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ABSTRACT 

 

Effect of Cryopreservation Protocol on Post-Thaw Characteristics of Stallion 

Spermatozoa. (August 2009) 

Jose L. Salazar, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Dickson D. Varner 

     
      
 

Three ejaculates from each of eight stallions were initially centrifuged in INRA 

96 extender and spermatozoal pellets were resuspended in a milk/egg yolk-based 

freezing extender or an egg yolk-based freezing extender.  Extended semen was exposed 

to a fast pre-freeze cooling rate (FAST - semen immediately subjected to 

cryopreservation) or a slow pre-freeze cooling rate (SLOW - semen pre-cooled at a 

controlled rate for 80 minutes prior to cryopreservation). After thawing, semen was 

diluted in initial freezing medium (FM) or INRA 96 prior to analysis of 9 experimental 

endpoints: total motility (MOT; %), progressive motility (PMOT; %), curvilinear 

velocity (VCL; µm/sec), average-path velocity (VAP; µm/sec), straight-line velocity 

(VSL; µm/sec), linearity (LIN; %), intact acrosomal and plasma membranes (AIVIAB; 

%), intact acrosomal membranes (AI; %), and intact plasma membranes (VIAB; %). 

Eight of nine experimental endpoints (MOT, PMOT, VAP, VSL, LIN AIVIAB, AI, and 

VIAB) were affected by extender type, with LE extender yielding higher values than MF 

extender for these variables (P<0.05).  Exposure of extended semen to a slow pre-freeze 

cooling period resulted in increased values for seven of nine endpoints, as compared to a 
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fast pre-freeze cooling period (P<0.05).  Mean VAP and VSL were unaffected by pre-

freeze cooling rate (P>0.05).  As a post-thaw diluent, INRA 96 yielded higher mean 

values than FM for MOT, PMOT, VCL, VAP, and VSL (P<0.05).  Treatment group FM 

yielded slightly higher values than INRA 96 for LIN and VIAB (P<0.05).  Extender x 

rate interactions (P<0.05) were detected for the variables MOT, AIVIAB, AI and VIAB.  

Mean values for these endpoints were higher following spermatozoal exposure to a slow 

pre-freeze cooling period, regardless of freezing extender type (P<0.05).  The effects of 

pre-freeze cooling rate on MOT, AIVIAB, AI, and VIAB were more pronounced in 

spermatozoa cryopreserved in MF extender, as compared to LE extender.  Within 

treatment groups SLOW and FAST, mean MOT, AIVIAB, AI, and VIAB were higher 

(P<0.05) for spermatozoa cryopreserved in LE extender, as compared to MF extender.  

Extender x diluent interactions (P<0.05) were detected for MOT, PMOT, VCL, VAP, 

VSL, and LIN.   Within Group MF, mean MOT, PMOT, VCL, VAP, and VSL were 

higher in INRA diluent, as compared to FM diluent (P<0.05).  Within Group LE, FM 

diluent yielded slightly higher values than INRA diluent for PMOT, VAP, VSL, and 

LIN (P<0.05).  In conclusion, a slow pre-freeze cooling rate was superior to a fast pre-

freeze cooling rate, regardless of freezing extender used, and INRA 96 served as a 

satisfactory post-thaw diluent prior to semen analysis. 
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INTRODUCTION 

 
With the rapid growth of the equine breeding industry, the use of frozen semen 

has become more common in order to preserve superior genetics as well as sustain a 

successful breeding program.  Some of the benefits of using cryopreserved semen 

include access to semen from stallions standing abroad and from those involved in 

competition.  Perhaps one of the major advantages with the availability of frozen semen 

is that breeders can more easily inseminate a mare at the optimal breeding time instead 

of having to rely on the availability of stallion semen.  Unfortunately, the success of 

cryopreservation with stallion spermatozoa is generally considered to be lower than that 

of some other domestic species, especially that of dairy cattle.  The overall reduced 

fertility of cryopreserved stallion semen, as compared to cooled or fresh semen, is 

disadvantageous to both stallion and mare owners.  The reason for this reduction in 

fertility is likely due to the fact that stallions are most commonly selected as sires based 

on performance record, pedigree, and conformation, as opposed to fertility.  Researchers 

have developed and tested many extenders and freezing techniques over the years in an 

effort to improve the post-thaw quality of stallion spermatozoa.  Nonetheless, there has 

not been a major break through with the cryopreservation of stallion spermatozoa that 

has drastically enhanced post-thaw semen quality of stallions. 

 
____________ 
This thesis follows the style of Theriogenology. 
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 The purpose of this experiment was to identify which of two commonly used 

commercial cryopreservation extenders for stallion semen produces the best post-thaw  

semen quality following two different pre-freeze cooling techniques.  The two extenders 

used were the E-Z Freezin® “MFR5” extender (MFR5) and E-Z Freezin® “LE” 

extender (LE).  Semen in either extender was exposed to a fast or a slow pre-freeze 

cooling process.  The effect of post-thaw diluent on a variety of laboratory endpoints 

was also studied.   
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OBJECTIVES 

The objectives of this study were to determine the effects of cryopreservation 

extender type and pre-freeze cooling period on post-thaw semen quality in stallions, 

based on an array of laboratory measures.  The effect of post-thaw semen diluent on 

semen quality was also tested.  Determining an overall superior treatment may lessen the 

need for testing various freezing extenders and pre-freeze cooling rates among individual 

stallions.  With this study, we hope to discover a treatment providing superior results 

that may be suggested as an optimal cryopreservation protocol across a range of 

stallions.    
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LITERATURE REVIEW 

Freezing Extenders 

 Over the years researchers have tested and proposed numerous freezing 

extenders of various compositions in attempt to improve the quality and use of frozen 

stallion semen.  Comparisons among stallion freezing extenders are documented poorly 

[1].  It has also been reported that the most effective semen extender for one stallion is 

not necessarily the most effective for another [2].  In 1984, Palmer indicated that 

freezing horse semen could use the same milk diluents (used for diluting semen 

immediately after collection) with the addition of 2% egg yolk and 2.5% glycerol [3].  In 

this study, he concluded that the milk + sugar + citrate freezing media proved to be 

significantly higher in regards to post-thaw motility compared to milk alone and HF20 

extenders [3].  The composition of this extender resulted in the formation of the milk 

based Modified French formula freezing extender (MFR5) that is used commercially 

today for freezing equine spermatozoa.  The Lactose EDTA (LE) freezing extender is 

another commercially used equine freezing extender that is egg-yolk based.  The 

composition of this extender developed by Martin et al. in 1979 was an experimentally 

developed extender formulated by combining two extenders; lactose and EDTA.  

Lactose EDTA resulted in higher post-thaw progressive motility (53.4%) when 

compared to the control (42.3%) which was composed of lactose, egg yolk, and 

glycerine [4].  In a study conducted by Ecot et al. in 2000, a variety of extenders along  
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with cooling treatments were tested in attempt to determine the effects of different 

cooling treatments and semen extenders on spermatozoal samples from individual 

stallions.  The extenders used in this study were INRA82, Kenney, and Gent.  The 

INRA82 and Kenney extenders are similar and all three contain milk.  Different 

concentrations of egg yolk (2 or 4%) and glycerol (2.5 or 3.5%) were applied to the 

INRA and Kenney extenders in experiment 2. Ecot et al. concluded that modification of 

egg yolk and glycerol concentrations resulted in higher spermatozoal motility in samples 

frozen in Kenney extender than in INRA82 extender [5].  As a result of experiment one 

where all three extenders were compared, several stallions had the same motility across 

all three, whereas some stallions had better motility when their semen was frozen in 

Kenney extender [5].  It was indicated that the experiments did not clearly establish 

differences in tolerance to semen extender among stallions.  

 Only a few comparisons have been made among freezing extenders for freezing 

stallion spermatozoa [1,5-9].  Results concluded that, although Kenney FE extender 

yielded higher motility compared to Lactose-Glucose EDTA and INRA82 FE extenders, 

it also produced a higher percentage of acrosome-reacted and capacitated spermatozoa 

thus resulting in lower per cycle pregnancy rate [10].           

 One of the important components of freezing extenders is egg yolk.  The 

concentration of egg yolk varies in different extenders used and has been studied as well.  

Vidament et al. found that increasing egg yolk from 2 to 4% did not improve post-thaw  
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motility [11].  The results of their particular experiment were consistent with similar 

results of frozen semen by Ecot et al. in 2000 [5,11].  Ecot et al. suggested that the 

concentration of egg yolk likely depends upon the extender used and the level of 

glycerol and milk [5].                                 

Cooling Rates 

 The major damage to spermatozoa as a result of cold shock is dependent upon 

the final temperature before freezing as well as the cooling speed until that temperature 

is reached.  The results of cold shock are characterized by abnormal motility patterns, 

rapid loss of motility, and membrane damage [12].  Kayser et al. reported that 

spermatozoa could be rapidly cooled from 37 to 20°C but required a linear cooling rate 

of -0.05 to -0.1°C/min between 20 and 5°C to maximize spermatozoal motility [13].  In a 

study conducted by Moran et al. the temperature range demonstrating when stallion 

spermatozoa were most susceptible to cold shock was between 19 and 8°C [12].  As a 

result the cooling rates recommended for extended semen are as follows 1) rapid from 

37 to 19°C (-0.7 to -2°C/min) 2) slow from 19 to 8°C (-.05 to -.1°C/min) and 3) rapid 

from 8 to 4°C (-.7°C/min) [12].  Vidament et al. performed a study which incorporated a 

freezing rate of 37°C to 4°C in 1 hour [14].  The cooling rates ranged from -4 to -

2°C/min between 37 and 22°C, -0.4°C/min between 20 and 10°C, then -0.2°C/min 

between 10 and 8°C [14].  After cooling, semen was maintained at 4°C for 1 hour before 

freezing [14].  Among all of the treatments, this delayed cooling treatment resulted in the  
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highest percentage of post thaw-motility.  Vidament et al. recommended a procedure for 

freezing and thawing in INRA82 that involved cooling extended semen to 4°C in 1 h 20 

min, then filling straws at 4°C, and freezing [11]. 

Vidament et al. showed significant results in post-thaw motility among all 

treatments when centrifugation and addition of glycerol was added at 22°C instead of 

4°C [14].  Direct freezing after centrifugation at 22°C resulted in lower post-thaw 

motility compared to cooling to 4°C in 1 hour before freezing [14].  This is also in 

agreement with reports by Heitland et al. [1,14].  Another study conducted by Crockett 

et al. reported that progressive motility (PMOT) for spermatozoa was higher when 

centrifuged before cooling (30%) vs. after cooling (19%) [15].  When centrifugation and 

addition of glycerol was performed at 4°C, post-thaw motility was also higher when 

cooling from 37°C to 4°C in 1 hour vs. 4 hours [14]. 

 Heitland et al. reported that skim milk-egg yolk-glycerol extender yielded higher 

total and progressive spermatozoal motility, as compared to Lactose EDTA when 

spermatozoa were cooled to 5°C over a 2.5 hour period prior to freezing rather than 

freezing at 20°C [1].  In a latter study conducted by Crockett et al. to demonstrate the 

effects of cooling before freezing on post-thaw motility they found that samples frozen 

2.5 hours after cooling to 5°C had higher percentages of progressive motility (27%) vs. 

samples frozen 24 hours after cooling (10%) [15].  Samples also frozen 2.5 hours after 

cooling in skim milk extenders containing egg yolk yielded a higher percentage of  
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progressively motile spermatozoa (avg. 32%) than skim milk alone (avg. 16%) [15].  

Crockett et al. also stated that skim milk extenders generally require a relatively slow 

cooling of spermatozoa to 5°C over 2-2.5 hours prior to freezing [15]. 

Glycerol Concentration 

 Glycerol is an essential cryoprotectant in all conventional extenders at (at 

concentrations of 2.5-6%) used for freezing stallion spermatozoa [16].  In 2001, a study 

conducted by Vidament et al. revealed there was no overall effect of glycerol 

concentration on post-thaw motility, regardless of the freezing protocol, however there 

seemed to be differences among stallions [11].  For example, for four stallions motility 

tended to increase when glycerol was above 3%.  However, for one, motility tended to 

decrease as glycerol increased.  Vidament et al. concluded that different glycerol 

concentrations (range: 1.5-4.5%) had no significant effect on post-thaw motility 

although 2.4-2.8% resulted in slightly higher (nonsignificant) motility [11].  These 

results were similar with other studies within the same laboratory where glycerol 

concentrations from 0 to 5% were tested and the optimum values obtained were at 2 or 

3%.  Ecot et al. also reported similar post-thaw motilities for spermatozoa frozen in 

INRA82 containing 2.5 and 3.5% glycerol [5].  Although increasing the glycerol 

concentration from 2.5 to 3.5% did not significantly increase spermatozoal motility in 

extenders containing 2% egg yolk, increasing the glycerol concentration in 4% egg yolk 

extenders did increase spermatozoal motility [5].  Cochran et al. and Cristanelli et al.  
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also observed increased spermatozoal motility in Martin’s extender containing 4% 

glycerol versus 2 or 3% glycerol [17,18].  These results may indicate an interaction 

between egg yolk and glycerol in semen extenders.  Burns and Reasner reported that the 

lowest concentration of glycerol in a Kenney extender that provided maximal 

cryoprotective effects was 2% [19].  Vidament et al. concluded based on their studies, 

that 2.5% glycerol in freezing extender routinely provides satisfactory per-cycle fertility 

[11].  In 2005, Vidament et al. recommended a glycerol concentration range from 2.5-

3.5% when considering both motility and fertility [10]. 

 The optimal glycerol concentration for maximal post-thaw motility using 

INRA82 extender is around 2-3% [5,11,20], 4% for the commonly used Lactose-

Glucose EDTA [17-18], and between 0 and 2% for Kenney freezing extender [19].           

Spermatozoal Freezability and Fertility 

 In 2005, Vidament demonstrated a relationship between motility and fertility.  

The study showed a 43% pregnancy rate per cycle when motility was less than 45% and 

a pregnancy rate of 52% when the motility was above that value [10].  A similar 

relationship was found between average path velocity (VAP) and fertility as well.  

Pregnancy rate per cycle was 45% when VAP was <66 µm/s and 54% when VAP was 

over this value [10].  However, no relationship was found between amplitude of lateral 

head displacement (ALH) and fertility.  This study also yielded a high rate of selected 

ejaculates.  They reported that 64% of stallions had more than 90% of their ejaculates  
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selected after freezing for use on mares [10].  Others have obtained high freezability 

results as well [21-22].          

 Vidament et al. reported significant improvement on per cycle fertility with 

semen subjected to centrifugation and addition of glycerol at 22°C 10 min after 

collection [5]. 

 There have been numerous attempts to find different post-thaw criteria to predict 

the fertility of frozen semen however, there are only few with a sufficient number of 

stallions and mares [23-24].  Nevertheless, all data support the conclusion that there is a 

relationship between post-thaw motility and fertility of frozen semen, at least among 

ejaculates frozen by the same technique and used in a similar manner [10].  However, 

when applying different protocols, the relationship may no longer exist because of 

possible variable reactions of spermatozoa with different extenders and cooling rates 

[10]. 

 Vidament et al. reported that there was a strong relationship between fertility of 

fresh semen and semen freezability [25].  However, the relationship between fertility of 

frozen semen and freezability was not as marked [25].     

 A study by Brinsko et al. concluded that commonly used methods for assessing 

spermatozoal function do not appear to be useful in predicting stallion semen freezability 

[26].  Their results only indicated that as the percentage of progressively motile 

morphologically normal spermatozoa in fresh semen decreases, the percentages will be  

                  

 



 11 

even lower in cooled and frozen-thawed samples.  Therefore, high percentages of 

progressively motile spermatozoa in fresh semen samples, is not indicative of similar 

motility patterns in cooled and frozen-thawed samples [26].  However, the better a fresh 

semen sample was in terms of progressive spermatozoal motility, the better a frozen-

thawed semen sample would be in terms of total spermatozoal motility [26].   

Post-thaw Diluent 

There are limited reports on the effects of different media used as post-thaw 

diluents for analyzing spermatozoa.  Palmer reported a significant decrease in fertility 

per cycle when glycerol was in the post-thaw diluent (INRA82) [3].  Some other reports 

of post-thaw diluents used for post-thaw motility analysis; Vidament et.al (2001) and 

Ecot et al. (2000) used INRA82, Cristanelli et al. (1984) used lactose EDTA egg yolk 

extender without glycerol, Burns and Reasner (1995) used BF extender without egg yolk 

or glycerol, Heitland et al. (1996) used E-Z Mixin, and Backman et al. (2004) used 

SMEY (skim milk egg-yolk) extender without glycerol however, no data are available 

[1,5,11,18,19,27]. 
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MATERIALS AND METHODS 

Semen Collection and General Processing  

Twenty-four ejaculates (three from each of eight mature sexually active light-

breed stallions) were collected using an artificial vagina (Missouri-model; Nasco, Ft. 

Atkinson, WI, USA)  equipped with an in-line nylon micromesh filter (Animal 

Reproduction Systems, Chino, CA, USA) to permit collection of gel-free semen.  An 

ovariectomized mare was used for sexual stimulation and as mount source.  Total 

spermatozoal number in gel-free semen was obtained by measuring semen volume with 

a graduated cylinder and measuring spermatozoal concentration photometrically 

(SpermaCue; Minitube of America, Inc., Verona, WI, USA).  One-ml aliquots of raw 

(neat) semen were immediately snap frozen on dry ice in 1-ml polypropylene tubes 

(Cryogenic vials [1.2-ml]; Corning Life Sciences, Lowell, MA, USA) then stored at -80 

oC  until analyzed for spermatozoal chromatin susceptibility to denaturation (ie, Sperm 

Chromatin Structure Assay; SCSA).  

An aliquot of gel-free semen was immediately diluted with a warmed (37 oC) 

milk extract-based extender (INRA96; IMV, Maple Grove, MN, USA) to a final 

spermatozoal concentration of 25 million spermatozoa/ml for evaluation of spermatozoal 

motility (Time 0; T0), using a computerized spermatozoal motion analyzer (IVOS 

Version 12.2L, Hamilton Thorne Biosciences, Beverly, MA, USA).   Aliquots of semen 

were also diluted with INRA 96 to a final spermatozoal concentration of 20 x 106  

                 

 



 13 

spermatozoa/ml, and then packaged with minimal air space in capped 5-ml 

polypropylene tubes (Cryogenic vials [5.0-ml]; Corning Life Sciences, Lowell, MA, 

USA).  Prepared vials were than packaged as recommended by the manufacturer in a 

commercial semen transport container (Equitainer™ II; Hamilton Research, Inc., South 

Hamilton, MA, USA) for 24 hours of cooled storage (Time 24 h; T24).  Following this 

storage period, aliquots of semen were subjected to frozen storage, as described above, 

for SCSA.  Remaining semen was warmed for 15 min in a water bath set at 37 oC and 

subjected to computerized motility analysis, as described above.  The percent change in 

values for dependent variables (MOT, PMOT, VCL, COMP) from T0 to T24 (DIFF) 

were also determined. 

Spermatozoal Cryopreservation Procedures 

Gel-free semen was diluted in INRA 96 extender to obtain a final spermatozoal 

concentration of approximately 50 x 106/ml.  Thirty-ml aliquots of extended semen were 

loaded into glass nipple-bottom centrifuge tubes (Pesce Lab Sales, Kennett Square, PA, 

USA).  Thirty microliters of iodixanol (OptiPrep,™ Axis-Shield, Oslo, Norway) was 

added beneath extended semen to provide a cushion for spermatozoa during 

centrifugation.  Extended semen was centrifuged at 400 x g for 20 min, followed by 

aspiration of supernate. The remaining spermatozoal pellet (with approximately 1 ml of 

overlying supernate) was resuspended in one of two extender types; 1) E-Z Freezin™ - 

“LE” semen extender; LE (Animal Reproduction Systems, Chino, CA, USA) or 2) E-Z 
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Freezin™ - “MFR5” semen extender; MFR5 (Animal Reproduction Systems, Chino, 

CA, USA) with the final spermatozoal concentration adjusted to approximately 200 x 

106 spermatozoa/ml.  The LE extender contained approximately 21.5% egg yolk (v/v) 

and no milk products.  The MFR5 extender was a milk-based product, containing 

approximately 3% egg yolk (v/v).  The glycerol concentration was adjusted to 2.5% 

(v/v) in each extender.  Freezing extenders were stored frozen at -80oC until used.  Prior 

to use, thawed extenders were centrifuged at 1500 x g for 15 min.  The supernate was 

harvested aseptically and passed through 5-µm and 1.2-µm pore size nylon filters (GE 

Osmonics,  Minnentonka, MN, USA) in tandom.  These procedures were performed to 

eliminate particulate matter in the freezing extenders that might otherwise interfere with 

computerized spermatozoal motion analysis. 

Semen diluted in each freezing extender was loaded into appropriately labeled 

0.5-ml capacity straws and subjected to one of two pre-freeze cooling periods: 1) fast 

pre-freeze cooling rate, whereby a static vapor freeze was implemented within 5 min. 

following straw loading, with the freeze cycle beginning at approximately 25 oC 

(FAST), and 2) slow pre-freeze cooling rate, whereby loaded straws were slowly cooled 

in the chamber of a programmable liquid nitrogen cell freezer (CBS Freezer 2100 Series; 

Custom Biogenics Systems, Shelby Township, MI, USA; SLOW).  The chamber cooling 

ramps were -2.0 oC/min from approximately 25oC to 22oC; -0.3 oC/min from 22oC to  
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10oC; and -0.2 oC/min from 10oC to 4oC.   The total cooling time for Group SLOW was 

approximately 80 min.  For Groups FAST and SLOW, semen-filled straws were frozen 4 

cm above a liquid nitrogen bath for 15 min, and then plunged into liquid nitrogen for 

storage. 

For analysis, straws were thawed by submersion for 30 s in a water bath set at 37 

oC.  Thawed semen was further diluted (semen:extender ratio of 1:9[v/v]) in one of two 

extenders: 1) INRA 96 extender (INRA96) or 2) the freezing extender used for 

cryopreservation (FM).  Individual aliquots of prepared semen samples were subjected 

to computerized analysis of spermatozoal motion following incubation at 37 oC for 15 

min; frozen in 1-ml vials for SCSA, and subjected to flow cytometric evaluation of 

spermatozoal acrosomal integrity and plasma membrane integrity.   

Computer-Assisted Sperm Motion Analysis (CASMA) 

Spermatozoa were analyzed by CASMA, in a manner similar to that previously 

described [28].  A 6-µl aliquot of extended semen was placed in a warmed (37 oC) 

counting chamber with a fixed height of 20 µm (Leja Standard Count 2 Chamber slides; 

Leja Products, B.V., Nieuw-Vennep, The Netherlands).  The slide was then placed on a 

stage set at 37 oC and inserted into the IVOS computerized spermatozoal motion 

analyzer for evaluation.  A total of 10 microscopic fields and a minimum of 500 

spermatozoa were examined.  Preset values for the IVOS system consisted of the 
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following: frames acquired – 45; frame rate – 60 Hz; minimum contract – 70; minimum 

cell size – 4 pixels; minimum static contrast – 30; straightness threshold for progressive 

motility – 50; average-path velocity (VAP) threshold for progressive motility - 30; VAP 

threshold for static cells - 15; cell intensity – 106; static head size – 0.60 to 2.00; static 

head intensity – 0.20 to 2.01; static elongation – 40 to 85; LED illumination intensity – 

2200;   Experimental endpoints included: 1) percentage of motile spermatozoa (MOT); 

percentage of progressively motile spermatozoa (PMOT); mean curvilinear velocity 

(VCL; µm/s); mean average-path velocity (VAP;µm/s); mean straight-line velocity 

(VSL; µm/s), and linearity ([VSL/VCL]x100; % ;LIN). 

Sperm Chromatin Structure Assay 

 This assay was performed as previously described [29-31].  Individual semen 

samples were thawed in a water bath set at 35-37 oC.  A five-µl aliquot of thawed semen 

was combined with 195 µl of a buffered solution which was then cobined with a low pH 

(~ 1.2) solution (400 µl) for 30 s.  A solution of the heterochromatic dye, acridine 

orange, was added (1.2 ml at 4.0 µg/ml) to the sample and it was processed immediately 

on a flow cytometer (FACScan; Becton Dickinson, Mountain View, CA, USA). The 

sample was allowed to pass through the tubing for 2 min before evaluation of cells.  A 

cell flow rate of 200 cells/s was used and a total of 5000 events were evaluated per 

sample.  The flow cytometer was adjusted so that the mean green fluorescence was set at 

500 channels (FL-1 @ 500) and mean red fluorescence at 150 channels (FL-3 @ 150)  
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fluorescence. Data were acquired in a list-mode and translated by WinList™ software 

(Verity Software House, Topsham, ME, USA) to PC-files, then analyzed using the same  

software.  Quantification of DNA denaturation in each cell was determined by the term 

alpha-t, which is defined as the ratios of red/red + green fluorescence.  The alpha-t 

designation is used to describe the relationship between the amounts of green (double-

stranded DNA) and red (single-stranded DNA) fluorescence.  The results were recorded 

as both scattergrams and frequency histographs.  The endpoint, percent COMPαt 

(COMP; the percentage of cells outside the main population) was determined by 

selecting those cells to the right of the main population, and represents the number of 

cells outside the main population, as a percentage of the total number of cells evaluated. 

Evaluation of Sperm Acrosomal and Plasma Membrane Integrity 

The integrity of spermatozoal acrosomal and plasma membranes was evaluated 

using a modification of procedures described previously [32-35].  

Fifty µl of thawed semen were added to 133 µl of Dulbecco’s phosphate buffered 

saline (PBS; Invitrogen Gibco,® Carlsbad, CA, USA).  Three µl of propidium iodide 

(Invitrogen Molecular Probes, Euigene, OR, USA; 2.4 mM working solution) and 10 µl 

Pisum sativum agglutinin (PSA)-FITC conjugate (Sigma-Aldrich, St. Louis, MO, USA; 

0.05 mg/ml working solution) were added to the semen-buffer solution.  The samples 

were incubated at room temperature (approximately 25 oC) in the dark for 10 minutes.  

Fifty µl of semen were then mixed with 1 ml PBS and processed immediately on a flow  
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cytometer (FACScan; Becton Dickinson, Mountain View, CA, USA).  The sample was 

allowed to pass through the tubing for 30 s before evaluation of cells.  A cell flow rate of  

300 cells/s was used and a total of 5000 events were evaluated per sample.  The voltage 

settings on the flow cytometer were as follows:  SSC 240, FL1 798, FL2 657, and FL3 

150.  The compensation was set at FL1 1.9% of FL2, and FL2 18.8% of FL1.  Data were 

acquired using a log scale and anylazed by  WinList™ software, with scatterplots 

divided into quadrants: minimal green and red fluorescence (representing spermatozoa 

with intact plasma membrane and intact acrosomal membrane; AIVIAB); minimal green 

and enhanced red fluorescence (representing spermatozoa with damaged plasma 

membrane  and intact acrosomal membrane; minimal red and enhanced green 

fluorescence (representing spermatozoa with intact plasma membrane and damaged 

acrosomal membrane); and enhanced red and greed fluorescence (representing 

spermatozoa with damaged plasma membrane and damaged acrosomal membrane).  

Data were also sorted by spermatozoa with intact plasma membrane, regardless of 

acrosomal status (VIAB) and spermatozoa with intact acrosomal membrane, regardless 

of plasma membrane status (AI). 

Statistical Analysis 

The effects of extender (LE, MF), pre-freeze cooling rate (SLOW, FAST), and 

post-thaw diluent (INRA96, FM) on 10 experimental endpoints (MOT, PMOT, VCL, 

VAP, VSL, LIN, AIVIAB, AI, VIAB, and COMP) were evaluated using a general linear  
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model [36].  Variables measured in percentages were transformed to angles 

corresponding to arc sine of the square root of percentage for variance analyses.  The  

Student-Newman-Keuls multiple range test was used to separate main effect means 

when treatment F ratios were significant (P<0.05) and for mean separation where 

significant interactions occurred (P<0.05).   The linear relationships among post-thaw 

dependent variables and among cooling and freezing effects on dependent variables were 

evaluated using a general correlations procedure [36]. 
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RESULTS 

The main effects of cryopreservation extender (LE vs MF), pre-freeze cooling 

rate (SLOW vs FAST) and post-thaw diluent (INRA96 vs FM) are presented in Table 1.  

Overall, eight of ten experimental endpoints (MOT, PMOT, VAP, VSL, LIN AIVIAB, 

AI,  and VIAB) were affected by extender type, with LE extender yielding higher values 

than MF extender for all of these outcomes (P<0.05).  Mean VCL and COMP were not 

impacted by extender type (P>0.05).  Exposure of extended semen to a slow pre-freeze 

cooling period resulted in increased values for six of ten endpoints, as compared to a fast 

pre-freeze cooling period (P<0.05).  Mean VAP, VSL, COMP were unaffected by pre-

freeze cooling rate (P>0.05).  Mean LIN was slightly greater for semen exposed to a fast 

pre-freeze cooling period (P<0.05).  Post-thaw diluent resulted in significant differences 

in seven of 10 endpoints, with INRA96 yielding higher mean values than FM for MOT, 

PMOT, VCL, VAP, and VSL (P<0.05).  Treatment group FM yielded slightly higher 

values than INRA96 for LIN and VIAB (P<0.05).  A treatment effect was not detected 

for AIVIAB, AI, and COMP (P>0.05). 

Significant extender x rate interactions (P<0.05) were detected for the variables 

MOT, AIVIAB, AI and VIAB.  Mean values for these endpoints were higher following 

spermatozoal exposure to a SLOW pre-freeze cooling period, regardless of freezing 

extender type (P<0.05).  The effect of pre-freezing cooling rate on MOT, AIVIAB, AI, 

and VIAB appeared to be more pronounced in spermatozoa cryopreserved in MF  
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extender, as compared to LE extender (Table 2).   Within treatment groups SLOW and 

FAST, mean MOT, AIVIAB, AI, and VIAB were higher (P<0.05) for spermatozoa 

cryopreserved in LE extender, as opposed to MF extender (Table 3).  The effect of 

extender type appeared to be more pronounced when spermatozoa were subjected to a 

FAST cooling rate. 

 
Table 1: Main effects of extender, rate, and diluent on mean (±SD) value of 
spermatozoal motility, viability, acrosomal intactness, and chromatin quality.  
 
Laboratory  
parameter§a   Freezing extender        Pre-freeze cool rate        Post-thaw diluent 
    LEb            MFc                         SLOWd      FASTe          INRAf        FMg 

MOT   46a (1.1)    26b (1.5)    42a (1.5)    30b(1.6)   40a (1.5)   33b (1.8) 

PMOT   20a (1.0)      7b (0.8)   17a (1.2)    10b (1.0)   14a (1.1)   13b (1.2) 

VCL 131a (2.4)  131a (3.0) 133a (2.6)  128b (2.9) 137a (2.6)  125b (2.7) 

VAP   68a (1.2)    64b (1.5)   67a (1.3)    66a (1.4)   69a (1.2)   64b (1.4) 

VSL   57a (1.0)    51b (1.2)   54a (1.1)    54a (1.2)   55a (1.0)   52b (1.3) 

LIN   45a (0.6)    41b (0.5)   42b (0.5)    44a (0.7)   42b (0.4)   44a (0.7)           
AIVIAB   44a (1.0)    26b (1.4)   42a (1.1)    27b (1.5)   34a (1.5)   35a (1.6) 

AI   75a (1.2)    55b (2.5)   77a (0.9)    52b (2.4)   65a (2.3)   65a (2.2) 

VIAB   46a (1.0)    26b (1.4)   43a (1.1)    28b (1.6)   35b (1.6)   37a (1.7) 

COMPαt     8a (0.3)      7a (0.3)     7a (0.3)      8a (0.4)     7a (0.3)     7a (0.3) 

§Percentage data (MOT, PMOT, LIN, AIVIAB, AI, VIAB, COMPαt) were arc sine-root 
transformed for normalization prior to statistical analysis; untransformed data are 
presented for ease of interpretation.  Within extender, rate, diluent, and within laboratory 
parameter, means with different letters (a and b) differ (P < 0.05).  
a MOT: total spermatozoal motility (%); PMOT: progressive spermatozoal motility (%); 
VCL:  curvilinear velocity (µm/s); VAP: average-path velocity (µm/s); VSL: straight-
line velocity (µm/s); LIN: linearity ([VSL/VCL]100; %); AIVIAB: acrosome intact 
viable spermatozoa (%); AI: acrosome intact spermatozoa (%); VIAB: viable 
spermatozoa (%); COMPαt: percentage of spermatozoa with αt value outside the main 
population (%). 
b LE = E-Z FreezinTM “LE” semen extender (n=84). 
c MF = E-Z FreezinTM “MFR5” semen extender (n=84). 
d SLOW = Slow pre-freeze cooling rate (n=88). 
e FAST = Fast pre-freeze cooling rate (n=80). 
f INRA = INRA 96 semen extender used as post-thaw diluent (n=84). 
g FM = Freezing Media (“LE” or “MFR5” semen extender) used as post-thaw diluent 
(n=84). 
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Table 2: Effects of pre-freeze cooling rate on mean (±SD) value of spermatozoal 
motility, viability, acrosomal intactness, and chromatin quality as sorted by extender 
type. 
 
Laboratory   Freezing                     Freezing      
parameter§a  extender    Pre-freeze cool rate          extender     Pre-freeze cool rate 
      LE        SLOWb        FASTc   MF        SLOWd         FASTe

  
MOT LE   51a (1.4)     42b (1.3) MF   33a (2.0)    18b (1.5) 

PMOT LE   23a (1.5)     16a (1.2) MF   11a (1.3)      4a (0.6) 

VCL LE 134a (3.4)   127a (3.4) MF 133a (3.8)  129a (4.7) 

VAP LE   69a (1.6)     67a (1.7) MF   64a (2.0)    65a (2.3) 

VSL LE   57a (1.4)     56a (1.5) MF   51a (1.6)    51a (1.8) 

LIN LE   44a (0.7)     46a (0.8) MF   40a (0.6)    42a (0.9) 

AIVIAB LE   48a (1.2)     39b (1.1) MF   35a (1.2)    15b (1.1) 

AI LE   78a (1.5)     71b (1.6) MF   75a (1.1)    34b (2.0) 

VIAB LE   51a (1.1)     41b (1.2) MF   36a (1.2)    16b (1.1)  
COMPαt LE     7a (0.4)       8a (0.5) MF     7a (0.4)      8a (0.6) 

§Percentage data (MOT, PMOT, LIN, AIVIAB, AI, VIAB, COMPαt) were arc sine-root 
transformed for normalization prior to statistical analysis; untransformed data are 
presented for ease of interpretation.  Within extender, rate, and within laboratory 
parameter, means with different letters (a and b) differ (P < 0.05).       
a MOT: total spermatozoal motility (%); PMOT: progressive spermatozoal motility (%); 
VCL:  curvilinear velocity (µm/s); VAP: average-path velocity (µm/s); VSL: straight-
line velocity (µm/s); LIN: linearity ([VSL/VCL]100; %); AIVIAB: acrosome intact 
viable spermatozoa (%); AI: acrosome intact spermatozoa (%); VIAB: viable 
spermatozoa (%); COMPαt: percentage of spermatozoa with αt value outside the main 
population (%). 
b LE SLOW = semen frozen in E-Z FreezinTM “LE” semen extender using the static 
vapor method with a slow pre-freeze cooling rate applied (n=44). 
c LE FAST = semen frozen in E-Z FreezinTM “LE” semen extender using the static vapor 
method with no pre-freeze cooling rate applied (n=40). 
d MF SLOW = semen frozen in E-Z FreezinTM “MFR5” semen extender using the static 
vapor method with a slow pre-freeze cooling rate applied (n=44). 
e MF FAST = semen frozen in E-Z FreezinTM “MFR5” semen extender using the static 
vapor method with no pre-freeze cooling rate applied (n=40). 
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Table 3: Effects of extender type on mean (±SD) value of spermatozoal motility, 
viability, acrosomal intactness, and chromatin quality as sorted by pre-freeze cooling 
rate.  
 
Laboratory Pre-freeze     Pre-freeze  
parameter§a       cool rate      Freezing extender  cool rate    Freezing extender 
    FAST         LEb            MFc            SLOW      LEd             MFe 

MOT FAST   42a (1.3)    18b (1.5) SLOW   51a (1.4)    33b (2.0) 

PMOT FAST   16a (1.2)      4a (0.6) SLOW   23a (1.5)    11a (1.3) 

VCL FAST 127a (3.4)  129a (4.7) SLOW 134a (3.4)  133a (3.8) 

VAP FAST   67a (1.7)    65a (2.3) SLOW   69a (1.6)    64a (2.0) 

VSL FAST   56a (1.5)    51a (1.8) SLOW   57a (1.4)    51a (1.6) 

LIN FAST   46a (0.8)    42a (0.9) SLOW   44a (0.7)    40a (0.6) 

AIVIAB FAST   39a (1.1)    15b (1.1) SLOW   48a (1.2)    35b (1.2) 

AI FAST   71a (1.6)    34b (2.0) SLOW   78a (1.5)    75b (1.1) 

VIAB FAST   41a (1.2)    16b (1.1) SLOW   51a (1.1)    36b (1.2) 

COMPαt FAST     8a (0.5)      8a (0.6) SLOW     7a (0.4)      7a (0.4) 

§Percentage data (MOT, PMOT, LIN, AIVIAB, AI, VIAB, COMPαt) were arc sine-root 
transformed for normalization prior to statistical analysis; untransformed data are 
presented for ease of interpretation.  Within extender, rate, and within laboratory 
parameter, means with different letters (a and b) differ (P < 0.05).       
a MOT: total spermatozoal motility (%); PMOT: progressive spermatozoal motility (%); 
VCL:  curvilinear velocity (µm/s); VAP: average-path velocity (µm/s); VSL: straight-
line velocity (µm/s); LIN: linearity ([VSL/VCL]100; %); AIVIAB: acrosome intact 
viable spermatozoa (%); AI: acrosome intact spermatozoa (%); VIAB: viable 
spermatozoa (%); COMPαt: percentage of spermatozoa with αt value outside the main 
population (%). 
b LE FAST = semen frozen in E-Z FreezinTM “LE” semen extender using the static vapor 
method with no pre-freeze cooling rate applied (n=40). 
c MF FAST = semen frozen in E-Z FreezinTM “MFR5” semen extender using the static 
vapor method with no pre-freeze cooling rate applied (n=40). 
d LE SLOW = semen frozen in E-Z FreezinTM “LE” semen extender using the static 
vapor method with a slow pre-freeze cooling rate applied (n=44). 
e MF SLOW = semen frozen in E-Z FreezinTM “MFR5” semen extender using the static 
vapor method with a slow pre-freeze cooling rate applied (n=44). 
 

Significant extender x diluent interactions (P<0.05) were detected for MOT, 

PMOT, VCL, VAP, VSL, and LIN.   Within Group MF, mean MOT, PMOT, VCL, 
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VAP, and VSL were higher in INRA96 diluent, as compared to FM diluent (P<0.05).  

Within Group LE, FM diluent yielded slightly higher values than INRA96 diluent for 

PMOT, VAP, VSL, and LIN (P<0.05; Table 4). 

 
Table 4: Effects of post-thaw diluent on mean (±SD) value of spermatozoal motility, 
viability, acrosomal intactness, and chromatin quality as sorted by extender type.  
 
Laboratory Freezing    Freezing  
parameter§a extender      Post-thaw diluent  extender     Post-thaw diluent 
   LE         INRAb        FMc   MF        INRAd         FMe 

MOT LE   47a (1.4)     46a (1.6) MF   33a (2.2)     20b (1.4) 

PMOT LE   18b (1.4)     21a (1.4) MF   11a (1.4)       4b (0.5) 

VCL LE 132a (3.3)   130a (3.6) MF 143a (3.8)   120b (4.0) 

VAP LE   67b (1.6)     70a (1.7) MF   71a (1.8)     58b (1.9) 

VSL LE   55b (1.4)     59a (1.4) MF   56a (1.5)     46b (1.6) 

LIN LE   43b (0.6)     47a (0.8) MF   41a (0.5)     40a (0.9) 

AIVIAB LE   43a (1.4)     44a (1.5) MF   26a (1.9)     26a (1.9) 

AI LE   75a (1.6)     75a (1.7) MF   55a (3.6)     56a (3.6) 

VIAB LE   44a (1.4)     48a (1.3) MF   26a (1.9)     27a (1.9) 

COMPαt LE     8a (0.5)       8a (0.5) MF     7a (0.5)       7a (0.5) 

§Percentage data (MOT, PMOT, LIN, AIVIAB, AI, VIAB, COMPαt) were arc sine-root 
transformed for normalization prior to statistical analysis; untransformed data are 
presented for ease of interpretation.  Within extender, diluent, and within laboratory 
parameter, means with different letters (a and b) differ (P < 0.05). 
a MOT: total spermatozoal motility (%); PMOT: progressive spermatozoal motility (%); 
VCL:  curvilinear velocity (µm/s); VAP: average-path velocity (µm/s); VSL: straight-
line velocity (µm/s); LIN: linearity ([VSL/VCL]100; %); AIVIAB: acrosome intact 
viable spermatozoa (%); AI: acrosome intact spermatozoa (%); VIAB: viable 
spermatozoa (%); COMPαt: percentage of spermatozoa with αt value outside the main 
population (%). 
b LE INRA = semen frozen in E-Z FreezinTM “LE” semen extender and diluted in INRA 
96 semen extender for post-thaw analysis (n=42). 
c LE FM = semen frozen in E-Z FreezinTM “LE” semen extender and diluted in E-Z 
FreezinTM “LE” semen extender for post-thaw analysis (n=42). 
d MF INRA = semen frozen in E-Z FreezinTM “MFR5” semen extender and diluted in 
INRA 96 semen extender for post-thaw analysis (n=42). 
e MF FM = semen frozen in E-Z FreezinTM “MFR5” semen extender and diluted in E-Z 
FreezinTM “MFR5” semen extender for post-thaw analysis (n=42). 
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Significant rate x diluent interactions (P<0.05) were detected for MOT, PMOT, 

and LIN.(P<0.05), as revealed in Table 5.  Within Group SLOW, mean values for MOT 

and PMOT were higher for INRA96 than for FM (P<0.05). Within Group FAST, mean 

MOT was higher in INRA96 than FM (P<0.05), whereas mean LIN was slightly higher 

in FM than in INRA96 (P<0.05). 

For post-thaw data, mean CASMA values for MOT and PMOT were highly 

correlated (P<0.05) to FC values for AIVIAB, AI, and VIAB (Table 6).  The correlations  

among dependent variables were generally more pronounced when the dataset included 

all treatments (N=168).  When data were sorted to provide the optimal semen treatment 

(ie, LE extender, SLOW cooling rate, and INRA96 diluent; N=22), the number of 

significant correlations between variables was reduced.  This was attributed, to a large 

part, to the smaller sample size and reduced variability for individual endpoints (Table 

7).    

The linear relationships of T0 to T24 (ie, immediate to cool-stored) spermatozoal 

measures were as follows: MOT (r = 0.86, P<0.0001), PMOT (r = 0.88, P<0.0001), 

VCL (r = 0.79, P<0.0001), VAP (r = 0.74, P<0.0001), VSL (r = 0.82, P<0.0001), LIN (r 

= 0.87, P<0.0001), and COMP (r = 0.71, P<0.0001).  The T0 MOT was also highly 

correlated with T0 PMOT and T24 PMOT (r = 0.80; P<0.0001 and r = 0.75, P<0.0001, 

respectively).  The T0 COMP was not correlated with other T0 values (P>0.05), but was 

negatively correlated with T24 PMOT (r = -0.44; P=0.03). 
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Table 5: Effects of post-thaw diluent on mean (±SD) value of spermatozoal motility, 
viability, acrosomal intactness, and chromatin quality as sorted by pre-freeze cooling 
rate.  
 
Laboratory Pre-freeze               Pre-freeze 
parameter§a cool rate     Post-thaw diluent  cool rate     Post-thaw diluent 
    FAST        INRAb         FMc    SLOW      INRAd         FMe  
MOT FAST   32a (2.3)     28b (2.3) SLOW   47a (1.4)     37b (2.6) 

PMOT FAST   10a (1.3)     10a (1.5) SLOW   19a (1.4)     15b (1.9) 

VCL FAST 135a (3.7)   122a (4.2) SLOW 139a (3.5)   127a (3.5) 

VAP FAST   68a (1.7)     64a (2.2) SLOW   70a (1.8)     64a (1.8) 

VSL FAST   54a (1.4)     53a (2.0) SLOW   56a (1.5)     52a (1.7) 

LIN FAST   42b (0.7)     45a (1.1) SLOW   42a (0.5)     42a (0.9) 

AIVIAB FAST   27a (2.2)     27a (2.1) SLOW   41a (1.5)     42a (1.6) 

AI FAST   52a (3.6)     53a (3.4) SLOW   77a (1.3)     77a (1.4) 

VIAB FAST   27a (2.2)     30a (2.4) SLOW   42a (1.5)     44a (1.7) 

COMPαt FAST     8a (0.5)       8a (0.5) SLOW     7a (0.4)       7a (0.4) 

§Percentage data (MOT, PMOT, LIN, AIVIAB, AI, VIAB, COMPαt) were arc sine-root 
transformed for normalization prior to statistical analysis; untransformed data are 
presented for ease of interpretation.  Within rate, diluent, and within laboratory 
parameter, means with different letters (a and b) differ (P < 0.05).  
a MOT: total spermatozoal motility (%); PMOT: progressive spermatozoal motility (%); 
VCL:  curvilinear velocity (µm/s); VAP: average-path velocity (µm/s); VSL: straight-
line velocity (µm/s); LIN: linearity ([VSL/VCL]100; %); AIVIAB: acrosome intact 
viable spermatozoa (%); AI: acrosome intact spermatozoa (%); VIAB: viable 
spermatozoa (%); COMPαt: percentage of spermatozoa with αt value outside the main 
population (%). 
b FAST INRA = semen frozen using static vapor method with no pre-freeze cooling rate 
applied and diluted in INRA 96 semen extender for post-thaw analysis (n=40).  
c FAST FM = semen frozen using static vapor method with no pre-freeze cooling rate 
applied and diluted with the same freezing media (“LE” or “MFR5” semen extender) for 
post-thaw analysis (n=40).   
d SLOW INRA = semen frozen using static vapor method with a slow pre-freeze cooling 
rate applied and diluted in INRA 96 semen extender for post-thaw analysis (n=44). 
e SLOW FM = semen frozen using static vapor method with a slow pre-freeze cooling 
rate applied and diluted with the same freezing media (“LE” or “MFR5” semen 
extender) for post-thaw analysis (n=44).  
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Table 6 
Correlation coefficients and p-values among 10  
dependent variables over all treatments (all data; 
N=168) and for semen exposed to LE extender, using  
a slow pre-freeze cooling rate, and using INRA 96 as 
a post-thaw diluent (N=22). 
  
 

 
 
§LE = E-Z FreezinTM “LE” semen extender  
INRA 96 = INRA 96 semen extender    
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     Table 7 
     Comparison of values (Mean, S.D., Minimum, Maximum) for  
     dependent variables for the complete post-thaw dataset      
     which included all treatments (N=188) and the post-thaw      
     dataset selected to optimize post-thaw spermatozoal quality             
     (LE/ SLOW/ INRA post-thaw dataset; N=22). 
   Complete post-thaw dataset 

(N=168) 
LE / SLOW / INRA post-thaw 
dataset (N=22) 

  Mean S.D. Minimum Maximum Mean S.D. Minimum Maximum 

MOT 36 16 4 72 50 9 30 71 

PMOT 14 11 0 49 21 10 6 49 

VCL 131 25 71 190 135 21 98 181 

VAP 66 12 39 96 67 11 48 91 

VSL 54 11 30 78 56 10 40 77 

LIN 43 5 31 62 42 4 36 49 

AIVIAB 35 14 4 67 48 7 26 57 

AI 65 21 13 94 79 9 59 94 

VIAB 36 15 4 68 49 7 27 58 

COMP 7 3 3 16 7 3 3 14 

 
§LE/SLOW/INRA = treatment group where semen was frozen using E-Z FreezinTM 
“LE” semen extender, applied a slow pre-freeze cooling rate, and diluted in INRA 96 
for post-thaw analysis. 

     §MOT: total spermatozoal motility (%); PMOT: progressive spermatozoal motility 
(%); VCL:  curvilinear velocity (µm/s); VAP: average-path velocity (µm/s); VSL: 
straight-line velocity (µm/s); LIN: linearity ([VSL/VCL]100; %); AIVIAB: 
acrosome intact viable spermatozoa (%); AI: acrosome intact spermatozoa (%); 
VIAB: viable spermatozoa (%); COMPαt: percentage of spermatozoa with αt value 
outside the main population (%). 

 
 
Over all data, initial  (T0) CASMA values, cool-stored (T24) CASMA values, and 

percent change in CASMA values following cooled storage (DIFF) did not provide  
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useful predictive information regarding tolerance of spermatozoa to cryopreservation, as 

determined by all post-thaw CASMA and FC endpoints measured (Table 8).  The 

majority of correlations between pre-freeze and post-thaw values were not significant 

(P>0.05), and 26 of 47 significant (P<0.05) correlations were of lower magnitude 

(correlation coefficient less than 30).  Data separation to provide optimal post-thaw 

semen quality (ie, LE extender / SLOW cooling rate / INRA diluent) yielded 42 

significant correlations (P<0.05) between pre-freeze and post-thaw endpoints, and all 

significant correlations were moderate to high (ie, correlation coefficients ranging from 

0.42 to 0.81; Table 9).   In this data subset, the actual pre-freeze values for MOT, 

PMOT, VCL or COMP, either initially or following cooled storage of extended semen,  

provided better predictive information regarding post-thaw measures than did the 

percent change in these variables following cooled storage of extended semen. (Table 9). 

 Tables 10-21 represent correlation coefficients and p-values for fresh (T0, T24, 

DIFF) semen values and post-thaw endpoints for the individual treatment groups.  The 

four fresh semen values used to show predictability on post-thaw endpoints were MOT, 

PMOT, VCL, and COMP.  Overall, when evaluating the eight treatment groups there 

were only a few highly significant correlations (ie, correlation coefficients ranging from 

~0.60 to ~0.80).  For T0 fresh semen values, MOT and COMP showed the highest 

predictive value on post-thaw AI and COMP for the majority of treatment groups (Table 

10 and Table 13).  As for the T24 fresh semen values, MOT had a highly significant 
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correlation with post-thaw AI (Table 14).  There was also a high predictability of T24 

PMOT on post-thaw LIN and AI (Table 15).  The final significant correlation that 

offered appreciable predictive value across the majority of treatment groups was seen 

between T24 VCL and post-thaw VCL (Table 16).               

 
Table 8 
Correlation coefficients and p-values to determine effect of pre-freeze motility and 
chromatin values (T0, T24, DIFF) on post-thaw measures of semen quality following 
spermatozoal exposure to LE or MF extender, a SLOW or FAST pre-freeze cooling rate, 
and INRA 96 or FM diluent (N=168).             

 
     §LE = E-Z FreezinTM “LE” semen extender. 
      MF = E-Z FreezinTM “MFR5” semen extender. 
      INRA 96 = INRA 96 semen extender. 
      FM = Freezing Media (“LE” or “MFR5” semen extender) used as diluent. 
     a T0 = Fresh semen evaluated prior to cooling.     
     b T24 = Semen stored in an Equitainer® for 24 hours.  
     c DIFF = Difference between T0 and T24. 
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Table 9 
Correlation coefficients and p-values to determine effect of pre-freeze motility and 
chromatin values (T0, T24, and DIFF) on post-thaw measures of semen quality 
following spermatozoal exposure to LE extender, a SLOW pre-freeze cooling rate, and 
INRA 96 diluent (N=22).  

 
     §LE = E-Z FreezinTM “LE” semen extender. 
      SLOW = semen frozen using static vapor with a slow pre-freeze 
      cooling rate applied. 
      INRA 96 = INRA 96 semen extender used as post-thaw diluent. 
     a T0 = Fresh semen evaluated prior to cooling.     
     b T24 = Semen stored in an Equitainer® for 24 hours.  
     c DIFF = Difference between T0 and T24. 
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§LE/SLOW/LE = treatment group where semen was frozen using E-Z FreezinTM  “LE” semen extender, 
applied a slow pre-freeze cooling rate, and diluted in E-Z  FreezinTM “LE” semen extender for post-thaw 
analysis. 
 LE/SLOW/INRA = treatment group where semen was frozen using E-Z FreezinTM  “LE” semen extender, 
applied a slow pre-freeze cooling rate, and diluted in INRA 96 semen extender for post-thaw analysis. 
 LE/FAST/LE = treatment group where semen was frozen using E-Z FreezinTM  “LE” semen extender, applied 
a fast pre-freeze cooling rate, and diluted in E-Z  FreezinTM “LE” semen extender for post-thaw analysis. 
 LE/FAST/INRA = treatment group where semen was frozen using E-Z FreezinTM  “LE” semen extender, 
applied a fast pre-freeze cooling rate, and diluted in INRA 96 semen extender for post-thaw analysis. 
 MF/SLOW/MF = treatment group where semen was frozen using E-Z FreezinTM  “MFR5” semen extender, 
applied a slow pre-freeze cooling rate, and diluted in E-Z  FreezinTM “MFR5” semen extender for post-thaw 
analysis. 
 MF/SLOW/INRA = treatment group where semen was frozen using E-Z FreezinTM  “MFR5” semen 
extender, applied a slow pre-freeze cooling rate, and diluted in INRA 96 semen extender for post-thaw 
analysis. 
 MF/FAST/MF = treatment group where semen was frozen using E-Z FreezinTM  “MFR5” semen extender, 
applied a fast pre-freeze cooling rate, and diluted in E-Z  FreezinTM “MFR5” semen extender for post-thaw 
analysis. 
 MF/FAST/INRA = treatment group where semen was frozen using E-Z FreezinTM  “MFR5” semen extender, 
applied a fast pre-freeze cooling rate, and diluted in INRA 96 semen extender for post-thaw analysis. 
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DISCUSSION AND SUMMARY 

Several groups have reported optimal cooling rates and storage temperatures for 

maximizing the viability and fertilizing capacity of cool-stored spermatozoa [3,37-50].  

Only limited information, however, is available regarding the effects of a pre-freeze 

cooling rate on equine semen subjected to cryopreservation [1,14].  Data evolving from 

cooled-semen trials indicate that equine spermatozoa are tolerant of rapid cooling rates 

to approximately 20 oC, but become susceptible to injury when rapid cooling rates are 

applied to temperatures between 20 oC and 4 oC [44].  Such injury is attributable to 

disruption in membrane functional states resulting from phase separation events in lipid 

bilayers [51-53] and alterations in water transport properties [54].  This study was 

conducted to evaluate the effect of two freezing extender types and two pre-freeze 

cooling rates on post-thaw spermatozoal function.   

Our experimental data indicate that LE extender provided superior results to 

MFR5 extender when used for cryopreservation of semen from eight experimental 

stallions.  In addition, a slower pre-freeze cooling rate also yielded better results than a 

fast pre-freeze cooling rate, based on several post-thaw spermatozoal characteristics with 

the LE-SLOW treatment ranking highest, when compared to the other three treatments.  

This finding contradicts unpublished claims that milk-based freezing extender provides 

better results when a slow pre-freeze cooling rate is applied, but that post-thaw viability 

of spermatozoa in egg yolk-based extender might be optimized when using a fast pre- 
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freeze cooling rate [15].  Standardization and reduction of the glycerol concentration to 

2.5% (v/v) in both LE and MFR5 may have led to the similar response of spermatozoa in 

these two extender types of pre-freeze cooling conditions.  Although this glycerol 

concentration is consistent with recent recommendations in the literature [5,11,19], 

previous studies have been conducted with glycerol concentration in the range of 4-5% 

[1,18], and MFR5 and LE extenders are currently available commercially with glycerol 

concentrations usually set at 4% and 4.75%, respectively (Animal Reproduction 

Systems, personal communication).  The slow pre-freeze cooling rate allows for a 

gradual decrease in storage temperature to approximately 4 oC, thus reducing the 

potentially detrimental effects of cold shock on spermatozoal membranous structures 

[37,40].  Application of a slow cooling rate before freezing, combined with an increased 

concentration of egg yolk in LE extender (20%), as opposed to MFR5 extender (3%) 

may have increased the resistance of the outer acrosomal membrane and overlying 

plasma membrane to cooling and cryoinjury.  Others have reported that the anterior 

segment of the stallion spermatozoal acrosome is the most susceptible to membranous 

damage following cold shock [55].  Additional reports reveal that acrosomal damage 

following cryopreservation is common in other mammalian species [56, 57], and that 

acrosomes may be more susceptible to cryoinjury when spermatozoa are exposed to 

increasingly higher glycerol concentrations [58].  In addition, a surfactant was 

incorporated into the LE extender but not the MRR5 extender.  This may have improved  
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emulsification and dispersion of egg yolk lipids, rendering them more readily available 

for interaction with the spermatozoal membranes [59].   

Overall, when diluting the semen for post-thaw analysis, spermatozoal motility 

endpoints tended to be higher in semen diluted in a non-glycerol containing extender (ie, 

INRA 96), as compared to freezing medium (either LE or MFR5).  The effects were 

more pronounced for semen cryopreserved in MF extender.  Flow-cytometer endpoints, 

i.e., VIAB and AI, were not affected by post-thaw diluent to the same extent as were the 

CASMA variables.  We had hypothesized that dilution of post-thaw semen in a glycerol-

free isotonic medium would have a deleterious effect on measures of spermatozoal 

quality, because of a sudden change in the osmotic environment.  Such exposure does 

not appear to be detrimental, based on the laboratory endpoints tested.  Conversely, 

overall semen quality appeared to be improved when frozen-thawed semen was diluted 

in a glycerol-free medium.  This data is supported by fertility trials conducted by Palmer 

[3].   

As expected, T0 endpoints were highly correlated with the same experimental 

endpoints at T24 for cooled semen.  Likewise, the CASMA values, MOT and PMOT for 

post-thaw data were highly correlated with the FC endpoints, AI, VIAB, and AIVIAB.  

Of interest, the correlations of PMOT and MOT to VIAB were higher than that for 

acrosomal integrity.  Fiser and Fairfull (1990) reported that post-thaw motility and 

acrosomal integrity of boar spermatozoa, as measured by phase-contrast microscopy,  
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were affected differently by alterations in cryopreservation technique.  The differential 

response in these variables was most profound when glycerol concentration exceeded 

3%.  In the present study, glycerol concentration was set at 2.5% for all experimental 

treatments; thereby reducing the potentially detrimental impact that glycerol could have 

on acrosomal integrity.   

 Cooled semen (T24) values for MOT, PMOT, VCL, and COMP were better 

predictors of spermatozoal resistance to cryoinjury than were initial (T0) values, based 

on the post-thaw variables tested.  The percent change in the pre-freeze endpoints 

following cooled storage (DIFF) proved to be an ineffective predictor of spermatozoal 

“freezability”.  Interestingly, pre-freeze COMP yielded stronger linear correlations to 

post-thaw endpoints than did pre-freeze values for MOT, PMOT, or VCL. 

 In summary, these data indicate that spermatozoa of the eight stallions used in 

this study survived the freeze-thaw cycle better in egg-based extender than in milk-based 

extender when glycerol concentration was adjusted to 2.5%.  Although a stallion effect 

was detected, semen from all stallions performed better when mixed with LE extender, 

as opposed to MF extender, prior to cryopreservation.  Regardless of freezing extender 

type, spermatozoa were more resistant to cryoinjury when subjected to a slow pre-freeze 

cooling rate, as opposed to immediate exposure to low cryopreservation temperatures.  A 

non-glycerol-containing extender appears adequate for dilution of frozen-thawed semen 

prior to in-vitro analysis.  Lastly, some pre-freeze measures of semen quality in our  
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study had limited, but distinct, relevance to spermatozoal resistance to cryoinjury.  More 

investigation is required to determine why the egg-based extender used in this study 

produced uniformly better results than the milk-based extender.  
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FUTURE AIMS 
 
 While EZ Freezin “LE” semen extender appears to be superior to EZ Freezin 

“MFR5” the question remains as to exactly what components contribute to the improved 

post-thaw spermatozoal characteristics we observed.  Perhaps removal of  the surfactant 

that is incorporated in the “LE” extender and not the “MFR5” could explain the post-

thaw quality we observed.  Additionally, the non-detrimental effects of using an isotonic 

medium (ie, INRA 96) as a post-thaw diluent were not expected.  Although, in vitro 

analysis of post-thaw spermatozoal quality indicated “LE/SLOW/INRA” to be the best 

treatment group regarding freezability the ultimate test would be to subject spermatozoa 

to fertility trials and observe pregnancy rates.          
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