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ABSTRACT 

 

Performance of Reinforce Concrete Column Lap Splices. (August 2009) 

Ryan Alberson, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Joseph M. Bracci 
  Dr. David Trejo 

 

 

Cantilevered reinforced concrete columns with a lap splice of the longitudinal 

reinforcement near the base can induce high moment demands on the splice region when 

lateral loads are present on the structure.  Code design specifications typically require a 

conservative splice length to account for these high moment demands and their 

consequences of bond failure.  The required splice length is calculated as a function of 

required development length, which is a function of the bond between the reinforcement 

and the surrounding concrete, and a factor depending on the section detailing.  However, 

the effects of concrete deterioration due to alkali silica reaction (ASR) and/or delayed 

ettringite formation (DEF) may weaken the bond of the splice region enough to 

overcome the conservative splice length, potentially resulting in brittle failure of the 

column during lateral loading. 

 

This thesis presents the following results obtained from an experimental and analytical 

program. 

• Fabrication of large-scale specimens of typical column splice regions with 

concrete that is susceptible to ASR/DEF deterioration 

• Measurement of the large-scale specimen deterioration due to ASR/DEF 

accelerated deterioration 
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• Analytical model of the column splice region based on flexure theory as a 

function of the development length of the reinforcement and a factor to account 

for deterioration of the bond due to ASR/DEF 

• Experimental behavior of two large-scale specimens that are not influenced by 

premature concrete deterioration due to ASR/DEF (control specimens). This 

experimental data is also used to calibrate the analytical model. 

 

The conclusions of the research are that the analytical model correlates well with the 

experimental behavior of the large-scale control specimens not influenced by ASR/DEF.  

The lap splice region behaved as expected and an over-strength in the splice region is 

evident.  To account for ASR/DEF damage, the analytical model proposes a reduction 

factor to decrease the bond strength of the splice region to predict ultimate performance 

of the region with different levels of premature concrete deterioration. 
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1.  INTRODUCTION 

1.1. Problem Statement 

Over the past 25 years or so, the Texas Department of Transportation (TxDOT) has had 

an aggressive construction program in place, especially in major metropolitan areas.  To 

keep up with the large population growth in the state, contractors have taken aggressive 

construction approaches, including the proportioning of concrete mixtures to achieve 

high early strengths such that forms can be removed early.  Although advantageous in 

minimizing construction costs and the speed of construction, it is believed that this 

practice may have led to early cracking (termed premature concrete deterioration) of 

many reinforced concrete (RC) bridge structures. 

 

In addition, the chemical constituents in the cement and aggregates play a key role in the 

durability of the concrete structure.  It has been well documented by Folliard et al. 

(2006) that high alkali contents in cement when used with reactive siliceous aggregates 

(which are very prominent in Texas) in concrete in the presence of moisture can result in 

alkali silica reactions (ASR).  ASR can lead to the formation of expansive products, 

which in turn can lead to cracking of the concrete.  Folliard et al. (2006) also found that 

concrete cracking from ASR can lead to other deterioration processes, such as delayed 

ettringite formation (DEF) and corrosion, which can further reduce the capacity of the 

structure.   

 

In addition to high alkali contents, high cement contents and larger structural member 

volumes can lead to high heat generation during the early ages of the concrete (i.e., 

during hydration), which can also lead to cracking (both from thermal in the short term 

or later-age cracking).   

 

This thesis follows the style of The Journal of Engineering Mechanics. 
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Research, such as Petrov et al. (2006) and Folliard et al. (2006), has found that 

reformation of ettringite results in expansion and cracking and this mechanism is 

associated with concrete exceeding higher temperatures (values have been reported to be 

from 148 oF to 160 oF [64.4 oC to 71.1 oC]) during its early age.  TxDOT developed and 

implemented guidelines for placing concrete (Standard Specifications for Construction 

and Maintenance of Highways, Streets, and Bridges [2004]) such that temperatures 

above 160 oF (71.1 oC) are not allowed.  It is believed that these guidelines have reduced 

the likelihood of DEF damage, but structures constructed prior to these new guidelines 

may be susceptible to DEF and cracking.  Although DEF does not seem to be as 

prevalent as ASR (at least during the early phases of concrete deterioration), there has 

been a structure in Texas identified as exhibiting DEF only damage in San Antonio.  

However, in general, it is thought that structures first exhibit cracking due to ASR and 

then possibly exhibit DEF (Thomas 1998).  ASR and DEF are different mechanisms of 

deterioration, but in general, both can lead to cracking of the concrete.  It is this cracking 

that has the potential to reduce the structural capacity of the RC elements.  In particular, 

this research is interested in the bond behavior of the reinforcing steel and the 

surrounding concrete. 

 

Although significant research has been performed to assess the mechanisms of ASR and 

DEF deterioration, identifying the critical variables that lead to ASR and DEF, and 

mitigating the damage caused by ASR and DEF is critical.  Several issues on the 

structural capacity of RC elements exhibiting ASR and/or DEF have not been 

thoroughly investigated.  One such issue is the bond between the concrete and the 

reinforcing steel of critical sections in structures exhibiting ASR and/or DEF damage.  

Figure 1-1 shows an example of an RC column affected by premature concrete 

deterioration where the column has developed cracks parallel to the column height, 

which corresponds to the direction of tensile stresses due to gravity loading and 

Poisson’s effect. Because a significant number of structures in Texas are exhibiting 

cracking caused by ASR and/or DEF (see Figure 1-1) and limited information is 
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available on how this cracking influences the bond, research is needed to determine the 

bond capacity (including development and lap lengths) in critical splice sections of the 

columns. Equation Chapter (Next) Section 1 

 

(a) Column with ASR Cracking 

 

(b) Close-up of Crack 

Figure 1-1 Example of Premature Concrete Deterioration in the Field (Photo 
Courtesy of D. Trejo) 
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1.2. Bond, Development Length, and Lap Splice Length 

The objective of this section is to provide a brief overview of bond and development 

length of reinforcing steel and to provide an introduction on how structural codes that 

have been developed and been modified over the past 50 years.  Figure 1-2 shows a 

representation of how bond develops between a deformed reinforcement and 

surrounding concrete.  This bond is based on three mechanisms: chemical adhesion 

between the bar and surrounding concrete, friction force between the reinforcement and 

concrete due to slippage of reinforcement, and the bearing of the ribs against the 

concrete surface (mechanical anchorage) (MacGregor 1997).  Movement of the 

reinforcement from applied loads causes the chemical adhesion to be lost and friction 

forces on the ribs and barrel of the reinforcement to develop.  As slip increases, the 

compressive bearing forces on the ribs become the primary force transfer mechanism.  If 

the concrete cover or the spacing between the reinforcement is sufficiently small, these 

stresses can cause transverse cracks that can lead to splitting cracks along the 

reinforcement and to the loss of bond.  If the concrete cover and spacing of the 

longitudinal reinforcement are large or if there is sufficient transverse reinforcement to 

prevent splitting cracks, the structural member will fail by shearing along a surface 

around the bar (assuming sufficient stress is provided).  The loss of bond through this 

type of failure is called a “pullout” failure.   

 

 

Figure 1-2 Bond Stresses between the Reinforcing Steel and Concrete (taken from 
ACI 408, 2005) 
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Section 5 of the AASHTO LRFD Bridge Design Specifications (2004) contains the 

provisions for the design of bridge and retaining wall components.  Subsection 5.11 

defines the requirements for the development length and splices of reinforcement based 

on work reported in ACI 318-89 (1989) (as stated in the commentary of AASHTO 

LRFD (2004). 

 

The 1963 ACI 318 code (ACI 318-63 1963) defined requirements for two different terms 

called flexural bond and anchorage bond.  Flexural bond stress was defined as a function 

of the rate of change of the moment along the span of the member, i.e. shear.  Flexural 

bond provisions required comparing the peak bond stresses calculated at critical points 

to a limit stress.  However, the complex distribution of bond stresses, especially the 

existence of extreme variations of bond stresses near flexural cracks, made the flexural 

bond calculations unrealistic.  Anchorage bond stress was defined as the average bond 

stress between a peak stress point of the reinforcement and the end of the reinforcement 

where the stress is zero.  Considering that all bond tests calculate an average bond 

resistance over a length of embedment, the ACI 318-71 (1971) code dropped the flexural 

bond concept and defined a development length formula based on the cross sectional 

area of the reinforcing bars, yield strength of reinforcing bars, and the square root of 

design compressive strength of the concrete.  Subsequent codes had similar provisions 

until a new design approach was adopted in ACI 318-95 (1995) that matched observed 

behavior from many studies more closely. 

 

There are five different major sets of descriptive equations for determining development 

length based on test results of numerous samples and statistical methods.  The first set 

was established by Orangun et al. (1975 and 1977) for the development length of 

reinforcement with and without transverse reinforcement.  Darwin et al. (1992) 

reevaluated the same data used by Orangun et al. and established an equation for the 

development length of reinforced samples without transverse reinforcement.  Using a 

larger database, Darwin et al. (1996) established development length equations based on 
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4
1

cf ′  for reinforcement with and without transverse reinforcement (this was different 

than the established equations that were based on cf ′ ).  Later Zuo and Darwin (1998 

and 2000) further developed the work performed by Darwin et al. (1996) by adding high 

strength concrete samples into their database.  In their equations, Zuo and Darwin (1998) 

also used 4
1

cf ′ for the effect of compressive strength for reinforcement without transverse 

reinforcement, however they found that a power term of ¾ to 1 was better for 

characterizing the effect of compressive strength on the development length of 

reinforcement with transverse reinforcement.  Lastly, ACI committee 408 (2001) 

formulated the development length equations by applying minor changes to the 

equations developed by Zuo and Darwin (1998 and 2000). 

 

Currently, the design provisions in ACI 318-08 (2008) for the development length of 

straight reinforcement in tension are based on the equations developed by Orangun et al. 

(1975 and 1977) as follows: 

 

3
40

y
d b

b tr
c

b

f
l d

c Kf
d

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞+′⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (1.1) 

or: 

'
y t e

d b
c

f
l d

f
ψ ψ

ξ
λ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
  (1.2) 

where tψ  is a reinforcement location factor, eψ  is a coating factor, λ is a factor for the 

weight of concrete, dl  is required development length, bd is reinforcement diameter, 

yf is yield strength of reinforcement being spliced, ξ  is a factor dependent on the size of 
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reinforcement and the spacing (see ACI 318-08), cb is spacing or cover dimension, and 

trK is the transverse reinforcement index as follows: 

sn
fA

K yttr
tr 1500
=   (1.3) 

where trA is the area of the stirrup or tie legs crossing the potential plane of splitting 

adjacent to the reinforcement being developed, spliced, or anchored, ytf is the yield 

strength of transverse reinforcement, s is the spacing of transverse reinforcement, and n 

is the number of bars being developed or spliced.  To limit the probability of a pullout 

failure, ACI 318-08 (2008) also requires: 

5.2≤
+

b

tr

d
Kc

 
 (1.4) 

ACI 318-08 (2008) also limits the cf ′ to a maximum value of 100 psi (689.5 kPa).  Eq. 

(1.1) results in a lower calculated development length for this research and is discussed 

further in Section 2.1. 

 

ACI 318-08 (2008) defines two types of lap splices, Class A and Class B.  Class A 

splices can be used when the ratio of provided steel area to required steel area equals to 

two or more, and 50 percent or less of the steel is spliced within the lap.  All other 

splices are defined as Class B.  The lap splice length for Class A splices is equal to the 

development length, where the splice length of Class B splices is 1.3 times the 

development length.  Because the AASHTO LRFD (2004) bridge design is based on the 

1989 version of the ACI 318-89 (1989) code, it also includes a Class C splice 

classification that is no longer used in the new version of the ACI 318-08 (2008) code 

(removed to encourage splicing bars at points of minimum stress and to stagger the 
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splices).  According to AASHTO LRFD (2004), Class C splices are 1.7 times the 

development length. 

 

In addition to the ACI 318-08 (2008), there are three additional design provisions that 

can be followed to calculate development lengths.  The first, published by the ACI 408 

committee, was adopted as ACI 408.3 (2001) and provides provisions for the 

development length and splices of deformed reinforcement with high relative rib area.  

The second is the ACI committee 408 provisions based on the work of Zuo and Darwin 

(1998 and 2000).  The last is the CEB-FIP Model code (1990).  A structural reliability 

analysis performed by the ACI 408 committee compared the available design provisions 

using their database and found that the CEB-FIP code (1990) had more scatter and 

greater coefficient of variation compared to the other design provisions. 

 

Because AASHTO is widely used to design bridge columns, the AASHTO definition for 

development length was used in this thesis.  The AASHTO LRFD Bridge Design 

Specification (2004) for ld is as follows: 

1.25
'
b y

d
c

A f
l

f
=   (1.5) 

where Ab is the area of the reinforcement being spliced (in2), fy is the yield strength of the 

spliced reinforcement in ksi and 'cf  is the compressive strength of the concrete in ksi.  

Like ACI 318-08, the AASHTO specifications have different classes of lap splices that 

are based on the development length.  However, using the ASSHTO specifications 

(2004), the splice used in this research is classified as a class C splice and is required to 

provide 1.7 dl  and is further discussed in Section 2.1. 
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1.3. Premature Concrete Deterioration Mechanisms 

This section provides an overview of the mechanisms of premature concrete 

deterioration believed to cause cracking in various bridge columns across Texas, mainly 

due to ASR and/or DEF.  Prior research has not identified the contribution of either 

mechanism on the magnitude of deterioration, but the literature has defined certain 

criteria for the mechanism to be present (Folliard 2006).  The section below provides a 

brief review of ASR and DEF mechanisms followed by how ASR and DEF influence, or 

damage, concrete structures. 

1.3.1. Alkali-Silica Reactions (ASR) 

ASR is the chemical reaction between the alkalis in concrete (generally from the cement) 

and reactive silica found in naturally occurring concrete aggregates.  Conditions required 

for ASR include reactive silica phases in the aggregate, availability of alkali hydroxides 

in the pore solution ([Na+], [K+], [OH-]), and sufficient moisture (Folliard et al. 2006).  

The reaction between the reactive silica in the aggregate and the alkalis in the pore 

solution produce a by-product, commonly referred to as ASR gel, that expands with 

time, causing cracking.  However, the alkalis and reactive silica are consumed with time 

and are eventually depleted.  As these constituents are consumed, the ASR process will 

stop unless these constituents are provided from an external source (Folliard et al. 2006). 

 

As the ASR gel forms, Folliard et al. (2006) found that tensile stresses develop internally 

in the concrete.  In general, the hydrated cement paste (HCP) is weaker than the 

aggregate and cracking initially occurs in the HCP or along the interface of the aggregate 

and HCP (Poole 1992, Swamy 1992).  Jensen (2003) found that ASR damaged concrete 

exhibited both cracking in the HCP and aggregate and even quantified the amount of 

cracking in the aggregate.  Bazant et al. (2000) modeled the fracture mechanics of ASR 

using radial cracks propagating from flaws at the aggregate-HCP interface into the HCP 
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using the theories of Poole (1992) and Swamy (1992).  The literature indicates that 

although cracking due to ASR initiates in the HCP, eventual expansion can result in 

cracking of the aggregates. Aggregate cracking can influence the shear capacity 

(aggregate interlock) and may be one factor influencing the bond strength of splice 

reinforcement. 

1.3.2. Delayed Ettringite Formation (DEF) 

Many researchers have developed different hypotheses on how DEF occurs in hardened 

concrete.  In general, ettringite forms at early ages in fresh concrete.  As the sulfate 

(typically from the gypsum in the cement) reacts with the calcium-aluminates in the 

presence of calcium hydroxide, these sulfates are consumed.  Once the sulfate 

concentration in the pore solution reaches some lower value, the calcium-aluminates 

react with the already formed ettringite to produce monosulfoaluminate (Folliard et al. 

2006).  If sulfates are reintroduced to the pore solution, the monosulfoaluminate can 

revert back to ettringite, causing expansive forces and cracking.  Note that sulfates can 

be reintroduced from external sources or from internal sources.  Sulfate attack from 

external sources is not the topic of this research and will not be addressed here.  It is 

believed that ettringite reformation in hardened concrete occurs when the concrete has 

been subjected to high early-age heat.  When subjected to high early heat, it is believed 

that the majority of the sulfate ions are physically attached to the calcium silicate hydrate 

(C-S-H) and are therefore available as a mobile source of sulfate at later ages (Scrivener 

and Lewis 1997, Odler and Chen 1996).  Thus, concretes that experience elevated 

temperatures during hydration, either from high cement contents or large placements 

(typical of structures exhibiting cracking in Texas), are subject to DEF. 

Unlike ASR where the stresses and cracking initiate at the HCP-aggregate interface, 

internal stresses from DEF occur in the HCP (typically at void locations) (Folliard et al. 

2008).  Although damage initiates in different areas, both mechanisms (ASR and DEF) 

lead first to cracking of the HCP and depending on the degree of expansion, cracking of 
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the aggregates.  Because both deterioration processes result in similar damage types, 

further discussions will focus on issues related to internal expansive forces (also referred 

to as premature concrete deterioration), unless specific characteristics of ASR or DEF 

lead to unique damage types. 

1.3.3. Effects of Internal Expansion 

It is clear that the expansive products of ASR and DEF lead to internal expansion in the 

concrete.  A few studies have shown the impacts from internal expansion on material 

properties such as the compressive strength, tensile strength, flexural strength, and the 

modulus of elasticity on small scale samples (Table 1-1).  Table 1-1 shows a reduction 

trend in the strength and stiffness of the material due to the internal expansive forces.  As 

the material strength decreases, so potentially does the structural performance. 
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Table 1-1 Reported Influence of Internal Expansive Forces on Material Properties 

(from Trejo et al. 2006) 

Material Properties 
Author(s) Compressive 

Strength 
Tensile 

Strength 
Flexural 
Strength 

Modulus of 
Elasticity 

Ahmed et al. (1999a&b)     
Monette et al. (2002)     
Swamy and Al-Asali 
(1986)     

Zhang et al. (2002)    3 
Giaccio et al. (2008)     

 - reduction;  - increase;  - no or minimal change 
1. All sample sets (average values) obtained from cores exhibited lower strength values.  All sample sets from exposed 

cylinders except 1 exhibited lower values. 
2. Cubes.  Results dependent on expansion; larger expansions resulted in reduced compressive strength. 
3. Dynamic modulus. 

 
 
 

 
Table 1-2 Reported Influence of Internal Expansive Forces on Structural 

Performance (from Trejo et al. 2006) 

Structural Characteristic 
Author(s) Flexure Bearing Shear Bond Lap  

Length 
Fatigue 

Life 
Chana (1989)    

1 & 
 

  

Ahmed et al. (1998)       
Ahmed et al. (1999a)       
Ahmed et al. (1999b)       
Fan and Hanson 
(1998)       

Swamy and Al-Asali 
(1989)       

 - reduction;  - increase; - no or minimal change 
1. Samples with small cover and no stirrups exhibited reduced bond.  Samples with adequate cover and stirrups exhibited 

similar or increased bond when compared with control samples. 
2. Only an approximate reduction of 4% was observed from samples with over 3000 microstrain 
3. Increased shear for samples exhibiting moderate expansion and reduced shear for samples exhibiting severe expansion.  
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The results of testing small scale specimens exhibiting internal expansion for structural 

performance (Table 1-2) were similar to the material properties in Table 1-1.  The 

majority of the results found a decrease in the structural capacity with a couple of 

exceptions.  Take note of the lack of research done on the effects of internal expansion 

on the lap length of bars in the concrete, especially at large-scale.  These data were 

primarily obtained from small-scale specimens, which likely do not have the same 

behavior as large-scale specimens.   

 

A study on the structural behavior of concrete beams affected by ASR was done by 

Multon et al. (2005).  The specimens were 9.8 in by 19.7 in by 118.1 in (0.25 m by 0.5 m 

by 3 m) and included a reinforcement structure.  It was concluded that the effect of 

reinforcement on the internal expansion of the concrete is substantial, especially in the 

longitudinal direction where the largest decrease of strains and deflections took place.  

However, it was also found that the local offsets of the stirrups had little effect on the 

transverse deformations.  That is, the concrete between the stirrups did not exhibit 

substantially different expansion than the concrete around the stirrups.  Hamada et al. 

2003 also found similar results where steel bars reduce the amount of strain in the 

surface.  The closer the bar is to the surface, the higher the strains were in the steel and 

the smaller the strains were at the concrete surface. 

 

Table 1-2 also shows a lack of research on the effect of internal expansion on the lap 

length.  The present literature on lap length reductions pertain mostly to corrosion and 

studies on the confinement of the surrounding concrete.   
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1.4. Research Objectives 

The major objectives of this thesis are: 

 

• Evaluate the experimental behavior of large-scale specimens of a critical lap 

splice region in a bridge column under varying levels of premature concrete 

deterioration due to ASR and/or DEF 

• Develop a preliminary analytical model that can evaluate the behavior of a splice 

region under varying levels of concrete deterioration based on calibration from 

experimental behavior 

 

The specific tasks reported in this thesis are: 

 

• The design and construction of the large-scale specimens, with a lap splice region 

similar to bridge columns in the field, to be load tested to failure 

• To develop a construction methodology and deterioration environment for the 

large-scale specimens that can accelerate premature concrete deterioration and 

instrument the specimens to track the internal expansion due to ASR and/or DEF 

• To develop a deterministic analytical model for the flexural capacity of a lap 

splice region in a bridge column that takes into account the possible deterioration 

in bond strength from ASR and/or DEF 

• To validate the analytical mode using the structural testing of two large-scale 

control specimens (unaffected by premature concrete deterioration) and provide a 

baseline of results used to compare the test results of deteriorated specimens at a 

later date 
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1.5. Research Methodology 

This research requires both an analytical and experimental program to reach the 

objectives defined in Section 1.4.  The two programs are dependent on each other to 

successfully calibrate a model that can capture the structural effects of the ASR and/or 

DEF deterioration.  Figure 1-3 shows the interdependence between the two programs.  

This thesis covers the first two boxes of each program as shown by the dashed box. 

 

Figure 1-3 Research Methodology by Program Benchmarks 

  

Experimental 

Test Deteriorated 
Specimens 

Monitor Deteriorated 
Specimens 

Test Control Specimens 

Analytical 

Finalize Model and 
Parameter Values 

Bond Model Development 
for spliced regions 

Design and Capacity 
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1.6. Scope of Thesis 

A section-subsection format is used for this thesis.  The term “section” refers to each of 

the 6 main levels of this thesis and the term “subsection” refers to each consecutive 

section embedded therein  The progression of sections is as follows: 

 

• Section 1 (the current section) has the problem statement and background.  This 

is followed by a brief explanation of deterioration mechanisms and the lack of 

research on their effect on the bond between the reinforcing bars and the concrete 

in a lap splice region.  After that, the research objectives and methodology of this 

research are discussed. 

• Section 2 provides information on the methods and materials used in design, 

fabrication, and construction of the large-scale specimens with an emphasis on 

inducing ASR and DEF.  This section also focuses on the implementation of 

instrumentation to capture the resulting internal expansions from ASR and/or 

DEF and later strains from load testing. 

• Section 3 discusses the accelerated deterioration environment of the deterioration 

phase of the large-scale specimens and the current internal expansion strains of 

the specimens. 

• Section 4 presents the deterministic analytical model that describes the flexural 

capacity in the splice region of the large-scale specimens (unaffected by 

ASR/DEF) relative to both a three- and four-point load test configuration. 

• Section 5 presents the results from testing two large-scale control specimens and 

compares the results with the computations from the analytical model.  

Modifications to the analytical model to account for premature concrete 

deterioration are also discussed in terms of the future testing on the deteriorated 

specimens at a later date. 

• Section 6 presents the summary, conclusion, and future work of this research. 
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2. SPECIMEN DESIGN AND CONSTRUCTION 

Equation Chapter (Next) Section 1 

2.1. Design of Large-Scale Specimens 

This research focuses on the performance of the splice region of a typical reinforced 

concrete bridge column subject to ASR and/or DEF.  Because in-service bridge columns 

can vary considerably in size and geometry, a large-scale column (LSC) specimen was 

designed to utilize a common splice found in the field at the column/foundation 

connection, which is typical in non-seismic regions.   

 

Figure 2-1 shows an example of reinforcement details for a bridge column in Houston, 

TX.  The footing has 48 #11 bars (Bars R) that are distributed evenly around the 

perimeter of the column (see Figure 2-2) and extend 107 in (2.72 m) into the column.  

The Bars R overlap with 48 #11 Bars V of the column reinforcing steel to form a lap 

splice.  The hoops in the region are #5 reinforcing bars and are spaced at 12 in (305 mm) 

in this region.  The column supports the loads from the bridge deck above, which can be 

assumed to be primarily an axial compression load.  However, during high winds from 

hurricanes and vehicle collisions, large lateral forces can be exerted on the bridge that 

result in bending moment demands in the column splice region.  The tensile strength of 

the splice is the limiting parameter of the flexural capacity of the column and overall 

lateral resistance of the bridge.  Due to the fact that the strength of the lap splice is 

dependent upon the bond, the effects of ASR and/or DEF expansion on the bond is of 

concern.  If the bond is decreased enough that the bars slip prior to reaching their yield 

strength, the capacity of the column may not be high enough to resist the structural 

demands and failure might be possible. 
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Figure 2-1 Sample TxDOT Column Reinforcement Detail 
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Figure 2-2 Section B-B of the Sample Column 

In an effort to reduce costs and maximize the specimen size based on the constraints of 

the testing laboratory, sixteen LSC specimens were utilized in the experimental research 

program.  Specimens were 2 ft x 4 ft (0.61 m x 1.22 m) in cross section with six #11 bars 

overlapped in the 9 ft (2.74m) splice region, which is the same overlap length used by 

TxDOT (see Figure 2-1).  Figure 2-3 and Figure 2-4 show the dimensions and rebar 

layout of the LSC specimens.  Additional information about the LSC specimens is 

presented in Section 2.4.1. 

96.0 in [2438 mm] 108.0 in [2743 mm] 96.0 in [2438 mm]

2 Sets of #5Hoops and 2 Cross Ties @ 6"C/C

Details (Bars C), (Bars D), (Bars E), & (Bars F)

#5 Hoops @12"C/C

Details (Bars C) Details (Bars C), (Bars D), (Bars E), & (Bars F)

A B

A B

2.0 in [51 mm]
3 #11 bars (A)
3 #11 bars (B)

3 #11 (Bars A)
3 #11 (Bars B)

#5 Hoops (Bars C And Bars E)

2 #5 (Bars G) #5 Hoops (Bars C)

3 #11 (Bars A)
3 #11 (Bars B)

#5 Hoops (Bars C And Bars E)

3 #11 (Bars A)
3 #11 (Bars B)

2 #5 (Bars G)

2 Sets of #5Hoops and 2 Cross Ties @ 6"C/C

 

Figure 2-3 Reinforcement Layout 
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SECTION A-A WITH STRANDS
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(a) Splice Region 

SECTION B-B WITH STRANDS
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(b) End Region 

Section B-B Parts

a 6 #11 Bars A [marked with fill]

b 6 #11 Bars B [marked without fill]

c #5 Hoops @ 6" C/C (Bars C)

d #5 Cross Ties @ 6" C/C (Bars D)

e #5 Hoops @ 6" C/C (Bars E)

f #5 Cross Ties @ 6" C/C (Bars F)

g 2 #5 Bars (Bars G)
 

Figure 2-4 End View of the Reinforcement Layout 
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In ACI 318-08/318R-08 (2008), Building Code Requirements for Structural Concrete 

and Commentary and AASHTO LRFD Bridge Design Specifications (2004), the 

required splice length is a function of the required development length and a factor as 

presented in Section 1.2.  For the #11 bars using f 'c =5000 psi (34.5 MPa) and Eq. (1.2), 

the required development length is 60 in (1.52 m) and 46.7 in (1.19 m) according to Eq. 

(1.1).  Therefore, using the smaller of the two, the provided splice length of 9 ft (2.74 m) 

in the LSC specimens corresponds to 2.3 times ld.  In ACI 318-08 (2008), a Class B 

splice length (when the area of reinforcement provided is not at least twice that required 

by analysis over the entire length of the splice and when the splice is staggered) is 

required to have 1.3 times ld, which means that the provided splice length is 

overdesigned by 78%. 

 

Eq. (1.5) yields a required development length of 52 in (1.32 m) for a #ll bar.  Therefore, 

the provided splice length in the LSC specimens corresponds to 2.08 times ld.  In the 

AASHTO LRFD (2004), this splice is required to have a Class C splice, which requires 

the splice length to be 1.7 times ld.  This means that the splice is overdesigned by 22% 

according to the AASHTO LRFD specifications (2004).  Both ACI 318-08 and the 

AASHTO LRFD (2004) show this splice to be conservatively designed.  The question is 

whether or not the effects of ASR and/or DEF will deteriorate the bond of the 

reinforcing steel in the splice region of the columns enough to overcome the 

conservative design.  Continuing forward in this work, the AASHTO (2004) version of ld 

will be used for all calculations in the specimens of the experimental program. 

 

To evaluate the experimental performance of the splice regions, the LSC specimens will 

first be load-tested to failure using a four-point load test.  Figure 2-5 shows that a 

constant moment is applied over the splice region which allows for the weakest section 

of the region to crack, yield, and ultimately fail.  In this test setup a constant tension 

force across the entire splice length is created in the bottom longitudinal reinforcement.  

For an in-service cantilevered bridge column under lateral loading, the bending moment 
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in the column varies linearly from zero at the top to maximum at the column base, which 

implies that the splice reinforcement is not loaded uniformly along its length.  However, 

the test setup will yield conservative values in terms of the splice performance. 

 

Following the four-point load test, the LSC specimens will be further tested using a 

three-point test setup.  Figure 2-6 shows that a three-point test creates a uniform shear 

force throughout the splice region and a linearly increasing moment demand from zero at 

the support to maximum at the reaction support.  The provided splice length is reduced 

to half of that in the previous test, so the expectation is that bond failure in the splice end 

might develop.  The test setups are further discussed in Section 5.l 
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Figure 2-5 Four-point Load Test 
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Figure 2-6 Three-point Load Test 

2.1.1. Simulated Axial Load 

To simulate in-service gravity loading on the bridge column, the specimens have sixteen 

0.6 in (15 mm)-diameter, unbonded, post tensioning (PT) strands manufactured by VSL.  

The PT strands were centered throughout the specimen cross section as shown in Figure 

2-7.  The unbonded strands were bound in a plastic sleeve and coated with a lubricating 

grease to limit friction losses during post tensioning.  The strands were terminated 

through a base plate that sat flush with the concrete on one side and flared out on the 

other side to accommodate 2 collets that held the tension in the strand.  Figure 2-8 

illustrates the strand extending out of the concrete through the base plate and collets.  

The strands were hydraulically jacked to 0.7 fpu, ultimate tensile stress, as specified by 

the AASHTO (2004) Specification, which results in 36.3 kips (161.47 kN) per strand 

and a total of 580.5 kips (2582.19 kN) of compression on the column specimen.  This 

level of axial load corresponds to about 10% of the axial compression strength of the 

column, which is commonly found in columns under service loading. 

V M
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Figure 2-7 Strand Layout (End View) 
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Figure 2-8 Strand End Termination 



 25

2.2. Instrumentation 

During load testing and deterioration, strains in the LSC specimens need to be identified 

and documented.  The LSC specimens are exposed to an environment that accelerates 

ASR and/or DEF which should induce large transverse strains (due to the tension field 

from Poisson’s Effect), and potentially longitudinal strains in the column.  These strains 

occur on the surface and internally in the concrete and reinforcement steel.  

Demountable mechanical (DEMEC) strain gages are used to measure the surface strains 

in the transverse and longitudinal directions of the LSC specimens throughout the splice 

length.  Internally, 5 full-bridge, concrete embedment gages (type KM) were embedded 

in the concrete to capture the transverse strains of the concrete.  Gages were placed 1 in 

(25.4 mm) on both sides of the reinforcing hoops.  The KM gages were chosen because 

the KM series of strain gages are designed to be embedded in concrete; the gages are 

hermetically sealed, bond to surrounding concrete, and have a low elastic modulus 

which allows for more accuracy.  Additionally, two half-bridge strain gages (SG) were 

attached to the hoops for transverse strain measurements.  During load testing, the strains 

in the longitudinal reinforcement in the splice are also monitored to evaluate the tensile 

behavior of the bar.  Ten SGs were installed on bars in the splice region.  Additionally, 

during the curing stage of the concrete, the temperature distribution of the concrete 

throughout the specimen was monitored using thirty-two embedded thermocouples (TC) 

during the first 36 hours to ensure satisfactory temperatures for DEF. 

2.2.1. DEMEC Strain Measurements 

The DEMEC points consisted of a brass insert and a measurement tip that is screwed 

into the brass insert.  Figure 2-9 shows the installed position of the brass inserts and 

measurement tips.  Both the brass inserts and measurement tips are manufactured by 

ELE International.  Holes, 1 in (25.4 mm) deep and 7/16 in (11.11 mm) in diameter, 

were drilled into the LSC specimen at a 10 in (0.254 m) grid spacing following 
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construction.  The entire grid measured 40 in x 110 in (1.02 m x 2.79 m) in area on the 

long side and 20 in x 110 in (0.51 m x 2.79 m) in area on the 2 ft (610 mm) short side of 

the LSC specimens.  Figure 2-10 shows the grids centered longitudinally and 

transversely on each respective face.  

Epoxy

Concrete

Measurement TipBrass Insert

 

Figure 2-9 Brass Insert with Tip Installed in the Surface of the LSC 

 
300 in [7620 mm]
110 in [2794 mm]

10 in [254 mm]

48 in [1219 mm]40 in [1016 mm]

10 in [254 mm]

 

(a) Long Side of the LSC 

300 in [7620 mm]
110 in [2794 mm]

10 in [254 mm]

24 in [610 mm]20 in [508 mm]
10 in [254 mm]

 

(b) Short Side of the LSC 

 
Figure 2-10 DEMEC Layout in the Splice Region 
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Figure 2-11 shows the brass inserts attached to aluminum strips which were used to 

suspend the brass inserts in the holes and keep them flush with the surface until the 

epoxy set.  A high-modulus epoxy was used to permanently attach the inserts and 

therefore reduce the error of strain measurements in the future.  This was done on the 

long side first to use gravity in keeping the glue in the holes; then the LSC specimens 

were rolled onto their sides and the same procedure was used to install the DEMECs on 

the short side of the LSC specimens. 

 

Figure 2-11 DEMEC Installation on the Long Side 

Once the epoxy hardened, the aluminum strips were unscrewed from the brass inserts 

and peeled off the concrete.  The tips were then inserted into the brass inserts and the 

grid was measured for initial gage lengths using a caliper with a precision of 0.0005 in 

(12.7 μm).  This value was later used for strain calculations as the initial length prior to 

expansions from ASR/DEF. 
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2.2.2. Electronic Strain Gages 

In addition to the DEMECs, several electronic sensors were installed in the specimens to 

measure the internal strains due to ASR/DEF deterioration and also from load testing.  

SGs were attached to the reinforcing steel as outlined in Section 2.4.2 and placed for 

monitoring of ASR/DEF expansive strains and stresses from the flexural load testing of 

the LSC specimens.  Figure 2-12 shows 8 SGs placed on the longitudinal tension steel in 

the splice region, 4 on a center bar and 4 on a corner bar.  SG 9 and SG 10 were placed 

on a compression bar in the middle of the splice and SG 11 and SG 12 were placed on 

two legs of a hoop in the middle of the splice region.  SG 11 and SG 12 are used 

primarily for monitoring expansion in the field, but will pick up strain during load 

testing if shear forces are present (three-point load test). 

 

The 5 KM gages were embedded in the concrete at the center of the splice to monitor 

expansive concrete strains during the deterioration phase.  Four of the KM gages were 

placed such that they were 1 in (25.4 mm) and 3 in (76 mm) from each side of the 

specimen face and the final KM gage was placed perpendicular to the transverse steel.  

Note that the KM gages were placed between the column hoops.  However, the control 

specimens were not instrumented with these gages because they were kept in the 

laboratory (or dry environment) which is not conducive to ASR/DEF deterioration.  

Figure 2-13 shows the orientation of the gages relative to the nearest hoop, with attached 

SG 11 and SG12.  The embedment gages are used to measure the strain in the cover and 

the strain inside the hoop.  Combined with the strain gages on the reinforcing steel hoop 

and the DEMECs, this allows for a strain distribution starting from the surface to 3 in 

(76.2 mm) below the surface to be generated at 1 in (25.4 mm) intervals. 
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Figure 2-12 Internal Strain Gage Locations 
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KM2
KM1

KM3

2" [51 mm]
#5 Hoop

Tension
Reinforcing Steel

 

 
 
Figure 2-13 Critical Section Instrumentation (KM Gages Were Placed in Between 

Column Hoops (6 in (152 mm) from Instrumented Hoop) 

 

In addition to strain gages, 32 thermocouples (TC) were installed throughout the 

specimen to monitor the heat distribution during curing (see Figure 2-14).  The TCs were 

attached to the reinforcing steel and the wire was routed outside the form for easy 

access.  Figure 2-15 through Figure 2-17 show the typical recorded heat distributions 

from the TCs embedded in the LSC specimens. 

 

2 in [51 mm]

*Note: KM gages were placed in between the 
column hoops (i.e. 6 in [152 mm] from the 

instrumented hoop)
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Figure 2-14 Thermocouple Locations 
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(b) Vertical Measurements 

Figure 2-15 Typical Temperature History at Mid-span Section  
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(b) Vertical Measurements 

Figure 2-16 Typical Temperature History at Quarter-span Section  
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Figure 2-17 Typical Temperature History at End-span Section 

 

2.3. Materials of Construction 

The materials used in this research are discussed in this section.  This is not an exhaustive 

analysis of the materials, but describes the type of materials used and some of the 

defining properties.  More information and details on the materials used in this project 

are available in the materials report provided at a later date.  
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2.3.1. Coarse and Fine Aggregates 

Aggregates were selected based on reactivity to promote ASR in the concrete, and  

therefore, not necessarily selected merely on price and location.  The coarse aggregates 

had a maximum size aggregate (MSA) of 1 in (25.4 mm) and were river gravel from 

Hanson Aggregates in Garwood, Texas.  Aggregates were transported from the quarry to 

the Texas A&M Riverside campus at the beginning of the project and stored to ensure 

one source for testing.  Figure 2-18 shows the gradation curve of the coarse aggregates. 

 

Fine aggregates were procured from Wright Materials in Robstown, Texas and stored 

next to the coarse aggregates at Riverside Campus.  Figure 2-19 shows the gradation 

curve of the fine aggregates used in the concrete.   
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Figure 2-18 Gradation of the Coarse Aggregates 
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Figure 2-19 Gradation of the Fine Aggregates 
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Table 2-1 shows the measured properties of both coarse and fine aggregates.  These 

properties were measured in accordance with ASTM C136 (Standard Test Method for 

Sieve Analysis of Fine and Coarse Aggregates), ASTM D 75 (Standard Practice for 

Sampling Aggregates), ASTM C 127 (Standard Test Method for Density, Relative 

Density, and Absorption of Coarse Aggregates), and ASTM C 128 (Standard Test 

Method for Density, Relative Density, and Absorption of Fine Aggregates). 

 

Table 2-1 Measured Aggregate Properties 

 Saturated 
Suface-Dry 

Density (g/cm3)

Dry Density 
(g/cm3) 

Water 
Absorption (%) 

Fineness 
Modulus 

Coarse 
Aggregates 

2.57 2.55 0.68 3.9 

Fine 
Aggregates 

2.58 2.55 1.44 2.79 

 

2.3.2. Cement 

Type III cement was used to fabricate all LSC specimens.  The cement was procured 

from Lehigh Cement in Evansville, Pennsylvania, and transported to Texas A&M 

University in bags on pallets, and stored indoors.  This particular cement was used 

because of the high alkali content to promote ASR in the LSC specimens.  Table 2-2 

shows the chemical composition of the cement. 
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Table 2-2 Lehigh Cement Analysis 

Compound % Wt. 
Na2O 0.3 
MgO 2.8 
Al2O3 4.8 
SiO2 19.48 
P2O5 0.16 
SO3 3.66 
K2O 0.88 
CaO 61.63 
TiO2 0.2 
Fe2O3 3.43 

as Na2Oe 0.88 
Total 99.71 
C3S 55 
C2S 14 
C3A 7 

C4AF 10 

 

2.3.3. Water 

Concrete mixing water was taken from a hydrant at the Riverside Campus during the 

batching process and dispensed directly into the concrete mixing truck.  The water 

source is potable. 

2.3.4. Sodium Hydroxide 

To further increase the alkalis in the concrete mixture, sodium hydroxide (NaOH) was 

added to the mix.  51.3 lbs (23.3 kg) of NaOH tablets were mixed into a total of 21.1 

gallons (80 L) of water in 4 containers.  This created a supersaturated solution, which 
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was poured into the concrete mixing truck before the NaOH could settle from the 

solution. 

2.3.5. Mix Quantities 

The target compressive strength of the concrete mixture was 5000 psi (34.5 MPa).  The 

specific quantities used in each specimen differed slightly due to the moisture content of 

the coarse and fine aggregates measured during the batching process.  Table 2-3 shows 

the mixture characteristics and Table 2-4 shows the mixture proportions used for the 

LSC specimens. 

Table 2-3 Mixture Characteristics 

 Mix Values 
coarse aggregate (absorption 

capacity) (%) 0.96 

fine aggregate (absorption 
capacity) (%) 0.65 

NaOH 51.3 lbs in 21.14 gallons 
(23.3kg in 80L) 

 anticipated  
air content (%) 1% 

specific gravity of the cement  3.15 
specific gravity of the coarse 

aggregates 2.57 

specific gravity of the  
fine aggregates 2.65 

 
 

Table 2-4 Mixture Proportions 

Material SSD (lb/yd3) 
Cement 752 

Course Aggregate 1350 
Fine Aggregate 1438 

Water 361 
NaOH 5.7 

water/cement 0.48 
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2.3.6. Reinforcement Steel 

Grade 60 reinforcing steel meeting ASTM A615 specifications was used to fabricate the 

LSC specimens. 

2.4. Fabrication Procedure 

Fabrication of the LSC specimens began in the summer of 2007.  During the initial 

casting operations, the concrete began to flash-set and honeycombing was observed (see 

Figure 2-20).  The flash-set was due to the Type III cement and the supplemental heating 

of the aggregates (to very high temperatures) used to promote DEF.  Lack of control of 

temperature when heating the aggregates led to boiling of the water, which led to 

accelerated set times and introduced additional voids as shown in Figure 2-20. 

 

Figure 2-20 Voids in the First Trials 
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This challenge required a new approach for fabricating and casting the LSC specimens.  

Because heating the water required for the mix to attain the 160 °F threshold for DEF 

was not an option due to the large quantity, two other possibilities were considered.  The 

aggregates could be heated using a large aggregate furnace (used to batch asphalt), or 

electrical heating wires could be used to heat the concrete once it was placed.  After 

investigating the asphalt batching plants and considering the costs and lack of control, 

the aggregate heater option was deemed unfeasible.  In contrast, the electrical heating 

wires provided many benefits including the ability to regulate the heat using a feedback 

closed system with thermocouples.  The heating wires were also much more cost 

effective, easier to implement, and safer in regard to the risk of fire hazard. 

2.4.1. Reinforcement Cage Assembly 

The longitudinal reinforcement consisted of twelve #11 bars that lapped over the middle 

9 ft (2.74 m) of the LSC specimens.  The transverse reinforcement consisted of #5 hoops 

placed at 12 in (305 mm) on center in the splice region and two overlapping #5 hoops 

placed at 6 in (152 mm) on center outside the splice region to deter failure in these 

regions.  Figure 2-21 shows the individual bar details of the cage and the quantities of 

each for one specimen.   

 

Starting with Bar A, the top bars were suspended above the ground using a fabricated 

stand and tied together over the a 9 ft (2.74 m) splice length.  Careful placement of the 

instrumented bars allowed for the strain gages to remain untouched during the assembly 

of the reinforcement.  The hoops, Bar C, were then placed over the longitudinal bars and 

the ends were tied together.  Figure 2-3 and Figure 2-4 show overlapping hoops spaced 

at 6 in (152.4 mm) on the ends and a single hoop 12 in (304.8 mm) in the splice region.  

The top corners of the hoops were then tied to the longitudinal bars. 
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The pieces labeled Bar B were then slipped underneath the top side of the hoops on both 

sides of the center longitudinal bars.  This allowed for the Bar E pieces to be placed 

around the center longitudinal bars and the Bar B bars in the end regions.  The ends of 

the Bar E were tied together, centered, and attached to the hoops.  Bar E was not used in 

the splice region of the column.  Figure 2-4 shows the reinforcement layout as viewed 

from the ends of the LSC specimens at sections A-A and B-B in Figure 2-3. 

 

With the hoops in place, the bottom longitudinal bars, including the two with strain 

gages were set in place and tied to the hoops in the corners.  This allowed for the final 

pieces, Bar F and Bar D to be tied into place along the horizontal center and the vertical 

third point respectively.  Bar G was used to hold Bar D into place and ensure accurate 

placing.  

 

The last step of the reinforcement cage assembly was to attach chairs to the bottom of 

the cage to ensure the desired cover of 2 in (50.8 mm) was attained during the pour.  

With a spacing of 12 in (308 mm) in every direction, the chairs were tied to the 

reinforcement before placing in the form. 

2.4.2. Strain Gage Application 

Research was performed to ensure that the SGs would be readable and accurate after 

several months of exposure.  The technique for applying the SGs to the rebar is outlined 

in a report by Liu et al. (2009).  The ribs on the reinforcing steel were ground flat and 

then sanded to create a smooth surface for SG application.  The SGs were glued to the 

reinforcing steel and covered with a series of protecting layers to ensure durability of the 

gages. 
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2.4.3. Post Tension Strand Installation 

Once the reinforcement cage was placed into the formwork, the PT strands were put into 

place through the formwork.  The plastic tubing for unbonding the strands was cut off 

the ends and the strands were placed through the anchor plates on the ends of the 

formwork.  A hydraulic jack was used to put a slight tension on the strands until the sag 

was removed from the middle.  Ties were also used to suspend the PT strands to avoid 

excessive sagging.  After the concrete gained sufficient strength, the strands were then 

tensioned to the desired 36.3 kips (161.5 kN) as discussed in Section 2.1.1. 

2.4.4. Electrical Resistive Wiring Installation 

To promote DEF, the LSC specimens were supplemented with heat by Electrical 

Resistive Wiring (ERW) to ensure that the concrete temperature was above 160 °F (71.1 

°C) during the curing of the concrete.  The ERW was preinstalled in the bottom and top 

forms and then covered with stainless steel.  In addition, ERW was required in the mid 

depth of the LSC specimens by one dimensional heat flow analysis.  The ERW was 

pushed through PEX tubing that was strung through the vertical center of the cross 

section of the LSC specimens at four-points and passed through the end of the form (see 

Figure 2-22).  This protected the ERW and allowed for the wire to be used multiple 

times.  The ERW solution consisted of three controllable sections to apply heat, which 

allowed for a more uniform temperature distribution in the concrete throughout the 

specimen. 
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(a) ERW in the Top Panels (Plan View) 

 

      
(b) ERW Through the Middle of the Concrete (Plan View) 

 

 
(c) ERW Embedded in the Bottom of the Form (Plan View) 

 

 
(d) End-View of Heated Formwork 

 
Figure 2-22 ERW Layouts  
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2.4.5. Batching and Mixing Concrete 

Concrete for fabricating the specimens was mixed using a concrete truck.  Using a front-

end loader and a forklift, the fine and coarse aggregates were first loaded into the truck 

as shown in Figure 2-23.  The front end loader was used to fill a 2 yard bucket with up to 

4000 lbs (17.79 kN) of material.  Then the forklift would lift the bucket using straps and 

a load cell to weigh the aggregates.  With the weight recorded, the forklift then set the 

bucket on the ground.  From there, the bucket was picked up using the forks and lifted 

above the truck.  The material was then dumped into the truck and the process was 

repeated until the required amount of fine and coarse aggregates were added to the truck.  

Aggregate weights were adjusted for moisture prior to mixing.  Water was then added.  

The truck was filled with the prescribed amount of water minus 21.14 gallons (80 L), 

which was added later with the Sodium Hydroxide (NaOH) tablets.  This completed the 

batching operation at the Riverside campus.  The concrete truck was then transported to 

the Structural and Materials Testing Laboratory at the Texas A&M University campus.  

In the Structures and Materials Testing Laboratory, sodium hydroxide tablets were 

batched into four 5-gallon containers and mixed with the water prior to the concrete 

mixing truck’s arrival. 
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(a) Adding Fine and Coarse Aggregates 

 

 
(b) Adding Water 

 

 
(c) Adding Cement 

 
Figure 2-23 Batching Operations 
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After arrival of the truck in the Structures and Materials Testing Laboratory, the cement 

was added to the truck (see Figure 2-23c and Figure 2-24).  After the cement was added, 

the 4 containers of sodium hydroxide solution were added into the mixer, which had an 

added benefit of washing the remaining cement into the mixer as it was poured into the 

drum.  After adding the NaOH solution, the concrete mixing truck mixed the concrete 

materials for 15 minutes at high speed, which is typical for normal batching operations.  

Table 2-5 shows the approximate length of time for each operation of the batching 

process in the laboratory. 

 

 

Figure 2-24 Dumping Cement into the Mixer 
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Table 2-5 Fabrication Procedure in the Structures and Materials Laboratory 

Operation Approximate Time 
Add Cement to the Concrete Truck 30 minutes 
Add NaOH solution to the Concrete Truck 5 minutes 
Mix Concrete 15 minutes 
Perform Slump Test 1 minute 
Cast Concrete in LSC specimens Form 15 minutes 
Finish Concrete (Screed and Bull Float) 30 minutes 
Connect ERW 15 minutes 
Cover LSC specimens with Insulating Panels 15 minutes 

 
 

2.4.6. Casting Specimens 

After the concrete materials were mixed for 15 minutes, a sample was taken from the 

mixer for a slump test according to ASTM C143 (2000).  To assess slump loss over 

time, the slump was taken every 10 minutes.  Figure 2-25 shows the slump loss for all 16 

specimens. 
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Figure 2-25 Slump Versus Time 
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Concrete was set aside to fabricate test samples.  Test Samples included 4 in x 8 in (102 

mm x 204 mm) cylinders for compressive strength testing according to ASTM C39 

(2001), Fu prisms for DEF expansion measurements, prisms for ASR/DEF expansion 

measurement according to ASTM C1293 (2008), and prisms for flexural strength tests in 

ASTM C78 (2007).  The details of each test sample are further discussed by the 

materials report provided at a later date. 

 

Figure 2-26 shows the concrete placement.  After the form was filled and the concrete 

consolidated, the concrete was screeded and floated.  This process concluded the casting 

of the concrete. 

 

 

Figure 2-26 Pouring Concrete in the Form 
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2.4.7. Early Age Specimen Conditioning 

Shortly after the concrete was floated, the top ERW panels were placed directly on the 

concrete.  Placed end-to-end, the panels covered the top of the specimen except for the 

last 6 in (152 mm) on the ends.  The wires were routed out the sides of the form for 

connection to the power supplies.  Insulated panels (6 in [152.4 mm] thick), were then 

placed on top of the ERW panels to reduce heat loss as shown in Figure 2-27.  These ran 

the length of the form and completed the insulated form, entombing the specimen.  The 

ERW was connected to the power supplies which controlled the temperature of the 

concrete to 180 °F (82 °C) in the bottom, middle and top of the specimen.  The ERW 

was run for 2 to 3 days and then switched off to allow the specimen to gradually cool. 

 

 

Figure 2-27 Insulated Form with ERW Power Supplies on Top 
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During the curing process, the data acquisition system (DAQ) logged data for all sensors 

in the specimen.  The data from the strain gages fluctuated during the placement of the 

concrete and the heat application period.  However, once the heat was switched off and 

the specimen began to cool, the strain gages stabilized. 

 

The cooling process consisted of disconnecting the ERW from the power.  The top 

insulation boxes and ERW panels were then removed the next days to allow for further 

heat loss.  After an additional 1 to 3 days, the side forms were removed to allow the 

specimen to reach room temperature.  At this point, the strain gages had reached a stable 

value and this value was considered as the zero point for testing at a later date. 

 

This concluded the placement procedure. Constructed specimens were stored in the lab 

until four specimens were completed.  Once the fourth specimen was fully completed, 

the four specimens were transported to the Riverside campus for atmospheric exposure. 

2.5. Summary 

Fourteen specimens were constructed and transported to the Riverside campus for 

deterioration and two control specimens remained in the lab without any premature 

concrete deterioration.  The fabrication process for all 16 specimens lasted from January 

of 2008 to September of 2008.  Due to the research done on the front end of the project, 

each LSC specimen had minimal voids and were exposed to the summer heat as soon as 

possible.   
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3. DETERIORATION OF LARGE-SCALE SPECIMENS 

Equation Chapter (Next) Section 1 

3.1. Introduction 

Multon et al. (2005) reported that the effects of water substantially increased the amount 

of ASR in a specimen half submerged in water.  Folliard et al. (2008) reported that ASR 

progresses faster in a warmer climate than a colder climate.  Hence, to promote the 

formation of ASR and DEF, the LSC specimens were stored in atmospheric conditions 

in Texas and exposed to wetting for 15 minutes four times a day.  Normally ASR and/or 

DEF takes many years to exhibit damage and cracking.  However, due to the materials 

selected, the fabrication process, and the exposure conditions of wetting/drying cycles 

used in this research project, the LSC specimens are expected to deteriorate more 

rapidly. 

3.2. Specimen Exposure Conditions 

The LSC specimens were placed on their short side (2 ft dimension) at about 3 ft (0.91 

m) clear distance between the specimens.  Figure 3-1 shows the placement of the LSC 

specimens at the Riverside Campus.  To accelerate the ASR/DEF deterioration 

mechanisms, a watering system was installed to wet each side of a specimen for 15 

minutes every 6 hours.  Figure 3-2 shows that during normal wind conditions, the entire 

specimen, minus the specimen ends, were soaked in water. 
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Figure 3-1 Specimens Exposed to Atmospheric Conditions at Riverside Campus 

 
 

 

Figure 3-2 Sprinkler System between Two Specimens 
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3.3. Specimen Behavior during Deterioration Phase 

DEMEC strain measurements, strain gages on the reinforcing steel, embedded concrete 

gages, and crack width measurements were taken and recorded every two weeks.  As 

outlined in Section 2.2, the DEMEC points, embedded concrete gages, and strain gages 

were installed prior to placement at Riverside.  LSC1 through LSC6 were stored outside 

for up to 3 months before the sprinkler system was installed.  The strain measurements 

were recorded during that time, but little expansion was apparent until the sprinkler 

system was installed.  Therefore, all data and results in this report use the initial time of 

exposure to the wet/dry cycles as time equal to 0.0, not the time after casting. 

3.3.1. Strains between DEMEC Points 

DEMEC points mounted on the surface of the LSC specimens provide measurements for 

surface expansion. Calipers were used to measure the distance between the points with a 

precision of 0.0005 in (12.7 μm), which corresponds to a resolution of approximately 50 

microstrain on the readings.  Coupled with errors during the measurement process, the 

values obtained were found to have an error of approximately +/- 100 microstrain.  As 

the strains approach 5000 microstrain or larger, the error measurement is about 2%.   

 

Figure 3-3 and Figure 3-4 show the average transverse surface expansion along the short 

and long sides of the LSC specimens during the first 300 days of exposure to the wet/dry 

cycles.  The transverse surface strain for each set of DEMEC points is calculated by 

averaging the measured lengths between DEMEC points on each cross section as 

follows: 

1

n
existing initial

i
i initial

L L
L

δ
=

−
=∑   (3.1) 
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where Lexisting is the current transverse length between the DEMEC points, Linitial is the 

original transverse length before deterioration, and n is the number of DEMEC 

measurements on a line.  This is done separately for the long and short sides of the LSC 

specimens.  Two readings per section are used for the short side and four readings per 

section are used for the long side.  Figure 3-3 and Figure 3-4 show the average 

transverse strain, δtotal, for all 12 DEMEC sections of the LSC specimens as follows: 

12

1

12

i
i

total

δ
δ ==

∑
  (3.2) 

where δi is the transverse strain of one set of DEMEC points. 

The measured strains on the short (top) side of the LSC specimens were almost two 

times higher than those on the long side of the specimen.  This may be attributed to the 

warmer surface temperature due to exposure of direct sunlight.  The short side receives 

direct sunlight from dusk till dawn, while the long side receives less than half the 

amount of time due to the east/west progression of the sun.  Likewise, Figure 3-5 shows 

that the top of the long side is receiving more direct sunlight than the lower portion.  

This is because the longitudinal axis of the LSC specimens is oriented north-south, 

which means the sun passes over the specimens in the transverse direction.   

 

Figure 3-6 and Figure 3-7 show the individual transverse strain measured on the top and 

bottom half of the long side of the LSC specimens.  The figures show that the upper 

quarter of the long side is expanding more than the other section along the long side and 

are comparable to that on the short (top) side of the LSC specimens (see Figure 3-3).  A 

combination between direct sunlight, higher temperatures, and ponding water on the top 

the LSC specimens could be the cause of this increase in expansion. 
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Figure 3-3 Transverse Surface Strains on the Short Side of the LSC 

 
 
  

-1000

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350

LSC1
LSC2
LSC3

LSC4
LSC5
LSC6

LSC7
LSC8
LSC9

LSC10
LSC11
LSC12

LSC13
LSC14

LS
S

1

Days of Exposure

M
ic

ro
st

ra
in

 

Figure 3-4 Transverse Surface Strains on the Long Side of the LSC 
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Figure 3-5 Direct Sunlight Exposure of Columns at Riverside  
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(a) Upper Quarter 
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(b) Middle-Upper Quarter 

Figure 3-6 Individual Transverse Strain Measurements on the Top Half of the 
Long Side of the LSC Specimens 
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(a) Middle-Lower Quarter 
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(b) Lower Quarter 

Figure 3-7 Individual Transverse Strain Measurements on the Bottom Half of the 
Long Side of the LSC Specimens 
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3.3.2. Embedded Full-bridge Concrete Gage Measurements 

During fabrication, 5 KM embedded concrete gages were installed into the concrete 

specimen.  KM gages 1 and 2 were placed on the short side of the column with KM1 

embedded 1 in (25.4 mm) from the surface and KM2 embedded 3 in (76.2 mm) from the 

surface (1 in [25.4 mm] inside the hoop).  Likewise, KM3 and KM4 were placed on the 

long side with KM3 in the cover and KM4  embedded 3 in (76.2 mm) from the surface 

(1 in [25.4 mm] inside the hoop).  KM1 through KM4 were placed to measure (column 

transverse expansive) strains and KM5 was placed on the long side perpendicular to 

KM3 and KM4 to measure column radial strains. 

 

In Figure 3-8, the strains from KM1 and KM2 are shown for all 14 LSC specimens in 

the deterioration phase.  These results indicate that the cover region of the specimens are 

expanding more than the confined concrete region within the hoops, most likely due to 

the hoops restraining the expansion.  However, in Figure 3-9, the difference between the 

strains inside the hoop and outside is not as clear.  This might be attributed to the long 

side having strains approximately only ~25% of the short side, again this may be due to 

the amount of exposure to sunlight.  KM3 and KM4 are located at the center of the long 

side and therefore receive less sunlight than the upper half of the long side.  In addition, 

it is evident that the trends found in both the DEMEC measurements and the KM gages 

are similar in magnitude on both the short and long sides of the column. 
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(a) KM Gage 1 – 1 in (25.4 mm) Outside the Hoop 
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(b) KM Gage 2 – 1 in (25.4 mm) Inside the Hoop 

 
Figure 3-8 KM Gage Transverse Expansion on the Short Side of the LSC 

Specimens 
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(a) KM Gage 3 – 1 in (25.4 mm) Outside the Hoop 
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(b) KM Gage 4 – 1 in (25.4 mm) Inside the Hoop 

 
Figure 3-9 KM Gage Transverse Expansion on the Long Side of the LSC Specimens 
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It can be observed that, in general, the KM gages on either side of the hoop have higher 

strains than the hoop itself.  This might indicate that the local effects of the hoop reduce 

the expansion strains in the concrete since the KM gages are placed midway between the 

hoops (see Figure 3-10).  However, Multon et al. (2005) found that stirrups had little to 

no effect on the transverse strains.  Another possibility is that the discrepancy might be 

due to bond-slip condition in the reinforcement.  Further measurements that will be 

collected later in the research may provide more insight into why the strains are smaller 

in the SGs on the hoops versus the KM gages in the concrete. 

 

 

 

 

 
Figure 3-10 Location of the KM Gages Relative to the Hoops 

 

3 #11 (Bar A) #5 Hoop (Bar C) 

KM1 & KM2 

KM3 KM4 SG12 

SG12 
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3.3.3. Strain Gage Measurements 

A total of 12 strain gages (SG) were attached to the reinforcing steel of each specimen as 

discussed in Section 2.2.2.  Two gages, SG11 and SG12, were applied to a hoop 

reinforcement to measure transverse expansions along the short and long sides of the 

specimen respectively.  The remaining strain gages are used during load testing.  SG11 

and SG12 were placed in the center of the short side and the third point of the long side 

respectively.  Because of SG12’s placement on the upper portion of the long side, higher 

strains were observed when compared to the average DEMEC measurements of the long 

side and the KM gages, which are centered on the side.  Figure 3-11 and Figure 3-12 

show the expansion of SG11 and SG12, respectively.  The strains on the short side are 

marginally higher than the strains on the long side.  On the short side of the hoop, the 

data indicates that the reinforcement steel has begun to yield (strain > 0.002) in LSC 

specimens 4 and yielding may occur soon in the other specimens. 
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Figure 3-11 Strains in the Hoop on the Short Side of the LSC Specimens (SG11)  
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Figure 3-12 Strains in the Hoop on the Long Side of the LSC Specimens (SG12)  
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3.3.4. Crack Width Measurements 

Figure 3-13 shows a longitudinal crack beginning to form on a LSC specimen.  The 

cracks were measured with a crack comparator card that can be used to visually assess 

crack widths as small as 0.005 in (0.13 mm). 

 

Figure 3-13 Longitudinal Crack from ASR/DEF Expansion 

To obtain an equivalent strain across a section, the cracks between DEMEC points were 

measured and summed to obtain the total expansion across the specimen side.  The total 

expansion was then divided by the original length between the DEMEC points and an 

equivalent strain, δ, was determined as follows: 

 crack widths
Length between DEMECs

δ = ∑   (3.3) 

0.005 in 
(127 μm) 
(typ.) 
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Figure 3-14 shows the recorded data from the cracked columns.  The data does not start 

until after 100 days of exposure because prior to this, the cracks were very small or did 

not exist.  This method results in significantly lower values of surface strains as 

compared to the DEMEC measurements in Figure 3-3.  This is due to the inability to 

capture strains in the concrete in between the cracks.  As the columns continue to crack, 

the data will be compared to the DEMEC data and strain gage data to identify if a 

correlation exists between summing the crack widths and the actual strains inside the 

column.  This could allow for simple diagnostics to be performed on deteriorated 

columns in the field. 
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Figure 3-14 Transverse Strains on the Short Side by Summing Crack Widths 
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3.3.5. Comparison of Measurements  

A comparison of each measurement method was completed for the LSC specimens.  The 

comparison allows for a strain distribution to be identified from the surface of the 

concrete to a 3 in (76.2 mm) depth; the DEMECs are on the surface, one KM gage was 

placed at 1 in (25.4 mm) inside the surface, the hoop reinforcement has a strain gage 

attached 2 in (50.8 mm) from the surface, and the other KM gage is embedded at 1 in 

(25.4 mm) below the hoop.  As shown in Figure 2-13, the strain gage on the long side of 

the column is positioned higher up than the KM gages and the DEMEC averaging.  This 

provides for slightly higher strains.  Figure 3-15 shows the location of the 5 different 

gages for the short side of the columns. 

 

 

 

Figure 3-15 Strain Distribution from Surface 

Figure 3-16 shows the results from LSC1 through LSC4.  In each LSC specimen the 

surface measurement by the DEMEC points shows the highest strains except for LSC4 

where the outer KM gage is slightly higher.  The outer KM gage is also the second 

highest strain in each column except for column 2 where the inside KM gage is slightly 

higher.  The inside KM gage measurement is higher than the strain gage on the hoop for 

all columns and as expected, the crack width summation method has the smallest strain

• Transverse DEMECs  
and Crack Width Summation 
 

• Outside KM Gage (KM1) 
 

• Transverse Strain Gage 
(SG11) 
 

• Inside KM Gage (KM2) 
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Figure 3-16 Comparison of Transverse Strain Measurements 
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3.4. Summary 

The specimens that have been exposed for the longest duration have been stored at the 

Riverside campus and have exhibited significant expansion in a relatively short duration.  

Several observations on the behavior of ASR/DEF expansion can be made. 

 

• Significant expansion and cracking in the tension field has developed in the 

specimens 

• Higher strains were measured at the surface when compared to internal strains 

• The strain in the KM gages positioned between the hoops is larger than the strain 

in the SG on the hoops. 

• The short side of the LSC specimens is expanding faster than the long side, 

especially below mid height. 
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4. ANALYSIS OF COLUMN SPLICE REGION 

4.1. Introduction  

Columns are vertical prismatic members designed to carry compressive axial loads, 

shear forces and bending moments.  Events such as hurricanes can provide large flexural 

and shear demands to the columns due to overturned or sidesway failure mechanisms.  

Because past research has shown that ASR may not significantly affect the compression 

strength, the LSC specimens are tested to evaluate the flexural capacity of the splice 

region, or more significantly, the tensile capacity of the spliced longitudinal reinforced 

section.  If ASR/DEF deteriorate the bond, the capacity of the column can be decreased.  

Alternatively, if the bond is not affected by ASR/DEF, the capacity of the column may 

not be reduced. 

 

In this work, the strength of the splice is calculated using flexure theory for reinforced 

concrete sections.  A factor for the development length calculations is added to the 

theory to account for the loss of bond strength due to premature concrete deterioration.  

The analytical program also focuses on the test setup that simulates an overturning 

moment near the base of a column.  Though a lateral force distribution is triangular for 

cantilevered columns, a four-point test provides a conservative constant moment across 

the splice length.  Additionally, a three-point test was designed to create a high demand 

on the undeveloped region of the splice to promote bond failure. 

4.2. Analytical Program - Capacity Analysis Using Flexure Theory 

4.2.1. Objectives 

The objectives of the analytical program are to: 

• Develop an analytical model that accounts for bond and its affect on the 

structural capacity of a column lap splice region; 
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• Calibrate the analytical model with test results from the four-point and three-

point tests of the undamaged control specimens; and 

• Identify the possible severity of bond degradation due to ASR/DEF and develop 

reduction factors for the required splice length based on the severity of ASR/DEF 

deterioration. 

4.2.2. Modeling Assumptions 

The following assumptions were used in the analytical methodology: 

• Plane sections remain plane (compatibility), 

• The reinforcing steel is perfectly bonded with the surrounding concrete, which 

means the strain in the steel is equal to the strain in the surrounding concrete, 

• Both concrete and steel were assumed to behave linearly in the elastic region 

according to Hooke’s Law, 

• Bars develop strength proportional to the ratio of the embedment length provided 

to the development length required for the reinforcing steel, 

• The concrete contributes no strength in tension after it has cracked, which places 

additional load on the reinforcement, 

• Concrete crushes at a compressive strain of 0.003 as specified by AASHTO 

LRFD (2004), and 

• The stress-strain relationship of the reinforcing steel is modeled as elastic-

perfectly plastic. 

4.2.3. Splice Capacity Model 

A capacity model for the splice region of a RC column was developed using the basic 

laws of mechanics with the assumptions described in Section 4.2.2: (1) Compatibility - 

plane sections remain plane and the strain in the bars is equal to the surrounding 

concrete, (2) Constitutive - Hooke’s Law governs the relationship between stress and 
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strain up to yielding, and (3) Equilibrium.  Figure 4-1 shows the theory for the three 

different limit states of structural flexural capacity; (1) at first crack in the concrete, (2) 

when the tensile reinforcing steel first yields, and (3) ultimate caused by crushing of the 

concrete in compression. 

 

The flexural capacity calculations in the splice region are dependent on the area of the 

tensile reinforcing steel at a particular section of the LSC, which is dependent on 

whether the bar is properly embedded in the concrete (development length, ld).  The 

development length is defined as the shortest length of bar in which the bar stress can 

increase from 0 to the yield strength, fy (MacGregor 1997).  Therefore, ld is dependent on 

the location of the bar ends, which will be referred to as geometrical boundaries.  

Geometrical boundaries consist of reinforcement discontinuities (bar ends) and mid-

sections of the reinforcement where the development length criterion switches direction.  

The effective area of steel is calculated relative to the geometric boundaries and is a 

critical parameter of the strength associated with the concrete in the analytical model 

proposed in this thesis.  Figure 4-2 shows the additive nature of the effective area of steel 

in the splice region and Figure 4-3 shows the effective area of steel available at each 

cross section presented as a piecewise linear curve with nodes at the critical cross 

sections where a geometrical boundary occurs.  The geometrical boundaries are 

designated by sections A through F, which are mirrored to both sides of the column 

(Table 4-1).  The effective area of steel is a critical parameter of the strength associated 

with the concrete in the analytical model proposed in this thesis. 

Table 4-1 Geometric Boundaries of Tensile Reinforcement 

Cross Section Geometric Boundary 
A Reinforcing steel begins with hooked end 
B Hooks on the splice bars fully develop 
C Mid-section of the straight bars 
D Splice end (one splice bar begins while the other is continuous) 
E One development length from the end of the spliced bar 
F Mid-section of the LSC 
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Figure 4-2 Linear Addition of Undeveloped Steel 
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Figure 4-3 Area of Tension Steel in the LSC Specimens Based on Reinforcement 
Layout 
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Section A represents the location where the 90° hook on the splice bars begins near the 

end of the beam.  Eq. (4.1) shows the area of reinforcing steel used for the capacity 

calculations.  This identifies the beginning of the load bearing portion of the column and 

all equations are calculated using inches. 

, 0s AA =   (4.1) 

As the hooked end of the splice and straight bars develop, the amount of available steel 

increases.  The area of available steel at section B (when the hooked splice bar is fully 

developed), As,B, can be determined as follows: 

( ),
,

3 3hb
s B bar bar

d eff

lA A A
l

= +   (4.2) 

where Abar is the area of one bar (note that there are three bars in tension at this location), 

ld,eff is the effective development length derived from multiplying Eq. (1.5) by an 

effective development length factor to be determined experimentally by load testing of 

the deteriorated LSC specimens later in the research.  For this thesis, the factor is taken 

as 1.0 because the control specimens used to validate this model exhibited no 

deterioration.  According to the AASHTO LRFD Design Specifications (2004), the 

development length for the deformed hook, lhb, (identifies location of point B) is defined 

as follows: 

38.0
'

b
hb

c

dl
f

=   (4.3) 

where 'cf  is the compressive concrete strength in ksi, and db is the reinforcement 

diameter in inches.   
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The next geometrical boundary occurs at the mid-section of the straight bar.  At this 

point, section C, the straight bar is not fully developed, but it has reached the most 

developed section of the bar and the effective area can be determined as follows: 

( ),
,

473 3s C bar bar
d eff

A A A
l

= +   (4.4) 

The next point, section D, is located at the beginning of the splice.  The straight bars end 

at this location and no longer contribute any area (or strength), which leaves the section 

with only one set of bars, the splice bars.  The amount of equivalent steel area can be 

determined as follows: 

, 3s D barA A=   (4.5) 

The location of Section E is defined by the effective development length, ld,eff of the 

straight end of the spliced bar.  From the splice end, the effective area in one splice bar 

increases while the other will decrease because of the straight end on the other end of the 

splice.   

 

The capacity at section E is based on the full development of one set of splice bars and 

the partial development of the opposite set of slice bars and the equivalent area can be 

determined as follows: 

,
,

,

108
3 (3 )d eff

s E bar bar
d eff

l
A A A

l
−

= +   (4.6) 

where As,E cannot exceed a value of 6Abar, which is possible for ld,eff  < 54 in (1.47 m).  

This is also true for As,F. 
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Figure 4-2 shows the linear increase in the effective area of the steel and the additive 

nature of the splice, which provides additional strength (Ferguson 1966).  As shown in 

Figure 4-3 and Figure 4-2, the ld,eff  is significantly less than the provided splice length.  

In this case, there is significant flexural over-strength throughout the splice region (i.e. 

conservative design).  However, as the concrete deteriorates, ld,eff  will potentially 

increase (determined by testing at a later date), and as such, reduces the over-strength of 

the splice region. 

 

From section E to the center of the splice, the effective area is the same.  This is also due 

to the linear addition of the total undeveloped splice steel.  Rearranging Eq. (4.6), Eq. 

(4.7) shows the summation of two sections of undeveloped splice steel at section F.  This 

is based upon the assumption that the reinforcement gains strength linearly from the end 

of the reinforcement to the developed length as discussed in Section 4.2.2.  This can be 

can be determined as follows: 

,
,

,

*where 54, 542* (3 )            
since the bar is not developed

d eff
s F bar

d eff

l
A A

l
≤⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 (4.7) 

Additionally, Figure 4-4 shows that as ld,eff approaches the splice length of 108 in (2.74 

m), the additive cross-sectional area is constant across the entire length of the splice with 

an effective area for 3 bars of reinforcement (3Abar).  When ld,eff is longer than the splice 

length, bond failure can occur, resulting in a brittle failure mechanism. 
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Figure 4-4 Linear Addition of Undeveloped Steel When ld,eff Equals the Splice 
Length 
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With the effective cross-sectional area of the longitudinal reinforcement established at 
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iterative approach based on flexure theory.  Due to the axial load from the PT strands, 

the neutral axis of the column shifts from the center, creating a larger compression 

region.  Figure 4-1 shows the strain diagram at each stage of loading; cracking of the 

concrete in tension, yielding of the reinforcement, and ultimate failure with crushing of 

the concrete.   

 

At first cracking, the strain and stress diagrams are calculated across the entire cross 

section because the entire section contributes structurally to resisting the load.  The 

limiting criterion is based upon the ability of the concrete to resist tensile loads.  The 
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' 0.24 't cf f=   (4.8) 

where 'tf  and 'cf  (28-day cylinder strength) are in ksi.  The critical value of each stage 

of failure is also shown in Figure 4-1.  The concrete cracks at 237µst which is based on 

the tensile strength of the concrete (MacGregor 1997) as follows: 

'' 1.8* t
t

c

f
E

ε =   (4.9) 

where Ec is the modulus of concrete calculated by: 

57000 'c cE f=   (4.10) 

where Ec and 'cf  are in psi. 

 

As the section continues to bend, Figure 4-1 depicts the upward movement of the neutral 

axis from approximately 4 in (102 mm) below the centroid at first cracking to 

approximately 6 in (152 mm) above the centroid at ultimate failure.  This is based on the 

assumption that plane sections remain plane and satisfying equilibrium through an 

iterative approach. 

 

At first yielding of the tensile steel (see Figure 4-1b), a tensile strain of 2069µSt is 

calculated according to Hooke’s law: 

y
sy

s

f
E

ε =   (4.11) 
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where fy is the yield strength of the steel and Es is the modulus of the steel taken as 60 

ksi (414 MPa) and 29,000 ksi (200 GPa) respectively. 

 

Finally, at ultimate capacity, the steel continues to yield and the concrete begins to crush 

in compression.  Using a conservative concrete crushing strain, cuε , of -3000µSt, (from 

AASHTO LRFD (2004) and ACI 318-08), it can be shown for the LSC specimen that 

the strain diagram allows the steel to deform perfectly plastic to about 4 times the yield 

strain, resulting in a fairly ductile section. 

 

In addition to the critical values mentioned ( 'tε , yf , and cuε ), equilibrium must be 

satisfied for the cross section.  The iteration revolved around an assumed depth for the 

neutral axis.  By moving the neutral axis towards the compressive region, the total axial 

force on the section would decrease and vice versa with a move towards the tension 

region of the section.  Because the depth and strain of both the critical value and the 

neutral axis are now known, the strain between these points can be assumed to be linear.  

From this strain distribution across the section, the stress in each component of the cross 

section can be calculated using Hooke’s Law.  With a stress identified for each 

component of the section, a force can be calculated based on the stress distribution.  For 

the reinforcement steel, the stress distribution is assumed to be constant and therefore 

results in a force centered on the reinforcement depths, both top and bottom.  The 

concrete, however, forms different stress distributions across the depth of the section as 

the load increases.  Figure 4-1 shows the progression of the calculations from strain to 

stress to force for all three stages of loading.  At cracking, the concrete has a triangular 

distribution in both the compression and tension regions, and after the concrete has 

cracked, Figure 4-1b shows that only the compression region remains.  After the 

reinforcement yields, the compressive stress in the concrete begins to take on a parabolic 

shape that can be represented as a rectangular block (Whitney’s stress block) in Figure 

4-1c.  With the stress distributions identified, forces can be generated for the cross 

section.  These forces can then be used used to calculate the total axial force, Paxial, on 
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the column by summing the forces and to calculate the moment applied to the section by 

taking moments of the forces about the centroid.   

 

Paxial is equal to the load applied by the PT strands, which is 580.8 kips (2.58 MN) for 

the LSC specimen.  If the calculated value for Paxial is higher than 580.8 kips (2.58 MN), 

then the neutral axis is raised and vice versa.  This is done until the calculated value for 

Paxial is equal to 580.8 kips (2.58 MN), then the moment is taken to find the moment 

capacity of the section for each different stage of loading.   

 

 

Table 4-2 shows the data from an example calculation for identifying the moment 

capacity of the splice end, which has an effective area of reinforcement of 4.68 in2 (3019 

mm2) or three #11 bars.  The value c is the distance from the top of the column to the 

neutral axis and is the value of iteration.  The values Paxial and Mcr are the axial load in 

the column taken as 580.8 kips (2.58 MN) and the moment capacity at cracking taken as 

5783.4 kip-in (94.1 MN-m), respectively. 
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Table 4-2 Sample Values from Iterative Calculations Based on Equilibrium at 
Cracking 

Variable Units Values 
As in2 4.68 
c in 15.88 
εc in/ in 0.000463
fc ksi 1.69 
Cc kips 643.72 

Tc kips 93.63 
εs in/ in 0.000140
fs ksi 4.05 
Ts kips 18.99 
εs' in/ in 0.000366
fs' ksi 10.6 
Cs kips 49.7 

 

All calculations used inches for length, kips for force, and ksi for stress.  From an initial 

estimate for c, the compressive strain, εc was calculated for the outermost fiber of the 

compression region as follows: 

'c t
c

h c
ε ε⎛ ⎞= ⎜ ⎟−⎝ ⎠

  (4.12) 

where h is the height of the cross section and 'tε  is the tensile strain of concrete at first 

crack.  The compressive stress of the concrete, fc, at the same location was calculated 

using Hooke’s Law.  Using the compression and tensile stresses at the outermost fibers, 

the compression and tensile forces, Cc and Tc respectively, can be calculated as follows: 

2
c

c
f cbC =   (4.13) 
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'
2c t

h cT f b −⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (4.14) 

where b is the width of the section and 'tf  is the tensile strength of concrete. 

 

In addition to the concrete, the reinforcing steel also contributes strength to the section.  

Because s yf f≤ , the strain in the tension steel, εs, is calculated as follows: 

's t
d c
h c

ε ε−⎛ ⎞= ⎜ ⎟−⎝ ⎠
  (4.15) 

where d is the depth of the tension steel from the top of the section calculated as follows: 

,
, 2

b long
c b hoop

d
d h l d= − − −   (4.16) 

where lc is the concrete cover, db,hoop is the diameter of the hoops, and db,long is the 

diameter of the longitudinal steel.  The strain is used to calculate the stress and 

subsequently the force in the tension steel as follows: 

s s sf E ε=   (4.17) 

s s sT f A=   (4.18) 

where fs is the stress in the tension steel, Es is the modulus of the steel, Ts is the force in 

the steel, and As is the area of the tension steel calculated in Section 4.2.3.  Similarly, the 

strain, stress, and force in the compression steel, εs’, fs’, and Cs respectively were 

calculated as follows: 



 86

'
' 's t

c d
h c

ε ε−⎛ ⎞= ⎜ ⎟−⎝ ⎠
  (4.19) 

' 's s sf E ε=   (4.20) 

's s sC f A=   (4.21) 

where 'd  is the depth of the compression steel from the top of the section as calculated 

by: 

,
,'

2
b long

c b hoop

d
d l d= + +   (4.22) 

Using the forces calculated in Eqs. (4.13), (4.14), (4.18), and (4.21), the axial force, 

Paxial,  in the section can be calculated as follows: 

axial c s c sP C C T T= + − −   (4.23) 

By equilibrium, the summation of the forces will need to be equal to the 580.8 kips (2.58 

MN) of axial compression exerted by the PT strands.  If this is not the case, the neutral 

axis will be shifted until the equation is satisfied.   

 

Once equilibrium has been satisfied for the section, the moment capacity of the section 

at first crack, Mcr, of the concrete is calculated as follows: 

( )'
2 3 2 2 3 2cr c s c s
h c h h h c hM C C d T T h d−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.24) 

where the variables have been defined earlier.  The calculations above are visually 

represented in Figure 4-1a. 
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When the concrete cracks, the stresses are redistributed in the section because the 

concrete no longer contributes any tensile strength.  This leads to new equations for the 

strain distribution because the limiting value of 'tε  is replaced by the strain in the 

tension steel εsy.  The strain in the outermost fiber of the concrete in compression εc is 

calculated as follows: 

sy
c c

d c
ε

ε ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

  (4.25) 

This also results in a new value for the strain in the compression steel as follows: 

'
'

s sy
c d
d c

ε ε−⎛ ⎞= ⎜ ⎟−⎝ ⎠
  (4.26) 

which leads to new values for fc and fs’ as calculated by Hooke’s Law and Eq (4.20) 

respectively.  In conjunction with fs = fy and Tc = 0, the forces calculated in Eqs. (4.13), 

(4.18), and (4.21) are used to recalculate Paxial in Eq. (4.23).  If Paxial is not equal to the 

axial force induced by the PT strands, the iterative process is repeated to find the new 

depth of the neutral axis, c.  Finally, the moment capacity at yielding of the steel is 

calculated as My = Mcr with Tc again equal to 0.  The conditions and parameters for the 

structural capacity at yield are visually shown in Figure 4-1b. 

 

Once the steel yields, the stress, fs, in the tension steel is always taken as fy as the load 

increases.  This allows the steel to yield uninhibited, which makes the crushing of the 

concrete, the limiting value.  For this scenario, the strain in the compression concrete, εc, 

is equal to εcu, which is taken as -0.003. 
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At this phase of the loading, the stress curve in the concrete takes on the shape of a 

parabola and is idealized as a rectangle with a depth of a from the top of the section and 

a stress, fc, of 0.85 'cf  (Whitney’s stress block).  The depth a and fc are calculated as 

follows: 

1a cβ=   (4.27) 

0.85 'c cf f=   (4.28) 

where c is the depth of the neutral axis and Section 10.2.7 of ACI 308-05 shows β1 is a 

factor taken as 0.8 for 5000 psi (34.5 MPa) concrete.  The equivalent force of the 

compression concrete is calculated as follows: 

c cC abf=   (4.29) 

In addition to the change in the stress distribution in the concrete, the strain of the 

tension and compression steel is recalculated as follows: 

'
'

s cu
c d

c
ε ε−⎛ ⎞= ⎜ ⎟

⎝ ⎠
  (4.30) 

s cu
d c

c
ε ε−⎛ ⎞= ⎜ ⎟

⎝ ⎠
  (4.31) 

which changes the values of fs and fs’ in Eqs. (4.17) and (4.20), respectively.  The value 

of Cc in Eq. (4.29) and the recomputed forces Ts and Cs in Eqs. (4.18) and (4.21) 

respectively are combined to recalculate Paxial in Eq. (4.23) where Tc is taken as 0.  The 

iterative process is completed again to reestablish the correct axial force in the section 

and then the moment capacity can be calculated as follows: 
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( )'
2 2 2 2u c s s
h a h hM C C d T h d⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.32) 

The conditions and parameters of the ultimate capacity of the section are visually 

represented in Figure 4-1c. 

 

This section provided calculation procedures for determining the moment capacities Mcr, 

My, and Mu at cracking of the concrete, yielding of the steel, and crushing of the 

concrete, respectively.  This was completed at each section by first determining the area 

of steel, then using an iterative process to apply compatibility and equilibrium to a 

section subject to an axial load. 

4.2.5. Strain Gage Predictions in Longitudinal Steel 

Eight SGs were positioned on the longitudinal tension reinforcement in the splice region, 

4 on a splice bar in the middle of the section and 4 on a splice bar in the corner of the 

tension region.  These strain gages were spaced at 24 in (610 mm) intervals beginning 18 

in (457 mm) from the splice end.  Figure 4-5 shows the locations of SG1 through SG4.  

From the analytical model, the strains in the center reinforcing bar are equal to those in 

the corner as it is assumed that plane sections remain plane.  For simplicity, only SG1 

through SG4 will be referenced for the remainder of this section. 

 

 

 

 

Figure 4-5 SG Locations on Center Bar 

SG1   SG2   SG3   SG4 

18”        3 @ 24 “      18 “ 
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Using the capacity analysis described in Section 4.2.4, the section strength at SG1 and 

SG4 as well as SG2 and SG3 are the same due to symmetry.  However, the values 

measured by the SGs should be different.  For example, SG1 is on the portion of the bar 

that is fully developed for small values of ld,eff and SG4 is in the undeveloped portion of 

the bar.  This results in larger strains in SG1 because it can develop and potentially yield 

at that location.  SG4 will slip before it yields and therefore will exhibit lower values.  

To capture this behavior, a factor to compensate for the equivalent amount of steel that 

the SG is attached to was added to the strain capacity calculated for the sections as 

follows: 

,, 1

, 1 , 4

, ,

18
( )

18
SG1 Factor 0.83

18 18

splice
bar

d eff splices SG

s SG s SG splicesplice
bar

d eff d eff

l
A

l lA
A A ll

A
l l

−
−

= = = =
+ ⎛ ⎞−

+⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.33) 

where lsplice is the length of the splice taken as 108 in (2.74 m) from geometry and As,SG1 

and As,SG4 represent the effective area of the bar that the SG is attached.  Basically, a 

ratio is calculated based on the area of the instrumented bar to the total area of both bars 

in the splice.   All variables are calculated in inches. 

 

The remaining SG factors are calculated using the same methodology: 

,, 2

, 2 , 3

, ,

42
( )

42
SG2 Factor 0.61

42 42

splice
bar

d eff splices SG

s SG s SG splicesplice
bar

d eff d eff

l
A

l lA
A A ll

A
l l

−
−

= = = =
+ ⎛ ⎞−

+⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.34) 
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,, 3

, 2 , 3

, ,

42 ( )
42SG3 Factor 0.39

42 42

bar
d effs SG

s SG s SG splicesplice
bar

d eff d eff

A
lA

A A ll
A

l l

= = = =
+ ⎛ ⎞−

+⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.35) 

,, 4

, 1 , 4

, ,

18 ( )
18SG4 Factor 0.17

18 18

bar
d effs SG

s SG s SG splicesplice
bar

d eff d eff

A
lA

A A ll
A

l l

= = = =
+ ⎛ ⎞−

+⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.36) 

where 42 in (1.07 m) and 18 in (457 mm) are the distances from the end of the splice to 

the symmetric section of SG2/SG3 and SG1/SG4 respectively. 

 

The factors are multiplied by the calculated strain in the section using the iterative 

method described in Section 4.2.4 as follows: 

, SG Factors gage sε ε= ×   (4.37) 

where εs is the strain in the tension steel as calculated in Eqs. (4.15), (4.31), and εs = εsy 

at the respective limit states.  Figure 4-6 shows the analytical moment capacity versus 

strain for the bar instrumented with the SGs using the appropriate SG factors.  Note that 

the reduction from the factor is only applied to the strain as the moment capacity of 

SG1/SG4 and SG2/SG3 are equal.  Because the splice end has the least tensile area of 

steel, the lowest moment capacity of all the sections occurs at this point (splice end). 
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Figure 4-6 Analytical Moment Capacity and Strains of an SG Instrumented Bar 

 

4.3. Analytical Predictions of Undamaged Control Specimens 

The analysis in Section 4.2 yields moment-curvature curves for each section of the 

specimen.  Figure 4-7 shows the moment-curvature at three locations in the LSC 

specimen; the splice end and the symmetric sections of SG1/SG4 and SG2/SG3.   
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Figure 4-7 Moment-curvature of Splice and SG Locations  

 

The sections at SG1/SG4 and SG2/SG3 have the same capacity, but the SG will read 

different strains as discussed in Section 4.2.5.  Using this analysis, predictions are made 

on the performance of the LSC specimens during three- and four-point flexural load 

testing. 

4.3.1. Four-point Test Predictions 

Figure 4-8 shows that the four-point load test applies a constant moment and no shear 

stress across the splice length as discussed in Section 2.1.  Pure flexural failure will 

occur where the demand exceeds the capacity at any section in the splice region.  Figure 

4-9 shows a figure that overlays the demand (Figure 4-8) and capacity.  This figure 

shows that the demand and capacity are equal at the splice end located at 96 in (2.43 m) 
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from the end of the LSC specimens.  Note the over-strength through the splice region 

due to conservative design of the splice (using an undeteriorated ld,eff).  Therefore, the 

largest cracks, yielding of the steel, and ultimately crushing of the concrete should occur 

at the location directly below the loading points. 
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Figure 4-8 Four-point Load Test 
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Figure 4-9 Four-point Load Test at Yield Capacity versus Demand 

The strains on the tension steel in the splice are a function of the applied moment (or 

loading) similar to Figure 4-6.  Note that once the bars in the splice end section have 

yielded, the strains throughout the splice should remain elastic and increase minimally as 

the bars begin to plastically deform at the splice end.  Thus, the majority of the vertical 

deformations should be due to the plastic rotation at the splice ends.  Figure 4-10 shows 

the load, P, versus the expected SG measurements.  Notice that the strains are predicted 

to stop increasing once the splice end reaches yield and begins to behave plastically.  

The actuator load, P, can be calculated as follows: 

Cap WeightLoad M MMP
L L

−
= =   (4.38) 
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where L is the length from the end support to the actuator, MCap is the moment capacity 

at the respective limit state calculated in Section 4.2.4., and MWeight is the moment 

demand from the self-weight of the specimen calculated as follows: 

( )(2 )
2

s
weight splice s

LM w L L L= + −   (4.39) 

where Ls is the length from the end support to the desired cross section, Lsplice is the 

length of the splice, and w is the weight per unit length of the LSC specimens.   
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Figure 4-10 SG Measurement Predictions for the Four-point Test Setup 
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Additionally, deflections were calculated for the four-point load test.  To calculate the 

deflection based on the load P, calculations were completed for each stage of the 

capacity curves; cracking of the concrete, yielding of the tension steel, and crushing of 

the concrete.  The deflection at the cracking stage, Δc, can be calculated as follows: 

( ) ( )( )2 23 2 3
6c splice s s

c xx

PL L L L L L
E I

Δ = + − −  (4.40) 

where Ec is the modulus of the concrete as calculated in Eq. (4.10) and Ixx is the moment 

of inertia of the cross section calculated as follows: 

xx steel concreteI I I= +   (4.41) 

where Isteel and Iconcrete are the moment of inertia of the steel and concrete respectively 

and are calculated as follows: 

( ) ( )2 2
, ,steel s eff comp s eff tenI A y A y= +   (4.42) 

3

12concrete
bhI =   (4.43) 

where b is the width of the section, h is the height of the section, As,eff is the effective 

area of steel in the cross section, ycomp is the distance from the neutral axis to the 

compression steel, and yten is the distance from the neutral axis to the tension steel.  

These can be calculated as follows: 

( ) ( ), 1 1 s
s eff s s

c

EA A n A
E

= − = −   (4.44) 

'compy c d= −   (4.45) 
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teny d c= −   (4.46) 

where n is the ratio of the modulus of the steel and the modulus of the concrete.   

 

After the concrete cracks, the moment of inertia shifts and can be calculated as follows: 

23

3 2e steel
bc hI bc c I⎛ ⎞= + − +⎜ ⎟

⎝ ⎠
  (4.47) 

where Ie is the effective moment of inertia at yielding of the rebar and Isteel is 

recalculated using the new value of c at the yielding stage.  The deflection at yielding of 

the steel, Δy, is calculated as: 

( ) ( )( )2 23 2 3
6y splice s s

c e

PL L L L L L
E I

Δ = + − −  (4.48) 

Because the concrete is not contributing strength in the tension region of the section, the 

section loses stiffness and the specimen will deflect more as the load increases.  The 

ultimate deflection at crushing of the concrete, Δu, is calculated considering the plastic 

rotation at the splice ends and the elastic deformations as follows: 

2u p y
d LφΔ = +Δ   (4.49) 

u cu u
p u

e c e c

M M
I E c I E

εφ φ= − = −   (4.50) 

where pφ  is the curvature of the section due to plastic deformation, uφ is the curvature at 

crushing of the concrete, and Mu is defined in Eq. (4.32).  Figure 4-11 shows the 
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deflection curve for the four-point test with nodes at the three limit state capacities of 

cracking, yield, and ultimate. 
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Figure 4-11 Actuator Load versus Splice End Deflection for the Four-point 
Actuator Load 

 

4.3.2. Three-point Test Predictions 

The three-point load test configuration differs from the four-point load test configuration 

in that it subjects the specimen to a constant shear across the splice length with varying 

moment loads.  Figure 4-12 shows the shear force and moment demands on the LSC 

specimens with reference to the splice ends (hatched lines).  The loads, P, are spaced 15 

ft (4.57 m) apart and induce a triangular moment demand on the middle section of the 

specimen.   
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Figure 4-12 Three-point Load Test 

 

Figure 4-13 shows the moment capacity of the LSC specimens (using an undeteriorated 

ld,eff) relative to the moment demand of the three-point load test setup.  The figure shows 

that the LSC specimens should fail under flexural loading at the center of the splice 

when the specimen is in a non-deteriorated state.  However, if bond slip occurs, the 

tensile steel will not be able to yield and reduced strength would occur. 
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Figure 4-13 Three-point Load Test at Yield Capacity versus Demand 

 

Shear failure also has to be considered during the three-point test due to the high shear 

loads across the splice.  The nominal shear capacity in the specimen, Vn, is calculated 

according to AASHTO LRFD (2004) as follows: 

n c sV V V= +   (4.51) 

where Vc is the shear resistance from the concrete and Vs is the shear resistance from the 

transverse steel.  These can be calculated as follows: 

( )0.0316 ' 'c cV f b d dβ= −   (4.52) 

( )( ) ( )' cot cot sin 'v y v y
s

A f d d A f d d
V

s s
θ α α− + −

= =  (4.53) 



 102

where Av is the area of steel in the hoops, s is the spacing between the hoops, and β is a 

factor indicating the ability of diagonally cracked concrete to transmit tension; taken as 

2.0.  The variables θ and α are taken as 45° and 90° respectively (AASHTO LRFD 

(2004)).  Figure 4-14 shows the shear demand relative to the capacity at each location 

measured from the end of the specimen.  Notice that the splice region in the middle of 

the LSC specimens is the critical region where shear failure might occur. 
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Figure 4-14 Three-point Load Test Shear Demand and Capacity 

Each LSC specimen will be tested first in the four-point test then in the three-point test.  

This means that the tension regions will be cracked prior to loading in the three-point 

test, which might result in a slightly different flexural capacity prediction for the LSC 

specimens.  With cracks already present in the concrete, the cracking stage is omitted.  

Figure 4-15 shows the strain predictions for the SGs versus the load, P, in the LSC 

specimens.  The mid-span is shown as the critical section in Figure 4-13 and thus is the 



 103

first to yield and ultimately crushing the concrete in compression, presuming shear 

failure is diverted. 
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Figure 4-15 Capacity at the SG Sections for the Three-point Test Setup 

 

The LSC specimen is expected to have a balanced failure in shear, flexure, and bond.  As 

the load approaches 180 kips (801 kN), cracks should begin to turn from the transverse 

direction to 45°, as typical in shear failure.  If bond is the dominating mechanism, 

longitudinal cracking along the reinforcing steel is expected. 

 

The deflection analysis is similar to the four-point loading and is calculated at the load 

points, which are 5 ft (1.52 m) from the ends of the LSC specimens.  The deflections due 

to flexure at the yielding of the tension steel, Δy, and crushing of the concrete, Δu, are 

calculated as follows: 
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2
222 3 4

48 2y
c e

L LP L
E I

⎛ ⎞⎛ ⎞Δ = −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  (4.54) 

2 2u p y
d LφΔ = + Δ   (4.55) 

where L is the distance between the load points, P is the load, Ec is the modulus of the 

concrete, Ie is the effective moment of inertia as defined in Eq. (4.47), and pφ  is the 

curvature of the section due to plastic deformation.  Ie must be recalculated for Δu 

because the neutral axis will have moved up, resulting in different values from the 

previous Ie at yield.  Figure 4-16 shows the deflection versus the load for the three-point 

test. 

 

0

50

100

150

200

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Lo
ad

 (k
ip

s)

Deflection (in)

Load (kN
)

Deflection (m)

 

Figure 4-16 Three-point Load Test Deflection at the Load Point 
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4.3.3. Bond Slip Predictions 

The calculations for capacity and predictions for SG measurements during testing are 

subject to the required development length of the reinforcement of the lap splice.  If the 

bond is not adequate and the splice fails before the bars yield, then the provided splice 

length is not adequate.  Because the design strength is based upon the yielding of the 

tensile reinforcement steel, bond failure that prevents the yielding of the steel 

compromises the strength and safety of the column. 

 

During testing, the strains in the longitudinal bars will be monitored via the SG 

measurements.  Instead of the bars deforming plastically to accommodate the high 

strains, the bars will start to slip with relation to the surrounding concrete.  Bond slip is 

not expected to occur in the four-point test for the undamaged large-scale control 

specimens, but it may occur in the three-point test due to the significantly reduced splice 

length provided and the pre-cracked condition of the LSC specimens.  However, as the 

deteriorated LSC specimens are tested, bond slip may occur in either test setup.  If it 

occurs in the four-point test setup, the splice will be proven to have been degraded.  

Bond slip failure in the three-point test setup does not necessarily signify an inadequate 

lap splice. 

4.4. Summary 

Using flexure theory to calculate the strength-deformation response of the LSC 

specimens, analytical models can be formed to characterize the behavior of the 

specimens in both a four-point load test setup and a three-point load test setup.  Based on 

the assumption that the bars develop linearly from the end of the bar to ld,eff, the stress 

and strain in the bar can be calculated in the undeveloped regions of the bars.  This 

allows for predictions to be made for strains during testing.  Additionally, deflections are 

calculated from the strength analysis to predict the outcome of testing.  These 
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predictions are based on non-deteriorated LSC specimens, but have a factor built into the 

analytical model to compensate for deteriorated specimens, which will be tested at a 

later date.  The factor will be derived from testing to link the amount of deterioration to 

the structural capacity of the LSC specimens.  Therefore, the aforementioned control 

specimens will provide a baseline for comparison of flexural and shear failure resistance. 
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5. EXPERIMENTAL TESTING AND RESULTS – LSC CONTROL 

SPECIMENS 

Equation Chapter (Next) Section 1 

5.1. Introduction 

This section discusses the test experimental setup, instrumentation, and results for the 

four-point and three-point load testing of the LSC control specimens.  Some results from 

the material properties testing will be shown, but the focus of this section is the 

structural performance.  The LSC15 and LSC16 specimens were used as the control 

specimens because they were cast last of all the specimens and were kept in the 

Structures and Materials Testing Laboratory under dry conditions so that no ASR and/or 

DEF would form prior to testing.  The objectives of the four- and three-point tests are to 

evaluate the splice region for bond strength and identify failure mechanisms in the splice 

region. 

5.2. Four-point Flexural Load Tests 

The design of the LSC specimens was based on the four-point test which applies a 

constant moment demand across the entire splice region.  The objective of this test is to 

identify the structural behavior and ultimate capacity of the splice region due to flexure 

and the mode of failure therein.  If the bars in the splice are sufficiently anchored, then 

the failure mechanism should develop at the splice ends and provided length of the 

splice meets the designed capacity.  However, if the bars undergo bond slip, and the 

longitudinal steel does not yield, the splice length is not adequate.   
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5.2.1. Experimental Design and Specimen Layout 

Figure 4-8 shows the LSC specimens positioned on two “pinned” supports 6 in (152.4 

mm) from either end of the specimen.  The “pinned” supports were bonded to the strong 

floor of the Structures and Materials Testing Laboratory and a thin layer of neoprene 

was placed between the bottom of the LSC specimens and the upper plate of the support 

(see Figure 5-1).  The neoprene helps prevent local stresses in the concrete due to 

imperfections on the surface.  However it does produce a slight vertical deflection during 

loading which is taken into account during instrumentation placement.  Similar supports 

were positioned under the load actuators at 8 ft (2.4 m) from each end of the LSC 

specimens (at the splice end).  The head of the actuator is also a pinned connection.  To 

ascertain a stable system, the top plates of the supports were supported on each side by 3 

bars of 2 in (51 mm) round stock to make the support a “fixed” support (see Figure 5-2).  

Neoprene pads were also placed between the concrete and the support to create a better 

interface for the transfer of forces. 

Neoprene Pad Curved Pivot
Strong Floor

 

Figure 5-1 “Pinned” Support Setup 

Strong Floor 
Curved Pivot

Neoprene Pad 
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P

Neoprene Pad
2" Round Stock 2" Round Stock

 

Figure 5-2 “Fixed” Support Setup 

Two 220 kips (979 kN) actuators were hung from a steel frame over the LSC specimens.  

Calculations in Section 4.3.1 show the critical section at the splice end will yield at a 

moment of approximately 10,000 kip-in (1.1 kN-m) if the longitudinal steel is properly 

bonded.  Figure 5-3 shows the actuators in position over LSC16.  Note that the steel 

frames were anchored to the strong floor and straddle over the LSC specimens at the 

splice ends. 

 

 

Round Stock Round Stock

Neoprene Pad
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Figure 5-3 Specimen in the Four-point Test Setup 

 

5.2.2. Instrumentation 

In addition to the internal instrumentation installed during fabrication (Section 2.2), 5 

string potentiometers (STR), 10 linear variable differential transformers (LVDT) and 10 

externally mounted, concrete embedment gages (type KM), and strain gages were 

installed on the specimens.  All LVDTs had a gage length of 12 in (305 mm) except for 

LVDT5 and LVDT7 which had a gage length of 4 in (102 mm).  The LVDTs were 

attached to the concrete using the same brass inserts as the DEMEC points.  This is 

shown in Figure 5-4. 
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Figure 5-4 LVDT Installation Prior to Testing 

The STRs were attached to the LSC specimens using the same method as the LVDTs.  

The KM gages were attached to the LSC specimens in a similar manner.  The concrete 

was ground flat across the entire footprint of the KM base plates.  With the concrete 

surface ready, the base plates were attached to a spacing bar to keep the base plates 

aligned and the correct distance apart for the KM gages during testing.  The spacing bars 

were removed before testing and the KM gages were attached to the base plates (see 

Figure 5-5). 

 

Figure 5-5 KM Gage Installation Prior to Testing 
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The STRs with a stroke of 4 in (101.6 mm) were used to measure vertical deflections in 

the specimen.  To measure deflections during the tests, the STRs were placed at key 

locations; one at each floor support and one at each of the sections under the actuators, 

and one in the middle of the LSC specimens for the four-point test setup (see Figure 

5-6). 

STR4STR5 STR3 STR2 STR1

Actuator 2Actuator 1

 

Figure 5-6 STR Locations for the Four-point Test 

STR1 and STR5 were used to measure the specimen end deformation due to the 

neoprene padding at the supports.  By subtracting the deflection of STR5 from STR4 and 

STR1 from STR2, the true deflection of the LSC specimens is measured. 

 

In the first four-point test on LSC16, the placement of the KM gages and LVDTs were 

mirrored across the longitudinal axis of the specimen.  This was done to compare the 

accuracy of the KM gages and the LVDTs for both compression and tension strain 

measurements.  Figure 5-7 shows the locations of the external sensors on each face of 

the LSC specimens.  The letters “A” and “B” are used to label each end of the specimen. 
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Figure 5-7 External Sensor Layout for the Four-point Test of LSC16 
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LVDT1, LVDT2, and LVDT3 were placed 3 in (76.2 mm) from the bottom, at the 

centroid, and 3 in (76.2 mm) from the top, respectively, to measure the strains across the 

critical section (splice end).  On the opposite side, KM6, KM7, and KM8 were placed in 

the same positions as LVDT1, LVDT2, and LVDT3, respectively.  These gages will be 

used to verify the strain diagrams used in the analytical model and measure the strains 

near the splice end, which is the predicted critical region in this test. 

 

Figure 5-7a shows the mirrored layout of LVDT4 through LVDT8 and KM9 through 

KM13 respectively.  LVDT4, LVDT8, KM9, and KM13 were positioned next to the 

actuators to measure the compression strain in the outermost fibers of the critical region.  

Likewise, LVDT6 and KM11 were used to measure the compression strains in the 

outermost fibers in the mid-section of LSC16.  LVDT5 and LVDT7 (KM10 and KM12) 

were used to check for different compression strains in the middle of the critical region 

compared to the gages on the side.  To center the LVDT and KM gages at this location, a 

gage length of 4 in (102 mm) was used for LVDT5 and LVDT7 instead of the 12 in (305 

mm) gage length used elsewhere.  The remaining gages were placed in the tension 

region at the other critical section and the mid-section of the LSC specimens to measure 

strains at each structurally significant location.  LVDT9 (KM14) was placed at the same 

location as LVDT1 (KM6) except on the opposite splice end, and LVDT10 (KM15) was 

placed 3 in (76 mm) from the bottom at the mid-section.   

 

However, this instrumentation layout was not only used for LSC16.  The instrumentation 

layout for LSC16 and LSC15 were different because of the knowledge gained during 

testing of the first specimen.  From the first test, it was found that cracks in the tension 

region progressed through the mounting plate of the KM Gages and altered the data (see 

Figure 5-8).  However, the KM gages provided representative data when applied to the 

compression regions of the LSC, so the KM gages were used for the compression 

regions in the following tests and the LVDTs, which measured the tension strains much 

better, were solely used for tension strain monitoring. 
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KM Baseplate

KM Gage

KM Baseplate

Flexural Cracking

 

Figure 5-8 KM Gage Detail 

 

In the four-point test on LSC15, only 9 out the 10 external KM gages were used on the 

compression face, KM15 was used on the side to measure the compression strain in the 

strain diagram.  KM6, KM7, KM13, and KM14 were positioned at the splice end to 

measure the strains in the critical section.  According to the analytical model, crushing of 

the concrete will occur at this location, which indicates ultimate failure of the LSC 

specimens.  KM8, KM9, KM11, and KM12 were positioned in the center of the LSC 

specimens on the compression side (the top) and located above the internal strain gages 

in the specimen (Section 2.2.2), and KM10 was placed in the center of the mid-section 

of the LSC specimens to monitor compression strains in the middle of the splice.  KM8 

through KM12 were used to validate the strains from the internal SGs as well as provide 

a longitudinal strain profile across the length of the splice in the compression region. 

 

Likewise, LVDT1 through LVDT7 were spaced along the tension region every 18 in 

(457 mm) to monitor the longitudinal strains along the length of the splice.  Again, the 

purpose of this is twofold; to validate the strain measurements from the internal SGs and 

to create a strain profile for the splice from one end to the other.  Additionally, LVDT8 

and KM15 were used in conjunction with LVDT1 to produce a strain distribution across 

the critical region of the splice end as in the first test.  Finally, LVDT9 and LVDT10 

were placed on the bottom in the critical region to measure the strain in the outermost 

fiber of the tension region.  The locations of the STRs were the same for the four-point 

and three-point load tests. 

Concrete Surface 
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5.2.3. Test Procedures  

The internal and external gages discussed in Sections 2.2.2 and 5.2.2 were connected to 

a DAQ in the Structures and Materials Testing Laboratory and set to take data readings 

once every second.  However, the internal KM gages were not installed in the LSC 

control specimens as discussed in Section 2.2.2 (control specimens did not expand), so 

no data was taken for those channels of the DAQ. 

 

The actuators were set onto the supports prior to beginning the test.  Using displacement 

control allowed for small differences in the load exerted on the LSC specimens by each 

actuator, but provided increased control over the specimen should the specimen fail 

unexpectedly.  The actuators were placed in displacement control at 0.001 in/sec (25 

μm/sec) until cracks initiated in the concrete and then the rate was increased to 0.002 

in/sec (50 μm/sec) until specimen failure.  In addition, the actuators were stopped 

periodically to map cracks and take pictures of the LSC specimens.  During the loading, 

the instrumentation was carefully monitored to identify possible failure conditions such 

as crushing of the concrete and bond slip.  The load testing in the four-point test lasted 

about 30 to 45 minutes. 

5.3. Three-point Load Tests 

After the four-point test was complete for a given LSC specimens, a three-point test was 

performed on the same specimen.  Figure 4-12 shows the loading demand of the test 

setup.  The objective of this test was to evaluate the bond performance by introducing a 

large flexural demand in the middle of the splice (such that the available embedment 

length is half the value as in the four-point test) .  Due to the nature of three-point 

loading, high shear forces were also present in the splice region.  Given the loading and 

specimen strength, the analytical model predicted nearly simultaneous failure criterion 

for bond, shear, and flexure. 
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5.3.1. Experimental Design and Specimen Layout  

To be able to generate sufficient actuator force and to keep the instrumented side of the 

specimen in the tension region, the specimen was rolled 180 degrees about its 

longitudinal axis.  In the four-point test, the tension region was on the bottom of the 

LSC; rolling the LSC specimen put the tension region on the top.  After the LSC 

specimen was rolled, the supports were moved and a “pinned” support (see Figure 5-1) 

was placed at the mid-section of the specimen.  The specimen was then balanced on the 

support and safety supports were placed under the ends until the actuators were in 

position.  With the actuators spaced at 9 ft (2.74 m) as in the previous test, the analytical 

model calculated the LSC specimens to fail in shear during the three-point test since the 

moment arm was small.  Therefore, the actuators were placed 15 ft (4.57 m) apart to 

create a higher moment demand on the mid section of the LSC specimen.  This 

decreased the shear demand, and the analytical model calculated failure criterion for 

both flexure and shear at about the same load.  “Fixed” supports (see Figure 5-2) were 

again placed on the specimen below the actuators and neoprene padding was installed 

between the support and the concrete, as was shown on the four-point test. 

5.3.2. Instrumentation 

All gages were attached to the LSC specimens in the same manner as the four-point tests 

and the instrumentation layout for the three-point tests was very similar to the 

instrumentation layout for the second four-point test.  The KM gages were used for 

compression measurements and the LVDTs were used for tension strain measurements.   

 

Figure 5-10 shows the layout of the KM gages, LVDTs, and the STRs.  Like the second 

four-point test, the LVDTs were placed along the side of the LSC specimens in the 

tension region to measure the longitudinal strain profile of the splice region at an interval 

of 18 in (457 mm).  Additionally, LVDT9 and LVDT10 were installed on the top side of 

the LSC specimens at the quarter point and center of the mid-section respectively to 
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measure the tension strain of the critical section at the outermost fibers.  LVDT5 was 

placed at the centroid of the mid-section of the LSC specimens to be used with LVDT4 

and KM8 (placed at the bottom for compression strain measurements) in the 

measurement of the strain distribution of the critical section in this test setup.  Lastly, 

KM6 and KM7 were placed next to the support on the bottom side of the LSC specimens 

to measure the compression strains in the concrete in the critical section. 

 

Three string potentiometers were used in the three-point test setup; one at the support in 

the middle of the LSC specimens and 2 underneath the actuators.  STR1 was placed at 

the support to be used in calculating the deformation of the neoprene padding.  STR2 

and STR3 were place under actuator 2 and actuator 1 respectively and were used to 

measure the deflection of the LSC specimens.  Again, the deflection was calculated by 

subtracting the deformation at the supports (STR1) from the measurements of STR2 and 

STR3. 
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5.3.3. Test Procedures  

The test procedures for the three-point test were similar to the four-point test previously 

described in Section 5.2.3.  The only difference from the four-point tests was that a load 

rate of 0.002 in/sec (50.8 μm/sec) was used since the specimens were already cracked 

from the previous four-point tests.  Additionally, when the actuators were lowered into 

place, the safety supports were removed from the ends of the LSC specimens prior to 

loading, which was not necessary for the four-point tests. 

5.4. Experimental Response 

During both tests, the DAQ logged data for both the internal and external sensors 

installed in the LSC specimens.  As a point of clarification, a hydraulic valve was 

malfunctioning during both of the four-point tests and the first three-point test, which 

caused the actuators to slightly oscillate.  The effects of the oscillations were minor but 

noticeable and will be noted in the following measured response plots.  This oscillation 

did not affect the outcome of the load testing. 

5.4.1. Material Strength Test Results 

During the concrete placement operation discussed in Section 2.4.6, several 4 in x 8 in 

(101 mm x 203 mm) cylinders were cast.  Half of the cylinders were stored in a curing 

room at 73.4 °F (23 °C) and 100% relative humidity (RH) as specified by AASHTO 

T126.  The other half of the cylinders were kept with the LSC, either at the Structures 

and Materials Testing Laboratory or exposed to accelerated atmospheric conditions at 

the Texas A&M Riverside Campus.  Table 5-1 shows the 28 day compression and 

strength results from an average of 3 specimens as specified by ASTM C39 (2001) and  

C78 (2007) for the compression testing and flexural testing respectively. 
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Table 5-1 Average 28-Day Compression and Flexural Strength Results 

Compression Flexure 
  Cured Field Cured 

LSC psi  psi  psi 
15 (LSC15) 3891 3874 654 
16 (LSC16) 3964 3744 752 

 

To determine the concrete material strength at the time of LSC specimen testing, six 

cylinders were tested the same week as the respective tests for LSC16 and LSC15.  Of 

the six cylinders, three cylinders were stored in the curing room (73 °F (23 °C) and > 

98% RH) and three cylinders were stored with the specimen in the Structures and 

Materials Testing Laboratory.  The test was a standard compression test, except the 

cylinders were instrumented with two LVDTs on the side of the cylinder to measure the 

strain of the cylinder relative to the axial force.  The displacements from the two LVDTs 

were averaged and converted to strain by dividing by the gage length as follows: 

1 2( , )LVDT LVDT

gage

Average
L

δ Δ Δ
=   (5.1) 

where δ is the average strain, ΔLVDT is the displacement measurement of the respective 

LVDT, and Lgage is the gage length of the LVDT.  The stress in the concrete was 

calculated by dividing the force by the cross sectional area of the cylinder.  Figure 5-11 

shows the results from testing the cylinders for both LSC specimens.  Also included on 

the graph is an analytical calculation of the stress-strain curve as developed by 

Tedeschini et al. (1964).  The analytical model is based off the specified concrete 

strength of 5000 psi (34.5 MPa) and calculated as follows: 
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where fc is the stress in the concrete, ε is the strain in the concrete, and f ''c and ε0 are the 

stress and strain respectively at the maxima and are calculated as follows: 

0
'1.7 c

c

f
E

ε =   (5.3) 

'' 0.9 'c cf f=   (5.4) 

where 'cf  is the specified concrete compressive strength and Ec is the modulus of the 

concrete, Eq. (4.10). 

 

Note that in Figure 5-11 the field samples were less stiff than the cured samples in both 

LSC specimens and the analytical model accurately models the early behavior of the 

cylinders.  Near the maxima, the analytical model slightly over predicts the strength of 

the concrete and the cured cylinders are about the same strength as the field cylinders.  

Also, the LVDTs malfunctioned during the testing of the second cylinders from the 

curing room and the field on LSC16, which is why they were omitted from Figure 5-11a. 
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Figure 5-11 Stress-strain Plots from Cylinder Compression Tests 
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5.4.2. Four-point Flexural Test Results  

The results from the four-point tests were completed on the LSC16 and LSC15 and are 

presented in this section.  LSC16 was tested first and Figure 5-12 shows load versus 

deflection response at each actuator or load point, which also coincides with the splice 

ends.  Note that the experimental and analytical loads and deflections correlated very 

well.  The minor noise in the data is due to the oscillations from the hydraulic valve.  

The analytical model used the concrete compression strength of 4.1 ksi (28.3 MPa) and 

70 ksi yield strength for the reinforcing steel instead of the specified strengths.  The 

differences can be accounted for assumptions made in the model.  For instance, the 

assumption of perfectly plastic steel behavior after yielding is conservative and under 

predicts the load capacity compared to the test results from the LSC specimen.  

However, this is not imperative to this model because yielding is the desired failure 

criteria and the tests do not need to be carried on beyond this point.  Note the results 

from the four-point test identify cracking of the concrete and yielding of the steel, but 

the ultimate capacity of the specimen was not tested in order to preserve the specimen 

for the three-point test. 
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Figure 5-12 Load-deflection Curve for the Four-point Test at the Actuator Load 
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The remaining plots compare the strains from the internal and external gages installed on 

the LSC specimen and the predicted values from the analytical model.  Figure 5-13 and 

Figure 5-14 show the load versus measured strain in each gage along the tension region 

of the LSC specimens along with the predictions from the analytical model.  Note that 

the analytical model is accurate for the prediction of SG1/SG5, which are located on the 

bars that should be fully developed.  The predictions for SG2/SG6, SG3/SG7 and 

SG4/SG8 are near areas of the bar that are not fully developed, which may be the reason 

for the under prediction of the strains by the analytical model.  Also note that as the 

splice end begins to yield at about 115 kips (511 kN), the strain measurement in the SG 

closest to the end of the splice bars (SG4/SG8) cease to increase as the load increases, 

which implies that a failure mechanism is developing at the critical sections near the 

splice ends. 

 

Figure 5-15 shows the load versus measured strains of SG9 and SG10 (strain gages on 

the compression steel) and the analytical predictions.  The analytical model accurately 

predicts the response up to cracking of the concrete in tension at about 55 kips (245 kN), 

then the model slightly under predicts the amount of strain for a given load.  This is most 

likely due to some nonlinear behavior of the concrete after cracking has occurred as well 

as the change in moment of inertia of the LSC specimens at that point. 
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Figure 5-13 Load Versus Measured Strain in the Internal Strain Gages (SG1 
through SG4) and the Analytical Predictions for Each Gage 
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(b) LSC15 

Figure 5-14 Load Versus Measured Strain in the Internal Strain Gages (SG5 
through SG8) and the Analytical Predictions for Each Gage 
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The strain measurements of SG11 and SG12, the strain gages on the hoops in the splice 

region, were negligible due to the lack of shear in this test setup.  These gages will be 

further discussed in the results from the three-point test setup where shear is more 

prevalent in the splice region. 

 

Figure 5-16 shows the load versus measured concrete surface strain readings in the 

critical section under the actuator.  The figure shows that strain diagram changes with 

respect to the applied load.  The strain at the centroid does not increase much until the 

concrete begins to crack.  Then as the neutral axis begins to move up, the strains 

gradually increase in the centroid.  At yielding of the reinforcement, both the strain gage 

measurements and the analytical model show a sharp turn in the data in the tension 

region.  Also notice the high strains (above 12000μst) measured at the tension steel level.  

In further comparison of the analytical model and the measured strains, the strain in the 

analytical model does not increase as fast as the measured strains in the tests.  This 

signifies that the steel in the LSC specimens is more ductile than the analysis or that the 

neutral axis has moved higher than the analysis predicted. 
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(b) LSC15 

Figure 5-15 Load Versus Measured Strain of the Internal Strain Gages in the 
Compression Region (SG9 and SG10) and the Analytical Predictions 
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(b) LSC15 

Figure 5-16 Load Versus Measured Strain of the External Strain Gages across the 
Depth of the Critical Section and the Analytical Prediction 
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The remaining results pertain to LSC15 only because the data from LSC16 was used to 

evaluate the locations of the LVDTs and KM gages.  Figure 5-17 shows the strain profile 

of the LVDTs along the length of the splice in the tension region, where LVDT1 is at 

one splice end and LVDT7 is at the other.  The strain measurements from LVDT1 and 

LVDT7 indicate that the reinforcing steel in the critical section yielded at approximately 

115 kips (512 kN) and the steel in the other sections have remained in the elastic region.  

This shows that the failure mechanism is isolated to the splice ends and did not spread 

across the splice.  This indicates again that, the splice is adequately bonded.  Also, notice 

that LVDT4, which is positioned in the middle of the splice, has the smallest strain, 

which was predicted by the analytical model (see Section 4.2.3). 
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Figure 5-17 Load Versus Measured Strain in the LVDTs across the Splice Length 
in the Tension Region of LSC15 

Figure 5-18 shows the corresponding concrete surface strains across the compression 

side of the splice region.  Note the higher strains in the gages closest to the critical 
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section, KM8 and KM12.  This figure clearly shows that the test was stopped before the 

concrete crushes because the specimen did not strain beyond the conservative crushing   
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Figure 5-18 Load Versus Measured Strain in the KM Gages along the Splice 
Length in the Compression Region of LSC15 

 

strain of 300 microstrain KM8 and KM12 are not positioned directly over the splice end 

because the support for the actuators spanned the middle 3 ft (914 mm) of the top.  

Therefore, 4 KM gages were positioned next to the support to capture the strains directly 

above the splice end.  Figure 5-19 shows the strains measured by KM6 exceeded the 

assumed crushing strain of 3000 microstrain.  However, the concrete did not crush, 

which indicates that the crushing strain is conservative. 
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Figure 5-19 Load Versus Measured Strain in the KM Gages at the Splice End in the 
Compression Region of LSC15 

Figure 5-20 shows a comparison of LVDT7 which is mounted on the side of the LSC 

specimen and LVDT9 and LVDT10, which were mounted on the bottom of the 

specimen.  There was no appreciable difference between the two different mounting 

conditions, which indicates that the extra effort required to mount the LVDTs was not 

necessary.  Figure 5-21 shows the flexural crack on the bottom of the LSC specimen in 

the tension region of the splice end. 
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Figure 5-20 Load Versus Measured Strain in the LVDTs at the Splice End in the 
Tension Region on LSC15 

 
 

 

Figure 5-21 Tensile Crack at the Splice End on the Bottom 
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5.4.3. Three-point Flexural/Shear Test Results  

LSC16 and LSC15 were tested in the three-point load test configuration discussed in 

Section 5.3 after the four-point test.  Figure 5-22 shows the deflection of the specimen in 

the three-point load test setup and the load-deflection curves in Figure 5-23 show the 

deflections of each side on the LSC specimens relative to the actuator applying the load 

to that end.  Note that the cracking stage of the analytical model is omitted due to the 

prior cracking that occurred in the four-point test.  In addition, the results from the test 

coincide with the yield capacity of the LSC specimen, but the specimen also experienced 

some bond slip.  However, the failure of both modes was nearly simultaneous as evident 

from the rounding of the load-deflection curve which signifies the onset of yielding.  An 

offset is also present in the results from the test due to the test configuration and 

displacement control.  Once the test was started, one actuator would remain slightly 

ahead of the other for the remainder of the test. 

 

Figure 5-22 End View of the Deflection during the Three-point Test 
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Figure 5-23 Load-Deflection Curve for the Three-point Test at the Actuator Load 
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Like the four-point test results, predictions were made for the three-point test using a 

similar analytical model that takes into account the triangular moment demand on the 

LSC specimens.  Figure 5-24 shows the load versus measured strains in SG1 through 

SG4 for both LSC16 and LSC15.  On LSC16, both SG1 and SG4 experienced bond slip 

as indicated by the increase in load and the reduction in strain when the load reached 300 

kips (1.33 MN).  However the slip conditions did not reach far enough into the splice to 

cause the bar at SG2 or SG3 to lose bond with the concrete.  On LSC15, SG3 

malfunctioned prior to the tests and did not provide any measurements during the test.  

Also, compared to LSC16, only SG4 measured strains indicative of bond slip. 

 

Likewise, Figure 5-25 shows the strain measurements for SG5 through SG8.  On LSC16, 

all strain gages exhibited bond slip; first SG4 began to slip, then the other three gages 

did the same.  However, on LSC15 only SG4 exhibited bond failure while the other three 

gages continued to increase in strain as the load increased.   

 

The analytical model showed good results for SG3 and SG4 but over predicted the 

strains in the reinforcing steel at SG1 and SG2, most likely due to the assumption for the 

reinforcing steel being perfectly plastic. 

 

Figure 5-26 through Figure 5-28 show the results for the remaining strain gages.  The 

data shows that the bars began to lose bond at SG9 and SG10.  For both LSC specimens, 

SG9 was the first to lose bond, which indicates that bond slip can occur on either bar in a 

section. 
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(b) LSC15 

Figure 5-24 Load Versus Measured Strain in the Internal Strain Gages (SG1 
through SG4) and the Analytical Predictions for Each Gage 
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(b) LSC15 

Figure 5-25 Load Versus Measured Strain in the Internal Strain Gages (SG5 
through SG8) and the Analytical Predictions for Each Gage 
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Figure 5-26 Load Versus Measured Strain in the Internal Strain Gages (SG9 and 
SG10) and the Analytical Predictions for Each Gage 
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One of the differences in the three-point test and the four-point test is the addition of 

shear demand in the splice region (see Figure 5-27).  Shear demand is resisted by the 

concrete and by transverse reinforcement (hoops).  Figure 5-28 shows the strain in the 

hoop at the mid-section of the LSC specimens.  Notice that the strains do not increase 

appreciably until bond slip has occurred in the longitudinal steel.  This is possibly due to 

the location of the instrumented hoop.  Shear cracks formed near the splice end, which 

stressed the hoops near that location more than the center where the moment demand is 

higher.  Figure 5-27 shows shear cracks near the splice end extending down towards the 

support.  The cracks near the instrumented hoop were mostly tension cracks from the 

moment demand. 

 

 

  

Figure 5-27 Shear and Tensile Cracks on the LSC Specimens in the Three-point 
Test 

Instrumented Hoop Location Splice End Location 

Shear Crack 
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Figure 5-28 Load Versus Measured Strain in the Internal Strain Gages, SG11 and 
SG12 (Transverse Gages) 
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The external gages on the LSC specimens further reveal evidence of bond slip, 

compression failure of the concrete, and shear failure.  Figure 5-29 shows the LVDTs on 

the tension side of the LSC specimens along the length of the splice.  LVDT1 and 

LVDT8 are positioned at the splice end where most of the cracks were present and 

likewise measured the highest strains.  This is consistent with the previous four-point 

test results.  However, as the specimen began to fail, the measurements from the LVDTs 

differed greatly from the four-point test.  Figure 5-30 shows that the strain measurements 

from LVDTs began to increase/decrease irregularly once the load exceeded 300 kips 

(1.33 MN), which can be explained by the bond slip. 

 

 

 

Figure 5-29 LVDTs Along the Splice Length in the Tension Region during the 
Three-point Test 

 

LVDT1 
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(b) LSC15 

Figure 5-30 Load versus Measured Strain in the LVDTs across the Splice Length in 
the Tension Region 
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The concrete began to crush beneath the support towards the end of the test (see Figure 

5-31), which is evident by the large strains as shown in Figure 5-32.  Figure 5-32 shows 

the strain distribution at the critical section for flexural failure versus the applied load.  

The analytical predictions presented on the figure also show that the results from the test 

are more deformable than the prediction model.  Also, note the high compressive strain 

on LSC16.  As the specimen began to fail, the neutral axis moves up and the 

compression region becomes very small, which creates very high stresses in the 

concrete.  Figure 5-33 shows the measurements from the KM gages attached to the LSC 

specimens.  All gages on LSC16 surpassed εcu, while only KM8 on LSC15 measured 

such strains. 

 

 

 

Figure 5-31 Crushing of the Concrete in the Three-point Test 
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(b) LSC15 

Figure 5-32 Load Versus Measured Strain of the External Strain Gages across the 
Depth of the Critical Section and the Analytical Prediction 
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Figure 5-33 Load Versus Measured Strain in the LVDTs at the Splice End in the 
Compression Region 
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As in the four-point test, the strains measured on the side of the LSC specimen were 

compared with the strains measured on the extreme fibers of the tension region.  Again, 

there was not an appreciable difference from the measurements on the side versus the 

top of the LSC specimens.  However, the strains on LSC15 are significantly different.  

The strain measurements of LVDT9 were high while LVDT10 measured little to no 

strain.  This could be due to the crack layout on LSC15.  Figure 5-34 shows the tensile 

cracks run outside the gage length of LVDT10 and inside the gage length of LVDT9 (see 

Figure 5-35).  This could be the cause of the different strain measurements from the two 

gages. 

 

 

 

Figure 5-34 Tensile Cracks around LVDT9 and LVDT10 

LVDT10 

LVDT9 
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Figure 5-35 Load Versus Measured Strain in the LVDTs at the Splice End in the 
Tension Region 
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5.5. Summary 

This section provided a description of the experimental design, load instrumentation, test 

procedures, and results for the three-and four-point load tests.  In addition to the internal 

gages installed during fabrication of the LSC; LVDTs, KM gages, and STR gages were 

used to measure the strains in tension, in compression, and deflections of the LSC 

specimens respectively.   

 

As predicted by the analytical model, the four-point load test resulted in yielding of the 

reinforcing steel at the splice ends.  The strain measurements across the length of the 

splice indicated that the yielding of the steel at the splice end was localized and the 

splice region did not yield.  Because sufficient bond was present between the steel and 

concrete the splice length can be assumed to be adequate to carry the design load. 

 

The three-point load test had near simultaneous failure of the LSC specimen by three 

different mechanisms; flexure, bond slip, and shear.  The specimen first developed 

cracks in the tension region due to flexural demand.  Then at a total load of 300 kips 

(1.33 MN), the bars began to slip in the tension, which resulted in a decrease in strain on 

the bars while the load increased on the system.  Finally, the specimen failed in shear at 

the splice ends.  The analytical model reasonably predicts the load-deformation response 

for each given stage of the loading.  Future testing of LSC specimens with premature 

concrete deterioration may weaken the bond and possibly alter the eventual failure 

mechanism. 
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6. SUMMARY AND FUTURE TESTING 

6.1. Summary 

This thesis presents an overview of the construction, testing, and evaluation of large-

scale RC bridge column reinforced concrete specimens with a lap splice in the critical 

region with respect to load test demands.  Sixteen specimens were fabricated and 

fourteen were placed in an accelerated atmospheric exposure environment to promote 

ASR and/or DEF.  Two specimens were kept in an environment that inhibits the 

progression of ASR and DEF ( room temperature with no moisture) and these were the 

focus of this thesis. 

 

The expansion of the fourteen deteriorating large scale specimens was measured with 

internal and external gages.  At this time the data indicates that the concrete surface 

strains are higher than the strains inside the hoop and in the cover.  The measured strains 

in the hoop reinforcement indicate that the hoops are yielding in some specimens and the 

remaining specimens should begin to yield as the strains continue to increase.  However, 

these strains are only on the top side of the large-scale specimens, which are exposed to 

the sun and higher temperatures.  The strains in the regions of the LSC specimens closer 

to the ground are significantly lower, indicating that higher concrete surface 

temperatures could impact the amount of damage from ASR/DEF. 

 

To protect the structural behavior of the large-scale specimens in the four-point and 

three-point load tests, an analytical model was developed. The model also can predict the 

strain in the reinforcements and concrete throughout the splice region.  The model will 

be to predict performance during future testing of the deteriorated LSC specimens to 

correlate the amount of deterioration with the structural capacity of the specimen and 

based on this comparison, an effective development length factor will be used to assess 
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the safety of bridge columns that are influenced by varying levels of ASR/DEF 

deterioration. 

 

The analytical model was validated using the large-scale control specimens which were 

not affected by ASR and/or DEF through four-point and three-point load tests designed 

to isolate the splice.  The model reasonably predicted the load required to first crack the 

concrete, yield the tension reinforcement, and ultimate failure by bending moment 

demands.   

 

The assumptions used to develop the analytical model are reasonable but can introduce 

challenges.  For instance, the analytical model uses the assumption of a linear stress-

strain curve for the concrete up to 'cf .  This is a conservative estimate of the strength.  

The strength increase from a less conservative model would result in a higher neutral 

axis, which would induce higher strains in the tension steel as was found in the three- 

and four-point tests. 

 

Another assumption that limits the accuracy of the model is the assumption of perfectly 

plastic behavior in the steel after yielding.  It is well known that steel will exhibit more 

strength during the strain hardening portion of the stress-strain diagram.  This will allow 

the model to capture the increase in strength after yielding to the steel has occurred. 

 

Aside from assumptions on the stress-strain curves, the assumption of a linear 

contribution of the area of the bars according to the development length is conservative.  

Using a more accurate curve for this may improve the predictions from the analytical 

model on the expected strain gage results.  This is pertinent to calibrating the model for 

use with solving the effective development length factors for the deteriorated LSC 

specimens later in the research. 
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6.2. Future Work 

The analytical model and tests were designed with the future testing of the deteriorated 

specimens in mind.  As discussed in Section 4.2.3, the capacity of the splice is dependent 

on the amount of steel in the section and the corresponding development length, and a 

factor to account for concrete deterioration, which will be derived from future tests in 

this research.  These tests will be conducted on the remaining LSC specimens currently 

exposed to the accelerated atmospheric exposure environment discussed in Section 3.2.   

 

The deteriorated LSC specimens will be tested with the same procedures used to 

evaluate the LSC control specimens in Section 5.  From the testing, the calibrated 

analytical model will be adjusted using the development length factor until the model 

matches the test results.  This will correlate an amount of deterioration with an effective 

development length. 

 

It is expected that the effective development lengths will increase, but the amount is 

unknown.  According to the AASHTO LRFD (2004), the splice is overdesigned by 22% 

as discussed in Section 2.1, so the effective development length can increase from the 

undeteriorated length of 52 in (1.32 m) to 63.5 in (1.61 m) without violating the code 

specifications.  This means that a development length factor greater than 1.22 will 

violate the code specifications.  An effective development length factor less than 1.22 

will result in yielding of the bars in the splice, which indicates that the splice still carries 

the design flexural capacity.  Beyond a factor of 1.22 the splice is not designed per code 

requirements but can theoretically hold the load up to an effective development length 

factor of 2.08.  This is derived by taking the splice length and dividing by the calculated 

development length according to AASHTO LRFD (2004).   
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