
MULTITRACK: A DELAY AND COST AWARE P2P OVERLAY

ARCHITECTURE

A Thesis

by

VINITH KUMAR REDDY PODDUTURI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2009

Major Subject: Computer Engineering

MULTITRACK: A DELAY AND COST AWARE P2P OVERLAY

ARCHITECTURE

A Thesis

by

VINITH KUMAR REDDY PODDUTURI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Srinivas Shakkottai
Alex Sprintson

Committee Member, Natarajan Gautam
Head of Department, Costas N. Georghiades

August 2009

Major Subject: Computer Engineering

iii

ABSTRACT

MultiTrack: A Delay and Cost Aware P2P Overlay Architecture. (August 2009)

Vinith Kumar Reddy Podduturi, B.E.;M.Sc., Birla Institute of Technology and

Science, Pilani,India

Co–Chairs of Advisory Committee: Dr. Srinivas Shakkottai
Dr. Alex Sprintson

The rapid growth of peer-to-peer (P2P) networks in the past few years has

brought with it increases in transit cost to Internet Service Providers (ISPs), as peers

exchange large amounts of traffic across ISP boundaries. This ISP oblivious behavior

has resulted in misalignment of incentives between P2P networks—that seek to max-

imize user quality—and ISPs—that would seek to minimize costs. Can we design a

P2P overlay that accounts for both ISP costs as well as quality of service, and attains

a desired tradeoff between the two? We design a system, which we call MultiTrack,

that consists of an overlay of multiple kinds of Trackers whose purpose it is to align

these goals. We have mTrackers that form an overlay network among themselves, and

split demand from users among different ISP domains while trying to minimize their

individual costs (delay plus transit cost) in their ISP domain. We design the signals

in this overlay of mTrackers in such a way that potentially competitive individual

optimization goals are aligned across the mTrackers. The system could also have a

tTracker that acts as a gateway into the system, and ensures that users who are from

different ISP domains have a fair chance of being admitted into the system, while

keeping costs in check.

We prove analytically that our system is stable and achieves maximum utility

with minimum cost. We validated our system design using Matlab simulations, and

implemented the system on ns-2 in order to conduct more realistic experiments. We

iv

showed that our system significantly outperforms two types of systems, one in which

user delay is the only control dimension (forwarding traffic without considering the

transit prices) and a second system in which transit prices are the only control di-

mension (localized traffic only). Thus, we conclude that our system, that operates in

two dimensions: (1) user delay and (2) transit prices, results in minimum cost and

maximum utility for fixed capacity of the system.

v

To God and my Parents

vi

ACKNOWLEDGMENTS

I thank my advisor, Dr. Srinivas Shakkottai, for choosing me to work on this re-

search project. As a mentor and critic, he guided me in the right direction throughout

the course of this research. His constructive feedback and motivation helped me to

challenge myself and realize my true potential, both technically and non-technically

as well. I sincerely thank him for helping me out in many ways, through the infor-

mative discussions we had or the guidance he provided in choosing my courses, or

even the recommendations he provided for getting assistantships in the department.

“Thank you very much, Dr. Shakkottai, you made this journey look easy”. I thank

Younghoon Kim, who is a Phd. student in the Department of Computer Science at

KAIST, South Korea, for the invaluable help he provided in the form of implementing

our system in ns-2 simulator. I would like to thank Dr. A.L. Narasimha Reddy for

his collaboration on this project. His valuable suggestions during the course of this

project helped us a lot. I would like to express my sincere gratitude to my co-advisor

Dr. Alex Sprintson; he helped me pick the right courses. I thank him for recommend-

ing me for department assistantships, which helped me focus on my research. I thank

Dr. Gautam Natarajan for agreeing to be on my committee. I would like to extend

my gratitude to the professors and staff in computer cngineering group of the ECE

department at Texas A&M University for guiding me and helping me in. Finally,

I thank my parents - who have always supported and encouraged me to pursue my

master’s. Last, but not the least, I thank the Almighty for giving me strength to

overcome my limitations all the time.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Related Work . 5

II POPULATION GAMES AND EVOLUTIONARY DYNAMICS 7

A. Populations, Strategy Distributions and Payoffs 8

1. Potential Games . 9

B. Stability and Equilibrium 10

1. Wardrop Equilibrium 11

C. Evolutionary Dynamics . 11

1. Replicator Dynamics 12

2. Brown-von Neuman-Nash Dynamics 13

III PEER TO PEER NETWORKS: BITTORRENT 14

IV MULTITRACK SYSTEM . 18

A. mTracker: Splitting Demand 20

1. MultiTrack Game . 23

2. Convergence of mTracker dynamics 24

3. Cost efficiency of mTrackers 27

B. tTracker: Admission Control 30

V MATLAB SIMULATIONS . 35

A. mTracker Simulations . 36

B. tTracker Simulations . 37

VI NS-2 SIMULATIONS . 40

A. Overview of MultiTrack Implementation in ns-2 41

VII CONCLUSIONS AND FUTURE WORK 48

REFERENCES . 50

APPENDIX A . 54

viii

Page

VITA . 55

ix

LIST OF TABLES

TABLE Page

I A list of configuration parameters needed for each mTracker 42

x

LIST OF FIGURES

FIGURE Page

1 The MultiTrack architecture. Multiple trackers, each following

individual optimizations, achieve an optimal delay-cost tradeoff. . . . 3

2 A typical BitTorrent session consists of the following steps: (1)

The new peer requests for a torrent file; (2) The torrent server

replies with the torrent file; (3) The peer requests a Tracker for

peer addresses to contact; (4) The Tracker responds with peer

addresses 1, 2, 3 and 4; (5) Finally the new peer exchanges data

with peers 2 and 3. 15

3 Steady and transient phases of a P2P system; The evolution of

service capacity of a P2P swarm with (a) concave arrival rate and

(b)constant arrival rate, of peers into the system and no peer departures. 19

4 Simulation topology: three mTrackers, T1, T2 and T3 and one

tTracker which does admission control. A solid line from mTrack-

ers T2 and T3 to T1 imply that T2 and T3 are in transient state

and can forward requests to steady state mTracker T1. The dotted

arrows from tTracker to mTrackers represent the flows admitted

by tTracker. 35

5 The trajectory of payoffs of mTracker T2 for the 2 options avail-

able (local swarm and T1’s swarm). The payoffs eventually equal-

ize, showing that a Wardrop equilibrium has been attained. 36

6 The trajectory of traffic splits at mTracker T2 for the 2 options. . . . 37

7 The trajectory of total system cost in the system. As expected,

it decreases over time to a minimum. 38

8 The trajectory of net utility of the system when tTracker uses

admission control. The net utility converges to a maximum. 39

9 The trajectory of payoffs of mTracker T2 for the 2 available op-

tions (local swarm and T1’s swarm). 43

xi

FIGURE Page

10 The trajectory of payoffs of mTracker T3 for the 2 available op-

tions (local swarm and T1’s swarm). 44

11 The trajectory of total system delay with MultiTrack. The delay

converges to a low value. 45

12 The trajectory of total transit price. Without traffic splitting, the

price is zero. With traffic splitting without regard to price, the

price is high. MultiTrack takes prices into account, and has a

price between these extremes. 46

13 The trajectory of average user delay. Without traffic splitting,

the delay is high. With traffic splitting without regard to price,

the delay is low. MultiTrack takes delays into account, and has a

delay between these extremes. 46

14 The trajectory of total user delay. Without traffic splitting, the

cost (delay plus transit price) is high. With traffic splitting with-

out regard to price, the delay is low but transit price is high, caus-

ing high cost. MultiTrack takes prices and delays into account,

and has lowest total cost. 47

1

CHAPTER I

INTRODUCTION

The past few years have seen the rapid growth of content distribution over the In-

ternet, particularly using peer-to-peer (P2P) networks. Recent studies estimate that

35-90% of bandwidth is consumed by P2P file-sharing applications, both at the edges

and even within the core [1–3]. The use of P2P networks for media delivery is ex-

pected to grow still further, with the proliferation of legal applications (e.g. Pando

Networks [4]) that use P2P as a core technology.

While most P2P systems today possess some form of network resource-awareness,

and attempt to optimally utilize the system resources, they are largely agnostic to

Internet Service Providers’ (ISP) concerns such as traffic management and costs. This

ISP-oblivious nature of P2P networks has hampered the ability of system participants

to correctly align incentives. Indeed, the recent conflicts between ISPs and content

providers, as well as efforts by some ISPs such as Comcast to limit P2P traffic on

their networks [5], speak in part to an inability to align interests correctly. Such

conflicts are particularly critical as P2P becomes an increasingly prevalent form of

content distribution [6].

A traditional BitTorrent system [7] has elements called Trackers whose main pur-

pose is to enable peers to find each other. The BitTorrent Tracker randomly assigns

a new (entering) user a set of peers that are already in the system to communicate

with. This system has the disadvantage that if peers who are assigned to help each

other are in the domains of different ISPs, they would cause significant transit costs

to the ISPs due to the inter-ISP traffic that they generate. However, if costs are

The journal model is IEEE Transactions on Automatic Control.

2

reduced by forcing traffic to be local, then the delay performance of the system could

be impacted. Recent work such as [8–10] has focused on cost in terms of load bal-

ancing and localizing traffic, and developed heuristics to attain a certain quality of

service (QoS). For example, P4P [9] develops a framework to achieve minimum cost

(optimal load balancing) among ISP links, but its BitTorrent implementation utilizes

the heuristic that 30% of peers declared to each requesting user should be drawn from

“far away ISPs” in order to attain a good QoS.

This leads us to the fundamental question that we attempt to answer in this

paper: Can we develop a distributed delay and cost optimal P2P architecture?. In

this thesis we focus on developing a provably optimal price-assisted architecture called

MultiTrack, that would be aware of the interaction between delay and cost. The idea

is to understand that while the resources available with peers in different ISP domains

should certainly be used, such usage comes at a price. The system must be able to

determine the marginal gain in performance for a marginal increase in cost. It would

then be able to locate the optimal point at which to operate.

The conceptual system is illustrated in Figure 1, and consists of the following

elements. The system is managed by a set of mTrackers. Each mTracker is associated

with a particular ISP domain. The mTrackers are similar to the Trackers in BitTorrent

[7,11], in that their main purpose is to enable peers to find each other. However, unlike

BitTorrent, the mTrackers in MultiTrack form an overlay network among themselves.

The purpose of the overlay network is to provide multi-dimensional actions to the

mTrackers. In Figure 1, mTracker 1 is in steady state (wherein the demand on the

mTracker is less than the available capacity [12]), which implies that it has spare

capacity to serve requests from other mTrackers. Consider mTracker 3. When a

request arrives, it can either assign the requester to its own domain at essentially zero

cost, or can forward the user to mTracker 1 and incur a cost for doing so. However,

3

Requests

 P2P

ISP 1
mTracker 1
������������

Requests Requests

ISP 2

ISP 3

mTracker 2

mTracker 3

���������

���������

 P2P

 P2P

Fig. 1. The MultiTrack architecture. Multiple trackers, each following individual op-

timizations, achieve an optimal delay-cost tradeoff.

the delay incurred by forwarded users would be less as mTracker 1 has high capacity.

Thus, mTracker 3 can trade-off cost versus delay performance by forwarding some

part of its demand.

Each mTracker uses price assisted decision making by utilizing dynamics that

consider the marginal payoff of forwarding traffic to that of retaining traffic in the

same domain as the mTracker. Several such rational dynamics have been developed

in the field of game theory that studies the behavior of selfish users1; background on

population games and evolutionary dynamics , which we used to model our system,

is presented in chapter II. Since our system is based on BitTorrent architecture

we dedicate a chapter III to describe about some basic BitTorrent components and

terminology.

1A good reference on game theory is [13].

4

We present our system model with its attendant simplifying assumptions in chap-

ter IV. We then design a system in which the actions of these mTrackers, each seeking

to maximize their own payoffs, actually results in ensuring lowest cost and highest

performance of the system as a whole. We then consider a subsidiary problem of

achieving fair division of resources among different mTrackers through admission con-

trol. We design an element that we call the tTracker, that tracks the performance

of mTrackers, and takes admission control decisions based on the marginal disutility

caused by users to the system. The objective here is to ensure that some level of

fairness is maintained among the users in different mTracker domains, while at the

same time ensuring that the costs in the system are not too high. Users interested

in the file would approach the tTracker (which can be thought of as an mTracker

search engine and system gateway) that would decide whether or not to admit the

user into the system, and if admitted, would direct it to the mTracker whose domain

the user belongs (mTracker nearest to the user in terms of ISP domain). We show

that our tTracker optimally achieves fairness amongst users, while maintaining low

system cost2.

We simulate our system both using Matlab simulations in chapter V to validate

our analysis, as well as ns-2 simulations in chapter VI to show a plausible implemen-

tation of the system as a whole. The simulations strongly support our architectural

decisions. We conclude with ideas on the future in chapter VII.

2Note that switching off admission control would still imply that the total system
cost would be minimized by mTrackers, but this could be arbitrarily high.

5

A. Related Work

There has been much recent work on P2P systems and traffic management, and we

provide a discussion of work that is closely related to our problem. Fluid models of

P2P systems, and the multi-phase (transient/steady state) behavior has been devel-

oped in [12, 14]. The results show how supply of a file correlates with its demand,

and it is essentially transient delays that dominate. While they are not concerned

with ISP incentives, their model provides the foundation for ours. In particular, we

exploit their observation of multi-phase behavior of a P2P system. In our model we

have distinct P2P systems for the same file in each ISP domain. Peers connect to

the P2P system that is present in their ISP domain. However, a transient state P2P

system can potentially forward its peers’ requests to a steady state P2P system, i.e.

inter-ISP forwarding of traffic is acceptable if expected gain in performance is greater

than the cost of traffic exchange.

Traffic management and load balancing have become important as P2P networks

grow in size. There has been work on traffic management for streaming traffic [15–

17]. In particular, [15] focuses on server-assisted streaming, while [16, 17] aim at

fair resource allocation to peers using optimization-decomposition. Similar ideas for

traffic engineering for elastic traffic are studied in [18, 19]. But none of these works

talk about the cost incurred to an ISP. Closest to our setting is work such as [8–10],

that study the need to localize traffic within ISP domains. In [8], the focus is on

allowing only local communications and optimizing the performance by careful peer

selection, while [9] develops an optimization framework called P4P, that balances load

across ISPs using cost information. A different approach is taken in [10], and peers

are selected based on inputs on nearness provided by CDNs (if a CDN directs two

peers to the same cache, they must be near by). In this thesis we attempt to provide

6

an analytical characterization of the tradeoff between delay performance and cost.

Pricing and market mechanisms for P2P systems are of significant interest, and

work such as [20,21] use ideas of currency exchange between peers that can be used to

facilitate file transfers. The system we plan to design uses prices between agents (or

Trackers) in P2P systems, which are confined to an ISP domain, that map to real-

world costs of traffic exchange, but do not have currency exchanges between peers

which still use BitTorrent style bilateral barter.

7

CHAPTER II

POPULATION GAMES AND EVOLUTIONARY DYNAMICS

Population games, a branch of Game Theory, provides a mathematical model to

capture the strategic interactions among a large number of agents or players. Pop-

ulation games are used in a variety of disciplines, some of the applications include;

multilateral externalities in economics, genetic natural selection in biology, routing in

computer networks and many other applications.

Any application or game (G) with the following attributes is called a population

game:

1. Many players participate in the game G.

2. The impact of one player’s actions on another player’s payoffs is very little.

3. Their exists a finite number of population classes (Q = {1, ..., Q}) and each

player belongs to exactly one population class (j ∈ Q). All the players within

a population class(j) have same set of strategies (Sj) to choose from, and their

payoffs are identical functions of their own choices and opponents choices.

4. The payoff of each player is a continuous function.

In the next section we give a formal definition for population games along with

its different components. In the later sections of this chapter we describe about

potential games,a type of population games, that we used to model our MultiTrack

system. Later we introduce the notion of equilibrium for these potential games and

the different evolutionary dynamics(or strategy dynamics) that can be used to attain

this equilibrium.

Much of the discussion presented in the following sections can be found in [22].

8

A. Populations, Strategy Distributions and Payoffs

A population game G, with Q non-atomic populations of players is defined by a

mass(or number of players in that population) and a strategy set for each population

and a payoff function corresponding to those strategies. By a non-atomic population,

we mean that the contribution of each member of the population is infinitesimal.

We denote the set of populations by Q = {1, ..., Q}, where Q ≥ 1. The population

q ∈ Q has mass xq. The set of strategies for population q is denoted Sq = {1, ..., Sq}.

A particular strategy distribution is a way the population q distribute themselves

amongst the different strategies, i.e., a strategy distribution for q is a vector of the

form ~xq = {x1
q, x

2
q, . . . , x

Sq
q }, where

Sq∑
i=1

xiq = xq

The set of strategies of a population q ∈ Q, is denoted by

Xq = {~xq ∈ RSq

+ :

Sq∑
i=1

xiq = xq}

We denote the vector of strategies being used by the entire population as X =

{~x1, ~x2, ..., ~xQ}, where ~xq ∈ Xq,∀q ∈ Q. The vector X can be thought of as the

state of the system. Let the space of all strategy distributions be X .

Generally a population game is identified by its payoff function. For a given

set of populations and their strategies different games can be devised using different

payoff functions. A payoff function (per unit mass) F : X → RQ is a continuous and

differentiable function that assigns each population class a vector of payoffs, one for

each strategy in that population. The payoff obtained by users of population class

q ∈ Q from using strategy i ∈ Sq, when the state of the system is X, is denoted

by F i
q(X) ∈ R. Note that, the payoff obtained as a result of a strategy taken by a

9

population q can depend on the strategy distribution within population q itself as

well as the strategy distribution of other population classes. The total payoff of class

q is then given by
∑Sq

i=1 F
i
q(X)xiq, where we assume linearity for exposition. Players

may be cooperative or non-cooperative in behavior.

Based on the properties or constraints on payoff functions, population games can

be categorized into 3 different classes: potential games, stable games and supermodular

games. Each of these classes impose a structure on their payoff function which renders

their analysis relatively simple. We model our MultiTrack system as a potential game,

so we dedicate a section to describe about potential games and the structure of their

payoff functions.

1. Potential Games

In potential games, all information regarding the payoffs obtained by users of a pop-

ulation class can be captured in a single scalar-valued function. This scalar function

is called the games’s potential function.

Definition 1 Let G be a population game with payoff function(per unit mass) F :

X → RQ. G is called a Potential Game if there exists a continuously differentiable

function T : X → R such that

∂T
∂xiq

(X) = F i
q(X) (2.1)

∀q ∈ Q and i ∈ Sq, where X ∈ X is the state of the system. The function T is

called the potential function for game G. It represents the games payoff function in

an integrated form.

An important thing to observe in potential games is that the potential of the system

increases as players switch to profitable strategies. For example, suppose the state of

10

the system be X ∈ X and let F i
q(X) > F j

q (X) for some population class q ∈ Q and

the strategies i, j ∈ Sq, i.e. strategy i yields more payoff than strategy j for players

in population class q. Now let some players in population class q switch from state j

to state i, the marginal affect in potential because of this shift is given as:

∂T
∂xiq

(X)− ∂T
∂xjq

(X) = F i
q(X)− F j

q (X) ≥ 0 (2.2)

Thus a potential function characterizes the behaviour of a population of players. The

theory behind potential games is analogous to the theory of Lyapunov function in

control systems [23].

B. Stability and Equilibrium

As seen in the previous section the theory of population games provide a simple

framework for describing strategic interactions among large numbers of players. We

now focus on the equilibrium conditions for these games.

A commonly used concept of equilibrium in non-cooperative games is that of

the Nash equilibrium which is defined as the solution of a game involving two or

more players, in which each player is assumed to know the equilibrium strategies of

the other players, and no player has anything to gain by changing only his or her

own strategy unilaterally. If each player has chosen a strategy and no player can

benefit by changing his or her strategy while the other players keep theirs unchanged,

then the current set of strategy choices and the corresponding payoffs constitute a

Nash equilibrium. Whereas the Nash equilibrium is appropriate for the case of atomic

players, in the context of infinitesimal players, a different concept of equilibrium called

Wardrop Equilibrium is used.

11

1. Wardrop Equilibrium

A commonly used concept in non-cooperative games in the context of infinitesimal

players, is the Wardrop equilibrium [24], which is defined below. Consider any strategy

distribution ~xq = [x1
q, . . . , x

Sq
q]. There would be some elements which are non-zero and

others which are zero. We call the strategies corresponding to those non-zero elements

as the options used by population q.

Definition 2 A state X̂ is a Wardrop equilibrium if for any population q ∈ Q,

all options used by the members of q yield the same marginal payoff to each member

of q, whereas the marginal payoff obtained for options not used by population q would

fetch lower payoffs.

Let Ŝq ⊂ Sq be the set of all strategies taken by population q in a strategy

distribution when the state of the system is X̂. A Wardrop equilibrium X̂ is then

characterized by the following relation:

F s
q (X̂) ≥ F s̄

q (X̂) ∀s ∈ Ŝq and s̄ ∈ Sq

The above concept refers to an equilibrium condition for population games. A

natural question then would be, how does the system arrive at such an equilibrium

state?. This leads us to the concept of evolutionary dynamics.

C. Evolutionary Dynamics

Traditionally, predictions of a players behavior in games are based on some notion of

equilibrium, typically Nash equilibrium. These notions are founded on the assump-

tion of equilibrium knowledge, which posits that each player correctly anticipates

how his opponents will act. The equilibrium knowledge assumption is difficult to jus-

tify,especially in the context of large numbers of players, like population games. So

12

the behavior of players in population games is modeled as a dynamic adjustment pro-

cess, in which players myopically alter their behavior in response to their current state

of the system. This dynamic adjustment process is termed as Evolutionary Dynamics

or population dynamics, which is generally represented as a differential equation. It

takes the current payoff’s and the state of the system as input and outputs the rate

at which players, belonging to the same class shift from one strategy to another.

We conclude this chapter with the description of two such population dynamics,

which are the most widely used models, Replicator Dynamics [25] and Brown-von

Neumann-Nash dynamics [26].

1. Replicator Dynamics

The rate of increase of ẋiq/x
i
q of the action i taken by players in population q ∈ Q is a

measure of its evolutionary success. Following the basic tenet of Darwinism, we may

express this success as the difference in fitness F i
q(X) of the action i and the average

fitness
∑Sq

i=1 x
i
qF

i
q(X)/xq of the population j. Then we obtain

ẋiq
xiq

= fitness of i - average fitness.

Then the dynamics used to describe changes in the mass of population q playing

strategy i is given by

ẋiq = xiq

(
F i
q(X)− 1

xq

Sq∑
i=1

xiqF
i
q(X)

)
. (2.3)

The above expression thus says that a population would increase the mass of a suc-

cessful strategy and decrease the mass of a less successful one. The proverb “The

rich get richer and the poor get poore” exemplify the working of replicator dynamics.

Note that the total mass of the population q is xq which is a constant.

13

2. Brown-von Neuman-Nash Dynamics

Another commonly used model is called Brown-von Neumann-Nash (BNN) dynamics

[26], and is defined as follows:

let,

γiq = max

{
F i
q(X)− 1

xq

Sq∑
i=1

xiqF
i
q(X), 0

}
(2.4)

denote the excess payoff to strategy i relative to the average payoff in population q.

Then BNN dynamics are described by

ẋiq = xqγ
i
q − xiq

Sq∑
j=1

γjq . (2.5)

An interpretation of the BNN dynamics is that during any short time interval, all

players in a population are equally likely to switch strategies, and do so at a rate

proportional to the sum of the excess payoffs in the population. Those who switch

choose strategies with above average payoffs, choosing each with probability propor-

tional to the strategy’s excess payoff. The reason for considering BNN dynamics is

that unlike replicator dynamics, it has the property of non-complacency in that it al-

lows extinct strategies to resurface, so that its stationary points are always Wardrop

equilibria [22].

14

CHAPTER III

PEER TO PEER NETWORKS: BITTORRENT

A P2P network is the new wave in network architecture that is being used for many

different applications today. The basic idea in a P2P network is to use the upload

bandwidth of users or clients to upload pieces of a file. Thus, in a P2P network the

peers act as both downloaders and uploaders of data. In P2P systems the total load

of the system is shared among different peers where as in a client-server paradigm,

the load is shared by limited number of central servers. Thus making P2P more

efficient and scalable than classic client-server architecture. There are many P2P

network architectures in existence, some of them are Gnutella, Napster, KaZaA and

BitTorrent. Out of these, BitTorrent [7,11] is the most widely used and it is estimated

that it accounts for 35% of all internet traffic. Our MultiTrack model is based on

BitTorrent architecture so, for completeness, we give an overview of the functioning

of BitTorrent architecture and its key components.

BitTorrent was designed in 2001 by Bram Cohen [11]. The following terminology

is used in a BitTorrent system:

1. Chunk: In the BitTorrent architecture, a large file is divided into multiple

chunks, where each chunk size is 256 Kilo-Bytes.

2. Seeds and Leechers: A peer that has downloaded the complete file and is

willing to upload to other peers is called a seed, whereas if a peer does not want

to upload to other peers it is called a Leecher.

3. Downloaders: A peer that is in the process of downloading is called a down-

loader. A downloader can simultaneously upload previously downloaded chunks

of the file.

15

4. Swarm: All the peers (seeds and downloaders) that participate in the file

exchange process, through a common torrent file. constitute a swarm.

5. Torrent: A torrent is a metadata file that contains metadata about the files it

makes downloadable, including their names and sizes and checksums of all the

chunks of these files. It also contains the address of a tracker that coordinates

communication between the peers in the swarm.

6. Tracker : A central server which keeps track of all the peers in a swarm is

called a tracker. The primary goal of a tracker is to coordinate access between

peers.

Fig. 2. A typical BitTorrent session consists of the following steps: (1) The new peer

requests for a torrent file; (2) The torrent server replies with the torrent file;

(3) The peer requests a Tracker for peer addresses to contact; (4) The Tracker

responds with peer addresses 1, 2, 3 and 4; (5) Finally the new peer exchanges

data with peers 2 and 3.

A BitTorrent session flow depicted in Figure 2. A new peer that wants to down-

load a file needs to know about other peers to start its download process, so it should

16

first locate a Tracker corresponding to the file, which will coordinate access to other

peers. Information about Trackers for a file (among other information) is contained

in torrent files, which are hosted at free web servers called torrent servers. Thus, the

peer downloads the torrent file, and locates a Tracker using the information provided

in the torrent file.

When a peer sends a request to a Tracker, corresponding to the file it wants, the

Tracker returns IP addresses of a set of peers (seeds and downloaders) that the new

peer should contact in order to download the file. The peer then connects to a subset

of the given peers and downloads chunks of the file from them. While downloading

the file, a peer sends updates to the Tracker about its download status (number of

chunks uploaded and downloaded). Since peers leave the swarm, in order to maintain

connectivity, existing peers should periodically send requests for new set of peers to

its tracker and the above sequence repeats. Since a tracker knows about the state

of each peer that is present in its peer cloud (or swarm), a tracker can potentially

control access to the peer cloud. We exploit this capability of a tracker to design our

model that we present in the next chapter.

The distinguishing feature of BitTorrent, which lead to its success over other

P2P systems, is the way it handles the problem of free riders. A free rider is a peer

that downloads data from other peers but do not contribute to other peers, thereby

affecting the systems performance. Free riding was a severe problem in traditional

P2P systems [27]. In order to overcome this problem, BitTorrent uses a peer selection

algorithm called Choking/Unchoking. Using this scheme each peer can control to

which other peers it can upload data. When a remote peer is selected for upload an

Unchoke message is sent and, a peer stops uploading to a remote peer by sending

a Choke message. At any time each peer can upload to a fixed number of other

peers(default is four). The peers use a “tit-for-tat” strategy in selecting the peers

17

to which it will upload, i.e. it choses to choke those peers from which it gets a poor

download rate while uploading to those peers from which it got highest download

rates. Thus each peer tries to maintain a download to upload ratio of one. For a seed

unchoking is based on the download rate of remote peers rather than the upload rate.

18

CHAPTER IV

MULTITRACK SYSTEM

MultiTrack is a hybrid P2P network architecture similar to BitTorrent, described in

chapter III in many ways. MultiTrack uses two different types of Trackers—tTrackers

and mTrackers—that generalize the functions of the BitTorrent Tracker:

1. tTracker acts as a gateway into the system, in much the same manner as the

server that hosts the .tor file in BitTorrent. Whereas the server in BitTorrent

has no control over admission decisions of peers, the tTracker does have this

choice. If admitted, the tTracker gives the peer the address of the mTracker

nearest to the peer (in terms of ISP administrative domain).

2. mTracker acts as a gateway to a particular peer cloud of a file. We associate

one or more mTrackers to each ISP, with each mTracker controlling access to

its own peer cloud. Note that all these mTrackers are identified with the same

file. Unlike BitTorrent Trackers, mTrackers are aware of each other, and form

an overlay network among themselves. When a peer approaches an mTracker,

the mTracker takes a decision on whether to admit it into its own peer cloud

(at relatively low cost, but possibly poor delay performance) or to forward it to

another mTracker (at higher cost, but potentially higher performance).

The rationale behind this architecture is as follows. At any time a peer cloud has

a capacity associated with it, based on the maximum upload bandwidth of a peer in

the cloud and the total number of chunks present at all the peers in the cloud (seeds

and downloaders). Thus, a peer cloud can be thought of as a server with changing

service capacity. In general, a peer-cloud has two phases of operation as mentioned

in [12] and is shown in Figure 3:

19

Fig. 3. Steady and transient phases of a P2P system; The evolution of service capacity

of a P2P swarm with (a) concave arrival rate and (b)constant arrival rate, of

peers into the system and no peer departures.

1. Transient phase where the available capacity is less than the demand (in other

words, not enough peers with a copy of the file), and a

2. Steady state phase, where the available capacity is greater than the capacity

required to satisfy demand.

Now, the capacities of the peer-clouds depend on the temporal evolution of demand.

One geographic region (say the East Coast of the US) might see the evolution of

demand earlier than another (say the West Coast of the US). Thus, there could

potentially be steady state peer-clouds that have available capacity, but at high cost

in terms of traffic exchange needed between ISPs. This is the core foundation on

which our model is built.

We assume time scale separation between the dynamics of the two types of Track-

ers. Our assumption is that the capacity of a P2P system remains roughly constant

over intervals of time, with capacity changes seen at the end of these time periods.

We divide system dynamics into three time scales:

20

1. Large: The capacity of the peer cloud associated with each mTracker changes

at this time scale.

2. Medium: tTrackers take admission control decisions at this time scale. They

could increase or decrease the number of admitted peers based on feedback from

the system. We will study dynamics at this time scale in Section B.

3. Small: mTrackers split the demand that they see among the different options

(mTrackers visible to them) at this time scale. Thus, they change the probability

of sending peers to their own peer-cloud or to other mTrackers at this time scale.

We study these dynamics in Section A.

The artifice of splitting dynamics into these time scales allows us to design each

control loop while assuming that certain system parameters remain constant during

the interval. In the following sections, we present the design and analysis of our

different system components.

A. mTracker: Splitting Demand

The objective of the mTracker is to split the demand that it sees among the different

options (other mTrackers, and its own peer cloud) that it sees. Since each mTracker

is associated with a different ISP domain, it would like to minimize the cost seen by

that ISP, and yet maintain a good delay performance for its users.

As mentioned in the last section, peer-clouds can be in either transient or steady-

state based on whether the demand seen is greater than or less than the available

capacity. This dual-phase-mode operation was characterized by Yang et al. [12] and

as shown in Figure 3, our mTtackers could be in one of these modes. An mTracker

in the transient mode would like to offload some of its demand, while mTrackers in

21

the steady-state mode can accept load. Thus, each mTracker j in the transient mode

maintains a split probability vector ~̂yj = [ŷ1
j . . . ŷ

Q
j], where Q is the total number of

mTrackers, and some of the yij could be zero. We assume that the demand seen by

mTracker j is a Poisson process of rate xj. Thus, splitting traffic according to ~̂yj

would produce Q Poisson processes, each with rate xij , yijxj (i = 1, ...Q).

Now, each mTracker in the steady-state mode can accept traffic from mTrackers

that are transient. It could, of course, prioritize or reserve capacity for its own traffic;

we assume here that it does so, and the balance capacity available (in users served

per unit time) of this steady state mTracker is Ci. Then the demand seen at each

such mTracker i is the sum of Poisson processes that arrive at it, whose rate is simply∑Q
l=1 x

i
l, and the M/M/1 delay seen by each peer sent to mTracker i is

1

Ci −
∑Q

l=1 x
i
l

. (4.1)

While we use an M/M/1 assumption in the paper, we note that our analysis applies

to any convex increasing delay function.

Now, the steady state mTrackers are disinterested players in the system, and

would like to minimize the total delay of the system. They could charge an additional

price that would act as a congestion signal to mTrackers that forward traffic to them.

Such a congestion price should reflect the ill-effect that increasing the load by one

mTracker has on the others. What should such a price look like? Now, consider the

expression

D(z) =
1

Ci − zi
, (4.2)

which is the general form of the delay seen by each user at mTracker i. The elasticity

22

of delay with arrival rate zi

∂D(zi)

∂zi
zi

D(zi)
=

zi

Ci − zi
. (4.3)

The elasticity gives the fractional change in delay for a fractional change in load,

and can be thought of as the cost of increasing load on the users. In other words, if

the load is increased by any one mTracker, all the others would also be hurt by this

quantity. Expressing the above in terms of delay (multiply by total delay) to ensure

that all units are in delay, the elasticity per unit rate per unit time at mTracker i is

just ∑Q
l=1 x

i
l

(Ci −
∑Q

l=1 x
i
l)

2
. (4.4)

The above quantity represents the ill effect that increasing the load per unit time has

on the delay experienced on all users at mTracker i. In some sense, the delay cost

(4.1) is the disutility for using the mTracker, while the congestion cost (4.4) is the

disutility caused to others using the mTracker. The mTracker can charge this price

to each mTracker that forward peers to it. Note that a transient mTracker should

charge itself this price as well, as it indicates the congestion that it is causing on its

own users by increasing load.

Since mTrackers belong to different ISP domains, forwarding demand from one

mTracker to the other is not free. Indeed, one of the main goals of our system is

to tradeoff this cost with that of delay. We assume that the transit cost per unit

rate of forwarding demand from mTracker j to mTracker i is pij. Thus, the payoff

of mTracker j due to forwarding traffic to mTracker i per unit rate per unit time is

given by the sum of transit cost pij with the delay cost (4.1) and congestion price

23

(4.4), which yields a total payoff per unit rate per unit time of

1

Ci −
∑Q

l=1 x
i
l

+ pij +

∑Q
l=1 x

i
l

(Ci −
∑Q

l=1 x
i
l)

2
. (4.5)

Note that the mTracker would like as small a payoff as possible.

In the next subsections we will develop a game-theoretic framework for our sys-

tem, and show how rational dynamics when coupled with the payoff function given

above naturally results in minimizing the total system cost (delay cost plus transit

cost).

1. MultiTrack Game

We model our system as a population game, which we covered briefly in chapter II.

Each mTracker(and the peers in its domain) is a population class with a set of options

(other mTrackers) to which it can forward its peer requests. The options available

to an mTracker are other mTrackers’ peer cloud or its own peer cloud. A strategy

for each mTracker is then how it should partition its incoming requests among the

different options so as to get equal payoff (or cost) from all the options that it uses,

and higher cost from options that are not used, i.e., a Wardrop equilibrium.

We define the set of all mTrackers in the system as Q = {1, . . . Q} and (as

defined earlier) the number of mTrackers is Q = |Q|. The service capacity available

at mTracker i ∈ Q is denoted as Ci users/sec where Ci is fixed since we are considering

the small time scale. We assume the basic unit of operation in our model is in users,

so all rates and capacities are measured in users/sec.

Let ~x = [x1, . . . xQ] be the total load vector of the system at the small time scale,

where xi∀i ∈ Q is the total arrival rate of new peer requests at mTracker i. As in

chapter II, a strategy of an mTracker j ∈ Q is to split its load xj to different mTrackers

including itself. We denote a strategy vector of mTracker j as ~xj = [x1
j . . . x

Q
j], where

24

∑Q
i=1 x

i
j = xj. If a mTracker j is not connected to mTracker i (or if it does not want

to use mTracker i), then the rate xij = 0.

We denote the vector of strategies being used by all the mTrackers as X =

[~x1 . . . ~xQ]. The vector X represents the state of the system and it changes contin-

uously with time. Let the space of all possible states of a system for a given load

vector be denoted as X, i.e X ∈ X.

The payoff (per unit rate per unit time) of forwarding requests from mTracker j

to i, when the state of the system is X is denoted by F i
j (X) ∈ R and is assumed to be

continuous and differentiable. As developed in the previous subsection, this payoff is

F i
j (X) =

1

Ci −
∑Q

l=1 x
i
l

+ pij +

∑Q
l=1 x

i
l

(Ci −
∑Q

l=1 x
i
l)

2
(4.6)

The total payoff at tracker j is given by
∑Q

i=1 F
i
j (X) · xij.

We assume that mTrackers use rational dynamics to learn about the system, and

in particular will focus on Replicator Dynamics (2.3) in this paper 1, repeated here

for convenience.

ẋij = xij

(
1

xj

Q∑
r=1

xrjF
r
j (X)− F i

j (X)

)
. (4.7)

Note that since each mTracker is trying to minimize costs, the payoffs described in

chapter II are now replaced by costs, and the dynamics followed are the negative of

the Replicator Dynamics presented in chapter II and described by (2.3).

2. Convergence of mTracker dynamics

The total cost in the system is defined to be the sum of the total system delay plus

the total transit cost. In other words, we have weighted delay costs and transit costs

1Results from [22] can be used to generalize our results to a large class of dynamics
called positively correlated dynamics.

25

equally when determining their contribution to the system cost. We could, of course,

use any convex combination of the two without any changes to the system design.

Hence using the M/M/1 delay model at each tracker, and adding transit costs, the

total system cost when the system is in state X is given as:

C(X) =

Q∑
i=1

{ ∑Q
r=1 x

i
r

Ci −
∑Q

l=1 x
i
l

+

Q∑
r=1

pirx
i
r

}
. (4.8)

Note that the cost is convex and increasing in the load. We will show that the above

expression acts as a Lyapunov function for the system.

Theorem 1 The system of mTrackers that follow replicator dynamics with payoffs

given by (4.6) is globally asymptotically stable.

Proof 1 We prove the system stability using Lyapunov Theorem, details of which can

be found in Appendix A, with C(X) defined in (4.8) as the Lyapunov function.

Ċ(X) =

Q∑
i=1

Q∑
j=1

∂C
∂xij

ẋij (4.9)

=

Q∑
i=1

Q∑
j=1

F i
j (X)ẋij, (4.10)

where the above follows form the definition of F i
j (X) Eqn.(4.6). Now, let X̃ be the

set of states such that,

Ċ(X) = 0,∀ X ∈ X̃

From Eqn.(4.10) it is evident that Ċ(X) = 0, if:

F i
j (X) = 0 or (4.11)(

ẋij = 0
)
⇒

(
1

xj

Q∑
r=1

xrjF
r
j = F i

j

)
∀ i, j ∈ Q (4.12)

26

Hence, X̃ represents the set of equilibrium states of replicator dynamics.

From (4.7) we can substitute the value for ẋij and we have

Ċ(X) =

Q∑
i=1

Q∑
j=1

F i
jx

i
j

(
1

xj

Q∑
r=1

xrjF
r
j − F i

j

)
(4.13)

=

Q∑
j=1

xj

(Q∑
i=1

xij
xj
F i
j

)2

−

(
Q∑
i=1

xij
xj

(F i
j)

2

) (4.14)

Since function f(x) = x2 is convex and
∑Q

i=1

xi
j

xj
= 1, from Jensen’s inequality we

have, ∀ X /∈ X̃ :(Q∑
i=1

xij
xj
F i
j

)2

−

(
Q∑
i=1

xij
xj

(F i
j)

2

) < 0 ∀ j ∈ Q

Thus,

Ċ(X) < 0, ∀ X /∈ X̃

hence, the system is globally asymptotically stable.

We have just shown that the total system cost (which is convex increasing) acts as a

Lyapunov function. It should not come as a surprise then, that the total system cost

is minimized by our dynamics. We prove this formally in the next section.

While replicator dynamics is a simple model, it has a drawback. During the differ-

ent iterations of replicator dynamics, if the rate of forwarding requests from mTracker

j to mTracker i (xij), becomes zero then it remains zero forever. Thus, a strategy

could become extinct when replicator dynamics is used. To avoid this problem we can

use another dynamics called Brown-von Neuman-Nash(BNN) Dynamics,described in

chapter II, and repeated here for convenience:

27

Then BNN dynamics is described as

ẋiq = xqγ
i
q − xiq

Sq∑
j=1

γjq . (4.15)

where

γiq = max

{
F i
q(X)− 1

xq

Sq∑
i=1

xiqF
i
q(X), 0

}
(4.16)

denote the excess payoff to strategy i relative to the average payoff in population q.

We can show that the system of mTrackers, which follows BNN dynamics, is

globally asymptotically stable. The proof is similar to the proof of Theorem 1.

3. Cost efficiency of mTrackers

In previous work on selfish routing (e.g. [28], [29]), it was shown that the Wardrop

equilibrium does not result in an efficient system performance. This inefficiency is

referred to as the price of anarchy, and it is caused primarily because of the selfish

strategies of users. However, work on population games [22] suggests that carefully

devised price signals would indeed result in efficient equilibria. We show in this

subsection that the Wardrop equilibrium attained by mTrackers is efficient for the

system as a whole.

The objective of our system is to minimize the total cost for a given load vector

~x = [x1, . . . , xQ]. Here the total cost in the system is C(X) and is defined in (4.8).

This can be represented as the following constrained minimization problem:

min
X
C(X) (4.17)

28

subject to:

Q∑
i=1

xij = xj ∀ j ∈ Q (4.18)

xij ≥ 0. (4.19)

The Lagrange dual associated with the above minimization problem is

L(λ,X) = max
λ,h

min
X

(
C(X) − (4.20)

Q∑
j=1

λj

(Q∑
i=1

xij − xj
)
−

Q∑
i=1

Q∑
j=1

hijx
i
j

)

where hij ≥ 0 and λj, ∀ i, j,∈ Q are the dual variables. Now the above dual problem

gives the following Karush-Kuhn-Tucker first order conditions:

∂L
∂xij

(λ,X?) = 0 ∀ i, j ∈ Q (4.21)

and

hijx
?i
j = 0 ∀ i, j ∈ Q (4.22)

where X? is the global minimum for the primal problem (4.17). Hence from (4.21)

we have

∂C
∂xij

(X?)− λj
∂(
∑Q

i=1 x
?i
j − x?j)

∂xij
+ hij = 0 ∀ i, j ∈ Q

⇒ ∂C
∂xij

(X?) = λj + hij ∀ i, j ∈ Q (4.23)

We know from previous section that ∂C
∂xi

j
(X) = F i

j (X) (follows from definition of payoff

(4.6)). Thus from (4.23) we have

F i
j (X

?) = λj + hij ∀ i, j ∈ Q (4.24)

29

From (4.22), it follows that

F i
j (X

?) = λj when x?ij > 0 ∀ i, j ∈ Q (4.25)

and

F i
j (X

?) = λj + hij when x?ij = 0 ∀ i, j ∈ Q (4.26)

Now, consider the replicator dynamics (4.7), at stationary point we have ẋij = 0.

Thus,

F̂j = F i
j (X̂) ∀ i, j ∈ Q (4.27)

or

x̂ij = 0,

where

F̂j ,
1

x̂j

Q∑
r=1

x̂rjF
r
j (X̂) ∀ j ∈ Q, (4.28)

and X̂ denotes a stationary point. The above equations imply that for mTracker

j the per unit cost of forwarding traffic to other mTrackers is same across all the

mTrackers that are in use. But for a mTracker (i) not in use the rate of forwarding

(xij) is 0 or equivalently, the cost is more than the average payoff. Thus, by definition

of Wardrop equilibrium we can say that the above stationary points are indeed the

Wardrop equilibria.

We observe that, the stationary point condition of replicator dynamics (4.27)

is identical to the KKT first order conditions (4.25) and (4.26) of the minimization

problem (4.17) when,

F̂j = λj ∀ j ∈ Q (4.29)

30

Theorem 2 The solution of the minimization problem in (4.17) is identical to the

Wardrop equilibrium achieved for the non-cooperative potential game G.

Proof 2 From (4.27),(4.28) and (4.29) we can conclude that the Wardrop equilibrium

achieved for the non-cooperative potential game G converges to the optimum solution

of the Lagrange dual problem (4.20). Thus, to finish this proof we need to show that

there is no duality gap between the primal (4.17) and the dual (4.20) problems. This

follows immediately from convexity of the total system cost.

Corollary 1 All equilibrium states attained using replicator dynamics are not neces-

sarily solutions to the minimization problem (4.17).

Replacing Replicator dynamics with BNN dynamics, described in chapter II,

would result in a Wardrop equilibrium which is exactly identical to the solution of

the minimization problem (4.17).

B. tTracker: Admission Control

In the previous section we witnessed how each mTracker tries to reduce the cost in

its peer cloud by forwarding requests to other mTrackers. However, minimizing the

total delay does not mean that it is bounded. In order to ensure acceptable delay

performance, we introduce an element called the tTracker, a Tracker that provides

admission control functionality in order to attain an acceptable cost. The tTracker

operates in the medium time scale; the mTracker loop is assumed to have converged

to yield the lowest cost split at every instant at this time scale. The tTracker is a

centralized element whose purpose is to (i) take a decision on whether to admit a

requesting peer, and (ii) if admitted, to provide requesting users with the address of

the mTracker closest to the user in terms of ISP domain. In some ways the tTracker

31

supplements natural market dynamics—if the delay experienced by requesters were

unbearably high, they would simply abort, causing the system to recover. However,

such dynamics might cause large swings in quality over time; the tTracker precludes

the occurrence of such swings.

One way to formulate an admission control problem is to provide hard constraints

on the acceptable system cost. Such a problem could be formulated as a convex

optimization problem shown below:

max
~x

∑Q
j=1 wj log xj (4.30)

subject to:

C?(~x) ≤ κ (4.31)

xj ≥ 0

where ~x is the load vector and C?(~x) is the minimum value of the optimization problem

(4.17) for a given load ~x. We show in the following lemma, that the constraint set of

the above convex optimization problem (4.30) is a convex set.

Lemma 3 The set of all load vectors ~x, satisfying the inequality constraint, C?(~x) ≤ κ

is a convex set.

Proof 3 Let ~x and ~y be two load vectors such that,

C?(~x) ≤ κ (4.32)

C?(~y) ≤ κ (4.33)

Let Xmin and Ymin be the states, corresponding to load vectors ~x and ~y respectively,

32

which results in minimum cost to the system, i.e.,

C(Xmin) = C?(~x) (4.34)

C(Ymin) = C?(~y) (4.35)

Consider,

C(αXmin + (1− α)Ymin) ≤ αC(Xmin) + (1− α)C(Ymin) (4.36)

the above inequality follows from the convexity of C(X).

Using Eqns(4.32), (4.33), (4.34) and (4.35), we get:

C(αXmin + (1− α)Ymin) ≤ αC?(~x) + (1− α)C?(~y) (4.37)

≤ ακ+ (1− α)κ (4.38)

≤ κ (4.39)

if we consider ~z = α~x+ (1− α)~y, then from the definition of C?

C(Zmin) = C?(~z) (4.40)

where Zmin is the state of the system, corresponding to load ~z, when the cost is min-

imum.

Clearly we can represent any state Z, corresponding to the load vector ~z, in the

form of αX + (1− α)Y , and thus it follows from the definition of C? and Eqn(4.39)

that:

C?(α~x+ (1− α)~y) ≤ C(αXmin + (1− α)Ymin) ≤ κ (4.41)

Thus the set is convex.

If we think of
∑

j wj log xj as the total system utility, then C?(~x) is the total

33

system disutility. Instead of hard constraints on the cost, we relax the problem to

simply ensure that the difference of utility and disutility (the net utility) is as large as

possible. In other words, we relax the problem formulation after the manner of [30–32]

to produce a formulation

max
~x

(∑Q
j=1wj log xj − C?(~x)

)
(4.42)

subject to:

xj ≥ 0

A gradient ascent type controller that could be used to solve the above problem is

ẋj =
(
wj − xj

∂C?

∂xj

)
∀ j ∈ Q. (4.43)

We design our tTracker controller around the above differential equation, and use it

to tradeoff fair resource allocation versus system delay. Notice that the presence of

∂C?

∂xj
implies that the controller needs to numerically evaluate the impact of a change

in admission rates of any one mTracker j on the total system cost. The evaluation is

straightforward if the cost expressions are simple convex functions as in (4.8). Here,

all that the tTracker need do is run a “thought experiment” by changing xj slightly,

and observing the impact on total delay under the assumption that the mTracker

uses Wardrop routing (this is exactly the way we implement it in our simulations).

Under this tTracker control loop, we then have the following theorem.

Theorem 4 Under the time scale separation assumption, the tTracker system with

dynamics (4.43) is globally asymptotically stable.

Proof 4 We prove the stability of the system using the same Lyapunov technique as

34

before. We use the following Lyapunov function

Z(~x) = V (~̂x)− V (~x) (4.44)

where V (~x) =
(Q∑
j=1

wj log xj − C?(~x)
)

(4.45)

which is a strictly concave function, and ~̂x is its unique maximum.

Differentiating Z(~x) we get

Ż = −
Q∑
j=1

∂V

∂xj
ẋj (4.46)

from (4.45) and (4.43)

∂V

∂xj
=
wj
xj
− ∂C?(~x)

∂xj
=

ẋj

xj
(4.47)

∴ Ż = −
Q∑
j=1

ẋ2
j

xj
≤ 0 ∀ ~x (4.48)

Ż = 0 when the system is in equilibrium.

Hence the system is globally asymptotically stable according to Lyapunov theorem

[23].

Finally, we note that the equilibrium conditions of the controller (4.43) are the same as

the KKT conditions of the convex optimization problem (4.42). Hence, the controller

succeeds in maximizing the required net utility.

35

CHAPTER V

MATLAB SIMULATIONS

We perform simulations in Matlab, on the simple overlay topology illustrated in Figure

4. Our objective is to validate our analytical results, and use the resulting insights to

study a more realistic ns-2 implementation which is presented in the next chapter.

Fig. 4. Simulation topology: three mTrackers, T1, T2 and T3 and one tTracker which

does admission control. A solid line from mTrackers T2 and T3 to T1 imply

that T2 and T3 are in transient state and can forward requests to steady state

mTracker T1. The dotted arrows from tTracker to mTrackers represent the

flows admitted by tTracker.

Our system consists of 3 mTrackers (T1,T2 and T3) and a tTracker as shown in

Figure 4. The mTracker-T1 is assumed to be in steady state (i.e. it has more capacity

than demand in its peer swarm) and the other mTrackers T2 and T3 are in a transient

state. Thus, T2 and T3 can forward traffic to T1. Our simulation parameters are

chosen as follows. The initial arrival rates at the mTrackers are x1 = 10 users/time,

x2 = 20 users/time and x3 = 20 users/time, while the available capacities (fixed)

36

are C1 = 30 users/time, C2 = 20 users/time and C3 = 20 users/time, respectively.

There is a transit price for traffic forwarding between mTrackers, and these values

are chosen as P 1
2 = 2 unit and P 1

3 = 1 unit.

A. mTracker Simulations

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

Time (small time scale)

P
a
y
o
f
f

(
c
o
s
t
/
u
s
e
r
)

mTracker T1

mTracker T2

Fig. 5. The trajectory of payoffs of mTracker T2 for the 2 options available (local

swarm and T1’s swarm). The payoffs eventually equalize, showing that a

Wardrop equilibrium has been attained.

Our first simulation is to validate the dynamics of the mTrackers at the small

time scale. Thus, the arrival rate at each mTracker remains fixed, and as in Section A,

they each use replicator dynamics in order to balance their payoffs among available

options. We expect that (i) the per unit payoff for all available options to an mTracker

should eventually be equal, and (ii) the total delay of the system would decrease to

a minimum.

Figures 5 and 6 show the per unit payoffs and split probabilities, respectively,

37

corresponding to T2. As expected, the per unit payoffs converge to identical values.

Fig. 6. The trajectory of traffic splits at mTracker T2 for the 2 options.

Finally, we plot the trajectory of total system cost C(X)1 in Figure 7. As ex-

pected it decreases with time, and converges to a minimum value corresponding to

the Wardrop equilibrium of split probabilities.

B. tTracker Simulations

We next perform simulations at the medium time scale for the tTracker admission

control loop. Here, at each time step the tTracker decides the admission rate (based

on the dynamics developed in Section B), and the split probabilities of mTrackers

converge essentially instantaneously (i.e., converge at the small time scale). As men-

tioned in Section B, the tTracker calculates ∂C?(X)
∂xj

numerically to determine the cost

of changing the admission rate xj at mTracker j . We expect the net utility of the

system (as defined in (4.42)) would increase to a maximum, and indeed, this is what

1Recall that this is the sum of total delay plus total transit cost.

38

0 5 10 15 20 25
10

11

12

13

14

15

16

17

18

19

Time (small time scale)

T
o
t
a
l

S
y
s
t
e
m

C
o
s
t

Fig. 7. The trajectory of total system cost in the system. As expected, it decreases

over time to a minimum.

we observe in Figure 8.

While our Matlab simulations suggest that our system design is valid, they do

not capture the true P2P interactions within each peer-cloud. In the next section,

we present with implementation of MultiTrack in ns-2 in order to experiment with a

more accurate representation of the system.

39

0 5 10 15 20 25 30 35 40 45 50
48

50

52

54

56

58

60

N
e
t

U
t
i
l
i
t
y

Time (medium time scale)

Fig. 8. The trajectory of net utility of the system when tTracker uses admission con-

trol. The net utility converges to a maximum.

40

CHAPTER VI

NS-2 SIMULATIONS

We wanted to test our system in a more realistic setting, so we implemented the

MultiTrack system on ns-2. ns-2 is a discrete event driven simulator which is widely

used for networking research. We leverage the ns-2 implementation of BitTorrent

provided by Eger et al., [33]. They implement a simplified BitTorrent model at packet

level and flow level and compare the efficiency of each against optimum analytical

models. In their simulations they observed that the flow level behaves similar to the

analytical model but the packet level model deviates from the optimal by at most 30%.

The packet level implementation is close to the real BitTorrent implementation and

the flow level. In the packet level model, the packet exchange between peers and the

underlying TCP mechanism is explicitly modeled. But in a flow level implementation,

the underlying transport mechanism is ignored.

The differences between packet level and flow level implementation are the fol-

lowing:

1. The packet level model captures the influence of lower level protocols, like TCP,

on the BitTorrent performance, whereas in flow level model the primary focus

is on the application’s performance and lower level protocol implementations

are abstracted.

2. The simulation complexity for packet level simulations is high and is not suit-

able for simulating systems that have more peers, on the other hand flow level

simulations are less complex and are ideal for simulating systems involving many

peers like our MultiTrack system.

41

A. Overview of MultiTrack Implementation in ns-2

For implementing our MultiTrack system we extend the flow level model implemented

by [33]. We chose the flow level model in the interest of reducing simulation time of

our system which involves many peers. We extended the existing BitTorrent Tracker

model to support mTracker and tTracker functionality. Our mTracker implementation

splits traffic at periodic intervals using replicator dynamics in response to the payoffs

that it sees, in an effort to attain Wardrop equilibrium. It forwards peer requests to

other available mTrackers based on this split.

We saw in chapter IV the per unit payoff (F j
i), for each mTracker(i) in forwarding

traffic to another mTracker (j), comprises of the delay and the congestion price at

mTracker (i) along with the transit price between mTrackers i and j. In our analytical

model, presented in chapter IV, we assumed an M/M/1 delay at each mTracker, but

in a real network the system need not follow M/M/1 type delay. So we should

estimate the delay and congestion price at each mTracker during every small time

scale. These values are calculated at the end of each small time scale, before the

mTracker’s re-calculate their split probabilities using replicator dynamics, as follows:

1. Delay: The per unit delay, in each mTracker’s peer cloud, is measured by

calculating the average download rate obtained by the peers that are admitted in

the current time slot. LetNB be the number of bytes of data exchanged between

all the peers and NP be the number of peers entering into the mTracker, during

the small time interval. The average download rate achieved by an user during

the current time slot is NB
NP

. Hence, the delay experienced per user is calculated

as F
NB/NP

where F is the size of the file.

2. Congestion Price: The congestion price of a system with delay D and arrival

rate z is given as ∂D
∂z z , which follows from the elasticity Equation(4.3). So we

42

measure the change in delay and change in arrival rate from the previous and

current time unit to calculate the congestion price.

The configuration parameters required for each mTracker are presented in Table I

below:

Table I. A list of configuration parameters needed for each mTracker

Parameter Description

Adjacent Trackers List of adjacent mTrackers to which this mTracker can poten-

tially forward new peers

Transit Prices The transit prices between an mTracker and each adjacent

tracker

Split Interval This is the time interval during which mTracker decides to

change its splitting rate based on replicator dynamics

Arrival Rate The arrival process of new peer requests,is a Poisson process

with mean specified by this value

Split Probabilities The initial probabilities of splitting traffic among different

mTrackers

Number of Seeds The number of seeds present in this mTracker domain. The

number of seeds along with their upload bandwidth can

be used to determine the initial capacity available at an

mTracker.

Apart from the above parameters, BitTorrent specific parameters like, the up-

load bandwidth of each peer, the file size and the size of each chunk should also be

configured.

43

For our simulation we use the same network topology that we used for our matlab

simulations, shown in Figure 4, with 3 mTrackers T1, T2 and T3 and one tTracker.

In our simulation, each peer has an upload capacity of 300 Kbps and their download

capacity is not restricted. The requested file size is 5 MB and each chunk has a size

of 256 KB. Peer arrivals are created according to Poisson processes of different rates.

T1 has 100 seeds in its peer swarm while T2 and T3 have 5 seeds each. We set the

update interval for the mTracker to be 8 sec. Thus, each mTracker calculates the

splitting probabilities for the different options at this frequency. We fix the initial

arrival rates to be x1 = 3 users/sec,x2 = 5 users/sec and x3 = 7 users/sec, set transit

costs to be P 1
2 = 20 and P 1

3 = 10. The tTracker, which performs admission control,

does so at 40 sec intervals. The total simulation time is 400 sec.

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (1 unit = 8 s)

Pa
yo

ff
(c

os
t/u

se
r)

mTracker T2
mTracker T1

Fig. 9. The trajectory of payoffs of mTracker T2 for the 2 available options (local

swarm and T1’s swarm).

Figure 9 shows the trajectory of the payoff obtained by mTracker 2 (over the

short time scale), while Figure 10 shows same for mTracker 3. As expected, the

44

payoffs converge to the average value, attaining a Wardrop equilibrium.

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

Time (1 unit = 8 s)

Pa
yo

ff
(c

os
t/u

se
r)

mTracker T3
mTracker T1

Fig. 10. The trajectory of payoffs of mTracker T3 for the 2 available options (local

swarm and T1’s swarm).

We next observe the delay performance of the whole system. The temporal

evolution of per user delay is shown in Figure 11. We notice that as expected, the

delay for the MultiTrack system decreases with time, and converges to a low value.

Next, we present the results of a comparison study of our MultiTrack systems

performance, with respect to the transit price,delay and total cost of the system,

against the following systems:

1. No Splitting: We disable splitting at each mTracker. Thus, all the requests

originating in an mTracker domain are served locally. We will see that the delay

experienced in such a system is very big.

2. MultiTrack without transit price: We consider a MultiTrack system with

the transit prices between mTrackers ignored, i.e. the payoff’s do not contain

45

0 5 10 15 20 25
20

40

60

80

100

120

140

160

180

Time (1 unit = 8s)

De
la

y
Co

st
 P

er
 U

ni
t T

im
e

Fig. 11. The trajectory of total system delay with MultiTrack. The delay converges

to a low value.

the transit prices. We will observe in figure 12 the transit prices of these systems

is highest.

We first compare the transit prices of these three systems. Figure 12 shows the

trajectory of the total transit price of the system. Without splitting traffic between

ISP domains, there is no transit traffic so the price of transit is zero. On the other

hand, splitting traffic without regard to prices, causes a high transit price. MultiTrack

achieves a price between these two extremes.

We next study the delay experienced by users. Figure 13 shows the average

delay experienced by users. As expected, without traffic splitting, the delay is high.

When traffic is split without regard to transit price, the delay is the lowest possible.

MultiTrack achieves a price between these two extremes.

We finally observe the cost (transit price plus cost) performance of the whole

system. The temporal evolution of cost is shown in Figure 14. The impact of using

MultiTrack is clearly illustrated here. The system without traffic splitting has a high

46

Fig. 12. The trajectory of total transit price. Without traffic splitting, the price is zero.

With traffic splitting without regard to price, the price is high. MultiTrack

takes prices into account, and has a price between these extremes.

Fig. 13. The trajectory of average user delay. Without traffic splitting, the delay is

high. With traffic splitting without regard to price, the delay is low. Multi-

Track takes delays into account, and has a delay between these extremes.

47

cost due to increased user delays, while traffic splitting without regard to prices has

a high cost due to excessive transit traffic. MultiTrack takes both transit price and

user delay into account, and hence achieves the lowest possible cost.

Fig. 14. The trajectory of total user delay. Without traffic splitting, the cost (delay

plus transit price) is high. With traffic splitting without regard to price, the

delay is low but transit price is high, causing high cost. MultiTrack takes

prices and delays into account, and has lowest total cost.

48

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

As the popularity of P2P systems as a medium for content distribution has grown, it

has become clear that aligning incentives between the system performance in terms

of the user QoS, and the transit costs faced by ISPs will be increasingly important.

Fundamental to this problem is the realization that resources may be distributed

geographically, and hence the marginal performance gain obtained by accessing a

resource is offset in part by the marginal cost of transit in accessing it. In this

paper, we consider delay and transit costs as two dimensions and attempt to design

a system—MultiTrack–that attains optimal operating point assuming a given weight

for each dimension.

Our system consists of two types of Trackers—mTrackers, that form an overlay

among themselves and act as gateways to peer-clouds, and a tTracker that takes

system admission control decisions. If admitted by the tTracker, users in an ISP

domain are directed to the mTracker associated with that domain. The mTracker

takes a decision whether the marginal decrease in delay by forwarding the user to a

resource rich peer-cloud (perhaps in a different ISP domain) is offset by the marginal

increase in its transit cost. We show that a simple price-based controller based on

replicator dynamics could ensure that the total system cost is minimized in spite of

each mTracker being selfish.

The tTracker runs an admission control loop that calculates the trade-off between

the marginal utility in increasing the admission rate in a particular ISP domain to

the marginal increase in system cost. It thus allows the correct rate of users into the

system to attain optimal performance.

We validated our system design using Matlab simulations, and implemented the

49

system on ns-2 in order to conduct more realistic experiments. We showed that

our system significantly outperforms a system in which costs are the only control

dimension (localized traffic only).

In the future, we would like to build the MultiTrack system on a testbed in order

to study performance-cost trade-offs in a real-world setting of content distribution.

We would also like to mathematically characterize the time taken for an mTracker

to switch from transient state to steady state,i.e. what is the time required for a

transient state mTracker to serve all its peers locally. We would prefer a distributed

admission control at each mTracker, so we would like to design an admission control

model that is more elegant, unlike the thought experiment which is used in the current

tTracker’s admission control model.

50

REFERENCES

[1] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt, “Architecture of a

network monitor,” in Passive & Active Measurement Workshop (PAM2003),

2003.

[2] C. Fraleigh, S. Moon, B. Lyle, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely,

and C. Diot, “Packet-level traffic measurements from the Sprint IP backbone,”

IEEE Network, vol. 17, no. 6, pp. 6–16, 2003.

[3] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Za-

horjan, “Measurement, modeling, and analysis of a peer-to-peer file-sharing

workload,” in Proc. SOSP, 2003, pp. 314–329, Bolton Landing, New York.

[4] Pando Networks, Inc., “Download and share . . . BIG,” http://www.pando.com/.

[5] A. Broache, “FCC chief grills Comcast on BitTorrent blocking,” C|Net

News.com, http://news.cnet.com/8301-10784 3-9878330-7.html, Feb. 25, 2008.

[6] E. Bangeman, “P2P responsible for as much as 90 percent of all ’Net traf-

fic, http://arstechnica.com/old/content/2007/09/p2p-responsible-for-as-much-

as-90-percent-of-all-net-traffic.ars,” ArsTechnica, Sept. 3, 2007.

[7] “BitTorrent,” http://www.bittorrent.com/, 2005.

[8] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can isps and p2p users cooperate

for improved performance?,” SIGCOMM Comput. Commun. Rev., vol. 37, no.

3, pp. 29–40, 2007.

51

[9] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz, “P4p:

provider portal for applications,” in Proc. ACM SIGCOMM Conference on Data

Communication, 2008, pp. 351–362, Seattle, WA.

[10] D. R. Choffnes and F. Bustamante, “Taming the torrent: a practical approach

to reducing cross-isp traffic in peer-to-peer systems,” SIGCOMM Comput. Com-

mun. Rev., vol. 38, no. 4, pp. 363–374, 2008.

[11] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. of Workshop on

the Economics of p2p Systems, June 2003.

[12] X. Yang and G. de Veciana, “Performance of peer-to-peer networks: service

capacity and role of resource sharing policies,” Perform. Eval., vol. 63, no. 3, pp.

175–194, 2006.

[13] D. Fudenberg and J. Tirole, Game Theory, Cambridge, MA: MIT Press, 1991.

[14] D. Qiu and R. Srikant, “Modeling and performance analysis of bittorrent-like

peer-to-peer networks,” in Proc. Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communications, 2004, pp. 367–378,

Portland, Oregon.

[15] E. Setton and J. Apostolopoulos, “Towards quality of service for peer-to-peer

video multicast,” in Proc. ICIP, 2007, pp. 81–84, San Antonio, TX.

[16] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Performance

bounds for peer-assisted live streaming,” in Proc. ACM SIGMETRICS Interna-

tional Conference on Measurement and Modeling of Computer Systems, 2008,

pp. 313–324, Annapolis, MD.

52

[17] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou, “Utility maximization in

peer-to-peer systems,” in Proc. ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, 2008, pp. 169–180, Annapolis,

MD.

[18] J. He, M. Bresler, M. Chiang, and J. Rexford, “Towards multi-layer traffic

engineering: Optimization of congestion control and routing,” IEEE J. Selected

Areas in Communications, vol. 25, no. 5, pp. 868–880, 2007.

[19] R. Zhang-Shen, “Designing a predictable backbone network using valiant load-

balancing,” Ph.D. dissertation, Dept. of Electrical Engineering, Stanford Uni-

versity, Stanford, CA, 2007.

[20] C. Aperjis, M. J. Freedman, and R Johari, “Peer-assisted content distribution

with prices,” in Proc. ACM CoNEXT Conference, 2008, pp. 1–12, Madrid,

Spain.

[21] C. Aperjis, M. J. Freedman, and R. Johari, “A comparison of bilateral and mul-

tilateral exchanges for peer-assisted content distribution,” in Network Control

and Optimization: Second Euro-NF Workshop, NET-COOP 2008 Paris, France,

September 8-10, 2008. Revised Selected Papers, 2009, pp. 1–8, Berlin.

[22] W. H. Sandholm, “Potential games with continuous player sets,” Journal of

Economic Theory, vol. 97, pp. 81–108, January 2001.

[23] H. Khalil, Nonlinear Systems, New Jersey: Prentice Hall, 1996.

[24] J. Wardrop, “Some theoretical aspects of road traffic research,” Institution of

Civil Engineers, Part II, vol. 1, no. 36, pp. 352–362, 1952.

53

[25] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,

United Kingdom: Cambridge University Press, 1998.

[26] G. W. Brown and J. von Neumann, “Solutions of games by differential equa-

tions,” Contributions to the Theory of Games, vol. 24, pp. 73–79, 1950.

[27] E. Adar and B. Huberman, “Free riding on Gnutella,” First Monday,

http://firstmonday.org/, vol. 5, no. 10, 2000.

[28] T. Roughgarden and É. Tardos, “How bad is selfish routing?,” J. ACM, vol. 49,

no. 2, pp. 236–259, 2002.

[29] T. Roughgarden, “The price of anarchy is independent of the network topology,”

in Proc. Thiry-fourth Annual ACM Symposium on Theory of Computing, 2002,

pp. 428–437, Montreal, Quebec, Canada.

[30] F. P. Kelly, “Models for a self-managed Internet,” Philosophical Transactions

of the Royal Society, vol. A358, pp. 2335–2348, 2000.

[31] F. P. Kelly, “Mathematical modelling of the Internet,” in Mathematics Un-

limited - 2001 and Beyond; B. Engquist and W. Schmid (Eds.), 2001, Berlin:

Springer-Verlag, pp. 685–702.

[32] S. Shakkottai and R. Srikant, Network Optimization and Control, Delft, The

Netherlands: Now Publishers, 2008.

[33] K. Eger, T. Hoßfeld, A. Binzenhöfer, and G. Kunzmann, “Efficient simulation of

large-scale p2p networks: Packet-level vs. flow-level simulations,” in Proc. 2nd

Workshop on the Use of P2P, GRID and Agents for the Development of Content

Networks (UPGRADE-CN’07), jun 2007, pp. 9–16, Monterey Bay.

54

APPENDIX A

LYAPUNOV STABILITY THEOREM

We present an overview of Lyapunov stability theorem and Lyapunov function here.

[23] contains more details about Lyapunov theory.

• Let x = 0 be an equilibrium point for a system S that has the following dynamics

ẋ = f(x).

• Let V : <n −→ <, be a continuously differentiable function such that V (x) > 0,

∀x 6= 0 and V (0) = 0, when x = 0, then V (x) is called the Lyapunov function.

The system S is globally asymptotically stable if V (x) is radially unbounded

and ˙V (x) < 0, ∀x ∈ Rn − {0}. Where a function V (x) is radially unbounded, if

x→∞ =⇒ V (x)→∞.

55

VITA

Vinith Kumar Reddy Podduturi, is a graduate student in the Dept. of Electrical

and Computer Engineering at TAMU. He received dual degrees of B.E. (Honors)

computer science and M.Sc. (Honors) mathematics from Birla Institute of Technology

and Science, Pilani, India in 2006. He received his M.S in computer engineering at

TAMU in 2009. His interests are in communication networks, specifically peer-to-

peer networks, internet pricing, congestion control, wireless networks and network

coding. Prior to arriving at Texas A&M, he worked for a startup company, Anveshan

Telecom Pvt. Ltd., India, from 2006-2007. Before that he worked as an intern in LG

Soft India Pvt. Ltd., India, from 2005-2006. He can be contacted at the following

address: Department of Electrical and Computer Eng., Texas A&M University, 331F

WERC, College Station, Texas 77843-3128. His email-id is reddy.vinith@gmail.com.

