-

uate this relationship by calculating τst, the Kendall’s τ of (Yi(s), Yi(t)). Although

copula functions do not have a closed form expression for τst, we can calculate it via

Monte Carlo simulation. Note that one advantage of the dependence measure τst is

that it is independent of the regression parameter β. Thus the covariate Xi of a

subject does not affect the dependence measure τst within a subject. In contrast the

choice of the covariate Xi actually affects the linear correlation between Yi(s) and

Yi(t) (Abdous et al., 2005).

The likelihood contribution LM1(β,bi|Yi) based on the sampling distribution of

the response Yi = (yi(t1), · · · , yi(tm)) from subject i is given by the joint density
∏mi

j=1 f(yi(tij)|β,bi, xi(tij)), where f(yi(tij)|β,bi, xi(tij)) is based on the chosen GLMM.

Assuming conditional independence of Yi for i = 1, . . . n given (ψ,b∗) for b∗ =
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(b1, · · · ,bn), we get the full likelihood as

LM1(ψ,b|Y ) =
n∏

i=1

{LM1(β,bi|Yi)fb(bi1, · · · , bitm|ρ, η)} , |Yi)} , (3.5)

where ψ = (β, η, ρ), fb(bi1, · · · , bitm |ρ, η)} is the joint density of bi given in (3.4)

and η is the Bridge density parameter. We further assume that the joint prior,

πM1(β, η, ρ) = π1(β)π2(η)π3(ρ), where the prior π1(β) for the regression parameter is

typically assumed to be MVN(µβ,Σβ). The choice of π2(η) depends on the range

of η and the available prior opinion about the variability of different clusters. The

prior density π3(ρ) can depend on the prior opinion, when available, of the association

between observables Yi(t) and Yi(s) at two different time points. A benchmark density

for π3(ρ) is Uniform(−1, 1). Under this setup, the joint posterior distribution is

proportional to

[
n∏

i=1

{LM1(β,bi|Yi)fb(bi1, · · · , bitm |η, ρ)}]πM1(β, η, ρ) (3.6)

Now we demonstrate how this formulation and corresponding Bayesian analysis can

be achieved for different popular link functions.

III.1.1. Logistic link with bridge random effects

The goal is to use a particular multivariate distribution, fbi
(bi1, · · · , bim) for bi such

that the association structure of the multivariate density will be flexible, and the

marginal regression function E[Yit|xit] will turn out to be convenient and easy to

interpret the GLM of (3.3). When τ is a logit-link, given the vector bi, the Yit’s

for subject/cluster i are assumed to be independent Bernoulli random variables, i.e.,

Yit|bit ∼ Bern(pit), with

pit = pit(bit) = pr(Yit = 1|bit,Xit) =
exp(bit + X′

itβ)

1 + exp(bit + X′
itβ)

. (3.7)
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The corresponding bridge random-effects density function (Wang and Louis, 2003) is

given by

fb(bit|η) =
1

2π

sin(ηπ)

cosh(ηbit) + cos(ηπ)
, (0 < η < 1 , −∞ < bi <∞) , (3.8)

with distribution function

Fb(bit) = 1 −
1

πη

[
π

2
− arctan

{
exp(ηbit) + cos(ηπ)

sin(ηπ)

}]
(3.9)

gives us the same logit link functions for the marginal regression models, with marginal

success probability

pr(Yit = 1|Xit) = Eb[pit(bit)] =
exp[ηβ′Xit]

1 + exp[ηβ′Xit]
. (3.10)

However, the conditional and the marginal regression parameters (β and ηβ respec-

tively) are different. For simplicity, we assume the parameter 0 < η < 1 of the bridge

distribution to be the same at all time points.

To ensure that bit at any time t has the marginal bridge distribution correspond-

ing to the logit link τ , we use the probability integral transform bit = F−1
b (Φ(Zit)),

where Φ(·) is the standard normal cdf, and

F−1
b (uit) =

1

η
log

[
sin(ηπuit)

sin{ηπ(1 − uit)}

]

is the inverse cdf of that Bridge density. Thus, the (bit1, · · · , bitm) within a subject

are correlated as long as the (Zit1, · · · , Zitm) are correlated, and the joint density of

vector bi is given by (3.4) with marginal cdf Fb and marginal density fb given in (3.9)

and (3.8), respectively.

In Figure 1, we have plotted τst versus ρst = ρ|s−t| for five different values of

ρ using this bridge density corresponding to the logit link. Note, the dependence

measure τst is independent of the bridge density parameter η, and only depends on
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the copula correlation ρ and the distance |s−t|. This graph is important to understand

how the dependence between (Yi(s), Yi(t)) is influenced by the correlation ρst between

Zit and Zis. The understanding of this relationship is useful for eliciting a prior for ρ

when information about the association parameter τst between two observables Yi(s)

and Yi(t) is available.

Since the components within the response vector Yi are conditionally indepen-

dent given bi, the likelihood contribution LM1(β,bi|Yi) in (3.5) is given by
∏mi

j=1 p
yij

itj
(1−

pitj)
1−yij , where τ(pitj) = bitj + x′itjβ. The choice of π2(η) depends on the available

prior information about the variability of different subjects. For the MCMC computa-

tions discussed below, we have used the benchmark density Uniform(0, 1) for π2(η).

The prior density π3(ρ) should depend on the prior information, when available, re-

garding the association between the observables Yi(t) and Yi(s) at two different time

points. We have used the benchmark density Uniform(−1, 1) for π3(ρ).

Posterior Propriety

In a mixed effects binary regression model, improper priors on the parameters gener-

ally result in the impropriety of the posterior distribution (Natarajan and McCulloch,

1995, 1998; Natarajan and Kass, 2001; O’Brien and Dunson, 2004). Chen, Ibrahim

and Shao (2004) obtained the necessary and sufficient conditions for the propriety of

the posterior distribution for general classes of regression models, including the class

of GLMs, under very general conditions on the model and covariates. An attractive

feature of the proposed model is that, under mild conditions, which are easy to ver-

ify in practice, improper prior specification on the regression parameters leads to a

proper posterior.

Result 2.1: Let Y = (Y1,Y2, . . . ,Yn)
T be a sequence of binary data observed
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for n independent subjects arising out of the process

pr(Yi = yi|Xi,β,Σ, Bi) =

mi∏

t=1

[F (bit + X′
itβ)]

yit [1 − F (bit + X′
itβ)]

1−yit

Consider a subset of the response Y∗ = (Y1p, . . . , Ynp) containing only a single outcome

per subject. Suppose that:

(i) The design matrix X is of full rank.

(ii) The likelihood of Y∗ given β, i.e., L(Y∗|β) has a unique maximum.

Then the joint posterior distribution arising from an improper prior of the form

π(β,Σ) ∝ π(Σ) is proper as long as π(Σ) is proper.

Proof. See Appendix A

In our case Σ, the correlation matrix for the random effects is characterized by

ρ having a compact support and hence the posterior will always be proper as long as

the above two assumptions are satisfied. It is easy to verify both the assumptions in

practice. The first assumption can be verified just by obtaining the determinant of

the design matrix which is routinely done by all software while the second one can be

checked by using any logistic regression software, which automatically checks for the

existence of the MLE.

Computation

Following the computational scheme outlined in Zeger & Karim (1991), we implement

the following MCMC steps using a Metropolis within Gibbs sampler to generate

samples from the posterior.

1. For i = 1, . . . n, draw (bi1, bi2, . . . , bim) from the full conditional distribution
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given by

f(bi|ψ,Y) ∝ LM1(β,bi|Yi)fb(bi1, · · · , biT ) (3.11)

using the Metropolis algorithm with (3.11) as the target distribution and the

proposal distribution is chosen to be Multivariate t with 0 mean and degrees of

freedom = 100.

2. Draw β using a Metropolis algorithm with the target density being the full

conditional distribution given by fβ(β|b,Y) ∝
∏n

i=1 LM1(β,bi|Yi)π1(β) with a

random walk proposal.

3. Draw η and ρ similarly using a Metropolis scheme with the target distributions

being π2(η)
∏n

i=1 fb(bi1, · · · , biT |η, ρ) and π3(ρ)
∏n

i=1 fb(bi1, · · · , biT |η, ρ) respec-

tively. The proposals chosen are Uniform(0,1) and Uniform(-1,1) respectively.

Since the Bridge density has heavier tails than the Gaussian distribution, we have cho-

sen the multivariate t distribution as our proposal. From expression (3.9), we can see

that if bit is very large or η ≈ 0 then Fb(bit) ≈ 1 and consequently Φ−1(Fb(bit)) ≈ ∞

so to achieve numerical stability, we perform a check that 0.00001 ≤ Fb(bit) ≤ 0.99999

throughout the MCMC computations.

III.1.2. Log-log link with positive stable random effects

When τ = log(− log), we have

pit = pit(bit) = pr(Yit = 1|bit,Xit) = exp[− exp{bit + X′
itβ}] . (3.12)

If we use Wit = exp(bit) ∼ St(η), which is the positive stable density with Laplace

transform
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E[exp(−uWit)] = exp(−uη) for the heterogeneity parameter 0 < η < 1, then we get

the marginal probability of the response as

pr(Yit = 1|Xit) = exp[− exp{ηX′
itβ}] , (3.13)

which has a log-log link function with attenuated regression parameter ηβ.

To ensure that bit has the marginal positive stable density with a flexible mul-

tivariate structure for bi, we again use the probability integral transform bit =

F−1
st (Φ(Zit)), where Φ(·) is the standard normal cdf, and F−1

st is the inverse of the

function Fst(exp(b)), Fst(w) is the cdf of St(η), and Φ′
Σ,T represents the T dimen-

sional multivariate normal density with zero mean vector and variance-covariance

matrix Σ such that Σst = ρst.

The cdf of the stable distribution does not have a closed form expression. Fol-

lowing Samorodnitsky & Taqqu (1994), the pdf and cdf of a random variable having a

Sη(σ, β, µ) distribution can be numerically approximated by the R function dstable

and pstable respectively. The expressions for the pdf and the cdf of a standard-

ized stable random variable was derived by Nolan (1997) in the form of integrals.

The R functions use these expressions and follow it up with a numerical integra-

tion to get an approximate value of the pdf and cdf of the stable random variable

given all the parameters. Once we have approximated the pdf (f̃Wit
(Wit)) and the

cdf (F̃Wit
(Wit)) of Wit, the approximate pdf and cdf of the random effect is given by

f̃b(b
∗) = f̃W (w) exp(b∗) and F̃b(b

∗) = F̃W (exp(b∗)), respectively.

Once the marginal densities of bit, t = 1, 2, . . . T are obtained, we can formulate

the joint density of the cluster-specific bi vector using the Gaussian copula. The

expression of this joint density is similar to the copula in (3.4) with Fb(bit) and

fb(bit|η) being replaced by, respectively, the cdf and pdf of the log-stable density

with index parameter η, which we have approximated by F̃b(.) and f̃b(.), respectively.
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Since the Yit’s within subject i are conditionally independent given Bi, the likelihood

contribution from the ith subject is

LM2i
(β,bi|Yi) =

m∏

j=1

[
exp(− exp{bitj + X′

itj
β})
]yij
[
1 − exp(− exp{bitj + X′

itj
β})
]1−yij

.

We use a MVN(µβ,Σβ) prior on β, Uniform (-1,1) prior on ρ and to make the

marginal odds for this model comparable with the marginal odds for the logit-link

model with bridge random effects and we impose a Uniform(0,1) prior on the index

parameter η. Then assuming a priori independence of β, ρ and η, we get the joint

prior distribution as πM(β, η, ρ) = πβ(β)πη(η)πρ(ρ). The joint posterior distribution

is proportional to

[
n∏

i=1

{LM2i
(β,bi|Y)fb(bi1, · · · , bim|ρ, η)}]πM(β, η, ρ) (3.14)

Computation

1. For i = 1, . . . n, draw (bi1, bi2, . . . , bim) from the full conditional distribution

given by

fM2(bi|ψ,Y) ∝ LM2i
(β,bi|Yi)fb(bi1, · · · , biT ) (3.15)

using the Metropolis algorithm with (3.15) as the target distribution and the

proposal distribution is chosen to be Multivariate t distribution with 0 mean

and degrees of freedom = 10.

2. Draw β using a Metropolis algorithm with the target density being the full

conditional distribution given by fβ(β|b,Y) ∝
∏n

i=1 LM2i
(β,bi|Yi)πβ(β) with

a random walk proposal.

3. Draw η and ρ similarly using a Metropolis scheme with the target distributions

being πη(η)
∏n

i=1 fb(bi1, · · · , biT |ρ, η) and πρ(ρ)
∏n

i=1 fb(bi1, · · · , biT |ρ, η), respec-
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tively. The proposals chosen are Uniform(0,1) and Uniform(-1,1) respectively.

III.1.3. Logistic link with Gaussian random effects

For model comparison purposes, we also present the GLMM model for binary re-

sponses with the frequently used multivariate logistic model with a multivariate Gaus-

sian distribution for the random effects, bi ∼ Nm(0,Σ), with fN
bi

(bi1, bi2, . . . , bim) =

Φ′
Σ,m(bi1, . . . , bim) is the density of the joint multivariate normal distribution with

variance-covariance matrix Σ and mean vector zero. Under this set-up, the likelihood

contribution from each subject conditional on bi is given by

LM3i
(β,bi|Yi) =

m∏

t=1

[
exp(bit + X′

itβ)

1 + exp(bit + X′
itβ)

]yit
[
1 −

exp(bit + X′
itβ)

1 + exp(bit + X′
itβ)

]1−yit

.

We use a MVN(µβ,Σβ) prior on β and a Uniform (-1,1) prior on ρ. Assuming a priori

independence of these parameters, the joint prior is given by πM(β, ρ) = πβ(β)πρ(ρ).

So the joint posterior distribution is proportional to

[
n∏

i=1

{LM3i
(β,bi|Yi)f

N
bi

(bi1, bi2 · · · , bim|ρ)}]πM(β, ρ)

Computation

The MCMC scheme to generate samples from this joint posterior distribution is out-

lined below:

1. For i = 1, . . . n, draw bi using a Metropolis scheme with the target distribution

being its full conditional distribution proportional to

LM3i
(β,bi|Yi)f

N
bi

(bi1, bi2, . . . , bim)

and proposal distribution being Multivariate normal with mean 0, and Disper-
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sion Matrix =100*Cov(Y).

2. Draw β using a Metropolis scheme with the target density being its full condi-

tional distribution given by g(β|b,Y) ∝ πβ(β)
∏n

i=1 LM3i
(β,bi|Yi) and choos-

ing a random walk proposal.

3. Draw ρ using Metropolis scheme with target density being g(ρ|b) ∝ πρ(ρ)
∏n

i=1 f
N
bi

(bi1, bi2, . . . , bim) and the proposal density being Uniform (-1,1)

Quantities of Interest

We have denoted the logistic link model with bridge random effects as M1, the log-

log link model with log-stable random effects as M2 and the logistic link model with

Gaussian random effects as M3. For all these models we report the following:

• Deviance Information Criterion (DIC) : Let D(ψ) denote the deviance given

by D(ψ) = −2 log p(Y|ψ) and define E(ψ) = ψ̄ and Eψ(D(ψ)) = D̄. Then DIC

= 2D̄ −D(ψ̄). We obtain DIC for M1, M2 and M3 and choose the model with

lower value of DIC.

• Population odds : The within group odds is a one-to-one function of exp(β).

We report exp(β) for all the considered models.

• Marginal odds : For M1 and M2 we only report exp(ηβ) with η being the

heterogeneity parameter for M1 and the index parameter for M2, while for M3,

we report the evaluated Eb

[
exp(β+b)

1+exp(β+b)

]
.

III.1.4. Example: parametric model for AIDS data

We apply our model to a longitudinal clinical trial performed on patients infected

with the human immunodeficiency virus. The purpose of this AIDS clinical trial was
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to compare two therapeutic treatments, viz., zidovudine (AZT) and didanosine. The

response of interest is the CD4 cell count, dichotomized at more than 200, versus,

200 or fewer cells per cubic millimeter, at weeks 0 (base-line), 2, 4 and 6. To describe

the treatment effect, we form an indicator variable AZTi = 1 if the ith subject is

randomized to AZT and 0 otherwise. To control for base-line age and disease stage

we define two more covariates, viz., age and AIDS. Agei is assigned the value 1 if age

of the ith patient is 35 years or more and 0 otherwise while AIDSi is assigned the value

1 if the ith subject has AIDS or AIDS-related complex, and is equal to 0 if the patient

is asymptomatic at base-line. The dataset contains records on 1528 patients, each of

whom were supposed to be observed at 4 fixed time points corresponding to weeks 0,

2, 4 and 6. However some of the patients dropped out as the study progressed. In

this article, we assume that all the missing data is non-informative.

We model the log-odds of a CD4 cell count of greater than 200 at a given time

as a function of treatment, age and AIDS. Exploratory analyses showed that a time-

invariant slope but time varying intercept model yields a better result. That is, we

considered the following conditional logit model,

logit{pit} = logit{pr(Yit = 1|bit, xik)}

= β0 + β1AZTi + β2Agei + β3AIDSi + β4I(t = 2) + β5I(t = 3) + β6I(t = 4) ,

where I(.) are indicator variables.

The results below is based on 100,000 MCMC samples with 20,000 samples con-

stituting the burn-in period. It is noted that all the intercepts are highly significant.

For the Bridge Model, the ‘Age’ and the ‘AIDS’ covariates are significant, while for

the Gaussian model and the log-log link model only the ‘AIDS’ covariate is significant.

The posterior summary of the population and marginal odds for M1,M2 and M3 are
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Table 1.: DICs for various models under consideration

Parameterization Bridge model Log-stable model Gaussian model

Time-invariant slope 1617.65 1144.5 1827.34

shown in Figure 2, Figure 3 and Figure 4, respectively.

We have used DIC as the model selection criterion. Table 1.gives the DICs for

the three models, M1,M2 and M3. Note that while DIC prefers the bridge model over

the Gaussian one, the log-stable random effects model with log-log link beats both

the bridge model and the Gaussian model quite comfortably.

Although the log-log model performed the best among these three, it is very

computationally expensive. We now extend the bridge model to a semiparametric

setup .

III.2. Semiparametric partially linear model

We extend the parametric model to a semiparametric setup where the effect of time

has been assumed to be unknown and estimated using spline basis function. Suppose

for individual i = 1, . . . , n, the random follow-up times are denoted by {Ti1 < . . . <

Timi
}. Let {Yi(t)} with Yij = Yi(Tij) denote the longitudinal outcome process with the

jth observed follow-up time for the ith individual denoted by tij and the corresponding

observed longitudinal response denoted by yij . For a given individual, define N =

[N1, . . . , NT ]T to be the T × 1 random vector with Nt taking the value 1 if Y (t) is

observed at time t and taking the value 0 otherwise. Clearly
∑T

j=1Nij = mi. Thus,

the process {Ni(t)} equals the number of follow-up visits of subject i by time t > 0.

In this paper, we assume that the stochastic model of {Ni(t)} can be ignored in order

to draw inferences on the model parameters (Ryu et al., 2007). Let the values of
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Y (t) at the observed follow-up times be denoted by Yo. Then, under this ‘ignorable’

follow-up model, we can write the likelihood as

L(Θ|Yo,X) =
n∏

i=1

mi∏

t=1

fYi(tit)(yit|Yi1 = yi1, . . . , Yi(t−1) = yi(t−1)) . (3.16)

The longitudinal model of {Yi(t)} is given by

Logit [P(Yit = 1|Xit, bit)] = g(t) + X′
itβ + bit , (3.17)

where bi = (bi1, . . . , bimi
)T has a multivariate bridge distribution whose density is

derived in (3.4). The correlation structure is assumed to be AR(1). We use a Bayesian

natural cubic regression spline to model g(t). With a certain number p of knots,

t1 < . . . < tp, with tj ∈ [Tmin, Tmax], we consider the space Sq (t1, . . . , tp) of splines

of order q. Here we take q = 4 to get the natural cubic splines. In this space,

S4(t1, . . . , tp) we can represent g by

g(t) =

p∑

j=1

CjSj(t) = S(t)C (3.18)

with known cubic spline basis functions S(t) = [S1(t), . . . , Sp(t)] and unknown basis

coefficients C = (C1, . . . , Cp)
T .

So the contribution of the ith subject in the Likelihood conditional on the pa-

rameters is given by

L(Yi|β,C,bi) =

mi∏

t=1

[
exp(bit + X′

itβ + g(t))

1 + exp(bit + X′
itβ + g(t))

]yit
[
1 −

exp(bit + X′
itβ + g(t))

1 + exp(bit + X′
itβ + g(t))

]1−yit

.

Then combining (3.16) and (3.17) we get the full likelihood to be

L(Yo|Θ,b) =
n∏

i=1

L(Yi|β,C,bi) , (3.19)

where Θ = (β, η, ρ,C). We use a time-varying intercept but a time-invariant slope
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regression model for the parametric part.

The joint prior distribution is assumed to be πs(Θ) = πs(β, η, ρ,C) = πβ(β)πη(η)

πρ(ρ)πC(C) where πβ(β) is MVN(0, Σβ), πη(η) is Uniform (0,1), πρ(ρ) is Uniform

(-1,1) and πC(C) is Np(0, Ip).

Under this set-up the joint posterior is proportional to :

[
n∏

i=1

L(Yi|β,C,bi)fb(bi1, · · · , bimi
|ρ, η)

]
πs(β, η, ρ,C) .

Computation

With the formulation in (3.18), the obvious question is the number of knots and

location of the knots. A computationally rigorous way to answer this question is to

employ a Reversible Jump MCMC to choose the optimum number of knots and then

optimally choose their location. To circumvent this computational complexity, we use

a fixed-knots approach and select the final model using DIC. The MCMC scheme to

draw samples from the joint posterior distribution is described below:

1. For i = 1, . . . n, draw (bi1, . . . , bimi
) from the full conditional distribution given

by

f(bi|Θ, Yi) ∝ L(Yi|β,C,bi)fb(bi1, · · · , bimi
) (3.20)

using a Metropolis algorithm with (3.20) as the target distribution and the

proposal distribution is chosen to be Multivariate t with 0 mean and degrees of

freedom = 100.

2. Draw C from the full conditional distribution given by

fC(C|b,Y) ∝ πC(C)L(Yo|Θ,b)

with a random walk proposal.
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3. Draw β using Metropolis algorithm with the target density being the full con-

ditional distribution given by fβ(β|b,Y) ∝ L(Yo|Θ,b)πβ(β) with a random

walk proposal.

4. Draw η and ρ similarly using a Metropolis scheme with the target distributions

being πη(η)
∏n

i=1 fb(bi1, · · · , bimi
) and πρ(ρ)

∏n
i=1 fb(bi1, · · · , bimi

), respectively.

The proposals chosen are Uniform(0,1) and Uniform(-1,1), respectively.

III.2.1. Example: semiparametric model for AIDS data

We use the same clinical trial as in Section 3 to explore the Semiparametric model.

The response of interest is still the CD4 cell count. However, in this section, we use

all of the collected outcome data, which includes 15 time points (basline and weekly

through 14 weeks from randomization). Further, along with the two covariates and the

treatment AZT, we add the covariate ‘performance status’ (PERF90) to the regression

model. The performance status is an attempt to quantify AIDS patients’ general

well-being, with PERF90=1 if the performance status is good, and PERF90=0 if the

performance status is poor. We assume an ‘ignorable’ follow-up model. Exploratory

analyses yielded better results when we modelled the parametric part with time-

varying intercepts but a time-invariant slope regression model. However the effect of

time is taken into account in the nonparametric part, where fixed points in time are

used to form the spline basis functions.

We perform 100,000 iterations and use the first 20,000 iterations as the burn-

in period. We find all the intercepts and the four covariates, viz., PERF90, AIDS,

Age and AZT, to be significant. For the population-level odds and marginal odds,

we report only exp(β) and exp(ηβ) respectively. The posterior summaries of these

representative values of the odds are shown in Figure 5.
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Figure 6 shows a comparison between the performance of the bridge random

effects semiparametric model developed in (3.17) as compared to the bridge random

effects ordinary parametric model described in (3.7) for two representative subjects,

viz., Subject 5 and Subject 29. The chosen two subjects are representative in the

sense that, while observations corresponding to every time-point for Subject 5 are

zero and thus show no curvature at all; Subject 29 shows a well balanced occurrence

of zeros and ones distributed over the considered time-period, thereby showing good

curvature. We note that the semiparametric model successfully captures the curvature

of the probabilities of success but the ordinary parametric model assigns almost the

same probability of success at all time-points. This explains why DIC prefers the

semiparametric model, with its DIC value equal to 4.03, to the ordinary parametric

one whose DIC value is 11.40.

Figure 7 shows the plot of Kendall’s τ of (Ya, Ya+t) at different lags for different

values of ρ.

III.3. Concluding remarks

We have developed parametric and semiparametric joint models for longitudinal mul-

tivariate binary data. This model can easily be extended to a situation where there

is an additional continuous outcome of interest that is also measured repeatedly over

time. For example, in longitudinal studies of cardiac patients, repeated measurements

of the binary outcome ‘shortness of breath’ (yes/no) and the continuous outcome sys-

tolic blood pressure are often collected. In such a situation, we can extend the results

to a joint longitudinal model of a binary and a continuous outcome at each time

point. For a joint analysis of both outcomes, the binary outcome can be modeled as

in Section III.1 and the continuous outcome can be modeled using a random effects

model. The correlation between the longitudinal binary and continuous outcomes can
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be induced by specifying correlations between the continuous random effect and the

bridge random effect using a joint multivariate Gaussian distribution.
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CHAPTER IV

BAYESIAN MODELING OF NON-GAUSSIAN GEOSTATISTICAL DATA VIA

COPULAS

Spatial dependence is as common and as interesting as temporal dependence. But

temporal processes have been explored to a far greater extent than the spatial pro-

cesses. Consequently, our understanding of the former is greater than that of the

latter. Relying on that understanding, we have developed a copula based Gener-

alized Linear Mixed Model for multivariate binary data observed over time, in the

previous chapter (Chapter III). It will be interesting to explore how we can adapt that

methodology to study spatial dependence. In this chapter, we develop a very general

model for analyzing spatial data, using copulas, and show that many traditionally

used spatial models are special cases of this copula-based geostatistical model.

Modeling spatial data with Gaussian processes is the common thread of all geo-

statistical analyses. However, non-Gaussian characteristics, such as nonnegative con-

tinuous variables with a skewed distribution, often with a heavy right or left tail or

with multiple modes, appear in many data sets from scientific fields. We need ways

to model those kinds of data sets. A common way to model this type of data is to

assume that the random field of interest is the result of an unknown nonlinear trans-

formation of a Gaussian random field. Trans-Gaussian kriging is the kriging variant

used for prediction in transformed Gaussian random fields, where the normalizing

transformation is assumed known. This approach has some potential weaknesses (De

Oliveira et al., 1997; Azzalini et al., 1999) such as (1) the transformations are usually

on each component separately, and achievement of joint normality is only hoped for;



32

(2) the transformed variables are more difficult to interpret, especially when each

variable is transformed by using a different function; (3) even though the normalizing

transformation can be estimated by maximum likelihood, it may be unwise to select

a particular transformation.

Alternatively, more general (flexible) parametric classes of multivariate distribu-

tions can be used to represent features of the data set as adequately as possible and

to reduce unrealistic assumptions. The pioneering work was started by Zellner (1976)

who proposed the regression model with multivariate Student t error terms. Many

interesting classes of distributions are reviewed by Johnson and Kotz (1972). Moore

flexible classes of sampling models (Palacios and Steel, 2006; Kim and Mallick, 2003)

have been developed based on a scaled mixture of Gaussian processes. A scale mix-

ture of Gaussian processes is successful in modeling heavy tailed symmetric spatial

data but may fail to capture the skewness present in the data. Recently, Kim and

Mallick (2004) introduced a skew-Gaussian process mimicking the characterization of

a Gaussian process. The characterization of this skew-Gaussian process is improper

as it does not advocate a valid stochastic process. Hence, predicted values of the

process at unobserved locations are not self coherent.

In this article we propose a novel way of dealing with geostatistical data that can

accommodate non-Gaussianity in all its forms, viz., skewness, tail-heaviness, multi-

modality. We differ markedly from the earlier approaches by fixing the distribution

of the marginal processes. These marginal processes are allowed to follow a non-

Gaussian distribution. The spatial dependence among them is achieved via copulas

(Joe, 1997; Nelsen, 1999). Recently, a Bayesian approach based on Gaussian copulas

had been developed by Pitt et al. (2006). The idea of a copula makes our model more

flexible in the sense that we allow the marginal distributions to follow any desired

distribution and yet achieve dependence among them. The use of latent variables to
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transform each marginal distribution to a desired distribution is the basic tool of this

modeling. We have used the multivariate elliptical distribution as the distribution of

the latent variable and prove that it satisfies Kolmogorov’s dimensional consistency

conditions with any arbitrary marginal distribution as long as the inverse of the dis-

tribution function exists. We adopt a fully Bayesian approach to perform inference

about the model parameters as well as to obtain the spatial prediction at unobserved

locations. Furthermore, we extend this model to a mixture model framework using

mixture kernels as the copula function to accommodate non-stationary data. Simula-

tions and real data analysis show the ability of the model to identify spatial clusters.

Finally, we develop a class of non-elliptical copula based models which can support a

valid random field and use it to model extreme value processes.

IV.1. Methodology

IV.1.1. Overview of elliptical distribution

A n× 1 random vector Z = (Z1, Z2, . . . , Zn) is said to have an elliptical distribution

with mean µ and covariance Σ if its density function is given by

|Σ|−
1
2 g
(
(Z − µ)TΣ−1(Z − µ)

)
(4.1)

for some function g satisfying the following properties:

1. g must be non-negative

2. g(||t||), t ∈ Rk is a characteristic function, where ||t|| denotes the norm of a

vector t.

3.

g(u) =

∫

[0,∞)

Ωk(r
2u)dF (r) u ≥ 0
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for some distribution function F on [0,∞), where Ω(||t2||), t ∈ R
k, is the

characteristic function of a k-dimensional random vector Uk which is uniformly

distributed on the unit sphere in Rk. Detailed description of these properties

can be found in Cambanis et al. (1981) and the references therein.

We use the notation Z ∼ ECn(µ,Σ, g) and the pdf of Z as obtained in (4.1) is denoted

by gµ,Σ(Z1, Z2, . . . , Zn).

IV.1.2. Properties of elliptical distribution

We note down a few properties of elliptical distributions that are required to build a

spatial model.

1. All distributions in the class ECn(µ,Σ, g) have the same mean µ and same

correlation matrix.

2. All marginal distributions of Z are identical with density function denoted by

qg(.) and distribution function denoted by Qg(.)

3. All marginal density functions of dimension j < n are elliptical and have the

same functional form.

4. For any given (m× n) matrix D of rank m, (m ≤ n), the random vector DZ ∼

ECm(Dµ, DΣDT , g).

5. If Z ∼ ECn(µ,Σ, g) is partitioned as Z = (Z1,Z2)
T , µ = (µ1,µ2)

T and

Σ =




Σ11 Σ12

Σ21 Σ22




with Z1 and µ1 are k × 1 vector and Σ11 is a k × k matrix, then the condi-

tional distribution of Z1|Z2 is a k−variate elliptical distribution with mean and
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covariance given by

E(Z1|Z2) = µ1 + Σ12Σ
−1
22 (Z2 − µ2)

Cov(Z1|Z2) = h(Z2)
(
Σ11 − Σ12Σ

−1
22 Σ21

)

for some function h depending on the exact pdf of Z.

IV.1.3. Formulation of spatial model

Let Y (S) be a random process defined for locations S in a spatial region D ∈ Rn.

Usual assumption is Y (S) is a second-order stationary error process with mean 0 and

has a valid correlation function of distance between the location points, parameterized

by a vector θ. We assume that we have observed a single realization from this random

process at n different locations S1, · · · ,Sn, and we denote the vector of observations by

Y = (Y1, · · · , Yn)
T where we use the notation Yi = Y (Si). Usually a joint distribution

is assumed for Y. In the literature, by far the most commonly made stochastic

assumption is that Y(S) is a Gaussian process. In contrast, we specify the marginal

distribution of Yi and construct the joint distribution by using copula.

Let qg(.) and Qg(.) be respectively the marginal pdf and cdf of an n dimensional

elliptical distribution ECn(0,Σ, g). Let each component Yi of Y have absolutely con-

tinuous distribution with density function denoted by fi(yi) and distribution function

denoted by Fi(yi). Assuming that Q−1
g (.) exists, we get the copula density for Y as:

fY(y1, . . . , yn|Σ,η) = |Σ|−
1
2 g0,Σ

(
Q−1
g (F1(y1; η1)), · · · , Q

−1
g (Fn(yn, ηn))

)

×
n∏

i=1

fi(yi; ηi)

qg(Q−1
g (Fi(yi; ηi)))

(4.2)

where ηi is the vector of parameters for the CDF Fi(yi) and η = (η1, · · · , ηn).

In process of modeling the joint distribution, we have to model the copula func-
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tion C(.) and the individual marginal distribution Fi, i = 1, · · · , n. Since, the copula

density involves the usage of an elliptical density function, we need to specify the

covariance function Σ for developing the spatial process. We assume the covariance

function only depends on the distance between two locations and not on the direction

(isotropy). For simplicity, we assume a generalized exponential covariance function

Σθ(l) = exp(−νlθ2) = θl
θ2

1 where l is the Euclidean distance between locations,

ν > 0, θ1 = exp(−ν) and θ = [θ1, θ2]. That is, for two distinct locations Si and

Sj separated by the distance lij, we assume Cov(Q−1
g (Fi(yi, ηi)), Q

−1
g (Fj(yj, ηj)))=

Σθ(lij). The assumption of generalized exponential covariance structure also allows

us to compare our results with the existing methods. However, extension to use more

general class of covariance functions is conceptually straightforward. In next section

we shall develop some flexible spatial processes by proper selection of copula struc-

ture and marginal processes and discuss some spatial assumptions imposed on the

marginal parameters η.

Flexible spatial processes

A spatial location Si is characterized by its spatial coordinates (Xi1, Xi2). Define

Xi = (1, Xi1, Xi2) and X = [X1, . . . ,Xn]
T . We assume a second order stationary

process with isotropic covariance structure. Furthermore, for simplicity, we assume

that the mean surface µ = [µ1, . . . , µn]
T is linear. Since, we want to incorporate

covariates in the marginal processes and model the skewness explicitly, we assume

that the marginal processes belong to the skew-elliptical family (Genton, 2004) with

location parameter µi, scale parameter ρi, and shape parameter αi. We relate these

marginal parameters with additional covariates in the process layer of the model.
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Gaussian process and Gaussian anamorphosis models

If we use a Gaussian copula with Gaussian marginals for Y, the model reduces to

the conventional zero-mean Gaussian process. The Gaussian copula with the copula

density is given by

fY(y1, . . . , yn|Σ,η) = φ0,Σ

(
Φ−1(F1(y1; η1)), · · · ,Φ

−1(Fn(yn, ηn))
)
×

n∏

i=1

fi(yi; ηi)

φ(Φ−1(Fi(yi; ηi)))

(4.3)

where φ(.) and Φ(.) are the density function and distribution function of a standard

normal distribution.

Furthermore, using a Gaussian copula with any other continuous marginal distri-

bution for Y yields the Bayesian model based approach with Gaussian anamorphosis

structure (Chilès & Delfiner, 1999).

Heavy tailed spatial processes

Similarly, we can generate heavy tailed spatial processes (Palacios and Steel, 2006)

using t copula or Logistic copula. The copula density for the t copula is given by

fY(y1, . . . , yn|Σ,η) = tΣ,k
(
T−1
k (F1(y1; η1)), · · · , T

−1
k (Fn(yn, ηn))

)
×

n∏

i=1

fi(yi; ηi)

tk(T
−1
k (Fi(yi; ηi)))

(4.4)

where tΣ,k denote the p.d.f of an n-variate t-distribution with covariance matrix Σ

and k degrees of freedom and Tk and tk denote the distribution function and density

function of an univariate t-distribution with d.f k and variance 1.
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Logistic copula

We followed O’Brien & Dunson (2004) proposal of a new parameterization of multi-

variate logistic distribution via multivariate t-distribution which is given by

Lν(z1, z2, . . . , zn) = tΣ,ν
(
T−1
ν

(
1/1 + e−z1, η1

)
, · · · , T−1

ν

(
1/1 + e−zn , ηn

))

×
n∏

i=1

L1(zi; ηi)

tν(T−1
ν (Fi(yi; ηi)))

(4.5)

where tΣ,ν , Tν and tν are defined analogously as in t copula and and L1(zi, ηi) is the

density function of the univariate logistic distribution with parameter η. The authors

further showed that this multivariate logistic distribution can be almost exactly ap-

proximated by setting ν = 7.3. In this paper, we approximate the logistic copula

density function by the expression (4.4) with k = 7.3

Skewed spatial processes

We develop skew-Gaussian processes by using Gaussian copula as in equation (4.3)

and fixing the marginal distribution of Yi to be skew normal (Azzalini and Capitanio,

1999; Azzalini and Dalla Valle, 1996; Genton, 2004) with the density function given

by:

fsn(yi;µi, ρi, αi) =
2

ρi
φ

(
yi − µi
ρi

)
Φ

(
αi
yi − µi
ρi

)
, ∞ ≤ yi ≤ ∞ (4.6)

where φ(.) and Φ(.) are described earlier. Recently, Kim and Mallick (2004) intro-

duced skew Gaussian process mimicking the characterization of Gaussian process.

The characterization of their skew-Gaussian process is improper as they do not ad-

vocate a valid stochastic process hence predicted values of the process at unobserved

locations are not self coherent.

Furthermore, we develop heavy tailed skewed spatial processes by fixing the

marginal distribution of Yi to be skew-t and combining the marginals with the ellip-
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tical copulas. The density function of skew-t is given by (Genton, 2004)

fst(yi;µi, ρi, αi) = 2fk1,k2(yi;µi, ρi)Fk∗1 ,k∗2 (αi × (yi − µi)) (4.7)

where fk1,k2(.;µi, ρi) is the pdf of a univariate generalized t distribution with location,

scale and shape parameters are given by µi, ρi, k1 and k2, respectively, and Fk∗1 ,k∗2 (.)

is the cdf of a univariate standard generalized t distribution, with k∗1 = k1 + 1 and

k∗2 = k2 + (yi−µi)
2

ρi
. For simplicity we fix, k1 = k2 = 1. Similarly, development

of skew Laplace copula is straight forward. Thus, the marginal parameters ηis are

characterized by the site-specific location parameter µi, scale parameters ρi and the

shape parameters αi.

IV.1.4. Hierarchical model

In this section we shall discuss the development of the hierarchical Bayesian models

and implementation issues using MCMC computation.

Data model

Given the entire parameter vector ξ1 = (µ,ρ,α,θ), where ρ = (ρ1, . . . , ρn) and

α = (α1, . . . , αn), using (4.2), we obtain the joint distribution of Y as

L(Y|ξ1) ∝ g0,Σ

(
Q−1
g (FY1(y1;µ1, ρ1, α1)), . . . , Q

−1
g (FYn(yn;µn, ρn, αn))

)

×
n∏

i=1

fYi
(yi;µi, ρi, αi)

qg
(
Q−1
g (Fi(yi;µi, ρi, αi))

) . (4.8)

This constitutes the data layer of our model. We need to verify that the model

proposed in (4.8) indeed supports a valid stochastic process satisfying Kolmogorov’s

conditions. Hence the following results :

Result 3.1: L(Y|η) is absolutely continuous.
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Result 3.2: L(Y|η) supports a valid stochastic process.

Result 3.3: If the correlation structure for Q−1
g (F (y)) is isotropic, so is the depen-

dence structure of Y.

Proof. See Appendix A

Process model

In this layer of hierarchy, we relate marginal parameters of the data layer with

available covariates in a hierarchical fashion. Furthermore, we model the mean

function as a Gaussian process with its mean depending on the covariates and its

covariance depending upon the distance between the sites. Accordingly, we have

µ|ρ ∼ N(XTβµ, diag(ρ1, . . . , ρn)Σθµ) where Σθµ = θl
θ2µ

1µ . We model scale parame-

ters as log(ρ) = (log ρ1, . . . , log ρn) ∼ N(−0.5,Σθρ) where Σθρ = θl
θ2ρ

1ρ . We have

a little information about the sensitivity of the shape parameters to the regional

covariates. However, it is fair to assume that they will depend on the spatial lag

between two locations. Hence, we assume α ∼ N(0,Σθα) where Σθα = θl
θ2α

1α . Finally,

we assume a Uniform (0,1) prior for θ1 and Uniform (0,2] prior for θ2. Denoting

ξ2 = (βµ, θ1µ, θ2µ, θ1ρ, θ2ρ, θ1α, θ2α), we get the process model as

π(ξ1|ξ2) ∝ f(µ|βµ,ρ, θ1µ, θ2µ) × f(ρ|θ1ρ, θ2ρ) × f(α|θ1α, θ2α).

Priors

In this final hierarchical structure we assign priors on ξ2. We assume βµ ∼ N(0,ΣµI)

for some large Σµ. θ1µ, θ1ρ, θ1α are assumed to be independently distributed as Uni-

form (0,1) and θ2µ, θ2ρ, θ2α are distributed independently as Uniform (0,2]. Thus, the

prior model is given by

π(ξ2) ∝ f(βµ).
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Using the hierarchical structure described above, we get the joint posterior distribu-

tion proportional to L(Y|ξ1) × π(ξ1|ξ2) × π(ξ2).

IV.1.5. Prediction

Let Yk×1
0 = Y(S0) = (Y(S01, . . . ,Y(S0k)) be the realizations at unobserved locations

(S01, . . . , S0k). In order to predict Y0, we need to calculate the posterior predictive

density given by :

f(Y0|Y) =

∫
f(Y0|ξ,Y)π(ξ|Y)dξ (4.9)

where ξ = (ξ1, ξ2] is the entire set of parameters . Further, we assume that Y0 comes

from the same random field as do the observations Y. Let us denote

Σ∗(n+k×n+k) =




Σn×n Σ12

Σ21 Σk×k
22




to be the dispersion matrix corresponding to the augmented data vector (Y,Y0)
T .

Further, we set u∗i
∆
= FYi

(yi;µi, ρi, αi). Then from (4.8), we get the joint distribution

of (Y,Y0|ξ) to be

f(Y0,Y|ξ) ∝ g0,Σ∗(Q−1
g (u∗1), . . . , Q

−1
g (u∗n+k))

∏n+k
i=1 fYi

(yi;µi, ρi, αi)∏n+k
i=1 qg(Q

−1
g (u∗i ))

. (4.10)

Using (4.10) and (4.8), we get the conditional distribution of Y0 given Y and ξ as

f(Y0|Y, ξ) ∝
g0,Σ∗(Q−1

g (u∗1), . . . , Q
−1
g (u∗n+k))

g0,Σ(Q−1
g (u∗1), . . . , Q

−1
g (u∗n))

n+k∏

i+1

fYi
(yi;µi, ρi, αi)

qg(Q−1
g (u∗i ))

= R
n+k∏

i+1

fYi
(yi;µi, ρi, αi)

qg(Q−1
g (u∗i ))

(4.11)

where

R =
g0,Σ∗(Q−1

g (u∗1), . . . , Q
−1
g (u∗n+k))

g0,Σ(Q−1
g (u∗1), . . . , Q

−1
g (u∗n))

. (4.12)
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From Property 5 in Section IV.1.2, we can see that R is the density function of a

k variate elliptical distribution. For example, in case of Gaussian copula, R is the

density of a k variate Normal distribution with mean Ek = −Σ21Σ
−1V1 and variance

Γk = Σ22 − Σ21Σ
−1Σ12 where V1 = (Φ−1(u∗1), . . . ,Φ

−1(u∗n)).

Denoting the conditional mean and conditional variance of the k variate elliptical

distribution by Ek and Γk respectively, we can write :

R = gEk,Γk
(Q−1

g (u∗n+1), . . . , Q
−1
g (u∗n+k)). (4.13)

Combining (4.13) and (4.11), we get the conditional distribution of Y0 given Yand

η as

f(Y0|Y, ξ) ∝ gEk,Γk

(
Q−1
g (u∗n+1), . . . , Q

−1
g (u∗n+k)

) n+k∏

i+1

fYi
(yi;µi, ρi, αi)

qg(Q−1
g (u∗i ))

. (4.14)

Computation

As the joint posterior distribution cannot be analyzed analytically, we have to rely

on Markov chain Monte Carlo (MCMC) methods to simulate the parameters from

this posterior distribution. Furthermore, the full conditional distributions are not of

explicit form. Hence, we use Metropolis-Hastings algorithm to simulate all the pa-

rameters. The detail steps of MCMC computations are in the supplementary website.

Finally, we develop an algorithm to approximate the posterior predictive density

f(Y0|Y) as follows.

1. Discretize the effective range of Y0 to get the set S0.

2. Generate ξ11, . . . , ξ1s ∼ iid π(ξ1|ξ2). Note that conditional on ξ2, the elements

of ξ1 are independent. So this amounts to drawing the data layer parameters

from their respective priors.
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3. For all Y0 ∈ S0 approximate f(Y0|Y) by

f̂s(Y0|Y) =
s∑

i=1

f(Y0|Y, ξ1i)ω(ξ1i) (4.15)

where

ω(ξi) =
f(Y|ξ1i)∑s
j=1 f(Y|ξ1j)

and f(Y0|Y, ξ1i) is given in (4.14) and f(Y|ξ1i) is given in (4.8).

Geweke (1989) had shown that under regularity conditions f̂s(Y0|Y) is a consistent

estimator of f(Y0|Y) and f̂s(Y0|Y) →a.s (Y0|Y) as s → ∞. Once we obtain the

posterior predictive distribution of Y, the median of f(Y0|Y) yields a robust estimate

of the response at locations S0 which is denoted as Ŷ0.

IV.1.6. Model adequacy

Since the main purpose of the proposed model is prediction, we use a cross vali-

dation approach based on single-point-deleted predictive distribution to assess the

adequacy of our model. Let yi,obs. be the observed value at ith location and y−i,obs. =

(y1,obs., . . . , yi−1,obs., yi+1,obs., . . . , yn,obs.) be the data set with i th observation deleted,

i = 1, . . . , 24. To assess the predictive accuracy of our models, we need to ascertain

how well the models predict each Yi based on y−i,obs.. If Ŷi denotes the median of the

predictive distribution (Yi|y−i,obs.), then a natural measure to assess the predictive

accuracy is obtained by the prediction residual given by ri = (yi,obs. − Ŷi). Once we

get the prediction residuals, then we can compare the predictive accuracy of the vari-

ous competing models using the mean square prediction error (MSPE) criterion given

by 1
n

∑n
i=1 r

2
i and the empirical coverage probability of the nominal 95% prediction

intervals.
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IV.1.7. Simulation: stationary random field

We perform extensive simulations to evaluate the performance of proposed models

under complete misspecification. We generate data from the random field using Gaus-

sian, T2 and Logistic copulas. For each copula, we select two different type of marginal

distributions, viz., skew-normal with ρ = 12 and α = 2.5 and skew-t2 with ρ = 8.3

and α = 5. Hence, we have six copula-marginal combinations of true models. The

correlation matrix, Σθ, has the generalized exponential structure defined earlier with

θ1 = 0.5, θ2 = 1.7.

Then we fit these six copula-marginal combination models to the generated data

sets to compare their performance under model misspecification. For this and all other

subsequent analyses, the degrees of freedom for the t copula and skew-t marginals are

obtained via exploratory analyses. We check the model adequacy and evaluate the

predictive performance using the methods described in Section IV.1.6. The predictive

performance in terms of MSPE and coverage probability of 95% predictive interval

(shown in parenthesis) are shown in Table 2..

It is evident that in general the predictive performances of the models with

correctly chosen marginals are better than those with misspecified marginals. This

indicates that the choice of marginals is more crucial from the prediction perspective.

Moreover, for most of the cases, the empirical coverage of the 90% prediction intervals,

though lower than the nominal level, are fairly stable and not overly optimistic.

Finally, the T2-copula-skew t-marginals model has consistently performed better than

the other proposed models and their performance is the most robust under model

misspecifications.
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Table 2.: Comparison among various copula models

Fitted Model True Model

Gaussian Gaussian T2 T2 Logistic Logistic
Skew-normal Skew-t Skew-normal Skew-t Skew-normal Skew-t

Gaussian 0.9301 3.1881 0.8281 3.1584 1.3911 3.4427
Skew-normal (91%) (78%) (89%) (77%) (74%) (72%)

Gaussian 0.9318 1.5976 0.8717 1.3776 1.4630 1.9586
Skew-t (94%) (94%) (94%) (94%) (88%) (89%)

T2 1.009 2.1875 0.7657 2.7749 1.1430 3.2732
Skew-normal (95%) (87%) (94%) (80%) (84%) (78%)

T2 1.0205 1.7389 0.7611 1.2941 1.2005 1.8944
Skew-t (96%) (94%) (96%) (96%) (95%) (95%)

Logistic 1.2725 3.2021 0.7852 2.8463 0.9476 3.0033
Skew-normal (89%) (79%) (85%) (74%) (93%) (75%)

Logistic 1.2894 1.6483 0.8252 1.5396 0.9547 1.3532
Skew-t (95%) (90%) (89%) (93%) (95%) (93%)

IV.1.8. Example: modeling spatial rainfall pattern

The dataset comprises of rainfall amounts (in mm) accumulated over a 7-day period,

from 76th day to the 82nd day of 1991 near Darwin, Australia during the rainy

season. The rainfall was measured using rain gauges at 24 sites located in a region,

called a D-scale region, of about 10 km × 10 km. The D-scale network was designed

approximately on a regular 10 km × 10 km grid with gauge spacing approximately

2 km. The purpose of this D-scale network is to provide high quality validation data

over a small domain. However, site availability limited the establishment of gauges,

and the average gauge density is one gauge per 5.3 km2. The main purpose of this

study is to devise a model which can be used for accurate spatial interpolation, thus

alleviating the problem of relative sparsity of rain gauges in the D-scale region. If

the proposed models demonstrate significantly accurate predictive capability, they

can be used for spatial interpolation to obtain high quality validation data in spite



46

of low gauge density in the D-scale region. As a preliminary adjustment, we center

the observations around the observed mean and then scale it down by the observed

standard deviation. The D-scale region is located on the coastal pain of the Adelaide

river where the terrain is very flat with no orographic or climatological variations,

hence we assume the covariates to be the latitude and longitude of a site under

consideration. We consider three types of copulas, namely, Gaussian , t and logistic

and two types of marginals, namely, skew-Gaussian and skew-t yielding six competing

models each with different copula-marginal combination. The degrees of freedom for

the t copula is chosen based on exploratory analyses. The values for Σµ has been

varied from 5 to 100 to assess prior sensitivity.

We compare the predictive accuracy of our model with that of the Bayesian

Trans-Gaussian kriging (BTG), Trans-Gaussian Kriging (TGK), log-normal kriging

(LNK) and ordinary kriging (OK) methods. Table 3. provides the MSPE and coverage

probability of the 95% prediction interval for various copula-marginal combinations

and other geostatistical models.

It can be clearly seen that the copula models perform better than the other ex-

isting models with the t copula-skew t marginal model showing the best performance.

Figure 8(a) shows the plot of the posterior median of α along with its 95% credible

interval observed at different sites in the D-scale region using the best fitted model.

Note that for most of the sites, the credible interval for α does not contain 0 indicating

departure from Gaussianity.

Finally, as a rough measure to assess the goodness of fit of our model, we plot the

kernel smoothed densities of the actual observations along with the kernel smoothed

predictive density in Figure 8(b). It seems that the predictive distribution fits the

observed data adequately.

In the following section we discuss how our proposed models can be modified to
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Table 3.: Comparison of copula models with kriging variants

Model/ Copula Marginals MSPE 95% PI coverage

Gaussian Skew-normal 41.24 79.16%
Skew-t 38.75 87.5%

T10 Skew-normal 36.15 87.5 %
Skew-t 27.90 91.6 %

Logistic Skew-normal 41.86 83.3%
Skew-t 46.38 83.3%

BTG - 51.73 91.6%

TGK - 77.99 75%

OK - 58.45 79.1 %

LNK - 68.56 75%

handle binary data and illustrate this modification with a real life example.

IV.2. Modeling spatial binary data

The proposed copula method can be easily extended to model discrete data. We

illustrate this extension by modeling a realization of binary data obtained over a

spatial random field. The key idea of this binary-copula model is to write it in the

form of a generalized linear mixed effects model. While the fixed effects capture the

mean surface, the random effects are introduced to capture the underlying spatial

process.

Assuming a logit-link and given the vector of random effects b = (b1, . . . , bn), the

response Yi for location i is assumed to be independent Bernoulli random variable,

i.e., Yi|bi ∼ Bern(pi), with

pi = pr(Yi = 1|bi,β) =
exp(bi + X′

iβ)

1 + exp(bi + X′
iβ)

(4.16)



48

where bi follows an univariate skew elliptical distribution with mean 0, scale ρi and

shape αi. These marginal densities are combined using an elliptical copula to yield a

valid spatial process. Then the likelihood is given by

L(Y |β,Σ,ρ,α) ∝

∫ n∏

i=1

pr(Yi = 1|β, bi)f(b|0,Σ)db

where f(b|0,Σ) is joint density of b described in (4.2) with Σ = θl
θ2

1 . In the second

level of hierarchy, we assume β ∼ Nk(0,Σβ), log(ρ) ∼ Nn(−0.5,Σθρ(l)), and α ∼

Nn(0,Σθα(l)), where Σθρ(l) = θl
θ2ρ

1ρ and Σθα(l) = θl
θ2α

1α . We assume θ1 is distributed

as Uniform (0,1), while θ2 is distributed as Uniform (0,2]. In the third layer of

hierarchy, we impose priors on Σβ, θ1ρ, θ1α, θ1ρ, θ1α. We assume the parameters to be

independent a priori and assign an Inverse-Wishart(I, 10) prior on Σβ, θ1ρ, θ1α are

assumed to distributed independently as Uniform (0,1), while θ2ρ, θ2α are distributed

independently as Uniform (0,2]. Then the joint posterior distribution is proportional

to

f(β|0,Σβ)f(ρ| − 0.5,Σθρ)f(α|0,Σθα)f(Σβ)
n∏

i=1

pr(Yi = 1|bi,β)f(b|0,Σ).

We draw samples from the posterior distribution using Metropolis within Gibbs sam-

pling scheme.

IV.2.1. Example: outbreak of equine encephalomyelitis in Texas

An outbreak of equine West Nile Virus encephalomyelitis cases were reported to Texas

disease authorities during 2002. This had a significant effect on the equine population

of Texas. Since, the horses form a significant proportion of livestock in the state

of Texas, the economic impact of this outbreak was pronounced on the state rural

economy. A standard equine neurological disease report was completed recording

outcomes (recovered, died/ euthanasized) of 1299 cases diagnosed with West Nile
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Virus encephalomyelitis, their spatial location, the clinical symptoms associated with

the disease and the vaccination status. Using this data, we intend to explore the

spatial variation present in the odds of a case of death (versus surviving). In doing

so, we try to identify significant disease clusters and predict the odds of death at

unobserved locations.

Let Yi = Y (Si) denote the outcome of a particular case at location Si which takes

the value 0 if the horse survived and takes the value 1 otherwise. Then conditional

on the underlying stationary spatial process b(S), the model for Yi can be written as

a classical generalized linear mixed model given by

logit[E(Yi|bi)] = X′
iβ + bi.

The covariates available for this study are the clinical symptoms including ataxia,

falling-down, recumbency, lip-droop. The vaccination status of the horse as well as

the spatial coordinate at which the case was reported are other covariates.

Results and Model Selection

Since the main focus of this model is to predict the odd of death of a horse at an un-

observed location, we perform a leave-one-out cross validation as outlined in Section

IV.1.6. As a measure of performance, we use the percentage of correctly classified

cases with respect to survival status based on the single-point-deleted predictive dis-

tributions. The predicted odd of death at various locations are shown in Figure 9. A

disease cluster can easily be identified in the north-eastern part of Texas.

Table 4. shows the classification accuracy of various models obtained assuming

different spatial processes for b. Note that all copula variants have better classification

accuracy as compared to the traditional Gaussian random effects model.
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Table 4.: Classification performance of various copula models

Model/ Copula Marginals Percentage of observations correctly classified

Gaussian Skew-normal 0.8815
Skew-t 0.9037

T10 Skew-normal 0. 8855
Skew-t 0.8926

Logistic Skew-normal 0.8845
Skew-t 0.8906

Gaussian - 0.80

IV.3. Modeling non-stationary random field

Here we propose an extension to the copula model discussed so far so that it can

accommodate covariance-non-stationary spatial processes, and thereby can identify

homogeneous data clusters. This model is rich enough to accommodate multi modal,

skewed and heavy-tailed data.

For this purpose, we propose a mixture of elliptical kernels as our copula func-

tion.We define a M th order mixture model as a model where the number of compo-

nents in the mixture is M . In the following sections, we describe the full hierarchical

structure of the M th order mixture model.

IV.3.1. Hierarchical model

Data model

Let the structural covariance parameter vector θ be partitioned into (θ1,θ2), where

θ1 = (θ11, θ21, . . . , θM1) and θ2 = (θ12, θ22, . . . , θM2) and the mixing parameters be de-

noted by Π = (π1, . . . , πM). Then, conditional on the parameters ξ1 = (µ,ρ,α, θ1, θ2,Π),
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the data layer model is given by:

LM(Y|ξ1) ∝
M∑

j=1

πjg0,Σj

(
Q−1
g (F1(y1;µ1, ρ1, α1)), . . . , Q

−1
g (Fn(yn;µn, ρn, αn)

)
)

n∏

i=1

fi(yi;µi, ρi, αi)

qg
(
Q−1
g (Fi(yi;µi, ρi, αi))

) . (4.17)

where Σj = (Σθj
(l)) = θl

θj2

j1 .

Result 3.4: Properties of single component model (Result 3.1-3.3) hold true for

the sampling model described in (4.17).

Proof. See Appendix A .

Note that the data model described in (4.17) is symmetric under all permutations

of π and Σj, thus giving rise to the so called ’label switching’ problem. However, the

main focus of the present study is spatial prediction, therefore we are more concerned

with the posterior predictive distribution. In the later section, we have derived the

predictive density under this sampling model, and that does not depend on how the

mixture components are labeled. The fact that the predictive density is unaffected

by the label switching problem was also noted by Stephens (2000). However, for

inferential purpose, we do impose identifiability constraints to circumvent the label

switching problem. Simulation studies and exploratory analyses that we have under-

taken prompted us to impose the following identifiability constraints:

θ11 > θ21 > . . . θM1 and θ12 > θ22 > . . . θM2.

Process model

Once again, in this layer we relate the parameters of the data layer with all available

covariates associated with the spatial process. We assume that µ ∼ N(h(βµ,X),Σθµ)
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for some function h(.). We model log-transformed scale parameters as log ρ ∼

N(−0.5,Σθρ). The shape parameters are allowed to follow a N(0,Σθα) distribution

where the structures of Σθµ ,Σθρ ,Σθα are same as that described in Section IV.1.4.

The mixing parameters Π are assumed to follow Dirichlet (γ1, γ2, . . . , γn). Under the

identifiability conditions described earlier, we propose a structured model for θ. We

assume a single step Markovian prior structure for the joint distribution of both θ1

and θ2, that is,

π(θ1) = π(θ11)π(θ21|θ11) . . . π(θM1|θ(M−1)1)

with θ11 ∼ Uniform(0, 1), θj1|θ(j−1)1 ∼ Uniform(0, θ(j−1)1). (4.18)

Similarly, we define the prior for θ2 as

π(θ2) = π(θ12)π(θ22|θ12) . . . π(θM2|θ(M−1)2)

with θ12 ∼ Uniform(0, 2], θj2|θ(j−1)2 ∼ Uniform(0, θ(j−1)2). (4.19)

Let the set of hyper parameters in the process layer be denoted by

ξ2 = (βµ, θ1µ, θ2µ, θ1ρ, θ2ρ, θ1α, θ2α, γ1, . . . , γn). Then conditional on ξ2, the process

layer model is given by:

π(ξ1|ξ2) ∝ f(µ|βµ, θ1µ, θ2µ) × f(ρ|θ1ρ, θ2ρ) × f(α|θ1α, θ2α) × f(Π|γ1, . . . , γn).

Priors

We assume βµ to have a Normal (0,ΣµI) distribution for some large Σµ. The choice

of priors for (θ1µ, θ2µ, θ1ρ, θ2ρ, θ1α, θ2α) remain same as in Section IV.1.4. We further

assume that γ1, . . . , γn are independent and identically distributed realizations from
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an exponential distribution with mean 0.5. Thus, the prior model is given by

π(ξ2) ∝ f(βµ) ×
n∏

i=1

f(γi).

Then, the joint posterior distribution of ξ = (ξ1, ξ2) is proportional to :

LM(Y|ξ1) × π(ξ1|ξ2) × π(ξ2). (4.20)

IV.3.2. Prediction

The posterior predictive density of the realizations Yk×1
0 = Y(S0) = (Y(S01), . . . ,Y(S0k))

at unobserved locations (S01, . . . , S0k) is given in the expression (4.9). We also as-

sume that Y0 arise from the same random field as do the observations Y. The jth

component dispersion matrix for the augmented data vector (Y,Y0)
T is denoted by

Σ
∗(n+k×n+k)
j =




Σn×n
j Σ12j

Σ21j Σk×k
22j




. Further we set u∗i
∆
= Fi(yi;µi, ρi, αi). Then from (4.17), we obtain the joint distri-

bution of (Y,Y0|η,Π) to be :

LM(Y0,Y|η,Π) ∝

M∑

j=1

πjg0,Σj

(
Q−1
g (u∗1), . . . , Q

−1
g (u∗n+k)

)

×

n+k∏

i=1

fi(yi;µi, ρi, αi)

qg
(
Q−1
g (u∗i )

) . (4.21)

Combining (4.17) and (4.21), we obtain the conditional distribution of Y0 given Y,η

and Π as

f(Y0|Y,η,Π) ∝
M∑

j=1

πjg0,Σj

(
Q−1
g (u∗1), . . . , Q

−1
g (u∗n+k)

) n+k∏

i+1

fi(yi;µi, ρi, αi)

qg
(
Q−1
g (u∗i )

) . (4.22)



54

Once we have (4.22), we can approximate the posterior predictive density f(Y0|Y)

using the algorithm outlined in Section IV.1.5.

Computation

The MCMC algorithm to draw from the posterior distribution obtained in (4.20) is

described below

1. Sample α from the target distribution LM(Y|η,Π)π(α) using random walk pro-

posal.

2. Sample β from the target distribution LM(Y|η,Π)π(β) using random walk

proposal.

3. Sample ρ using a Metropolis-Hastings scheme with Gamma(25,0.5) as a proposal

distribution.

4. Sample (θ11, θ21, . . . , θM1) individually using the Metropolis scheme with Unif(0,1)

as the proposal distribution.

5. Sample (θ12, θ22, . . . , θM2) individually using the Metropolis scheme with Unif(0,2]

as the proposal distribution.

6. For model of order M , draw Π = (π1, π2, . . . πM) using a Metropolis-Hastings

scheme with Dirichlet as the proposal distribution.

We use posterior model probability as the model selection criterion. We consider up

to models of order K and these models are denoted by M1,M2, . . . ,MK respectively.

Then the posterior model probability corresponding to Mk is given by

P (Mk|Y) =
P (Y|Mk)P (Mk)∑K
r=1 P (Y|Mr)P (Mr)

(4.23)
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Table 5.: Posterior probabilities for models of various order

Copula Marginals Order
1 2 3 4 5

Gaussian Skew-normal 0.0000 0.0001 0.0002 0.5554 0.4443
Skew-t 0.0495 0.0247 0.0124 0.5075 0.4060

T10 Skew-normal 0.0018 0.0009 0.0005 0.5538 0.4430
Skew-t 0.0845 0.0423 0.0211 0.4374 0.3787

Logistic Skew-normal 0.0046 0.0023 0.0011 0.5511 0.4409
Skew-t 0.0889 0.0444 0.0222 0.4692 0.3753

where P (Mk) is the prior probability associated with the model Mk and P (Y|Mk) =
∫
LMk

(Y|ξ1k,Mk)π(ξ1k|ξ2k,Mk)π(ξ2k|Mk)dξk, ξk = (ξ1k, ξ2k) being the vector of the

all parameters in the model Mk. Since P (Y|Mk) is not of closed form in this case,

we use Monte-Carlo method we approximate the integral. Once we have samples

from the posterior distribution of the parameters given in (4.20), we exploit them to

estimate these probabilities.

IV.3.3. Simulation: non-stationary random field

To study the ability of the proposed mixture model for identifying the true model

even under complete misspecification, we perform an extensive simulation study. We

generate six data sets considering the six models under our consideration (three copula

each having two types of marginals) as the true model. Each data set contains 100

data points from a four component mixture model. We use six proposed models to

analyze these data sets to check their robustness under model misspecification. We

consider up to the fifth order model. The posterior model probabilities of each order

are shown in Table 5.

It is clear that all the proposed models are able to identify the correct order.

Subsequently, in Table 6., we compare the predictive accuracies of the all the fourth
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Table 6.: Comparison among various mixture-copula models

Fitted Model True Model

Gaussian Gaussian T2 T2 Logistic Logistic
Skew-normal Skew-t Skew-normal Skew-t Skew-normal Skew-t

Gaussian 0.5644 1.2625 1.1140 2.3575 0.7214 2.48
Skew-normal (85%) (71%) (92%) (69%) (91%) (75%)

Gaussian 0.5664 0.5149 1.1277 0.4851 0.7471 0.8727
Skew-t (89%) (94%) (92%) (91%) (93%) (81%)

T2 0.680 1.6281 0.833 1.2358 0.6682 1.4243
Skew-normal (88%) (72%) (95%) (84%) (95%) (80%)

T2 0.7662 0.5565 0.8425 0.4211 0.7184 0.7090
Skew-t (94%) (95%) (95%) (96%) (96%) (94%)

Logistic 0.8637 1.2529 1.0598 1.6727 0.5381 1.3349
Skew-normal (87%) (71%) (93%) (73%) (94%) (80%)

Logistic 0.8857 0.5717 1.0748 0.5046 0.5539 0.5925
Skew-t (92%) (91%) (95%) (90%) (94%) (92%)

order models.

Once again we notice that the MSPE of the models with correctly chosen marginals

are lower than the ones with misspecified marginals, reinforcing our belief that the

proper selection of marginals is of paramount importance. Also, it is to be noted that

among all the misspecified models, the performance of the t2-copula-skew t-marginals

model is most stable. This indicates the robustness of the above mentioned model.

IV.3.4. Example: spatial permeability prediction

Petroleum reservoirs are complex geological formations that exhibit a wide range

of physical and chemical heterogeneities. These heterogeneities span over multiple

length scales and are impossible to describe in a deterministic fashion. Geostatis-

tics, and more specifically, stochastic modeling of reservoir heterogeneities are being

increasingly considered by reservoir analysts and petroleum engineers for their poten-
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tial in generating more accurate reservoir models together with realistic measures of

spatial uncertainty. The goal of reservoir characterization is to provide a numerical

model of reservoir attributes such as hydraulic conductivities (permeability), stora-

tivities (porosity) and fluid saturation. These attributes are then used as inputs

into complex transfer functions represented by various flow simulators to forecast

future reservoir performance and oil recovery potential. In predicting future reser-

voir performance, it is imperative to have a geological model that can be considered

a ’plausible’ replica of the actual reservoir with acceptable uncertainty. Towards

this objective, we need more flexible modeling approaches to reproduce complex ge-

ological/morphological patterns and the wide variety of architectural heterogeneities

observed in petroleum reservoirs.

In most flow situations, the single most influential input is the permeability

spatial distribution. Permeability is an important concept in porous media flow (such

as flow of underground oil). Physically, permeability arises both from the existence

of pores and from the average structure of the connectivity of pores. Mathematically,

fluid flow can typically be described by Darcy’s law, which states that for steady-

state flow in a porous medium, v = −ρ δp
L

1
µ
, where ρ is the permeability, v is the

volume flux per surface area of some region of length L, µ is the viscosity and p is

the pressure. The key role of permeability is evident from Darcy’s law. In practice,

therefore, dealing with the variability and uncertainties about permeability is critical

for modeling porous flow.

Hence, permeability predictions are a vital aspect of a reservoir description but

due to petrophysical variations rooted in digenesis, grain size variation, cementation,

we observe highly heterogeneous behavior of the process at different regions of the

reservoir (Lee et al. 1999). Modeling this heterogeneities is important as it has effect

on the amount of recovered oil. Usually single stationary process fails to capture this
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Table 7.: Posterior probabilities for models of various order

Copula Marginals Order
1 2 3 4 5

Gaussian Skew-normal 0 0 0.3117 0.4378 0.2505
Skew-t 0 0 0.0056 0.5525 0.4420

T10 Skew-normal 0 0.002 0.2071 0.4394 0.3515
Skew-t 0 0 0.1104 0.4942 0.3954

Logistic Skew-normal 0.0042 0.1130 0.2221 0.3670 0.2936
Skew-t 0 0 0.18 0.4556 0.3645

huge heterogeneity and mixture models will be ideal to explore this data.

The Schneider Buda field is located in the Wood County, Texas. The field is

discovered in recently. The field structure is an anticline, ten kilometers by eight

kilometers, with the major axis N-S trending. Furthermore we will concentrate on

permeability (Schon 1996; Barman et al. 1998; Lee et al. 1999) since it is the most

important (and hard to determine) property for all reservoir problems - it controls

whether the rock can deliver or transmit fluids or not. More precise information can

be found at Peddibhotla et al. (1996). The scientists believe that the permeability

field will be non-stationary due to presence of several barriers. The permeability is

measured in 35 spatial locations and is expressed in the unit mD. The data is then

centered around the observed mean and scaled by the observed standard deviation.

This standardized data have support in R and thus allow us to assume the Skew

Normal or Skew t marginal processes.

Note the presence of skewness and multiple modes in the data. We fit a Gaussian

copula model, a t copula model and a logistic copula model each with Skew Normal

and Skew t marginals and obtain the Bayes Factor for each copula-marginal combi-

nation. We consider up to models of order five for each combination. Table 7. shows

the posterior probabilities obtained for models of various orders. It is observed that
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Table 8.: Comparison among various mixture-copula models

Copula Marginals MSPE 95% PI coverage

Gaussian Skew-normal 86.1247 91.43%
Skew-t 58.2280 91.41%

T10 Skew-normal 99.8497 92.29%
Skew-t 50.2603 92.57%

Logistic Skew-normal 92.7845 91.43%
Skew-t 71.3797 91.57%

all the copula-marginal combinations choose the fourth order model. The predictive

performances of the fourth order model corresponding to various copula marginal

combinations are given Table 8..

Again, we notice that the t10 copula model with Skew t marginals has the best

predictive performance among all the fourth order models. The choice of this copula

degrees of freedom is based on exploratory analyses. Additionally, The Bayes factor

in favor of this model as compared to a single component Gaussian process model

is 1.69 × 104. It indicates an overwhelming support for the chosen non-stationary

model. Once again, we believe that the shape parameter, α, to be the key parameter

for inferential purpose. We plot the posterior median of α for different sites along

with the 95% credible interval in Figure 10(a). Almost none of the credible intervals

contain 0 indicating a significant departure from Gaussianity. In Figure 10(b), we plot

the kernel smoothed density of the observed data along with the posterior predictive

density which shows satisfactory fit.
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IV.4. Non-elliptical copulas for extreme observations

IV.4.1. Extreme value processes

In this section, we develop copula based spatial models for extreme observations.

Suppose (Yj1, . . . , Yjk) are independently and identically distributed random variable.

Let

M1 = Max(Y11, . . . , Y1k)

M2 = Max(Y21, . . . , Y2k)

. . .

Mn = Max(Yn1, . . . , Ynk).

Univariate extreme value theory suggests

Lim
k → ∞ P

(
Mi − bi
ai

≤ y

)
= F (y)

for two sequences of real numbers ai > 0 and bi. If F (y) is non-degenerate, it either

belongs to the Gumbel, the Fréchet or the Weibull family of distribution, which can

all be expressed under the class of generalized extreme value (GEV) distributions

with density function given by:

fgev(y;µ, ρ, α) =
1

ρ

(
1 + α

y − µ

ρ

)−(1/α+1)

e−(1+α y−µ
ρ )

−1/α

for y : 1 + α(y − µ)/ρ > 0 with µ ∈ R being the location parameter, ρ > 0 being the

scale parameter and α ∈ R being the shape parameter. The value of α determines

the subfamily with α = 0 yields the Gumbel Distribution, α > 0 corresponds to

Fréchet distribution with heavy upper tails, while α < 0 corresponds to Weibull

distribution with bounded upper tails. Here, we wish to model the joint distribution
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of (M1, . . . ,Mn). To derive this joint distribution, we make use of the multivariate

extreme value copulas.

According to the theory of multivariate extreme value copulas, the joint distri-

bution of (M1, . . . ,Mn) can be expressed, subject to the continuity conditions, as

FM (m1, . . . ,mn) = C(FM1(m1), . . . , FMn(mn)) = C(u1, . . . , un)

where C satisfying the property C(U t
1, . . . , U

t
n) = C

t(U1, . . . , Un) for all t > 0. Pickands

(1981), de Haan and Resnick( 1993), Hall and Tajvidi (2000) developed nonparamet-

ric methods to model the copula structure where as Tawn (1988), Coles and Tawn

(1991,1994) adopted parametric approaches to model this structure. In Bayesian lit-

erature, the common practice is to use Bayesian hierarchical spatial models (Banerjee

et al., 2004) where at the first stage the responses are assumed to be condition-

ally independent. This approach was taken by Cooley et al. (2007) and Sang and

Gelfand (2009) in their analysis of extreme precipitation events. Although, Smith et

al. (1997) jointly modeled the responses by using multivariate extreme value copula,

the dependence structure was not unrestricted. Thus, none of these models enable us

to explicitly incorporate the spatial dependence structure in the likelihood itself.

To alleviate these problems, we make use of a parametric multivariate extreme

value copula which possesses a closed form distribution function and a flexible depen-

dence structure can be incorporated there. We consider the family

C(u1, . . . , un) = exp



−
{

n∑

i=1

zδi − (n− 1)−1
∑

1≤i<j≤n

(
z
−δΣij

i + z
−δΣij

j

)−1/Σij

}1/δ




(4.24)

where zi = − log(ui), ui = FMi
(mi), Σij and δ ≥ 1 are the dependence parameters.

While δ controls the global dependence, Σij = θ
l
θ2
ij

1 controls the pairwise dependence.

Note that, Σij is a function of lij, which is the Euclidean distance between two loca-



62

tions. It also contains information about the range and the smoothness of the random

field via the parameters θ1 and θ2, respectively. Thus the spatial information is im-

bibed in the joint distribution of M1, · · · ,Mn via Σij. The role of these dependence

parameters in achieving a wide range of dependence and their interplay is discussed in

greater details in the following section. Note that the dependence parameters are de-

fined on the U process and not on the M process. The family in (4.24) belongs to the

class of multivariate extreme value distributions because the exponent is homogeneous

of order 1 as a function of z1, . . . , zn. Since, the class of multivariate extreme value

distribution is essentially the class of max-stable distributions with non-degenerate

marginals (Resnick, 1987), hence (4.24) belongs to class of max-stable distributions as

well. This family is essentially a subfamily of the multivariate extreme value copulas

introduced by Joe and Hu (1996).

The fact that we cannot obtain a multivariate extreme value distribution by

combining univariate extreme value marginals with elliptical copulas prompted us to

introduce the non-elliptical extreme value copula. Unlike, traditional extreme value

copulas like Frank copula or Gumbel copula, the one considered here has unrestricted

dependence structure. Moreover, (4.24) has closed form of distribution function which

is an advantage over the multivariate extreme value distributions introduced by Joe

(1994, 1996). Additionally, the unique feature of family (4.24) is that it is dimen-

sionally consistent and hence gives rise to a valid random field which is necessary to

model a spatial process.

IV.4.2. Properties

Dimensional consistency

Result 3.5: The copula formulation in (4.24) is dimensionally consistent, in the sense

that, if we integrate out Mn (say) then the joint distribution of M1, . . . ,Mn−1 is given
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by

C(u1, . . . , un−1) = exp



−
{
n−1∑

i=1

zδi − (n− 2)−1
∑

1≤i<j≤n−1

(
z
−δΣij

i + z
−δΣij

j

)−1/Σij

}1/δ




(4.25)

Proof. See Appendix B

Tail dependence

The coefficient of tail dependence is a scalar measure that relates to the behavior

of the tails of a distribution. It is basically a summary of the extremal dependence

inherent in a bivariate random vector and can be expressed in terms of copulas.

Thus, in contrast to other dependence measures such as linear correlation they are

not influenced by the marginal distributions of the random vector (Embrecht et al.

(2001)). Since we are concerned with the upper extreme values, we concentrate on

the behavior of the bivariate marginals in their upper tails only. This upper tail

dependence measure quantifies the probability of one random variate being extreme,

given that the other one is extreme too. From the definition, the pairwise upper tail

dependence coefficient between Mi and Mj is given by

λij = Lim
u→1− P[Mi > F−1

Mi
(u)|Mj > F−1

Mj
(u)]

provided the limit λij ∈ [0, 1] exists. If λij ∈ (0, 1], Mi and Mj are said to be

dependent in the upper tail in the class of MEV copulas, if λij = 0, then they are

asymptotically independent (Demarta, 2007).

For the multivariate extreme value copula described in (4.24), the bivariate

marginals are given by

C(ui, uj) = exp

[
−

{
zδi + zδj −

(
z
−δΣij

i + z
−δΣij

j

)−1/Σij

}1/δ
]
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Following Joe and Hu (1996), the pairwise upper tail dependence coefficient derived

from the above bivariate marginal is given by

λij = 2 −
[
2 − 2−1/Σij

]1/δ
(4.26)

which increases as Σij or δ increases.

Since we have claimed that the posited copula can handle wide range of de-

pendence, it becomes necessary to discuss the behavior of the pairwise upper tail

dependence coefficient obtained in (4.26). Given δ = 1, as the distance between lo-

cation i and location j increases, Σij → 0 and so does the upper tail dependence

coefficient between Mi and Mj, indicating that the extremal dependence for widely

separated locations is virtually negligible. This makes intuitive sense. However, note

that, if δ = 1, then, even if Σij = 1 (leading one to think of perfect dependence),

the pairwise upper tail dependence coefficient cannot exceed 0.5, indicating a rather

weak dependence. This situation is addressed by increasing δ. In fact, for δ ≈ 10,

and Σij = 1, the pairwise upper tail dependence coefficient, λij ≈ 0.99. Thus, we

see that δ plays the most crucial role in determining the extent of pairwise extremal

dependence. An interesting point to be observed is that the pairwise upper tail depen-

dence coefficient is bounded by 0 and 1 and is a function of the distance between two

locations. Thus its behavior is analogous to an isotropic spatial correlation function.

Posterior propriety

In order to elicit information about δ, we suggest a thorough exploratory study (see

Chapter V for details). If the data empirically suggest weak pairwise extremal de-

pendence, we fix δ to unity. If, however, the data reveal a strong pairwise extremal

dependence, we specify a prior on δ such that the a priori mode is around 30. How-

ever, in absence of definitive idea about the extent of extremal dependence, one can
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impose a noninformative prior of δ. Under such specification, it can be shown that,

under mild regularity conditions, the posterior is proper. The following result identi-

fies the conditions under which the posterior propriety can be ascertained.

Result 3.6: Given the joint distribution function of M1, · · · ,Mn obtained in (4.24),

define

A(δ) =

{
n∑

i=1

zδi − (n− 1)−1
∑

1≤i<j≤n

(
z
−δΣij

i + z
−δΣij

j

)−1/Σij

}1/δ

(4.27)

Then, an improper prior on δ yields a proper posterior under following conditions:

(i)
∫

δ̃n

δ̃
Qn

i=1mi
FM t

(m1, · · · ,mn|δ)dδ = δ̃n

δ̃
Qn

i=1mi

∫
FM t

(m1, · · · ,mn|δ)dδ

(ii) A(δ) is at least twice differentiable and the MLE of δ exists.

(iii) A′′(δ)|δ=δ0 > 0, where δ0 is the MLE of δ and A′(δ) = δ̃A(δ)

δ̃δ
and A′′(δ) = δ̃2A(δ)

δ̃δ2

where δ̃ indicates the partial differential operator.

Proof. See Appendix A

This ability to accommodate both strong and weak pairwise extremal dependence

is an improvement over the usual Gaussian and t copulas. For the Gaussian copula,

λij = 0 as long as Σij < 1 and hence it excludes those class of models which show high

pairwise extremally dependence. While for t copula, λij > 0 as long as Σij > −1 and

hence cannot be used to model observations that show weak extremal dependence.

IV.4.3. Hierarchical model

Choice of marginals

Let Mi = M(Si) be the annual precipitation maxima observed at location Si, i =

1, . . . , n. The marginals for each Mi is taken to be generalized extreme value distri-
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bution with density function

fMi
(mi|µi, ρi, αi) =

1

ρi

(
1 + αi

mi − µi
ρi

)−(1/αi+1)

e
−

“

1+αi
mi−µi

ρi

”

−1/αi

(4.28)

and distribution function

FMi
(mi|µi, ρi, αi) = e

−
“

1+αi
mi−µi

ρi

”

−1/αi

(4.29)

with mi : 1 + αi(mi − µi)/ρi > 0. The choice of the marginal model is motivated

by limiting distributions in extreme value theory. We now describe the hierarchical

Bayesian model for component-wise maxima.

Data model

Using the multivariate extreme value model specified in (4.24), (4.28) and (4.29), and

conditional on the parameters, µ = (µ1, . . . , µn),ρ = (ρ1, . . . , ρn),α = (α1, . . . , αn),Σθ,

δ, θ1, θ2 we get the joint density of M = (M1, . . . ,Mn) as:

p(M |ξ1) ∝ c(u1, . . . , un)
n∏

i=1

fMi
(mi|µi, ρi, αi) (4.30)

where c(u1, . . . , un) = δnC(u1,...,un)
Qn

i=1 δui
and ξ1 = (µ,ρ,α, δ, θ1, θ2). We obtain the deriva-

tive with help of symbolic computation software wherever possible.

Process model

In this layer we relate the parameters of the data layer to the covariates. Conditional

on ρ, we assume µ|ρ ∼ N(X ′
iβµ, diag(ρ) × Σθµ). Xi is the site-specific vector of

covariates. We assume log(ρ) ∼ N(−0.5,Σθρ). We assume a Uniform (−cα, cα) prior

on α. We further assume Uniform (0,1) distribution for θ1, Uniform (0,2] prior on θ2,
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Uniform(1,50) for δ. Then the process layer model is given by

p(ξ1|ξ2) ∝ f(µ|X ′
iβµ, diag(ρ) × Σθµ) × f(ρ| − 0.5,Σθρ) (4.31)

where ξ2 = (βµ, θµ, θρ, cα)

Priors

In this layer we assign priors for βµ, θµ, θρ and cα. Since there is hardly any information

about how the process model parameters are related to the covariates, we choose

diffused priors for them. Thus, βµ ∼ N(0, cµI) for some large cµ. Additionally, apriori

θ1µ, θ1ρ are assumed to distributed independently as Uniform (0,1) while, θ2µ, θ2ρ are

distributed independently as Uniform(0,2]. We further assume cα ∼ Uniform (0, 10).

Then the joint prior distribution is given by

p(ξ2) ∝ N(0, cµI). (4.32)

Combining (5.4), (5.6) and (5.7), we get the joint posterior distribution of the

parameters conditional on the data as

p(ξ|M ) ∝ p(M |ξ1) × p(ξ1|ξ2) × p(ξ2) (4.33)

where ξ = [ξ1, ξ2]. We implement standard Metropolis within Gibbs sampler to draw

samples from this joint posterior distribution.

IV.4.4. Example: extreme precipitation events across United States

Estimation of chances of extreme precipitation events are important for flood planning

purpose, which in turn is necessary for city planning, engineering and risk manage-

ment. The National Weather Service (NWS) maintains a digital database that are

primarily used to ascertain the chance of extreme precipitation at a particular location
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(see hdsc.nws.noaa.gov/hdsc/pfds/pfds-maps.html). Estimation of such probabilities

is difficult due to the necessity to interpolate at the locations where observations are

not available. The principal objective of the proposed model is to interpolate over

the study area and produce a map that can be used to calculate the chance of an

extreme precipitation event at a particular location. As a default, we also produce a

map of uncertainties associated with these predicted point estimates.

We illustrate our method by applying it on the monthly precipitation data col-

lected over the continental United States in the year 1998. The dataset is gridded in

50 × 50 boxes yielding a total of 46 locations. Although we have monthly data avail-

able, we only model the annual maxima observed at each site, focusing exclusively on

the block maxima approach to handle extreme observations. A natural alternative to

our block maxima approach is the multivariate threshold approach with generalized

Pareto marginals which will be explored in future.

We focus on three covariates: geographic coordinates, elevation and mean annual

precipitation. For a non-homogeneous area with both mountain and plains, it is likely

that elevation will have a significant influence on the events of extreme precipitation.

It is also likely that mean annual precipitation will be a strong covariate. In fact, Coles

and Tawn (1996) found that mean precipitation was a stronger covariate for extreme

precipitation than elevation. Also note that, the mean precipitation data are highly

correlated with the elevation data and take into account other factors such as slope,

and meteorology. Cooley et al. (2007) suggested the use of different shape parameter

for different orographic pattern. Here we use two values of α, one for the coastal region

and the other for the inland regions each having an Unifrom (−cα, cα) distribution

and impose an Uniform (0,10) prior on cα. Just as earlier studies, the objective of

this study is to perform efficient spatial interpolation. Hence, we assess the model

adequacy using the same method described in Section IV.1.6. The mean square
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prediction error comes out to be 56.58 while the empirical coverage probability of

95% prediction interval is 92.39%. The empirical coverage probability almost attains

the nominal level further indicates that the estimates are not too optimistic in nature.

The shape parameter α is a key parameter that we need to draw inference on because

the tail behavior of the marginal distribution depends exclusively on it. Figure 11(a)

shows the median of the site-specific shape parameters. For most of the regions, α is

significantly negative indicating a Weibull family. In Figure 11(b) we plot the kernel

density estimates of the posterior distribution of α for the inland and coastal stations.

The posterior distributions are quite different for these two regions. The posterior

median for α corresponding to coastal regions (-1.62) is higher than that for the inland

regions (-3.79). We observe bimodality in the distribution of the former with a second

mode occurring at the positive part of its support. These two facts clearly indicate

the prevalence of relatively heavier tails at the coastal region. The meteorological

reason for the prevalence of such heavy tails in the coastal region is the seasonal

development of tropical storms in the mid-Atlantic and Gulf of Mexico causing heavy

precipitation at the eastern and south-eastern coast of USA. We have assumed the

θ1 and θ2 to be a priori independent, however a posteriori they are dependent with

correlation coefficient around 0.21. Figure 12(a) shows the heat map of predicted

chance of extreme precipitation events across the entire study region. It is clear from

this plot that most of the extreme precipitation events occur in the coastal region or

in the great plains. There is not much evidence of heavy precipitation at mountainous

locations. This finding agrees with that of Jarrett (1990, 1993) who claimed that the

hydrologic and paleohydrologic evidence shows that intense rainfall does not occur

at higher elevations. Figure 12(b) shows the uncertainty associated with this heat

map. The levels of uncertainty are high in the desert locations where no stations are

located, and in areas of very high elevation where the model is forced to extrapolate.
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Figure 13 shows the kernel smoothed densities of the actual observations along with

the kernel smoothed predictive density. It seems that the proposed model fits the

data adequately.

IV.5. Concluding remarks

In this chapter, we have proposed a class of novel spatial model which can accom-

modate the non-Gaussian nature of the data. These non-Gaussian models have been

developed by the use of copulas which make them marginally consistent. We have

extended our model in a mixture setup which can identify spatial clusters. We have

generated multivariate distributions using elliptically contoured kernels with abso-

lutely continuous marginals and have used them to model heavy tailed, skewed spa-

tial processes. We have extended that methodology to develop a Generalized Linear

Mixed Model for spatial data. We have also modeled extreme-valued spatial processes

using this copula methodology. Thus, we have provided an alternative way of mod-

eling multivariate extreme value processes with a flexible correlation structure. We

have also circumvented the computational problem posed by the parametric families

of multivariate extreme value distributions (Kotz and Nadarajah, 2000) which, with

the exception of the time series logistic distributions ( Coles & Tawn, 1991), cannot

handle a flexible correlation structure.
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CHAPTER V

SPATIO-TEMPORAL MODELING OF EXTREMES: A CASE STUDY

In Chapter III and Chapter IV we have described how copulas can be used to model

temporal and spatial dependence, respectively. A natural question that arises sub-

sequently is: whether copulas can handle spatio-temporal dependence as well. In

this chapter we strive to answer this very question. In particular, we concentrate

on adopting copula methodology to handle the dependences exhibited by extremes

observed over space and time. We aim to present and apply results from multivariate

extreme value theory in terms of copulas.

Unlike the univariate case, the definition of an extreme event is not straight-

forward in a multivariate setup. The challenge lies in characterizing the extreme

behavior of a random vector. For example, given a random vector of sufficiently high

dimension, extreme behavior of a single component of it does not necessarily imply the

extreme behavior of the whole vector. As a result, definition of multivariate extremes

hinges on the probability that several marginals will give rise to extremes at the same

time. In Chapter II we have shown that it is possible to separate the marginals and

the behavior of random vectors using copulas. Following this approach we can apply

well-known results from univariate EVT to the margins and subsequently concentrate

on the dependence structure (i.e. on copulas). So, intuitively it appears that copulas

will play a major role in the study of the multivariate extremes.

In this chapter we develop a highly flexible spatio-temporal model, in the Bayesian

hierarchical paradigm, which provides a suite of predictive maps that can be used for

inferring the probability of an extreme event at a particular location at a particular
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time. However, due to limited temporal records and sparse spatial representation,

such predictive maps are associated with non-trivial uncertainties. One advantage

of our approach is that, we can quantify and, subsequently, produce a map of these

predictive uncertainties in conjunction with the predictive maps of precipitation ex-

tremes.

A precipitation atlas over time

Hydro-meteorologists believe global warming and changing weather patterns are prin-

ciple reasons behind a rising number of fatal flooding incidents. Various studies indi-

cate that warming induced changes in the global water cycle could have more drastic

impacts than ever imagined. As a consequence of this increase in global-mean pre-

cipitation, an increasing trend in extreme precipitation events have been observed

over past few decades (Kunkel et al., 1999; Easterling et al., 2000). Continental US

has witnessed a spate of heavy flooding in recent decades. In 1976 Big Thompson

River flood killed 143 people in Colorado. In 1997, a flash flood in Antelope Canyon

caused 11 casualties. The following year saw a flash flood occurring in San Marcos,

Texas. More recently, flash floods wrecked havoc in Mount Rainier National Park in

2006 and in Davenport, Iowa in 2008. In 2009, the Red River Valley of eastern North

Dakota and west-central Minnesota experienced a level flooding that occurred only

once previously in the past 100 years. Although one might argue that such incidents

are rare, understanding their frequency and intensity is essential for public safety (like

flash flood warnings) and city planning (like urban drainage management). Engineers

often need extreme precipitation statistics to device strategies for flood protection.

To support these requirements, analyses and spatio-temporal prediction of extremal

events are necessary. As a matter of fact the extreme value theory literature has

grown considerably is the past few decades finding wide application is engineering,
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oceanography and environmental sciences among others.

The goal of our application are the following: a) Develop yearly predictive at-

lases for annual precipitation maxima of the continental US. b) Quantification of the

uncertainties associated with these predictions and produce atlases of the same. To

this end, we use the Hulme dataset (Hulme, 1998) obtained from the University of

East Anglia. The data consists of monthly precipitation estimates obtained for conti-

nental US from 1990 through 1998 for land gridboxes at a 50 latitude by 50 longitude

resolution. This gridded dataset is derived from land gauge records that have been

subjected to homogeneity procedures reported in Eischied et al. (1991) and Hulme

(1992). Since data coverage varies over time, a ’quasi-fixed-grid’ is defined which

comprises of a subset of gridboxes that possess at least five years of data in every

decade over the period 1900-1998. The result is a total of 46 grid cells across the

continental US at each time point.

Literatures suggest statistically significant impact of geographical covariates on

the latent spatial processes of the extremes (Cooley et al., 2007; Coles and Tawn,

1996). We focus on three such significant covariates, viz. the geographical coordi-

nates, elevation and mean annual precipitation. For a non-homogeneous area with

both mountain and plains, it is likely that elevation will have a significant influence

on the events of extreme precipitation. It is also likely that mean annual precipi-

tation will be a strong covariate. In fact, Coles and Tawn (1996) found that mean

precipitation was a stronger covariate for extreme precipitation than elevation. Also

note that, the mean precipitation data are highly correlated with the elevation data

and take into account other factors such as slope, and meteorology.
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Spatial modeling of extremes

There exists a rich depository of statistical literature concerned with modeling of

extreme events. Coles (2001a) provides an excellent introduction and detailed discus-

sion of various extant methodologies available to model such events. In particular,

there exists considerable amount of studies focusing on development of models for

extreme precipitation events. Coles and Tawn (1996a) used max-stable processes to

model areal rainfall extremes. Durman et al. (2001) exploited global and regional

climate models to simulate data and compare the occurrences of extreme daily pre-

cipitation events for present and future climates. Although a number of studies have

used Bayesian methods to model extremes (Smith and Naylor,1987; Coles and Tawn,

1996b; Stephenson and Tawn, 2005), few models are available that efficiently incor-

porate information obtained from different spatial locations. Coles (2001b), Jagger

and Elsner (2006) pooled data from various locations to increase the precision of

the parameter estimates, but neither work attempted to model the spatial depen-

dence explicitly. Casson and Coles (1999) develop a point process representation of

exceedances over a threshold but did not extend their model in temporal domain.

Cooley et al. (2007) developed a Bayesian hierarchical model that simultaneously

model the spatial dependence and use that model to perform spatial interpolations.

However, they also ignored the temporal dimension of the data. Huerta and Sanso

(2007) and Sang and Gelfand (2009) are only exceptions that developed a complete

hierarchical Bayesian spatio-temporal model using the dynamic linear model theory,

but neither of them incorporated spatial and/or temporal information explicitly in

the data model.

In a spatial set-up, the issues of asymptotic (in)dependence are always a con-

cern in extreme value analyses. While asymptotically independent models are bound

not to fit data that show asymptotic dependence, asymptotically dependent models
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can be poor approximation for asymptotically independent variables, especially for

finite samples (Ledford and Tawn; 1996, 1997). In the Bayesian paradigm, the most

common technique to model extreme events, distributed over space, is to assume con-

ditional independence at the data layer (Cooley et al., 2007, Huerta and Sanso, 2007).

In order to incorporate dependence information at the data level, Sang and Gelfand

(2009) combined univariate extreme value distribution with a Gaussian copula and

developed a valid random field with unrestricted correlation structure. As another

alternative model for such extremal events, multivariate extreme value (MEV) copula

models were introduced (Tawn, 1988, Coles and Tawn, 1991, 1994, Ledford and Tawn,

1996). However, parametric models for such MEV copulas are very limited and do

not allow unrestricted correlation structures. The dependence structure is obtained

as by-product of these models. It is not easy to incorporate dependence information

directly in the model.

However, while the first two models are theoretically inadequate to model depen-

dences in extreme, the last model is restrictive in admitting correlation structures.

A short discussion about the inadequacy of these approaches to model the dataset

under consideration is provided in Section V.2.2. In order to circumvent these prob-

lems present in the extant models for extreme events, we propose a class of MEV

distribution which is flexible enough to handle both weak and strong extremal depen-

dence and at the same time allows unrestricted correlation. To this end, we appeal

to the theory of MEV copulas. We allow the marginal processes to have their own

unique distribution, with the mild restriction that the distribution function is invert-

ible. Subsequently, we utilize a class of extreme value copula to combine these unique

marginal processes to obtain a valid random field with explicit correlation structure.

This maneuver enables us to incorporate the spatial dependence directly at the data

layer of our model. We use two approaches to model the marginal processes, viz.,
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the block-maxima approach and peak over threshold approach and compare their

predictive performances using various diagnostic tools. We adopt a full Bayesian ap-

proach to make inference about the model parameters as well as to perform spatial

interpolations and temporal predictions.

V.1. Exploratory analysis

Since we are stressing on incorporating dependence in the data model itself, we need

to ascertain whether the data actually reveal spatial dependence explicitly. So we run

the Moran’s I randomization test for spatial dependence (Moran, 1950; Banerjee et

al., 2004) on the annual maxima observed at 46 locations at each of the 99 time points,

using the first order neighbor proximity. Figure 14 shows the plot of the p−value

associated with the test at each time point. Note that, with a few exceptions, all

the p−values are below the 5% level of significance, indicating a significant spatial

dependence.

Now, we need to explore if we can parameterize the covariance structure. To

this end we fit a binned empirical variogram and subsequently fit three paramet-

ric variograms exponential, Gaussian and spherical, to the data (Figure 15). As a

diagnostic check, we obtain the mean square error (mse) to compare the empirical

versus the fitted estimates. It turns out that the mse for exponential variogram is

minimum (0.0013) followed by the mse of the spherical one (0.0022) whereas the

Gaussian one has the maximum mse (0.0026). The fact that the exponential var-

iogram performs better than the rest suggests that we should explicitly take into

account this particular form of spatial dependence present among the marginal pro-

cesses. In particular, we assume a generalized exponential covariance structure given

by Σθ(l) = exp(−νlθ2) = θl
θ2

1 where l is the Euclidean distance between locations,

ν > 0, θ1 = exp(−ν) and θ = [θ1, θ2].
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To address the issue of asymptotic dependence, we resort to the χ and χ̄ diag-

nostic plots of Coles, Heffernan and Tawn (1999). Strong extremal dependence gives

χ ∈ (0, 1] and χ̄ = 1. Figures 16(a) and 16(b) shows the χ and χ̄ plots for location

pair 3 and 18, while Figures 16(c) and 16(d) show the same for location pair 10 and

13. Note that χ ∈ (0, 1] and χ̄ ≈ 1 for both the pairs indicating evidence strong

extremal dependence. Location pair 3 and 18 represent the strongest evidence of

extremal dependence, while location pair 10 and 13 represent the weakest evidence

of extremal dependence. Behavior of pairs not shown lies somewhere in between.

To study the temporal dependence, we plot the autocorrelations of the annual

maxima time series observed at each location. Only a few of the locations in the

eastern and the northern part of the continental U.S. reveal an underlying first order

AR process. Most of the locations fail to show any significant temporal dependence.

Figure 17 shows the autocorrelation plot of the above time series observed at four

different climatological regions of the continental U.S.

Taking cognizance of the fact that the data show a marked spatial but feeble

temporal dependence, we incorporate the spatial dependence directly in data model,

and include the temporal information in the process layer by allowing the regression

parameters to follow an AR(1) process.

V.2. Models

V.2.1. The copula model

Let Mi,t denote the annual maximum precipitation at location i, i = 1, · · · , n at time

t, t = 1, · · · , T . Here we wish to obtain the joint distribution of (M1,t, · · · ,Mn,t) at

every time point t. To derive this joint distribution, we make use of the multivariate

extreme value copulas.

Let fMi,t
(.) and FMi,t

(.) denote the distribution function and density function
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of Mi,t respectively. Then according to the theory of multivariate extreme value

copulas, the joint distribution of M t = (M1,t, . . . ,Mn,t)
T can be expressed, subject

to the continuity conditions, as

FM i
(m1,t, . . . ,mn,t) = C(FM1,t(m1,t), . . . , FMn,t(mn,t)) = C(u1,t, . . . , un,t)

where C satisfying the property C(Uk
1,t, . . . , U

k
n,t) = Ck(U1,t, . . . , Un,t) for all k > 0.

Now consider the family

C(u1,t, . . . , un,t) = exp



−
{

n∑

i=1

zδi,t − (n− 1)−1
∑

1≤i<j≤n

(
z
−δΣij

i,t + z
−δΣij

j,t

)−1/Σij

}1/δ




(5.1)

where zi,t = − log(ui,t), ui,t = FMi,t
(mi,t). As explained in Section IV.4.1, Σθ and

δ ≥ 1 are the pairwise and global dependence parameters, respectively. Note that the

dependence parameters are defined on the U process and not on the M process. The

family in (5.1) belongs to the class of multivariate extreme value distributions because

the exponent is homogeneous of order 1 as a function of z1,t, . . . , zn,t. Since, the

class of multivariate extreme value distribution is essentially the class of max-stable

distributions with non-degenerate marginals (Resnick, 1987), hence (5.1) belongs to

class of max-stable distributions as well. This family is essentially a subfamily of the

multivariate extreme value copulas introduced by Joe and Hu (1996).

Unlike, traditional extreme value copulas like Frank copula or Gumbel copula, the

one considered here has unrestricted dependence structure. Moreover, (5.1) has closed

form of distribution function which is an advantage over the multivariate extreme

value distributions introduced by Joe (1994, 1996). Additionally, the unique feature

of family (5.1) is that it is dimensionally consistent and hence gives rise to a valid

random field which is necessary to model a spatial process.
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V.2.2. Existing models for extremes: a discussion

In this section we discuss a few pitfalls present in the existing Bayesian approaches

to model spatially distributed extreme observations.

The conditional independence model

In the Bayesian paradigm, the most common technique to model extreme events, dis-

tributed over space, is to assume conditional independence at the data layer (Cooley

et al., 2007, Sang and Gelfand, 2009). The following result identifies the theoretical

inadequacy of such model.

Result 4.1: If the joint distribution of (M1,t, · · · ,Mn,t) is given by
∏n

i=1 fMi,t
(mi,t|ξ),

where ξ is the vector of all the parameters, then the pairwise upper tail dependence

coefficient between Mi,t and Mj,t is 0 under proper prior specification on ξ.

Proof. See Appendix A

In other words, assumption of conditional independence at the data layer, that

is, failure to incorporate the dependence information at the data model leads to

independence in the upper tail. An immediate implication of the above result is

that, the traditionally used conditionally independent data model cannot explain the

dependence of very rare events at two specified sites, no matter how close they are.

Gaussian copula based extreme value models

The Gaussian copula based MEV model proposed by Sang and Gelfand (2009) also

leads to independence in the upper tail and hence proves to be inadequate to handle

variables showing strong extremal dependence. A proof of this can be obtained in

Demarta (2007). Another problem with using Gaussian copula with GEV marginals

is that, the resultant model does not belong to the family of Multivariate Extreme
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Value distributions. Consequently, the properties of MEV distributions do not hold

true for these models and hence cannot be used in the inferential purposes.

t copula based extreme value models

Instead of combining the GEV marginals using the Gaussian copula, one can use t

copula for the same purpose. One advantage of t copula is that, it always leads to

upper tail dependence (Demarta, 2007). As a result, this model excludes very weak

extremally independent variables. However, in its most common parameterization,

the t copula model does not belong to the domain of attraction of the MEV distri-

butions and hence would not be a suitable model for multivariate extremes. But we

note, from Section V.1, that the present data do exhibit strong pairwise extremal

dependence. So, we use a t copula based extreme value model as our baseline model.

The MEV copula model presented in (5.1) alleviates all these problems. Since the

exponent is homogeneous of order 1, it belongs to class of MEV distributions. Hence,

it should prove theoretically adequate to model multivariate extremes. Already, in

Section IV.4.2, we have shown that this model has the ability to handle both strong

and weak extremal dependence. Furthermore, this model allows us to incorporate the

spatial dependence directly at the data layer by specifying the Σ′
ijs.

V.2.3. The block maxima approach

Let Y1, Y2, · · · be a sequence of iid random variables with unspecified distribution. For

a given n, define Mn = Max(Y1, Y2, · · · , Yn). Then the extreme value theory suggests

Lim
n→ ∞ P

(
Mn − bn
an

≤ y

)
= F (y)

for two sequences of real numbers an > 0 and bn. If F (y) is non-degenerate, it either

belongs to the Gumbel, the Fréchet or the Weibull family of distribution, which can
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all be expressed under the class of generalized extreme value (GEV) distributions

with density function and distribution function respectively given by:

f gevMi,t
(mi,t|µ, ρ, α) =

1

ρ

(
1 + α

mi,t − µ

ρ

)−(1/α+1)

exp

[
−

(
1 + α

mi,t − µ

ρ

)−1/α
]

(5.2)

F gev
Mi,t

(mi,t|µ, ρ, α) = exp

[
−

(
1 + α

mi,t − µ

ρ

)−1/α
]

(5.3)

for mi,t : 1 +α(mi,t−µ)/ρ > 0 with µ ∈ R being the location parameter, ρ > 0 being

the scale parameter and α ∈ R being the shape parameter. The value of α determines

the subfamily with α = 0 which yields the Gumbel Distribution, α > 0 corresponds

to Fréchet distribution with heavy upper tails, while α < 0 corresponds to Weibull

distribution with bounded upper tails.

In this approach we assign monthly precipitation for each location into annual

blocks and allow the marginal distribution of each maximum to follow its own unique

GEV. Given the time, we combine GEV marginals across space using the extreme

value copula described in (5.1). Then conditional on µ, ρ, α, we assume the maxima

to be independent across the years. Annual maxima at a location occur with a

sufficient time lag between them justifying the assumption of conditional temporal

independence. We now describe the hierarchical Bayesian model for component-wise

maxima.

Data model

We assume that marginally Mi,t ∼ GEV (Xiβt, ρi, αi), where Xi is a p dimensional

vector of covariates associated with the location i , βt = [β1t, . . . , βpt]
T is the set of

time dependent regression parameters. We assume a second order stationary spatial

process with isotropic generalized exponential covariance structure described earlier.

For computational simplicity we assume the scale and the shape parameter to be spa-
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tially dependent but temporally invariant, although it is conceptually straightforward

to deal with a space-time dependent ρ and α. Then using the multivariate extreme

value model specified in (5.1), (5.2) and (5.3) and assuming conditional temporal

independence, we write the full likelihood for M = [M 1, · · · ,MT ]T as

P gev
1 (M |ξ1) ∝

T∏

t=1

c(u1,t, . . . , un,t)
n∏

i=1

f gevMi,t
(mi,t|Xiβt, ρi, αi) (5.4)

where c(u1,t, . . . , un,t) =
δnC(u1,t,...,un,t)

Qn
i=1 δui,t

and ξ1 = (β,ρ,α, δ, θ1, θ2) with ρ = (ρ1, . . . , ρn),α =

(α1, . . . , αn) and β = [β1, . . . ,βT ]T . We obtain the derivative with help of symbolic

computation software wherever possible.

Process model

In the second layer of our model, we construct a hierarchical structure that relates

the parameters of the data layer to latent temporal process. We model the time

dependent regression parameter as follows:

βj,t = γjβj,t−1 + ǫt, j = 1, 2, · · · p where ǫt ∼ N(0, σ2
β). Assuming conditional

independence of βt given the AR parameters γ = [γ1, . . . , γp]
T , we get the joint

distribution of β as

πgev
β

(β|γ, σ2
β) ∝

p∏

j=1

T∏

t=1

1

σβ
exp

[
−

1

2σ2
β

(βj,t − γjβj,t−1)
2

]
. (5.5)

Note that, in expression (5.5), we need to estimate the initial condition β0. For

this purpose, we fit a purely spatial model at time point t = 0 and obtain its ML

estimate, say β̃0. Subsequently, we assume β̃0 to be the known initial condition.

Thus we have

β̃0 =
argmax

β0
c(u1,0, . . . , un,0)

n∏

i=1

f gevMi,0
(mi,0|Xiβ0, ρi, αi)
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We assume log(ρ) ∼ N(−0.5,Σθρ), where Σθρ = θ1ρ
lθ2ρ

. We assume two values for

the shape parameter α, one for the coastal stations and one for inland stations. With

αcoastal ∼ Uniform (−αc, αc) and αinland ∼ Uniform (−αm, αm). We further assume

Uniform (0,1) distribution for θ1, Uniform (0,2] prior on θ2 and a Uniform prior on δ.

Assuming a priori independence of the parameters in this layer we get the process

layer model as

P gev
2 (ξ1|ξ2) ∝ πgev

β
(β|γ, σ2

β) × π(ρ| − 0.5,Σθρ) (5.6)

where ξ2 = (γ, σ2
β, θ1ρ, θ2ρ, αc, αm).

Priors

Finally, we arrive at the last stage of the hierarchy where we assign priors on γ, σ2
β, θ1ρ, θ2ρ

and cα. We assume that γj|σ
2
γ ∼ N(0, σ2

γ) and (σ2
γ, σ

2
β) are independently distributed

as Inverse Gamma(0.1,100). Additionally, a priori θ1ρ and θ2ρ are assumed to be

distributed independently as Uniform (0,1) and Uniform(0,2] respectively. We fur-

ther assume (αc, αm) are independently distributed as Uniform (0, 10). Assuming

independence of γj’s conditional on σ2
γ , we get the joint prior distribution as

P gev
3 (ξ2) ∝

p∏

j=1

πγj
(γj|σ

2
γ) × πσ2

γ
(σ2

γ) × πσ2
β
(σ2

β). (5.7)

Combining the data model, the process model and the priors as obtained in (5.6)

and (5.7), we get the joint posterior distribution of the parameters conditional on the

data as

P gev(ξ|M ) ∝ P gev
1 (M |ξ1) × P gev

2 (ξ1|ξ2) × P gev
3 (ξ2) (5.8)

where ξ = [ξ1, ξ2]
T .
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V.2.4. Peak over threshold approach

Instead of directly modeling the annual maxima using a GEV distribution, the peak

over threshold (POT) approach (North, 1980) models the exceedances over a high

threshold value. It consists of three components:

(i) Determination of the threshold value, η.

(ii) Number of occurrences of exceedance over the threshold value, η, over a given

period of time which is assumed to be governed by a Poisson process.

(iii) The excess values, i.e, the amount by which the threshold is exceeded have a

Generalized Pareto distribution (GPD).

Threshold selection

We use the procedure of threshold selection similar to the one used by Kunkel et al.

(1999). The outline of the algorithm is given below:

(i) The monthly precipitation time series corresponding to every location is ranked

in descending order.

(ii) The amount of precipitation during the N th ranked event of a particular time

series is considered as the threshold value for a specified return period (r) for

that particular time series, where

N =

[
Number of years of data to be analyzed

r

]

where [.] is the greatest integer operator. In this paper the numerator is 99

years and we choose a return period (r) of one year.

(iii) We end up with different threshold values for different time series. We choose

the minimum of them as the threshold value for all locations.
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The main assumption of this Poisson-GP approach is that the underlying process

governing the exceedances over the threshold is IID (Leadbetter et al., 1983). In the

present study, it is observed that for a given location, the exceedances tend to occur

in clusters. To deal with this temporal dependence, we resort to the declustering

technique (NERC, 1975; North, 1980). Thus if a location records exceedances over

consecutive time points, we ’decluster’ the data by keeping only the highest measure-

ment of that cluster. Selecting the cluster maxima for each cluster makes the data

approximately independent and thereby amenable to the Poisson-GP model.

After declustering, we assume that the number of clusters containing the ex-

ceedances over the time period follows a Poisson process (Leadbetter et al., 1983).

We are now in a position to describe the formulation in a greater detail.

Poisson model for cluster occurrence

At the ith location, let Ni be the number of clusters containing the events of ex-

ceedances over η in the tth year. We assume Ni ∼ Poisson (λi), where λi is the mean

number of clusters occurring per year for location i.

GP model for exceedances

Conditional on Ni ≥ 1, the amounts by which the cluster maxima of location i in

the tth year, Mi1,t, . . . ,MiNi
,t, exceed the threshold are identically and independently

distributed as GP(µi,t, ρi, αi), with distribution function given by

P(Mij ,t − η ≤ m|Mij ,t > η) = G(m|µi,t, ρi, αi) = 1 −

(
1 + αi

m− µi,t
ρi

)−1/αi

(5.9)
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for m ≥ µi,t when αi ≥ 0 and m ≤ µi,t − ρi/αi when αi < 0. Now, we derive the

marginal distribution of annual maxima for location i as follows:

Let Mi,t =
Max

1≤j≤Ni
Mij ,t

P(Mi,t ≤ m|Mi,t > η) = P(Ni = 0) +
∞∑

ni=1

P(Ni = i,Mi1 ≤ m, . . . ,Mini
≤ m)

= exp

[
−λi

(
1 + αi

m− η − µi,t
ρi

)−1/αi
]

(5.10)

Differentiating (5.10) with respect toM we get the marginal density of annual maxima

at location i as

f gpd(mi,t;µi,t, ρi, αi) =
λi
ρi

(
1 + αi

mi,t − η − µi,t
ρi

)−1/αi−1

exp

[
−λi

(
1 + αi

mi,t − u− µi,t
ρi

)−1/αi
]

(5.11)

for mi,t − η ≥ µi,t when αi ≥ 0 and mi,t − η ≤ µi,t − ρi/αi when αi < 0.

Data model

After obtaining the marginal density of the annual maxima for the POT approach, we

employ the extreme value copula derived in (5.1) to combine the marginal densities

of annual maxima to get the data layer model for a particular year. Then, assuming

conditional temporal independence we formulate the full data layer model as:

P gpd
1 (M |ξ1) ∝

T∏

t=1

c(u1,t, . . . , un,t)
n∏

i=1

f gpdMi,t
(mi,t|Xiβt, ρi, αi) (5.12)

where Ui,t = F gpd
Mi,t

(mi,t|Xiβt, ρi, αi) is derived in (5.10) and f gpdMi,t
(mi,t|Xiβt, ρi, αi) is

derived in (5.11) and ξ1 = [β,ρ,α, θ1, θ2,λ]T , where λ = (λ1, . . . , λs).
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Process model

We model the time dependent regression parameter as follows:

βj,t = γjβj,t−1 + ǫt, j = 1, 2, · · · p where ǫt ∼ N(0, σ2
β). Assuming conditional

independence of βt given the AR parameters γ = [γ1, . . . , γp]
T , we get the joint

distribution of β as

πgpd
β

(β|γ, σ2
β) ∝

p∏

j=1

T∏

t=1

1

σβ
exp

[
−

1

2σ2
β

(βj,t − γjβj,t−1)
2

]
. (5.13)

Once again, we estimate the initial condition β0 in the same way as outlined in Section

V.2.3.

We assume log(ρ) ∼ N(−0.5,Σθρ), where Σθρ = θ1ρ
lθ2ρ

. We assume two values

for the shape parameter α, one for the coastal stations and one for inland stations.

With αcoastal ∼ Uniform (−αc, αc) and αinland ∼ Uniform (−αm, αm). We further

assume Uniform (0,1) distribution for θ1, Uniform (0,2] prior on θ2 and a Uniform

prior for δ. We further assume λi ∼ Gamma(n̄i, 1) where n̄i is the observed mean

number of clusters per year for location i. Assuming a priori independence, we get

the joint distribution of λ as πλ(λ) ∝
∏n

i=1 πλi
(λi)

Assuming a priori independence of the parameters in this layer, we get the pro-

cess layer model as

P gpd
2 (ξ1|ξ2) ∝ πgpd

β
(β|γ, σ2

β) × π(ρ| − 0.5,Σθρ) × πλ(λ) (5.14)

where ξ2 = [(γ, σ2
β, θ1ρ, θ2ρ, αc, αm)]T .

Priors

We assume γj|σ
2
γ ∼ N(0, σ2

γ) and (σ2
γ , σ

2
β) are independently distributed as Inverse

Gamma (0.1,100). Additionally, a priori θ1ρ and θ2ρ are assumed to distributed
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independently as Uniform (0,1) and Uniform(0,2] respectively. We further assume

(αc, αm) are independently distributed as Uniform (0, 10). Assuming conditional

independence of γj’s given σ2
γ, we get the joint prior distribution as

P gpd
3 (ξ2) ∝

p∏

j=1

πγj
(γj|σ

2
γ) × πσ2

γ
(σ2

γ) × πσ2
β
(σ2

β). (5.15)

Combining the data model, the process model and the priors as obtained in (5.12),

(5.14) and (5.15) we get the joint posterior distribution as

P gpd(ξ|M ) ∝ P gpd
1 (M |ξ1) × P gpd

2 (ξ1|ξ2) × P gpd
3 (ξ2) (5.16)

where ξ = [ξ1, ξ2]
T .

We implement standard Metropolis within Gibbs sampler to draw samples from

this joint posterior distributions described in (5.8) and (5.16).

Once the posterior samples are obtained, prediction for the T + 1th time point

at an unobserved site S0 can be obtained in two steps.

(i) Precipitation for the T + 1th year can be obtained by drawing samples from the

target distribution

P (MT+1|M 1, . . . ,MT ) =

∫

ξ

P (MT+1|ξ) × P (ξ|M )dξ (5.17)

where M t = [M1,t, . . . ,Mn,t]
T , P (MT+1|ξ) is the data layer model for the new

observation similar to (5.4) or (5.12) and P (ξ|M) is the posterior distribution

obtained in (5.8) or (5.16)

(ii) Once the temporal prediction is obtained, we fix the time point and perform a

spatial interpolation at an unobserved location S0 by drawing samples from the
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target distribution

P (MS0|M1,T+1, . . . ,MS,T+1) =

∫

ξT+1

P (MS0,T+1|ξT+1) × P (ξT+1|MT+1)dξT+1

(5.18)

where ξT+1 is the set of parameters for the T+1th time point and P (ξT+1|MT+1)

is its posterior distribution.

V.2.5. t copula model

We use a t copula model for extreme values as a baseline model to compare the

performance of the model proposed in (5.1). The logic behind choosing it as a baseline

model instead of a Gaussian copula model is that, the latter leads to asymptotic

independence and hence unsuitable for the present data under consideration which

show strong asymptotic dependence.

The data layer model is given by

P t
1(M |ξ1) ∝

T∏

t=1

tΣ,k
(
T−1
k (FM1,t(m1,t;X1βt, ρ1, α1)), · · · , T

−1
k (FMn,t(mn,t,Xnβt, ρ1, α1))

)

×
n∏

i=1

fMi,t
(mi,t;Xiβt, ρiαi)

tk(T
−1
k (FMi,t

(mi,t;Xiβt, ρi, αi)))

where tΣ,k denote the p.d.f of an n-variate t-distribution with covariance matrix Σ and

k degrees of freedom. Tk and tk denote the distribution function and density function

of an univariate t-distribution with d.f k and variance 1. For the block-maxima

approach we use the expression obtained in (5.2) and (5.3) for fM(.;Xiβt, ρi, αi) and

FM(.;Xiβt, ρ, αi) respectively and model the process and the prior layers are in similar

fashion as in Section V.2.3 and V.2.3. For Poisson-GP approach we use expression

obtained in (5.10) and (5.11) as the marginal cdf and pdf respectively and the process

and prior layers analogous to the model described in Section V.2.4 and V.2.4. Based

on exploratory analysis, we fix the degrees of freedom, k, of the t copula to be 5.
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However, one can make it more flexible by putting a Poisson prior on it.

V.3. Model evaluation

Posterior predictive model checks

The goal is to ascertain whether the observed data are representative of the type of

data we might expect under the model. We can assess the fit using draws from the

posterior predictive distribution obtained in (5.17) and (5.18) to represent what we

can expect under the model. Let M rep denote a replication of the data with the same,

but unknown, values of the parameters that produced the data M . To assess the fit

of the model we introduce a discrepancy measure T (M , ξ) to measure the overall fit

of the model to the data. In this study, we use the usual chi-squared goodness-of-fit

measure, that is

T (M , ξ) =
∑

i

(Mi − E(Mi|ξ))
2

V ar(Mi|ξ)

Note that T is a function of the parameters and hence has a posterior distribution.

The fit of the model with respect to the discrepancy measure T is assessed by com-

paring the posterior distribution of T (M , ξ) to that of T (M rep, ξ). The comparison

is carried out via simulation. We draw N simulations ξ1, ξ2, · · · , ξN from the pos-

terior distribution of ξ given in (5.8) or (5.16) and then draw one M rep from the

predictive distribution, given in (5.17) and (5.18), using each simulated ξ. Thus we

have N draws from the joint posterior distribution P (M rep, ξ|M ). Then we com-

pare the values of the realized discrepancy T (M , ξk) and the replicated discrepancy

measures T (M rep,k, ξk), k = 1, 2, · · · , N . One way of comparing their joint posterior

distribution is by plotting the pairs (T (M , ξk), T (M rep,k, ξk)) in a scatterplot. If the

points are far removed from a 450 line, then the data generated by the model do not

resemble the observed data as regards the measure T . Using these simulated values
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we also obtain the posterior predictive p−value

pp = P(T (M rep, ξ) ≥ T (M , ξ)|M )

=

∫ ∫
I[T(M

rep
,ξ)≥T(M ,ξ)]P (M rep|ξ)P (ξ|M)dM repdξ

where I[A] is the indicator function for the event A. The p−value is estimated from

the simulations as the proportion of the N replications for which T (M rep, ξ) ≥

T (M , ξ). Extremely small posterior predictive p−values indicate a clear rejection of

the proposed model.

Performance measures

We perform the model selection using the DIC criterion (Spiegelhalter et al., 2002).

Additionally, to compare the predictive performance we use (i) Average Absolute Pre-

diction Error (AAPE) and (ii) Average Absolute Deviation (AAD) criteria. We use

the posterior median as the point estimates of the predicted annual maxima for the

validation set. The choice of posterior medians as point estimates seems to be natu-

ral because of the presence of skewness in the posterior predictive distribution. Let

M i,t+1 = (Mi,t+1,1, . . . ,Mi,t+1,B) be a B×1 vector denoting the samples from the pos-

terior predictive distribution for location i at time t+1. Let M̃i,t+1=Median(M i,t+1).

Then, we define AAPE as

AAPE =
1

nT

n∑

i=1

T∑

j=1

|M̃i,t+j −Mi,t+j|

where Mi,t+j is the observed annual maximum corresponding to location i in the year

t+ j, j = 1, 2, · · ·.

The AAD is further defined as

AAD =
1

nBT

B∑

b=1

n∑

i=1

T∑

j=1

|Mi,t+j,b − M̃i,t+j|.
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V.4. Results

We use the precipitation maxima of the year 1900 as the initial condition for esti-

mation of β0. We train both the models on the dataset comprising of the annual

maxima from the year 1901 through 1990 and validate it on the last eight years of

data, i.e, from 1991 through 1998. As described in Section V.3, we first use the poste-

rior predictive p−value to test the hypothesis about the goodness-of-fit of the models

under consideration. If the p− values do not indicate any lack of fit, we use DIC

for model selection purpose and assess the predictive performance using the AAPE

and AAD criteria. Table 9. shows DIC, AAPE and AAD scores along with the pos-

terior predictive p−value for the Poisson-GP and the GEV models obtained for the

proposed MEV copula and the baseline t5 copula models. The posterior predictive

p−value is fairly high for all the models under consideration indicating no lack of

fit. However, for both the approaches, the p-values obtained for the MEV models are

larger than that for the baseline model. Among the better performing MEV mod-

els, the DIC chooses the Poisson-GP model over the GEV model. Also note that,

for both the approaches, the DIC prefers the MEV copula model to the baseline t5

copula model. The predictive performance of the Poisson-GP model is better than

the that of the GEV model for both the MEV and t5 copula models. This indicates

that it is more beneficial to consider the amount of exceedance in conjuction with its

occurrence. In fact this finding agrees with the findings of Madsen et al. (1997) who

conjectured that if other relatively high values in the sample were used besides the

annual maxima, then more accurate estimates of the quantiles of the extreme value

distributions would be obtained. However, note that, for both the approaches, the

predictive performances of the MEV model are way better than that for the baseline

model.
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Table 9.: DIC, AAPE and AAD for the two competing models

Copula Models pp DIC AAPE AAD

MEV Poisson-GP 0.80 870.44 27.47 57.69
GEV 0.71 874.14 38.93 64.64

t5 Poisson-GP 0.77 893.63 32.72 77.93
GEV 0.71 900.97 41.27 82.24

The shape parameter α is a key parameter that we need to draw inference on

because the tail behavior of the marginal distribution depends exclusively on it. Ta-

ble 10. shows the posterior summary of the shape(α), scale(ρ) and dependence(δ)

parameters for the Poisson-GP model and the GEV model. The posterior median

of the shape parameter for both the regions under both models are negative. This

indicates that the marginal distributions belong to the light tailed family. Note that,

for both the models, the posterior median for α corresponding to coastal regions is

higher than that for the inland regions . As a matter of fact, the 95% posterior credi-

ble interval of the shape parameter in the coastal region for the GEV model contains

0, indicating a possibility that the marginal distribution of the annual maxima might

as well belong to the very heavy-tailed Gumbel family. To get a clearer picture, we

plot the kernel density estimates of the posterior distribution of α for the inland and

coastal stations for both the Poisson-GP and the GEV model in Figure 18. It is evi-

dent that, for both the models, the posterior distribution of α for the coastal region

is stochastically larger than its counterpart for the inland region. These facts clearly

indicate the prevalence of relatively heavier tails at the coastal region. One of the

meteorological reasons for this phenomenon is the seasonal development of tropical

storms in the mid-Atlantic and Gulf of Mexico causing heavy precipitation at the

eastern and south-eastern coast of USA. We have assumed the θ1 and θ2 to be a pri-
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ori independent, however a posteriori they are dependent with correlation coefficient

around 0.11 for the Poisson-GP model and 0.18 for the GEV model. Also note that

the estimates of the dependence parameter (δ) for the Poisson-GP model and the

GEV model are similar with former yielding slightly lower estimates as compared to

the latter.

Figure 19 shows the posterior median of βt and 95% credible interval at each time

point for the training set for the Poisson-GP model. Firstly, note that the coefficients

corresponding to longitude are all positive and significant at most of the time points

(Figure 19(b) ) indicating that for a given latitude-longitude coordinate of a site, the

effect of the latter on extreme precipitation events is more significant as compared to

the effect of the former. Secondly, note that negative association between elevation

and extreme precipitation (Figure 19(c)).

Figure 20 shows the predictive maps of the point estimates (pointwise posterior

predictive median) for the annual precipitation maxima produced by the relatively

superior Poisson-GP model for the years 1991, 1995 and 1998. These maps show

interesting geographic effects. The eastern and south-eastern regions show high in-

tensity of extremal events as compared to the western and mid-western regions. The

difference in the intensity of extreme precipitation between low-altitude regions and

mountainous regions is also apparent. This finding is consistent with the negative as-

sociation between elevation and extreme precipitation as described earlier and agrees

with the findings of Jarrett (1990, 1993) who claimed that the hydrologic and pale-

ohydrologic evidences show that intense rainfall does not occur at higher elevations.

Also note the significant evolution of the random field over time. The predictive

maps clearly show an increase in the occurrence of extreme precipitation events in

1998 as compared to 1991. Such increasing trends were also reported in Groisman et

al. (2001), Kunkel et al. (1991) among others.
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Table 10.: Posterior summary of parameters for the two competing models

Models Parameter Median 95% Credible Interval

Poisson-GP Shape (coastal) -0.40 (-0.49, -0.21)
Shape (inland) -0.56 (-0.80, -0.38)

Scale 0.46 (0.02, 0.91)
Dependence (δ) 7.96 (1.18, 11.89 )

GEV Shape (coastal) -0.02 (-0.05, 0.09)
Shape (inland) -0.12 (-0.27, -0.04)

Scale 0.41 (0.05, 0.77)
Dependence (δ) 12.55 (4.17, 14.21 )

One of the main reasons to adopt Bayesian methodology was to obtain the un-

certainty estimates associated with the predictions. Figure 21 shows the maps of

uncertainty range, which is calculated by taking the difference between the pointwise

0.025 and 0.975 empirical quantiles from the posterior predictive draws, associated

with predictive atlases shown in Figure 20. As one might expect, the uncertainty

increases (range becomes wider) as the forecast horizon increases. Given a particu-

lar year, one can also see higher level of uncertainty at the desert locations and high

altitude regions where few stations are location and the model is forced to extrapolate.

V.5. Sensitivity analysis

There are three issues that are required to be addressed here:

(a) Choice of priors.

(b) Choice of the threshold.

Choice of priors

In a Bayesian analysis, the sensitivity of the results to the choice of the priors are

required to ascertained. In the present study, the choice of priors for the dependence
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parameter, δ and shape parameters α are of paramount interest.

Choice of dependence parameter

A preliminary sensitivity analysis performed on various values of δ suggested that the

model sensitive to the lower bound of δ. When variables are strongly dependent, a

large value of δ (typically δ ≥ 10, representing an upper tail-dependence in excess of

0.8 ) yields a posterior predictive p-value greater than 0.8 indicating a good model

fit. But a low value of δ (δ ≤ 1.2, representing an upper-tail dependence lower than

0.5 ) yields a posterior predictive p-value of around 0.3 or less, indicating a somewhat

questionable fit. The situation is reversed in case of near independent variables.

In practical situations, where the dependence between different pairs of the ran-

dom variables may fluctuate widely, we suggest co-regionalization and choose different

priors for δ for different regions.

Choice of shape parameter

The sign of the shape parameter determines the nature of the marginal distribution

for both the models. Consequently, assumption of flat prior on the shape parameter

makes the computation complicated and delays convergence of the chains. We have

tested that if we can restrict the support of α to either R+ or R−, the computation

is far simpler and convergence is fast. However, in doing so, we need to be cautious

about its impact on the prediction performance of the model. Simulation studies

demonstrate that the prediction performance is worst under misspecification of the

range of α. Hence we believe that it is better to sacrifice the computational simplicity

in order to enhance the predictive accuracy of the model.
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Choice of threshold

We perform a threshold sensitivity analysis by varying the return period, thereby

changing the selected threshold, and then looking at how the shape parameter of

the GPD changes with changes in threshold. It seems empirically that the posterior

estimate of the shape parameter is most stable for low return periods (typically 1,2,3

years).

V.6. Concluding remarks

We have developed a highly flexible Bayesian hierarchical model for analysis of spatio-

temporal extremes. The model incorporates spatial dependence directly at the data

level and admits unrestricted correlation structure. It has the ability to handle both

strong and weak extremal dependences. To our knowledge, this is the first usage of

such a flexible model to produce maps characterizing behavior of extremes across a

geographic region and studying the evolution of the same over time. As an alterna-

tive to the usual block maxima approach we have empirically shown that it is more

beneficial to consider exceedances over a certain threshold in order to come up with

better predictive accuracy.

The statistical contribution of this work is twofold.

(a) A major drawback of the Bayesian approach to model extreme events is its poor

performance when the variables are asymptotically dependent. This problem arises

due to assumption of conditional independence of the data given the parameters. In

addition to allowing incorporation of dependence directly at the data level, a major

advantage of our model is that it can handle both asymptotically dependent and in-

dependent variables.

(b) Unlike most of the Bayesian models, which assume proper priors on dependence
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parameters in order to guarantee posterior propriety, we have shown that under pro-

posed model specifications, an improper prior on the dependence parameter, δ, will

lead to a proper posterior under mild regularity conditions.

The meteorological/hydrological contribution is the development of a method-

ology that can be employed to produce predictive and uncertainty maps of extreme

precipitation over a geographical region. The methodology is superior to the com-

monly used regional frequency analysis algorithm in the sense that the latter cannot

take into account all sources of uncertainty. In the posited model, on the other hand,

the uncertainty arising from the parameter estimates as well as from the prediction

procedure is accounted for.

The proposed model can be extended to a more generalized set-up. The as-

sumption of fixed threshold can also be generalized by proposing location dependent

thresholds. The assumption of stationarity in this case was directed by exploratory

analyses. However, occurrences of annual and diurnal cycles are pretty common in

hydro-meteorological events. The future challenge will be to incorporate such spatio-

temporal non-stationarity in the the model.
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CHAPTER VI

CONCLUSION

We have developed models for longitudinal, spatial and spatio-temporal processes in

the Bayesian paradigm using various copulas to handle the dependences present in

these processes. The introduction of copula in the data layer itself allows us to get

rid of the conditional independence assumption. Although, the conditional indepen-

dence assumption is commonly used to describe the data layer, it sometimes induces

unwanted characteristics in the model - as we have shown in Chapter V. Essentially,

copula method allows us to incorporate marginal dependence information directly into

the model - a feature lacking in the conditional independence model. Such copula

based hierarchical models have not been extensively studied in the Bayesian paradigm.

So, the propriety of the posteriors are required to be investigated. In this dissertation,

we have derived conditions required to obtain proper posteriors for specific choices of

copulas. In addition, we have proved theoretically that the posited models do sup-

port the processes they are meant to model. Since we cannot observe a whole process

in entirety, describing a paramteric model for the same always involves a chance of

misspecification. We have performed extensive simulations to study the effect of such

misspecifications on the posited models in Chapter IV. Besides studying these essen-

tial characteristics, we have obtained some remarkable features of the posited models.

The multivariate bridge model presented in Chapter III has the ability of preserve in-

terpretation of the fixed effects at the marginal scale after integrating out the random

effects. The multivariate extreme value copula model presented in Chapter V can ac-

commodate both strong and weak extremal dependence. Apart from these statistical
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contributions, we believe that our models do have hydro-meteorological contributions

as well. They can be employed to produce predictive and uncertainty maps of differ-

ent hydro-meteorological phenomena over a geographical region. The methodology is

superior to some commonly used models, like regional frequency analysis algorithm,

in the sense that the former accounts for the uncertainty arising from the parameter

estimates as well as from the prediction procedure. We believe that the development

of these copula based Bayesian hierarchical models and the associated methodologies

will go a long way to address the dearth of such models to study various geological and

hydro-meteorological phenomena which yield both continuous and discrete outcomes.
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APPENDIX A

PROOFS OF RESULTS AND FIGURES

PROOF OF RESULT 2.1

To show that the joint posterior is proper, we need to show
∫ ∫

π(β,Σ|Y)dβdΣ <∞.

Let us first show π(β,Σ|Y∗) is proper. Since Y∗ consists of independent outcomes

π(β,Σ|Y∗) ∝ π(β|Y∗)π(Σ)

= L(Y ∗|β)π(Σ) .

Now

L(Y ∗|β) =
n∏

i=1

∫
(pr(Y∗

i = y∗i |β, b
∗
i )fb(b

∗
i ) ,

where b∗i is the random effect corresponding to the response y∗i and fb(.) is its univari-

ate density function. Due to the marginal consistency property of the bridge random

effects, we have

L(Y ∗|β) = [F (ηx′iβ)]
y∗i [1 − F (ηx′iβ)]

1−y∗i . (A.1)

Now, if L(Y ∗|β) has a unique maximum, then it is bounded. Then it follows from

Theorems 2.1 and 3.1 of Chen and Shao (2000) that

∫
L(Y ∗|β)dβ = M <∞ . (A.2)

Now consider the entire data matrix Y, so that the joint posterior is given by

∫ ∫
π(β,Σ|Y)dβdΣ

=

∫ ∫ n∏

i=1

∫
pr(Yi1 = yi1, . . . , YiT = yiT |β,Σ,bi)fb(bi1, . . . , biT )dbiπ(β)π(Σ)dβdΣ
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≤

∫ ∫ n∏

i=1

∫
pr(Y∗

i = y∗i |β,Σ, b
∗
i )fb(b

∗
i )dbiπ(Σ)dβdΣ

=

∫ ∫ n∏

i=1

[F (ηx′iβ)]
y∗i [1 − F (ηx′iβ)]

1−y∗i dβπ(Σ)dΣ

=

∫
L(Y∗|β)dβ

∫
(π(Σ)dΣ [From(A.1)]

= M <∞ [From(A.2) and since the support of π(Σ) is finite ]

PROOF OF RESULT 3.1

For notational convenience we suppress the parameters of the marginal distribution of

Yi’s and denote the marginal distribution function and density function of Yi simply

by Fi(yi) and fi(yi) respectively.

The likelihood L(Y|η) can be decomposed into two parts, the so-called density

weighing function

g0,Σ

(
Q−1
g (FY1(y1;µ1, ρ1, α1)), . . . , Q

−1
g (FYn(yn;µn, ρn, αn))

)
∏n

i=1 qg
(
Q−1
g (Fi(yi;µi, ρ, α))

)

and the marginal densities of Y. The first part is the copula density of an n dimen-

sional elliptical distribution and hence absolutely continuous. The marginal distribu-

tion of Yi is absolutely continuous for each i defined on the same support as that of of

the copula density. Then L(Y|η) is essentially a convolution of absolutely continuous

densities and hence is necessarily absolutely continuous.

By similar argument we can easily prove the absolute continuity of the M -

component model.

PROOF OF RESULT 3.2

To check the Kolmogorov consistency conditions we prove the proposition in two

parts.
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Symmetry under Permutation

Let p1, p2, . . . pn be any permutations of 1, 2, ..., n. To show that L(Y|η) is permuta-

tion invariant, all we need to show is

g0,Σ

(
Q−1
g (FY1(y1; η1)), . . . , Q

−1
g (FYn(yn; ηn))

)

= g0,Σ

(
Q−1
g (FYp1

(yp1; ηp1)), . . . , Q
−1
g (FYpn

(ypn ; ηpn))
)

This is pretty obvious because elliptical kernels are symmetric in its arguments.

For the M component model we can prove the consistency under permutation sim-

ilarly because in this case, the model is a discrete mixture of elliptical copula with

individual component being symmetric in its argument, the whole density function is

symmetric in its argument.

Dimensional Consistency

Case 1: Single Component Model

Let Y = (y1, . . . , yn) ∼ Gn(Σn) with the density function given by

f(y1, . . . , yn) = g0,Σn

(
Q−1
g (F1(y1)) , . . . , Q

−1
g (Fn(yn))

) n∏

i=1

fi(yi)

qg
(
Q−1
g (Fi(yi))

) (A.3)

To show that the dimensional consistency is preserved we need to show that the

joint distribution of any (n − 1) dimensional vector follows Gn−1(Σn−1). Without

loss of generality we derive the joint distribution of Y−n = (Y1, . . . , Yn−1). Take

the transformation Zi = Q−1
g (Fi(yi)) in (A.3). Then we have Z = (Z1, . . . , Zn) ∼

ECn(0,Σn, g). Define a (n− 1)× n matrix D = [I(n−1)×(n−1), 0(n−1)×1] of rank n− 1.

Then the joint distribution of Z−n = (Z1, . . . , Zn−1) is same as the distribution of DZ.

By using property 4 described in section IV.1.2 we have Z−n ∼ ECn−1(µ−n,Σ−n)

where µ−n = (µ1, . . . , µn−1) and Σ−n is the matrix Σ without the nth row and nth
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column. Now reverting the transformation from Zi to Yi, we get the joint distribution

of Y−n as

fY−n(Y1, . . . , Yn−1) = g0,Σ−n

(
Q−1
g (F1(y1)), . . . , Q

−1
g (Fn−1(yn−1))

) n−1∏

i=1

fi(yi)

qg
(
Q−1
g (Fi(yi))

)

(A.4)

Comparing the expression of Gn(Σn) in (A.3) and (A.4) it is obvious (Y1, . . . , Yn−1) ∼

Gn−1(Σn−1). Note that, if we integrate out Y1, . . . , Yn−1 we are left with the marginal

distribution of Y1 given by

fY1(y1) = qg
(
Q−1
g (F1(y1))

) f1(y1)

qg(Q−1
g (F1(y1)))

= f1(y1)

Clearly Y1 ∼ G1(Σ1) whose density function is same as fY1(.)

Case 2: M -component Model

We have the joint distribution of y1, . . . , yn given by

fY(y1, . . . , yn) =
M∑

j=1

πjg0,Σn×n
j

(
Q−1
g (F1(y1)) , . . . , Q

−1
g (Fn(yn))

) n∏

i=1

fi(yi)

qg
(
Q−1
g (Fi(yi))

)

(A.5)

with
∑M

j=1 πj = 1.

Take the transformation Zi = Q−1
g (Fi(yi)). Then we have the joint distribution of

Z = (Z1, . . . , Zn) given by

fZ(z1, . . . , zn) =
M∑

j=1

πjg0,Σn×n
j

(z1, . . . , zn) (A.6)

Then using the same argument used for the single component model, if we integrate

out Zn, then each of the M components will be the density function of an n − 1

dimensional elliptical distribution with mean 0 and covariance matrix Σj(−n), j =
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1, 2, . . . ,M , where Σj(−n) is the matrix Σj without the nth row and nth column. Thus

the joint distribution of (Z1, . . . , Zn−1) is given by

f(z1, . . . , zn−1) =
M∑

j=1

πjg0,Σn−1×n−1
j(−n)

(z1, . . . , zn−1)

Now reverting the transformation we get the joint distribution of (Y1, . . . , Yn−1) as

fY−n(y1, . . . , yn−1) =
∑M

j=1 πjg0,Σn−1×n−1
j(−n)

(Q−1
g (F1(y1)), . . . , Q

−1
g (Fn−1(yn−1)))

∏n−1
i=1

fi(yi)

qg
(
Q−1
g (Fi(yi))

)

Also note that due to the generalized exponential parameterization of the covariance

matrix, the marginal distribution of each Zi is EC1(0, 1, g). Hence the marginal

density of each Yi is given by fYi
(.) Thus the dimensional consistency is preserved.

PROOF OF RESULT 3.3

Case 1: Single Component Model

From (4.2) we observe that Corr(Q−1
g (Fi(yi)), Q

−1
g (Fj(yj))) = ρij 0 ≤ ρij ≤ 1. Then

using the Fang et. al (2002) result we get theat Kendall’s correlation coefficient

between Yi and Yj is given by

τij = 4EFij
(FYi,Yj

(yi, yj)) − 1 =
2

π
arcsin(ρij)

Since 0 ≤ ρij ≤ 1 and so is τij. We have τij to be a monotone function of ρij, hence

isotropy is preserved.

Case 2: M -component Model

In this case, Corr(Yi, Yj) does not have a closed form. However based on certain

assumptions we get an approximate expression for the Corr(Yi, Yj). Let E(Yk) = µk
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and Var(Yk) = σ2
k. Now we define Zi = Q−1

g (Fi(yi)) as we did earlier. Assuming

σ2
k to be small we can invoke the small dispersion asymptotics (Jorgensen 1987) and

following Song (2000) we can write

Yk = F−1
k (Qg(Zk)) = µk + σkZk + o(σk) (A.7)

From (A.6) we see that Corr
[
Q−1
g (Fk(Yk)), Q

−1
g (Fl(Yl))

]
= Corr(Zk, Zl) =

∑M
j=1 πjρj(kl) =

γ(kl) (say). Then using (A.7) and the above expression for γ(kl) we get

σkl = cov(Yk, Yl) ≈ σkσlγ(kl)

Thus the correlation between Yk and Yl is approximately proportional to a convex

combination of (ρ1(kl), ρ2(kl), . . . , ρM(kl)). Thus given the values of (π1, π2, . . . , πM), σkl

only depends on the distance between the kth location and the lth location. Hence

isotropy is preserved.

PROOF OF RESULT 3.5

Let Kij, 1 ≤ i < j ≤ n, be a bivariate copula. Let H1, . . . , Hn be the univariate

c.d.fs. Let M be the distribution function of a positive random variable with Laplace

transform ψ. Then following Joe and Hu (1996), we can write

∫ ∞

0

∏

1≤i<j≤n

Kα
ij(Hi, Hj)

n∏

i=1

Hνiα
i dM(α)

= ψ

(
−

∑

1≤i<j≤n

logKij(Hi, Hj) −
n∑

i=1

νi logHi

)
(A.8)

If we want to marginalize over Hn, i.e, if Hn → 1, we get

∫ ∞

0

∏

1≤i<j≤n−1

Kα
ij(Hi, Hj)

n−1∏

i=1

H
(νi+1)α
i dM(α)
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= ψ

(
−

∑

1≤i<j≤n−1

logKij(Hi, Hj) −
n−1∑

i=1

(νi + 1) logHi

)
(A.9)

Now (A.8) yields a valid copula with uniform marginals if Hi(ui) = exp(−piψ
−1(ui))

with pi = (νi + n − 1)−1. Taking this transformation, we get the joint distribution

function of U1, . . . , Un from (A.8) given by

C(u1, . . . , un)

= ψ

(
−

∑

1≤i<j≤n

logKij(exp(−piψ
−1(ui)), exp(−pjψ

−1(uj))) +
n∑

i=1

νipiψ
−1(ui)

)

(A.10)

After marginalizing over Un, we get the joint distribution function of U1, . . . , Un−1

from (A.9)as

C(u1, . . . , un−1)

= ψ

(
−

∑

1≤i<j≤n−1

logKij(exp(−piψ
−1(ui)), exp(−pjψ

−1(uj))) +
n−1∑

i=1

(νi + 1)piψ
−1(ui)

)

(A.11)

Choosing νi = 0, ∀i, i.e, pi = (n − 1)−1, the bivariate copula Kij(ui, uj) =

uiuj exp
([

(− log ui)
−Σij + (− log uj)

−Σij
]−1/Σij

)
,Σij > 0 and the Laplace transform

ψ(s, δ) = exp(−s1/δ), δ ≥ 1, (A.10) will lead to the family (4.24) and after marginal-

sation over Mn, (A.11) will lead to (4.25)

PROOF OF RESULT 3.6

Let

I =

∫ ∞

1

δ̃n

δ̃
∏n

i=1mi

FM (y1, . . . , yn)dδ, [since π(δ) ∝ 1]
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=

∫ ∞

1

δ̃n

δ̃
∏n

i=1mi

e−A(δ), [from 4.27]

=
δ̃n

δ̃
∏n

i=1mi

∫ ∞

1

e−A(δ)dδ [Using the regularity condition (i)] (A.12)

All we need to show is that, I <∞.

Using Taylor series to expand A(δ) about its MLE δ0 and using condition (ii) we get

A(δ) ≈ A(δ0) + (δ − δ0)A
′(δ0) +

(δ − δ0)
2

2
A′′(δ0)

= A(δ0) +
A′′(δ0)

2

[
2A∗(δ0)δ − 2A∗(δ0)δ0 + δ2 − 2δ0δ + δ2

0

]
(A.13)

where A∗(δ0) = A′(δ0)
A′′(δ0)

.

Then completing the square w.r.t δ in (A.13) we get

A(δ) ≈ A(δ0) +
A′′(δ0)

2

[
{δ − (δ0 − A∗(δ0))}

2 − A∗(δ0)
2
]

= A(δ0) −
A′′(δ0)

2
A∗(δ0)

2 +
A′′(δ0)

2
(δ − δ∗0)

2 (A.14)

where δ∗0 = δ0 − A∗(δ0).

Then combining (A.12) and (A.14) we get

I ≈
δ̃n

δ̃
∏n

i=1mi

∫ ∞

1

e
−

»

A(δ0)−
A′′(δ0)A∗(δ0)2

2
+

(δ−δ∗0)2

2[A′′(δ0)]−1

–

dδ

=
δ̃n

δ̃
∏n

i=1mi

e−A(δ0)+
A′′(δ0)A∗(δ0)2

2

∫ ∞

1

e
−

(δ−δ∗0)2

2[A′′(δ0)]−1 dδ

=
δ̃n

δ̃
∏n

i=1mi

κ1 × κ2 × κ3

Where

κ1 = e−A(δ0)+
A′′(δ0)A∗(δ0)2

2

κ2 =

[
2π

A′′(δ0)

]1/2

κ3 =

[
1 − Φ

(
1 − δ∗0

A′′(δ0)−1/2

)]
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Note that 0 ≤ κ1 ≤ 1 and by condition (iii) max(κ2, κ3) <∞. So from (A.15), we get

I ≈
δ̃n

δ̃
∏n

i=1mi

κ1 × κ2 × κ3

< ∞

Then, given the hierarchical models described in Section IV.4.3 the propriety of the

posterior distributions obtained in (4.33) are guaranteed by the propriety of the priors

of the rest of the parameters.

PROOF OF RESULT 4.1

For simplicity, let us consider a bivariate set-up. Let M i = (Mi1, · · · ,MiT )T , i =

1, 2 denote these two time series of annual maxima observed at locations S1 and S2

respectively. Since we assume a conditional temporal independence at the very outset,

we suppress the subscript t and denote the distribution and density function of M i

by Fi and fi respectively. Then a measure of extreme dependence is given by

χ =Lim
u→1 P (U1 > u|U2 > u) =Lim

u→1
P (U1 > u,U2 > u)

1 − u

where Ui = Fi(mi). Without loss of generality, we assume Mi ∼ GEV (0, 1, αi) with

the density and distribution functions specified in (5.2) and (5.3). Then we get the

quantile function as

F−1
i (u) =

(− log(u))−αi − 1

αi
(A.15)

f(M1,M2|α1, α2) =
2∏

i=1

f(Mi|αi)

χ = Lim
u→1

P [M1 > F−1
1 (u),M2 > F−1

2 (u)]

1 − u
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= Lim
u→1

∫
P [M1 > F−1

1 (u),M2 > F−1
2 (u)|α1, α2]

1 − u
π(α1, α2)dα1dα2

= Lim
u→1

∫
P [M1 > F−1

1 (u)]P [M2 > F−1
2 (u)]

1 − u
π(α1, α2)dα1dα2

= Lim
u→1

∫ [
1 − e−[1+α1F

−1
1 (u)]−1/α1

] [
1 − e−[1+α2F

−1
2 (u)]−1/α2

]
π(α1, α2)dα1dα2

(A.16)

Now using (A.15) we get

1 − e−[1+α1F
−1
1 (u)]−1/α1 = 1 − u (A.17)

Hence

χ =Lim
u→1 (1 − u)

∫
π(α1, α2)dα1dα2

Then under the condition that the joint distribution of α1, α2 is proper (
∫
π(α1, α2)dα1dα2 <

∞) we have

χ = 0

Hence a conditional independence assumption will lead to asymptotically independent

class under a proper prior assumption.
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Fig. 1: Plot of Kendall’s τ for two responses versus time-lag between observations for

five values of ρ and using ρst = ρ|s−t| for the parametric bridge random effects model.
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Fig. 2: The posterior summaries of the regression parameters for logit-bridge Model
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Fig. 3: The posterior summaries of the regression parameters for log-log-stable Model
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Fig. 4: The posterior summaries of the regression parameters for logit-Gaussian Model
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Fig. 5: The posterior summaries of the regression parameters for semiparametric

Model
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Fig. 6: Comparison between the predictive performance of the semiparametric bridge

random effects model and the parametric bridge random effects model for Subject 5

and Subject 29.
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Fig. 7: Plot of Kendall’s τ for two responses versus time-lag between observations for

five values of ρ and using ρst = ρ|s−t| for the semiparametric bridge random effects

model.
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Fig. 8: Posterior median (solid line) and 95% credible interval (dashed line) of shape

parameter and Kernel smoothed predicted (solid line) and observed (dashed line)

densities for Darwin data

Fig. 9: Predicted odds of death from West Nile Virus at unobserved locations
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Estimated shape parameters and its 95% credible interval for the permeability data
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(a) Posterior summary of α
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Fig. 10: Posterior median (solid line) and 95% credible interval (dashed line) of shape

parameter and Kernel smoothed predicted (solid line) and observed (dashed line)

densities for permeability data
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Estimated shape parameters and its 95% credible interval for US maxima data
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(a) Posterior summary of α
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Fig. 11: Posterior median (solid line) and 95% credible interval (dashed line) of shape

parameter and Posterior distribution of the shape parameter for the coastal (solid

line) and inland (dashed line) regions for the US maxima data
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Fig. 12: Extreme precipitation and Uncertainty map of US for the year 1998
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Fig. 13: Kernel smoothed predicted (solid line) and observed (dashed line) densities

for U.S maxima data
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Fig. 14: Plot of the p values for Moran’s I randomization tests obtained at different

time points
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Fig. 15: Performance of the parametric variograms as compared to the Empirical

binned variogram
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(a) χ(u) plot for pair 3 and 18
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(b) χ̄(u) plot for pair 3 and 18
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(c) χ(u) plot for pair 10 and 13
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(d) χ̄(u) plot for pair 10 and 13

Fig. 16: Plots of estimated χ(u) and χ̄(u) (solid line) and their approximate 95%

confidence intervals (dashed line) for various stations
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Fig. 17: ACF plot of the annual maxima time series observed at four different clima-

tological regions
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Fig. 18: Posterior distribution of the shape parameter for the inland and coastal

regions under both models
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Fig. 19: Posterior medians (solid line) and 95% credible intervals (dashed line) of the

regression parameters
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Fig. 20: Predictive maps of the point estimates for the annual precipitation maxima

obtained using Poisson-GP model
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Fig. 21: Estimates of the range of 95% credible intervals for the predictive maps
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