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ABSTRACT 

 

Transcriptional Regulation of Galectin 15 (LGALS15): An Implantation-Related 

Galectin Uniquely Expressed in the Uteri of Sheep and Goats.  (August 2009) 

Shaye Kamal Lewis, B.S., Prairie View A&M University; 

M.S., Prairie View A&M University 

Co-Chairs of Advisory Committee: Dr. Thomas E. Spencer 
        Dr. Fuller W. Bazer 

 

Galectins are a family of secreted animal lectins with a high affinity to beta-

galactosides commonly involved in cellular functions such as apoptosis, adhesion and 

migration.  Galectin 15 (LGALS15), a newest member of the galectin superfamily, has a 

unique C-terminal RGD sequence and participates in integrin-mediated ovine 

trophectoderm cell attachment and migration.  In the ovine uterus, LGALS15 is 

expressed only by the endometrial luminal (LE) and superficial glandular (sGE) 

epithelia, induced by progesterone between Days 10 and 12 of the cycle and pregnancy, 

and then stimulated by interferon tau (IFNT) from the conceptus after Day 14 of 

pregnancy.  During early pregnancy, the canonical janus kinase-signal transducer and 

activator of transcription (JAK-STAT) pathway is not active in the endometrial LE/sGE.  

Therefore, IFNT may utilizes a non-canonical signaling pathway to increase 

transcription of genes, including CST3, CTSL, HIF2A, LGALS15, and WNT7A, 

specifically in the endometrial LE/sGE.  Alternatively, IFNT and progesterone could 
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indirectly affect epithelial gene expression by influencing gene expression in the stroma, 

which then communicates with the epithelium.     

Although the LGALS15 gene is present in ovine, caprine and bovine species, it is 

only expressed in uteri of sheep and goats.  Available data shows a tissue- and species-

specific expression pattern for LGALS15, likely involving multiple layers of 

transcription regulation in the ruminant endometrium.  Further analysis of the LGALS15 

5′ promoter/enhancer region revealed similar predicted transcription factor binding sites 

in all three species, including; PU.1, Ets-1, AP1, Sp1, and GRE or PRE sites.  

Interestingly, the proximal promoter region of the LGALS15 gene in all three species 

exhibited a conserved Sp1 binding site upstream of an AP1 binding site on both sense 

and antisense strands, and with similar spacing between binding sites.  

Sequence analysis revealed key differences in  LGALS15 gene structure between 

ruminant species including the proximity of repetitive DNA sequences to the 

transcription start site (+1).  Bovine LGALS15 has repetitive DNA sequences start at -

145 whereas in ovine or caprine LGALS15 it starts at about -300.  The length of the 

repetitive DNA sequence is similar (~1.2 kb) in the 5′ promoter/enhancer region of 

LGALS15 in all three species.  Transient transfection analyses found that repetitive 

DNA sequences reduced basal promoter activity and responsiveness to treatments.  None 

of the promoter construct showed responsiveness to interferon tau (IFNT).  The bovine 

LGALS15 gene promoter showed no activity under any experimental conditions.  The 

current studies indicate that uterine LGALS15 is expressed in ovine and caprine but not 

bovine species.  Additionally, repetitive DNA sequences found in the promoter region 
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may contribute to modulating the LGALS15 gene expression.  Therefore, the ruminant 

LGALS15 gene, like other galectins, is under tight transcriptional control involving 

hormones, requisite transcription factors and potentially chromatin remodeling 

complexes working synergistically for LGALS15 promoter transactivation.  
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CHAPTER I 

INTRODUCTION 

 Fundamentally, successful conceptus survival and development depends on the 

establishment and maintenance of pregnancy.  In mammalian species, this involves a 

synchronized assortment of conceptus- and maternally–derived hormones and cytokines 

acting in concert.  In sheep, morula embryos enter the uterus on Days 4 to 5 post-mating 

to a uterine environment primed by the ovarian hormones estrogen and progesterone.  

Circulating estrogen declines following estrus while the newly formed corpus luteum 

(CL) results in increased concentrations of circulating progesterone.  The main source of 

progesterone during early pregnancy is the CL, and it is required for successful 

pregnancy in mammalian species.  Acting through its endometrial receptor (PGR), 

progesterone stimulates early conceptus growth and development in the uterus as well as 

endometrial differentiation and functions.  Coordinate with increases in circulating 

concentrations of progesterone, conceptus growth proceeds from a spherical to tubular 

form by Day 11.  After about 8 to 10 days of continuous progesterone exposure, 

endometrial PGR expression is lost first in the luminal epithelium and then in the 

glandular epithelium [1].  The negative autoregulation of PGR by progesterone is 

required for exposure and/or expression of adhesion molecules involved in the 

attachment of conceptus trophectoderm to the endometrial luminal and superficial 

glandular epithelia [2].  The conceptus elongates to a filamentous form between Days 12 
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and 16 of pregnancy.  This elongation is coincident with the production of interferon tau 

(IFNT), the pregnancy recognition signal in ruminant species.  IFNT is synthesized and 

secreted by mononuclear trophectoderm cells of the conceptus and induces interferon-

stimulated genes (ISG) by binding to Type I IFN receptors (IFNAR).  Type I and type II 

interferons induce the expression of a subset of gene designated as ISGs.  The products 

of these genes are responsible for the antiviral, antiproliferative, and immunomodulatory 

properties of interferons.  Functionally, progesterone and IFNT cooperate in a 

permissive relationship culminating in a uterine environment receptive to conceptus 

implantation.  The antiluteolytic effects of IFNT are critical for the protracted synthesis 

and secretion of progesterone from the CL.  Additionally, progesterone downregulation 

of PGR in the endometrial epithelia is required for expression of some non-classical 

ISGs such as galectin 15 (LGALS15) and cystatin C (CST3) [3] [4].  These subsets of 

ISGs are classified as progesterone-induced and IFNT-stimulated, and many exhibit 

epithelial-specific expression during the peri-implantation period in sheep. 

Actions of both estrogen and progesterone, acting through their respective 

endometrial receptors [1] on the uterus, results in expression of a well-synchronized 

array of adhesion molecules during the peri-implantation period [5, 6]. Subsequent 

implantation events are regulated by the constitutive expression of adhesion molecules 

on the apical surfaces of conceptus trophectoderm and endometrial epithelia in domestic 

species.  Expression of cell surface glycoproteins involved in the implantation cascade 

coincides with uterine receptivity to implantation by the developing conceptus.   
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The H-type 1 (HT1) carbohydrate antigen is thought to be involved in the initial 

adhesive forces between conceptus trophectoderm and endometrial epithelia.  

Endometrial expression of the fucosylated HT1 carbohydrate antigen during the peri-

implantation period when cell adhesions occur between the trophectoderm of the 

developing conceptus and endometrial luminal epithelium was characterized in situ and 

in polarized uterine luminal and glandular epithelial cells of goats [7] and sheep [8].  The 

expression of the HT1 by ovine and caprine uterine epithelia and receptors for HT1 on 

goat conceptus tissues [9] suggests its putative role in facilitating initial attachment of 

conceptus trophectoderm to endometrial luminal epithelium during implantation.   

Firm adhesions between conceptus trophectoderm and maternal epithelia are 

mediated by integrin receptors and their extracellular matrix (ECM) or cell surface 

ligands.  Integrins are type I integral transmembrane proteins commonly associated with 

firm adhesion to epithelial cells.  The short cytoplasmic tail of an integrin can bind 

various cytosolic ligands and coordinate the assembly of cytoskeletal molecules and 

signaling complexes.  On the extracellular surface, integrins either engage ECM 

molecules or counter receptors on adjacent cell surfaces.  They can bind a wide variety 

of ECM or soluble protein ligands.  The cellular adhesive property attributed to some 

cell surface glycoproteins is mediated by carbohydrate binding proteins.  These 

carbohydrate binding proteins, called lectins, commonly crosslink adjacent cells by 

binding to cell surface glycoproteins [10]  or ECM glycoproteins [11], [12]. 

Galectins are a family of mammalian lectins characterized by their affinity for 

beta-galactoside containing carbohydrate residues.  Galectins can be divided into three 
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groups based on their structural characteristics: prototype, tandem repeat and chimera.  

Prototype galectins consist of a peptide chain containing a single carbohydrate 

recognition domain (CRD) and are found either as monomers (LGALS5, LGALS8, 

LGALS10, LGALS13, LGALS14 and LGALS15) or as either a monomer or a dimer 

(LGALS1, LGALS2, LGALS7 and LGALS11).  Tandem repeat galectins are 

characterized by the presence of two CRDs on the same chain connected by a short 

linker peptide (LGALS4, LGALS6, LGALS8, LGALS9 and LGALS12).  The only 

known chimeric galectin is LGALS3 that is composed of a single CRD attached to a 

domain possessing different functions.  Galectins exhibit diverse biological roles in 

apoptosis [13], tumor progression [14], and cell adhesion [15].  Galectins may contribute 

to successful reproduction in mammalian species.  They are expressed by the pre-

implantation conceptus trophectoderm and in various organs during embryogenesis in 

mice and humans [16] [17].  Additionally, galectins are expressed in the endometrium 

during the peri-implantation period of conceptus (embryo and associated extra-

embryonic membranes) development in mice, humans and cattle [18].  Based on galectin 

fingerprinting studies in human endometrial tissue, LGALS1 and LGALS3 transcripts are 

abundant and their expression is dependent on the phase of the menstrual cycle and cell 

type [19].  LGALS1 is mainly expressed in the stroma and its expression significantly 

increases in the endometrium and decidua during the late secretory phase of the 

menstrual cycle.  LGALS3 is localized to the epithelium, and its expression significantly 

increases during the secretory phase of the menstrual cycle.  Additionally, LGALS9 is 

specifically expressed in endometrial epithelial cells and is considered a marker of the 
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middle and late secretory phases of the menstrual cycle or pregnancy in humans [20].  In 

the bovine endometrium, transcriptional profiling studies revealed that LGALS3 binding 

protein (LGALS3BP) and LGALS9 are up-regulated in pregnant animals [21].  In situ 

hybridization analysis of endometrial tissue suggested that expression of either LGALS3 

or LGALS9 was moderate to strong in luminal epithelial (LE) cells, while weak to no 

expression was observed in superficial (sGE) or deep (dGE) glandular epithelial cells or 

stromal cells.     

The developing conceptus is actively involved in the process of implantation at 

the conceptus-maternal interface.  This is evident by the array of adhesion molecules and 

cognate receptors expressed by the conceptus trophectoderm.  For example, galectins 

expressed by the conceptus trophectoderm could bind to carbohydrate moieties of 

glycoproteins associated with the endometrium.  Caprine conceptuses express LGALS3, 

a putative receptor for endometrial HT1, during the peri-implantation period [9].  Murine 

conceptuses express both Lgals1 and Lgals3; however, successful reproduction in single 

or double null mutants suggests that they are functionally unnecessary during the peri-

implantation period [22, 23].  Alternatively, functional redundancy may explain the 

successful reproduction phenotype in Lgals1/Lgals3 double mutants as other galectins 

like Lgals5 are also expressed by the developing conceptus [23].  Similar to other 

galectins, LGALS15 is expressed in the female reproductive tract.  Specifically, 

LGALS15 is expressed in the endometrium during the peri-implantation period in sheep 

[3].  It is a new member of the galectin superfamily and was initially discovered in sheep 

abomasal tissue infected with the nematode parasite, Haemonchus contortus [24].  In the 



  6 

ovine uterus, LGALS15 is an abundant component of endometrial secretions collectively 

termed uterine histotroph [3]. 

  Uterine glands are critical for peri-implantation conceptus growth and 

development [25], [26], as the uterine gland knockout ewe model (UGKO) was used to 

show that uterine glands are required for conceptus development and survival.  In the 

absence of uterine glands, conceptus growth is severely retarded and conceptuses fail to 

survive past Day 14 of pregnancy.  Since LGALS15 is an abundant secretory product in 

uterine histotroph [3] and galectins are known to affect cell migration, adhesion, and 

proliferation, we hypothesized that LGALS15 supports conceptus attachment and 

outgrowth during the peri-implantation period in sheep.  Defining clear biological 

functions of galectins must also assess mechanisms of gene regulation while respecting 

physiological relevance.  Mechanisms of galectin gene regulation are poorly understood. 

Ovine endometrial LGALS15 expression is induced by progesterone and further 

stimulated by IFNT [3].  The LGALS15 expression pattern is coordinate with early 

conceptus elongation, growth and development during the peri-implantation period in 

the ovine uterus.  Spatially, LGALS15 mRNA is limited to endometrial LE and sGE and 

represents one of a growing list of non-classical interferon-stimulated genes (ISG) 

expressed by LE and sGE regulated by a novel JAK/STAT-independent cell-signaling 

pathway [4].  

It is unknown if progesterone and IFNT regulate LGALS15 transcription in the 

ovine uterus directly or indirectly, but the temporal and spatial expression of LGALS15 

mRNA requires loss of PGR in uterine epithelia.  Previous results from our laboratory 
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indicated that expression of some ISGs containing interferon stimulated response 

elements (ISRE) in their promoters show uterine-specific expression [27]. 

Transcriptional control of other galectin family member genes is regulated by epigenetic 

modification of gene promoters.  Transcriptional repression of the LGALS3 gene in vitro 

in malignant prostate epithelial cells is regulated by DNA methylation status of the 5′ 

proximal promoter [28].  Epigenetic modifications such as DNA methylation of cytosine 

residues at CpG (cytosine paired guanine) dinucleotides are common in the 

promoter/enhancer region of genes.  Methylations at cytosine residues within promoters 

are considered stable modifications even if other repressive modifications are reversed 

[29].  These DNA modifications can thus be retained from one generation to the next in 

similar patterns within the promoter/enhancer region.  In addition to transcriptional 

repression and/or silencing, DNA hypermethylation of gene promoters is responsible for 

tissue specific patterns of gene expression [30], [31].  To date, most galectins studied 

exhibit tight regulation, restricting expression to specific organs and even specific cell 

types within an organ.  There are not many studies showing a direct relationship between 

galectin gene expression and promoter methylation; however, many galectin family 

members have a CpG dinucleotide density indicative of DNA hypermethylation in the 

5′promoter and gene coding/noncoding regions [32].   

From a holistic view, LGALS15 expression in the uterus of domestic species may 

be the result of multiple layers of tight regulation.  These include, but are not limited to, 

chromatin accessibility, the sequential effects of progesterone and IFNT, and putative 

cis/trans interactions at the level of the promoter.  Steps toward a better undstanding of 
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the mechanisms by which progesterone and IFNT regulate the expression of genes 

during the implantation period will further our understanding of similar mechanisms in 

humans and other domestic animals to improve fertility.  Thus the studies conducted 

herin will ascertain the transcriptional control mechanisms of LGALS15, an 

implantation-related gene expressed in the ovine endometrium.  
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CHAPTER II 

LITERATURE REVIEW 

Early Pregnancy in Ruminant Species 

Conceptus Development in Sheep 

Successful conceptus development and survival in mammalian species depends 

on the establishment and maintenance of pregnancy.  This requires concerted 

interactions between the endometrium and the developing conceptus.  In sheep, morula 

embryos enter the uterus on Days 4 to 5 after onset of estrus and a uterine environment 

primed by the ovarian hormones estrogen and progesterone.  The endometrium is 

transiently exposed to high levels of estrogen during estrus (Day 0 = mating).  Estrogen 

is derived from follicles on the ovary during proestrus (~ two days prior to estrus).  As 

circulating estrogen declines following estrus and ovulation of the dominant follicle(s), 

the newly formed corpus luteum (CL) increases concentrations of circulating 

progesterone during metestrus (Days 1 to 4) that reach maximum levels during diestrus 

(Days 5 to 15) (Figure 2.1).  As the morula embryo develops, the blastomeres compact 

and the cells on the outside begin to form tight junctions and become polarized.  This is 

the initial formation of the trophectoderm (TE).  The inner cells of the morula begin to 

form gap junctions and the beginning of the inner cell mass (ICM).   

Blastocyst formation marks the segregation of the first two cell lineages in the 

mammalian pre-implantation embryo: the ICM will form the embryo proper and the TE 

will give rise to the placenta.  In sheep, blastocyst formation occurs by Day 6, and is 

distinguished by the formation of a fluid filled cavity or blastocoel surrounded by a 
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single layer of trophoblast cells [33].  Day 8 marks initiation of hatching of the 

blastocyst from the zona pellucida  (Figure 2.1).  Already in the uterus, the developing 

blastocyst no longer needs the zona pellucida to prevent premature attachment of the 

embryo.  Hatching is followed by rapid development of the blastocyst from a spherical 

to tubular form on Day 11 to a filamentous structure between Days 12 and 17 of 

pregnancy (Figure 2.1).  The conceptus is located in the uterine horn ipsilateral to the CL 

and elongates therein between Days 13 and 16, before extending into the contralateral 

uterine horn thereafter [34].  Interestingly, the uterus appears to be required for 

elongation and trophectoderm outgrowth of sheep conceptuses [34, 35].  In vitro, 

hatched blastocysts and trophoblastic vesicles do not elongate; however, similar 

blastocysts or trophoblastic vesicles can elongate when transferred into the uterus [34, 

35].  Thus, the early developmental program of the conceptus requires substances 

synthesized and/or secreted and/or transported into the uterine lumen to support 

continued growth and survival of the conceptus. 
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Figure 2.1. Early pregnancy events in sheep. Fertilization occurs in the oviduct and 
morula-stage embryos enters the uterus on Day 4 after mating.  The embryo develops 
into a blastocyst by Day 6 and hatches from the zona pellucida (ZP) between Days 8 and 
9 by the actions of proteases.  After Day 10, the spherical blastocyst assumes a tubular 
form by Day 11, and then becomes a filamentous conceptus between Days 12 and 16 of 
pregnancy.  The beginning of implantation involves apposition and transient attachment 
(Days 12 to 15) and firm adhesion by Day 16. By Day 17, the filamentous conceptus 
occupies the entire ipsilateral uterine horn and elongated through the uterine body into 
the contralateral uterine horn between Days 19 and 21 of pregnancy.  Adapted from [36] 
and originally drawn by Dr. Greg A. Johnson. 
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Implantation in Sheep 

As a result of this rapid growth and expansion of the developing conceptus, 

implantation competent conceptuses become apposed and transiently attached to the 

endometrial LE and sGE epithelia.  Specifically, this involves the conceptus 

trophectoderm contacting the LE of caruncular areas and, in intercaruncular areas, both 

LE and sGE as conceptus trophectoderm has specialized multicellular protrusions or 

papillae that project into the mouths of the endometrial glands, acting to transiently 

anchor the trophectoderm to the maternal uterine LE/sGE [37], [38].   

Implantation in domestic ruminants can be divided into distinct phases [33], [39] 

including: shedding of the zona pellucida, pre-contact and blastocyst orientation, 

apposition, adhesion, and endometrial invasion (Figure 2.2).  Unlike primates which 

have a more invasive type of implantation, conceptuses of domestic ruminants undergo 

an extended period of growth and development prior to implantation. During this period, 

conceptus development is supported by uterine secretions.  These secretions, which are 

produced under the influence of progesterone, include growth factors, cytokines, 

adhesion molecules and other substances collectively termed histrotroph [40], [41].  In 

sheep, apposition of the conceptus trophectoderm and LE/sGE is initiated on Day 12, 

and this is quickly followed by transient attachments and then firm adhesion by Day 16 

[42].  The process of apposition involves transient contacts between the conceptus and 

the LE/sGE, which are believed to be important for elongation of the conceptus 

trophectoderm.  Modulation of anti-adhesive mucins such as decreases in MUC1 [43] 

during the attachment phase may promote or allow intermolecular contacts between cell 
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surface integrins and other glycoconjugates with secreted adhesion proteins such as 

glycosylated cell adhesion molecule 1 (GLYCAM1) [44], galectin 15  (LGALS15) [3], 

and secreted phosphoprotein 1 (SPP1) [45] (Figure 2.2).   

These interactions facilitate firm adhesions involving interdigitation of microvilli 

on maternal uterine LE/sGE and trophectoderm.  In contrast to primates and rodents, 

invasion of conceptuses into the uterine endometrium in domestic species such as sheep, 

goats and cattle is absent or very limited.  However, there is evidence for inter-species 

conservation of adhesive molecules used to accomplish conceptus apposition, 

attachment and adhesion to the maternal endometrium.  During synepitheliochorial 

placentation in sheep, mononuclear trophectoderm cells differentiate into giant 

binucleate cells between Days 14 and 16 and then fuse apically with the endometrial LE 

to form multinucleated syncytial plaques (Figure 2.2) [46].   

Integrins are widely expressed in endometrial LE/sGE during implantation and 

are commonly accepted as cell surface molecules that support firm trophectoderm 

adhesions to the LE/sGE in many species [6], [47].  In fact, during the peri-implantation 

period of pregnancy in sheep, integrin subunits αv, α4, α5, β1, β3 and β5 are 

constitutively expressed on the conceptus trophectoderm and apical surface of the 

endometrial LE/sGE [43].  Additionally, adhesive molecules such as SPP1, a secreted 

ECM protein that associates with integrin molecules, are also expressed in the 

endometrium during the peri-implantation period [43], [48].  Therefore, in sheep, 

implantation may not involve changes in temporal or spatial expression patterns of 
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integrins, but may depend on expression of ECM or secretory proteins, such as SPP1, 

which is a ligand for αvβ3 and several other integrin heterodimers [49], [45].   

Maternal Recognition of Pregnancy  

If the oöcyte is fertilized, progesterone secretion from the CL must be maintained 

to establish pregnancy.  During early pregnancy, the blastocyst must signal its presence 

to the maternal system to ensure CL maintenance prior to the time that normal luteal 

regression would occur.  As a phrase, “maternal recognition of pregnancy” was coined 

by Roger Short in 1969 and generally refers to a secreted-conceptus derived signal that 

prevents CL regression and extends its lifespan for secretion of progesterone.  The 

process involves secretion of a luteotropic hormone that acts directly on the CL or 

prevention or redirection of the secretion of luteolytic hormones by an antiluteolytic 

hormone.  There exists a well-designed relationship between the uterus, the CL, and the 

conceptus that requires hormonal crosstalk between these tissues resulting in CL 

maintenance and protracted secretion of luteal progesterone.  IFNT is the signal 

produced by the conceptus trophectoderm in ruminant species that acts on the maternal 

endometrium to elicit pregnancy recognition.  Indeed, the developing ovine conceptus is 

required for maintaining a functional CL [50].  Rowson and Moor originally proposed a 

conceptus derived pregnancy recognition signal for sheep [51].  IFNT was originally 

named trophoblastin [52] and then ovine trophoblast protein-1 [53].   
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Figure. 2.2. The phases of blastocyst implantation in sheep.  Shedding of the zona 
pellucida (Phase1): The embryo enters the uterus on Day 4.   The blastocyst is formed on 
Day 6 and the zona pellucida is shed on Day 8 or 9 due to blastocyst growth and uterine 
and/or embryonic proteases.  After Day 10, the blastocyst elongates and develops into a 
tubular and then into a filamentous conceptus.  Precontact and blastocyst orientation 
(Phase 2): Between Days 9 and 14, there is no definitive cellular contact between the 
conceptus trophectoderm and the endometrial epithelia, but the conceptus appears to be 
positioned and immobilized in the uterus.  During this time, the elongating conceptus 
produces IFNT for pregnancy recognition.  Apposition (Phase 3): The conceptus 
trophectoderm associates closely with the endometrial LE followed by unstable 
adhesion.  In ruminants, the trophoblast develops finger-like villi or papillae that extend 
into the superficial ducts of the uterine glands where it is hypothesized to anchor the 
peri-attachment conceptus and absorb histotroph.  Adhesion (Phase 4): On Day 16, the 
trophoblast begins to adhere firmly to endometrial LE.  The interdigitation of the 
trophectoderm and endometrial LE occurs in both the caruncular and intercaruncular 
areas of the endometrium.  During this time, the mononuclear trophectoderm cells 
differentiate into trophoblast giant binucleate cells.  Adapted from [36] and originally 
drawn by Dr. Greg A. Johnson. 
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IFNT is a type I interferon with potent antiviral, antiproliferative and 

immunosuppressive activities [54] produced by conceptuses of ruminants, including 

ovine, bovine and caprine species [52], [55], [56].  Zoo blot analysis revealed that IFNT 

genes are restricted to ruminant species within the Artiodactyla order [57].  IFNT is 

produced by the mononuclear trophectoderm  cells of the conceptus between Days 10 to 

21 in sheep (maximally on Days 13 to 16) and acts in a paracrine manner on the 

endometrium [53].  IFNT maintains the functional CL by inhibiting transcription of 

estrogen receptor (ESR1) and thus the oxytocin receptor (OXTR) gene, resulting in 

abrogation of the endometrial production of luteolytic pulses of prostaglandin F2α 

(PGF2α) [58] (Figure 2.3). 

Anti-luteolytic Mechanisms 

Although IFNT prevents the luteolytic mechanism from occurring, it is not 

luteotrophic [53].  In sheep, IFNT acts in a paracrine manner on the endometrium to 

suppress transcription of ESR1 and  OXTR genes [59], [60], [61], thereby abrogating 

development of the endometrial luteolytic mechanism by preventing production of 

luteolytic pulses of PGF2α (Figure 2.3).  Indeed, increased endometrial 
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Fig. 2.3. Current theory for antiluteolytic mechanisms in sheep.  Schematic illustrating 
the current theory for hormonal regulation of the endometrial antiluteolytic mechanism 
and cross talk between the conceptus and the maternal endometrium for pregnancy 
recognition. During the peri-implantation period, ovine IFNT, synthesized and secreted 
by the mononuclear trophectodermal cells between Days 10 and 21-25 (maximally on 
Days 14-16), acts directly on endometrial LE and sGE to suppress transcription of ESR1 
which precludes expression of the OXTR gene, thereby preventing production of 
oxytocin-induced luteolytic pulses of PGF. During the estrous cycle, ESR1 expression 
increases as PGR expression decreases on Days 11 to 13 and then E2 induces OXTR 
expression on Days 13 to 14, thereby allowing oxytocin from the posterior pituitary 
and/or CL to induce release of luteolytic pulses of PGF on Days 15 to 16. In contrast, 
during early pregnancy, secreted IFNT from fully elongated conceptus silences ESR1 
expression, which prevents E2-induced OXTR expression. However, IFNT does not 
stabilize PGR expression in endometrial epithelia during pregnancy. Adapted from [36]. 
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production of luteolytic pulses of PGF2α parallel increases in endometrial expression of 

oxytocin receptors in cyclic ewes [62] [63].  Progesterone and estrogen control OXTR 

expression in the endometrial epithelia resulting in control of luteolytic PGF2α [64], 

[65] (Figure 2.3). In sheep, progesterone exerts both positive and negative effects in the 

regulation of appropriate PGF2α secretion [64]. First, extended progesterone exposure 

promotes increased uterine arachidonic acid, prostaglandin endoperoxide synthase 

(PTGS1, PTGS2), and other substances needed for synthesis of PGF2α. Second, 

progesterone acts through PGR to block expression of ESR1 and OXTR in the 

endometrial epithelium, but PGR is negatively autoregulated by progesterone first in the 

LE and then in the GE on Days 11 and 13, respectively.  However, PGR expression in 

uterine stromal cells is maintained throughout diestrus and pregnancy [1].  Therefore, 

progesterone loses its ability to negatively regulate ESR1 and OXTR in the endometrial 

epithelia after about Day 11 of diestrus and this results in increased ESR1 and OXTR 

expression in the LE and sGE.  The antiluteolytic actions of IFNT are to silence 

expression of epithelial ESR1 [59] which, in turn, prevents the requisite ESR1/Sp1-

mediated transcriptional activation of the OXTR gene [66].  

IFNT Signaling  

Type I IFN receptors are present in all endometrial cell types [60], and are known 

to classically activate the janus kinase-signal transducers and activators of transcription 

(JAK-STAT) cell signaling pathway to stimulate or repress gene transcription.  Genes 

activated by interferons are collectively refered to as interferon stimulated genes (ISG).  

IFNT induces stromal and/or deeper GE to express a number of classic ISG such as 



 

 

19 

inerferon regulatory factor-1 (IRF1) [67] [27], β2 microglobulin (B2M) [68], interferon 

stimulated gene 15 (ISG15) [69], and 2′5′-oligoadenylate synthase (OAS) [70] (Figure 

2.4).  Interestingly, components of the JAK-STAT pathway such as STAT1, STAT2, and 

IRF9 are expressed in the endometrial stroma and GE [27], but this cell signaling 

pathway is likely inactive in the endometrial LE and sGE (Figure 2.5), because the 

LE/sGE express IRF2, a transcriptional repressor of classical ISG [27] (Figure 2.5).  

Reports of non-classical ISGs specifically expressed in the endomtrial LE/sGE suggest a 

novel, cell specific JAK-STAT independent pathway  [3], [4], [71], [72] (Figure 2.5).  

These novel ISGs may be activated by IFNT through a non-traditional signaling pathway 

such as the p38 MAP kinase [73, 74] or nuclear factor-kappa B pathways [75].  

Proper conceptus growth and survival is also under the influence of endometrial 

secretions.  Specifically, these secretions provide nutrients for the conceptus to undergo 

cellular reorganization during elongation, differentiation prior to placentation, as well as 

production of the signal for maternal recognition of pregnancy.  In fact, conceptus 

elongation is critical for developmentally regulated synthesis and secretion of IFNT [76], 

[77].  In many mammals, the placenta eventually provides sufficient progestational 

support for maintenance of pregnancy until parturition.  However this luteal–placental 

shift occurs later in pregnancy.  Thus, the developing conceptus actively participates in 

its own growth and survival by secreting paracrine factors that influence both the 

functional lifespan of the CL during early pregnancy and endometrial gene expression. 
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Fig. 2.4.  Current theory for IFNT signaling in endometrial stroma and middle to deep 
glandular epithelium.  The stromal cells and GE do not express IRF2, a potent repressor 
of gene transcription.  Thus, IFNT-mediated association of IFNAR subunits facilitates 
cross-phosphorylation and activation of JAK1 and Tyk2, which in turn phosphorylates 
the receptor and create a docking site for STAT2. STAT2 is then phosphorylated, thus 
creating a docking site for STAT1, which is then phosphorylated. STAT1 and STAT2 
are then released from the receptor and can form two transcription factor complexes, γ 
activated factor (GAF) and ISGF3. Association of a STAT1-2 heterodimer forms ISGF3 
and IRF9 in the cytoplasm, translocates to the nucleus, and transactivates genes 
containing an ISRE(s), such as STAT1, STAT2, IRF9, B2M, ISG15, MHC class I 
polypeptide-related sequence (MIC), and OAS.  Formation of GAF by STAT1 
homodimers, which translocates to the nucleus and transactivates genes containing a γ 
activation sequence (GAS) element(s) such as IRF1.  IRF1 can also bind and 
transactivate IFN-stimulated response element (ISRE)-containing genes as well as IRF-
response element (IRFE)-containing genes. The simultaneous induction of STAT2 and 
IRF9 by IFNT appears to shift transcription factor formation from GAF towards 
predominantly ISGF3. Therefore, IFNT activation of the JAK-STAT-IRF signal 
transduction pathway allows for constant formation of ISGF3 and GAF transcription 
factor complexes and hyperactivation of ISG expression in the stroma and GE. Adapted 
from [78]. 
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Fig. 2.5.  Current theory for IFNT signaling in endometrial luminal and superficial 
glandular epithelium.  In LE and sGE, expression of IRF2, a potent and stable 
transcriptional repressor, increases during early pregnancy to inhibit expression of 
classical ISGs (STAT1, STAT2, IRF9, B2M, ISG15, MHC, and OAS) through direct 
ISRE and IRFE binding and coactivator repulsion. Thus, critical factors in the classical 
JAK-STAT-IRF pathway (STAT1, STAT2, and IRF9) are not present, resulting in the 
absence of ISGF3 or IRF1 transcription factors necessary to transactivate ISG. However, 
IFNT activates an unknown cell-signaling pathway that results in induction of wingless-
type MMTV integration site family, member 7A (WNT7A) in the LE and stimulation of 
non-classical IFNT-stimulated genes, e.g., CST3, CTSL and LGALS15, specifically in 
LE and sGE. Adapted from [78]. 
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Lectins 

Historical Perspective of Lectins 

Lectins are a family of soluble or membrane bound proteins highly conserved in 

many living organisms from viruses and bacteria to humans and sponges.  They are 

varied in structure and localization resulting in ubiquity of function.  They can be 

broadly defined as carbohydrate binding proteins that do not either catalyze reactions 

with or structurally modify the ligands to which they bind.  Additionally, they are 

capable of specific and reversible ligand interactions [79].  The study of lectins dates to 

the late 19th century.  It is widely accepted that Peter Hermann Stillmark who, for his 

doctoral dissertation published in 1888, isolated ricin from castor tree seeds (Ricinus 

communis) and first observed lectin hemagglutination, a defining characteristic of lectins 

at that time.  However, ealier reports indicated that animal lectins were discovered first, 

although not in the context of hemagglutinins.  The first animal lectins were likely 

discovered by J.M. Charcot and C. Robin in 1853 [80] and were called Charcot–Leyden 

crystals.   There hemagglutination properties were observed by S. Weir Mitchell and 

Edward T. Reichert in 1886 prior to reports by Stillmark according to Kilpatrick [81] 

and Cervetti [82].  Additionally, Flexner and Noguchi [83] cited an earlier study 

showing a relationship between snake venom and hemagglutination.  The isolation of 

concanavalin A (Con A) from jack bean (Canavalia ensiformis) by James Sumner was a 

seminal lectin discovery [84].  Con A could agglutinate erythrocytes from select species 

such as horse, dog, cat, rabbit, guinea pig, and rat [85].  The Sumner group first 

demonstrated sugar specificity of lectins by showing that the hemagglutination activities 
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of Con A could be inhibited by sucrose.  Remarkably, analysis of their data led them to 

conclude that a possible mechanism by which Con A agglutinates erythrocytes is by 

association with the carbohydrate moiety of cell membrane glycoproteins.  Scientists 

continued to discover new plant lectins and in the early to mid 20th century began 

ascribing lectin hemagglutination utility to selective blood type erythrocytes.  The ability 

of plant agglutinins to distinguish between erythrocytes of different blood types led to a 

nomenclature shift from plant agglutinins to lectins [86].  The name lectin was taken 

from the Latin “legere”, to pick out or choose.  The term lectin is now used broadly to 

describe all carbohydrate-binding proteins of non-immune origin regardless of source 

(microbial, plant or animal).   

The steady increase in the number of studies focusing on understanding lectin 

properties and functions are the result of some seminal discoveries about these 

carbohydrate-binding proteins.   First, Peter Nowell serendipitously observed that the 

lectin of the red kidney bean (Phaseolus vulgaris), also known as phytohemagglutinin 

(PHA) is mitogenic, possessing the ability to stimulate lymphocytes to undergo mitosis 

[87].  Later, mitogenic actions were observed for other lectins including Con A [88].  

Interestingly, the mitogenic stimulation of lymphocytes induced by Con A could be 

inhibited by low concentrations of monosaccharides.  This represents one of the earliest 

examples of a biological role for cell surface lectin-carbohydrate interactions.  Second, 

the discovery that wheat germ agglutinin (WGA) was capable of selective agglutination 

of malignant cells [89, 90] was very important to lectinology.  These studies provided 

early evidence that changes in cell surface sugars are associated with the development of 
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cancer.  The common era of lectinology was met with fervent scientific endeavors 

initiated from many different disciplines due to their utility in studying the structure and 

function of complex carbohydrates, especially glycoproteins, and for studying changes 

that occur on cell surfaces during physiological and pathological processes.  

Plant Lectins 

As alluded to previously, early work in lectin biology typically involved plant 

lectin isolation, characterization, and determination of erythrocyte agglutination or 

carbohydrate binding capabilities.  To date, a vast number of lectins have been identified 

and isolated from many different plant species.  They can be classified based on protein 

structure and degree of evolutionary conservation [91].  Two main families of plant 

lectins are the legume family and the cereal family of lectins.  Historically, lectins, such 

as; Con A from jack bean [92], soybean agglutinin [93], and wheat germ agglutinin, 

have been studied extensively.  In practice, affinity chromatography proved invaluable in 

isolating and characterizing novel plant lectins.  More recently, lectinology has been 

advanced by molecular cloning techniques used in combination with affinity 

chromatography.  Recently, a new galactose-specific plant lectin was purified from seeds 

of a Caesalpinoideae plant, Bauhinia variegata [94].  These novel lectins may be used as 

biological sorters such as in the identification of various bacterial species [95] because 

the lectin-carbohydrate interactions are specific even to bacterial species.  This 

specificity is aided by the ability of lectins to recognize fine differences in terminal 

carbohydrate motifs depending on the bacterial strain.   
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Plant lectins such as the mistletoe lectin I (MLI) are widely used for adjuvant 

tumor therapy.  It is a glycoprotein classified as a type II ribosome-inactivating protein 

(RIP) due to the rRNA-cleaving enzymatic activity of the A-subunit, also referred to as 

toxic entity.  Production of biochemically defined recombinant mistletoe lectin was 

achieved by cloning and expressing the catalytically active A-chain and the carbohydrate 

binding B-chain in Escherichia coli, yielding an active heterodimeric protein named 

rViscumin [96, 97].  The anti-cancer drug rViscumin is preferentially cytotoxic to tumor 

cells harboring terminal α2-6-sialylated neolacto-series gangliosides [98].  Thus the 

cytotoxic nature of some lectins lends to their utility in cell-targeted treatments.    

Conversely, lectins are also involved in cell survival as studies show that 

treatment with the plant lectin PHA significantly improved the fusion efficiency of 

somatic cells with oöcytes during somatic cell nuclear transfer cloning in cattle [99] thus 

increasing the development of cloned embryos.  Additionally, the effiency of pig 

embryos developed parthenogenetically or by somatic cell nuclear transfer was increased 

by treatment with PHA [100] and is believed to support peri-implantation development 

in pigs by enhancing blastocyst hatching, expansion, and decreasing apoptosis by 

positively modulating the expression of embryonic survival related genes [101].  It is 

unknown if the previously mentioned functions of plant lectins are mediated merely by 

the carbohydrate binding domains, but lectin binding specificity is enhanced by subsite 

binding and/or subunit multivalency [102].  Thus plant lectins exhibit a high degree of 

intra-family conservation.  Nevertheless subtle differences in their primary sequence 

and/or tertiary structure facilitate highly selective carbohydrate binding characteristics.  
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This validates their efficacy in various biological systems and as cell-specific therapeutic 

drug targets.   

Animal Lectins 

Animal lectins have been known for as long or longer than plant lectins, although 

not as agglutinin or carbohydrate binding proteins.  In 1853, Charcot and Robin [81] 

observed crystal-like structures in abnormal tissues and the presence of these crystals 

was thought to be mediated by infiltration of tissues by eosinophils at sites of 

inflammation [81].  These stuctures subsequently became known as Charcot–Leyden 

crystals (CLC) and are now characterized as the carbohydrate binding protein LGALS10 

[103].  Animal lectins comprise a superfamily of multifunctional carbohydrate binding 

proteins with highly conserved functional domains, but divergent specificities for 

carbohydrate moieties of glycoproteins and/or glycolipids [104].  Early studies of animal 

lectins proved important to our understanding of the carbohydrate nature of blood group 

antigens, especially lectins initially discovered in the electric eel.  Similar to plant 

lectins, animal lectins have contributed greatly to our understanding of biochemical 

structures and functions of cell surface and ECM molecules involved in cell adhesion 

[105].  Given the  enormous complexity of carbohydrates, and the huge array of 

glycoproteins and glycolipids that present them, it is not surprising that lectins are 

involved in remarkably diverse functions.   

Animal lectins have been characterized in diverse species such as the nematode 

(Caenorhabditis elegans) [106], electric eel (Electrophorus electrucus) [107], frog 

(Xenapus laevous) [108], sheep (Ovis aries) [24], humans (Homo sapiens) [109], and 
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rainbow trout (Oncorhynchus mykiss) [110].  They can be divided into structural families 

based on the primary amino acid sequence.  Five of the recognized families include C-

type, Galectins, I-type (siglecs), P-type (phosphomannosyl receptors), and pentraxins.  

Research in lectinology has revealed the presence of other structurally distinct animal 

lectins such as calreticulin/calnexin [111] and ERGIC-53/VIP-36 [112].  As noted, 

lectins are involved in diverse biological functions exemplified by the galectins.  They 

mediate specific functions in the nucleus, cytoplasm, cell surface and in the extracellular 

milieu.  A brief discription of the primary animal lectins will emphasize the galectin 

family of animal lectins. 

C-Type Lectins  

C-type lectins can be further divided into subfamilies based on primary amino 

acid sequence especially in the non-lectin domains in addition to gene structure.  These 

include; endocytic lectins, collectins, selectins and lecticans which are a minor group.  

Their dependency on calcium (Ca++) for carbohydrate binding is reflected in the name C-

type lectin; however, there is some evidence for Ca++-independent carbohydrate binding 

[113].  Crystallographic studies showed that the CRD of the C-type lectins has a 

compact globular structure [114].  Functionally, Ca++ ions associated with CRDs of most 

C-type lectins are directly involved in carbohydrate binding, as well as in maintaining 

the structural integrity of the CRD necessary for the lectin activity [113]. Depending on 

the amino acid sequence, the CRD is specific for mannose, galactose or fucose.  

Additionally, the interaction of these carbohydrates with different C-type lectins is 

further regulated by distinct carbohydrate branching, spacing and multivalency [102].  
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Similar to plant lectins, the cell specific, multifunctional nature of animal lectins is 

influenced not only by specific terminal carbohydrates, but also by the conformation and 

branched organization of the associated oligosaccharides in determining precise 

biological responses.  As versatile molecules entrusted with deciphering the complex 

glycode, it is appropriate that lectin proteins are found in multiple cellular compartments 

and C-type lectins are no exception.  They are found either as secreted soluble proteins 

or as transmembrane proteins, and can act both as adhesion and as pathogen recognition 

receptors [115]. 

A well studied, secreted, and soluble C-type lectin is the collectin family of 

lectins [116] [117] present in serum and on mucosal surfaces.  Collectins represent the 

first line of host defense in their ability to recognize pathogen-associated molecular 

patterns (PAMPs) [116] [117].  Upon recognition of a pathogen, collectins initiate 

effector mechanisms like opsonization, agglutination, complement activation and 

phagocytosis to curtail pathogen proliferation within the host [118].  There have been 

many collectins characterized to date, but the mannose-binding lectin (MBL) present in 

serum [119] and surfactant proteins-A (SP-A) and -D (SP-D) secreted at the luminal 

surface of pulmonary epithelial cells [120] are the best characterized. 

Transmembrane C-type lectins can be divided into two groups, depending on the 

orientation of their N-terminus, as type I and type II C-type lectins.  Type I C-type 

lectins have an N-terminus in the extracellular compartment while type II C-type lectins 

have a N-terminus in the intracellular compartment.  Examples of transmembrane C-type 

lectins are the selectins [121], the mannose receptor (MR) family [122], and the dendritic 
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cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) [123]  which is also a receptor 

for HIV-1 and is expressed in placentae [124]. 

I-Type Lectins 

I-type lectins (siglecs and others) is a common term to describe any 

carbohydrate-binding proteins belonging to the immunoglobulin (Ig) superfamily [125].  

Most, but not all I-type lectins recognize sialic acids which are acidic monosaccharides 

frequently found at the outer end of secreted and cell surface glycoconjugates.  There are 

over 40 different forms of sialic acids attached in a variety of linkages to underlying 

carbohydrates.  This follows a common theme in lectinology that results in a large 

degree of molecular diversity and thus biological functions attributed to lectin proteins.  

The Siglecs (Sialic acid-binding immunoglobulin superfamily lectins) are a structurally 

distinct subfamily of I-type lectins that recognize sialic acids [126].  Other I-type lectins, 

structurally different from Siglecs but recognizing sialic acids, include CD83 [127, 128] 

and the neural cell adhesion molecule L1 [129]. 

P-Type Lectins 

P-type lectins (phosphomannosyl receptors) consist of two members, which 

include the ~ 46-kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and 

the ~ 300-kDa insulin-like growth factor II/mannose 6-phosphate receptor (IGF-II/MPR) 

that bind phosphorylated mannose residues.  They are essential for the survival of 

organisms due to their role in the generation of functional lysosomes which degrade 

internalized and endogenous macromolecules [130].  The MPRs target newly 
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synthesized lysosomal enzymes bearing mannose 6-phosphate residues in the Golgi and 

deliver these ligands to a late endosome. 

Galectins 

Galectins were previously termed S-type lectins due to their requirement for 

reducing conditions to maintain carbohydrate binding activity [131].  It was widely 

accepted that the sulfhydryl dependency of the thiol groups of cysteine residues was a 

distinguishing characteristic of all galectins similar to the Ca++ dependency of C-type 

lectins.  The earliest discovery of an animal galectin in the electric organ of 

Electrophorus electrucus was called electrolectin [107].  Galectins are commonly 

divided into three groups based on their structural characteristics: prototype, tandem 

repeat and chimera.  Prototype galectins consist of a peptide chain containing a single 

carbohydrate recognition domain (CRD) and are found either as monomers (LGALS5, 

LGALS8, LGALS10, LGALS13, LGALS14 and LGALS15) or as either a monomer or 

dimer (LGALS1, LGALS2, LGALS7 and LGALS11).  Tandem repeat galectins are 

characterized by the presence of two non-identical CRDs separated by a short linker 

sequence on the same chain (LGALS4, LGALS6, LGALS8, LGALS9 and LGALS12).  

The only known chimeric galectin is LGALS3 composed of a single CRD attached to a 

N-terminus domain characterized by a proline and glycine-rich repetive sequence.  

Galectins exhibit diverse biological roles in pre-mRNA splicing [132], cell growth [133], 

cell adhesion [15], regulation of cell cycle [134], and apoptosis [13].  Galectins are 

involved in interactions of cells with the ECM to regulate cell adhesion, motility, 

growth, survival and differentiation partly through integrin-mediated signal transduction.   
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Galectins show a broad range of tissue distribution from early stages of 

embryonic development to adults.  Additionally, changes in their expression patterns 

occur during pathologies such as tumor metastasis [135], gastrointestinal disease [136] 

and preeclampsia [137].  Fingerprinting studies have shown that multiple galectin family 

members are concurrently expressed in a single tissue [19] [21].  In additon, galectins 

commonly exhibit a cell-type specific pattern of expression within a given organ.  While 

overlapping expression of galectins is common, affinities to specific carbohydrate 

ligands are robust.  Therefore, redundancy of expression may not translate into 

redundancy of function in the initiation and maintenance of biological processes.   

Circumvention of the immune system, specifically Th1 derived cytokines, is 

critical to biological processes such as pregnancy in eutherian mammals [138, 139] and 

tumor metastasis [14].  During pregnancy, galectins are important in establishing an 

immune protected environment for intimate contact between the maternal and fetal cells 

during implantation and placentation.  Fundamental to the process of tumor metastis is 

evasion of the host immune system.  Evidence suggest that tumor evasion of host 

defense mechanisms is mediated by tumor-derived secretory factors (LGALS1 and 

LGALS9) that induce apoptosis of activated T lymphocytes [14].  In establishment and 

maintenance of pregnancy or tumor progression, multiple galectin proteins are 

expressesed in a temporal and cell-specific manner suggestive of redundancy of 

function,  but this may actually “fine tune” biological processes.  As a consequence, 

there is strong evidence for a role for galectins in conceptus survival and tumor 
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metastasis and a remarkable ability of these highly conserved proteins to use fairly 

divergent carbohydrate ligands to mediate biological processes. 

Classifications of Galectins 

Prototype Galectins 

The majority of the 15 known members of the galectin family belong to the 

prototype subgroup.  LGALS1, a monomeric galectin, is the original member of the 

galectin family discovered by screening a human hepatoma cDNA library with an 

antibody specific to a human soluble beta-galactoside-binding lectin [140].  At least 

three variants encoding this lectin are expressed in human tissue.  The protein exhibits 

affinitiy for oligosaccharides containing multiple repeating units of disaccharide 

(3GalB1-4GlcNAcB1)n or poly-N-acetyllactosamine while terminal B-galactosyl 

residues are not necessary for high affinity binding of poly-n-acetyllactosamine to 

LGALS1 [11].  Additionally, LGALS1 can bind laminin and could promote cell 

adhesion to the ECM [11].  An effective approach to determine glycan specificity of 

galectins is the use of a glycan microarray containing many structurally different glycans 

and then validating these results with binding determinants on cells [141].  These studies 

have validated previous work showing LGALS1 binding affinity to poly-N-

acetyllactosamine in addition to ellucidating new glycan binding affinities such as its 

specific binding to α2-3, but not α2-6 sialylated glycans.  In this way, glycan binding 

specificity of each galectin underscores the basis for differences in biological activities 

of individual galectins as influenced by their respective cellular mileu.   
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Temporal expression of LGALS1 in the reproductive tracts of mice [18], humans 

[19], and cattle [142] are similar, with abundant expression early in the estrous or 

menstrual cycle.  In cattle, LGALS1 appears to be only expressed in uteri of cyclic 

animals.  Spatially divergent patterns exist when comparing mice and humans to cattle.   

In cattle LGALS1 is localized to uterine LE and GE, whereas in mice and humans it is 

mainly expressed in the stromal and decidual compartments with increased expression in 

the late secretory phase and in decidual tissue of human uteri [19].  These different 

spatial and temporal patterns of expression among humans, mice and cattle may reflect 

species-specific differences in placentation and may be important in the regulation of 

implantation.  However, the argument for the utility LGALS1 alone or in concert with 

LGALS3 to implantation is weakened by the fact that implantation and reproduction is 

normal in Lgals1-/- mutant, Lgals3-/- mutant, and Lgals1-/-/Lgals3-/- double mutant mice 

[22, 23].  These findings are tempered by the existence of other galectins, such as 

LGALS5, concomitantly expressed by conceptus trophectoderm during the peri-

implantation period of pregnancy in mice [23].  

LGALS2 was discovered along with LGALS1 by screening a human hepatoma 

cDNA library with an antibody specific to a human soluble beta-galactoside-binding 

lectin [140].  The LGALS2 protein is a homodimer and glycan array studies indicate a 

high affinity for fucose-containing A and B blood group antigens and low affinity for all 

sialyated glycans [141].  Similar to LGALS1, LGALS2 has a high affinity for glycans 

with poly-N-acetyllactosamine sequences (GalB1-4GlcNAc)n when compared with N-

acetyllactosamine glycans (GalB1-4GlcNAc) [141].  LGALS2 is presumed to play a 
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regulatory role in the intracellular trafficking of lymphotoxin-α (LTA) to which it binds.  

LTA is a pro-inflammatory cytokine and expression of some LTA SNP variants has been 

implicated as a risk factor for arteriosclerosis and cardiovascular diseases [143, 144].  

Additionally, a SNP in the LGALS2 gene encoding a variant of the galectin 2 protein 

results in increased transcription of LGALS2, a subsequent increased secretion of LTA 

and a degree of endothelial inflammation in establishing susceptiblility to myocardial 

infarction [145].  The efficacy of these findings in clinical practice is debatable because 

the positive correlation of LTA and LGALS2 polymorphisms on the incidence of 

myocardial infarction seems to be dependent on ethnicity of the patient, as similar 

studies in Japanese patients were inconsistent with previous reports  [146, 147].   

LGALS5, a monomeric prototype galectin with one CRD, was first detected in rat 

lung and kidney and initially identified as RL18 [148].  Early studies characterized RL18 

carbohydrate binding to Galβ1-3GalNAc as well as lactose [149].  Following isolation 

and characterization of cDNA derived from rat erythrocytes, RL18 was designated 

LGALS5 [150].  Additionally, expression has been observed in mice peri-implantation 

conceptus trophectoderm cells suggesting a role in development [23].   

LGALS7 is another monomeric galectin initially discovered in a search for 

keratinocyte proteins differentially regulated in transformed cells that might play a role 

in maintenance of a normal phenotype [151].  Specifically, abundant proteins down-

regulated in transformed cells are expected to play a role in cytoskeletal organization and 

cell-cell interactions because transformed cells often show altered morphology, are less 

adherent to neighboring cells, and usually reorganize the ECM.  Similar to other 
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galectins, LGALS7 binds lactose and is secreted, but lacks a typical signal peptide.  Its 

expression is tightly regulated at the protein level mainly in stratified squamous 

epithelial cells [151].  Intracellular location of the protein is primarily in the suprabasal 

compartment of epithelial cells in areas of cell-to-cell contact.  LGALS7 cellular 

localization and its conspicuous down-regulation in cultured keratinocytes incapable of 

anchorage dependent growth imply a role in cell-cell and/or cell-matrix interactions 

necessary for normal growth control.    

LGALS10, commonly refered to as Charcot-Leyden crystals (CLC), is a unique 

autocrystallizing component of esosinophils that form in bipyramidal crystals found in 

human tissues and secretions associated with increased numbers of peripheral blood or 

tissue eosinophils and basophils in parasitic and allergic processes.  It was first observed 

by Charcot and Robin [80] in postmortem blood and spleen of a patient with leukemia 

and also by Leyden [152] in sputum of an asthmatic patient [81].  Historically, CLC 

were not studied as a lectin and are often ignored as seminal discoveries in lectinology.  

Initially, the crystals were characterized as single proteins possessing lysophospholipase 

activity [153] [154].  Cloning of the CLC cDNA revealed a ~ 16.5 kDa predicted protein 

with no sequence homology to any known sequences of lysophospholipase, 

phospholipases or other lipolytic enzymes, but with some similarities to members of the 

galectin superfamily of lactose-binding animal lectins [155].  Ambiguity in the role of 

CLC as bifunctional lysophospholipases and lectins was clarified with elegant 

experiments that tested the lysophospholipase activity of CLC depleted eosinophil 

lysates [156].  Indeed, eosinophil lysates depleted of CLC proteins retained their 
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lysophospholipase activities while purified CLC proteins from depleted eosinophils did 

not.  X-ray crystallographic studies of the structure of CLC protein showed that its 

overall tertiary fold was highly similar to the fold found in prototype galectins [157].  

Similar studies revealed that CLC protein has a high affinity for mannose, but not β-

galactosides, and binds mannose via its CRD in a unique manner that differs from 

carbohydrate binding by other galectins [103]. 

CLC is genetically related to members of the galectin gene family.  The CLC 

protein is encoded on four exons with the third exon encoding the carbohydrate binding 

domain [158].  This is identical to that for LGALS1, LGALS2, LGALS15 (SKL 

unpublished data) and LGALS3 in which the carbohydrate binding domain is encoded 

only by the fifth exon [109, 159].  Eosinophils express several proteins that are restricted 

to these lineages, including the IL-5 receptor alpha subunit (IL-5Ra), and CLC protein.  

This presents an interesting phenomenon at the transcriptional level because the CLC 

promoter should exhibit unique cis-regulatory elements that confer some specificity for 

expression in eosinophil lineages.  Indeed a 562 bp region 5′ of the transcription start site 

has promoter activity and consensus sites for the eosinophil transcription factor EoTF 

(GGAGA[G/A]) and GATA-1 that when mutated, disrupted promoter activity [160].  

Analysis of the minimal promoter revealed nine consensus-binding sites for transcription 

factors, including several also found in minimal promoters of LGALS1, LGALS2, and 

LGALS3 [161].   

 GRIFIN or galectin-related inter-fiber protein is a novel, highly abundant soluble 

lens specific protein believed to be a member of the crystallin family of proteins that 
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assist the lens in focusing light on the retina [162].  Localization of GRIFIN protein is 

developmentally regulated only in the lens, localized intracellularly to the lateral 

compartment of lens fiber cell in adults, but more centrally within lens fiber cells in 

neonates [162].  Interestingly, the GRIFIN gene has two sets of large repetitive DNA 

segments, one in the 5′promoter region and another that encompasses the 3′splice site of 

exon IV [162].  Furthermore, the repetitive DNA segments contain potential binding 

sites for the transcription factor δEF1 [162] believed to confer lens-specific expression 

of some genes.   

Previously, GRIFIN was considered a galectin-related protein because it lacked 

affinity for lactose and there was little evidence for a functional carbohydrate binding 

domain.  Despite this, mammalian GRIFIN is commonly accepted as LGALS11 [163] 

[32], seemingly a divergence in the definition of lectin proteins based fundamentally on 

their glycan binding affinity.  Consideration of non-mammalian homologues of GRIFIN 

reveal that it does bind to lactose glycans [164].  In fact, a homologue identified in 

zebrafish (Danio rerio) and designated DrGRIFIN, is also expressed in the lens, 

particularly in fiber cells.  In adult zebrafish, however, DrGRIFIN is also expressed in 

oöcytes, brain, and intestine and unlike the mammalian equivalent (lacking two out of 

seven amino acids), DrGRIFIN contains all amino acids critical for ligand-binding and 

binds to β-galactosides [164].   

Placental Protein 13 (PP13) was first isolated and purified from human term 

placenta [165].  Immunoscreening of a term placenta cDNA library with antibodies 

derived from anti-PP13 serum resulted in the PP13 coding sequence being cloned [166]. 
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The predicted protein conatains 139 amino acid residues, a molecular mass of 16.1 kDa 

and it contains a putative N-glycosylation site in its N-terminus and several potential 

phosphorylation sites [166].  Sequence analyses, alignments and computational 

modelling identified its conserved structural and functional homology to members of the 

galectin family and it was designated LGALS13 [167].  The protein was found to be a 

homodimer of 16 kDa subunits linked by disulphide bonds, a phenomenon differing 

from noncovalent dimerization of known prototype galectins, and reducing agents 

decrease its sugar binding activity [167].  Phosphorylation of the purified protein was 

confirmed and proteins such as; annexin II and beta/gamma actin were identified as 

proteins bound to PP13 in placental and fetal hepatic cells [167].  LGALS13 shares 69% 

amino acid identity with CLC protein and exhibits lysophospholipase activity [168].  

LGALS13 protein has been detected in placenta, fetal and adult spleen, fetal kidney, 

adult bladder and some tumor tissues [166].  LGALS13 exhibits carbohydrate binding 

affinity to N-acetyl-lactosamine, mannose and N-acetyl-glucosamine residues [168], all 

of which are abundant in the placenta.  Recently, PP13 in maternal serum during the first 

trimester has been used as a diagnostic indicator of preeclampsia in women [137].  Low 

levels of PP13 in early pregnancy identify at-risk pregnancies, whereas high levels 

precede the syndrome in late pregnancy and suggest necrosis of the syncytiotrophoblast 

[169, 170]. 

LGALS14, previously called Charcot-Leyden Crystal protein 2 (CLC2) and 

placental protein 13-like protein (PPL13), was initially discovered by screening a human 

18-week fetal brain library [171].  However, LGALS14 expression is most abundant in 
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placentae as two isoforms due to alternatively spliced transcript variants.  LGALS14 

protein can be sequestered in nuclei even though it lacks a known nuclear localization 

signal.  Human LGALS14 shows 78%, 67% and 54% identity with prototype galectins 

PP13, LGALS10, and LGALS15 in amino acid sequence, respectively, and all four of 

these galectins contains 7 of the 8 conserved amino acids  (H.N.R.N.W.E.R) of the CRD 

thought to be important for carbohydrate binding by all galectins.  In the same year that 

human LGALS14 was characterized, ovine LGALS14 was discovered and shown to also 

be an eosinophil specific galectin secreted in response to an allergic reaction [172].  

Ovine LGALS14 shows 57% identity with tandem repeat galectin, human 

LGALS9/ecalectin, in amino acid sequence.  LGALS14 is clearly a prototype galectin 

with only one C-terminus CRD. However LGALS14 has an extended N-terminus 

uncharacteristic of other known prototype or tandem repeat galectins.  In fact, only 

chimeric LGALS3 has such an extended N-terminus.  However LGALS14 N-terminus is 

much shorter than that of LGALS3 and does not contain a proline and glycine-rich 

repetitive sequence characteristic of chimeric galectins.  Validation of the eosinophil 

specific expression and a functional analysis of LGALS14 was conducted by this same 

group.   

Young et. al [173] proved that LGALS14, similar to LGALS10, is uniquely 

expressed and secreted by eosinophils especially following an allergic reaction or 

infections caused by helminth parasites.  In fact, they showed that LGALS14 is 

spontaneously released by eosinophils derived from allergen challenged mammary gland 

lavage fluid, but not from resting peripheral blood eosinophils.  Functionally, LGALS14 
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exhibits carbohydrate binding activity as glycan array screening revealed affinity for 

type 2 polylactosamine glycans Galβ1-4GlcNAc, α2-6-sialylated glycans and highest 

affinity to lacto-N-neotetraose (LNnT) oligosaccharides expressed by helminth parasites.  

This LNnT oligosaccharide skews the immune response toward a Th2-type mediated 

response and suppresses Th1-type and inflammatory responses [174].  LGALS14 is 

believed to function in cell adhesion because it is secreted especially at basolateral 

epithelial surfaces following eosinophil infiltration where it specifically binds laminin, 

epithelial cells lining the gastrointestinal tract, eosinophils and other inflammatory cells 

in the local tissue environment such as neutrophils and lymphocytes. Interestingly, 

LGALS14 is constitutively expressed by ovine eosinophils and is only secreted by 

eosinophils that have infiltrated a tissue in response to an allergic or parasitic stimuli 

[174]. 

LGALS15, the newest member of the galectin super-family, was initially 

discovered in sheep abomasal tissue infected with the nematode parasite, Haemonchus 

contortus, and designated OVGAL11 [24].  The tissue in which the galectin was 

upregulated was subject to inflammation and eosinophil infliltration.  

Immunohistochemistry revealed that the protein was localized in the cytoplasm and 

nucleus of the upper epithelial cell layer of the gastrointestinal tract and in mucus 

collected from infected abomasal tissue suggesting that it was secreted.  Similar to other 

galectins, it lacks a typical signal peptide.    

Recently, LGALS15 was discovered in the endometrium of sheep by gene 

expression profiling to understand recurrent early pregnancy loss in UGKO ewes [3].  In 
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the ovine uterus, LGALS15 mRNA was detected only in the endometrial LE and sGE 

[3].  At these intercaruncular areas, finger-like villous projections of trophoblast extend 

into the lumen of the mouths of uterine glands to establish contact with sGE which 

effectively anchoring the pre-attachment conceptus and absorb histotroph from uterine 

glands [42].  Furthermore, in the ovine uterus, LGALS15 is an abundant component of 

uterine histotroph [3].  Ovine endometrial expression of LGALS15 is induced by 

progesterone and further stimulated by IFNT [3] coordinate with early conceptus 

elongation, growth and development during the peri-implantation period.  In line with its 

spatial and temporal expression patterns in the ovine uterus, LGALS15 represents one of 

a growing list of non-classical interferon-stimulated genes (ISG) expressed by LE and 

sGE which may regulated by a novel JAK/STAT-independent cell signaling pathway 

[175-177].   

Ovine endometrial LGALS15 contains a conserved CRD that binds β-

galactosides [3] and predicted cell attachment sequences (LDV and RGD) that could 

mediate binding to integrins [178] [179].  Results of recent in vitro studies suggest a role 

for LGALS15 in cell migration and attachment which are integrin-mediated and involve 

formation of focal adhesions which transmit force at adhesion sites and serve as 

signaling centers from which intracellular signaling pathways emanate [180].  

Interestingly, these adhesive and migration functions of LGALS15 are independent of 

the CRD, but dependent on the C-terminal RGD integrin recognition sequence.  Other 

galectins bind fibronectin and laminin as these proteins are modified with carbohydrate 

ligands decoded by lectins [181].  Recently, animal and plant lectin interactions with 
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non-carbohydrate ligands (lectin-protein interactions) were proposed to mediate many of 

their divergent functions [182, 183] [184].  So, it is not surprising that LGALS15 

mediates it adhesive and migratory roles in the ovine uterus independent of its 

prototypical CRD.   

LGALS15 may be the 14K protein from sheep endometrium initially 

characterized as a progesterone-modulated protein associated with crystalline inclusion 

bodies in uterine epithelia and conceptus trophoblast [185].  Immunogold electron 

microscopy revealed that within trophoblast, the 14K protein was localized to large, 

membrane-bound rhomboidal or needle-shaped crystal structures.  Thus, it was 

suggested that the protein was secreted by the endometrial epithelia, taken up by the 

conceptus from uterine histotroph, and assembled into crystals [185].  These crystals are 

first observed in the sheep trophoblast on Day 10 and then increase in number and size 

between Days 10 and 18 of pregnancy [186].   These crystalline inclusion bodies are 

observed in endometria and conceptuses in other animals such as mice, but they are 

more prominent in the ovine species [186], [187].  There is no evidence to suggest the 

presence of these progesterone-induced crystalline inclusions in endometria or 

conceptuses of cattle.  Interestingly, development in the sheep uterus of in vitro 

produced bovine blastocysts resulted in the presence of crystalloid bodies in 

trophectoderm cells of elongated blastocysts [188].  The association of intracellular 

LGALS15 protein with crystalloid bodies, is reminescent of CLC proteins.  One can 

only speculate on the functions of intracellular LGALS15 crystals within the scope of 

other galectins.   
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Tandem Repeat Galectins 

LGALS4 was characterized by differential display analysis showing that its 

expression is significantly decreased during colorectal carcinogenesis [189].  The 

LGALS4 protein contains approximately 150-amino acids, a CRD and all amino acids 

typically conserved in galectins.  Its expression is restricted to the small intestine, colon, 

and rectum.  A cDNA encoding LGALS4 was cloned from a human colon 

adenocarcinoma cell line [190].  In vitro, the cellular adhesive properties of recombinant 

LGALS4 in addition to its differential intracellular localization in confluent (cytosolic 

near basal membrane) versus subconfluent (leading edge of lamellipodia) cells, suggest 

that it functions in cell adhesion [190].  LGALS4 is expressed in spermatozoa and 

oöcytes and in 8-cell embryos and later stages of embryonic development [191] 

suggesting a role in development and cell differentiation.  The LGALS4 holoprotein has 

a high affinity for blood group A and B structures based on a glycan array study [191].   

Additionaly, it bound to sulfated lactose and, with high affinity, GalNAcα1-3GalNAc. 

The two CRD of LGALS4 demonstrate differential ligand binding between blood group 

antigens A and B with CRD1 specific for type-2 blood group B structures and CRD2 

specific for type-2 blood group A structures [191]. 

LGALS8 is unique as it has members in both the prototype and tandem repeat 

subfamilies of galectins.  LGALS8 was initially discovered as a tandem repeat galectin 

encoded by the LGALS8 gene that encodes many mRNAs by alternate splicing and 

contains three unusual polyadenylation signals [192]. These mRNAs encode six different 

isoforms of LGALS8: three are tandem-repeat and three are prototype galectins [192].  



 

 

44 

Unlike LGALS1 and LGALS3, LGALS8 can inhibit adhesion of human cells [193].  

When bound to the α3β1 integrin in a carbohydrate dependent manner at the cell 

surface, LGALS8 not only inhibits integrin-mediated carcinoma cell adhesion, but also 

induces apoptosis [193].  In fact, edogenous LGALS8 may have a negative effect on 

tumor progression in the early stages of tumor metastasis because cells transfected with 

LGALS8 cDNA showed significantly reduced colony formation [193].  Characteristic 

differnces in carbohydrate binding specificity in comparison to LGALS1 and LGALS3, 

likely explain the specific interactions of LGALS8 with human carcinoma cells.  

Divergent carbohydrate binding affinities are characteristic among members of the 

galectin family with overlapping patterns of expression.  Conversly, immobilized 

LGALS8 can induce cell adhesion that is carbohydrate dependent [194].  In Trabecular 

Meshwork (TM) cells, LGALS8 stimulates adhesion and spreading by interacting with 

α2-3-sialylated, but not α2-6-sialylated glycans on β1 integrins [195].  The α2-3-

sialylated glycan has a high affinity for LGALS8, but not LGALS1 or LGALS3.  

Additionally, α3β1, α5β1 and αvβ1 integrins proved to be major receptors for LGALS8 

in TM cells [195].  Characteristically, the functions of galectins are fine-tuned by the 

glycan complement that can orchestrate a medley of specific functions in a given tissue.   

LGALS9, isolated from mouse embryonic kidney cells [196], is a 36-kDa β-

galactoside binding protein with two distinct N- and C-terminal CRD connected by a 

link peptide.  Structurally, a 31-amino acid insertion between the N-terminus and the 

linker peptide results in an isoform of LGALS9 expressed exclusively in the small 

intestine [196].  Similar to LGALS1 and LGALS3, expression of LGALS9 is 
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developmentally regulated [196] with increased expression specifically in the thymus 

and liver of Day 13 mouse embryos.  It is believed to regulate thymocyte-epithelial 

interactions via its role in selective induction of apoptosis in thymocytes during positive 

or negative selection.  The human homolog of LGALS9 was first detected and isolated 

by immunoscreening a cDNA expression library derived from tissue involved in 

Hodgkin’s disease [197].  Similar to mouse LGALS9, the the C-terminal CRD of human 

LGALS9, is highly homologous to rat LGALS5 with 70% amino acid sequence identity.  

Additionally, human LGALS9 has an allelic variant designated ecalectin, that is believed 

to be an important T lymphocyte-derived regulator of eosinophil recruitment to tissues 

during inflammatory reactions [198].  LGALS9 is the first identified human urate 

transporter (hUAT) [199] and it has high sequence homology and cellular distribution 

with rat UAT [200].  Human UAT was localized to plasma membrane in multiple 

epithelium-derived cell lines and, in polarized cells, it was targeted to both apical and 

basolateral membranes [200].  The amino- and carboxy-termini of hUAT were both 

detected on the cytoplasmic side of plasma membranes, but the protein does contain at 

least one extracellular domain.  These results are convincing; however, they have not 

been linked to any inherited defects leading to high levels of uric acid excretion in urine 

[201]. 

In adult tissues, LGALS9 is expressed in endometria of diverse species such as 

humans and cattle [19-21] and its temporal and spatial expression during the peri-

implantation period in these species indicate that it may be involved in establishing a 

uterine environment receptive to a developing conceptus.  In ruminants, maternal 



 

 

46 

recognition of pregnancy is mediated by IFNT which is associated with activation of 

many ISG in the endometrium required for successful pregnancy.  Indeed LGALS9 is a 

novel type I ISG [202].  The peri-implantation period in many species is characterized 

by the typical expression profile of multiple galectin family members by the 

endometrium and conceptus trophectoderm [9, 19, 21, 142].  Interestingly, LGALS9 

exhibits intermolecular interactions with itself or carbohydrate ligands, as well as other 

galectin family members such as LGALS3 and LGALS8 [203], adding another level of 

complexity in understanding the many functions of galectins. 

LGALS12 was initially discovered by sequencing a randomly selected expression 

sequence tag clone from a G1-phase Jurkat T-cell cDNA library [133].  The deduced 

314-amino acid protein lacks a signal sequence and transmembrane domain, like other 

galectins. LGALS12 contains two CRDs separated by a linker sequence and it exhibits 

affinity for lactose.  LGALS12 is expressed in heart, pancreas, spleen, thymus, and 

peripheral blood leukocytes and at lower levels in lung, skeletal muscle, kidney, 

prostate, testis, ovary, and colon, but there is little to no expression in brain, placentae 

and liver [133].  Additionally, its expression is detectable in hematopoietic and immune 

cell lines, but not other cell lines tested.  LGALS12 expression is up-reglated in  cells 

blocked in G1, but not in synchronized cells in the mitosis phase of the cell cycle.  In 

fact, overexpression of LGALS12 but not LGALS9, resulted in G1 cell cycle arrest and 

abrogation of proliferation in cancer cell lines [133].  Thus LGALS12 is believed to be a 

tumor suppressor gene.  Notably, LGALS12 is abundantly expressed in nuclei of human 

and mouse adipocytes and increasing its expression reduced the size of adipocytes and 
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increased apoptosis [204].  Further, expression of LGALS12 was increased in mouse 

preadipocytes undergoing cell cycle arrest, which is concomitant with differentiation in 

response to adipogenic hormone stimulation [205].  Thus, LGALS12 is believed to be a 

major regulator of adipose tissue development. 

Chimeric Galectin 

The only know chimeric galectin is LGALS3 previously known as Galactoside-

Binding Protein (GALBP) and Macrophage Galactose-Specific Lectin (Mac-2).  Mouse 

LGALS3 protein binds galactose and IgE secreted by inflammatory macrophages and it 

interacts with laminin suggesting involvement in cell-ECM interactions [206].  LGALS3 

is the most studied of the galectin family members due to its broad distribution in both 

normal and abnormal tissues and its relevance to both immune responses and tumor 

progression.  At the protein level, LGALS3 is highly conserved.  In fact the human 

homolog of LGALS3 was characterized and the deduced protein revealed 85% identity 

with mouse LGALS3 especially in the functional CRD [206].  The ribonucleoprotein-

like N-terminal domain, containing the proline-glycine-alanine-tyrosine repeat motif, is 

entirely within exon III and the CRD is entirely within exon V [207].  Unique in its 

structure, which includes a long N-terminus of undefined function, LGALS3 is an 

intriguing molecule with seemingly opposing functions depending on the cellular milleu.  

LGALS3 may participate in cell differentiation based on its developmentally, temporally 

and spatially regulated expression during embryogenesis [9], [17, 208].  LGALS3 

protein is present at the interface of intimately apposed maternal and fetal tissues.  It is 

reasonable to propose a function for LGALS3 during early pregnancy in facilitating 
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adhesion of the maternal epithelium and the conceptus trophectoderm given its 

established interactions with cell surface proteins such as integrins [209, 210].  

Galectins and Biological Processes 

Development and Tissue Regeneration 

To investigate the roles of galectins in development and immune regulation, 

Lgals1-/- and Lgals3-/- mice were produced [22, 23] and found to have no obvious 

phenotypes, even in Lgals1-/-/Lgals3-/- or Lgals1-/-/Lgals3-/- double knockout mice.  

However, Lgals1-/- mice exhibited olfactory neurons with altered neurite outgrowth and 

targeting, demonstrating a role for lgals1 in neural development [211].  

Galectins are involved in the initiation and progression of many diseases and 

natural regenerative processes in humans such as cancer, gastrointestinal disorders and 

wound healing.  In LGALS3 null mutant mice, corneal wound healing is delayed due to a 

slower rate of re-epithelialization of the wound when compared to wild type mice [212].  

Interestingly, gene expression profiling revealed that the healing corneas of Lgals3 null 

mice had reduced levels of Lgals7. The delayed wound healing phenotype could be 

reversed by administration of exogenous Lgals7, but not Lgals3 proteins [212].  Thus, 

molecular interactions involving Lgals3 and Lgals7 appear to be important for re-

epithelialization of corneal wounds.   

Disease Initiation and Progression 

LGALS9 can block lung cancer metastasis when transfected into highly 

metastatic cancer cell lines [135].  Many adhesive molecules including CD44, integrins 

α1, α4, αV and β1 are expressed concurrently in lung cancer cells.  Thus LGALS9 may 



 

 

49 

suppress both attachment and invasion of tumor cells by antagonizing binding of 

adhesive molecules on tumor cells to ligands on vascular endothelial cells and to ECM.  

Similar negative effects on cancer progression have been observed for LGALS8 which 

suppresses tumor growth rate and cell migration [213].  Interestingly, the expression of 

LGALS8 and LGALS9 is decreased in these cancers once they acquire an aggressive 

metastatic phenotype.   

Immune Function and Reproduction 

Immune functions in Lgals1-/- and wild-type mice were not different; however, 

Lgals3-/- mice exhibited defects in inflammatory responses involving altered 

inflammatory cell dynamics during acute peritonitis [23, 214].  Results obtained from in 

vitro studies, such as the ability of LGALS1, LGALS2 and LGALS9 to induce T cell 

apoptosis [14, 215], suggest functional redundancies among galectin family members.  

The in vitro data is supported by gene ablation studies in mice, further supporting 

functional redundancy of galectins in vivo.  Eosinophils represent a unique cell type that 

exhibits restricted expression of at least two galectins, LGALS10 and LGALS14.  

Preliminary results suggest that lentiviral shRNA knockdown of LGALS10 expression in 

developing human eosinophils impairs granulogenesis [216].  To examine functional 

redundancy in vivo and to understand clearly the roles of galectins in various biological 

processes, mice with mutations in multiple galectins representative of the tissues under 

investigation must be generated. 

Galectins are thought to be necessary during reproduction in eutherian mammals.  

Expression of the L-14 lectin (LGALS1) is abundant during mouse embryogenesis and 
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suggests that it has multiple roles during pre- and post-implantation development and 

cell differentiation [16].  It is initially expressed by trophectoderm of expanded 

blastocysts immediately prior to implantation suggesting a role in the attachment to 

uterine LE.  Correlative studies of human tissue demonstrated increased expression of 

LGALS1 and LGALS3 by extravillous trophoblast (EVT) in pre-eclamptic placentae, 

but no differences between normal control placentae and placentae of fetuses 

experiencing intra-uterine growth restriction (IUGR) [217].  LGALS1 binds to the 

Thomsen–Friedenreich (TF) antigen (Galβ1-3GalNAc) [218] expressed apically by the 

syncytiotrophoblast on extravillous trophoblast cells invading the decidua in the first and 

second trimesters, and on trophoblastic tumor cells (BeWo) in vitro [219].  Expression of 

the TF antigen is significantly up-regulated in IUGR and preeclamptic extravillous 

trophoblast cells which correlates with increased expression of LGALS1 decidual tissue 

of preeclamptic placentae [217].  The binding of LGALS1 to the TF antigen on 

trophoblast cells could play an important role in successful implantation of the conceptus 

in endometria of humans.   

There is established evidence for the presence of multiple galectins such as 

LGALS1 and LGALS2 at immune-privileged sites [18, 217, 220].  Therefore, in 

addition to its suggested adhesive role during implantation, LGALS1 could exert 

immunosuppressive functions at the conceptus-maternal interface.  Preeclampsia is 

generally attributed to maternal endothelial dysfunction, poor placentation and an 

increased maternal inflammatory response ultimately resulting in poor trophoblastic 

invasion into maternal spiral arteries.  A high Th1/Th2 cell ratio at the conceptus-
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maternal interface may be important in the establishment of preeclampsia [221].  Both 

LGALS1 and LGALS2 have been implicated in the induction of apoptosis specifically in 

activated Th1 type lymphocytes [14, 215].  Indeed, an environment favoring Th1 cellular 

responses is associated with increased inflammation, endothelial dysfunction and poor 

placentation [222] potentially resulting in decreased tolerance to the fetal semi-allograph 

and thus poor invasion of the trophoblastic tissue into the endometrium.  

Regulation of Galectin Gene Expression 

Complex mechanisms are involved in the transcriptional control of galectins.  

Studies of galectins have indicated modulation of their expression during development 

[223] and under different physiological or pathological conditions [28, 224] in addition 

to restriction to specific cell lineages.  Tissue glycosylation and thus glycan patterns 

follow similar modulations in expression [225, 226].  As previously noted, the actions of 

galectins are not exclusively dependent on their CRD.  Thus, modulation of expression 

of different galectins and their glycan and/or non-glycan ligands is finely tuned or even 

coordinated.   

 Studying transcriptional regulation of galectins is particularly useful to 

understanding the pathophysiology of many cancers and disorders of the gastrointestinal 

tract as expression of galectins is modulated in these tissues.  In mammalian species, the 

digestive tract alone expresses nine members of the galectin family including; LGALS1, 

LGALS2, LGALS3, LGALS4, LGALS6, LGALS7, LGALS8, LGALS9, and LGALS15 [213, 

223].  They are involved in the development and progression of malignancies in the 

digestive tract, mainly in colorectal cancers [213].  Some galectins are also involved in 
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inflammatory bowel diseases [136].  So detailed examinations into mechanisms whereby 

galectins are regulated at the transcriptional level will reveal fundamental characteristic 

of disease processes.   

 The upstream regulatory regions of LGALS1, LGALS2, LGALS3, LGALS4, 

LGALS6, LGALS9, LGALS10, LGALS11 and LGALS12 from different species have been 

cloned [109, 159, 162, 199, 204, 207, 227-231].  The following will detail some of the 

information regarding transcriptional regulation of galectins, including those believed to 

be important for successful reproduction in mammalian species such as LGALS1, 

LGALS3, LGALS9, LGALS15 [9, 18, 19, 21, 142, 208, 232]. 

The genomic region of LGALS1 and LGALS2 were the first to be characterized 

[109, 159].  In the LGALS1 gene promoter region, a small segment (−63/+45) spanning 

the transcription start site (+1) and a Sp1 site (-57/-48) is critical for promoter activation 

[233].  A consensus initiator Inr sequence (TCCAGTT) located at -34/-28, overlaps the 

TATA box, and directs RNA initiation from a previously uncharacterized site located at 

-31.  Thus transcriptional initiation can be initiated from both start sites [234].  The 

LGALS1 gene promoter is under the control of various agents.  The region -62/-41, 

which contains an Sp1 site at -57, is important for the induction of LGALS1 promoter 

activation by butyrate [231].  Gel shift studies indicate that the Sp1 transcription factor 

binds an Sp1 site with the proximal promoter region.  In vivo, glycosylation of mucins is 

important to their many functions at epithelial surfaces.  In the colon, mucin 

glycosylation can be modified by luminal metabolites of fiber fermentation like butyrate 

that markedly increase LGALS1 gene expression by 8- to 18-fold [235].  At the 
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promoter level, the LGALS1 distal promoter confers responsiveness to retinoic acid (RA) 

[236].  A strong RA responsive region within the -1578/-1448 region upstream of the 

transcription start site (+1) is at least in part responsible for the inducible expression of 

LGALS1.  In this system, constitutive expression of LGALS1 was mediated by a 

sequence (-62/+1) within the proximal promoter region which contains an Sp1 consensus 

sequence [231, 236].  Again this transcription factor binds the LGALS1 proximal 

promoter region and the cis-motif is critical for activation of the promoter.  In the 

reproductive tract, LGALS1 transcripts are up-regulated during the peri-implantation 

period in the uterus and ovary [18].  In the mouse uterus, LGALS1 expression is 

regulated by the ovarian steroids progesterone and estrogen and is correlated with 

blastocyst implantation [237].  These results illustrate the inducible nature of the 

LGALS1 gene in the gastrointestinal and reproductive tracts at the level of the promoter.     

The murine LGALS3 gene is composed of six exons and sequence analysis 

revealed a consensus Inr sequence instead of a TATA box [228]. Functional 

characterization of the LGALS3 promoter revealed a small genomic region (-339/+141) 

important for trascriptional activation that is considered an early immediate gene since 

its expression is rapidly increased upon serum stimulation [207].   The serum responsive 

region mapped to -513 /-339 and -339/229, but lacked consensus serum response 

element (SRE) binding sites [207]. In tissues with limited vascular supply resulting in 

hypoxia, LGALS3 expression is modulated.  In this context, hypoxia inducible factor-1α 

(HIF-1α) regulates LGALS3 expression by interacting with hypoxia regulatory elements 

in the promoter region [238].   Results of studies with human osteosarcoma cell lines 
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suggest that LGALS3 has transcripts initiated from a promoter upstream of exon I but 

also from an internal promoter located within intron II [239].  In fact, a gene embedded 

within the human LGALS3 gene named galectin 3 internal gene (GALIG),  is tightly 

regulated, with expression limited to activated peripheral blood leukocytes and 

transcripts producing a secreted protein unrelated to LGALS3 [240].  GALIG encodes a 

protein named mitogaligin which targets the mitochondria and is involved in cytochrome 

C release [241].  Mitogaligin expression in human cells is associated with morphological 

changes such as cell shrinkage, cytoplasmic vacuolization, nuclear condensation, and 

ultimately cell death [241].  Thus, it appears that a novel gene transcribed internally 

within the LGALS3 gene, may be involved in cell death.  

Human LGALS10 promoter constructs have been functionally analyzed in an 

attempt to identify DNA elements that regulate gene expression during commitment and 

differentiation of the eosinophil lineage [227].  The -292/-411 region of the LGALS10 

promoter is responsible for restricting expression to the eosinophil lineage. The 

LGALS10 promoter contains two consensus GATA binding sites at -11 (on the sense 

strand) and -207 (on the antisense strand).  A purine-rich element is present at -180/-175 

on the antisense strand and -65/-60 on the sense strand that is identical to the binding site 

of the myeloid- and B-cell-specific ets-related transcriptional activator PU.1, as well as 

sequences described in other myeloid-specific genes [227].  Functionally, the proximal 

promoter region of LGALS10 contains binding sites for transcription factors such as Sp1, 

Oct, GATA and EoTF that, when mutated, reduce activity observed in wild type 

promoter constructs [160, 161].  Indeed, Sp1 and Oct transcription factors bind the 
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LGALS10 promoter. Furthermore, LGALS10, similar to LGALS1, is induced by butyrate 

treatment which requires a functional Sp1 site in the proximal promoter [161].  

Interestingly, the LGALS11 gene promoter contains repetitive DNA segments 

within the coding and non-coding sequence consisting of consensus sequences sites for 

C-myb and δEF1 [162].  These sites may restrict expression of LGALS11 to the lens.  

Similar to LGALS10, the human LGALS12 promoter, contains transcription factor 

binding sites for Sp1, AP2, and a CCAAT/enhancer-binding protein (C/EBP) commonly 

found in adipocytes [204].  These transcription factors may be involved in its restricted 

expression.   

A common theme in understanding galectin gene expression is tight 

transcriptional regulation, resulting in restricted tissue expression.  Functionally, 

galectins present many convoluted interactions, determined by specific cell types and/or 

pathophysiologic environments resulting in a variety of intracellular responses and 

biological functions.  Given this complexity, it is reasonable to imagine that 

transcriptional control of galectin gene expression is not the exclusive task of 

transcription factors available in a cell. 

Epigenetic Control of Gene Expression 

Transient changes in chromatin structure by, mechanisms that alter specific 

nucleotides and/or proteins are important for the control of mammalian gene expression 

in adult cells and tissues.  This effectively adds another layer of control at the level of 

the gene promoter.  Common manipulations affecting gene transcription include DNA 

methylation at cytosine paired guanine (CpG) dinucleotides [242] in addition to 
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methylation and/or acetylation [243] of specific amino acid residues of histone proteins.  

In fact, DNA methylation and histone deacetylation act as synergistic layers of 

transcriptional regulation for the silencing of genes especially in cancer, but dense CpG 

methylation is dominant in conferring stable maintenance of a silent state at these loci 

[244].  In mammalian cells, DNA methylation is associated with long-term 

transcriptional silencing and in heterochromatin formation.  The methylation of DNA is 

considered an epigenetic modification and thus is heritable from one mitotic cycle to the 

next with high fidelity.  

DNA methyltransferases (DNMT) methylate DNA with S-adenosylmethionine 

(SAM) as the methyl group donor (Figure 2.6).  There are two types of DNMT: de novo 

DNMT (DNMT3a and DNMT3b) and maintenance DNMT (DNMT1) [245, 246], 

although DNMT3b may assist in maintaining the methylation profile in adult tissues 

[247, 248].  Methyltransferases bind DNA and methylate cytosine residues at the 5′ 

positions.  Commonly, cytosines located 5′ of guanine residues called cytosine-paired-

guanine or CpG cytosines, are the target for DNA methyltransferases (Figure 2.6).  

These CpG dinucleotide sequences are surprisingly sparse within the genome of 

mammals.   
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The CpG islands (CGI) classify regions of the genome where CpG dinucleotides occur 

more frequently.  Initially, CGI were defined as regions of the genome longer than 200 

bp, containing 50% G+C content, and an observed CpG to expected CpG ration of 0.6  

[249].  The fundamental criteria for determining a CGI became more stringent in order 

to exclude Alu repeats.  Currently, regions of 500 bp in length, a G+C content of 55%, 

and an observed to expected CpG ratio of 0.65 are accepted as basic requirements for a 

CGI [250].  It is widely accepted that repetitive interspersed DNA sequences and 

endogenous retroviruses are targets of DNA methylation [251-254]; therefore, these 

sequences must be screened out of genome-wide analysis of DNA methylation patterns.  

Other than interspersed repetitive DNA sequences, CGI are often found in promoter 

regions and about 40% of genes contain CGI that are situated at the end of the 5′ region 

(promoter, untranslated region, and exon I) [255].  Other regions of the genome have a 

low density of CpG dinucleotides.  With the exception of the inactive X chromosome 

[242], CpG poor regions of chromosomes in healthy cells are usually methylated while 

CGI are generally hypomethylated [28]. 
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Figure 2.6.  Pathways for methylation of cytosine residues in mammalian genome and                               
effects of 5-azacytidine.  A family of three active enzymes, the DNA methyltransferases 
(DNMTs), catalyzes methylation at carbon atom 5 of the cytosine ring, using S-
adenosylmethionine as the donor molecule for the methyl group (CH3).  The drug 5-
azacytidine can block this reaction. When this compound is incorporated into the DNA, 
replacing the natural base cytidine, it acts as a direct and irreversible inhibitor of the 
DNMTs, since it contains a nitrogen in place of carbon at the 5 position of the cytidine 
ring.  Drawn using ScienceSlides Suite 2008 Fall Edition for Mac from VisiScience. 
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During the development of cancer, CGI undergo hypermethylation while the CpG poor 

regions become hypomethylated. This reversal in DNA methylation pattern leads to 

changes in chromatin structure and accessibility, causing silencing of tumor suppressor 

genes [255]. 

The role of CGI methylation in normal development and cell differentiation is 

highly debated.  Accepted dogma states that in normal cells/tissue, CGI associated with 

gene promoters are typically unmethylated.  However, results suggest that in normal 

cells/tissue, genes with tissue specific expression patterns including placental lactogen 

(CSH1), prolactin (PRL) and growth hormone (GH1), exhibit tissue-dependent 

differentially methylated regions (T-DMR) of the promoter that determine their 

restricted expression patterns  [30, 31].  Recently, genome-wide profiling of DNA 

methylation revealed a class of densely methylated CGI promoters in normal somatic 

tissues [256, 257].  Apparently these regions escape methylation in germline cells, and 

DNA methylation is a primary mechanism of tissue-specific gene silencing [256].  These 

T-DMRs correspond to CGI of moderate to low CpG dinucleotide density (< 10% of the 

sequence) and methylation of these regions is associated with restricted gene expression.   
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The effects of DNA methylation on transcription and chromatin structure require 

that nuclear factors distinguish methylated from unmethylated DNA. Indeed, a methyl-

CpG binding protein (MeCP) forms a complex with a variety of unrelated DNA 

sequences when they are methylated at CpG dinucleotides [258] (Figure 2.7).  Strong 

binding of MeCP to DNA sequences in the formation of a multi-unit complex requires a 

threshold density of methylated CpG dinucleotides [258].  Interestingly, vertebrate 

DNAs bind to MeCP, whereas naturally unmethylated genomes or cloned vertebrate 

genomes do not bind [258].  MeCP-1, a methyl-CpG binding protein, binds strongly to 

densely methylated gene promoters to repress transcription [259] (Figure 2.7).  While 

sparsely methylated gene promoters form weaker interactions with MeCP-1, the 

transcriptional repression can be overcome depending on the strength of the promoter 

[260].  Thus, strong evidence correlates promoter methylation with MeCP mediated 

transcriptional repression [261], possibly resulting in chromatin modifications in 

mammalian cells [262].  
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Figure 2.7.  Switching genes off through DNA methylation and histone modification.  In 
its unmodified state, the mammalian gene can readily switch between being expressed or 
not in the presence of activators and the transcriptional machinery (top line).  When not 
associated with basal activators for transcription the gene is off.  Methylation of DNA 
sequences can inhibit binding proteins required for gene transactivation. Promoters with 
a dense population of methylated CpG dinucleotides in their sequence, promptly 
associate with methyl CpG binding proteins (MeCP).  Hemi-methylated DNA molecules 
or DNA molecules containing 5-methylcytosine not paired with guanine are not good 
substrates for MeCP.  The MeCP recruit histone deacetylases (and histone methylases), 
which modify the nearby chromatin.  Thus DNA methylation can mark the DNA for 
subsequent heterochromatin formation, and permanent transcriptional silencing. Drawn 
using ScienceSlides Suite 2008 Fall Edition for Mac from VisiScience.  Adapted from 
[263]. 
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Epigenetic Control of Galectin Expression 

Epigenetic control of galectin gene expression is likewise mediated by promoter 

methylation during cell differentiation or malignant transformation of normal cells.  

Additionally, epigenetic control of galectin gene expression occurs in healthy 

differentiated cells as a means to restrict expression temporally to specific cells and 

tissues in the adult.  

The LGALS1 gene is methylated at every CpG dinucleotide in the proximal 

promoter region encompassing -50/+50 [264].  This region, which includes consensus 

Sp1 transcription factor binding sites, is critical for activation of the promoter [265].  

The methylation status of CpG dinucleotides within the LGALS1 promoter is dependent 

on cell type.  In cells not expressing LGALS1 transcripts, the promoter was fully 

methylated, whereas in cells expressing transcripts, the promoter was unmethylated 

[265].   Certainly, hypomethylation of LGALS1 promoter correlates with  differences in 

expression, and methylation patterns important for establishing the altered expression 

occur in a small region of the promoter which includes a CpG cluster [266].  

Importantly, unlike prolactin and growth hormone where site-specific methylation is 

important [30], the density of the methyl-CpGs rather than site-specific methylation 

distinguishes nonexpressing from expressing alleles [266].   

The expression of LGALS1, which facilitates tumorogenesis by its induction of 

apoptosis specifically in activated T lymphocytes [14] and selectively in T cell leukemia, 

is elevated in differentiating and transformed tumor cell lines [267].  The selective 

apoptotic actions of LGALS1 in T cell leukemia depend on its endogenous expression 
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by these cells.  Importantly T cell leukemia cell lines in which LGALS1 is 

transcriptionally silenced are sensitive to apoptotic actions of secreted LGALS1 whereas 

T cell leukemia cells expressing high levels of LGALS1 transcripts are insensitive to 

LGALS1-induced apoptosis [268].  Silencing of the LGALS1 gene in sensitive T cell 

leukemia cells is associated with hypermethylation of the promoter region.  The 

silencing LGALS1 alleles can be reversed by treatment of T leukemia cells with 

demethylating agensts  such as 5-azacytidine [268].  In pituitary tumors, transcriptional 

activation or repression of LGALS3 is tightly regulated by DNA methylation of the 

promoter region [269].  LGALS1 and LGALS3 are functionally involved in the initiation 

and progression of neoplastic as well as inflammatory disorders, thus drawing attention 

to the importance of galectin research in which individual members of the galectin 

family and/or their ligands will be used as diagnostic and therapeutic targets. 

The pleiotropic functions of galectins are paralleled by the complex regulation of 

their expression.  This exquisite transcriptional control results in their restricted temporal 

and spatial expression.  This is a common theme in galectin biology not lost on the 

newest member of the family, LGALS15.  From a comparative biology perspective, the 

studies herein will describe the temporal and spatial tissue distribution, transcriptional 

regulation, and extracellular role of LGALS15 in domestic ruminants.  We hypothesize 

that LGALS15 nucleotide and amino acid sequence in addition to endometrial expression 

patterns is highly conserved across domestic ruminants and LGALS15 protein supports 

conceptus attachment and outgrowth during the peri-implantation period.  Furthermore, 

the transcriptional activation of the LGALS15 5′ promoter is dependent on the indirect 
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actions of liganded PGR and IFNT.  Therefore, the objectives of these studies were to: 

(1) determine if LGALS15 is expressed in uteri of other domestic ruminants (goat and 

cattle) and non-ruminants (pigs); (2) investigate the attachment function of LGALS15 

using ovine trophectoderm cells; (3) characterize the LGALS15 gene coding and non-

gene coding genomic DNA; and (4) determine how progesterone and IFNT regulate 

LGALS15 gene transcription at the level of the promoter. 
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CHAPTER III 

GALECTIN 15 (LGALS15): A GENE UNIQUELY EXPRESSED IN UTERI OF 

SHEEP AND GOATS THAT FUNCTIONS IN TROPHOBLAST ATTACHMENT 

Introduction 

Maternal support of conceptus (embryo/fetus and associated membranes) growth 

and development is critical for pregnancy recognition signaling and implantation in 

domestic animals [1, 270-272].  In ruminants, morula-stage embryos enter the uterus on 

Days 4 to 6 and then form a blastocyst that contains a blastocoele or central cavity 

surrounded by a monolayer of trophectoderm [273, 274].  After hatching from the zona 

pellucida, blastocysts develop into a tubular form and then elongate to 10 cm or more in 

length beginning on Day 12 in sheep and Day 15 in goats and cattle.  Peri-implantation 

blastocyst growth and elongation is crucial for pregnancy recognition signaling, which 

involves production of interferon tau (IFNT) from mononuclear trophectoderm cells of 

the elongating blastocyst that inhibits luteolysis [275, 276].  Hatched blastocysts of 

ruminants will only elongate when transferred to uteri in domestic ruminants [277].  

Thus, factors supporting and regulating growth of peri-implantation blastocysts and 

elongating conceptuses are thought to be derived primarily from secretions of the uterus 

or histotroph.  This hypothesis is supported by studies of asynchronous uterine transfer 

of embryos and trophoblast vesicles [278, 279], progesterone regulation of blastocyst 

elongation [280-282], and the phenotype of uterine gland knockout (UGKO) ewes [283, 

284].   
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UGKO ewes display recurrent early pregnancy loss due to inadequate histotroph 

from the endometrial luminal (LE) and absence of histotroph from glandular (GE) 

epithelia that is required for peri-implantation blastocyst survival and elongation [283, 

284].  In order to better understand the peri-implantation pregnancy defect in UGKO 

ewes, a gene expression profiling project was conducted using an endometrial cDNA 

library from Day 14 pregnant ewes [285, 286].  Interestingly, approximately 1.4% of the 

expressed sequence tags (ESTs) sequenced from that cDNA library were highly similar 

to OVGAL11, a novel member of the galectin family of secreted animal lectins [287].  

The sequence of OVGAL11 protein displayed highest similarity to human LGALS10 

(also known as Charcot-Leyden Crystal protein) [288, 289] and human LGALS13 (also 

known as placental tissue protein 13 or PP13) [290].  Since OVGAL11 did not have a 

known orthologue, it was proposed to be a new family member and renamed galectin 15 

(LGALS15).  Galectins are proteins with a conserved carbohydrate recognition domain 

(CRD) that bind beta-galactosides, thereby cross-linking glycoproteins as well as 

glycolipid receptors on the surface of cells and initiating biologic responses [291-293] 

that include adhesion, chemoattraction, migration, growth, differentiation and apoptosis 

[294, 295].    

 Ovine endometrial LGALS15 contains a predicted CRD as well as C-terminal 

LDV and RGD recognition sequences that allow proteins to interact with integrins and 

other components of the extracellular matrix [296].  The temporal and spatial alterations 

in LGALS15 mRNA and protein in the uterine endometrial LE and sGE and lumen 

during the peri-implantation period of early pregnancy in sheep, combined with known 
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biological activities of other galectins, make LGALS15 a strong candidate mediator of 

conceptus-endometrial interactions during implantation [286, 297].  One proposed 

extracellular role for LGALS15 in the uterine lumen is to function as a heterotypic 

adhesion molecule bridging the conceptus trophectoderm and endometrial LE and 

stimulating biological responses within the trophoblast, such as attachment and 

migration, that are critical for successful blastocyst elongation [36, 274].  Indeed, 

advanced growth and elongation of blastocysts in sheep uteri can be elicited by early 

progesterone treatment that also results in early expression of LGALS15 in endometrial 

LE and sGE [280].   

Although blastocyst elongation occurs in most domestic animals (sheep, goats, 

cattle and pigs), LGALS15 has only been investigated in sheep.  Therefore, the 

objectives of this study were to: (1) determine if LGALS15 is expressed in uteri of other 

domestic ruminants (goat and cattle) as well as pigs; and (2) investigate the attachment 

function of LGALS15 using ovine trophectoderm cells.  Results indicate that the 

LGALS15 gene is present in sheep, goats and cattle, but is uniquely expressed only in 

endometria of sheep and goats during the peri-implantation period of pregnancy.  Both 

sheep and goat LGALS15 support in vitro attachment of ovine trophectoderm cells, 

thereby supporting a role for LGALS15 in peri-implantation blastocyst elongation in 

Caprinae, a subfamily of the family Bovidae.           
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Materials and Methods 

Animals and Experimental Design 

All experimental and surgical procedures involving animals complied with 

Guidelines for the Care and Use of Agricultural Animals in Agricultural Teaching and 

Research and were approved by the Institutional Animal Care and Use Committees of 

Texas A&M and Prairie View A&M Universities.   

Uterine tissues from sheep, goats, cattle and pigs were obtained during the 

estrous cycle and/or pregnancy and processed for analysis by in situ hybridization and 

immunohistochemistry.  Uteri from Spanish crossbred female goats or does (Capra 

hircus) were obtained (Day 0=estrus/mating) on Days 5, 11, 13, 15, 17 and 19 of the 

estrous cycle and pregnancy (n=5/day/status) and Day 25 of pregnancy (n=5).  Uteri 

from Angus crossbred cattle (Bos Taurus) were obtained at estrus (n=2) and on Days 16, 

16.5, 17, 17.5, 18 and 19 of the estrous cycle and pregnancy (n=3/day/status) and Days 

22 (n=2) and 23 (n=3) of pregnancy.  Uteri from Large White crossbred gilts (Sus 

scrofa) were obtained on Days 5, 9, 12 and 15 of the estrous cycle and Days 9, 10, 12, 

13, 14, 15 and 20 of pregnancy (n=3/day/status).  Uteri from Suffolk crossbred ewes 

(Ovis aries) were obtained from Days 16 and 18 of pregnancy (n=4/day) as a positive 

control.  Uteri were fixed in fresh 4% paraformaldehyde in PBS (pH 7.2) and embedded 

in Paraplast-Plus (Oxford Labware, St. Louis, MO) for histology.  Samples of 

endometria were also frozen in liquid nitrogen and stored at -80ºC for RNA extraction.    
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Slot Blot Hybridization Analysis 

Steady-state levels of LGALS15 mRNA in goat endometria were assessed by slot 

blot hybridization using methods described previously [298].  Radiolabeled antisense 

LGALS15 cRNA probes were generated by in vitro transcription with [α-32P]-UTP using 

linearized full-length Ovis aries LGALS15 cDNA as the template [286] and RNA 

polymerase.  Denatured total endometrial RNA (20 µg) from each goat was hybridized 

with radiolabeled antisense LGALS15 cRNA.  To correct for variation in total RNA 

loading, a duplicate RNA slot membrane was hybridized with radiolabeled antisense 18S 

cRNA (pT718S; Ambion, Austin, TX).  Following washing, the blots were digested with 

ribonuclease A and radioactivity associated with slots quantified using a Typhoon 8600 

MultiImager (Molecular Dynamics, Piscataway, NJ). 

  In situ Hybridization Analysis 

Location of LGALS15 mRNAs in uterine tissues was determined by radioactive 

in situ hybridization analysis as described previously [298].  Radiolabeled antisense and 

sense cRNA probes were generated by in vitro transcription using linearized full-length 

Ovis aries LGALS15 cDNA [286], RNA polymerases, and [α-35S]-UTP.  Deparaffinized, 

rehydrated, and deproteinated uterine tissue sections were hybridized with radiolabeled 

antisense or sense cRNA probes.  After hybridization, washing and ribonuclease A 

digestion, slides were dipped in Kodak NTB-2 liquid photographic emulsion, and 

exposed at 4oC for 3 days.  Slides were developed in Kodak D-19 developer, 

counterstained with Gill’s hematoxylin (Fisher Scientific, Fairlawn, NJ), and then 

dehydrated through a graded series of alcohol to xylene.  Coverslips were then affixed 
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with Permount (Fisher).  Images of representative fields were recorded under brightfield 

or darkfield illumination using an Eclipse 1000 photomicroscope (Nikon Instruments 

Inc., Lewisville, TX) fitted with a Nikon DXM1200 digital camera. 

RT-PCR Analysis  

Expression of LGALS15 mRNA in endometrial samples was determined by RT-

PCR as described previously [299].  Total cellular RNA was isolated from endometria of 

cyclic and pregnant sheep, goats, cattle, and pigs using Trizol (Gibco-BRL, Bethesda, 

MD) according to manufacturer’s recommendations.  The quantity of RNA was assessed 

spectrophotometrically, and the integrity of RNA was examined by gel electrophoresis 

in a denaturing 1% agarose gel.  Briefly, cDNA was synthesized from total endometrial 

RNA (5 µg) using random and oligo-dT primers and SuperScript II Reverse 

Transcriptase (Life Technologies, Gaithersburg, MD).  Newly synthesized cDNA was 

acid-ethanol precipitated, resuspended in 20 µl sterile water, and stored at -20ºC.  The 

cDNAs were diluted (1:10) with sterile water prior to use in PCR reactions.  The PCR 

reactions were performed using Ex Taq DNA polymerase (2.5 U) and 10X Ex Taq 

buffer (Takara Bio, Carlsbad, CA) according to manufacturers’ recommendations.   

 The forward (5’-ACA CAG TTT CAA CAG GGA AG-3’) and reverse (5’-CCG 

CCC CTT ATA ACG TA-3’) primers amplified a cDNA of 443 bp that contained the 

entire coding sequence of the ovine LGALS15 mRNA.  PCR amplifications were 

conducted as follows: 34 cycles of 95ºC for 30 sec, 47ºC for 1 min, and 72ºC for 1 min.  

As a positive control, ACTB (beta actin) primers (forward: 5’-ATG AAG ATC CTC 

ACG GAA CG-3’; reverse: 5’-GAA GGT GGT CTC GTG AAT GC-3’) were used to 
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amplify a cDNA of 270 bp.  PCR products were separated on a 1.5% agarose gel, 

visualized by ethidium bromide staining, cloned into pCR2 (Invitrogen), and sequenced 

in both directions.  A minimum of five clones from five individual sheep and goats were 

sequenced, and representative clones were deposited in GenBank (Accession Numbers 

EU009323, EU009324, EU009325, and EU009326). 

Multiple alignments of translated protein sequences were carried out using 

MUSCLE v.3.6 [300, 301] with the –maxiters flag set to 4.  Phylogenetic trees were 

constructed by generating tree files from the MUSCLE alignments using ClustalW [302] 

and plotted using TreeView X [303].   

Production of Recombinant LGALS15 Proteins  

The entire coding sequence for ovine and caprine endometrial LGALS15 mRNAs 

with either the LDVRGD or LVVRGD sequence polymorphism at the C-terminus was 

used to produce recombinant ovine and caprine LGALS15 in bacteria.  PCR reactions 

(50 µl) were conducted in Optimized Buffer F (Invitrogen, Carlsbad, CA) and contained 

10 ng of the appropriate ovine or caprine LGALS15 cDNA, 0.5 mg/ml forward primer 

(5'- AGA TGA AGC CAT GGA CTC CTT GCC GAA CCC CTA CC-3'), 0.5 mg/ml 

reverse primer (5'- AGA GTA AGC TTT GAT AAC GTA TCC ACT GAA GTC AGC-

3'), and 1 U ExTaq polymerase (Takara Bio USA) using an Eppendorf Mastercycler 

thermocycler with conditions of: 1) 95°C for 2 min; 2) 95°C for 30 sec, 54°C for 1 min, 

and 72°C for 1 min for 35 cycles; and 3) 72°C for 7 min.  The amplified LGALS15 

cDNA was restricted with NcoI and HindIII enzymes and then directionally subcloned 

into the pET-28b (+) vector (Novagen, Madison, WI).  This cloning strategy mutated the 
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stop codon of LGALS15 and placed a His•Tag sequence at the C-terminus.  The 

resulting plasmid was sequenced in both directions to ensure that no mutations were 

present in the LGALS15 sequence. 

Recombinant LGALS15 protein was produced in BL21 Star (DE3) One Shot E. 

coli (Invitrogen) according to the manufacturer’s suggestions.  Expression of the 

LGALS15 fusion protein was induced with 5 mM isopropyl-beta-D-

thiogalactopyranoside (IPTG, Sigma, St. Louis, MO).   Bacteria were lysed with 

Bugbuster (Invitrogen) supplemented with recombinant lysozyme and benzonase.  

Recombinant LGALS15 protein was isolated by affinity chromatography using a Ni-

NTA His•Bind Resin purification kit (Invitrogen).  Elutions from the column were 

analyzed by 1D-SDS-PAGE followed by silver staining and Western blot analysis with 

rabbit anti-ovine LGALS15 IgG.  Recombinant protein was dialyzed overnight in PBS 

(pH 7.2) at 4°C and then concentrated in a spin column with a 3,500 molecular weight 

cut-off (Vivaspin, Stonehouse, UK).  Protein concentrations were determined using a 

RC/DC Protein Assay (Bio-Rad Laboratories, Hercules, CA) with bovine serum albumin 

(BSA) as the standard.  

Production of Rabbit Antibodies to Ovine LGALS15 

Purified recombinant ovine LGALS15 was provided to a commercial service for  

immunization of rabbits.  Serum from high titer rabbits was collected by terminal bleed 

and anti-ovine LGALS15 IgG was purified from antiserum using an ImmunoPure (A/G) 

IgG Purification kit (PIERCE, Rockford, IL).  The antibody recognized a 15 kDa protein 
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of the appropriate size in Western blot analysis of ovine uterine flush proteins and 

recombinant ovine and caprine LGALS15 protein produced in bacteria. 

Immunohistochemistry 

Immunocytochemical localization of LGALS15 protein in the uterus was 

performed using methods described previously [286].  Immunoreactive LGALS15 

protein was detected using purified rabbit anti-ovine LGALS15 IgG at a final dilution of 

1:5000 and a Vectastain ABC anti-rabbit kit.  Antigen retrieval was performed using 

boiling citrate buffer as described previously [304].  Negative controls included 

substitution of the primary antibody with non-immune rabbit IgG. Immunoreactive 

protein was visualized using diaminobenzidine tetrahydrochloride (Sigma) as the 

chromagen.  Sections were dehydrated and a coverslips affixed with Permount. 

Photomicroscopy 

 Photomicrographs of in situ hybridization and immunohistochemistry slides were 

taken using a Nikon Eclipse E1000 photomicroscope (Nikon Instruments, Melville, NY).  

Digital images were captured using a Nikon DXM 1200 digital camera and assembled 

using Adobe Photoshop 7.0 (Adobe Systems, Seattle, WA).   

Trophectoderm Attachment Assays 

Attachment assays were adapted from Liaw and coworkers [305] and Ochieng 

and coworkers [306].  Greiner Multiwell Tissue Culture Plates (24-well) for suspension 

cultures (PGC Scientific Co, Monroe, NC) were coated with either BSA Fraction V 

(Pierce, Rockford, IL) as a negative control, bovine fibronectin (bFN) from bovine 

plasma (Sigma, St. Louis, MO) as a positive control, and recombinant ovine or caprine 
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LGALS15 proteins at the indicated amounts in triplicate and allowed to dry overnight in 

a sterile hood at room temperature.  Wells were then blocked with 1 ml per well of BSA 

(10 mg/ml) in PBS for 1 h and then rinsed three times with 1 ml per well serum and 

insulin-free medium.  Derivation and culture of mononuclear ovine trophectoderm 

(oTr1) cells have been described previously [307].  The oTr1 cells were seeded into each 

well, and plates were incubated for 1.5 h.  Wells were washed three times with 1 ml per 

well of serum free and insulin free medium to remove non-attached cells.  Cell numbers 

were then determined using a Janus Green assay [308] as described previously for oTr1 

cells [307].   

Statistical Analyses 

All quantitative data were subjected to least-squares ANOVA using the General 

Linear Models (GLM) procedures of the Statistical Analysis System (SAS Institute, 

Cary, NC).  Slot blot hybridization data were corrected for differences in sample loading 

using the 18S rRNA data as a covariate.  Slot blot data were analyzed for effects of day, 

pregnancy status (cyclic or pregnant), and their interaction.  Next, least squares 

regression ANOVA was conducted within pregnancy status.  Tests of significance were 

performed using the appropriate error terms according to the expectation of the mean 

squares for error.  A P-value of 0.05 or less was considered significant.  Data are 

presented as least-square means (LSM) with standard errors (SE).  
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Results 

LGALS15 Is Present in Ruminants, but Only Expressed in Uteri of Sheep and Goats 

 The coding sequence of ovine LGALS15 mRNA (GenBank AF252548) and the 

inferred LGALS15 protein sequence (GenBank AAF64320) were used to interrogate 

available databases.   Multiple BLAST searches found evidence for LGALS15 mRNA 

only in sheep and a LGALS15-related sequence in bovine (GenBank XM_593263) with 

86% and 77% identity to ovine LGALS15 mRNA and protein, respectively.  In sheep, 

ESTs for LGALS15 were found in several different tissues including endometrium, gall 

bladder, small intestine, Peyer’s patches, skin, spleen/brain, dendritic cells, and 

mammary gland.  Interestingly, LGALS15 ESTs were highly represented in an 

endometrial cDNA library from Day 14 pregnant ewes (1.8%), as well as in  gall bladder 

(1.1%), and small intestine (1.1%).  In cattle, only 5 ESTs for the Bos taurus mRNA 

similar to ovine LGALS15 were found out of 1.3 million bovine ESTs.  Of these five 

sequences, two were full length, forward and reverse from one clone from a male 

Holstein (BARC 9 library).  This full-length sequence aligned to a region of bovine 

chromosome 18 and spanned four predicted exons.  The other three sequences were from 

the placenta, but two of those sequences appeared to be chimeric 

ribonucleoprotein/LGALS15, suggesting that they were most likely cloning artifacts.  

The remaining placental sequence spanned three of the four predicted exons for 

LGALS15. 

Primers were developed to amplify the entire coding sequence of LGALS15 and 

used for RT-PCR analyses of total RNA isolated from endometria of cyclic and pregnant 
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sheep, goats, cattle, and pigs.  PCR products were generated from endometria from 

sheep and goats, but not cattle or pigs.  Sheep and goat LGALS15 were highly 

homologous at the mRNA (95%) and protein (91%) levels (Figure 3.1).  Similarly, the 

bovine LGALS15-like sequence shared 86% and 77% identity to the ovine LGALS15 

mRNA and protein, respectively.   

A search of the amino acid sequence of the LGALS15 proteins revealed the 

presence of a CRD characteristic of galectins [309].  The CRD is a consensus motif 

consisting of 13 amino acids [310] of which eight (H.N.R.V.N.W.E.R) play a critical 

role in binding sugars [311, 312].  As illustrated in Figure 3.1, comparison of the 

putative CRDs of ovine and caprine LGALS15 with the conserved CRD of other 

galectins indicated that four residues are identical (V62, N64, W71, E74) and three are 

conservatively substituted (R54, W56, K76).  Similarly, comparison of the predicted 

CRD of bovine LGALS15 with the conserved CRD of other galectins found that five 

residues were identical (V63, N65, W72, E75, R77) and two were conservatively 

substituted (H54, R56).  However, ovine and caprine LGALS15 substituted a P52 and 

the bovine LGALS15 an A52 for the first H residue of the consensus CRD.  The C57 in 

ovine and caprine LGALS15 is different from prototypical galectins, but appears to 

allow for binding of mannose in LGALS10 [313].  However, a C residue at position 58 

was not found in bovine LGALS15.    
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Fig. 3.1.  MUSCLE alignments of the amino acid sequences of LGALS15 from ovine 
and caprine endometria compared to predicted bovine protein.  The arrows (▼) denote 
the conserved residues forming the carbohydrate recognition domain (CRD) in 
prototypical galectin family members.  The circle (●) denotes a conserved C residue 
critical for mannose binding in LGALS10.  The underlined residues denote the 
conserved LDV and RGD recognition sequences for integrin binding near the C-
terminus in ovine and caprine LGALS15 and closely related LKV and KGD sequences 
in the predicted bovine LGALS15.   
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Consistent with other galectins, none of the LGALS15 had apparent or predicted 

signal peptide, transmembrane domain, or glycosylation sites.  A PROSITE search 

revealed two putative cell attachment sequences at positions 123 (LDV) and 126 (RGD) 

in ovine and caprine LGALS15 that are recognition sequences for integrin binding [296].  

The putative CRD and LDVRGD recognition sequences were conserved in all cDNAs 

amplified from sheep and goat endometria (GenBank Accession Numbers EU009324 

and EU009325).  However, approximately 50% of the sheep and goat LGALS15 from 

each individual contained an LVV polymorphism next to the RGD sequence in the C-

terminus (GenBank Accession Numbers EU009323 and EU009326).  As shown in 

Figure 3.1, the bovine LGALS15-like protein contained LKVKGD sequences at position 

124 instead of the LDVRGD or LVVRGD sequence found in ovine and caprine 

LGALS15.  The KGD recognition sequence binds integrins similar to the RGD sequence 

[296].  
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All galectin protein sequences present in Uniprot [314] were downloaded and 

aligned with the translated ovine, caprine and bovine LGALS15 sequences (data not 

shown).  It was clear from this alignment and the resulting phylogeny that LGALS15, 

CLC/LGALS10, and CLC2/LGALS14 were most closely related and most similar to 

LGALS4.  This relationship is illustrated in Figure 3.2, where only the LGALS4 node 

from the comprehensive tree is displayed.  Based on this result, the LGALS15 genes are 

likely specific to the subfamily Caprinae of the family Bovinae.  Further, the LGALS15 

genes and the primate CLC/LGALS10, CLC2/LGALS14 and LGALS13 genes arose from 

an ancestral duplication of LGALS4.  Specifically, the predicted protein sequence from 

the Bos taurus LGALS15-like mRNA shares significant similarity to LGALS10, 

LGALS13, and LGALS14 from several species with no gaps and to ovine LGALS15 

with one gap. 

LGALS15 mRNA and Protein Are Present in Endometria of Sheep and Goats, but Not 

Cattle or Pigs 

Steady-state levels of LGALS15 mRNAs in endometria from cyclic (C) and 

pregnant (P) 
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Fig. 3.2.  Phylogenetic tree of relationships of LGALS15.  The tree indicates 
relationships of LGALS15 to the other most closely related galectin superfamily 
members based on the Neighbor Joining method using the tree generated from the 
MUSCLE alignment.  The branch lengths are proportional to an estimate of evolutionary 
change.  The scale bar at the bottom denotes relative estimate of evolutionary distance. 
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goats were determined by slot blot hybridization analyses (Figure 3.3) and found to be 

affected (P<0.01) by day, status, and their interaction.  In cyclic goats, endometrial 

LGALS15 mRNA was low to undetectable before Day 13, increased (cubic effect of day, 

P<0.01) about 88-fold from Days 13 to 17, and then declined to Day 19.  In pregnant 

goats, LGALS15 mRNA levels were also low to undetectable before Day 13, increased 

between Days 13 and 17, and declined between Days 19 and 25 (cubic effect of day, 

P<0.01).  Between Days 13 and 17, endometrial LGALS15 mRNA levels increased about 

88-fold in cyclic goats, compared to a 292-fold increase in pregnant goats (day x status, 

P<0.0001).   Thus, endometrial LGALS15 mRNA levels were not different between 

cyclic and pregnant goats between Days 11 to 15, but increased in pregnant compared to 

cyclic goats between Days 15 and 19, which correlates with the onset of definitive 

attachment of the trophectoderm to the endometrial LE in goats [315] and maximal 

production of IFNT by the caprine trophectoderm [316] and maximal production of 

IFNT by the caprine trophectoderm [316, 317].   
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Fig. 3.3.  Steady-state levels of LGALS15 mRNA in endometria from cyclic and early 
pregnant goats.  Steady-state levels of LGALS15 mRNA were determined by slot blot 
hybridization analysis. In cyclic goats, LGALS15 mRNA was low to undetectable from 
Days 5 to 11, increased about 88-fold from Days 11 to 17, and decreased to Day 19 
(cubic effect of day, P < 0.01). In pregnant goats, LGALS15 mRNA was low to 
undetectable from Days 5 and 11, increased about 292-fold between Days 13 and 17, 
and declined somewhat to Day 25 (cubic effect of day, P < 0.01). The abundance of 
endometrial LGALS15 mRNA was higher in pregnant than cyclic goats on Days 17 and 
19 (day x status, P < 0.0001). Data are expressed as LSM relative units with SEM. 
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In situ hybridization analyses found abundant LGALS15 mRNA in endometrial 

LE and sGE of cyclic and pregnant uteri from goats and sheep (Figure 3.4).  In contrast, 

no hybridization signal for LGALS15 mRNA was detected in uteri of cyclic or pregnant 

cattle and pigs.  In goats, LGALS15 mRNA was first observed at low levels in LE, sGE 

and upper glands of endometria on Day 13 of both the estrous cycle and pregnancy.  In 

cyclic goats, LGALS15 mRNA was most abundant on Day 17 and then declined 

substantially to Day 19, whereas LGALS15 mRNA in pregnant goats increased from 

Days 15 to 17 and remained abundant thereafter.  LGALS15 mRNA was not detected in 

conceptus trophectoderm.  Thus, the presence of a conceptus increases LGALS15 mRNA 

levels in caprine endometrium.   

 Overall changes in immunoreactive LGALS15 protein abundance in endometrial 

LE and sGE of goats paralleled changes in LGALS15 mRNA in cyclic and pregnant 

goats (Figure 3.5).  In both cyclic and pregnant goats, LGALS15 protein was localized 

primarily in the cytoplasm of endometrial LE and sGE.  Consistent with an increase in 

LGALS15 mRNA, the abundance of LGALS15 protein increased in LE and sGE after 

Day 13 and was readily apparent near and on the apical surface of endometrial LE by  
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Fig. 3.4.  In situ localization of LGALS15 mRNA in the endometria of cyclic and 
pregnant goats.  Cross-sections of the uterine wall from cyclic (C) and pregnant (P) goats 
were hybridized with radiolabeled antisense or sense ovine LGALS15 cRNA probes. 
LGALS15 mRNA was detected only in endometrial LE and sGE of goats and sheep, but 
was not detected in either cattle or pigs. All representative photomicrographs are shown 
in bright field (left) and dark field (right) illumination at the same width of field (420 
µm).  LE, luminal epithelium; GE, glandular epithelium; S, stroma.  Numbers in panels 
indicate days. 
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Fig. 3.5.  Immunolocalization of LGALS15 protein in endometria of cyclic                                           
and pregnant goats.  Note the presence of immunoreactive LGALS15 protein in 
endometrial epithelia and conceptus trophectoderm in pregnant goats and sheep, but not 
cattle or pigs. For the IgG control, normal rabbit IgG was substituted for the primary 
antibody. Representative photomicrographs are shown at the same width of field (420 
µm) with the exception of the higher magnifications of the caprine endometrium (right 
bottom) at width of field of 630 µm. Sections were not counterstained.  S, stroma; Tr, 
trophectoderm.  Numbers in panels indicate days. 
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Day 17 of the estrous cycle and pregnancy.  Although LGALS15 mRNA was not present 

in the conceptus, LGALS15 protein was detected in crystal structures within conceptus 

trophectoderm (Tr) as well as endometrial LE and sGE.  Consistent with the lack of 

detectable LGALS15 mRNA, no immunoreactive LGALS15 protein was detectable in 

bovine or porcine uteri. 

LGALS15 Promotes Attachment of Ovine Trophectoderm (oTr1) Cells 

Ovine trophectoderm (oTr1) cells isolated from Day 15 conceptuses were 

predominantly mononuclear and expressed IFNT according to results from RT-PCR 

(data not shown).  A dose-dependent increase (P<0.01) in oTr1 cell attachment was 

induced in wells coated with increasing amounts of LGALS15 and bovine FN, but not 

BSA (Figure 3.6).  An increase in oTr1 cell attachment also occurred in response to 

bovine FN as well as in response to all forms of ovine and caprine LGALS15, and 

LGALS15, and bovine FN induced similar increases in oTr1 cell attachment.       
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Fig. 3.6.  Attachment function assays of ovine and caprine LGALS15.  oTr1 cells were 
used in attachment function assays. Wells of suspension culture plates were coated with 
increasing amounts (0.1, 1, or 10 µg) of recombinant ovine and caprine LGALS15 or 
purified bovine fibronectin, but not BSA. Freshly prepared oTr1 (labeled oTr) cells were 
seeded into each well and allowed to attach for 1.5 h. Unattached cells were washed off, 
and cell number in each well determined. Data are expressed as percentage of attached 
oTr1 cells relative to BSA. The entire experiment was independently repeated at least 
three times with similar results. 
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Discussion 

Results of bioinformatic and RT-PCR analyses indicate that LGALS15 is a 

unique member of the galectin family present in the genome of sheep and goats 

(Subfamily Caprinae) and cattle (Subfamily Bovinae), but not in pigs (Suborder Suina), 

which are Artiodactyls.  Outside of the Artiodactyls, LGALS15 was not detected in 

human, nonhuman primate, mouse, chicken, dog or any other species with a sequenced 

genome.  These results suggest that LGALS15 is a unique gene in sheep, goats and cattle.  

Given the lack of expression of LGALS15 in the bovine uterus and very rare abundance 

in other tissues based on EST analysis, the bovine LGALS15 gene may be a pseudogene, 

which can be defined as a defunct relative of known genes that are no longer expressed 

in cells [318].  Phylogenetic analyses of available galectins from a number of species 

(human, mouse, rat, dog, and cow) suggest that LGALS15 is likely a paralog derived 

from another closely related galectin family member such as LGALS10/CLC, LGALS11, 

LGALS13 or LGALS14/CLC2.  Paralogs are genes related by duplication within a 

genome that evolve new functions, even if they are related to the original gene.  Indeed, 

the LDV and RGD recognition sequences in LGALS15 of sheep and goats are 

conservatively substituted in cattle, but not present in the C-terminus of any other 

galectin.  Interestingly, LGALS13, originally known as placental tissue protein 13 

(PP13), was originally cloned from human placenta [319] and is a homologue of human 

eosinophil Charcot-Leyden Crystal (CLC) protein that is known as LGALS10.  

Moreover, ovine, caprine and bovine LGALS15 display highest similarity to human 

CLC [288, 289] and LGALS13 [290].  Thus, LGALS15 most likely evolved as a paralog 
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of LGALS13 or LGALS10/CLC in sheep, goats, and cattle.  Functional studies of other 

galectins have implicated these proteins in cell adhesion, chemoattraction and migration, 

as well as cell growth, differentiation and apoptosis [291, 294, 320].  All of these 

biological activities are proposed to be important for ruminant blastocyst growth and 

elongation during the peri-implantation period of pregnancy [273, 274, 321].      

The temporal changes in expression of endometrial LGALS15 mRNA support the 

hypothesis that ovarian progesterone and conceptus IFNT regulate transcription of the 

LGALS15 gene in endometrial epithelia of goat uteri as found in sheep [285, 286].  IFNT 

is the pregnancy recognition hormone in ruminants that acts on the endometrium to 

prevent development of the luteolytic mechanism, thereby maintaining the corpus 

luteum for production of progesterone [322].  The enhanced levels of LGALS15 mRNA 

in endometria of pregnant goats on Days 15 to 19 of pregnancy as compared to cyclic 

goats parallels the increase in production of IFNT by the conceptus, which is produced 

from Days 16 to 21 and is maximal between Days 16 and 18 in goats (Gnatek 1989; 

Guillomot 1998).  Intrauterine administration of IFNT increases LGALS15 mRNA, but 

only in progesterone-treated ewes [286].  Indeed, several genes have been identified to 

be progesterone-induced and IFNT-stimulated specifically in ovine endometrial LE/sGE, 

including cathepsin L (CTSL) and cystatin C (CST3) [176, 177].  Thus, progesterone 

and IFNT act in concert to stimulate expression of a number of genes apparently 

important for conceptus survival, growth and implantation [36, 274, 285, 323].     

Prototypical members of the galectin superfamily (LGALS1, LGALS2, 

LGALS5, LGALS7, LGALS10, LGALS11, LGALS13, LGALS14) have one conserved 
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CRD.  Interestingly, results of phylogenetic analyses suggest that LGALS10, LGALS13, 

and LGALS15 were derived from LGALS4, which is a tandem repeat galectin with two 

CRDs [324].  Although the CRD of LGALS15 differs slightly from that in the 

prototypical galectins, it does possess the “jellyroll” structural fold similar to that found 

in LGALS10 and LGALS13 [325].  Galectins bind beta-galactosides via the CRD, but 

the carbohydrate binding specificity for each galectin appears to be different [326].  In 

addition to the CRD, sheep and goat LGALS15 also contains predicted cell attachment 

sequences (LDV and RGD) that could mediate binding to integrins in extracellular 

matrix proteins [296].  Galectins can also bind and activate integrins via their CRD 

[294].  In the present study, all forms of recombinant ovine and caprine LGALS15 

increased attachment of mononuclear ovine trophectoderm cells to a similar extent as 

bovine FN.  Although the LDV sequence next to the RGD sequence is an integrin 

binding site [296], there were no detectable differences in cell attachment function 

among the different polymorphic variants of ovine or caprine LGALS15 that contained 

the LVVRGD sequence instead of the LDVRGD sequence in the C-terminus.  The 

temporal and spatial alterations in LGALS15 mRNA and protein in the ovine uterus 

[286] and caprine uterus during pregnancy, combined with the in vitro attachment of 

ovine trophectoderm cells to recombinant ovine and caprine LGALS15, support the 

hypothesis that LGALS15 functions as a heterotypic cell adhesion molecule bridging 

endometrial LE and conceptus trophectoderm, which is required for blastocyst growth, 

elongation and attachment phase of implantation.   
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Both the RGD recognition sequence and perhaps the CRD of LGALS15 may be 

involved in cell attachment and adhesion via integrin binding and activation.  Indeed, 

integrins are proposed to be the dominant glycoproteins that regulate trophectoderm 

adhesion to endometrial LE during implantation [327, 328].  During the peri-

implantation period of pregnancy in sheep, integrin subunits αv, α4, α5, β1, β3 and β5 

are constitutively expressed on conceptus trophectoderm and apical surface of 

endometrial LE [329].  In goats, integrin subunits αv, α4, α5, β1, and β3 are expressed 

on conceptus trophectoderm and endometrial LE on Days 21 and 23 of pregnancy [330].  

Thus, conceptus implantation in sheep and goats does not appear to involve changes in 

temporal or spatial patterns of integrin expression [329, 330], but appears to depend 

primarily on changes in expression of integrin ligands, such as LGALS15 and secreted 

phosphoprotein one (SPP1/osteopontin) [45, 274, 331].  Other galectins bind integrins, 

fibronectin, and laminin, because these extracellular matrix proteins are modified with 

beta-galactoside sugars [291, 292].  Indeed, FN and vitronectin (VN) are also expressed 

on conceptus trophectoderm and endometrial LE on Days 21 and 23 of pregnancy in 

goats [330].  In the goat, close contact between the conceptus trophectoderm and 

endometrial LE occurs between Days 17 and 18, with firm adhesion developing between 

Days 19 and 23 [315, 332].  This time period coincides with rapid elongation of the goat 

blastocyst to form a filamentous conceptus [332].  Blastocyst elongation has not been 

achieved in vitro, suggesting that a factor(s) present in the uterine lumen, perhaps a 

secreted protein like LGALS15 or SPP1, is required for blastocyst development into a 

filamentous conceptus.  The idea that factors in uterine histotroph are required to 
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promote blastocyst growth and elongation in ruminants is supported by studies of 

asynchronous uterine transfer of embryos and trophoblast vesicles [278, 279], 

progesterone regulation of blastocyst elongation [280-282], and failure of conceptus 

development in UGKO ewes [283, 284].  In fact, blastocyst elongation has been 

hypothesized to require transient attachment, detachment and reattachment as the 

trophectoderm elongates from each side of the centrally located embryonic disc [273].  

Thus, available evidence suggests that LGALS15 secreted by endometrial LE functions 

to promote blastocyst growth and elongation in sheep and goats by moderating adhesion 

of trophectoderm to endometrial LE via integrin binding.     

 As observed in sheep [286, 297], LGALS15 is detectable on the surface of the 

trophectoderm and within intracellular crystal structures of trophectoderm and the 

endometrial LE of the goat.  LGALS10 was initially known as Charcot-Leyden crystal 

(CLC) protein because it formed distinctive hexagonal bipyramidal crystals in 

eosinophils that accounted for nearly 10% of the total cellular protein [288, 333].  

Further, LGALS15 was immunologically identical to the novel 14K progesterone-

modulated protein from the sheep uterus associated with crystalline inclusion bodies in 

endometrial LE and conceptus trophectoderm [185].  Subsequent immunogold electron 

microscopy analysis revealed the 14K protein was localized to large, membrane-bound 

rhomboidal or needle-shaped crystal structure, but not in the endoplasmic reticulum and 

Golgi body.  Thus, Kazemi and coworkers [185] suggested that the protein was secreted 

by the endometrial epithelia and taken up by the conceptus from  uterine histotroph.  

Indeed, needle-shaped crystalline structures have also been described in caprine 
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endometrial epithelial and trophectoderm cells [332], and their development correlates 

with the synthesis and secretion of an unidentified 15 kDa protein with a pI of ~6.0 from 

explant cultures in response to the conceptus [334].  Interestingly, development of in 

vitro produced bovine blastocysts transferred into sheep uteri resulted in the presence of 

crystals in trophectoderm cells [335, 336].  However, crystal-like structures were not 

observed in the trophectoderm of Day 15 or Day 19 bovine blastocysts produced by in 

vivo development in cattle [336].  Thus, it is not surprising that the LGALS15 gene is 

expressed in endometria of ovine and caprine uteri, but not bovine uteri.  The present 

results strongly indicate that LGALS15 is expressed by endometrial LE and sGE of 

ovine and caprine uteri, secreted into the uterine lumen, and then adsorbed to the surface 

of or internalized by conceptus trophectoderm where it forms crystals.  Although the 

biological role(s) of LGALS15 crystals in the conceptus is not known, the intracellular 

role of other galectins include modulation of cell growth, differentiation and apoptosis 

through functioning as pre-mRNA splicing factors and interacting with specific 

intracellular ligands such as the oncogene product of Harvey sarcoma virus (H-RAS) 

and B-cell lymphoma 2 (BCL2) [337, 338].  Similar to LGALS15, a number of galectins 

are present in the cytoplasm and nuclei of cells, including LGALS1, LGALS3, 

LGALS7, and LGALS12 [295].     

Collectively, available results support the hypothesis that LGALS15 is uniquely 

expressed in uterine endometria of ruminants in the subfamily Caprinae (Ovis aries and 

Capra hircus) and secreted into the uterine lumen where it functions as an attachment 

factor important for pre-implantation blastocyst growth, elongation and attachment 
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phase of implantation.  In mammals, implantation is fundamental to successful 

reproduction.  Therefore, it is likely that other members of the galectin super-family are 

expressed in the uteri of cattle and pigs and exhibit similar functional roles as LGALS15 

in the uteri of sheep and goats.  Indeed, similar tissue distribution patterns and functional 

characteristics have been described for galectins expressed in bovine and porcine tissues 

[21, 142, 339, 340].  Future work will focus on the extracellular and intracellular roles of 

LGALS15 in endometria and conceptuses of sheep and goats and determine if other 

galectin family members are expressed in uteri of other mammals.     
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CHAPTER IV 

COMPARATIVE ASPECTS OF THE RUMINANT LGALS15 GENE: 

DETERMINANTS OF RESTRICTED EXPRESSION IN SHEEP AND GOATS 

Introduction 

In domestic ruminants like sheep goats and cattle, the conceptus undergoes 

extensive growth and development in the uterus prior to implantation.  The endometrial 

epithelia synthesize and secrete an extensive array of proteins and related substances, 

collectively termed histotroph [40, 41].  Histotroph is an ambiguous mixture of enzymes, 

growth factors, cytokines, lymphokines, hormones, transport proteins, adhesion proteins, 

and other substances [41].  The epithelial cells produce large amounts of secretory 

products during the luteal phase of the cycle and at the beginning of implantation [42].  

The trophoblast cells are sites of concerted pinocytotic activity which increases as the 

blastocyst develops [186].  Thus it has long been hypothesized that regulatory molecules 

necessary for growth of the elongating conceptus were obtained from uterine histotroph.   

Available results clearly support a role for the uterus and its secretions in 

conceptus survival and development in addition to the developmentally regulated 

secretion of the pregnancy recognition signal IFNT [25, 341].  There are many proteins 

hypothesized to have significant roles in conceptus implantaion, not the least of which 

belong to the multifunctional, evolutionarily conserved galectin superfamily.  

Importantly, a common function of galectins appears to be cell recognition as mediated 

by lectin-carbohydrate interactions, which are essential to many biological processes.   
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Galectins comprise a family of evolutionarily conserved animal lectins, which 

are defined by their affinity for β-galactoside enriched glycoconjugates and sequence 

homology in the carbohydrate recognition domain (CRD).  The expression of galectins is 

modulated in both normal and abnormal tissues where protein-carbohydrate and/or 

protein-protein interactions allow them to mediate malignant transformation, tumor 

progression and metastasis [182, 183, 269, 342, 343].  Galectins may contribute to 

successful reproduction in mammalian species.  They are expressed by the pre-

implantation conceptus trophectoderm and in various embryonic organs during 

embryogenesis [16, 17, 23].  Additionally, galectins are expressed in the endometrium 

during peri-implantation period of conceptus development in mice, humans, cattle, sheep 

and goats [18-21].  Based on galectin fingerprinting studies in human endometrial tissue, 

LGALS1 and LGALS3 exhibit cell-specific and cycle-dependent expression patterns 

suggestive of roles during implantation [19].  Similarly, expression of LGALS3BP and 

LGALS9 are restricted to the uterine LE during implantation [21] and LGALS1 during 

estrus [142] in cattle.  

Galectin 15 (LGALS15), the newest member of the galectin super family, was 

initially discovered in sheep abomasal tissue infected with the nematode parasite, 

Haemonchus contortus [24].  Transcripts for LGALS15 are only expressed in the 

endometrial LE/sGE and are induced by progesterone and further stimulated by 

conceptus-derived interferon tau (IFNT) [3].  Temporally, LGALS15 expression is 

coordinate with early conceptus elongation, growth and development during the peri-

implantation period in the ovine uterus.  Spatially, LGALS15 mRNA is limited to 
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endometrial luminal (LE) and superficial glandular (sGE) epithelia and represents one of 

a growing list of interferon-stimulated genes (ISG) expressed by LE and sGE that lack 

both progesterone receptor (PGR) and STAT1.  Therefore, LGALS15 gene expression is 

regulated by a novel non-classical IFN signaling pathway(s) [175-177].  Similar to other 

galectins, LGALS15 lacks a signal peptide; nonetheless it is an abundant component of 

the uterine histotroph [3].  

The cellular and molecular mechanisms of how progesterone and IFNT regulate 

LGALS15 gene transcription in the endometrial LE/sGE is not known.  Transcription of 

other galectin family member genes is primarily regulated by epigenetic modification of 

their promoter DNA [266].  Transcriptional repression of the LGALS3 gene in vitro in 

malignant prostate epithelial cells is regulated by DNA methylation status of the 5′ 

proximal promoter [28].  Epigenetic modifications such as DNA methylation of cytosine 

residues at CpG dinucleotides are common in the promoter/enhancer region of genes.  

Methylation at cytosine of CpG dinucleotides are considered stable modifications even if 

other repressive modifications are reversed [29].  These DNA modifications can thus be 

retained from one generation to the next in similar patterns.  In addition to transcriptional 

repression and/or silencing, DNA hypermethylation of gene promoters is also 

responsible for tissue – specific patterns of gene expression [30, 31].  To date, most 

galectins studied exhibit tight regulation and expression is restricted to specific organs 

and cell types.  There are few results showing a direct relationship between galectin gene 

expression and promoter methylation in normal tissue [344]; however, many galectin 

gene promoters have a CpG dinucleotide density that compel further studies on the role 
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methylation has on transcriptional regulation of galectins [32].  We hypothesize that 

liganded PGR inhibits transcriptional activation of the LGALS15 5′ promoter and 

epigenetic modification of the DNA are responsible for transcriptional silencing of the 

bovine LGALS15 gene.  Objectives were to: (1) characterize the LGALS15 gene; (2) 

uncover how progesterone and IFNT regulate ruminant LGALS15 gene transcription at 

the level of the promoter; and (3) determine if methylation of the bovine LGALS15 gene 

promoter is responsible for transcriptional silencing in this species but not in sheep or 

goats. 

Materials and Methods 

Cells and Reagents 

Human 2fTGH (parental), U3A (STAT1-deficient 2fTGH) fibrosarcoma cells 

(Pelligrini), and Madin-Darby bovine kidney cells (MDBK) [345, 346] were maintained 

in DMEM-F12 medium (Sigma–Aldrich Corp., St. Louis, MO) supplemented with 

penicillin/streptomycin sulfate/amphotericin B (PSA) solution (Invitrogen, Carlsbad, 

CA) and fetal bovine serum (Hyclone, Logan, UT) (5% FBS for 2fTGH and U3A and 

10% FBS for MDBK cells).  Recombinant ovine IFNT (IFNT) (104 antiviral units 

(AVU) per mg) was prepared as described previously [347].  Restriction endonucleases, 

T4 DNA ligase, cell culture lysis reagent and luciferase substrate were purchased from 

Promega (Madison, WI).  Ex TaqTM polymerase (Takara, Kyoto, Japan) was used.  

Plasmid DNAs were purified by the alkaline lysis method with kits from Qiagen 

(Qiagen, Valencia, CA).  Vent Taq polymerase (New England Biolabs, Beverly, MA) 

was used.  R5020 was purchased from Perkin Elmer Life Sciences (Boston, MA).  
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Demethylating agent; 5-aza-2′-deoxycytidine (AZA) and histone deacetylase (HDAC) 

inhibitor; Trichostatin A (TSA) were from Sigma-Aldrich. 

Isolation and Cloning of Ovine LGALS15 5′-Flanking Promoter/Enhancer  

 The ovine LGALS15 gene was previously derived from an ovine genomic DNA 

library which was screened with the ovine LGALS15 cDNA for identification and 

isolation of a clone containing ~15 kb of LGALS15 genomic DNA.  Briefly, 100 ng of 

pBlueSTARTM – 1 vector containing ~15 kb of genomic DNA insert was digested for at 

least 2 h with restriction endonucleases in the appropriate buffer.  Physical mapping by 

restriction endonuclease digestion and Southern blotting were performed using standard 

methods [348].  A 2.3 kb fragment (flanked by SacI restriction endonuclease sites) was 

subcloned into the SacI multiple cloning site of the pCRII plasmid vector using T4 DNA 

ligase and sequenced on both strands using Sp6 (5′- ATT TAG GTG ACA CTA TAG -

3′) and T7 (5′- TAA TAC GAC TCA CTA TAG GG -3′) primers.  To determine the 

complete sequence, contigs were aligned and contiguous sequences determined.   

Cloning of Ruminant LGALS15 Gene Coding and Non-coding DNA 

Caprine and bovine LGALS15 gene 5′promoter/enhancer regions were cloned 

from genomic DNA (gDNA) collected from white blood cells of Boer goats and Red  
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Angus cows.  Primers (forward: 5′- GTC GTT TAT CAG TAG ACA CAA GGA ATT 

GC -3′ and reverse: 5′- CGT CTC CAG CTG GGC CTT TCT TCC -3′) used to clone 

the caprine promoter were designed based on the ovine promoter sequence and primers 

(forward: 5′- TCA ACA AGG GCC ACC TTA AC -3′ and reverse: 5′- AGT CTT CAA 

CTG GGC CTT TCT TCC -3′) used to clone the bovine promoter were designed based 

on the published sequence, reference number: NW_001493613.1 on chromosome 18 and 

contig regions 28,039 to 30,028.  All PCR reactions using gDNA as template were 

performed using Vent Taq polymerase (New England Biolab) polymerase (2.5 U) and 

10X Vent Taq buffer.  Sticky ends were generated by repeating PCR reactions using the 

product from the Vent Taq PCR reation as template with ExTaq polymerase (Takara 

Bio, Carlsbad, CA) and nested primers according to the manufacturer’s 

recommendations.  PCR amplifications were conducted as follows: 34 cycles of 95˚C for 

30 sec, 54˚C (caprine) or 58˚C (bovine) for 1 min, and 72˚C for 1 min, resulting in an 

~1.9 kb PCR product.  Following T/A cloning (Invitrogen) of the DNA into pCRII 

plasmid vector, primer-walking experiments were conducted to determine the entire 

sequence of the insert DNA (Table 4.1).   
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Table 4.1.  Sequencing of the LGALS15 promoter/enhancer region by primer walking.  
Primers were designed for both the sense and anti-sense strands. Overlapping sequences 
were visualized and contigs were assembled to form consensus sequences based on the 
quality of the peaks of the electropherogram.  The odd number of the primer set 
indicates forward primers and the even number of the primer set indicates reverse 
primers.  Primer walking experiments were always initiated using Sp6 and T7 primers 
thus primer sets represent primers needed to sequence the remaining insert DNA on 
either strand. 
 
Primer Set Forward (5′-3′) Reverse (5′-3′) 

oP1/P2 GCAATCACCTCAGATATGC TGCCCAATCAGGAATCAGG 
oP3/P4 CATCTAGTCAAGGCTATGG CATGAATCGCAGCACTCC 
oP5/P6 GAGTTGGTGAGGGACAGG TCATGGCTGCAGTCTCC 
oP7/P8 CTTCAAAGTGTCACCTCTGC CTCAAGAGGCAGGTCAGG 
cP1/P2 TCACTGTGGATGGTGATTGC GACTGGTTGGATCTCCTTGC 
cP3/P4 AGGGTCAGGAGTGACTCAGC GATGTTAGCAATTTGATCTCTGG 
bP1/P2 TCAACAAGGGCCACCTTAAC GAGCCCTGCCCTCTATTCTT 
bP3/P4 AGATCAAATTGCCAACATCG AAAGTGATGGGACCAGATTCC 
bP5/P6 GACTGCAAGGAGATCCAACC ACCTGGATGAGAGTCCAAGC 
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5′-LGALS15 Luciferase Constructs 

Truncated LGALS15 luciferase constructs were created by PCR amplification. 

The LGALS15 gene was analyzed for the presence of conserved transcription factor 

binding sites using the Transcriptional Element Search System (TESS).  Weight matrix 

searches for cis-elements were conducted using recommended parameters [349].  

Briefly, a maximum allowable mismatch of 10%, a minimum factor length of 8 bp, a 

minimum log-likelihood score (La) of 12 and a factor quality score (Qa) of 0.8 were 

used in determining valid transcription factor binding sites.  Based on the TESS and 

RepeatMasker analysis, primers were designed to generate LGALS15 5′ deletions to be 

directionally subcloned upstream of a luciferase gene in the pGL3 Basic (Promega 

Corp., Madison, WI) reporter vector system.  All constructs excluded the translation start 

site (ATG site; +41).  This was accomplished by designing a common reverse primer 

starting at position +40 relative to the transcription start site at +1.  For the ovine and 

caprine LGALS15 luciferase constructs, SacI and XhoI sites in the multiple cloning site 

(MCS) of either the pCRII or pGL3 Basic (Promega Corp., Madison, WI) vectors were 

digested and inserts directionally ligated upstream of the luciferase gene in the pGL3 

Basic reporter.  For bovine LGALS15 luciferase constructs, restriction endonuclease 

sites were engineered at the 5′ terminuses of forward and reverse primers.  Forward 

primers contained HindIII sites (-2035, -1398, -145) and the common reverse primer 

contained XbaI sites (bov_5′UTR_+40).  PCR products were gel purified and digested 

with HindIII or XbaI restriction endonucleases prior to ligation into pGL3 Basic vectors.  
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Plasmid DNA used for transfections was isolated by the alkaline lysis method and anion 

exchange chromatography (QIAGEN, Valencia, CA). 

Transient Transfection, Luciferase, and Bradford Protein Assays 

Immortalized 2fTGH or U3A cells were subcultured into 12-well plates (70–80% 

confluent) and transiently cotransfected (n = 4 wells/construct and treatment) with the 

indicated LUC reporter construct (0.5 mg/well) and pEF1-Myc/His-lacZ (0.05 mg/well) 

or PRB (0.05 mg/well) using the GenePORTER transfection reagent (Gene Therapy 

Systems, San Diego, CA) according to the manufacturer’s recommendations. The 

transfected cells were placed in DMEM/F-12 medium with 10% FBS (phenol-free 

medium and charcoal stripped FBS if steroid treated) and then treated with roIFNt or left 

untreated (control) or treated with the synthetic progestin R5020 or vehicle (ethanol). 

Cell lysates were prepared in Cell Culture Lysis buffer (Promega).  Luciferase and 

Bradford protein assays were performed according to the manufacturer’s instructions 

using a Luciferase Assay System (Promega Corp.) and a Bradford Reagent Kit 

(BioRad), respectively, and measured with a luminometer.  Each transfection experiment 

contained four replicates and was repeated in at least four independent experiments. All 

luciferase data were normalized against concentrations of total cellular proteins. The 

values for concentrations of total cellular proteins were corrected for differences in 

transfection efficiency among wells and plates within an individual transfection 

experiment.  Normalized luciferase data were then used to calculate the effect of roIFNt 

or R5020 treatment on LGALS15 promoter activity. 
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Pharmacological Demethylation of the LGALS15 Gene in Normal Cells  

Immortalized Madin-Darby bovine kidney cells (MDBK) [345, 346] were 

subcultured into 100 mm plates (10 x 104 cells/100 mm dish, reaching 10% – 20% 

confluency in 24 h) and given daily (7 days) doses of either AZA (DMSO, 0.1 µM, or 

10µM), TSA (DMSO, 50 nM, 250 nM, or 500 nM), or both.  The medium was changed 

daily with fresh AZA, TSA, both, or DMSO treatments.  Following treatment program, 

total cellular RNA was isolated from MDBK cells using Trizol (Gibco-BRL, Bethesda, 

MD) according to the manufacturer’s recommendations.  The quantity of RNA was 

assessed spectrophotometrically, and the integrity of RNA was examined by gel 

electrophoresis in a denaturing 1% agarose gel. Briefly, cDNA was synthesized from 

total endometrial RNA (5 µg) using random and oligo-dT primers and SuperScript II 

Reverse Transcriptase (Life Technologies, Gaithersburg, MD). Newly synthesized 

cDNA was acid-ethanol precipitated, resuspended in 20 µl sterile water, and stored at -

20˚C.  The cDNAs were diluted (1:10) with sterile water prior to use in PCR reactions.  

The PCR reactions were performed using Ex Taq DNA polymerase (2.5 U) and 10X Ex 

Taq buffer (Takara Bio, Carlsbad, CA) according to the manufacturer’s 

recommendations.  The primers should have amplified ~234 bp or ~181 bp PCR 

products for LGALS15 or bIFNT, respectively.  PCR amplifications were conducted as 

follows: 34 cycles of 95˚C for 30 sec, 57˚C (bIFNT primers) or 52˚C (Bt-like-LGALS15 

primers) for 1 min, and 72˚C for 1 min. As a positive control, ACTB (beta actin) primers 

(forward: 5′-ATG AAG ATC CTC ACG GAA CG-3′; reverse: 5′-GAA GGT GGT CTC 

GTG AAT GC-3′) were used to amplify a cDNA of 270 bp.  
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Statistical Analysis 

The effect of the treatments on reporter construct activity in transient transfection 

assays was analyzed by least squares ANOVA using the General Linear Models 

procedure of the Statistical Analysis System (Cary, NC). A P-value of 0.05 or less was 

considered a statistically significant effect of treatment. 

Results 

Characterizing the Ruminant LGALS15 Gene 

Gene Structure 

 Initial sequence analysis of the ovine LGALS15, 2.3 kb clone isolated from an 

ovine genomic DNA library, revealed the presence of the 5′ UTR, transcription start site, 

translation start site (ATG), exon I and part of exon II (GenBank DQ518347).  The 

ovine, caprine and bovine LGALS15 genes have a very high sequence homology (Figure 

4.1).  Between sheep and goat sequence homology over the entire 5′promoter/enhancer 

and coding regions is ~95 %, while between either sheep or goat and cattle the homology 

is ~84%.  The gene structure is similar to that of other galectins such as LGALS1 and 
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LGALS2 [140, 159].  In all cases, the entire protein is encoded by four exons (Figure 

4.2) and the functional CRD is encoded entirely by exon III. The exons and introns are 

of equal length, spacing and sequence homology (Figure 4.2).  The proximal promoter (-

306/+1 in sheep; -312/+1 in goats; -146/+1 in cows) of the LGALS15 gene of all three 

species contains similar transcription factor binding sites (Figure 4.1).  The proximal 

promoter is roughly defined by the presence of a repetitive DNA sequence which is 

closer to the transcription start site of the bovine LGALS15 gene (~145 bp) than the 

ovine or caprine LGALS15 gene (~300 bp).  LGALS15 contains a TATA box at -28 in 

sheep and goat and -30 in cattle.  Interestingly, exon one is short (-1/+52) and includes 

an ~41 bp 5′ UTR (-1/+40).  Exons two (~80 bp), three (~208 bp) and four (~127 bp) of 

ovine, caprine and bovine LGALS15 genes were similar in length and sequence 

homology.  In the first to last exons of the LGALS15 gene, sequence homology is 94% 

between ovine and caprine and 88% between ovine or caprine and bovine LGALS15. 
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Figure 4.1.  Partial alignment of ovine and bovine LGALS15 gene 5′promoter/enhancer 
and coding regions.  Sequence homology of the entire gene is ~ 85% between ovine or 
caprine and bovine species and ~ 94% between ovine and caprine species.  The TATA 
box, transcription start site (+1), and translation start site are bold and italicized.  
Putative transcription factor binding sites were determined using TESS (see Materials 
and Methods) and are underlined.  The highlighted text indicates an exon (exon I is 
shown).  Small case sequence represents the repetitive DNA sequence.  CpG 
dinucleotides are highlighted grey and text in red indicates a CpG island. 
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Transcription Factor Binding Sites 

The proximal promoter of all three species has a cAMP response element binding 

protein (CREB) (~ at -122) and an Sp1 (~ at -91) binding site immediately 5′ of an 

activator protein 1 (AP1) (~ at -54) binding site on both the sense and antisense strands 

(Figure 4.1).  Weight matrix searches using the Transcription Element Search System 

(TESS) [349] revealed the presence of additional predicted transcription factor binding 

sites for the lymphoid enhancer binding factor 1 (LEF1), T-cell factor 1 (TCF1), Ets-1, 

NFκB, CCAAT, CEBP, ISRE, IRF2 and IRF7 within the repetitive DNA sequences. A 

glucocorticoid receptor-binding site (GRE) was observed spanning the 3′ terminal 

boundaries of the repetitive DNA sequence and the proximal promoter region in sheep 

and goats (-300), but not cattle.  The ruminant LGALS15 promoter has putative AP1 

binding sites (caprine promoter positions -443, -405; ovine promoter positions -437, -

399; and bovine promoter positions -311, -273, -223) within a region of repetitive DNA 

in the 5′promoter region (Figures 4.1 and 4.2).   In the coding region, similar 

transcription factors were observed.  In the first intron of the LGALS15 gene, binding 

sites for estrogen receptor alpha (ESRI) at +102 on the antisense strand and Sp1 at +325 

on the sense strand and in intron II at +700 on the sense strand were observed. 
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Figure 4.2.  Illustration of ruminant LGALS15 gene architecture, putative transcription 
factor binding sites, and cytosine paired guanine (CpG) islands and regions containing 
repetitive DNA sequences.  Similar to other galectins, LGALS15 protein is encoded by 
four exons and the entire CRD is encoded by exon III.  The exons are of equal length in 
all three species.  Repetitive interspersed DNA sequences flank the 5’-promoter region 
of the ruminant LGALS15 gene, and between exons II and III.  CpG islands (high ratio 
of CpG dinucleotides) of various lengths are also associated with the 5′ flanking region 
including one encompassing the transcription start site (+1) and exon I.  Putative 
transcription factor binding sites are located within the repetitive DNA and within the 
proximal promoter region (-306/+1 in sheep; -312/+1 in goats; -146/+1 in cows).  The 
proximal promoter region (approximately between the transcription start site and the 
repetitive DNA element) of bovine LGALS15 is shorter than that for sheep and goats.  It 
contains similar putative transcription factor binding sites. 
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Retrotransposable DNA Sequences 

Repetitive DNA sequences were found in the 5’-promoter region of the ruminant 

LGALS15 gene, and between exons II and III (Figure 4.2).  Repeatmasker software 

identified an approximately 1.2-kb interspersed repetitive DNA element at -1528/-306, -

1533/-313 and -1398/-146 in ovine, caprine and bovine promoter/enhancer regions, 

respectively and a 690-bp repetitive DNA element at -2454/-1765 in the bovine 

LGALS15 promoter.  In the promoter region, these repetitive DNA elements were of the 

non-long terminal repeat (RTE) variety.  Interestingly, the repetitive DNA element 

within the bovine LGALS15 promoter is closer to the transcriptional start site (~145 bp) 

than repetitive DNA elements within the ovine or caprine LGALS15 promoters (~300 

bp).  The repetitive DNA within the LGALS15 5’ promoter/enhancer region exhibited a 

high degree of homology with 95% conservation between ovine and caprine and ~88% 

between either ovine or caprine and bovine.  Repetitive DNA between exons II and III 

was also similar in sequence homology and location.  In sheep and goat there is a 50 bp 

simple repeat of (CA)n at position +677 and in cattle a 150 bp simple repeat of (CA)n at 

+676, (GA)n at +722, and a GA box at +796.  Additionally there is a STAT1 binding site 

spanning the intron II to exon III boundary at +902 in sheep and goats and +890 in 

cattle. 

Correlative Indicators of Epigenetic Control 

CpG islands (high ratio of CpG dinucleotides) of various lengths are also 

associated with the 5’ promoter/enhancer region including one encompassing the 

transcription start site (+1) and exon I in the bovine LGALS15 gene (Figure 4.1). A 
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search for putative CpG dinucleotide islands revealed CpG islands within the 

interspersed repetitive DNA of the LGALS15 promoter of sheep (-1052/-503) and goat (-

1533/-313) while there were two putative CpG islands within the bovine LGALS15 

promoter.  The larger CpG island (-1826/-416) spans most of the two repetitive elements 

and a smaller CpG island encompasses the transcription start site and exon I (-48/+357).  

The CpG dinucleotide density of the ovine, caprine and bovine LGALS15 genes is 1.3%, 

1.4% and 1.2%, respectively within about 3 kb of genomic DNA encompassing the 

transcription start site. For each species there are about 40 CpG dinucleotide pairs in 

both the 5′promoter/enhancer and gene coding and non-coding regions (about 3 kb).  Not 

only are CpG dinucleotides located within the introns, but also within exons of the 

LGALS15 gene. 

Transient Transfection Analysis of the LGALS15 Promoter 

 Transient transfection analyses determined that IFNT alone cannot activate the 

ovine LGALS15 promoter. A dose-response experiment to determine the effect of INFT 

alone on the ovine LGALS15 promoter was conducted in U3A cells (Figure 4.3).  The 

basal promoter activity of the -1604 construct (includes the repetitive DNA) was 

consistently lower than that of the -323 or -184 constructs (Figure 4.2).  Compared to 

control, there was no effect of IFNT treatment at any concentration on  activation of the  

ovine LGALS15 promoter in U3A cells.  The same results were obtained in a study 

using 2fTGH cells (data not shown).  All subseqent studies were conducted in U3A 

cells. 
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Figure 4.3.  Effects of IFNT on ovine LGALS15 promoter in U3A cells.  Cells were 
cotransfected with LGALS15 constructs and pEF1-Myc/His-lacZ and treated with 
nothing, or recombinant ovine IFNT (102, 103 or 104 antiviral units), for 24 h, and 
luciferase activity was determined as described in Materials and Methods. Results are 
expressed as mean relative light units (RLU) with SE. Four replicate determinations for 
each treatment group were conducted in each experiment.  Results of a representative 
experiment of three independent experiments with similar results are presented. Similar 
results were obtained using 2fTGH cells. 
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Figure 4.4.  Ovine LGALS15 promoter 5′ truncations and transient transfection analysis 
in U3A cells.  (A) 5′ deletions of the ovine LGALS15 promoter/enhancer region and 
insertion upstream of the luciferase (Luc) gene in a reporter vector as described in 
Materials and Methods.  The -1604 construct contains putative Sp1 (-497, -485) and AP1 
(-437, -399) transcription factor binding sites within a repetitive DNA sequence.  (B) 
Effects of progesterone on the ovine LGALS15 promoter in U3A cells.  Cells were co-
transfected with LGALS15 constructs and PRB and treated with vehicle or progesterone 
(10-8M), for 24 h, and luciferase activity was determined as described in Materials and 
Methods. Significant induction (P < 0.001) is indicated with an asterisk, and results are 
expressed as mean relative light units (RLU) with standard error (SE). Four replicate 
determinations for each treatment group were conducted in each experiment.  Results 
from a representative experiment of three independent experiments with similar results 
are presented.  



 

 

114 

Treatments including the synthetic progestin R5020 consistently increased 

promoter activity.  Progesterone alone induced significant activity of the ovine 

LGALS15 promoter when compared to the vehicle control group (P < 0.001) (Figure 

4.4).  Similar results were observed for the caprine LGALS15 promoter (Figure 4.5).  

For both ovine and caprine LGALS15 promoter constructs a significant difference was 

observed between constructs in their response to treatments (P < 0.001).  A small region 

of about 350 bp (-300/+40) appears to be critical for activation of the LGALS15 

promoter.  This region is defined as the proximal promoter because transient transfection 

analysis consistently showed higher basal promoter activity of this construct in the ovine 

and caprine LGALS15 gene.  The bovine LGALS15 promoter had no activity in the 

luciferase reporter assay (Figure 4.5).  If analyzed separately, there are differences in the 

activity of the -145/+40 Luc construct when compared to the -2035/+40 and -1398/+40 

constructs. 

Methylation of the Bovine LGALS15 Promoter 

 Pharmacological studies using MDBK cell treated with AZA alone or in 

combination with TSA indicated that transcriptional silencing of the bovine LGALS15 

allele in these cells is not due to hypermethylation, histone deacetylation and subsequent 

modification of the chromatin resulting in heterochromatin formation.  Results from RT-

PCR studies were unable to amplify any bovine LGALS15-like or IFNT transcripts 

under any experimental conditions.    
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Figure 4.5.  Caprine and bovine LGALS15 promoter 5′ truncation and transient 
transfection analysis in U3A cells.  (A)(C) 5′ deletions of the caprine and bovine 
LGALS15 promoter/enhancer region and insertion upstream of the luciferase (Luc) gene 
in a reporter vector as described in Materials and Methods.  The caprine -1589 and 
bovine -2035 and -1398 constructs contain putative Sp1 and AP1 transcription factor 
binding sites within a repetitive DNA sequence.  (B) Effects of progesterone on the 
caprine and bovine LGALS15 promoter in U3A cells.  Cells were cotransfected with 
LGALS15 constructs and PGRB and treated with vehicle or progesterone (10-8M), for 24 
h, and luciferase activity was determined as described in Materials and Methods. 
Significant induction (P < 0.001) is indicated with an asterisk, and results are expressed 
as mean relative light units (RLU) with standard error (SE). Four replicate 
determinations for each treatment group were conducted in each experiment.  Results 
from a representative experiment of three independent experiments with similar results 
are presented.  
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Discussion 

The LGALS15 gene is only expressed in uteri of sheep and goats, but is silenced 

in cattle [3, 350].  To understand the transcriptional regulation of the ruminant 

LGALS15, the ovine, caprine and bovine genes were cloned and sequenced.  

Subsequently, transient transfection analyses of 5′promoter/enhancer deletions were 

conducted to gain insight into transcriptional regulation of LGALS15 by progesterone 

and IFNT.  Sequence analysis of the ruminant LGALS15 gene indicated a high degree of 

nucleotide homology and fundamental promoter characteristics. A supposed 

transcription start site (+1) was identified for all three promoters.  Relative to the 

transcription start site, LGALS15 has a TATA box at ~ -30 (Figure 4.1).  This finding 

parallels those of similar studies on other galectin family members such as LGALS1 and 

LGALS2 [159, 265], which are also prototype galectins.  In fact, LGALS1 and 

LGALS15 exhibit similar spacing of their TATA box, which indeed directs promoter 

activation.  Unlike the LGALS1 promoter, which also contains an initiator sequence 

(Inr) overlapping the TATA box [234], no Inr sequence was observed in the LGALS15 

promoter.  Additional similarities include the number of exons and the functional CRD 

being encoded entirely by exon III.  The exon/intron structure of LGALS15 in all three 

species suggest they are derived from similar ancestral genes during speciation [351]. 

The ruminant LGALS15 5′promoter/enhancer region contains putative transcription 

factor binding sites proven vital for expression and secretion other galectins [352, 353].  
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The ruminant LGALS15 5′ promoter/enhancer region contains putative 

transcription factor binding sites for CREB, AP1, Sp1, and various ETS transcription 

factors (Figures 4.1 and 4.2).  Activator protein 1 or Sp1 and ETS are important for the 

expression of other galectin family members and IFNT, respectively [352, 354, 355].  

Activator protein 1 transcription factors are involved rapid responses of mammalian cells 

to stimuli that impact proliferation, differentiation, and transformation.  The LGALS15 

proximal promoter exhibits CREB and Sp1 binding sites immediately 5′ of an AP1 

binding site, which are conserved in all three species.  Interestingly, c-Jun can interact 

with Sp1 transcription factors, resulting in synergistic activation of some gene promoters 

[356].  The LGALS15 promoter may be activated by ERK- and/or p38-mediated 

mitogen-activated protein kinase (MAPK) or NF-κB pathways because transcription 

factor binding sites for C/EBP-β, Ets-1 and CREB were observed in the 5′ 

promoter/enhancer region.  Indeed, the actions of type I IFNs can be mediated by 

activation of the MAP kinase and NF-κB pathways [73-75].  In the current in vitro 

studies, IFNT alone did not activate any of the LGALS15 promoter constructs 

transfected into human fibroblast U3A (STAT1 negative) or 2fTGH (STAT1 positive) 

cell lines lacking PGR.  However, it is plausible that IFNT uses a MAP kinase or NF-κB 

signaling pathway to stimulate LGALS15 expression in endometrial LE and sGE cells 

during the peri-implantation period in sheep.  



 

 

118 

Transient transfection of the LGALS15 promoter into mammalian cells to 

analyze the effects of progesterone alone or in combination with IFNT showed no 

significant increase in promoter activity with combined treatments.  In vivo, the 

combined actions of progesterone and IFNT resulted in an ~4 fold increase in LGALS15 

mRNA abundance when compared to progesterone alone [3].  In these studies 

progesterone alone or in combination with IFNT could increase LGALS15 transcript 

abundance, but only in the context of down-regulated PGR.  A fundamental difference 

between the current in vitro studies and the in vivo animal is the presence of liganded 

PGR directly interacting with the LGALS15 promoter.  

 The fact that IFNT alone cannot activate the LGALS15 promoter is not 

surprising.  In vivo studies dissecting the individual and combined effects of 

progesterone and IFNT show that INFT stimulation requires a functional progesterone-

PGR interaction [3].  In fact progesterone, acting through its endometrial PGR, is first 

required for the LE/sGE specific expression of non-classical ISGs including LGALS15 

[3, 176, 177].  Functional interactions with its receptor result in progesterone down-

regulating PGR expression in the LE and GE.  Paradoxically, progesterone induction of 

LGALS15 expression in the endometrial LE and sGE on Day 12 of pregnancy coincides 

with the loss of PGR in these cells.  Importantly, expression of PGR by stromal cells 

remains positive in the endometrium during this time.  This suggests stromal/epithelial 

interactions in the endometrium in which progesterone acts through its stromal PGR to  

influence epithelial gene expression.  Factors derived from the stroma and acting in a 

paracrine manner through their epithelial receptors are believed to mediate such 
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stromal/epithelial interactions [357]. Thus, progesterone likely induces LGALS15 

expression in the LE and sGE indirectly by interacting with stromal PGR.    

In the ovine uterus, fibroblast growth factor 10 (FGF10) and hepatocyte growth 

factor (HGF) are specifically expressed in the stroma while the expression of their 

receptors, FGFRIIIb and c-met is confined to the uterine epithelia [358, 359].  Indeed, 

expression of FGF10 and c-met are increased by progesterone in the ovine uterus [360].  

Available results indicate the effects of FGF10 are mediated by an ERK dependent cell 

signaling pathway [361].  It is feasible then, that LGALS15 expression in the LE and 

sGE is mediated by activation of a MAP kinase signaling pathway coordinated by the 

sequential actions of progesterone induced, stromal derived FGF10, and conceptus 

derived IFNT acting through their epithelial receptors.   

Repetitive interspersed DNA sequences are widely distributed throughout the 

genome.  When found in the 5′promoter region of a gene, they can influence the quality 

and quantity of gene transcription [362, 363].  This could explain the lack LGALS15 

expression in cattle.  Repetitive DNA sequences are about 145 bp from the transcription 

start site in the bovine LGALS15 promoter.  This is considerably closer to the 

transcription start site and all promoter constructs containing repetitive DNA sequences 

showed reduced basal activity (Figures 4.4 and 4.5).  Additionally, simple repeats such 

as (CA)n and (GA)n, observed in intron two of all ruminant species investigated, could 

influence transcriptional efficiency [364].  Importantly, the simple repeat observed in the 

bovine LGALS15 gene is longer than those in either the caprine or ovine LGALS15 

genes.  Potentially contributing to the lack of LGALS15 expression in the bovine uterus. 
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Even though cell specific transcriptional regulation of other galectins is due to 

promoter methylation [28, 264], this does not hold true for LGALS15.  Pharmacological 

studies on cells not expressing LGALS15 were designed to induce aberrant expression 

of the gene using demethylating (AZA) and/or acetylating (TSA) agents.  No variation 

of concentrations of treatments or time of exposure resulted in LGALS15 gene 

activation.  These results were not surprising when put in the context of the activity of 

these agents on normal cells.  Studies show that the demethylating agent, AZA, affects 

normal cells differently than cancer cells resulting in a significantly lower number of 

genes being activated in normal cells [344].  Indeed this characteristic makes AZA 

(Decitabine) a useful anticancer drug for chemotherapeutic reactivation of genes 

suppressed in tumors. 

Collectively, these results indicate that the LGALS15 5′promoter/enhancer 

contains putative transcription factor binding sites that suggest regulation by MAP 

kinase and/or NF-κB signaling pathways.  The presence of a conserved retrotransposable 

DNA element in the 5′promoter/enhancer region negatively modulates LGALS15 

expression and physically defines a region essential for promoter activation.  

Comparatively, this region is substantially smaller for bovine LGALS15 than for ovine 

or caprine LGALS15.  Transcriptional silencing of LGALS15 expression in bovine uteri 

is likely a result of the proximity of a retroelement to the transcription start site and not 

promoter hypermethylation.  IFNT alone cannot stimulate LGALS15 promoter activity, 

even in cells lines inherently lacking PGR.  A more detailed definition of the relationship 
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between IFNT and LGALS15 expression will require an in vitro model that better 

recapitulates the uterine milieu.   

Future studies will focus on the role of retroelements in modulating LGALS15 

expression in the uterus, defining the chromosomal location of the LGALS15 gene in 

ruminant species, and galectin fingerprinting to determine which members of the 

galectin-superfamily are expressed in the bovine uterus. 
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CHAPTER V 

SUMMARY 
 

Galectins are a family of secreted animal lectins with biological roles in cell 

adhesion and migration.  In sheep, LGALS15 is expressed specifically in the endometrial 

luminal (LE) and superficial glandular (sGE) epithelia of the uterus in concert with 

blastocyst elongation during the peri-implantation period.  The studies herein examined 

LGALS15 expression in uteri of cattle, goats, and pigs.  Additionally, initial studies 

aimed at determining LGALS15 gene structure and promoter activity were conducted.   

Although the bovine genome contains a LGALS15-like gene, expressed sequence 

tags (ESTs) encoding LGALS15 mRNA were found only for sheep, and full-length 

LGALS15 cDNAs were cloned only from endometrial total RNA isolated from pregnant 

sheep and goats, but not pregnant cattle or pigs.  Ovine and caprine LGALS15 were 

highly homologous at the mRNA (95%) and protein (91%) levels, and all contained a 

conserved carbohydrate recognition domain and RGD recognition sequence for integrin 

binding.  Endometrial LGALS15 mRNA levels increased after Day 11 of both the estrous 

cycle and pregnancy, and were considerably increased after Day 15 of pregnancy in 

goats.  In situ hybridization detected abundant LGALS15 mRNA in endometrial LE and 

sGE of early pregnant goats, but not in cattle or pigs.  Immunoreactive LGALS15 

protein was present in endometrial epithelia and conceptus trophectoderm of goat uteri 

and detected within intracellular crystal structures in trophectoderm and LE.  

Recombinant ovine and caprine LGALS15 proteins elicited a dose-dependent increase in 

ovine trophectoderm cell attachment in vitro that was comparable to bovine fibronectin.  



 

 

123 

These results support the hypothesis that LGALS15 is uniquely expressed in Caprinae 

endometria and functions as an attachment factor important for peri-implantation 

blastocyst elongation. 

Galectins are a family of animal lectins with a high affinity to beta-galactosides 

commonly involved in cellular functions such as apoptosis, adhesion and migration.  

Galectin 15 (LGALS15), the newest member of the galectin superfamily, has a unique 

C-terminal RGD sequence and participates in integrin-mediated ovine trophectoderm 

cell attachment and migration.  In the ovine uterus, LGALS15 is expressed only by the 

endometrial LE and sGE, induced by progesterone between Days 10 and 12 of the cycle 

and pregnancy, and then stimulated by interferon tau (IFNT) from the conceptus after 

Day 14 of pregnancy. 

Progesterone induction of LGALS15 apparently involves progesterone down-

regulation of progesterone receptor (PGR) in the endometrial LE/sGE.  During early 

pregnancy, the classical janus kinase-signal transducer and activator of transcription 

(JAK-STAT) pathway is not active in the endometrial LE/sGE.  Therefore, IFNT utilizes 

a non-classical signaling pathway, likely the MAP kinase pathway [73, 74], to increase 

transcription of genes, including CST3, CTSL, HIF2A, LGALS15, and WNT7A, 

specifically in the endometrial LE/sGE.  The LGALS15 promoter may be activated by 

ERK- and/or p38-mediated mitogen-activated protein kinase (MAPK) or NF-κB 

pathways because transcription factor binding sites for C/EBP-β, Ets-1 and CREB were 

observed in the 5′ promoter/enhancer region (Figure 5.1).  Indeed, the actions of type I 

IFNs can be mediated by activation of the MAP kinase and NF-κB pathways [73-75].   
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Figure 5.1.  Schematic illustrating the current theory on IFNT signaling in the ovine or 
caprine endometrial luminal (LE) or superficial glandular epithelia (sGE).  The non-
classical actions of type I IFNs  in the endometrial LE and sGE are likely mediated by 
the initiation of the p38 and/or ERK mitogen-activated protein kinase (MAPK) 
pathways.  The ruminant LGALS15 5′ promoter/enhancer region contains putative 
transcription factor binding sites for CREB, AP1, C/EBP, and various ETS transcription 
factors suggesting activation by MAPK signaling pathways.  Activation of type I IFNAR 
by IFNT thus may initiate ERK- and/or p38-mediated MAPK pathways resulting in the 
transactivation of the LGALS15 5′ promoter/enhancer region in the endometrial LE and 
sGE.  LE and sGE expression of LGALS15 is concomitant with expression of IRF2, a 
potent repressor of classical ISGs.   
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Although the LGALS15 gene is present in ovine, caprine and bovine species, it is only 

expressed in uteri of sheep and goats.  Our working hypothesis is that LGALS15 

expression is regulated by epigenetic mechanisms and activated PGR inhibits 

transcription of the LGALS15 gene in sheep and goat uteri. 

An ovine genomic DNA library was screened with the ovine LGALS15 cDNA, 

and a clone containing ~15 kb of genomic DNA was isolated.  A 1.63 kb portion of the 

5′ promoter/enhancer region of the ovine LGALS15 gene was sequenced.  The 5′ 

promoter/enhancer region of the caprine LGALS15 gene was cloned using primers 

designed from the ovine sequence and caprine genomic DNA used as a template.  The 5′ 

promoter/enhancer region of the bovine LGALS15 gene was cloned using primers 

designed from Bos taurus genomic contig NW_001493613.1 and bovine genomic DNA 

as a template.  Relative to the predicted transcriptional start site (+1), the proximal 

promoters of sheep (-305/+1), goat (-312/+1) and cattle (-145/+1) LGALS15 contain a 

TATA box at -28 in sheep and goat and -30 in cattle.  Repeatmasker software identified 

an approximately 1.2-kb interspersed repetitive DNA element at -1528/-306, -1533/-313 

and -1398/-146 in ovine, caprine and bovine promoter/enhancer regions, respectively 

and a 690-bp repetitive DNA element at -2454/-1765 in the bovine LGALS15 promoter.  

Interestingly, the repetitive DNA element within the bovine LGALS15 promoter is closer 

to the transcriptional start site (~145 bp) than repetitive DNA elements within the ovine 

or caprine LGALS15 promoters (~300 bp).  The repetitive DNA within the LGALS15 5′ 

promoter/enhancer region exhibited a high degree of homology with 95% conservation 

between ovine and caprine and ~88% between either ovine or caprine and bovine.  In all 
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three species, exon structure and length are similar.  Interestingly, exon one is short (-

1/+52) and includes a ~41 bp 5′ UTR (-1/+40).  Exons two (~80 bp), three (~208 bp) and 

four (~127 bp) of ovine, caprine and bovine LGALS15 genes were similar in length.  

Additionally, 94% (ovine:caprine) or 88% (ovine or caprine:bovine) sequence homology 

was in the first to last exons of the LGALS15 gene.   

A search for putative CpG islands revealed their presence within the interspersed 

repetitive DNA sequences in all three species but in the bovine LGALS15 gene, a CpG 

island encompassed the proximal promoter, transcription start site, and exon I.  Using 

the Transcription Element Search System (TESS), the LGALS15 promoter of sheep, goat 

and cattle all contained predicted transcription factor binding sites for activator protein-1 

(AP1), lymphoid enhancer binding factor 1 (LEF1), T-cell factor 1 (TCF1), Sp1, C/EBP-

β, Ets-1, CREB glucocorticoid receptor (GR) and estrogen receptor alpha (ESR1), 

Future studies will utilize the LGALS15 promoter to discover how progesterone and 

IFNT regulate expression of selected genes in the endometrial LE/sGE during 

pregnancy. 
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APPENDIX I 
 

ALIGNED AND ANNOTATED RUMINANT LGALS15 GENE SEQUENCES 
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APPENDIX II 
 

COMPLETE CAPRINE, OVINE, AND BOVINE LGALS15 GENE SEQUENCES 
 

Caprine LGALS15 
GTCGTTTATCAGTAGACACAAGGAATTGCACTTAGATTAAGCATATCAGCGTCTCTagtacgtg
aaccatgaacttgcagatgttcaagatggttttagaaaaggcagaaacccagagatcaaattgc
taacatccactggatcatggaaaaaagagagttccagaaaaacatctatttctgctttattgac
tatgccaaagcctttgactgtgtggctcacaagaaactgtggaaaattctgaaagagatgggaa
taccagaccacctgacctgcttcttgagaaacctgtatgcaggtcaggaagcaacagttagaac
tggacatggaacaacagactggttccaaataggaaagggagtatgtcaaggctggatattgtca
ccctgcttatttaccttctatgcagagtatatcatgagaaatgttgggctggaagaagcacagg
ctggaatcaagattgccgggagaagcagcaatcacctcagatatgcagatgacaccacccttat
cgcagaaagtgaagaggaaccaaaaagcctcctgatgaaagtaaaagaggagagtgaaaaagtt
ggcttaaagcgcaacattcagaaaacgaagatcatggcatctggtcccatcacttcatggcaaa
tagatggggaagcagaggaaacagtgtcagactgtattttttgggggctccaaaatcactgtgg
atggtgattgcagccatgaaattaaaagatgctttacttcttggaaggaaagttatgagtaacc
tagatagcatatgaaaaaacagagacattactttgccaacaaagatccgtctagtcaaggctat
ggtttttccagtggtcacgtatggatgtgagaattggactgtgaagaaaggtcagcactgaaga
attgatgcttttgaactgtggtgttggagaggactcttgagagtcccttggactgcaaggagat
ccaaccagtccattctaaaggagatcagtcctaggtgttcattggaaggactgatgctaaagct
gaaactctcatactttggccacctcatgtgaagaggtgacgtattagaaaaggccctgatgctg
ggagggattggaggcaggaggagaaggggacgacagaggatgagatggctggatggcatcaccg
actcgatggacatgagtttgagtgaactcctggagttggtgagggacagggagtcctggagtgc
tgcgattcatggattcccaaagagtcggacacaactgagtgactgaactgaactgaactgaGTA
CAGTTTGAACCCACTTCTTGGGTCCTTGGAGAGGCCCACCACCTGGATGAGAGACTAAGCTCTG
CCACTGTTAAGCCTTCTTCAAAGTGTAACCTCTGCTAGACCCAGCCTTCTTACACATAGAATAT
CTGATGACCATAATCCCAAAATAGAGGGTTGTTAGTAATGCAATCAAGGGTGGACTGAACATAC
TTTTGATGTCATGAATTTCAGAAGAATAGAGGGCAGGGCTCTGTAGCCTGAGTGAAAGGGTCAG
GAGTGACTCAGCTCCTACGTGCATTTATAGGGCGCCTTCTCTAGACAGACACACACACAGTTTC
AACAAGGAAGAAAGGCCCAGCTGGAGACGATGGACTCCTTGGTATGAAGGATGGGAGGAAGGAA
TCTGATTACCTCGGCTGCTGGTGCCGGGTCACCTTGACACAAATCATTGCGTGAATGCTGGTAG
AGAATGGGAAAGAGTGTGTGTGTGTGAGTGGGAATCACTGGATTTTCATTATTGTATGTCCTTT
TGCACATTGTTTCTCTGGGTTTGGAAGTGTTTGTGTATAACATATGTAACTGTGCCTCTGAGTG
CATGTCTGGACTCGGATTAATGTCTCCTTGTTGGAGGTATACTAATGTGTCTTAGCTGTGGGAG
GAGATCACGTTTTGTGTCCTGATTCTGCTTGGGCAACGATGTGGGGGAGAGGACAGTGGCTCTT
CATTCACTGACGCATCCGTCTCTTCCACAGCCAAACCCCTACCAGCAGTCTATTTCCCTGACTG
TGTGTTACATAGTGAAGATCAAGGCAAACCTTCTGTCTCCTTTTGGGTGAGTAGAGGCCAGTTT
ATGTCTGACGGAGGGTGAAGCACAAGGGGAGAGTGTTAGCATGTCATGGGGACACTCATTGGAA
AGAGCTTGATCTTCTTGAATCATTGGAATAAGCTGAGGTGTCTCATGCAAAAGTGTGAGATTAC
ACTCCAGGAGGGTTTCCTTCCTCTGTGTGTCTGTGTGTGTGTGTGGTGGGGTGGGATAGGGGGA
GGCAGGGGAGGAAAAGAGAGAGAGATAGCAAAGTGTGAAAGGTATAAATAGTTTGAGAAAGAGG
GTATGGCGAAGGGGAAGGAAGGAGGTGGGGAGAGAGAAAAAAGGGCTGCGGTTGTTCCTGAGGA
AGTTGTTGTCTGCAGTAAATGCCTGCCTGCAGGAGCTGTCCTCTTGTCTTTGCAGGAAGAACCC
AGAGCTTCAGGTGGATTTCGGCACGGGTACTGGGCAAGGTGGCGACATTCCATTCCGTTTCTGG
TACTGCGATGGCATCGTGGTGATGAACACTTTAAAGGACGGGAGTTGGGGGAAGGAACAGAAAC
TGCATACTGACGCTTTCGTGCCAGGCCAGCCATTTGAGCTGCAGTTCTTGGTGCTGGAGAATGA
ATACCAGGTGTGTGAGCCCTCCAGGTGTGGGGTGCTGTGGCTGTGTCAGGCCTGCCATGGAGAA
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ACACGCAGAGAGTCCAACTCTGATGTGATCGCAAGAGACCAATTTTTTTTTGTTGTTTTGTACT
TTAACACATGTGCTTTTAAAAATTGAAATGTCATTGATTTCCCTTACTGTGTGAGTCTCAGGTG
CGCAGCAGAGTGATTGAGCACCTTGTCCTCGCATAGCATAGGCCTCTATACTCAGGATCTTGTG
TGCTGTGCAATTAGAGATTCTGCGGTGAACTCCACACAGCTCTTCCTGTATCAGACAGTCAGCA
GTGTGGAGGGAGACATGCAGGCCCCCTGCCCTCAGGGTAAAGCAGGGTTGGCAGCTCTGGAGGC
GAGGAAGTGGACATGGAGGATGATTCCTATAGCAGTGTCTTGGCGGGATGTCCAGGAGGAGAAT
TTCTGCTTTGCTTTTACAGAGTAAAGAAATTTTACAGGAGGCAATGAAAATAGGAAAGGGAAAG
AGGAGGAGGCCTAATTGTTCTGAGCTCACAAGAAATATATCTCCTTCCTTAGGTGTTTGTGAAT
AGCAAGCCCATCTGCCAGTTTGCCCACCGCCTGCCCCTACAGTCTGTGAAAATGCTGGATGTGA
GGGGAGATATCGTGCTGACTTCAGTGGATACGTTATAAGGGGCGG 
   
Ovine LGALS15 
TCTGTTATAGCTGTATCATTGTCGTTTATCAGTAGACACAAGGAATTGCACTTAGGTTAAGCAT
ATCAGCGTCTCTagtacgtgaaccatgaacttgcagatgttcaagatggttttagaaaaggcag
aagaaccagagatcaaattgctaacatccactggctcatggaaaaaagagagttccagaaaaac
ttctatttctgctttattgactatgccaaagcctttgactgtgtggatcacaataaactgtgga
aaattctgaaagagatgggaataccagaccacctgacctgcctcttgagaaacttgtatgcagg
tcaggaagcaacagttagaactggacatggaacaacagactggttccaaataggaaagggagta
tgtcaaggctgtatattgtcaccctgcttatttaccttctatgcagagtatatcatgagaaacg
ttgggctggaagaagcacaggctggaatcaaggttgccgggagaagcagcaatcacctcagata
tgcagatgacaccacccatatggcagaaagtgaagaggagctaaaaagcctcttgatgaaagtg
aaagaggagagtgaaaaagttggcttaaagctcaacattcagaaaatgaagatcatggcatctg
gtcccatcacttcatgggaaatagatggggaagcagaggatacggtgtcagactgtatttttgg
ggggctccaaaatcactttggatggagactgcagccatgaaattaaaagatgctttactccttg
gaaggaaagttatgagtaacctagatagcatataaaaaaacagagacattactttgccaacaaa
ggtccatctagtcaaggctatggtttttccagtggtcacatatggatgtgagagttggactata
aaaaaagctgagcaccaaagaattgatgcttttgaactgtggtgttggggaggactcttgagag
tcccttggactgcatggaaatccaaccagtccattttaaaggagatcaatcctcggtgttcatt
ggaaggactggtgctaaagctgaaactctaatactttggccacctcatgtgaagaggtgactta
ttagaaaaggccctgatgctaggagggattgggggcaggacgagaaggggacgacagaggatga
gatggctggatggcatcaccgactcgatggacatgagtttgagtgaactcctggagttggtgag
ggacagggaggcctggagtgctgcgattcatggattcccaaagagtcggacacaactgagtgac
tgaactgaactgagtacagTTTGAACCCACTTCTTGGGTCCTTGGAGAGACCCACCACCTGGAT
GAGAGACTAAGCTCTGCCACTGTTAAGCCTTCTTCAAAGTGTCACCTCTGCTAGACCCAGTCTC
TTACACATAGAATATCTGATGACCATAATCCCAAAATAGAGGGTTGTTAGTAAAGCAATCAAAG
GTGGACTGAACACACTTTTGATGTCATGAATTTGACAAGAATAGAGGGCAGGGCTCTGTAGCCT
GAGTGAAAGGGTCAGGAGTGACTCAGCTCCTAACTGCATTTATAGGGCGCCTTCTCTAGACAGA
CACACACACAGTTTCAACAGGGAAGAAAGGCCCAGCTGGAGACGATGGTCTCCTTGGTATGAAG
GATGGGAGGAAGGAATCTGATTACCTCTGCTGCTGGTGCCGGGTCACCTTGAGACCAATCATTG
CGTGAATGCTGGTAGAGAATGGGAAAGAGTGTGTGTGTGTGAGTGGGAATCACTGGATTTGCAT
TATTGTATGTCCTTTTGCACACTGTTTCTCTGGGTTTGGAAGTGTTTGTATATAGCATATGTAT
CTGTGCCTCTGAGTGCATGTCTGGACTCGGATTAATGTCTCCTTGTTGGAGGTATACTAATGTC
TCTTAGCTGCGGGAGGAGATCACATTTTGTGTCCTGATTCCTGATTGGGCAACGATGTGGGGGA
GAGGACACTGGCTCTTCATTCACTGACGCATCCGTCTCTTCCATAGCCGAACCCCTACCAGCAG
TCTGTTTCCCTGACTGTGTGTTACATGGTGAAGATCAAGGCAAACCTTCTGTCTCCTTTTGGGT
GAGTAGAGGCCAGTTCATTACTGATGGAGGGTGAAGCAGAAGGGGAGAGTGTTAGCATGTCTTG
GGGACACTCATTGGAAAGAGCTTGATCTTCTTGAATCATCGGAATAAGCTGAGGTGTCTCATGC
AAAAGTGTGAGATTACACTCCAGGCAGGATTTCCTTCCTCTGTGTGTCTGTGTGTATGTGTGTG
TGTTGGGGGGTGGGGTGGAATGGGGGGAGGCAGGGAAGTAAAAGAGAGAGAGATAGCAAAGTGT
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GAAAGGTATAAATATTTTGAGAAAGAGGGCAAGGCGAAGGGGAAGGAAGGAGGTGGGGAGAGAG
AAAAAAGGGCTGTGGTTGTTCCTGAGGAAGTTGTTGTCTGCAGTAAATGCCTGCCTGCAGGAGC
TGTCCTCTTGTCTTTGCAGGAAGAACCCAGAGCTTCAGGTGGATTTCGGCACTGGTACTGGGCA
AGGCGGCAACATTCCATTCCGTTTCTCGTACTGTGACCGCATGGTGGTGATGAACACTTTCACG
GACGGGAGTTGGCAGAAGGAAGAGAAAGTGCTTACTGACGCTTTTGTGCCAGGCCAGCCATTTG
AGCTGCAGTTCTTGGTGCTGGAGAAGGAATACCAGGTGTGTGAGCCCTCCAGGTGTGGGGTGCT
GTGGCTGTGTCGGACCTGCCGTGGAGAAACACGCGGAGAGTCCAACTCTGATGTGATTGCAACA
GACCAATTTTGTTTTGTTTTGTACTTTTAACACATGTGCTTTTTAAAATTGAAGTGTCATTGAT
TTCCCTTACTGTGTGAATCTCAGGTGCACAGCAGAGTGACTGAGCACCTTGTCCCCGTATAGCA
TAGGCCTCTATACTCAGGATTTTGTGTGCTGTACAATTAGAGATTCTGTGGTGAACTCCACACA
GCTCTCCCTGTATCGGACAGTCAGCAGTGTGGAGGGAGACATGCAGGCCCCCTGCCCTCAGGGC
AAAGCAGGGGTGGCAGCTCTGGAGGCAAGGAAGTGGACATGGAGGATGATTCCTACAGCAGTGT
CTTGGCAGGATGTCCAGGAGAATTTCTGCTTTGCTTTTACAGAGTAAAGAAATTTTAGAGAAGG
CAATGAAAATAGGAAAGGGAAAGGGGAGGCCTAATTGTTCTGAGCTCACAAGAAATATATCTCC
TTCCTTAGGTGTTTGTGAAAAACAAGCCCATCTGCCAGTTTGCGCACCGCCTGCCCCTGCAGTC
TGTGAAAATGCTGGATGTGAGGGGAGATATCGTGCTGACTTCAGTGGATACGTTATAAGGGGCG
G 
 
Bovine LGALS15 
aacaagggccaccttaaccagcctatttgagattaagccctttgtggactgctctgttctatta
acaacatctttttcaagacacttattcccttctaacacgttatatattttacttgtgtattata
atttgaaagttactgcatatattttccagctggagtataagctccatggagcaagatttttatc
tgtgtttttccacttatgcagatagtacaaagcctgctgccgattcatcactcaataagcagtt
gtcaaatgaacagatAGATGGTTGGATCCCTTTGATTGCTTTACTAACAACCCTCTGGTTTGGG
ATTATGGTCATCAGATATTCTGTGTGTAAGAAGACTGGGTCTAGCAGAGGTTACACTTTTAATA
AGTCCTCACAGTGGCAGAGCTTGGACTCTCATCCAGGTGCTGTGTCTCCCCAAGTCTAGGGCGA
ATAGGGAAATTGCCAGCAAAGATTCAGGAATAGGTTCAATGTCAAAGAAAAAGTCAGCTGCATA
CGGCATGGGATGGGGACCAGTTTTATGAAGAAGGGTAGCCAGGGAGCTCTCTGTTACAGCTCTA
TCATTGTCACTTATCAGTAGACACAAGGAATTGCACTTAGATTAAGAATATCAGCATCTCTagt
acatgaaccgtgaacttccagatgttcaagctgattttagaaaaggcagaggaaccagagatca
aattgccaacatcgctggatcatgggaaaaagaagagagttccagaaaaacatctatttctgct
ttattgactattccaaagcctttgactgtgtggatcacactgaactgcggaaaattctgaaaga
ggtgggaataccagaacacctgcccttcctcttgaaacacctatatgcaggtcaggaagcaaca
gttagactggacatggaacaacagactggttccaaataggaaaaggagtacgtcaaggctgtat
attgtcaccctgcttatttaacttatatgcagagtacatcatgagaaacactggactggaataa
acacaagctggaatcaagattgccgggagaaatatcaataacctcagatatgcagatgatacca
cccttatggcagaaagtgaagaggaagtaaaaagcctcttgatgaaagtgaaagaggagagtga
aaaagttggcttaaagctcaacattcagaaaacgaagatcatggaatctggtcccatcacttta
tgggaaatagatggggaaactggaaacagcatcagactttattttttcggactctaaaatcact
acagatggtgactgcagccatgaaattaaaagacacttactcttggaaggaaagttatgacaaa
cctagacagcatataaaaaagcagacacattactttgccaacaaatgtccgtctaaacaaagct
atgaattttcctgtattcatgtatggatgtgagagttggactataaagaaagctgagcacagct
gaattgatgcttttgaactgtgatgctggagaatactcttgatagtcccttggactgcattcag
atccaaccagtccattctaaacgagatcagtcctgggtgttcattggaaggaatgatgctaaag
ctgaaattccaatactttggccacctcatacgtagagttgactcgttagaaaagaccctgatgc
tgggaggaattgggggcaggaggagaaggggacgacagaggatgagatggctggatggcatcac
cgactcaatggacatgagtttgagtgaactctgggaattggtgatggacagggaggcctggcgt
gctgcgatcatgggttcccaaagagtcagacacgactgagcgactgaactgaactgaactgact
acagtttgaacccacttcttattattacagtggaCTTTGGATAGTGTGGACTGAACACACTTTT
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GATGTCATAAATTTCAGAAGAATAGAGGGCAGGGCTCTATAGCCTGAGTGAAAGGGTCAGGGGT
GACTCATCTCCTAATTGCATTTATAGGGCATCTTCTCCAGACAGACTCACACACACAGTTTCAA
CAAGGAAGAAAGGCCCAGTTGAAGACTATGAACTCCTTGGTATGAAGGATGGGAGGAAGGAATC
TGATTACCTCTGCTGCTGGTGCCAGGTCACCTTGACACAAATCATTACGTGAATGCTAGTAGAG
AATGGGAAAGAGTGTGTGTGTGTGAGTGGGAATCACTGGATTTGCATTATTTTATGTCCTTTTG
CATATTGTTTCTCTGGGTTTGGAAGTGTTTGTATATAAAATATGTATCTGTGCCTCTGAGTGCA
TGTCTGGACTCGGATTAATGTCTCCTTGTTGGAGGTATACTAATGTCTCTTAGCTGCAGGAGGA
GATCACGTTTTGTGTCCTGAGTCTGCTTGGGCAATGATGTGGGAGAGAGAACATGGGCTCTTCA
CTCACTGACACATCCGTCTCCTCCACAGCCGAACCCCTATCAGCAGTCTGTTTCCCTGGCTGTG
GGTTTCATGGTGAAGATCATGGGAAATCTTGAGTCTTCTTGTGGGTGAGTAGAGGCCGGTTTAT
GTCTGATGGAGGGTGAAGCACAAGGGGAGAGTGTTAGCATGTCTTGGGGACATTCATTGGAAAC
AGCTTGATCTTCTTTAATCATCGGAATAAGCTGAAGTGTCTCATGCAAAAGTGTGAGATTACAC
TTCAGGTGGGATTTCCTTCCTCtgtgtgtctgtgtctatgtgtgtgtgtgtgagctggggaggc
aggggaggaaaagagagagagatagcaaagtgagaaaggtataaatattttgagaaagaaggca
gggggaaggggaaggagggagagggagagagagagaaaaaaggaCTGTGGTTGTTCCTGAGGAA
GTTGTTGTCTGCAGTAAATGCCTGCCTGCAGGAGCTATCCTCTTGTCTTTGCAGGAAGAACCCA
GAGCTTGTGGTGGATTTCTGCACGGGTATTGAGGAAGACAGCGACATTGCATTCCATTTCCGAG
TCTACACGAACAGCATGGTGGTGATGAACAGTTTCCAGAAAGGGGGATGGCAGGAGGAAAAGAG
AATGTTTTCTGACCCTTTCATGCCAGGCCAGCCATTTGAGCTTCGATTCTTGGTGCTGGAGAAT
GAATACAAGGTGTGTGGGCCCTCCAGGGTGTGGAGCGCCATGGCCATGTTGGGGCTGCTGTGGA
GAAACACACGGAGAGTCCAACTCTGATGTGATCACAACAGACCAATTTTTTGTTTGTTTTGTAT
TTTTAACACATGTGCTTTTTGAAATTGAAGTATCATTGATTTACCTTACCATGTGAGTTTCAGG
CGTACAACAGAGTGGTGGAGCCCCTTGTCCCTGTATAGCACAGGCATCTATACTCAGGATCTTG
TGTGCTGTACTCAGTGTGTGTGCTGTACAAGTAGAGATGCTGAGGTGAACTCCACACAGCTCTT
ACTGTATCGGACAGTCAGCAGTGTGGAGGGAGACGTGCAGGCCCCCTGCCCTCAGGGTAAAGCA
GGGATGACAGCTCTGGAGGCGAGGAAGTGGACATGGAGGATGATTTCTACAGCACTGTATTGGC
AGGATGTCCTGGAGGAGAATTTCTGCTTTGCTTTTACAGAGTAAAGAAATTTTACAGAAGGCAA
TGAAAGTAGGAAAGGGAAAGAGGAGGCCTAATCGTTCTGAGCTCACAAGAAATACATCTCCTTC
CTTAGGTGTTTGTGAATAACGAGTCCTTCTGCCAGTTTGCCCACCGCCTGCCCCTACAGTCTGT
GAAAATGCTGAAGGTGAAGGGAGATACTGTGCTGACTTCAGTGGATACATTTTAAGGGGCAGAA
GATCTTCCAGTGAAGATATCCACCCCATTCCACTCTTCCATAATGTGCAGGATCATGGCCACTC
CCAGAAGATGCCAGCATGTGCCCCTGCCCTCACACTTACTCCAGTCATAATAATATTCCTGATA
TG 
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