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ABSTRACT 

A Finite Element Framework for Multiscale/Multiphysics Analysis of Structures with 

Complex Microstructures. (August 2009) 

Julian Varghese, B.Tech., University of Kerala, India; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John D. Whitcomb 

This research work has contributed in various ways to help develop a better 

understanding of textile composites and materials with complex microstructures in 

general. An instrumental part of this work was the development of an object-oriented 

framework that made it convenient to perform multiscale/multiphysics analyses of 

advanced materials with complex microstructures such as textile composites. In addition 

to the studies conducted in this work, this framework lays the groundwork for continued 

research of these materials.  

This framework enabled a detailed multiscale stress analysis of a woven DCB specimen 

that revealed the effect of the complex microstructure on the stress and strain energy 

release rate distribution along the crack front. In addition to implementing an oxidation 

model, the framework was also used to implement strategies that expedited the 

simulation of oxidation in textile composites so that it would take only a few hours. The 

simulation showed that the tow architecture played a significant role in the oxidation 

behavior in textile composites. Finally, a coupled diffusion/oxidation and damage 

progression analysis was implemented that was used to study the mechanical behavior of 

textile composites under mechanical loading as well as oxidation. A parametric study 

was performed to determine the effect of material properties and the number of plies in 

the laminate on its mechanical behavior. The analyses indicated a significant effect of 

the tow architecture and other parameters on the damage progression in the laminates.  



iv 

 

 

 

DEDICATION 

 

 

 

 

 

 

 

 

 

To my parents 

  



v 

 

 

 

ACKNOWLEDGEMENTS 

I would like to express my deep sense of gratitude to my advisor, Dr. John D. 

Whitcomb, for supporting me financially, morally and academically. Without his 

patience and constant guidance, this work would have never been complete. The care 

and genuine regard for the well being of his students is something that can be found in 

very few people. I also wish to thank him and his lovely family for all the wonderful get-

togethers we‘ve had over the years. 

I would like to express my gratitude to Dr. Dimitris Lagoudas, Dr. Zoubeida Ounaies 

and Dr. Xin-Lin Gao for serving on my advisory committee and for providing the 

valuable time from their busy schedules. I also want to thank Dr. Thomas Strganac for 

readily offering to take Dr. Ounaies‘ place during my dissertation defense. 

My sincere thanks also go to Aerospace Engineering Department staff, especially Ms. 

Karen Knabe, Pam McConal and Miriam Aldrete, who are among the sweetest people I 

have met in my life, for their kind help during my graduate studies here at Texas A&M. 

A whole bunch of thanks goes to my teammates, both present and previous – Xiaodong, 

Jae, Deepak, Jong-il, Bhavya, Brian, Ross, Kevin and others. It was great being part of 

such a lively and friendly group of people. I am also thankful to all of my friends, 

especially Sandeep, Loka, Brandis, Aditya, Pratheesh, Kirti and many others for their 

support. I am thankful to all the people who have directly or indirectly helped me 

accomplish whatever I have. 

Finally, I wish to express my sincere appreciation to my father, mother and sister for 

their never-ending support, love, prayers and sacrifices. Without them, I would not have 

been able to pursue graduate studies here at Texas A&M University. 

This work is based on research supported by the Texas Institute for Intelligent Bio-Nano 

Materials and Structures for Aerospace Vehicles, funded by NASA Cooperative 

Agreement No. NCC-1-02038, and the US Air Force Office of Scientific Research 

(AFOSR), funded by Contract Ref No. FA9550-07-1-0207. Any opinions, findings and 

conclusions or recommendations expressed in this material do not necessarily reflect the 



vi 

 

 

 

views of the National Aeronautics and Space Administration or the AFOSR. I also wish 

to acknowledge the helpful discussions with Dr. K. Pochiraju, Dr. G. Tandon and Dr. G. 

Schoeppner. 



vii 

 

 

 

TABLE OF CONTENTS 

  Page 

ABSTRACT ..........................................................................................................  iii 

DEDICATION ......................................................................................................  iv 

ACKNOWLEDGEMENTS ..................................................................................  v 

TABLE OF CONTENTS ......................................................................................  vii 

LIST OF FIGURES ...............................................................................................  x 

LIST OF TABLES ................................................................................................  xvii 

1.INTRODUCTION ..............................................................................................  1 

1.1 Introduction to Textile Composites .............................................................  2 

1.2 Definition of Geometric Parameters in Plain Weave Composites ..............  4 

1.3 Statement of Objectives...............................................................................  8 

2.REVIEW OF STATE OF KNOWLEDGE ........................................................  10 

2.1 Introduction .................................................................................................  10 

2.2 Multiscale Analysis of Textile Composites .................................................  22 

2.3 Global / Local Analyses ..............................................................................  30 

2.4 Progressive Failure Analyses ......................................................................  33 

2.5 Damage Due to Environmental Conditions .................................................  35 

2.6 Scope of Research .......................................................................................  40 

2.7 Summary .....................................................................................................  47 

3. THEORY AND EQUATIONS .........................................................................  48 

3.1 Introduction .................................................................................................  48 

3.2 Common Analysis Procedure ......................................................................  48 

3.3 Solid Mechanics ..........................................................................................  51 

3.4 Diffusion ......................................................................................................  66 

3.5 Oxidation .....................................................................................................  78 

3.6. Coupled Mechanical-Oxidation Analysis ..................................................  95 

3.7 Summary .....................................................................................................  100 

4.DESIGN OF FINITE ELEMENT FRAMEWORK ...........................................  101 

4.1 Introduction .................................................................................................  101 

4.2 Why Object-Oriented Design? ....................................................................  101 



viii 

 

 

 

  Page 

 

4.3 Framework Design ......................................................................................  103 

4.4 Other Applications ......................................................................................  112 

4.5 Summary .....................................................................................................  113 

5.MULTISCALE ANALYSIS OF WOVEN COMPOSITE DCB .......................  114 

5.1 Introduction .................................................................................................  114 

5.2 Hierarchical Analysis Strategy ....................................................................  114 

5.3 Configuration...............................................................................................  119 

5.4 Analysis of DCB Specimen .........................................................................  121 

5.5 Calculation of Strain Energy Release Rate .................................................  124 

5.6 Results and Discussion ................................................................................  127 

5.7 Summary .....................................................................................................  137 

6.IMPLEMENTATION AND VALIDATION OF OXIDATION MODEL ........  138 

6.1 Introduction .................................................................................................  138 

6.2 Implementation of Oxidation Model ...........................................................  138 

6.3 Optimization and Validation .......................................................................  144 

6.4 Summary .....................................................................................................  153 

7.VALIDATION OF HOMOGENIZED OXIDATION PROPERTIES ..............  155 

7.1 Introduction .................................................................................................  155 

7.2 Material Properties and Configurations ......................................................  155 

7.3 Results and Discussion ................................................................................  160 

7.4 Summary .....................................................................................................  174 

8.OXIDATION ANALYSIS OF TEXTILE COMPOSITES ...............................  175 

8.1 Introduction .................................................................................................  175 

8.2 Hybrid Model ..............................................................................................  175 

8.3 Validation of Hybrid Model ........................................................................  177 

8.4 Oxidation Analysis of Plain Weave Laminate ............................................  186 

8.5 Storage of Oxidation Behavior Data from Hybrid Model ...........................  189 

8.6 Summary .....................................................................................................  194 

9.PREDICTION OF DAMAGE IN TEXTILE COMPOSITES IN OXIDIZING 

ENVIRONMENTS ...............................................................................................  196 

9.1 Introduction .................................................................................................  196 

9.2 Damage Mechanisms in Textile Composites ..............................................  196 

9.3 Configuration...............................................................................................  201 



ix 

 

 

 

  Page 

 

9.4 Results and Discussion ................................................................................  212 

9.5 Summary .....................................................................................................  233 

10.CONCLUSIONS AND FUTURE WORK ......................................................  236 

10.1 Development of Multiscale/Multiphysics Finite Element Framework .....  236 

10.2 Multiscale Analysis of Woven DCB Specimen ........................................  237 

10.3 Simulation of Oxidation in Textile Composites ........................................  238 

10.4 Prediction of Damage Progression in Textile Composites under Oxidation 239 

10.5 Future Work ..............................................................................................  240 

REFERENCES ......................................................................................................  243 

VITA .....................................................................................................................  262 

 

 

  



x 

 

 

 

LIST OF FIGURES 

  Page 

Figure 1.1: Materials with complex microstructure ........................................  1 

Figure 1.2: Composite prostheses  ..................................................................  3 

Figure 1.3: Wind turbine blades  ....................................................................  3 

Figure 1.4: Idealized schematics of woven preforms without matrix pockets  5 

Figure 1.5:  Plain weave microstructure and its unit cell .................................  7 

Figure 1.6: Geometry of typical tow ...............................................................  7 

Figure 1.7:  Simple and symmetric stacking sequences ..................................  8 

Figure 2.1: Multiscale Analysis (Figure courtesy Dr. John Whitcomb) .........  23 

Figure 2.2:  Stress contours for 5-harness satin weave ....................................  25 

Figure 2.3:  Multi-point constraint relations: boundary conditions for braid 

half-unit cell .................................................................................  27 

Figure 2.4:  Volume distribution of S33 in ±30˚ braid tow with WR=1/3 

when <Sxx> = 1 was applied .........................................................  27 

Figure 2.5:  Tow stress resultants for plain weave in a linear elastic analysis  28 

Figure 2.6:  Yarn misalignment in flat braided composite  .............................  29 

Figure 2.7:  Pi Joint with damage  ...................................................................  29 

Figure 2.8:  Macro element used to model weave microstructure ...................  31 

Figure 2.9:  Different microstructural scales in a DCB specimen fabricated 

with woven composites ................................................................  42 

Figure 2.10:  Schematic illustrating coupled oxidation/thermo-mechanical 

analysis ..........................................................................................  46 

Figure 3.1:  Flowchart for damage progression analysis .................................  62 

Figure 3.2:  Schematic of stress-strain response ..............................................  64 

Figure 3.3:  Boundary conditions for the discrete unit cell and the equivalent 

homogeneous unit cell ..................................................................  74 

Figure 3.4:  Master curve for impermeable circular fibers in square array 

showing variation of D  with fiber fraction Vf ............................  77 

file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496603
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496604
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496605
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496606
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496607
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496608
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496609
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496610
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496611
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496612
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496612
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496613
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496613
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496614
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496615
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496616
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496617
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496618
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496618
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496619
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496619
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496620
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496621
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496622
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496622
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496623
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496623


xi 

 

 

 

  Page 

Figure 3.5:  Oxidation zones and corresponding values of the oxidation 

state variable ...............................................................................  79 

Figure 3.6:  Algorithm for one-way coupled oxidation-damage progression 

analysis .........................................................................................  96 

Figure 4.1:  Illustration of different members that are part of the BasicModel 

class ..............................................................................................  105 

Figure 4.2:  Inheritance tree for the BasicElement class .................................  108 

Figure 4.3:  Using BETA to implement a specialized method ........................  111 

Figure 5.1:  Inheritance of geometry and ‗joining‘ components .....................  118 

Figure 5.2:  Finite element model of DCB laminate ........................................  120 

Figure 5.3:  Finite element model of plain weave unit cell .............................  121 

Figure 5.4:  Hierarchy of finite element meshes ..............................................  123 

Figure 5.5:  Schematic of the delamination front region .................................  125 

Figure 5.6:  Distribution of σzz around crack front for the coarse global 

model with homogenized properties ............................................  127 

Figure 5.7:  Comparison of σzz (MPa) distributions at the interior of crack front 129 

Figure 5.8:  Comparison of stress distribution (MPa) when crack front is 

advanced by quarter periodic length ............................................  130 

Figure 5.9:  Comparison of σzz distribution (MPa) along entire crack front ...  132 

Figure 5.10:  GI distribution along crack front predicted by three 

homogeneous models ...................................................................  133 

Figure 5.11: Comparison of GI distributions at the interior of crack front .......  134 

Figure 5.12:  Comparison of GI distribution when crack front is advanced by 

quarter periodic length .................................................................  135 

Figure 5.13:  GI distribution along entire crack front ........................................  136 

Figure 6.1:  Predicted oxidation layer growth in neat PMR-15 resin ..............  141 

Figure 6.2:  Concentration profiles for oxidation and diffusion models. ........  142 

  

file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496624
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496624
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496625
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496625
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496626
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496626
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496627
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496628
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496629
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496630
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496631
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496632
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496633
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496634
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496634
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496635
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496636
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496636
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496637
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496638
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496638
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496639
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496640
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496640
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496641
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496642
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496643


xii 

 

 

 

  Page 

Figure 6.3:  Effect of element size on oxidation layer growth for neat resin 

(using linear elements and time step size of 0.15 mins) ...............  147 

Figure 6.4:  Effect of time step size on oxidation layer growth for neat resin 

(using 2 micron linear elements) ..................................................  148 

Figure 6.5:  Oxidation layer growth (Zone I+II, Zone II) for neat resin (using 

2 micron linear elements and time step size of 0.30 mins for the 

first 40 hours and different ramped time step sizes thereafter) ....  149 

Figure 6.6:  Oxidation layer growth (Zone I+II, Zone II) for neat resin (using 

C
0
=10

-2
 and different N values) ....................................................  151 

Figure 6.7:  Oxidation layer growth (Zone I+II, Zone II) for neat resin (using 

C
0
=10

-3
 and different N values) ....................................................  151 

Figure 6.8:  Computational time savings for parametric study of 1D expedited 

analysis models with various C
0
 and N values) ............................  153 

Figure 6.9:  Computational time savings for parametric study of 1D, 2D and 

3D expedited analysis models with C
0
=10

-3
 and various N 

values) ..........................................................................................  153 

Figure 7.1:  Schematic and analysis region for configuration A with the 

numbering for each unit cell. ........................................................  157 

Figure 7.2:  Mixed model for configuration A ................................................  157 

Figure 7.3: Schematic and analysis region for configuration B with the 

numbering for each unit cell. ........................................................  158 

Figure 7.4:  Analysis regions for the different configuration C idealizations.  159 

Figure 7.5:  Concentration profiles in discrete and mixed models for 

configuration A under diffusion at 5 hours. .................................  161 

Figure 7.6:  Variation of average concentration in configuration A with time  163 

Figure 7.7:  Variation of average concentration in each unit cell in 

configuration A at different times (in minutes) ............................  163 

Figure 7.8:  Variation of average concentration in configuration B with time  164 

file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496644
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496644
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496645
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496645
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496646
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496646
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496646
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496647
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496647
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496648
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496648
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496649
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496649
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496650
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496650
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496650
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496651
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496651
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496652
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496653
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496653
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496654
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496655
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496655
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496656
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496657
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496657
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496658


xiii 

 

 

 

  Page 

Figure 7.9:  Variation of average concentration in each unit cell in 

configuration B at different times (in minutes) ............................  164 

Figure 7.10:  Concentration profiles in discrete and mixed models for 

configuration A at 200 hours. .......................................................  165 

Figure 7.11:  Variation of average concentration in configuration A with time under 

oxidation .......................................................................................  167 

Figure 7.12:  Variation of average concentration in each unit cell in 

configuration A at different times under oxidation. .....................  167 

Figure 7.13:  Oxidation layer growth (Zone I+II and Zone I) for configuration 

A ...................................................................................................  169 

Figure 7.14:  Evolution of oxidation layer in discrete and mixed model for 

configuration A ............................................................................  169 

Figure 7.15:  Concentration profiles in discrete and mixed model at t=150 

mins for configuration A ..............................................................  170 

Figure 7.16:  Variation of average concentration in configuration B with time 

under oxidation .............................................................................  170 

Figure 7.17:  Evolution of oxidation layer in discrete and homogeneous 

models for configuration B ..........................................................  171 

Figure 7.18:  Oxidation state profiles in discrete and periodic model at t=75 

hours for configuration C .............................................................  172 

Figure 7.19:  Oxidation layer growth (Zone I+II and Zone I) for configuration 

C ...................................................................................................  172 

Figure 8.1:  Schematic of hybrid model for analyzing textile composites ......  176 

Figure 8.2:  2-D configuration for validating hybrid model ............................  178 

Figure 8.3:  Comparison of the oxidation layer growth from the different 1-

D models with the growth in the 2D configuration ......................  180 

Figure 8.4:  Equivalent 1D configuration for domain 1...................................  181 

  

file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496659
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496659
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496660
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496660
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496661
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496661
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496662
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496662
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496663
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496663
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496664
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496664
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496665
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496665
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496666
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496666
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496667
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496667
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496668
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496668
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496669
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496669
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496670
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496671
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496672
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496672
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496673


xiv 

 

 

 

  Page 

Figure 8.5:  Comparison of oxidation layer growth in the domain 1 

(resin/tow) model and neat resin model .......................................  181 

Figure 8.6:  Comparison of concentration profile in the resin/tow model and 

neat resin model at 100 hours .......................................................  182 

Figure 8.7: Comparison of amount of free oxygen in the resin/tow model 

and neat resin model .....................................................................  183 

Figure 8.8:  Comparison of amount of oxygen consumed in the resin/tow 

model and neat resin model ..........................................................  184 

Figure 8.9:  Comparison of oxidation level ( )  profile in the resin/tow 

model and neat resin model at 100 hours .....................................  185 

Figure 8.10:  Configuration and analysis domains for simulating oxidation in 

plain weave composite .................................................................  187 

Figure 8.11:  Oxidation layer growth in the 10 unique domains .......................  187 

Figure 8.12:  Comparison of oxidation layer growth in domains 1 and 10 with 

that of a neat resin model and homogenized tow model ..............  189 

Figure 8.13:  3D domain and equivalent 1D domain in hybrid modeling 

strategy .........................................................................................  191 

Figure 8.14:  Oxidation Level profile in neat resin 1-D model at 100 hours .....  192 

Figure 8.15:  Oxidation Level profile in neat resin 1-D model  at 1 hour .........  193 

Figure 8.16:  Oxidation Level profile in heterogeneous 1-D model at 70 hours  194 

Figure 9.1:  Damage Mechanisms in woven composites  ................................  197 

Figure 9.2:  Schematic of different damage modes in the tow of textile 

composites ....................................................................................  199 

Figure 9.3:  Two-ply plain weave composite configuration ............................  202 

Figure 9.4:  Analysis domain (1/8
th

 unit cell) with transparent matrix ............  203 

Figure 9.5:  Volume averaged stress-volume averaged strain curves for the 

two-ply laminate without oxidation .............................................  213 

  

file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496674
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496674
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496675
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496675
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496676
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496676
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496677
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496677
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496678
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496678
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496679
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496679
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496680
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496681
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496681
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496682
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496682
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496683
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496684
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496685
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496686
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496687
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496687
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496688
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496689
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496690
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496690


xv 

 

 

 

  Page 

Figure 9.6:  Evolution of damage in the two-ply laminate configuration 

without oxidation using Set 1 material properties ........................  215 

Figure 9.7:  Evolution of damage in the two-ply laminate configuration 

without oxidation using Set 2 material properties ........................  216 

Figure 9.8:  Evolution of damage due to oxidation in the two-ply laminate at 

0.2% strain using Set 1 material properties ..................................  220 

Figure 9.9:  Evolution of damage due to oxidation in the two-ply laminate at 

0.4% strain using Set 1 material properties ..................................  221 

Figure 9.10:  Volume averaged stress-volume averaged strain for the Set 1 

material two-ply laminate showing drop in stress after 200 hours 

of oxidation ..................................................................................  222 

Figure 9.11:  Variation in volume averaged stress due to oxidation for the Set 

1 material two-ply laminate at different strain levels ...................  222 

Figure 9.12:  Evolution of damage due to oxidation in the two-ply laminate at 

0.1% strain using Set 2 material properties ..................................  225 

Figure 9.13:  Evolution of damage due to oxidation in the two-ply laminate at 

0.2% strain using Set 2 material properties ..................................  226 

Figure 9.14:  Evolution of damage due to oxidation in the two-ply laminate at 

0.4% strain using Set 2 material properties ..................................  227 

Figure 9.15:  Volume averaged stress-volume averaged strain for the Set 2 

material two- ply laminate showing drop in stress after 200 

hours of oxidation .........................................................................  228 

Figure 9.16:  Variation in volume averaged stress due to oxidation for the Set 

2 material two-ply laminate at different strain levels ....................  228 

Figure 9.17:  Volume averaged stress-volume averaged strain curves for the 

laminate with Set 1 material properties ........................................  230 

Figure 9.18:  Volume averaged stress-volume averaged strain curves for the 

laminate with Set 2 material properties ........................................  230 

file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496695
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496695
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496695
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496696
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496696
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496700
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496700
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496700
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496701
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496701
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496702
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496702
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496703
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496703


xvi 

 

 

 

  Page 

Figure 9.19:  Variation in volume averaged stress due to oxidation for the 

various Set 1 material laminates at 0.2% strain level ...................  231 

Figure 9.20:  Variation in volume averaged stress due to oxidation for the 

various Set 1 material laminates at 0.4% strain level ...................  232 

Figure 9.21:  Variation in volume averaged stress due to oxidation for the 

various Set 2 material laminates at 0.2% strain level ....................  234 

Figure 9.22:  Variation in volume averaged stress due to oxidation for the 

various Set 2 material laminates at 0.4% strain level ...................  234 

 

  

file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496704
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496704
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496705
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496705
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496706
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496706
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496707
file:///C:/Work/research/dissertation/Dissertation.docx%23_Toc236496707


xvii 

 

 

 

LIST OF TABLES 

 

  Page 

Table 5.1: Material Properties used in DCB finite element model ................  121 

Table 6.1:  Oxidation material properties for neat PMR-15 resin ...................  140 

Table 7.1:  Oxidation material properties for the homogenized tows .............  156 

Table 8.1:  Oxidation material properties for the homogenized tow 

(Vf=55.6%) ....................................................................................  179 

Table 9.1:  Elastic properties for the Graphite/PMR-15 material system .......  206 

Table 9.2:  Strength properties for the Graphite/PMR-15 material system .....  206 

Table 9.3:  Degradation parameters (ai) for engineering elastic properties of 

the tow ...........................................................................................  208 

Table 9.4:  Degradation parameters (ai) for engineering elastic properties of 

the matrix  ......................................................................................  208 

Table 9.5:  Parameters (bi) for degrading engineering elastic properties of 

the matrix and tow .........................................................................  210 

Table 9.6:  Parameters (di) for degrading strength properties of the matrix 

and tow ..........................................................................................  211 

 



1 

 

 

 

1. INTRODUCTION 

Advanced materials are being used increasingly in a variety of fields such as aerospace, 

automobile, defense, medical and sports. Many of these materials have complex 

microstructures which increases the challenges involved with designing these materials 

as well as predicting the behavior of these materials. Figure 1.1 shows a schematic of a 

few examples. Two of the examples involve nanotubes. The void in the center of the 

tube adds geometric complexity. The clustering of nanotubes creates what looks like 

‗macro‘ fibers that add an additional microstructural scale. In addition, the irregular 

distribution of ‗macro‘ fibers adds complexity. The laminate is described by multiple 

length scales: fiber/matrix, lamina and laminate. The lamina also has distributed cracks. 

The last figure is a micrograph of a polyurethane foam. The geometric complexity is 

obvious. 

 

This dissertation follows the style of Journal of Composite Materials. 

Laminate with Transverse 

Matrix Cracks 

Carbon Nanotubes in Matrix 
SWNT Bundles in Matrix 

Micrograph of polyurethane foam [1] 

Figure 1.1: Materials with complex microstructure 

http://www.doitpoms.ac.uk/miclib/full_record.php?id=582
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A typical engineering problem deals with a configuration that is at a length scale at least 

a few orders of magnitude larger than the size of the microstructure. Some examples 

include a structure made out of composite containing carbon nanotubes or a stringer 

stiffened panel that is made of composite material (where the fibers in the tows are as 

small as a few microns thick). The problem becomes impractical to solve if the entire 

configuration is to be modeled at the same length scale as its complex microstructure. 

This work focuses on the behavior of textile composites, which have different levels of 

microstructure. Multiscale analyses are required to capture the detailed behavior of these 

materials.  

The use of these advanced materials in different applications requires a thorough 

understanding of the effect of the operating environment on these materials. The 

operating environment for these materials could vary from freezing and wet conditions 

in marine applications to high temperature and oxidizing environments in aerospace 

applications. Determining the effect of these environments on the material is a very 

challenging problem. This requires a thorough understanding of the underlying 

mechanisms and the physics involved with the different processes. The needs for 

simulations that try to predict the behavior of composites under a variety of 

environmental conditions underscore the requirement for the ability to perform multi-

physics analyses conveniently. This work attempts to approach this problem and set a 

framework in place that makes it convenient for a user to perform such analyses. This 

section first gives a brief introduction to textile composites followed by definition of the 

different geometric parameters in textile modeling. The section concludes with a 

statement of objectives. 

1.1 Introduction to Textile Composites 

Over the last three decades, a wide variety of industries have been using composite 

materials because of its high specific strength and stiffness compared to conventional 

meals/alloys [2]. Textile composites can provide a unique combination of properties that 

cannot be obtained from conventional tape laminates. Technology from the centuries-old 

textile industry could be potentially used in the manufacturing of these composites. 
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Techniques for high-speed textile perform manufacturing make these types of 

composites appealing. Another advantage of these composites is the increased damage 

tolerance dues to the tow interlacing [2]. These composites can be mass-produces and 

tend to be more cost-effective than conventional tape laminates. They can also be used to 

create complex performs thereby potentially reducing the part count substantially. These 

composites are being used in applications ranging from prostheses for amputees to 

turbine blades for wind energy farms as shown in Figures 1.2 and 1.3. 

 

 

Figure 1.3: Wind turbine blades [4] 

Figure 1.2: Composite prostheses [3] 
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Textile performs can be manufactured using a variety of techniques. The most common 

forms of textile manufacturing techniques can be broadly classified into braiding, 

weaving and knitting. All the techniques are similar in that they have interlaced tows 

creating a preform which is then impregnated with resin to create the composite. Figure 

1.4 shows a few of the idealized weave architectures. All the analyses in this work focus 

on plain weave composites. Therefore, to facilitate discussion in the following sections, 

the next section defines some of the geometric parameters that are used to describe a 

plain weave idealization. 

1.2 Definition of Geometric Parameters in Plain Weave Composites 

Although in reality, textile composites do not have a perfectly periodic microstructure, it 

is typical to assume a periodic microstructure in order to make analysis feasible. The 

microstructure of textile composites is characterized by tow undulation and interlacing. 

The tows are made up of thousands of fibers. A simplified description of the 

manufacture of these composites is as follows. The tows are interlaced with each other 

using one of many techniques mentioned in the previous section to obtain a mat. The 

mats are stacked on the top of each other in various orientations to achieve the desired 

thickness. The mats are then impregnated with the matrix and cured to make the textile 

composite. There are different specific processes to obtain the final product but the basic 

idea behind the manufacture is the same as described above. 

The idealized microstructure of woven composites is characterized by the orthogonal 

interlacing of two sets of tows called the warp and the fill tows. The fill tows run 

perpendicular to the direction of the warp tows. Figure 1.4 shows the common forms of 

the woven architectures such as Plain weave, twill weave, 4-harness satin, 5-harness 

satin, 8-harness satin and basket weave. The figure shows that in all the architectures 

except for the plain weave, the tows have both the undulated and straight regions. In the 

case of the plain weave, the tows are assumed to have a lenticular cross-section and the 
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entire length of both fill and warp tows is undulated. In this work, the focus is on the 

plain weave composite. The rest of this section will define the different parameters used 

to describe an idealized plain weave microstructure. 

Figure 1.4: Idealized schematics of woven preforms without matrix pockets 

(HS means Harness Satin) [5] 
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The periodic nature of the plain weave microstructure is exploited to perform 

micromechanical analyses. The unit cell of a periodic microstructure is defined as the 

smallest region that can reproduce the whole microstructure by using spatial translation 

of its copies alone and not using rotation or reflection. Figure 1.6 shows a typical tow 

taken out a plain weave microstructure shown in Figure 1.5. Note that xyz are the local 

directions for the tow and XYZ are the global directions for the unit cell. In Figure 1.6, h 

is the mat thickness and  is the wavelength of the wavy region. The waviness ratio is 

defined herein as h/ . The cross-section of the tow can vary from lenticular to flattened 

to elliptical. In this work, the tow cross-section shape perpendicular to the horizontal 

plane is assumed to be lenticular. Moreover this tow cross-section is assumed to stay the 

same along the towpath. Therefore, it also means that the cross section shape on the 

plane perpendicular to the tow path does not remain the same along the tow path. The 

tow that would be running across the one in Figure 1.6 would follow the same 

undulation except with a phase difference of half the wavelength. The curved surface of 

a warp tow is in full contact with the corresponding curved region of the fill tow that is 

traversing under or over it as shown in Figure 1.5. Therefore, the tow path that defines 

the undulation would be related to the shape of the tow cross-section. The curved portion 

of the cross-section can be defined by a simple sinusoidal function of the form  

 0
0

2 ( )
cos

4

s sh
z z  (1.1) 

where s = x or y, s0 and z0 are offsets, h is the mat thickness, and  is the wavelength of 

the wavy region as shown in Figure 1.5.  

The tow volume fraction (VT) in the model and fiber volume fraction (Vf) in the tow 

determine the overall fiber volume fraction (Vfo) as follows: 

 
fo T fV V V  (1.2) 

The effect of heterogeneity was analyzed by Whitcomb et al. in ref. [6] and it was shown 

that the behavior can be reasonably predicted by average parameters. The manner in 
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which the mats are stacked is called the stacking sequence. There are virtually countless 

possible stacking sequences. Typically, two idealized stacking sequences are considered 

when analyzing these materials. If the mats are spatially translated in a direction 

perpendicular to the plane of the mat, and stacked on top of each other, the sequence is 

called a simple stacking. In such a case, the undulation of the tows is in phase for all the 

mats. If consecutive mats are mirror images of each other at the mat interface, or in other 

words, symmetric about the mat interface, then the resulting sequence is called a 

Figure 1.6: Geometry of typical tow 

Figure 1.5: Plain weave microstructure and its unit cell 

Full unit cell 
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symmetric stacking. Figure 1.7 gives a schematic of simple and symmetric stacking of 

mats. Additional stacking sequences can be generated from various combinations of the 

simple and symmetric stacking sequences. 

 

1.3 Statement of Objectives 

Although textile composites have many advantages and are used in a wide variety of 

industries, optimal characterization and design of these materials through experimental 

testing is not practical because of the range of textile architectures and numerous design 

parameters. The goal of this work is to develop a finite element analysis framework to 

predict the behavior of advanced materials with complex microstructures such as textile 

composites under extreme operating environments. To reach this goal, the work will 

involve performing multiscale/multiphysics analyses of textile composite configurations. 

The objectives of this work can be classified as follows 

1) Develop a robust object-oriented finite element analysis framework that allows for 

convenient implementation of new analysis methods that could include standard 

elasticity models as well as models for other types of physical phenomena. This also 

includes implementing a framework that can handle analysis of multiple models 

concurrently and streamline data flow among models. It should be a flexible analysis 

tool that the user can maintain and extend with ease. 

Figure 1.7: Simple and symmetric stacking sequences 
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2) Use the framework to perform a global/local analysis of a woven DCB specimen. The 

framework uses a hierarchical model to automatically combine the discrete local model 

with the global model. Discretely modeling the tow architecture in the local model will 

give a much more detailed variation of the strain energy release rate at the crack front 

than possible with homogenized properties.  

3) Simulate the oxidation behavior in textile composites. This involves: 

a) Implementing and validating an oxidation model based on the work by 

Pochiraju et al [7-9].  

b) Develop a strategy to determine and validate homogenized oxidation 

properties for the tow. 

c) Develop strategies to expedite the simulation of oxidation since these models 

are computation intensive. 

4) Develop a coupled analysis model to predict the effect of oxidation on the damage 

initiation and progression in textile composites. This will include developing a 

constitutive model to capture the effect of oxidation on the mechanical properties of the 

material in the textile composite. The coupled multiphysics model will be used to predict 

the mechanical behavior of a plain weave graphite/PMR-15 composite that is under 

mechanical load as well as undergoes oxidation for 200 hours.  
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2. REVIEW OF STATE OF KNOWLEDGE 

The following subsections will summarize the state of the art in the development of 

finite element tools and the analysis of textile composites as it pertains to this work. It 

starts off by talking about the origins of the finite element method. This is followed by a 

discussion of the finite element programs available and the development of finite 

element analysis packages. An important part of a finite element program is the equation 

solver. A brief discussion of the various solvers used for solving large models is 

provided next. Then, the multiscale challenges inherent in predicting the behavior of 

textile composites will be discussed. This includes a review of the analytical methods for 

describing the behavior of textile composites. The advantages and limitations of the 

various methods will also be discussed. Global/local analysis methods were used for at 

least part of the analyses in this work. Hence, global/local methods will be discussed 

next. The next section reviews the advances made in progressive failure analysis of 

textile composites. This is followed by a review of damage in textile composites due to 

environmental conditions such as moisture, high temperature and oxidation. Particular 

attention is paid to the effects of oxidation on composites and the advances made in 

trying to simulate the oxidation behavior in composites. The section concludes by 

discussing the scope of this research work. 

2.1 Introduction 

Depending on its complexity, analysis of a scientific problem can be very cumbersome 

and time-consuming. Even if the governing equations are determined, it is usually not 

possible to arrive at a closed form solution of the problem. An alternative is to use 

numerical techniques to solve the equations involved. This might not give you an exact 

solution, but depending on how you solve the equations, it is possible to get a practical 

solution for the problem. 

The drawback of numerical solving of problems is that it is a tedious process and 

becomes hard to manage with increase of complexity. For this reason, it is not practical 

to solve large problems numerically by hand. With the advent of computers, the time 
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required to analyze large problems has been considerably reduced. In addition to the 

advantage of a much higher processing speed, the computer takes care of the ‗book-

keeping‘. The finite element method, which is basically a numerical technique to solve 

partial differential equations, gained popularity with the development of computers. 

Richard Courant, a German mathematician is generally acknowledged the originator of 

the FEM. His technique which relied heavily on the works of Lord Raleigh, Boris 

Galerkin, and Walter Ritz was used in 1943 to solve torsion of a cylinder [10]. Shortly 

thereafter, the finite element method was reinvented in a series of papers by Argyris and 

Kelsey (1960) [11] and Turner, Clough, Martin and Topp (1956) [12] who were 

engineers working on airplane structures design. With this method, it became easy to 

analyze structural components with complex shapes. Although, it was initially used to 

analyze structural problems, the finite element method is currently used in many fields 

of science as well as business and finance engineering [13]. 

Gone are the times when one needed a supercomputer to analyze a finite element model. 

With the explosive growth of the computer industry, it is now possible to run a fairly 

large model on a desktop PC. Although, an increase in computer processing speed 

reduces the time taken for solving a set of equations, there are other bottlenecks that hold 

up the time required for an analysis. Ironically, with the availability of very fast 

computers, some of the major bottlenecks involved in analyzing a problem from start to 

finish are those processes that require human involvement. 

There are many factors that govern how quickly one can perform an analysis of a 

structural configuration.  When using finite elements, the steps typically consist of 

defining a solid model, converting the solid model into a finite element mesh, preparing 

the non-geometric data input (such as material properties and boundary conditions), 

using a finite element solver to solve the equations and provide the solution in terms of 

displacements, stresses, etc., and most importantly interpret the results. Each of these 

steps can be quite time consuming in terms of computing power and human 

involvement. The aim of this work is to develop a framework that allow the user to 
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expedite these steps when analyzing structures with complex microstructures and 

thereby reduce the overall analysis time. 

2.1.1 Finite Element Analysis Programs 

There are many kinds of finite element packages that are available to the finite element 

method user community. These include a number of large finite element packages that 

came out of the early work done in the industry and research organizations, such as 

NASTRAN that came out of NASA Langley [14] and ANSYS that came out of the 

nuclear industry [15-16]. These and other commercial packages like ABAQUS[17] have 

evolved over time to become powerful finite element packages that are used by many in 

industry as well as researchers for a wide range of problems. The finite element 

community including the world of researchers can be broadly divided into two groups. 

One groups consists of users or analysts of the finite element method who require codes 

that are highly robust, well-documented and fully verified. They need software that 

come with good technical support. They need software that can solve their problem but 

they are not necessarily interested in knowing all the details regarding how the 

computations are actually carried out. Large commercial finite element packages like 

ANSYS and ABAQUS and packages made for specialized problems are exactly what fit 

the needs of this first group. The other group of people, consisting of researchers and 

developers of the finite element method, prefer to have access to a reliable, established 

source code which can then be used as a foundation and building blocks for the 

development of new strategies or methods for solving problems that haven‘t been solved 

before. While a considerable amount of research is done using commercial finite element 

packages such as ANSYS and ABAQUS, these packages do not fully satisfy the needs 

of every individual in this second group very well. These packages do however, offer 

some features for allowing the analysis of new problems. For instance, ANSYS has the 

USERMAT feature which allows user-defined materials and user-defined subroutines 

and similarly ABAQUS has the UMAT feature. The material called Nitinol exhibits a 

very different stress-strain curve for loading and unloading that cannot be modeled with 

existing material model in ANSYS. Barret and Fridline [18] were able to implement a 
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user-defined material model in ANSYS that simulated the Nitinol superelastic behavior. 

The atomic-scale finite element method (AFEM) is a multiscale computation method 

proposed by Huang et al [19] that aims to be as accurate as molecular mechanics 

simulations while be much faster than the commonly used order-N
2
 conjugate gradient 

method. This new method was implemented by Huang et al in ABAQUS using the 

USER-ELEMENT feature. These are just a couple of examples of new methods/models 

that been implemented by researchers using commercial finite element packages. The 

major commercial finite element software developers strive to provide features that serve 

the requirements of analysts across many industries, and while they are successful to 

some extent in that regard, it is virtually impossible to satisfy the requirements of every 

researcher without letting the user obtain control of the inner workings of the program. 

Such a situation would not only be impractical from a business point of view but it 

would make the task of maintaining and enriching the software a nightmare. By 

maintaining control over the software, the commercial developers are able to provide a 

quality-assured, robust and reliable finite element package with technical support that is 

able to satisfy a fairly large consumer base. Therefore, the group in the finite element 

method users community that wants to have more access to the core of the finite element 

program than the commercial software developer is willing to provide, has to resort to 

either writing their own finite element code or use one of the many open-source finite 

element packages freely available as a foundation for their research work.  

Prior to the 1990‘s, most finite element programs were written using functional 

programming languages such as FORTRAN-77, which was considered the language of 

choice for numerical and scientific applications. The in-house codes, written by 

developers for their specific application needs, in these functional languages tend to be 

monolithic and difficult to maintain and extend even though some of them have very 

good functionality. With the growing popularity of the object oriented programming 

paradigm in the 90‘s, a number of finite element packages were developed in object 

oriented programming languages such as C++. The object oriented design philosophy 

provides features such as encapsulation, data abstraction, inheritance and polymorphism. 
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Encapsulation is the ability to store data and function in a single unit, known as a class 

in object oriented terminology. Abstraction allows representing essential features 

without including the background details or explanations. Classes use the concept of 

abstraction and are defined as a list of abstract attributes. Inheritance allows a class to 

have the same behavior as another class and extend or tailor that behavior to provide 

special action for specific needs. Simply stated, polymorphism is the ability to use a 

general interface to manipulate things of various specialized types. These features make 

it possible to build software using software components that correspond to real-world 

high level entities. A paper by Jun Lu et al [20] details the advantages of using an object 

oriented design for finite element programs. Following a good object oriented design 

philosophy makes the code much simpler, flexible and allows for extensibility, 

reusability and reliability. 

There are still many in-house codes and free finite element packages that are built using 

the functional programming languages. Z88 [21] is one such example of a finite element 

package written in ANSI-C. It is a fast, powerful and compact finite element analysis 

program that can run on a variety of platforms. Z88 features 20 finite element types and 

comes with a mesh generator and plot programs. It has a limited number of options in 

terms of solvers. It is released under a GNU GPL Freeware license and therefore users 

have access to the entire source code but due to its underlying design it is not very 

convenient in terms of extensibility. It is more appropriate for analysis using the already 

available features in the problem and slight modifications. Ref. [22] gives a fairly large 

list of free finite element packages that are relatively sophisticated. These include 

packages that object oriented as well as those that are not.  

Deal.II [23] is an object-oriented finite element library written in C++ by Wolfgang 

Bangerth and Guido Kanschat. It is targeted at adaptive finite elements and error 

estimation. It comes with a complete stand alone linear algebra library that also 

interfaces with other packages such as PETSc and METIS. It supports a variety of 

computer platforms and is also optimized for multiprocessor machines. It supports a 

variety of elements and its object-oriented design allows for new elements to be 

mailto:wolfgang.bangerth@iwr.uni-heidelberg.de
mailto:wolfgang.bangerth@iwr.uni-heidelberg.de
mailto:kanschat@iwr.uni-heidelberg
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implemented conveniently. It comes with considerable documentation and is widely 

used in many areas of academia. The library is intended as a foundation for building 

finite element programs thereby freeing the programmer from aspects like mesh 

handling and refinement, handling of degrees of freedom, input and output of data and 

such. The application developer has to provide other aspects of the final application such 

as mesh generation and other specific application needs.  

Getfem++ [24] is another C++ library for finite element programs. It focuses on 

elementary computations and allows creation of custom element matrices, with arbitrary 

dimensions, degrees of freedom, and several integration methods. It offers a complete 

separation between integration methods (exact or approximated), geometric 

transformations (linear or not) and finite element methods of arbitrary degrees. It offers a 

wide range of element types including Hermite elements, XFem, multigrid methods to 

name a few and the addition of a new finite element method is convenient. The library 

also includes the usual tools for finite elements such as assembly procedures for classical 

PDEs, interpolation methods, computation of norms, mesh operations (including 

automatic refinement), boundary conditions and post-processing tools such as extraction 

of slices from a mesh. Getfem++ can be used as a foundation to build very general finite 

elements codes, where the finite elements, integration methods, dimension of the 

meshes, are just some parameters that can be changed very easily, thus allowing a large 

spectrum of experimentations. Like Deal.II, Getfem++ has no meshing capabilities and 

therefore the application developer has to account for mesh generation. Although it does 

not have meshing capabilities, once it is provided a mesh, the program can refine the 

mesh automatically. It allows for importing meshes in formats such as GiD , GmSH and 

emc2. 

Both Deal.II and Getfem++ are very good options as building blocks for a finite element 

framework but on their own they do not provide the additional functionality needed for 

the analysis of special materials like textile composites, which is the focus of this work. 

One possibility would be to use some of the features provided by these libraries in the 

proposed framework. 

http://gid.cimne.upc.es/
http://www.geuz.org/gmsh/
http://pauillac.inria.fr/cdrom/www/emc2/eng.htm
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Zebulon [25] is a fairly sophisticated  object-oriented finite element package with 

advanced non-linear solution capabilities. The package was initially developed as a 

research and teaching tool and progressed to build a wide commercial user base. It was 

originally written in FORTRAN and in 1992, the entire program was re-written in the 

object oriented programming language C++. The authors [26] wrote a few papers that 

detailed the aspects of object oriented finite element design which became relevant as 

the project size increases. This drives home the point that good object oriented design is 

a lot easier to maintain, manage and extend when compared to functional languages such 

as FORTRAN-77. Even if it boils down to speed issues, FOTRAN-77 does not offer any 

significant advantages in execution times. Object oriented C++ programs are being using 

in real-time mission critical applications such as the Mars rover and in marine diesel 

engines and cell phones [27]. While Zebulon does not contend to be a state of the art 

meshing or solid modeling tool, it provides interfaces to other packages that are already 

excellent in that field. Zebulon boasts of a wide range of material models such as hyper-

elastic incompressible materials, generalized Maxwell visco-elasticity and composite 

materials, including anisotropic viscoplasticity with damage to name a few. Zebulon can 

also run a diverse range of finite element problems such as fluid-structure interfaces, 

fracture mechanics techniques and diffusion with moving Stefan boundaries. It is also 

capable of using multiple processors for solving finite element models. It also allows the 

user to add custom material models, element formulations, boundary conditions, output 

routines, and virtually all other operations of the calculation using C++ source code or a 

special pre-processing modeling language (called ZebFront) that comes with the 

package. No alteration is required to the standard code in order to make this possible, 

therefore the base application is safe from user errors. The interface is also seamless 

making the user additions look just like the standard options of the program.  

OOF2 [28] is a package specifically for the finite element analysis of microstructures. It 

is designed to help materials scientists calculate macroscopic properties from images of 

real or simulated microstructures. It reads an image, assigns material properties to 

features in the image, and conducts virtual experiments to determine the macroscopic 
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properties of the microstructure. This is an open–source software that is developed by 

the Center for Theoretical and Computational Materials Science, which is part of the 

National Institute of Standards and Technology (NIST). They are working on the next 

version of the program that will be able to handle 3D micrographs. OOF2 can potentially 

handle any problem of the form ―Flux = Modulus times gradient of Field‖ and 

―divergence of Flux = Applied Force‖. It can solve the heat transfer equation, 

mechanical force and the coulomb equation. It includes material properties for linear 

elasticity, thermal conductivity, dielectric permittivity and piezoelectricity to name a 

few. The program is based on the C++ finite element classes and tied together in a 

Python infrastructure, which is another easy to use, high-level object-oriented scripting 

language. New fields and fluxes can be added to the program by simply adding a few 

lines of Python or C++ code. It can export mesh geometry directly to ABAQUS if one 

chooses to use that package for further analysis. OOF2 is completely scriptable in 

Python and can also be run interactively from a graphical user interface. Although OOF2 

is currently threaded, it is not possible to use multiple processors to solve a finite 

element model. They are working on a version that will include a parallel solver. 

Comsol MultiPhysics (formerly known as FEMLAB) [29] started out as an add-on for 

MATLAB called PDE Toolbox. Since then, it has evolved into a powerful and 

interactive stand-alone environment for modeling and solving scientific and engineering 

problems based on partial differential equations. It is cross-platform and provides an 

extensive interface to MATLAB and its toolboxes. Comsol is known for its ease in 

setting up multi-physics models. Models can be built by simply specifying the relevant 

physical quantities. Other ways to set up the model is by specifying the governing 

equations in Comsol or by even specifying the weak-form equation. Comsol then applies 

and runs the finite element method in conjunction with adaptive meshing and error 

control with an option of several solvers. The latest version of the package also allows 

the user to import CAD files as well as a new material library with a wide range of 

different materials. Comsol is used in the industry as well as academia and research for 

almost all engineering and science related fields. Since Comsol is commercial software, 
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it does not allow access to its source code. While Comsol is ideal for many multiphysics 

finite element modeling, there are several limitations as well. For example, Comsol 

supports Lagrange and Hermite interpolation but it is not possible to introduce new types 

of interpolations such as B-Splines. Comsol is an easy to use tool for already 

implemented types of models or user-defined models with complicated governing 

equations as long as it is conforms to Comsol‘s requirements. On the other hand, it is not 

a very convenient tool for the analysis of textile composites which involves considerable 

data management and postprocessing. Implementing something like a progressive 

damage analysis of textile composites in Comsol would take a considerable amount of 

work, if possible at all.  

2.1.2 Solvers 

During a finite element analysis, the most time-consuming step is usually the actual 

solving of the equations. With the advances in computer technologies such as memory 

and processor speeds, it is possible to analyze larger finite element models and solve 

them faster than ever before. There are in general two types of solvers – direct solvers 

and iterative solvers. For relatively small problems, direct solvers are usually quicker 

than iterative solvers, but as the matrix size increases, direct solvers become more 

computationally and memory intensive than iterative solvers. For this reason, beyond a 

certain problem size, it is usually more advantageous to choose iterative solvers over 

direct solvers.  

In order to run a very large finite element model, one usually has to use supercomputers 

that have multiple processors. Depending on the system architecture, the supercomputer 

could have a memory design such as shared memory [30], distributed memory, 

distributed shared memory or Non-Uniform Memory Access (NUMA). Solvers were 

implemented that could make use of multiple processors to solve the finite element 

model simultaneously. With newer and faster PCs coming out every year, the average 

size of models that can be solved on the PC kept growing. Now we are at the point 

where the speed of a single processor has more or less stagnated and the latest class of 

PCs coming out in the market use processors with multiple ‗processing units‘ or ‗cores‘. 
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These new PCs fall under a class of systems called Symmetric multiprocessing (SMP) 

systems [31]. This is a multiprocessor computer architecture where two or more identical 

processors are connected to a single shared main memory. In order to take full advantage 

of these new processors, one needs to use parallel solvers that can coordinate 

computational tasks simultaneously among the different cores in order to solve the finite 

element model. It is also possible to hook up multiple computers together in what is 

known as clusters [32] in order to use the collective number of processors 

simultaneously as in a multi-processor supercomputer.  

Different computer vendors used to have their own specifications and instruction set in 

order to control and coordinate the use of the multiple processors in the computers that 

they manufacture. This made it very hard to develop portable codes that could be used 

across different types of machines. In an effort to eliminate this problem, some standard 

Application Programming Interfaces (APIs) were introduced that all the vendors 

conformed to. In this way, the programmers used the instructions in the APIs and did not 

have to worry about how exactly the vendors implemented the task in their computer. As 

long as their program would be running on a machine that supported the API, the 

program would work. The performance on different machines could vary because how 

exactly the vendors implement the API is up to them and could be different for various 

machines. 

Three of the most commonly used APIs are Pthreads, OpenMP and the Message Passing 

Interface (MPI). Pthreads[33] or POSIX threads is the IEEE POSIX 1003.1c standard 

that defines the API for creating and manipulating threads. This standard is not as 

common as the other two for developing parallel programs. The OpenMP which stands 

for Open Multi-Processing [34] is an API that supports multi-platform shared memory 

multiprocessing programming in C/C++ and FORTRAN on many architectures, 

including UNIX and Microsoft Windows platforms. Jointly defined by a group of major 

computer hardware and software vendors, OpenMP is a portable, scalable model that 

gives programmers a simple and flexible interface for developing parallel applications 

for platforms ranging from the desktop to the supercomputer. OpenMP currently only 
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runs efficiently in shared-memory multiprocessor platforms and  scalability is limited 

by memory architecture. The Message Passing Interface (MPI) [35] is a language-

independent communications protocol used to program parallel computers. Although 

MPI is not sanctioned by any major standards body, it has become the de facto standard 

for communication among processes that comprise a parallel program running on a 

distributed memory system. Actual distributed memory supercomputers such as 

computer clusters often run these programs. MPI's goals are high performance, 

scalability, and portability. While it is generally considered to have been successful in 

meeting these goals, it has also been criticized for being too low level and difficult to 

use, hence sometimes being referred to as the assembly language of parallel 

programming. It is highly portable because MPI has been implemented for almost every 

distributed-memory architecture available on the market. It is fast because each 

implementation is in principle optimized for the hardware on which it runs. It is also 

supported on shared memory and Non-Uniform Memory Access(NUMA) architectures, 

which makes it very portable and at the same time provide high performance.  

There are a number of parallel solvers available that can make use of multiple processors 

to concurrently solve a finite element model. One such solver is called the Pardiso [36-

38] solver which stands for Parallel Direct Solver. The PARDISO package [39] is a 

thread-safe, high-performance, robust, memory efficient and easy to use software for 

solving large sparse symmetric and unsymmetric linear systems of equations on shared 

memory multiprocessors. The authors of PARDISO who are at the University of Basel 

in Spain have licensed the library free of charge for non-commercial and non-profit 

internal research purposes. The package uses the OpenMP API to implement the parallel 

solver thereby making it very efficient for shared memory systems. For the same reason, 

it is not efficient for machines with processors that do not share the same memory 

resources such as distributed memory machines. Intel has licensed the PARDISO solver 

from the University of Basel to include it in their Math Kernel Library [40], which is 

optimized for the Intel computer chips. The scalability of the parallel algorithm is nearly 

independent of the shared-memory multiprocessing architecture, and speed-ups of up to 
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seven times (on eight processors) have been observed [41]. The efficiency of a direct 

solver depends greatly on how small the bandwidth of the sparse matrix is. In order to 

increase the efficiency of the solver, the matrix is usually reordered in such a way that 

the bandwidth is reduced before the solver actually starts solving the system of 

equations. The PARDISO package uses a program called METIS [42] for this purpose. 

The METIS package is developed by George Karypis‘ group in the University of 

Minnesota. The group has also developed ParMetis [43] which is an MPI-based parallel 

library that extends the functionality provided by Metis for parallel computations and 

large scale numerical simulations. The parallel algorithms [44] implemented in this 

package have been shown to significantly outperform other popular reordering 

algorithms. 

PETSc [45-47] is a suite of data structures and routines for the parallel solution of 

scientific applications modeled by partial differential equations. It uses the MPI standard 

and is scalable. The PETSc library is developed at the Argonne National Laboratory and 

is available for free with support. PETSc, which is built for use in large-scale application 

projects, is widely used in the academia and research institutions with applications 

ranging from nano-simulations to computational fluid dynamics to geosciences. While 

PETSc is easy to use for beginners, it allows advanced users to have detailed control 

over the solution process. It includes a large suite of parallel linear and nonlinear 

equation solvers that are easily used in application codes written in C, C++, FORTRAN 

and Python. It is portable to both windows and UNIX environments. While PETSc has a 

number of iterative solvers with a range of preconditioners, it does not provide many 

direct solvers. On the other hand, it does provide interfaces to a number of external 

packages that have direct solvers which work in parallel. 

One such external package that PETSc interfaces with is called MUMPS [48-50], which 

stands for MUltifrontal Massively Parallel sparse direct Solver. It is a distributed 

multifrontal solver written in Fortran-90 and uses the MPI standard. MUMPS is public 

domain, based on public domain software developed during the Esprit IV European 

project PARASOL (1996-1999) by CERFACS, ENSEEIHT-IRIT and RAL. The solver 
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interfaces to FORTRAN, C, C++, Matlab and Scilab. It can solve large linear systems 

with symmetric positive definite matrices, general symmetric and unsymmetric matrices. 

While the PARDISO solver is ideal for shared memory processor machines including 

the new multi core machines because of the OpenMP implementation, the MUMPS 

solver is ideal for large distributed memory machines including clusters because of its 

MPI implementation. It also provides several options for the matrix reordering schemes 

such as approximate minimum degree ordering (AMD, [51]), PORD [52] and METIS 

[42]. 

While this review mentions a few of the widely used parallel solvers, it does not cover 

every parallel solver available for large sparse matrices. N. I. M. Gould, Jennifer Scott 

and Yifan Hu provide an independent review and detailed comparison of the 

performance of various sparse direct linear solvers in these reports [53-55]. 

2.2 Multiscale Analysis of Textile Composites 

Textile composites exhibit multiple scales of complexity. The major scales are the 

fiber/matrix scale, the tow architecture scale, the "laminate scale" (i.e. multi-layered 

textiles), and the structural scale [56]. These scales are illustrated in Figure 2.1. A lot of 

work has been done on analysis at the fiber/matrix scale [57-59], but not much has been 

done for the high temperature oxidizing environment that is part of the focus in this 

work. The techniques already present in the literature need to be tailored to account for 

oxygen permeation and the resultant degradation due to oxidation. Accounting for the 

tow architecture scale presents severe challenges even for highly idealized cases. 

Compared to modeling of tape laminates [60-64], there has been relatively little effort 

for textile composites. A common strategy for designers is to use the laminated plate 

theory with empirical known-down factors for properties. Obviously, this does not lead 

to fundamental understanding that could guide optimal design of the material. The 

following will review the wide range of analyses that have been developed. 

A majority of the predictive models for textile composites can be categorized as either 1) 

very simple due to assuming isostrain or isostress or a combination of both, 2) a hybrid 
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of strength of materials and piecewise isostrain or isostress assumptions or, 3) full three 

dimensional finite element modeling. The first two categories have close ties to 

laminated plate theory. There are also some hybrid approaches, such as the binary model 

developed by Cox et al. [65]. For certain engineering moduli, all of these approaches 

have been shown to give similar trends. For others, either the predictions of the 

engineering properties differ, or an estimate is not even provided by the simpler 

analyses. Whitcomb et al. showed that the ability of the "enhanced laminate theory" 

models to predict in-plane extensional modulus for a plain weave was related to two 

simplifying assumptions that introduced canceling errors [66]. 

Simple models involve simplifying assumptions concerning geometric modeling of the 

tow path and boundary conditions. These models vary in terms of the accuracy of the 

assumed displacement or stress field. Nevertheless, simple models do offer some 

significant insights into the behavior of textiles. On the other hand, one cannot get 

Figure 2.1: Multiscale Analysis (Figure courtesy Dr. John Whitcomb) 
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detailed information like the microscopic stress distribution or the modes of failure. But 

the insights obtained from full 3D models or the experiments can be utilized to refine 

and modify simpler models and make them more robust. The following section will talk 

about the simple models first and then the full 3D models. 

2.2.1 Progress in Development of Simple Models 

Ishikawa and Chou [67] pioneered the development of simple 1D models based on 

lamination theory to predict thermo-elastic properties. The 1D crimp model accounted 

for fiber undulation, but the mosaic model did not [67-69]. The basic strategy of the 1D 

crimp model was extended to 2D by Naik, Shembekar and Ganesh [70-71]. 

The translation to 2D was accomplished by volume averaging in each subregion using 

isostrain or isostress assumptions and then combining the homogenized subregions… 

again using isostress or isostrain assumptions. They developed what they called the 

parallel-series model (PS) and the series-parallel model (SP) depending on assembling 

the elements first in parallel or in series respectively. Hahn and Pandey [72] extended the 

above 2-D models to a 3-D thermo-elastic model that models the undulation of fibers in 

both directions along with a sinusoidal cross-section shape of the yarns. The condition of 

isostrain was applied whose accuracy still remains to be verified through experiments. 

Verpoest [73] used the principle of minimum total complementary energy to develop a 

model for predicting the full set of 3D engineering moduli. 

One common observation that can be made from these efforts is that if the goal is to just 

predict engineering moduli of undamaged materials, the existing suite of simple models 

is probably sufficient. This is because in reality, comparatively flat weaves are used and 

their moduli are dominated by quite simple physics. Unfortunately, the accuracy of some 

of the simple models appears to be a result of fortuitous cancellation of errors rather than 

good approximation of the physics [66]. Whitcomb and Tang [74] showed that all of the 

3D engineering moduli can be predicted quite accurately even for very wavy weaves if 

the behavior of the undulated regions is described adequately. They also showed that 

some of the most popular approximations appear to have little physical basis.  
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2.2.2 Progress in Development of Full 3D Finite Element Models 

Although moduli can be predicted fairly easily, prediction of the effects of textile design 

on damage initiation and growth, degradation due to oxidation, and coupling of these 

phenomena requires a much more detailed description of the textile architecture than the 

simple models can possibly provide. Fortunately, the rapid increase in easily accessible 

computational power has made 3D analysis much more practical. Figure 2.2 shows the 

typical stress contours for a 5-harness satin weave composite subjected to a uniaxial 

load. The stress states are fully three-dimensional and complex even for the simplest 

loading. The interpretation of these stress states is a difficult job because the stresses can 

be so localized that the scale is small compared to the size of the fibers in the tow. The 

real tow architecture has more chaotic geometry than idealized textile geometry that will 

further increase the complexity of the stress state.  
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Figure 2.2: Stress contours for 5-harness satin weave 

 



26 

 

 

 

Some of the earliest 3D models of woven composites were developed by Paumelle et al. 

[75-76] and Whitcomb et al. [66,77-78]. More recently Kuhn et al. [79-80], and Ji and 

Kim [81] have developed models for woven composites. These efforts predicted not only 

effective macroscopic moduli, but also local stress concentrations that could lead to 

premature failure. Geometric and material nonlinearities (including failure) were 

included in work by Blackketter [82], Whitcomb [83], and Kollegal and Sridharan [84]. 

Gibson and Guan [85] examined the viscoelastic response of woven composite. 

Most of the 3D models in the literature are for plain weave composites. The reason is 

that it is by far the simplest of the weaves, so mesh generation is relatively simple and 

the computational requirements are quite small, at least for linear analysis. However, 

there are exceptions. Whitcomb et al. has also published results for 4, 5, and 8-harness 

satin weaves, twill weave and 2x2 braids [74,77,78,86]. D‘Amato [87] developed a 

model for triaxial braids. Naik [88] developed models for braids. 

Analysis of textile composites can require large finite element models. Fortunately, 

periodicity within the microstructure can be exploited that reduce the analysis region to 

just a small unit cell. A unit cell is a region that can produce the whole microstructure by 

spatially translating its copies. Even then, a model of a single unit cell can be very large 

depending on the type of analysis. The computational cost can be reduced further by 

exploiting symmetries in the textile unit cell. Unfortunately, the boundary conditions for 

partial unit cell models are much more complicated and not intuitive like they are for the 

full unit cell. For example, Figure 2.3 shows the slave/master face pairs for a 2x2 biaxial 

braid [86]. Refs [89-90] describe systematic procedures for deriving these complex 

boundary conditions for partial unit cell models. 

Mesh generation is one of the major challenges for the analyst. It is impractical to 

perform parametric study using 3D models unless the model itself is defined 

parametrically. That is, there must be a way to vary the characteristics of the tow 

architecture with the specification of only a few parameters. Tang used this technique 

very effectively in ref [74], where results were generated for numerous different weave 

configurations with very little human intervention. 
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Figure 2.4: Volume distribution of S33 in ±30˚ braid tow with WR=1/3 

when <Sxx> = 1 was applied 

 

 

Figure 2.3: Multi-point constraint relations: boundary conditions for braid 

half-unit cell (Figure courtesy Dr. John Whitcomb) 
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Three-dimensional analysis produces a tremendous amount of information. Sometimes it 

is useful to post-process the details to obtain a ―bigger picture‖ interpretation. For 

example, Figure 2.4 shows a stress vs. volume plot that reveals just how much volume of 

a composite is subjected to the highest stresses [91]. Figure 2.5 shows how the axial load 

in a fiber tow varies along the tow path. Non-standard presentations of results like those 

just mentioned are quite useful in developing an intuitive understanding of the behavior. 

Periodic analysis is generally used in the modeling of textile composites because it is 

practically impossible to model the tow architecture for an entire composite specimen or 

structure. This is obviously an approximation since in reality there are irregularities due 

to variations in tow geometric properties such as waviness, cross section shape, and fiber 

volume fraction. A few researchers have considered variation of the tow architecture in a 

specimen. Whitcomb et al. [92] considered the effect of variation in braid parameters on 

the progressive failure behavior of a 2x2 braided composite laminate. A bottom-up 

multi-scale finite element modeling approach was employed that sequentially considered 

the fiber/matrix scale, the tow architecture scale and the laminate scale. Full 3D analysis 

was used to obtain effective 3D moduli for a variety of perturbations from a reference 

configuration. Then these effective properties were assigned to random locations in a 

macroscopic model of a uniaxial specimen. Aggarwal predicted the effects of tow 

Figure 2.5: Tow stress resultants for plain weave in a linear elastic analysis 
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misalignment caused by the manufacturing process or forcing the fabrics to conform to 

molds [93] (see Figure 2.6). No detailed 3D analysis was developed and only the effects 

on stiffness were predicted. Lee et al. [94] and Bednarcyk et al. [95] also investigated the 

effects of irregularity of the microstructure; however, there was no attempt to model the 

actual wavy shape of the tows. 

Unintentional variation of architecture is minor in comparison to the large changes that 

must occur if a specimen is not of constant curvature. Even a braided tube of varying 

diameter will have significant variations in braid angle. More complex but very practical 

configurations such as the textile Pi joint (Figure 2.7) [96] or composite pin joints [97] 

have very large changes in tow architecture. There have been attempts to model such 

structures, but only homogenized properties have been used (e.g. ref [97]). It is not 

practical to model the tow architecture throughout such complex configurations, but 

Figure 2.7: Pi Joint with damage [96] 

 

Figure 2.6: Yarn misalignment in flat braided composite [93] 
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global/local strategies, such as that in the next section, can be used to obtain refined 

information in selected local regions. 

2.3 Global / Local Analyses 

The term global/local analysis refers to a very broad collection of strategies aimed at 

including a good approximation of the large scale effects in a detailed analysis of a local 

region. It is not feasible to use a refined idealization of every detail throughout a 

structure or even a specimen. On the other hand, the boundary conditions for a detailed 

local model depend on the surrounding region. Therefore, one cannot ignore the larger 

scale when performing detailed analysis of a suspected critical region. One could quite 

fairly argue that global/local analysis methods have been used for as long as people have 

performed analysis. For example, design of a truss bridge years ago would not include 

details of the rivets when determining the nominal dimensions of the truss members, but 

eventually the rivets must have been considered. The focus of this section will be on 

methods that are particularly suited for expediting finite element analysis of materials 

with complex microstructure and have the potential for producing very accurate results.  

It is convenient to categorize the methods as either uncoupled or coupled. An uncoupled 

method would perform analysis of the large scale problem using a crude approximation 

of the microstructure, such as effective moduli determined from homogenization theory. 

After the crude (global) analysis is completed, displacement and/or force information 

from the analysis is used to define boundary conditions on a much smaller more refined 

model [98]. Of course, the different levels of approximation typically results in loss of 

equilibrium. Whitcomb [99,100] described an iterative procedure to enforce equilibrium 

between global and local models. 

A coupled analysis integrates the crude and refined models into a single model. For 

example, homogenized properties or macro elements [101,102], might be used for 95% 

of a model, but in the remaining 5% the microstructure is modeled discretely. Macro 

elements are special finite elements that allow inhomogeneity within a single element 

[101,102]. Figure 2.8 shows a 1/4
th

 plain weave unit cell which is modeled using a single 
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20-node macro element. The corresponding conventional mesh uses 64 elements and 

381 nodes. Because of the complex spatial variation of material properties, there is 

significant distortion, even under simple extension. As illustrated by Figure 2.8, a single 

macro element can reproduce much of the deformation behavior of a traditional model 

with far more nodes. 

Whether the analysis is coupled or uncoupled, one of the fundamental challenges is how 

to interface the idealizations, since the meshing would typically be incompatible. 

Whitcomb et al. [103] used multipoint constraints to approximately satisfy compatibility 

at the interface. The nodal displacements on the more refined side of the interface are 

slaved to the nodal displacements on the other side using the coarse side interpolation of 

the displacements. Unfortunately, this method cannot be generally used (other than for 

special configurations) because it does not accurately account for overlaps or for gaps 

between meshes. This results in the loss of linear consistency in the discrete 
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Figure 2.8: Macro element used to model weave microstructure 
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representation. Dohrmann et al [104-106] published an important result which describes 

how two independently meshed regions can be joined correctly and linear consistency 

can be maintained. They provided two requirements that need to be met in order to 

recover linear consistency. While these requirements are difficult to implement in 

practice, there are reliable approximations that can be implemented reasonably. Ransom 

[107] proposed using a higher order spline fit of the interface displacements from the 

crude model. A variational framework using Largrange multipliers for interfacing 

regions with incompatible meshes is described in a series of papers by Housner, 

Aminpour and Ransom [108-113]. This technology was recast in the form of an element, 

thereby facilitating the use of the method for more than two subdomains. A layer of 

interface elements are introduced between the two subdomains and the boundaries on 

either side of the interface are associated with the interface elements. Although a variety 

of structural configurations have been studied using this interface technology, the 

accuracy and efficiency for microstructural analysis has not been determined. The 

various interface techniques all share a common weakness: it is not trivial to define the 

boundaries for the regions involved, sort/associate the nodes on opposite sides of the 

interface, and then impose the selected constraint conditions on the associated nodes. 

Effective use of global/local methods requires that much of this process be automated.  

Some commercial finite element analysis packages provide their users with the ability to 

assemble large models from different ‗parts‘. The trend is to move towards a unified 

CAD and FEA environment where designers and engineers can conceptualize, design, 

optimize, validate and simulate their ideas. Ansys has their DesignSpace [114] 

simulation package while Abaqus has the Unified FEA Product Suite [115]. There are 

also some software packages developed by government institutions that allow rapid 

development and simulation of prototype assemblies. SIMBA (Simulation Manager and 

Builder for Analysts), developed by Sandia Labs [116], also builds FE models from 

various components. It is used mainly to build and manage complicated finite element 

models of weapon systems saving analysts large amounts of problem setup time. Using 

NextGRADE by NASA [117], which stands for Next Generation Rapid Analysis and 
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Design Environment, you can rapidly build a structure using stock components and then 

analyze it. NextGRADE uses the interface element technology developed by Aminpour 

et al [108-113] to assemble different components. 

2.4 Progressive Failure Analyses 

One higher level challenge is the prediction of non-linearity caused by damage initiation 

and progression in textile composites. Using 3D finite element analyses, the failure can 

be predicted two ways for textile composites. One involves a discrete modeling of 

damage and other involves accounting for damage in a homogenized way in which the 

modulus or strength properties are degraded whenever some damage is detected. An 

accurate modeling of geometry, implementation of a reasonable failure criteria and a 

property degradation model are prerequisites for this type of modeling approach. 

There have been a few attempts in discrete modeling of damage [118], but most of 

efforts have been in homogenized modeling of damage. Various researchers have 

proposed different damage models. Most of these models are similar in the sense that 

they degrade the stiffness coefficient or increase the compliance coefficients of the yarns 

and matrix after failure criteria determines the occurrence of a damage mode. These 

models differ from each other in various ways. The models basically differ in what 

degradation factors [118] they use for degrading the properties under a particular failure 

mode. Secondly, some degrade only the diagonal entries in the compliance or stiffness 

matrix and some affect the off-diagonal terms also. Another difference between damage 

models is whether the matrix, which is isotropic initially, is considered anisotropic or not 

after damage. Some of the models are based on the experimental observations while 

some have theoretical basis. A comparison of some of the damage models available in 

the literature will be provided here. The damage model given in ref [82] has been widely 

used to predict initiation and growth of damage by many researchers [119-120]. 

Whitcomb and Chapman [121] proposed a property degradation model based on the 

Blackketter et al‘s [82] model. This was a combination of the method used by 

Blackketter et al [82], Stanton and Kipp [122] and Whitcomb and Srirengan [118]. The 

model involved degradation of engineering moduli of the yarns when a certain failure 
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mode was detected. Whitcomb and Chapman‘s [121] model is similar to the model given 

by Blackketter el al. [82] except for few differences like the degradation factors are 

different in the two models. Both the models affect only diagonal entries in the 

compliance matrix. Zako et al. [123] developed an anisotropic damage constitutive 

equation based on damage mechanics. Different damage modes were considered in the 

yarns. The degradation factors were calculated from a damage tensor. This model 

inherently affects the off-diagonal terms also. An anisotropic damage model was 

considered for yarns, and an isotropic damage model was considered for the matrix. 

Even though the isotropic damage model for the matrix starts off with an undamaged 

matrix that is isotropic, as the damage initiates and progresses, the matrix could become 

anisotropic. Tamma et al. [124] proposed a damage model in which they provided 

physical explanation of what properties should be degraded under a particular failure 

mode. They considered the degradation of off-diagonal terms also. Anisotropic damage 

models were proposed both for the yarns and for the matrix. Recently Sankar et al. [125] 

developed a direct micromechanics method (DMM), which does not make any 

assumptions based upon homogenized properties. Failure envelopes for a plain-weave 

textile composite were developed and any arbitrary loading including the moments can 

be applied to their detailed 3D finite element model. The method employed was used to 

develop phenomenological failure criteria for textile composites. A drawback is that 

their method considers only damage initiation with no regard to damage progression. A 

more detailed discussion about damage mechanisms in textile composites is given in 

Section 9. 
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2.5 Damage Due to Environmental Conditions 

Woven composite structures are expected to undergo a range of hygrothermal and 

oxidizing environmental conditions during their service life. Environmentally induced 

degradation of textile composites has been examined experimentally. However, the 

characterization is typically macroscopic. For example, Luan et al. [126] studied the 

corrosion of a C-SiC composite with SiC coating (SiC-C/SiC) under a low frequency 

cyclic stress in various gas atmospheres of oxygen, water vapor, and sodium sulfate 

vapor at temperatures from 1000 to 1300 °C. A model for the cyclic stress corrosion 

mechanism of the composite was proposed from the experimental study and an equation 

to predict the lifetime of the composite under cyclic stress conditions was derived from 

the model. Hale [127] characterized the strength reduction of three GRP composite 

materials as a function of temperature and testing environment (sea water and crude oil 

condensate). In neither case was the microscopic damage mechanisms considered.  

Haque and Rahman [128] investigated the damage development in woven ceramic 

matrix composites under
 
tensile and cyclic loading at elevated temperatures. The tensile

 

strength of SiC/SiNC woven composites was found to increase
 

with increased 

temperatures up to 1000°C. Elevated temperature was found to have a remarkable effect 

on the fatigue strength. At 700°C, the fatigue strength was approximately 50 percent of 

the ultimate strength, while at 1000°C it was found to be less than 20 percent of the 

ultimate strength. They developed rate equations for modulus degradation and life 

prediction under fatigue loading at room and elevated temperatures which fitted well 

with the experimental results. In some cases, the success of the application itself depends 

on the ability of the composite to withstand environmental conditions. For example, 

cryogenic propellant tanks fabricated using composites need to be able to avoid leakage 

of the propellant through the micro cracks in the composite material. Peddiraju et al 

[129] simulated the leakage of gaseous hydrogen through the thickness of a damaged 

composite laminate and predicted the leakage rate at room and cryogenic temperatures. 

Polymer matrix composites absorb moisture during service. This can lead to 

plasticization of the polymer matrix, alter the stress state and degrade the fiber/matrix 
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interface [130-132]. Due to this, a good understanding of the moisture absorption and 

desorption behavior is important for predicting long-term material and structural 

performance. Some good work has been put in to investigating the thermal conductivity 

and moisture diffusion behavior of polymer matrix woven composites. Dasgupta and 

Agarwal [133] studied the thermal conductivity of plain weave composites using a 

homogenization technique and were able to achieve very good agreement with the 

experimental results. Roy et al. [134] examined the effect of preexisting matrix-cracks 

on the moisture diffusion behavior of a 5-harness satin weave composite using a 

continuum damage mechanics approach based on the theory of irreversible 

thermodynamics. Li et al. [135] investigated the moisture diffusion behavior in hybrid 

woven composite laminates using a simple 1D diffusion model to simulate the effect of 

stacking sequence of woven plies on the diffusion behavior. Tang et al [136] studied the 

effect of tow architecture on the diffusion behavior in woven composites. This helps in 

identifying the dominant architectural factors that affect the diffusion behavior of a 

polymer matrix woven composite. Their analysis consisted of two steps – calculating the 

effective diffusivity of the fiber tows with matrix and then using these properties to 

model the tow with the corresponding tow architecture in the woven composite. The 

effective diffusivity of the tows was calculated using 3D finite element micromechanics 

[137]. The effect of irregular fiber distribution was taken into account using a finite 

element based ‗bi-zone‘ model [138]. Simulations of moisture diffusion tests for a 3-ply 

woven hybrid composite were performed and found to be in close agreement with 

experimental results. 

2.5.1 Effect of Oxidation 

Oxidation at high temperature has been a concern for a long time. Of course, the 

definition of high temperature depends on the material system. Carbon fiber-reinforced 

silicon carbide composites (C–SiC) exhibit excellent mechanical properties at 

temperatures below 1650°C and have been designed and developed for high-temperature 

applications such as the high thrust-to-weight ratio turbine engines and reentry thermal 

protection for spacecraft. However, the mismatch in thermal expansion coefficients 
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between the carbon fiber and the SiC matrix induce matrix and seal coating 

microcracking during cooling from the processing temperature [139]. These cracks allow 

for oxygen to leak in and react with the carbon fibers at temperatures above 400 °C 

[140-142]. This oxidation in turn will degrade the mechanical properties of the 

composite. Luan et al [143] examined C-SiC composites being oxidized or corroded in 

various gas atmospheres and found that oxygen was the major factor degrading the 

composite under conditions with cyclic stresses. They proposed a model for the cyclic 

stress corrosion mechanism from the experimental results as well as an equation to 

predict the lifetime of the composite. Halbig et al [144] studied oxidation tests of C/SiC 

composites at elevated temperatures and developed a model that simulates the diffusion 

of oxygen into a matrix crack bridged by carbon fibers.  

Carbon-carbon composites are designed for extremely high temperatures, but they must 

be protected from oxidation. Various researchers have studied the behavior of carbon-

carbon and proposed schemes for oxidation protection. Ceramic coatings alone do not 

provide a comprehensive barrier against oxidation because of the mismatch between the 

coefficients of thermal expansion. Due to this mismatch, cracks form in the coatings. As 

an additional form of protection, particulates are added to the matrix [145]. These 

‗inhibitor‘ particulate materials are usually boron, boron carbide or silicon carbide. 

Ochoa and Elliott [146] studied oxidation under isothermal, cyclic thermal, and thermo-

mechanical fatigue conditions for inhibited carbon-carbon composites. Mass loss and 

material property degradation assessment was undertaken with subsequent exploratory 

nondestructive testing utilizing dynamic mechanical analysis (DMA) and piezoelectric 

ultrasonic composite oscillator technique (PUCOT) techniques. Degradation in shear and 

axial moduli were measured as oxidation progressed. Lou et al. [147] examined the 

effect of additives on the mechanical properties of oxidation-resistant carbon/carbon 

composites (C/C). The additives used in their test included silicon carbide, silicon 

nitride, and metal borides. These additives resulted in large increases in flexural modulus 

and strength. Recently Mazany et al [148] filed a patent on oxidation inhibition of 

carbon-carbon composites. Their invention involves two steps: (a) contacting the carbon-
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carbon composite with an oxidation inhibiting composition composed of phosphoric acid 

or an acid phosphate salt, at least one aluminum salt, and at least one additional metal 

salt and (b) heating the carbon-carbon composite at a temperature sufficient to form a 

deposit from the oxidation inhibiting composition within at least some of the penetrated 

pores of the carbon-carbon composite.  

Schoeppner, Pochiraju and Tandon [7] developed a multidisciplinary approach aimed at 

predicting the performance of high-temperature polymer matrix composites (HTPMCs). 

HTPMCs are used in a variety of aerospace applications. Pochiraju et al have performed 

an extensive review of the state of the art in predicting thermo-oxidative degradation and 

performance of HTPMCs[9]. Unfortunately, there is still much more research required 

and all the underlying mechanisms for the predicting the behavior of these materials are 

yet to be determined. Characterizing the behavior of these materials is not trivial [149-

152] and very time-consuming and in some cases, reliable methods to determine certain 

properties do not yet exist. Pochiraju et al also reviewed the effect of oxidation and 

aging on the fibers as well as composite behavior. Tandon et al [7] characterized the 

behavior of neat PMR-15 resin and developed a model to predict the thermo-oxidation of 

the material. Thermo-oxidative aging was simulated with a diffusion reaction model in 

which temperature, oxygen concentration and weight loss effects were considered. The 

model which was implemented using FEM considered diffusion, reaction and oxidation 

of the resin system. The model developed by Pochiraju et al [7-9] is used as the basis for 

the oxidation model developed in this work and is discussed in detail in Section 3. They 

also used the FEM to model the oxidation behavior in a Graphite/PMR-15 composite 

[9], where they assumed the fiber did not oxidize. The oxidation model developed by 

Pochiraju et al tends to be very computation-intensive and most of their analyses were 

performed at the fiber/matrix scale. Pochiraju et al [153] also used the oxidation model 

to predict the evolution of stresses and deformation in HTPMCs by accounting for 

thermo-oxidation induced shrinkage. The oxidation model and the non-linear elastic 

deformation analyses are coupled using information obtained by experimental 

observation of shrinkage in neat PMR-15 resin under aging in oxygen and argon. 
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Roy et al [154] developed a multi-scale model based on micromechanics and continuum 

damage mechanics to simulate the accelerated fiber-matrix debond growth in a 

unidirectional HTPMC undergoing oxidation. The model was used to predict the 

mechanical behavior of a laminate in a three-point bending test incorporating the 

damage caused due to oxidation. Wang and Chen [155] developed a computation 

micromechanics approach based on irreversible thermodynamics to obtain constitutive 

properties of HTPMCs while tracking thermo-oxidative reactions, microstructural 

damage and thermo-mechanical loading. A two-scale homogenization theory is also used 

to determine macroscopic behavior of these composites. They also stressed the need for 

many not yet available thermal, chemical, mechanical and interphase properties and 

microstructural parameters in order to accurately predict the behavior of HTPMCs.  
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2.6 Scope of Research 

The primary objective of this research work is to develop a better understanding of the 

behavior of textile composites. This will help in optimal design of these materials 

because experimental testing and characterization of textile composites is a very time-

consuming and expensive process. Moreover, the problem is more challenging when 

trying to determine the effect of the operating environment on the mechanical behavior 

of the textile composite. 

The proposed research is described in four main sections. The first section talks about 

the development a robust finite element framework that can handle the 

multiscale/multiphysics analysis of structures with complex microstructure. In this work, 

all the analyses focus on the behavior of textile composites. Therefore, the framework 

will be developed keeping that in mind. The second section uses the framework to 

perform a multiscale analysis of a woven DCB specimen. The next section discusses the 

development, implementation and validation of a model to simulate the oxidation 

process in textile composites. This also includes the strategies developed to speed up the 

oxidation analysis. The last section describes the coupled multiphysics model that is 

used to predict damage progression in a textile composite that is under mechanical load 

as well as being oxidized.  

2.6.1 Development of Multiscale/Multiphysics Finite Element Framework 

There are many commercial and public domain software packages for finite element 

analysis. However, they are typically not designed for the particular challenges one will 

face when performing detailed 3D analysis of textile composite structures. Textile 

composites have multiple microstructural scales – the fiber/matrix scale, the lamina 

scale, and the laminate scale. This complex microstructure of textile composites makes it 

necessary to use multiscale analyses in order to obtain detailed information about their 

behavior. Moreover the proposed work also studies the behavior of textile composites 

under oxidizing environments. This requires a multiphysics analysis that couples damage 

progression analyses with oxidation simulations. These sorts of novel analysis methods 
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are not convenient to implement in commercial FEA packages due to the restrictive 

nature of these software. 

A finite element analysis framework called ‗BETA‘ will be developed, which is a 

successor to the existing in-house finite element code, "ALPHA". Alpha has been used 

for static linear and nonlinear thermo-mechanical analysis and transient diffusion 

analysis of textiles. Existing tools will form the foundation of the proposed finite 

element framework. Although the existing code was designed to be quite modular and 

extensible, experience has shown that the needs of those performing detailed analysis of 

textiles is quite severe. The new framework will have several enhancements over the 

existing in-house code in order to meet the needs of the proposed work. The goal is to 

design a robust framework that can be enhanced and extended in the years to come by 

future users and lives beyond the term of this research work. Towards this end, the 

software will be designed using an object oriented philosophy. This incorporates features 

such as inheritance, polymorphism, data abstraction and encapsulation. When designed 

properly, this kind of programming philosophy makes it a lot easier and convenient to 

maintain, manage, modify, extend and enhance a large software package.  

The new framework will make use of the latest hardware improvements such as multi-

processor machines which are very common now. The framework will also be portable 

so that it can be used on both the Windows as well as UNIX/LINUX environments. The 

developed framework will be used to analyze different configurations including textile 

composites subjected to a high temperature oxidizing environment. The framework will 

include tools for geometric description, including spatial variation of material properties, 

mesh development, finite element solver, and postprocessing. It will also provide better 

control of output for debugging algorithms and postprocessing of results. A more 

detailed description of the framework is given in Section 4. 

2.6.2 Multiscale Analysis of Woven DCB Specimen 

As mentioned in the previous section, textile composites have multiple levels of 

microstructure. This kind of microstructure can cause a complex load path and complex 
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three dimensional stress distributions in a laminate even for a simple uniaxial loading. A 

thorough understanding of why and where these stress concentration occur will give 

insight into how to better design these material. This will help in getting better 

performance and life from the material. Better modeling and analysis capability will 

allow the designer to predict the behavior of realistic composite structures and 

complement the experimental testing and characterization.  

A typical engineering problem deals with a configuration that is at a length scale at least 

a few orders of magnitude larger than the size of the microstructure. Some examples 

include a structure made out of composite impregnated with carbon nanotubes or a 

stringer stiffened panel that is made of composite material (where the fibers in the tows 

are as small as a few microns thick). The problem becomes impractical to solve if the 

entire configuration is to be modeled at the same length scale as its complex 

microstructure. 

In order to reduce the computational cost when analyzing such a system, different 

regions of the model are often modeled at different microstructural scales. The focal 

configuration investigated in this work is a double cantilever beam (DCB) specimen 

fabricated with woven fabric. A woven composite DCB specimen has several such 

microstructural scales. The laminate is described by multiple length scales as shown in 

Figure 2.9: fiber/matrix in tow, woven composite lamina, and 

laminate. When conducting a detailed stress analysis of the DCB specimen, the region 

Laminate  

Lamina Fiber/matrix in tow 

Figure 2.9: Different microstructural scales in a DCB specimen fabricated with 

woven composites 
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around the crack tip would be modeled discretely at the lamina scale with the tow and 

matrix or maybe even at a smaller fiber/matrix scale. The region away from the crack tip 

can be modeled at a larger microstructural scale assuming that the homogenized 

properties simulate the load transfer to the crack tip region accurately. When there are 

multiple scales in a single problem, managing the information from each scale can 

become intractable. The information could include model attributes such as the mesh, 

material properties, load, and boundary conditions or analysis results like displacements 

and stresses. The book-keeping and transfer of this information between different scales 

in a finite element analysis (FEA) takes considerable effort on the part of the analyst. 

There are many factors that govern how quickly one can perform analysis of a structural 

configuration. When using finite elements, the steps typically consist of defining a solid 

model, converting the solid model into a finite element mesh, preparing non-geometric 

data input (such as material properties and boundary conditions), using a finite element 

solver to solve the equations and provide the solution in terms of displacements, stresses, 

etc., and most importantly interpret the results. Each of these steps can be quite time 

consuming in terms of computing power and human involvement. Certain hierarchical 

aspects involved in analyzing a problem can be exploited to reduce the analysis time. 

These hierarchical techniques can be used in the development, organization, and 

management of finite element models to solve a problem faster and makes it easier for 

the analyst to manage the models and its results. In an earlier work [156], these concepts 

were demonstrated by using a hierarchical model to conduct a two-dimensional 

global/local structural analysis of the side panel of an airplane fuselage. A more detailed 

discussion of the hierarchical strategy is provided in Section 5. 

A hierarchical model of the DCB specimen is created using different models for 

different regions of the model. The region around the crack front is modeled discretely 

taking into account the tow architecture of the plain weave composite where as the other 

regions are modeled using homogenized properties. The models in the hierarchy are 

‗joined‘ together by implementing a boundary matching routine that specifies multipoint 

constraints in order to impose continuity at the interfaces. A detailed stress analysis of 



44 

 

 

 

the DCB specimen is conducted to study the effect of the complex microstructure on 

stress distribution and GI distribution. The effect of the microstructure on the stresses 

and GI as the crack advances is also investigated.  

2.6.3 Simulation of Oxidation in Textile Composites 

Composite structures are increasingly being used for high temperature applications in the 

aerospace industry. The extreme operating environments that these materials are 

subjected to can lead to chemical degradation including oxidation. It is important to 

understand the behavior of these materials under these conditions so that they can be 

designed better and provide increased performance. A focal problem that is investigated 

in this work is the effect of oxidation on the mechanical behavior of textile composites. 

This will involve a coupled damage progression analysis that accounts for the effect of 

oxidation on the engineering properties of the composite. 

A precursor to the coupled damage progression analysis is the oxidation analysis of the 

composite which is quite complex because in reality the fiber and matrix both have their 

own response to high temperature oxidation and aging. In addition, when the two are 

combined to form the composite, the anisotropic oxidative response is even more 

complex to simulate because of the fiber-matrix microstructure. Micro-cracks and 

damage formed at the interface between the fiber and matrix affect the oxidative 

response of the composite. The task of simulating oxidation of textile composites 

requires a combination of various strategies. The underlying oxidation model is adopted 

from the work by Pochiraju, Schoeppner and Tandon[7-9] who have used their model to 

simulate the oxidation of neat PMR-15 resin with reasonable accuracy compared to 

experimental observations. The oxidation behavior is represented using a set of transient 

nonlinear governing equations based on the conservation of mass equation for diffusion. 

The oxidation model will be implemented using the finite element framework that is 

developed as part of this work. The finite element formulation imposes limitations on the 

element size and the time step size which make the simulation very computation 

intensive. New strategies need to be developed in order to expedite the oxidation 

analysis. Moreover, it is not practical to discretely model the fibers in the textile 
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composite. Strategies for determining effective oxidative properties need to be 

developed and validated. The overall goal is to develop an efficient analysis strategy that 

can simulate the oxidation behavior in textile composites in a reasonable time frame.  

2.6.4 Prediction of Damage Progression in Textile Composites under Oxidation 

The overall goal of this work is to use a finite element framework to analyze damage 

progression in textile composites due to the combined effects of oxidation under high 

temperature and mechanical loads. Determining the effect of high temperature oxidation 

and aging on the mechanical behavior of composites is a very complex and challenging 

problem. There are a number of studies in the literature investigating the different time-

dependent physical, chemical and mechanical damage mechanisms [8,157-159] as well 

as experimental characterization studies[160-165]. But there is still much more work that 

needs to be done in order to reliably predict the composite behavior using mechanistic 

approaches. The planned damage progression analysis involves performing an oxidation 

analysis that simulates the diffusion of oxygen into the composite and tracks how much 

the material has oxidized. The simulation of oxidation in the textile composite is one of 

the goals of this work and is discussed in the previous section.  

The proposed analysis is a one-way coupled problem where the oxidation is assumed to 

affect the mechanical behavior of the material and not vice versa. A constitutive theory 

will be used to determine the amount of damage in terms of strength or stiffness 

degradation based on the oxidation state of the material in the composite. Figure 2.10 

shows a schematic that illustrates the coupled analysis. Both the oxidation analysis as 

well as the damage progression analysis needs to account for the multiple 

microstructural scales in the composite. The damage will not affect the oxidation 

properties in the current implementation. The progressive damage analysis will track the 

damage state in the composite and calculate the stress state in the composite with respect 

to time as the oxidation progresses.  
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The coupled analysis model will be used to investigate a focal problem. The focal 

problem chosen for this work is a Graphite/PMR-15 plain weave composite laminate 

that is loaded uniaxially to a particular strain level and then the top and bottom surfaces 

are exposed to oxygen for 200 hours. The laminate in the simulation is assumed to be at 

288 C. A parametric study will also be performed to study the effect of the number of 

plies in the laminate on its mechanical behavior. This analysis model will lay the 

groundwork for fully coupled simulations of the behavior of textile composites under 

combined mechanical loading and oxidation.  

In summary, this part of the research will focus on the following: 

Figure 2.10: Schematic illustrating coupled oxidation/thermo-mechanical 

analysis 
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1) Develop a coupled analysis model using the finite element framework that will couple 

the oxidation analysis and the damage progression analysis.  

2) Develop a constitutive model to simulate the effect of oxidation on the mechanical 

properties of the tow and matrix. 

3) Use the coupled analysis model to analyze a focal problem 

 a) Simulate mechanical behavior of a Graphite/PMR-15 plain weave laminate under 

oxidation. 

 b) Perform a parametric study on the effect of the number of plies on the mechanical 

behavior of the configuration. 

2.7 Summary 

This section gave a brief overview of the finite element method and the software 

packages and other options available to the finite element method user community. For 

the analyses described in this work, a user-developed finite element framework would 

provide the flexibility and freedom to implement the required models. Section 4 

describes the framework that was developed to achieve this goal. This section also 

described the challenges involved in the multi-scale analysis of textile composites 

including the evolution of models from simple 1-D models to full 3-D models for 

describing textile composites. A review of global/local analyses was provided as well as 

a small overview of progressive failure analyses as it pertains to this work. Finally, as 

part of the literature review, a brief review of the challenges and accomplishments 

involved in predicting the effect of environmental conditions on the behavior of 

composites was given. The section concludes by giving the scope of the research in this 

work. The overall goal of this work is to develop a multiscale/multiphysics analysis 

framework that can be used to study the mechanical behavior of textile composites under 

oxidation. 
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3. THEORY AND EQUATIONS 

3.1 Introduction 

In this work, the behavior of textile composites to several different phenomena was 

analyzed. In addition to linear elastic analysis of these materials, damage initiation and 

progression simulations were also conducted. The diffusion and oxidation behavior of 

textile composites were also analyzed. The work also includes a coupled mechanical and 

oxidation analysis that simulates the effect of oxidation on the damage progression. All 

the analyses performed had some common characteristics which made it convenient to 

express these otherwise very different analyses in a common analysis framework. This 

section will start by describing the common aspects of the different analyses and how it 

can be viewed simply as different instantiation of a common analysis procedure. This 

will include the generic types of equations as well as strategies to homogenize the 

analysis region. The theory, governing equations and specific characteristics of the 

different analyses will be described next. This will include detailed descriptions and the 

finite element formulations of the mechanical, diffusion, oxidation and the coupled 

analyses.  

3.2 Common Analysis Procedure 

One of the common aspects of all the analyses performed in this work is that they are all 

defined by boundary value problems based on partial differential equations. In this 

particular work, the finite element method is used to solve the boundary value problems. 

In this section, the common analysis procedure is described without going into the 

specific details of the equations involved. The boundary value problems have an analysis 

domain, which in this work, typically relates to a textile composite structure or a region 

within the structure. The behavior of the domain as described by the primary variables of 

the problem is governed by an equation or set of equations. In all these analyses 

performed in this work, there are a few common aspects related to the underlying 

boundary value problem. For the sake of convenience, the common aspects are described 
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using a generic name (where applicable) or its analogous version in the field of solid 

mechanics. 

The following four sets of equations are seen in each of the underlying boundary value 

problems. 

1. Conservation laws 

2. Kinematics such as strain-displacement relations or simple gradients as in the case of 

heat transfer or diffusion. 

3. Constitutive relations 

4. Boundary conditions (and initial conditions for transient problems) 

The specific sets of equations for the different analyses will be described in later on in 

this section. A very brief overview of the finite element method is given here to show the 

common steps involved in the procedure regardless the actual type of analysis. For a 

more detailed description of the finite element method, refer to [166]. To solve the 

boundary value problem using the finite element method, the first step is to obtain a 

weak form of the governing equations. Typically, the equation from the conservation 

law is multiplied by an arbitrary virtual displacement (or the analogue primary variable) 

and integrated over the domain. The resulting equation is then re-written after using 

integration by parts to obtain the weak form for the boundary value problem.  

The next step is to discretize the weak form statement. This step yields the finite element 

formulae for the problem. The solution field is assumed over an element based on nodal 

primary variables (or unknowns). This approximation of the solution field is then used in 

the weak form statement to derive a set of equations for a finite element. Derivation of 

the finite element formulation for the different analyses is described later on in this 

section. 

The analysis domain is then discretized into a finite element mesh using elements and 

nodes. The set of equations obtained from the finite element mesh along with the 

boundary conditions can then be used to solve for the unknowns. The accuracy of the 
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solution depends on a number of factors including the mesh chosen for the analysis 

domain and its refinement and this aspect of the analysis is beyond the scope of this 

work. The solution can be post-processed to obtain other information (such as the strain 

and stress for a mechanical analysis). 

3.2.1 Homogenization of Periodic Microstructures 

When analyzing configurations or materials with periodic microstructure, in many cases 

it is possible to considerably reduce the analysis effort by using homogenized properties 

for the material rather that discretely modeling the microstructure. In some cases, it is 

just not practical to discretely model the microstructure. This is especially true when 

modeling composite structures. Even with the current state of the art in computing power 

and FE modeling tools, it is not practical to discretely model the fibers and matrix in the 

composite structure. In textile composites, there are additional microstructural scales 

which make the microstructure even more complex. For example, the plain weave textile 

composite has undulating tows running across each other. It is possible to determine a 

periodic pattern to the microstructure for most of the textile architectures. While most 

structures in reality are not truly periodic, the structures or the microstructure in the 

configurations are assumed to be periodic. The deviations from periodicity seen in the 

real structure are usually not significant enough to affect the overall response of the 

structure.  

For periodic structures, homogenized properties of the structure can be obtained by 

analyzing a representative volume element (RVE). The response of the RVE is volume 

averaged to obtain the effective properties. In general, this strategy to obtain effective 

properties can be used for different types of analyses including mechanics and diffusion 

and oxidation. This would involve determining the periodic boundary conditions needed 

to be applied on the RVE. The particular details regarding the periodic boundary 

conditions for mechanics and diffusion will be discussed later in this section. In this 

section, aspects regarding homogenization that are common to the different analyses are 

discussed. 
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When the RVE chosen is a full unit cell of the periodic microstructure, then boundary 

conditions can be obtained by exploiting periodicity. In some cases, the full unit cell has 

certain symmetries that can be exploited to reduce the RVE to a fraction of the full unit 

cell. This is especially true for textile composites where the number of degrees of 

freedom for a full unit cell model can be quite large. Significant savings can be made 

especially for non-linear analyses where numerous iterations are made. The concept of 

Equivalent Coordinate Systems is useful in identifying the symmetries and constraint 

conditions [90]. Coordinate systems are equivalent if the geometry, spatial distribution 

of material, loading, and the various fields that describe the response (e.g., displacement, 

strains etc.) are identical in the two systems [90]. Some symmetries are destroyed by 

combined loading though. Periodicity and symmetry conditions were exploited to derive 

boundary conditions in this work.  

The following sections describe the theory, governing equations and the finite element 

formulation for solid mechanics, diffusion, oxidation and the coupled mechanical-

oxidation analysis. It should be noted that each section follows the same general 

procedure outline in this section. Recognizing these common features also help in 

implementing a common analysis framework that facilitates the investigation of the 

behavior of these materials. 

3.3 Solid Mechanics 

Mechanical behavior of textile composites was analyzed in this work. In addition to 

linear elastic behavior, nonlinear behavior introduced due to damage initiation and 

progression in the material was also studied. In this section, the governing equations for 

the analyses are derived as well as the related finite element formulation. 

As described in the previous section, the common analysis procedure requires the four 

sets of equations. For all the solid mechanics analyses performed in this work, the 

equations defining the conservation laws, the kinematics and the boundary conditions 

are the same. But the constitutive relations are quite different for the linear elastic 

analyses as opposed to the damage progression analysis. All the governing equations and 
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finite element formulation for the linear analysis are described first followed by that for 

the damage progression analysis.  

For the sake of clarity, index notation will be used to define the equations. A repeated 

index is a dummy index and denotes summation and a non-repeated index denotes a free 

index. A comma denotes a partial derivative with respect to the coordinate x. For 

example, let , 
ia  and 

ij
 be a scalar, vector and a second-order tensor respectively, 

then: 

 , , ,,   and 
iji

j i j ij j

j j j

a
a

x x x
 (3.1) 

 

3.3.1 Conservation Laws 

For a general 3D body with a volume V bounded by the surface S, the conservation of 

linear momentum yields the following equations of equilibrium  

 
, 0ji j if  (3.2) 

 

where  
ij

 is the stress tensor and 
if  are the body forces.  

In the absence of body moments, the conservation of angular momentum also yields the 

symmetry of the stress tensor 

 
ij ji

 (3.3) 

 

3.3.2 Kinematics (Strain-Displacement Relations) 

In this work, infinitesimal strains were used and the strain-displacement relation is given 

by 
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, ,

1

2
ij i j j iu u  (3.4) 

 

where 
iu  are the displacements and 

ij
is the second order strain tensor. 

3.3.3 Constitutive Relations 

For a linear elastic material, the stress-strain relation is given by Hooke‘s Law 

 

 
     ( )

 

t

ij ijkl ij ij

t

ij ijkl ij ij

C

or S
 (3.5) 

 

where C is the fourth order stiffness tensor and is the inverse of the fourth order 

compliance tensor S, ij  is the overall strain tensor, and t

ij
 is the thermal strain tensor. 

For convenience, the Voigt notation is used to express the components of the 2
nd

 order 

stress and strain tensors as:  

 

11 11

22 22

33 33

12 12

23 23

13 13

,i i  (3.6) 

 

Thus the stress-strain relation can be written as 

 
     ( )

 

t

i ij i i

t

i ij i i

C

or S
 (3.7) 
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where 
ijC  and 

ijS are the stiffness and compliance matrices respectively and t

i  is the 

thermal strain in contracted Voigt notation. For an orthotropic material, the matrices are 

defined by 

  

 

1312

11 11 11

2321

22 22 22

31 32

33 33 33

12

23

13

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

ij

E E E

E E E

E E E
S

G

G

G

 (3.8) 

 1

ij ijC S  (3.9) 

 

3.3.4 Boundary Conditions 

The traction boundary conditions are given by 

  on Si ij jT n  (3.10) 

 

And the displacement boundary conditions are given by 

 ˆˆ  on iu u S  (3.11) 

 

Where û  is the specified displacement on the boundary Ŝ . 
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3.3.5 Weak Form 

The equations of equilibrium are multiplied by an arbitrary virtual displacement and 

integrated over the volume to obtain the total virtual work for the body, which is set to 

zero 

  

 , 0ji j i i

V

f u dV  (3.12) 

Or 

 , 0ji j i i i

V V

u dV f u dV  (3.13) 

The first term in eq(3.13) can be written as  

 , ,,ji j i ji i ji i jj
V V V

u dV u dV u dV  (3.14) 

But, 

 
,ji i ji i jj

V S

u dV u n dS  (3.15) 

Therefore eq(3.13) can be re-written as 

 ,ji i j i i ji i j

V V S

u dV f u dV u n dS  (3.16) 

Using eq(3.10) 

 ,ji i j i i i i

V V S

u dV f u dV T u dS  (3.17) 

 

Using eq(3.3) and eq(3.4), the following relation can be obtained, 

 ,ji i j ji iju  (3.18) 
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By inserting eq(3.18) into eq(3.17), the principle of virtual work statement is obtained as  

 ji ij i i i i

V V S

dV f u dV T u dS  (3.19) 

 

That is, the statement of virtual work principle is 

 
int 0extW W W  (3.20) 

 

Where ji ij

V

dV  is the internal virtual work and  

i i i i

V S

f u dV T u dS  is the external virtual work. 

To avoid dealing with tensors and convenience in computations, eq(3.19) can be re-

written using the Voigt notation for stresses and strains,  

 ,  1..3,  1..6k k i i i i

V V S

dV f u dV T u dS i k  (3.21) 

 

3.3.6 Discretization of Weak Form 

The displacement field over an element is assumed in terms of the unknown nodal 

displacements
iu . The subscript i denotes the coordinate directions and the superscript 

1..n  indicates the node number and n is the number of nodes in the element. 

The displacement field is expressed as follows 

 
i iu N u  (3.22) 

where N  are the interpolation functions. 

The nodal displacements in the element are collected in a vector denoted by q . In this 

work, the vector takes the following form for a 3D analysis: 
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 1 1 1 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3, , , , , ,......, , , ,..........., , ,n n nq u u u u u u u u u u u u  (3.23) 

 

For the 3D analyses in this work, 20 node hexahedral brick elements were used. Each 

node has three degrees of freedom, which are displacements 
1u , 

2u  and 
3u  along three 

coordinate directions. 

The terms 
iu  and 

k
 in eq(3.21) can be written in terms of q , 

 i
i

u
u q

q
 (3.24) 

 

 k
k q

q
 (3.25) 

Substituting eq(3.24) and eq(3.25) in eq(3.21) gives 

 

 ,  1..3,  1..6, 1..3k i i
k i i

V V S

u u
q dV f q dV T q dS i k n

q q q
 (3.26) 

 

Since eq(3.26) hold for any arbitrary nonzero selection of q , 

 k i i
k i i

V V S

u u
dV f dV T dS

q q q
 (3.27) 

 

Using eq(3.7) in eq(3.27) gives 

 ( )t k i i
kl l l i i

V V S

u u
C dV f dV T dS

q q q
 (3.28) 

Eq(3.28) can be re-written as  
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 tk i i k
kl l i i kl l

V V S V

u u
C dV f dV T dS C dV

q q q q
 (3.29) 

 

Replacing 
k

 in terms of the unknown displacements q  gives  

 

 tl k i i k
kl i i ij k

V V S V

u u
C q dV f dV T dS C dV

q q q q q
 (3.30) 

 

The various terms in eq(3.30) are expressed in matrix form to give a sense of the 

repeating patterns in the operations involved, 

 

 

1 2

11 1

1 2

22 2

1 2

3 3 3

1 1 2 2

2 1 2 1 2 1

1 1 2 2

3 2 3 2

1 1 2 2

3 1 3 1

0 00 0 0 0

0 00 0 0 0

0 0 0 0 0 0

......

0 0 0

0 0 0

0 0

n

n

n

k

n n

NN N

xx x

NN N

xx x

NN N

x x x
B

N N N N N Nq

x x x x x x

N N N N N

x x x x

N N N N

x x x x

3 2

3 1

0

n n

n n

N

x x

N N

x x

 (3.31) 
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1 2

1 2

1 2

0 0 0 0 0 0

0 0 0 0 ...... 0 0

0 0 0 0 0 0

n

i
n

n

N N N
u

N N N N
q

N N N

 (3.32) 

 

Therefore, the finite element equations in eq(3.30) can be written as  

 e eK q F  (3.33) 

 

where the element stiffness matrix is  

 
Te

V

K B C B dV  (3.34) 

and the element load vector is  

 
T T Te t

k

V S V

F N f dV N T dS B C dV  (3.35) 

In the analyses performed in this work, the thermal strains are neglected and therefore 

eq(3.35) reduces to  

 
T Te

V S

F N f dV N T dS  (3.36) 

Assembling the element stiffness matrices and the load vector will yield the global set of 

equations 

 
GK q F  (3.37) 

where K  is the global stiffness matrix, 
Gq  is the global displacement vector and F  

is the global load vector.  
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3.3.7 Boundary Conditions for Periodic Microstructures 

As mentioned in the section 3.2.1, periodic configurations can be analyzed by using just 

a representative volume element (RVE) or unit cell. They can also be used to obtain 

effective properties for the periodic configuration or microstructure. The unit cell is a 

region within the microstructure which can be used to generate the entire microstructure 

by just duplication and translation of the unit cell. Once the unit cell is chosen for the 

periodic microstructure, the certain characteristics can be determined based on the fact 

that each of the unit cells will behave in the same manner. For elasticity, the periodic 

conditions state that the displacement of one unit cell differ from the other unit cells only 

by a constant offset, which depends on the volume averaged displacement gradients [90-

91]. Further the strains and stresses are identical in all of the unit cells. This can be 

expressed as 

 i
i i

u
u x d u x d

x
 (3.38) 

 
ij ijx d x  (3.39) 

 
ij ijx d x  (3.40) 

 

where d  is a vector of periodicity [90-91]. The vector of periodicity is a vector from a 

point in one unit cell to and equivalent point and an adjacent unit cell. 

As mentioned earlier, additional savings can be obtained by exploiting symmetries 

within the unit cell [90]. The periodic boundary conditions are imposed by using multi-

point constraints in the finite element analysis. 

3.3.8 Damage Initiation and Progression 

The damage progression analysis performed in this work is based on a continuum 

damage strategy. This strategy degrades the strength or stiffness of a material point in 

the finite element mesh based on the failure criteria. The damage analysis differs with 
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respect to linear elastic analysis lies in how the constitutive relations evolve as the load 

on the configuration changes. This section will describe the algorithm for the damage 

progression analysis used in this work followed by the failure criteria and the property 

degradation scheme used.  

All the analyses performed in this work assume that the configuration is loaded with an 

increasing strain load. This could also be easily changed to be loaded with a specified 

displacement without any changes to the underlying algorithm. Figure 3.1 shows the 

flowchart for the algorithm used in this work. The configuration is assumed to behave 

linearly until damage is initiated. The failure criterion can be used to determine the load 

at which damage initiates. This is done by applying an arbitrary load on the model and 

calculating the expressions in the failure criterion. Since the model is initially linear 

elastic until the first instance of damage, it is possible to calculate the initial failure load 

by scaling the load to the point where failure is just triggered. The configuration is then 

loaded with a load that is a small fraction larger than the load at which damage initiated. 

This is done to ensure that round-off errors during the numerical calculations do not 

affect the simulation. This ensures that the load is increased to a value that 
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definitely causes new damage to occur. This point in the algorithm can be considered the 

beginning of a new load step. The displacement field corresponding to this load is solved 

Apply load 

Solve for displacement field 

Check for 

failure 

Post-process and output stress, strains, damage state etc 

Determine load for next load step 

Determine load for initial 

failure 

Update material properties 

 

Load 

exceeds 

specified 

max load? 

Exit 

New Failure found 

Yes 

No new 

failure  

No 

Figure 3.1: Flowchart for damage progression analysis 
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for, by assuming that no damage has initiated yet. The displacement field is used to 

apply the failure criterion at all the Gauss quadrature (or integration) points. For all the 

locations that damage is found, the mechanical properties at that integration point are 

degraded based on the property degradation scheme. The model is solved for the new 

displacement field based on the new material properties at each integration point. The 

model is checked again for damage and this procedure is repeated till it does not find any 

new damage. The next step before moving on to the next load step is determining the 

load for the next load step. Since we have converged on to a damage state for this 

current load step, the configuration can be likened to a new linear elastic material till the 

load is increased and new damage is found. Thus, just as the load for initial failure was 

determined, the load value for the next occurrence of new damage is determined using 

the failure criteria. In this manner, the load is increased and the simulation proceeds 

through the load steps until a specified maximum strain load is reached. Throughout this 

process, the damage state is recorded and new damage is tracked as the load on the 

configuration is increased. Other post-process data such as the volume averaged stresses 

and strains are also recorded. Figure 3.2 gives a schematic of what the stress-strain 

response would look like as the simulation progresses. The following sections describe 

the failure criteria and the property degradation scheme that were used in this work. 
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3.3.8.1 Failure criteria 

There are various failure criteria such as the maximum strain criterion and the maximum 

strain criterion. Any of these criteria or a combination of these criteria can be use in the 

damage progression analysis. For the analyses in this research work, the maximum stress 

failure criteria are used. This means that failure has occurred when any of the stress 

components in the material coordinates has exceeded its corresponding strength, i.e. 

when 1ij

ijS
 where 

ij
 is the stress component in the material coordinates and 

ijS  is 

the corresponding strength for
ij

. Section 9 gives a detailed description of the failure 

criteria that are utilized to simulate the microscopic damage progression in this work. 

3.3.8.2. Property degradation scheme 

Typical property degradations models degrade the engineering properties whenever 

failure is detected. Some degradation models look at the properties (such as stress, 

strain) at the centre of the element. In this work, the failure criteria and property 

Figure 3.2: Schematic of stress-strain response 
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degradation scheme is applied on each integration point of all the elements in the model. 

The stresses and strains at any material point in the material coordinate system are 

related by Hooke‘s law given by eq(3.7). The compliance matrix for an orthotropic 

material is given by eq(3.8) 

Let ijE , ijG  and ij  be the original extensional moduli, shear moduli and Poisson‘s ratio 

respectively and ijE , ijG  and ij  be the degraded extensional moduli, shear moduli and 

Poisson‘s ratio respectively. Say, , ( 1..9)ia i are the degradation parameters, which 

specify the amount of degradation. Then a typical property degradation scheme will look 

like: 

 

 

11 11 1 22 22 2 33 33 3

12 12 4 23 23 5 13 33 6

12 12 7 23 23 8 13 33 9

/ ,   / ,   /

/ ,  / ,    /

/ ,    / ,     /

E E a E E a E E a

G G a G G a G G a

a a a

 (3.41) 

 

For example, if 
1a =8, that implies that the 

11E  modulus is decreased by a factor of 8 

from its current value if the material point fails. Note that in this general framework, the 

diagonal as well as non-diagonal entries of the compliance matrix can be affected 

independently. The specific details of property degradation scheme used in this work 

including the degradation factors used for the different materials will be given in Section 

9.  
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3.4 Diffusion 

This section describes the governing equations and the finite element formulation for 

simulating the diffusion behavior in materials. The diffusion behavior through 

heterogeneous materials was analyzed in this work. This section will follow the same 

format as the section on solid mechanics and starts by listing the equations for the 

common analysis procedure. This is followed by the derivation of the weak form and its 

discretization to obtain the finite element formulation. 

3.4.1. Conservation Laws 

The conservation of mass law for diffusion yields the following equation  

 0i

i

JC

t x
 (3.42) 

where C is the concentration of diffusing material and 
iJ is the diffusion flux.  

The differential equation described in Eq(3.42) holds for a material point. When the 

material being analyzed is homogenous, the concentration field is continuous throughout 

the domain and can be solved without any modifications. When the governing equation 

is applied to a configuration that has inhomogeneous regions with dissimilar solids, the 

concentration is generally not continuous across the interface between the different 

solids. This issue of discontinuous concentrations is addressed in Ref.[137], where a 

thermodynamic potential is introduced. The thermodynamic potential is considered to be 

what drives the flow of a diffusing material through another material. This potential is 

continuous across the material interface and the concentration is then defined as a 

function of the thermodynamic potential. When this function is assumed to be linear 

with C=0 when the potential=0, the function is of the form 

 C aC  (3.43) 

where C  is the thermodynamic potential and a is a material property. C  is assumed to 

have a range from 0 to 1, which means that the concentration is maximum when the 

potential has a value of 1. That determines a to be the saturation mass concentration of 
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the diffusing material in the solid, denoted by C . Therefore, the thermodynamic 

potential is the concentration in the material normalized by the saturation concentration 

of the solid, hereafter referred to as the normalized concentration, 

 
C

C
C

 (3.44) 

The governing equation can now be rewritten as  

 0i

i

C
C J

t x
 (3.45) 

3.4.2. Concentration Gradients 

Unlike the strain-displacement relationship in solid mechanics, the diffusion analysis 

uses simple gradients of the concentration,

 i

C

x
 

3.4.3 Constitutive Relations 

The relationship between flux and the concentration gradient is given by Fick‘s first law, 

 i ij

j

C
J D

x
 (3.46) 

where 
ijD is the 2

nd
 order diffusivity tensor. The Latin subscripts i and j denote the 

coordinate direction and range from 1 to 3 for a three dimensional formulation.  

When eq(3.46) is re-written in terms of the normalized concentration,  

 i ij

j

C
J C D

x
 (3.47) 

3.4.4 Boundary Conditions 

The flux boundary conditions are given by 

 ˆ  on Si iq n J  (3.48) 
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And the normalized concentration boundary conditions are given by  

 ˆ on C C S  (3.49) 

where C is the specified displacement on the boundary Ŝ . 

3.4.5 Weak Form 

The equation of conservation mass is multiplied by a variation of the normalized 

concentration and integrated over the volume to obtain the weighted integral form, 

 0i

iV

C
C C J dV

t x
 (3.50) 

 

where C  is an arbitrary variation of the normalized concentration. 

 

Integration by parts gives the weak from, 

 

 0i i i

iV S

C C
CC J dV Cn J dS

t x
 (3.51) 

  

 

Using eq(3.47) and eq(3.48) in eq(3.51) gives the basis for the finite element 

formulation, 

 

 ˆ
ij

i jV S

C C C
CC C D dV CqdS

t x x
 (3.52) 
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3.4.6 Discretization of Weak Form 

Over a typical finite element, the normalized concentration is approximated by  

 ( , ) ( ) ( )C x t N x C t  (3.53) 

where N  are the interpolation functions and C  are the nodal normalized 

concentrations. The subscripts with Greek letters range from 1 to the number of 

interpolation functions.  

After discretizing the weak form using eq(3.53) and C N C , the following set of 

equations are obtained, 

 

 ˆ
ij

i jV S

C NN
N C N C D C dV N qdS

t x x
 (3.54) 

 

In matrix form this can be written as  

 M q K q F  (3.55) 

 

where  

 
V

M N C N dV  (3.56) 

 ij

i jV

NN
K C D dV

x x
 (3.57) 

 ˆ
S

F N qdS  (3.58) 

   
dC

q C and q
dt

 (3.59) 
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Note that eq(3.54) contains a time derivative term. In order to numerically solve this set 

of equations, an approximation is used for the time derivative term whereby the solution 

at a particular instant in time is determined based on the solution history. The following 

describes this ‗time-marching‘ procedure used to numerically solve eq(3.54). For the 

sake of convenience, the following generally uses matrix notation and dispenses with the 

indices. Let the subscript s denote the solution at time s and the subscript s+1 denote the 

solution at time s t . Using eq(3.55), the following equations can be written for two 

consecutive time steps, t=ts and t=ts+1, 

 0s s s sMq K q F  (3.60) 

 
1 1 1 1 0s s s sMq K q F  (3.61) 

 

Using the alpha family of approximations[166] gives 

 
1(1 ) /s sq q q t  (3.62) 

 

Multiplying eq(3.62) by tM  gives 

 
1(1 ) s stMq tMq M q  (3.63) 

 

Rearranging the terms in eq(3.63) gives an expression for 
1stMq
 

 
1 (1 )s stMq M q tMq  (3.64) 

 

Multiplying eq(3.61) throughout by t  gives 

 
1 1 1 1 0s s s stMq t K q F  (3.65) 
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Substituting eq(3.64) into eq(3.65) gives, 

 
1 1 1(1 ) 0s s s sM q tMq t K q F  (3.66) 

And substituting for 
sMq  from eq(3.60) in eq(3.66) gives the governing equations 

 
1 1 1(1 ) 0s s s s s sM q t K q F t K q F  (3.67) 

 

Using  

 1a t  (3.68) 

 2 (1 )a t  (3.69) 

in eq(3.67) gives 

 
1 1 12 1 0s s s s s sM q a K q F a K q F  (3.70) 

 

Assuming that the diffusivity does not change with respect to time, we have 

 
1s sK K  (3.71) 

 

Using eq(3.71), eq(3.70) can be re-written as 

 

 
12 1 0s s s s s s sM q a K q F a K q K q F  (3.72) 

 

Rearranging to bring all the terms involving the unknowns to the left side gives 

 
11 ( 1 2) 2 1s s s s sM a K q a a K q a F a F  (3.73) 
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Eq(3.73) is solved to obtain the solution for the s+1 time step. Therefore, the finite 

element formulation for this diffusion model can be described by the following 

equations 

 M q F  (3.74) 

where 

 1 sM M a K  (3.75) 

 
1( 1 2) 2 1s s s sF a a K q a F a F  (3.76) 

3.4.7 Boundary Conditions for Periodic Microstructures 

As mentioned in the section 3.2.1, periodic configurations can be analyzed by using just 

a representative volume element (RVE) or unit cell. Similar to how solid mechanics 

models can be homogenized (in section 3.3.6), RVE models of periodic microstructures 

can also be used to obtain effective diffusivities. One noticeable difference with the solid 

mechanics models described in the earlier sections is that they deal with static mechanics 

whereas the diffusion model described in the previous section simulates a transient 

behavior. In order to calculate the effective diffusivities, the concentration distribution in 

the model at steady-state conditions is required. This means that the transient part of 

eq(3.52) is omitted making it a static model. 

As noted in the case of solid mechanics (in section 3.3.6), once the unit cell is chosen for 

the periodic microstructure, certain characteristics can be determined based on the fact 

that each of the unit cells will behave in the same manner. For diffusion at steady-state, 

the periodic conditions state that the concentration gradient and flux distributions are 

identical in all of the unit cells. This can be expressed as 

 
C

C x d C x d
x

 (3.77) 

 
i i

C C
x d x

x x
 (3.78) 
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i iq x d q x  (3.79) 

where d  is a vector of periodicity [90-91]. The vector of periodicity is a vector from a 

point in one unit cell to and equivalent point and an adjacent unit cell. 

The configurations analyzed in this work are in general heterogeneous and as mentioned 

in the previous section, continuity of the normalized concentrations is imposed in order 

to resolve the issue of discontinuous concentrations at the interface of two different base 

materials. Therefore all the formulations and models are defined based on normalized 

concentrations,C . The actual concentrations can of course always be calculated using 

eq(3.44). In some ways this is different from the typical homogenization procedure in 

solid mechanics. The primary variable in solid mechanics is displacements whereas in 

diffusion, the typical primary variable is concentration, which is generally discontinuous 

across different base materials. This, as mentioned earlier necessitates the use of 

normalized concentrations, which is continuous across different base materials. To 

explain the subtle differences when dealing with normalized concentrations, the 

procedure to determine the effective diffusivity properties of a composite with circular 

fibers in a periodic square array is described. This procedure is also used to perform 

some of the analyses in this work. 

The approach described herein is consistent with Whitcomb and Tang‘s work[137] but 

some notations have been changed to make it clearer. Consider a discrete unit cell of a 

periodic square array as shown in Figure 3.3 and assume that the diffusing mass is 

macroscopically flowing in the horizontal direction and therefore there is no flux across 

the top and bottom edges. Although the fiber is considered to be impermeable in this 

work, this formulation is developed assuming that both the matrix and fiber are 

permeable and have saturation concentrations of ,m mD C  and ,f fD C  respectively. The 

matrix is assumed to be isotropic and the fibers are assumed to be transversely isotropic. 

Since the constituents are isotropic in the transverse plane and the fibers are arranged in 

a square array, the resulting microstructure will have the same effective diffusivity in the 

x and y directions, denoted by 
effD . Therefore, in order to obtain the effective 
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diffusivity for the microstructure, only one type of configuration needs to be analyzed 

with an imposed concentration gradient in the x direction. Suppose the concentrations on 

the left and right are C
left

 and C
right

, respectively. The respective normalized 

concentrations are obtained by dividing the concentrations by
mC . The finite element 

model of the configuration can be analyzed by imposing the corresponding normalized 

concentrations on the left and right edges. The results will show a continuous variation 

of the normalized concentration across the domain as expected but the actual 

concentrations will have a discontinuity at the interface between the fiber and the matrix, 

if they have different saturation concentrations. It is convenient to define an effective 

property, d for the unit cell in terms of volume averaged values of the flux in the x 

direction, 
xq  and the normalized concentration gradient, 

C

x
.   
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Figure 3.3: Boundary conditions for the discrete unit cell and the equivalent 

homogeneous unit cell 
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 x

C
q d

x
 (3.80) 

where the angle brackets indicate the volume average of the bracketed term.  

The solution can be post-processed to give the volume averaged flux over the unit cell. 

For this simple geometry and boundary conditions, the volume-averaged normalized 

concentration gradient is simply right leftC C L , although for more complicated models, 

the value can be obtained by post-processing the solution. 

An equivalent homogenized material will have a saturation concentration value which is 

the volume-averaged value of the constituent saturation concentrations.  

 
h m m f fC V C V C  (3.81) 

In the corresponding homogenized unit cell, the normalized concentrations at the right 

and left will be the same as that in the discrete unit cell as indicated in Figure 3.3. The 

actual concentrations at the right and left edge in the homogenized unit cell are obtained 

by using eq(3.44). Therefore the corresponding concentration on the left and right will 

be 

left

h

m

C
C

C
and 

right

h

m

C
C

C
respectively as shown in Figure 3.3. The equivalent 

concentration gradient can be written as  

 

right left right left

h h

m m m m

h

C C C C
C C

C C C CC
C

x L L
 (3.82) 

 

This can be rewritten in terms of the volume averaged normalized concentration 

gradients, 
C

x
  

 h

C C
C

x x
 (3.83) 
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Combining eq(3.80) and eq(3.83) gives, 

 x

h

d C
q

C x
 (3.84) 

which gives the expression for effective diffusivity as  

 
eff

h

d
D

C
 (3.85) 

When the fiber is assumed to be impermeable, i.e. 0, 0f fD C , the expression for 

the effective diffusivity simplifies to  

 
eff

m m

d
D

V C
 (3.86) 

 

Under such an assumption, it is observed[137] that the ratio 
m m

d

D C
is constant for a 

fixed fiber fraction, regardless of the value of the matrix diffusivity. Let this ratio be 

defined by the following, 

 
m m

d
D

D C
 (3.87) 

A master curve can be obtained showing the variation of D  with fiber fraction. This 

master curve shown in Figure 3.4 is valid as long as the diffusion follows Fick‘s law. 

The same is true for hexagonal arrays of impermeable fibers and Ref.[137] gives a 

simple curve fit for both master curves. This makes it convenient to obtain the effective 

diffusivity of a composite with impermeable circular fibers for various fiber fractions 

using the following, 

 
m

eff

m

DD
D

V
 (3.88) 
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where D  is obtained using the curve in Figure 3.4, which also describes the formula for 

the curve fit.   
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Figure 3.4: Master curve for impermeable circular fibers in square array showing 

variation of D  with fiber fraction Vf (refer to eq(3.87) for definition of D ) 
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3.5 Oxidation 

This section describes the governing equations and the finite element formulation for 

simulating the oxidation behavior in pure resin and in composites. The oxidation model 

can be considered an extension of the diffusion model as they are both based on the 

same conservation law. Some of the issues such as using normalized concentration as the 

primary variable are common to this analysis as well. The common aspects between the 

two analyses will be highlighted while describing the special circumstances that make 

this analysis different. This section will follow the same format as the sections on solid 

mechanics and diffusion and starts by listing the equations for the common analysis 

procedure. This is followed by the derivation of the weak form and its discretization to 

obtain the finite element formulation. 

3.5.1. Conservation Laws 

The oxidation process in a polymer is a combination of the diffusion of oxygen and its 

consumption by reaction, which also results in the creation of by-products such as 

carbon dioxide. For the purposes of modeling the oxidation of polymers, the process is 

assumed to be dominated by the diffusion of oxygen into the polymer. The oxidation 

model that is used in this research effort is primarily based on the work by Pochiraju et 

al[7-9] in which they used the conservation of mass law for diffusion with a term to 

model the rate of consumption of the diffusing oxygen during chemical reaction. The 

governing equation can be expressed as  

 0i

i

JC
R

t x
 (3.89) 

where C is the concentration of oxygen, 
iJ is the diffusion flux and R is the reaction 

rate term. 

This section is also used to completely define the reaction rate term and the related 

quantities.  The reaction rate, R , in general, would depend on the concentration of 

oxygen, temperature and the availability of un-oxidized polymer. As the oxygen reacts 

with the polymer, the amount of polymer available for oxidation depletes and the oxygen 
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will continue to diffuse to the interior of the polymer to react. Depending on the type of 

polymer, the process also leads to a reduction in the molecular weight of the material 

due to chemical bond breakage and the release of the oxidation by-products[9]. The 

amount of polymer available for oxidation is defined by an oxidation state variable 

called . The value of the oxidation state variable at which the polymer is considered to 

be completely oxidized with no more polymer available for reaction is defined as
ox

. 

The oxidation state can be physically defined to be the ratio of the current weight of the 

material over its original un-oxidized weight. Therefore, the oxidation state  has a 

range from 
ox

 to 1 where an oxidation state value of 1 denotes the un-oxidized polymer. 

An oxidation state value between 
ox

 and 1 indicates that the material is partly oxidized 

and can still undergo more oxidation. To illustrate this, three zones were defined by 

Pochiraju et al[7-9] as shown in Figure 3.5. Consider that the left end of the idealized 

material shown in the figure is exposed to oxygen and the oxidation propagates to the 

right. Zone III is the region of the material that is un-oxidized with an oxidation state of 

1 and as the oxidation continues, this zone gets smaller while Zone I which denotes the 

fully oxidized material with an oxidation state of 
ox

 increases. The zone in 

between where the oxidation state is between ox  and 1 is called the active zone and is 

denoted by Zone II. The expression for calculating the oxidation state variable is 

described later in this section. 

When 
ox

 at a material point, 0R  and the process simplifies to just diffusion at that 

point. It is assumed that the effects of ,T  and C  on R are separable such that the 

function R can be expressed as 

ox

Zone I 

1ox

Zone II 

1

Zone III 

Exposed 

Surface 

Direction of oxidation 

propagation 

Figure 3.5: Oxidation zones and corresponding values of the oxidation state variable 
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 0( ) ( )
1

ox

ox

R f C R T  (3.90) 

0( )R T  is the ―saturated reaction rate‖ (as described in Ref[9]), which describes the 

dependence of the reaction rate on the temperature under saturation conditions. The 

polymer is considered saturated when it has the maximum amount of oxygen possible 

for the given temperature and pressure. The leading factor and ( )f C  in the expression 

both have a range from 0 to 1. The leading factor models the dependence of the reaction 

rate on the availability of polymer that can be oxidized such that R is maximum when  

has a value of 1 and linearly decreases to zero when 
ox

. The function ( )f C  models 

the dependence of the reaction rate on the oxygen concentration. For modeling oxidation 

in polyimide resin systems like PMR-15 as implemented by Pochiraju, the function ( )f C

is taken from the work by Colin et al[167-168]. 

 
2

( ) 1
1 2 1

C C
f C

C C
 (3.91) 

The value of  is determined by using weight loss data obtained from specimens aged at 

two different oxygen partial pressures i.e. at two different saturation conditions, typically 

in pure oxygen and air. The details of this procedure are given in Ref.[9]. The following 

ratio is obtained from the experimental work by Abdeljaoued[163],  

 
air

pure oxygen

weight loss
0.7

weight loss
 (3.92) 

Assuming that the weight loss is proportional to the reaction rates, the ratio of the weight 

loss from the two specimens would be the same as the ratio of the reaction rates and 

would give the following equation, 

 

33

0

3 3

0

(288 ) ( 0.79 )( 0.79 ,288 )
0.7

( 3.74 ,288 ) (288 ) ( 3.74 )

R C f C mol mR C mol m C

R C mol m C R C f C mol m
 (3.93) 
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This can be solved to obtain three roots for  of which only one is non-zero and has a 

value of 0.919. 

For modeling neat PMR-15 resin, 
ox

 has a value of 0.187, which is taken from 

Pochiraju‘s work [7-9]. This value is determined from experimental weight loss data and 

the method is described in Ref. [9]. The oxidation state variable can be related to the 

weight loss of the material as follows 

 
d dW

dt dt
 (3.94) 

where W is the weight of the material. 

Assuming that the rate of change of weight is proportional to the reaction rate gives, 

 
dW

R
dt

 (3.95) 

Combining Eq.(8) and Eq.(9) gives the following, 

 
d

R
dt

 (3.96) 

where  is a proportionality parameter that is, in general, time and temperature 

dependent.  

Using Eq.(10), the following expression for calculating  can be obtained 

 
0

max , 1 ( ) ( )

t

ox R d  (3.97) 

An issue that arises when analyzing oxidation in heterogeneous materials is that 

although the oxidation state value for any material has an upper limit of 1, its lower limit 

for different materials is not necessarily the same. This makes it inconvenient to make 

comparisons as to how much oxidation has taken place. For example, the same oxidation 

state value for two different materials need not imply that they are equally close to being 

fully oxidized or that they have the same amount of material left to oxidize. In order to 
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make this comparison easier, a new variable is introduced called the oxidation level 

denoted by . The oxidation level variable linearly scales the oxidation state variable 

so that all materials have an oxidation level that ranges from 0 to 1. This relation is given 

by, 

 
1

ox

ox

 (3.98) 

 

For the same reasons described in section 3.4.1, the differential equation described in 

eq(3.89) is re-written in terms of normalized concentrations, 

 0i

i

C
C J R

t x
 (3.99) 

 

3.5.2. Concentration gradients 

Just as in the diffusion analysis, the oxidation analysis uses simple gradients of the 

concentration,

 i

C

x
 

3.5.3 Constitutive Relations 

The relationship between flux and the concentration gradient is given by Fick‘s first law, 

 i ij

j

C
J D

x
 (3.100) 

where ijD is the 2
nd

 order diffusivity tensor. The Latin subscripts i and j denote the 

coordinate direction and range from 1 to 3 for a three dimensional formulation. The 

constitutive relationship is different from that in the diffusion analysis described in 

section 3.4.3 and that is because the diffusivities of the un-oxidized and oxidized 

polymer, in general, will be different. The diffusivity of the polymer in the active 
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oxidizing zone (where 1ox
) is assumed to vary linearly between the un-oxidized 

polymer diffusivity and the fully oxidized polymer diffusivity and is given the following 

expression 

 
1

1 1

ox
ij ij ijun ox

ox ox

D D D  (3.101) 

Again, eq(3.100) is re-written in terms of the normalized concentration 

 i ij

j

C
J C D

x
 (3.102) 

3.5.4 Boundary Conditions 

The boundary conditions are defined in the same manner as the diffusion analysis. The 

flux boundary conditions are given by 

 ˆ  on Si iq n J  (3.103) 

 

And the normalized concentration boundary conditions are given by  

 ˆ on C C S  (3.104) 

where C is the specified normalized concentration on the boundary Ŝ . 

3.5.5 Weak Form 

The same procedure is applied as described in section 3.4.5 for the derivation of weak 

form for diffusion analysis. The difference is in the inclusion of the reaction rate term in 

the case of the oxidation analysis. The equation of conservation mass is multiplied by a 

variation of the normalized concentration and integrated over the volume to obtain the 

weighted integral form, 

 0i

iV

C
C C J R dV

t x
 (3.105) 
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where C  is an arbitrary variation of the normalized concentration. 

Integration by parts gives the weak from, 

 

 0i i i

iV S

C C
CC J R C dV Cn J dS

t x
 (3.106) 

Using eq(3.102) and eq(3.103) in eq(3.106) gives the basis for the finite element 

formulation, 

 

 ˆ
ij

i jV S

C C C
CC C D R C dV CqdS

t x x
 (3.107) 

3.5.6 Discretization of Weak Form 

Again, the same basic procedure is applied as described in section 3.4.6 for the 

derivation of finite element formulation. On the other hand, there are some details that 

are quite different from the diffusion analysis. This is because of the reaction rate term 

and the non-linear expression of the diffusivity in the weak form.  

Over a typical finite element, the normalized concentration is approximated by  

 

 ( , ) ( ) ( )C x t N x C t  (3.108) 

 

where N  are the interpolation functions and C  are the nodal normalized 

concentrations. The subscripts with Greek letters range from 1 to the number of 

interpolation functions.  

After discretizing the weak form using eq(3.108) and C N C , the following set of 

equations are obtained, 
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 ˆ
ij

i jV S

C NN
N C N C D C N R dV N qdS

t x x
 (3.109) 

In matrix form this can be written as  

 *M q K q R F  (3.110) 

where  

 
V

M N C N dV  (3.111) 

 ij

i jV

NN
K C D dV

x x
 (3.112) 

 
*

V

R N R dV  (3.113) 

 ˆ
S

F N qdS  (3.114) 

   
dC

q C and q
dt

 (3.115) 

 

Just as in the case of the diffusion analysis, an approximation is used for the time 

derivative term in eq(3.109) whereby the solution at a particular instant in time is 

determined based on the solution history. The same ‗time-marching‘ procedure from 

section 3.4.6 is used to numerically solve eq(3.109). Using eq(3.110), the following 

equations can be written for two consecutive time steps, t=ts and t=ts+1, 

 

 * 0s s s s sMq K q R F  (3.116) 
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 *

1 1 1 1 1 0s s s s sMq K q R F  (3.117) 

 

Using the alpha family of approximations[166] gives 

 

 
1(1 ) /s sq q q t  (3.118) 

 

Multiplying eq(3.118) by tM  gives 

 
1(1 ) s stMq tMq M q  (3.119) 

 

Rearranging the terms in eq(3.119) gives an expression for 
1stMq  

 
1 (1 )s stMq M q tMq  (3.120) 

 

Multiplying eq(3.117) throughout by t  gives 

 
*

1 1 1 1 1 0s s s s stMq t K q R F  (3.121) 

 

Substituting eq(3.120) into eq(3.121) gives, 

 
*

1 1 1 1(1 ) 0s s s s sM q tMq t K q R F  (3.122) 

 

And substituting for 
sMq  from eq(3.116) in eq(3.122) gives the governing equations 

 
* *

1 1 1 1(1 ) 0s s s s s s s sM q t K q R F t K q R F  (3.123) 
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Using eq(3.68) and eq(3.69) in eq(3.123) gives 

 
* *

1 1 1 12 1 0s s s s s s s sM q a K q R F a K q R F  (3.124) 

 

A Taylor Series expansion is used on the terms in eq(3.124) that are dependent on the 

unknown solution, (
1sq ), which are 

1 1s sK q  and *

1sR . Indices will be used in the next 

few steps in order to make the operations involved clear. Ignoring the higher order terms 

in the Taylor Series expansion gives the following expression, 

  

 

*

* *

1 1 1

s s s

s s s ss s

K q R
K q R K q R q q

q q

 (3.125) 

The partial derivatives in the expression above are very complex and therefore the aim is 

to obtain an approximation for the expression. It is assumed that for sufficiently small 

time steps, the error is minimal and certain approximations can be made. Similar 

approximations have been made in Pochiraju‘s oxidation model [7-9]. One approach to 

obtain an approximate expression for 
*

s
R

q
 is by assuming that only ( )f C  from 

eq(3.90) depends on C . This would make it simpler to take a derivative of *R  with 

respect to the nodal variables, q . This approach will be evaluated in future work but for 

this work, it is assumed that if the time step is sufficiently small that *

1s
R  in 

eq(3.125) can be approximated by *

s
R  (or mathematically, 

*

0s
R

q
). The remaining 

partial derivative in eq(3.125) can be expressed as 
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s s s s

s s

K q q K
K q

q q q
 (3.126) 

 

The term s
K

q
is not convenient to compute because K  depends on , which is a 

complex function of the solution (see eq(3.97)). Again, it is assumed that for sufficiently 

small time steps, Eq.(39) can be approximated by assuming 0s
K

q
. Thus eq(3.126) 

becomes 

 

 
s s

s

K q
K

q
 (3.127) 

 

Therefore eq(3.125)  becomes 

 

 * *

1 1 1s s s s ss s
K q R K q R K q  (3.128) 

 

Substituting eq(3.128) in eq(3.124) gives 

 

 
* *

12 1 ( ) 0s s s s s s s s sM q a K q R F a K q R K q F  (3.129) 

 

Rearranging to bring all the terms involving the unknowns to the left side gives 

 
*

11 ( 1 2) 2 1s s s s s sM a K q a a K q R a F a F  (3.130) 
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Eq(3.130) is solved to obtain the solution for the s+1 time step. For sufficiently small 

time steps, it is seen that this approximation is reasonable because a parametric study 

with different time step sizes showed the model appearing to converge to the same 

solution. Therefore, the finite element formulation for this oxidation model can be 

described by the following equations  

 M q F  (3.131) 

where 

 1 sM M a K  (3.132) 

 
*

1( 1 2) 2 1s s s s sF a a K q R a F a F  (3.133) 

To arrive at this formulation, a number of approximations were made to simplify the 

nonlinearity. Typically, when solving a nonlinear equation numerically, a ‗residual‘ is 

driven to zero by iterating. In this implementation, there is no iterating at each time step 

in order to drive a ‗residual‘ to zero. This is because it was found that the even without 

iterating, the results were found to be reasonably close to that from Pochiraju‘s model.  

An important part of the oxidation analysis is post-processing the results of the 

simulation to provide a measure of the oxidation behavior. The oxidation behavior is 

visualized in terms of the growth of the oxidation layer. The oxidation layer initiates 

from the surfaces exposed to the oxygen and grows into the interior as the material 

becomes oxidized. Although ideally the material is said to have started oxidizing when 

the oxidation level drops below 1, the oxidation layer thickness is defined by the point at 

which the oxidation level, , dips below 0.99, indicating that 1% of the oxidizable 

material has oxidized. Therefore, an element is assumed to have started oxidizing if the 

oxidation level at each of the material integration points falls below 0.99. If the 

oxidation state is above 0.99, the element is assumed to be un-oxidized and if it is below 

0.01 it is assumed to be fully oxidized. A post-processing routine was written that 
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calculated the growth of the oxidation layer in the 1D model. This involved 

extrapolating the oxidation state values from the integration points to the nodal points, 

averaging the extrapolated values at a node if the node shared elements of the same 

material and solving for the location in the model where the oxidation level value met 

the specified upper and lower limits. This routine was also generalized to work for 2-D 

and 3-D models. Note that the prescribed upper and lower limits of 0.99 and 0.01 

respectively are valid only for a completely oxidizable material such as neat resin. When 

dealing with homogenized material such as a tow, the entire material does not oxidize 

because the fibers are assumed to be inert and therefore the prescribed limits will be 

different. In such a case, the upper limit that defines the oxidation layer thickness is the 

oxidation level when 1% of the resin in a homogenized tow material point is oxidized. 

This upper limit is given by 

 1 0.01upper mV  (3.134) 

The model described in this section was implemented and the oxidation layer growth 

was simulated for neat PMR-15 resin using a 1D model. The results were compared with 

that from Pochiraju‘s simulation. For a 200-hr simulation, it was found that both models 

agree closely in predicting the Zone I thickness. The difference is negligible in the 

beginning of the simulation and grows to a maximum difference at 200 hours when the 

current model predicts a thickness 107 microns compared to 104 microns predicted by 

Pochiraju‘s model. Both models predict the Zone II thickness to be almost constant 

throughout the 200 hr simulation. Pochiraju‘s model gives a Zone II thickness of 19 

microns while the current model under predicts by 21% with a value of 15 microns. The 

cause of this difference could be the implementation of the two models. Pochiraju‘s 1D 

model[9] uses a modified implementation of ode15s and Pdepe solvers in MATLAB to 

solve the governing equation, eq(3.89). The current model on the other hand uses a 

standard one-dimensional finite element implementation based on eq(3.131). For the 

purposes of investigating the effect of oxidation on the mechanical response of the 

composites using this material system, it is assumed that the thickness of Zone I alone or 

the overall thickness (Zone I + II) that is of primary concern. Thus, if the overall 
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thickness is considered, the difference between the two models is around 21% in the 

beginning and drops to about 2% at 200 hours, which is assumed to be negligible for the 

purposes of this particular research effort.  

The various material input properties required for specifying the equations in the 

oxidation model are: 

1. The diffusivities for the oxidized and un-oxidized material, ,ox unoxD D  

2. Saturated reaction rate,
0R   

3. Dependence of reaction rate on concentration, ( )f C  and the constant  

4. Value of oxidation state when fully oxidized, 
ox

 

5. Weight-reaction proportionality parameter,  

 

3.5.7 Boundary Conditions for Periodic Microstructures and Homogenization 

The oxidation response in polymers and PMCs is a nonlinear transient behavior. Just as 

in the case of diffusion, in order to simulate oxidation for periodic microstructures, the 

transient part of the behavior needs to be removed effectively looking at the 

microstructure at steady-state conditions. Under oxidation behavior, steady-state 

conditions imply that all the material in the microstructure is oxidized. But when all the 

material is oxidized, the behavior reverts to typical steady-state diffusion behavior. 

Therefore, it is not intuitive to obtain the effective oxidation material properties in this 

manner. Instead, other strategies are explored for simulating oxidation in periodic 

microstructures. 

In order to model oxidation in a textile composite, it is necessary to obtain effective 

properties for the tows because it is impractical or even impossible to discretely model 

the entire microstructure. This section will describe approaches for obtaining effective 

oxidation material properties for tows.  
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When trying to replace a heterogeneous material with a homogenized material in model, 

it is reasonable to assume that some or possibly all of these properties might change. It 

can also be expected that there could be more than one way that these properties can 

change to demonstrate the same overall behavior as a discretely modeled heterogeneous 

microstructure. There are at least two approaches for achieving this goal. One is to use a 

multi-scale analysis that keeps track of the ‗local‘ information such as oxidation state 

and actual average concentration in the constituent matrix in the homogenized material. 

Given this information, it would be possible to calculate the reaction rate R at a 

particular material point in the tow‘s constituent matrix using eq(3.90). Next, the 

effective reaction rate for the larger scale homogenized tow is determined by a simple 

rule of mixtures and plugged into the governing equations. When the equations for a 

time step are solved, the calculated concentrations are transformed back to the local 

scale using a rule of mixtures in order to keep track of the oxidation state of the 

constituent matrix. Thus, a continuous transfer of information between the two scales 

needs to be maintained throughout the simulation. For this work, another approach is 

used where effective oxidation properties for the homogenized material are determined 

thereby eliminating the need to go back and forth between the two scales. A few 

assumptions are made in order to determine the effective material properties, ,ox unoxD D , 

0R , ( )f C , ,
ox

 and . These assumptions and the procedure to determine the properties 

are described in the remainder of this section.  

In this work, the fibers in the tows are idealized to be in a square array and the fibers are 

assumed to be impermeable and do not oxidize. While there are other factors that can 

influence the oxidation behavior in composites such as the properties of the fiber/matrix 

interface or interphase, they are not taken into account for the homogenization model 

described in this work. Cracks in the matrix or along the fiber/matrix interface can also 

affect the oxidation behavior by allowing rapid ingress. Depending on the type of 

damage that is observed in these composites, it might be possible to account for their 

effects in the homogenized model. For example, if the damage is diffuse, the 

homogenized properties can be degraded appropriately or if the damage is confined to 
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certain areas, cracks can be introduced in the homogenized model. Since this model does 

not consider factors such as the effect of damage, fiber/matrix interface or cracks in the 

composites, the only oxidation material property that is different when considering axial 

and transverse growth is the diffusivity. The axial diffusivity is largely governed by a 

rule of mixtures and exhibits simple behavior. Therefore, particular attention is not paid 

to the axial oxidation behavior. Moreover, in realistic applications, the surfaces exposed 

to oxidizing environments are mostly parallel to the fibers. The laminate configurations 

that are analyzed in this work are chosen based on these considerations and therefore, the 

oxidation behavior is depends on the transverse oxidation material properties.  

3.5.7.1 Diffusivities for the oxidized and un-oxidized material ,ox unoxD D  

The diffusivities on its own only define the mass flow of oxygen in the material. It will 

be assumed that the oxidation state continues to have a linear effect on the effective 

diffusivities of the homogenized material. The effective diffusivity can be determined by 

just modeling the diffusion without the need for modeling the oxidation behavior. The 

procedure for determining effective diffusivity as described in section 3.4.7 is used to 

obtain the effective diffusivities for the oxidized and un-oxidized material. 

3.5.7.2 Saturated reaction rate,
0R  

Since the matrix is the only material that is oxidizing, the effective saturated reaction 

rate would be expected to be related to the amount of matrix in the unit cell. It is 

assumed that the relationship follows a rule of mixtures (with the fiber having a reaction 

rate of zero). That is 

 

 
0 0

matrix

mR V R  (3.135) 
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3.5.7.3 Dependence of concentration on reaction rate on  ( )f C  and  

The term ( )f C  models the dependence of the reaction rate on the oxygen concentration. 

Colin‘s expression[167-168] given in Eq.(4), which is used as ( )f C  to model the neat 

PMR-15 polymer will be used for the homogenized tow as well. It is assumed that the 

same expression models the behavior of the homogenized tow. As mentioned in the 

previous section, to determine the value of  the ratio of the weight loss of the material 

at two different saturation conditions is needed. Due to lack of access to experimental 

data on oxidation weight loss for unidirectional laminates, it is assumed that the ratio of 

weight loss is the same as that of the neat PMR-15 polymer. Therefore,  has the same 

value as that of the neat resin, which is 0.919. 

3.5.7.4 Oxidation state when fully oxidized, 
ox

 

This is a property that is calculated by determining the weight loss of the material when 

oxidized. For example, a value of 0.2 implies that the fully oxidized material weighs 

about 20% of its original weight. Due to lack of access to weight loss data for 

unidirectional laminates, an estimate for 
ox

 is obtained based on the assumption that the 

fiber does not lose weight during oxidation. Therefore, the effective 
ox

 would be given 

by  

 1 (1 )eff m

ox ox mV  (3.136) 

3.5.7.5 Weight-reaction proportionality parameter,  

In general, the proportionality parameter  is time and temperature dependent. The 

value of  for the neat resin is determined by examining the oxidation layer growth. On 

comparison of the simulation results with the experimental results, Pochiraju [9] found 

that the oxidation behavior was better simulated when the proportionality parameter was 

linearly decreased over time from 0.01 to 0.0033 for the first 40 hours of oxidation and 

then remains constant at 0.0033. The value of for the homogenized tow is assumed to 

follow the same as that of the neat PMR-15 resin.  
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3.6. Coupled Mechanical-Oxidation Analysis 

A coupled mechanical-oxidation analysis model was developed to predict damage 

initiation and progression in textile composites under an oxidizing environment. 

Although the analyses performed in this work assumes only one-way coupling, the 

underlying analysis model forces no such restriction and can account for full coupling 

between the mechanical and oxidation analysis. This section describes the coupled 

analysis model used in this work followed by the constitutive relations used to the 

couple the two analyses. 

One component of the coupled analysis is the oxidation analysis that simulates the 

diffusion of oxygen into the composite and tracks how much the material has oxidized. 

The second component is the damage progression analysis that can track the damage in 

the material and degrade the properties of the damaged regions. The theory and finite 

element formulation behind both the oxidation analysis and the damage progression 

analysis is provided in the previous sections and they are adapted to use in this coupled 

analysis model. The coupling between the two analyses is enabled by constitutive 

relations. The full coupling requires a constitutive relation relating the oxidation state to 

the mechanical properties and another constitutive relation relating the mechanical state 

to the oxidation material properties. In this work, all the configurations that were 

analyzed assumed only a one-way coupling with the oxidation state affecting the 

mechanical properties of the model. The remainder of this section describes the 

algorithm for this one-way coupled model. The implementation and the details involved 

with performing an actual coupled analysis on a textile composite configuration will be 

explained in a later section. 

Since the analysis assumes only one-way coupling and the mechanical state does not 

affect the oxidation material properties, the oxidation analysis can be performed 

independent of the damage progression analysis. Therefore, the output from the 

oxidation simulation can be used by the model as and when needed. The oxidation 

analysis output contains the oxidation state distribution in the configuration at different 

times in the simulated oxidation time period. The damage progression analysis described 
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Figure 3.6: Algorithm for one-way coupled oxidation-damage progression analysis 
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in section 3.3.8 is a quasi-static analysis where the loading is ramped up but is 

essentially time-independent. On the other hand, all the coupled models analyzed in this 

work assume a constant mechanical loading while the configuration is undergoing 

oxidation. Therefore, the damage progression analysis cycles through each of the time 

data-points in the simulated oxidation time period and performs the following steps – 

Load the oxidation state for the particular time data-point, modify the mechanical 

properties and iterate to converge upon the final damage state for the corresponding time 

data-point. This is illustrated in the flowchart for the algorithm shown in Figure 3.6. 

3.6.1 Constitutive Relations  

Experimental results show that oxidation causes damage in the oxidized material which 

can ultimately affect the mechanical properties of the composite [9]. Oxidation is found 

to affect the mechanical properties of fibers [9]. But it is not trivial to characterize the 

damage and its effects on the mechanical properties of the composites. The underlying 

mechanisms and the properties of the fiber/matrix interface and interphase have not been 

fully understood yet. Shrinkage of the matrix due to oxidation is theorized to be among 

the factors causing delaminations on the fiber matrix interface [153]. These cracks can 

further affect the oxidation behavior by allowing oxygen to penetrate the material faster. 

But the effects of the mechanical or physical damage on the oxidation behavior are not 

being considered in the simulations used in this work. This section will describe the type 

of constitutive relations used in the simulations that were performed in this work.  

This constitutive relation or degradation scheme is similar in some respect to the 

property degradation scheme based on mechanical damage. They are similar in the sense 

that the engineering moduli are modified to account for the effect of the oxidation. The 

constitutive relation quantifies the amount of damage in terms of strength and stiffness 

degradation based on the oxidation level of the material in the composite (see eq(3.98)).  

Let ijE , ijG  and ij  be the original extensional moduli, shear moduli and Poisson‘s ratio 

respectively and ijE , ijG  and ij  be the degraded extensional moduli, shear moduli and 

Poisson‘s ratio respectively.   ( 1..9)ib i  are the percentages by which the nine 
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engineering properties change when the material is completely oxidized. Remember that 

the oxidation level,  ranges from 1, which means un-oxidized to 0, which means fully 

oxidized. The amount of degradation is assumed to vary linearly with the oxidation 

level. Therefore, a typical property degradation scheme will look like: 

 

11 1 11 22 2 22 33 3 33

12 4 12 23 5 23 13 6 33

12 7 12 23 8 23 13 9 33

(1 (1 ) ) ,   (1 (1 ) ) ,   (1 (1 ) )

(1 (1 ) ) ,  (1 (1 ) ) ,    (1 (1 ) )

(1 (1 ) ) ,    (1 (1 ) ) ,     (1 (1 ) )

E b E E b E E b E

G b G G b G G b G

b b b

 (3.137) 

 

For example, if 
11E  is reduced by 20% when the material is fully oxidized, then 

1 0.2b . If the 
11E  property needs to be degraded for a material that has an oxidation 

level of 0.3, the new modulus, according to eq(3.137) would be given by 

 
11 1 11 11 11(1 (1 ) ) (1 0.7 0.2) 0.86E b E E E  (3.138) 

Note that in this general framework, the diagonal as well as non-diagonal entries of the 

compliance matrix can be affected independently.  

Similarly, the strength can also be degraded based on the amount of oxidation the 

material has undergone. In this work, the strengths under compression are assumed to be 

the same as the strengths under tension. Let , ( 1..6)iS i  denote the original strengths of 

the material in the different stress components (in Voigt notation) and , ( 1..6)iS i  be 

the degraded strengths. Let the strength degradation parameters, , ( 1..6)id i  be the 

corresponding factors by which the strengths would be degraded if the material was fully 

oxidized. Again, a linear dependence on the oxidation level,  is assumed. Therefore, 

the strength degradation scheme will look like the following 

 (1 (1 ) )i i iS d S  (3.139) 

The specific details of property degradation scheme used in this work including the 

degradation factors used for the different materials will be given in Section 9. 
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The two degradation schemes involved with the coupled analysis, that is, one based on 

the stress state/mechanical damage, and the other based on the oxidation, need to be 

aggregated to provide the overall mechanical properties of the material based on the 

oxidation level and the mechanical damage. At each time step, this overall set of 

properties will be used to perform the stress analysis in the damage progression model, 

and then check for new damage based on the failure criteria. In this work, a procedure 

has been implemented to combine the two degradation schemes. This procedure in the 

coupled analysis algorithm would correspond to the box in Figure 3.6 that is labeled 

‗Modify mechanical properties based on current oxidation state and damage state‘. Let 

us consider the procedure for a material point in the configuration. The procedure takes 

the initial mechanical properties for the material and the current oxidation and damage 

state as input and returns the modified mechanical properties. The procedure is as 

follows. The initial mechanical properties are modified following the degradation 

scheme based on the oxidation level. At the end of this first step, the compliance matrix 

has been modified according to eq.(3.137), and the strengths have been modified 

according to eq.(3.139)  In the second step the new properties are then modified again 

based on the degradation scheme based on mechanical damage. Therefore, at the end of 

the second and final step, the properties obtained from the first step are then modified 

according to eq.(3.41). In reality, the order of the steps do not matter and the overall 

elastic moduli can be summarized as follows 

31 2
11 11 22 22 33 33

1 2 3

5 64
12 12 23 23 13 33

4 5 6

7
12 12 2

7

(1 (1 ) )(1 (1 ) ) (1 (1 ) )
,   ,   

(1 (1 ) ) (1 (1 ) )(1 (1 ) )
,  ,    

(1 (1 ) )
,    

bb b
E E E E E E

a a a

b bb
G G G G G G

a a a

b

a

8 9
3 23 13 33

8 9

(1 (1 ) ) (1 (1 ) )
,     

b b

a a

 (3.140) 

 

The overall strengths would be simply those given by eq.(3.139) because the degradation 

scheme based on mechanical damage does not modify the strengths of the material. 
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3.7 Summary 

The common aspects of some of the different analyses were discussed in this section and 

a common analysis procedure was determined that can be used to help design an analysis 

framework. The procedure is then used to derive the theory and equations involved in 

the different analysis models used in this work. The finite element formulations for the 

models were derived and the algorithms for the analysis were discussed. It also discusses 

the strategies involved in analyzing periodic configurations and obtaining effective 

properties for periodic microstructures. The models described in this section are 

implemented in a finite element analysis framework that is described in the next section. 
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4. DESIGN OF FINITE ELEMENT FRAMEWORK 

4.1 Introduction 

Based on the requirements of the analysis models used in this work and the fact that the 

models are not convenient to implement in commercial codes, it was determined that a 

finite element framework would be designed to serve the needs of this work.  This 

section describes the design of the framework including its salient features. The major 

components of the framework will be discussed along with a brief description of what 

would be required to implement a new analysis method or tool. Please note that basic 

knowledge of object oriented programming and C++ is recommended for reading certain 

sections of this section.  

4.2 Why Object-Oriented Design? 

The goal was to design a robust framework that can be enhanced and extended in the 

years to come by future users and lives beyond the term of this research work. The 

framework was developed keeping the following features in mind: 

 Flexible: It should provide a collection of basic building blocks and functions which 

can be used to build different tools in the framework. The re-use of these primitive 

classes and functions leaves less work for the developer to do. 

 Accessible: Having open/free access to the source code goes a long way in being 

able to understand how a program works. This would help other students and 

researchers understand how the different implemented methods work. Understanding 

how the software works also makes it easier to tailor tools to work for specific needs. 

Another aspect of having full access to the source code is that it makes it a lot easier 

to interface with external utilities. 

 Extensible: With the framework essentially being a research code, users should be 

conveniently able to extend the framework to be able to perform their specific types 

of analyses. By being able to build on what is already present rather than starting 
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from scratch, the users can easily implement their own analysis methods or functions 

or post-processing tools as needed. 

Keeping these requirements in mind, the object-oriented programming paradigm 

appeared to be the most favorable option. As described in section 2.1.1, object-oriented 

programming became increasingly popular through the 90‘s and eventually, a number of 

finite element packages were developed using object-oriented programming languages 

such as C++.  Older programs written in FORTRAN, which had been the language of 

choice for scientific and numerical tasks, tend to be monolithic and difficult to maintain 

and extend even though some of them have very good functionality. On the other hand, 

the object-oriented programming paradigm provides superior features in terms of ease in 

designing, maintaining, modifying, and extending the software. By following an object 

oriented philosophy, the developers also run a smaller risk of unknowingly propagating 

errors to other parts of the code while enhancing its functionality. 

The object oriented design philosophy allows for the requirements listed above using 

features such as encapsulation, data abstraction, inheritance and polymorphism. These 

features are described here very briefly. Encapsulation is the ability to store data and 

function in a single unit, known as a class in object oriented terminology. In comparison 

to the terminology used in regular procedural programming, the class is similar to structs 

or basic data types such as int or char. The instantiation of a particular data type is called 

a variable in regular procedural programming. Similarly, the instantiation of a class is 

known as an object. Abstraction allows representing essential features without including 

the background details or explanations. Classes use the concept of abstraction and are 

defined as a list of abstract attributes. Inheritance allows a class to have the same 

behavior as another class and extend or tailor that behavior to provide special action for 

specific needs. The new class that inherits behavior from an existing class is called the 

derived class or child class and the existing class is called the parent class. Simply stated, 

polymorphism is the ability to use a general interface to manipulate things of various 

specialized types. These features make it possible to build software using software 

components that correspond to real-world high level entities. There are several books 
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that describe the object-oriented programming design and C++ in particular [169]. Jun 

Lu et al [20] details the advantages of using an object oriented design for finite element 

programs. Following a good object oriented design philosophy makes the code a lot 

simpler, flexible and allows for extensibility, reusability and reliability. 

4.3 Framework Design 

The finite element framework, which is called ‗BETA‘, is a successor to the existing in-

house finite element code, "ALPHA". The new framework has several enhancements 

over the existing in-house code in order to meet the needs of this work. Rather than 

building the new framework from scratch, a number of the classes and subroutines from 

the existing code was adapted and enhanced to build BETA. Simply stated, the 

framework is a collection of libraries or modules that can be used to build a program to 

perform a step in the finite element analysis. The libraries consisted of different classes, 

data-structures and subroutines. This section will give an outline of the main modules 

that make up the BETA framework. There are four modules or libraries that are required 

to perform a basic structural finite element analysis – Core_library, Math_library, 

FEM_library and Utility_library. The following sub-sections will give a description of 

each module. 

4.3.1 Core_library 

The core_library contains the parent classes that define entities in a finite element 

analysis such as the model, mesh, elements, nodes, materials, loads and constraints. Each 

of these parent classes only contain the common data and functionality that is required 

by all types of FEM analyses, but not enough information required for specific analyses 

such as a 3D structural stress analysis. In order to achieve specific functionality such as 

that for a stress analysis, appropriate classes would need to be derived or inherited from 

the parent class using the inheritance feature of the C++ language. The new derived 

class would contain the required functionality and data for performing a stress analysis. 

The classes present in the core_library, many of which are self-explanatory, are: 

 Node : class that defines a node in a finite element mesh 
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 BasicElement : parent class that defines an element in a finite element mesh 

 BasicMesh : parent class that defines a finite element mesh. This class contains a 

list of nodes and elements. 

 Material : parent class that defines a material in the finite element model 

 Load : parent class that defines a load applied on the finite element model 

 Constraint : parent class that defines a constraint applied on the finite element 

model 

 BasicModel : parent class that defines a finite element model. Just like the 

different components that make up a finite element model, this class contains 

pointers to a finite element mesh and a list of materials, loads and constraints, as 

illustrated in Figure 4.1. 

 ElementWorkspace : parent class for a data structure used as a temporary 

workspace for storing information when performing calculations such as the 

element stiffness matrix. 

 Factory : parent class that contains the functionality to create objects of specific 

elements, materials and models. 
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4.3.2 Math_library 

The math_library contains the classes that define the set of equations associated with the 

finite element model such as the global stiffness matrix and the global load vector. This 

library also contains the finite element solvers and interfaces to external solvers libraries. 

The main classes in this library are: 

 Equations : this is the main class that handles the equations related to the finite 

element model. This class contains pointers to the sparse matrix, the load vectors 

and other vectors related to the global set of equations. This class also contains 

the functionality to assemble the set of equations for the finite element model as 

well as other routines such as those to calculate the residual. The BasicModel 

class contains an Equations class data member. This Equations data member acts 

as the important link between the finite element model and the global set of 

Figure 4.1: Illustration of different members that are part of the BasicModel class 
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equations it represents. The Equations class also acts as the interface between the 

model and the finite element solver. 

 LargeMatrix : parent class that define the large sparse matrices such as the global 

stiffness matrix of the finite element model. The LargeMatrix class itself does 

not provide any storage ability or functionality to solve the set of equations 

defined by the sparse matrix and a load vector. The classes that are derived from 

the LargeMatrix class implement the actual storage and solving capability. The 

derived classes can also serve as interfaces to external solvers such as the 

PARDISO solver [36] in Intel‘s Math Kernel Library (MKL)[170]. One such 

class is described below. 

 MKLPardisoSymmMatrix : This class is derived from the LargeMatrix class to 

implement the PARDISO solver for symmetric sparse matrices available through 

Intel‘s Math Kernel Library (MKL). The PARIDISO [36] solver is a parallel 

direct solver that uses the OpenMP parallel programming paradigm. 

 AdditionalEquation : This class defines additional constraint equations that are 

added to the finite element model. This class is instrumental in the handling of 

multi-point constraints (MPCs) in the finite element model. 

 Matrix : This class is used to for storage of matrices that are much smaller 

compared to the global stiffness matrix, such as the compliance and stiffness 

matrix, or the element stiffness matrix. This class also has the functionality to 

perform matrix operations such as multiplication. 

Other solvers that have been implemented in the BETA framework include a serial as 

well and  parallel (for 2 processors only) iterative conjugate gradient solver, a direct 

symmetric matrix solver from the Watson Sparse Matrix Package [171] and the 

symmetric matrix solver from PETSc [45-46]. 

4.3.3 FEM_library 

The FEM_library is primarily a collection of specialized classes derived from the classes 

in the Core_library module. It contains the specialized classes required to perform a 
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structural stress analysis. For example, the ElasticityModel class which is a part of the 

FEM_library, is derived from the BasicModel class. The ElasticityModel class contains 

additional capabilities compared to the BasicModel class such as the functions to post-

process data such as stresses and strains. Similarly, the ElasticityElement3D class is 

derived from the IsoElement class, which in turn is derived from the BasicElement class. 

The IsoElement class brings new functionality in terms of the ability to handle numerical 

integration and isoparametric formulations. Because of this, the IsoElement class serves 

as the ideal starting point for the development of many different element classes such as 

those for elasticity as well as diffusion and heat transfer. Figure 4.2 shows the 

inheritance tree indicating some of the element classes that have been derived from the 

BasicElement class. The ElasticityElement3D class adds the capability to calculate the 

element stiffness matrix and the associated finite element expressions that are specific to 

modeling elasticity problems. The ElasticityModel class also has the functionality to 

read and implement multi-point constraints, which are used in this work to analyze 

models with periodic or symmetry boundary conditions. There are also classes in the 

FEM_library that allow the element classes to use numerical integration to evaluate the 

finite element expressions. The ElasticMaterial class, which is derived from the 

Material class, contains the data members to store the engineering properties of the 

materials in the finite element model. It also has the functionality to calculate 
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the material compliance and stiffness matrix as well as calculate the stress state given a 

strain state. The FEM_library also contains the FactoryFEM class that is derived from 

the Factory class in the Core_library. The FactoryFEM class contains the functions that 

can create objects of specific elements such as the ElasticityElement3D or 

ElasticityElement2D. 

Overall, the classes in the FEM_library along with the classes in the Core_library form 

the basic building blocks for a finite element analysis package.  

4.3.4 Utility_library 

The Utility_library consists of support functions and classes that are perform tasks that 

are not essentially associated with the finite element analysis. They do not depend on the 

classes in any of the other modules in the BETA framework and can be used 

independently. On the other hand, all the other modules in the framework are dependent 

on the Utility_library. They provide higher level functions for performing certain tasks 

thereby making the coding simpler and more readable. For example, consider a task that 

requires searching for a file from a list of possible directories and opening the file when 

Figure 4.2: Inheritance tree for the BasicElement class 
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it is found. This task would typically take a few lines of code. On the other hand, this 

could be converted into a subroutine. Therefore, rather than inserting this block of code 

into the source code each time this step needs to be performed, the utility function could 

be used which would take a lot less number of lines.  

One of the more important classes in the Utility_library is the FileManager class. This 

class handles all functionality related to opening and closing of files for the analysis. 

This includes input files and output files. It keeps track of the working directories and 

other directories in the search path. This way, the developer can focus on the details of 

the finite element analysis rather than spend valuable time on low-level steps such as 

file-operations.  

Another important utility class is the Stopwatch class and its accompanying subroutines. 

These functions handle the timing requirements for the BETA framework. Knowing how 

much time is spent in different steps of the analysis is helpful in making enhancements 

to make the code more efficient.   

4.3.5 Using the Framework 

The ability to re-use the classes and routines available in the framework libraries makes 

it very convenient for the user to implement their own finite element analysis tool. The 

framework has been developed so that it can be used in both the Windows as well as the 

UNIX/LINUX platform. The differences between the two platforms are accounted for by 

developing functions that check for the platform using compiler directives that 

conditionally compile parts of the code based on the platform. In this manner, the 

functions and classes in the BETA framework can be used safely without worrying about 

portability issues. Take for example the utility function to search for and open a file in 

one of the directories in the BETA path. This involves changing the working directories 

to each one in the BETA environment variable until it finds the file. In the Windows 

platform, the C++ system function to change directories is ‗_chdir‘ whereas in the 

UNIX/LINUX platform, the corresponding function is ‗chdir‘. The utility function for 

changing directories in the BETA framework has been implemented such that the line in 
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the source code with the appropriate function is compiled when the application is built in 

any particular platform. Therefore, calling the same function will work in both platforms 

and only one copy of the source code needs to be maintained rather than a separate copy 

for each platform. The same technique is used to make the source compatible between 

32-bit and 64-bit machines. 

Although the BETA framework is portable across different platforms, the source code 

development is typically done in the Windows platform because of its user-friendly 

environment and ease with debugging. When the application is required on another 

platform, the source code is simply copied over and compiled using the appropriate 

compiler. The Microsoft Visual Studio environment is used to maintain and develop 

applications using the BETA framework. A Visual Studio solution contains all the 

settings for the compiler and linker and other such information to generate the 

executable. The BETA framework contains a few standard solutions that can be used to 

build finite element applications such as those for 1D rod or beam FEA or 3D elasticity. 

When the user needs to build a finite element application that implements a new 

specialized method that is not already present in the BETA framework, a new solution 

needs to be created that contains the necessary source files that implement the new 

method. The new source files could include new subroutines or classes derived from the 

existing classes in the BETA framework. The new solution could also require a new 

Factory class if a new Material, Element or Model class was developed.  

For example, the analyses performed in this work required implementation of a damage 

progression analysis method. The theory behind the damage progression analysis is 

described in Section 3. Note that most of the underlying finite element formulations for 

the damage analysis are the same as the elasticity analysis. Therefore, the new classes do 

not need to be developed from scratch. Instead the new classes can inherit from the 

classes that are used for the elasticity analysis and only the new functionality needs to be 

implemented in the derived classes. Some of the new classes that were implemented are 

the DamageModel, DamageElement and the DamageMaterial classes. The 

DamageModel class was inherited from the ElasticityModel class. One of the functions 
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that were implemented in the new DamageModel class was the executive that 

implements the algorithm illustrated in Figure 3.1. The DamageElement class was 

inherited from the ElasticityElement3D class and only the functionality that had to do 

with accounting for damage in the element had to be specifically implemented. 

Similarly, the DamageMaterial class was derived from the ElasticMaterial class and it 

added certain functionality such as degrading the material properties based on the 

amount of damage. This type of software design avoided 

repeating huge blocks of code and allowed code re-use whenever possible. This makes it 

easier to manage because a change made in a block of code in a parent class would 

propagate to all the derived classes. Figure 4.3 gives an illustration of the components 

required to build a specialized FEA program using the BETA framework. 

The BETA framework has been used to implement the B-Spline finite element method, 

which can potentially give a more accurate result for a smaller number of degrees of 

Figure 4.3: Using BETA to implement a specialized method 
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freedom than a standard analysis. Owens [172] has evaluated the performance of B-

Spline FEA using 2D and 3D elasticity configurations. In particular, the oxidation 

model, the damage progression model and the coupled analysis model which was 

described in Section 3 and used for studying the behavior of textile composites in this 

work was developed using the BETA analysis framework. 

4.4 Other Applications 

The framework is also used to build tools other than the main finite element analysis 

program. The framework is used to build tools for visualizing the results from the finite 

element analysis. One such tool is the ‗Plotter‘, which was built using the classes and the 

functions from the BETA framework. Plotter is used to visualize finite element meshes 

as well as results such as displacement and stress contours. Plotter was also implemented 

in a manner similar to how the specialized analysis methods were implemented, where 

new classes were derived from the existing classes in the framework.  

Plotter uses OpenGL and Microsoft Foundation Classes to implement a Windows 

version of the software with a GUI. This make it convenient for the user to visualize the 

results interactively and change different settings such as contour limits instantaneously. 

Plotter also has a command-line version for cases when it is more convenient to generate 

a collection of figures automatically. The command-line version of Plotter generates 

figures as files in the GIF or PostScript format. These files can then be modified further 

using any of the various advanced image editing software available.  

One of the advantages of a visualization tool based on the BETA framework over 

commercial applications is that it can have direct access to the data structures in the 

framework or any specialized method developed by a user using the framework. This 

gives the user full control over how to visualize or perform operations on the data from a 

specialized analysis method.   

The framework can also be used to develop non-standard post-processing techniques. 

Post-processing utilities can be developed that are specialized for a particular type of 

analysis. One such post-processing utility was developed to study the behavior of textile 
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composites. Full 3-D finite element models of textile composites attempt to model the 

geometry as truly as possible. Since these models make a lot fewer assumptions than the 

much simpler models described in Section 2.2.1, it also inadvertently gives less basis for 

developing an intuitive understanding of the textile composite behavior. The full 3-D 

models give a tremendous amount of raw numerical information but it is harder to 

quickly extract the important details regarding the behavior. For example, the stress 

contours for the 3D stress state in a 5 harness satin weave shown in Figure. 2.2 give a lot 

of detailed information, but no framework for interpretation. The post-processing utility 

that was developed digests the massive amount of output data and converts it into 

comprehensible modes of behavior. The full 3D finite element results are post-processed 

to obtain stress resultants, such as the axial force or moment in the tow. The post-

processing subroutine automatically detects and traverses the tow under consideration 

while tracking the stress resultants across the cross-section. Figure 2.6 illustrates typical 

results for an elastic analysis. It can be seen that both Fx and Fz have highest values 

where the tow undulation is maximum. Since these stress resultants are obtained from 

refined 3D models, the results are much more reliable than one could obtain by using a 

simplified model. It should be noted that these post processing techniques are not meant 

to eliminate the details. These techniques were used by Goyal [5] in various ways to 

investigate textile behavior.  

4.5 Summary 

The BETA framework was developed to serve the needs of the analysis requirements of 

this work. An object oriented design using the C++ language was chosen due to the 

numerous advantages it gives over the older procedural programming design. An 

analysis environment that was developed in-house also gives full control over the 

analysis as compared to commercial finite element packages. A brief description of the 

framework was provided in this section. Some of the specific implementations that were 

developed using the framework were also discussed. 
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5. MULTISCALE ANALYSIS OF WOVEN COMPOSITE DCB 

5.1 Introduction 

The finite element framework that was developed as part of this work is used to analyze 

a Double Cantilever Beam (DCB) specimen fabricated with woven composite. Such a 

configuration contains many microstructural scales such as fiber/matrix, tow architecture 

and laminate as illustrated in Figure 2.9. The problem becomes impractical to solve if 

the entire configuration is to be modeled at the same length scale as its complex 

microstructure. A literature review showed no previous work on FE simulation of a DCB 

test that considered complex microstructure. Shindo et al [173] used a micromechanics 

model to obtain effective properties for a plain weave composite and then used these 

properties to conduct an FE analysis of the DCB specimen. Numerical simulation of 

such a test has a number of challenges because of the complexity of the microstructure. 

In many cases homogenizing the microstructure of a laminate could give an incorrect 

prediction for the response of the material. For example, the flexural stiffness for both a 

[90n/0n]s and a [0n/90n]s lay-up would be the same if the material was homogenized. 

In order to perform the multiscale analysis, a hierarchical strategy is implemented where 

the natural hierarchical character of model descriptions and simulation results are 

exploited to expedite analysis of problems. Hierarchical techniques were used in the 

development, organization, and management of finite element models, and for the post-

processing of the results from the analyses. The next section gives a brief overview of 

the hierarchical strategy. This is followed by a description of the configuration and the 

modeling. Finally, the results of the multiscale stress analysis on the DCB specimen are 

presented. 

5.2 Hierarchical Analysis Strategy 

When conducting a detailed stress analysis of the DCB specimen, the region around the 

crack tip would be modeled discretely at the lamina scale with the tow and matrix or 

maybe even at a smaller fiber/matrix scale. The region away from the crack tip can be 

modeled at a larger microstructural scale assuming that the homogenized properties 
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simulate the load transfer to the crack tip region accurately. When there are multiple 

scales in a single problem, managing the information from each scale can become 

intractable. The information could include model attributes such as the mesh, material 

properties, load and boundary conditions or analysis results like displacements and 

stresses. The book-keeping and transfer of this information between different scales in a 

finite element analysis takes up considerable effort on the part of the analyst. There are 

many factors that govern how quickly one can perform analysis of a structural 

configuration. When using finite elements, the steps typically consist of defining a solid 

model, converting the solid model into a finite element mesh, preparing the non-

geometric data input (such as material properties and boundary conditions), using a finite 

element solver to solve the equations and provide the solution in terms of displacements, 

stresses, etc., and most importantly interpret the results. Each of these steps can be quite 

time consuming in terms of computing power and human involvement. Certain 

hierarchical aspects involved in analyzing a problem can be exploited to reduce the 

analysis time. This strategy, which was introduced in an earlier work [156] can be 

applied to solve a problem faster and makes it easier for the analyst to manage the 

models and its results. The strategy was developed and implemented in collaboration 

with Tang and Whitcomb. In the previous work [156], these concepts were demonstrated 

by using the hierarchical environment to conduct a two dimensional global/local 

structural analysis of the side panel of an airplane fuselage. The system was also used to 

conduct a micro mechanical analysis on unidirectional composites that have a non-

uniform spatial distribution of the fibers. 

An analysis environment using this strategy to store and handle information at different 

scales can be used to better manage, manipulate and control a multi-scale analysis. 

Commercial software such as DesignSpace by AnSys [114], SIMBA (Simulation 

Manager and Builder for Analysts), developed by Sandia Labs [116] and NextGRADE 

by NASA [174] builds FE models from various components but they do not address data 

flow between different models in a multiscale analysis. One of the most important 

characteristics of this strategy is inheritance. Inheritance is a term that is closely related 
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to hierarchies. Here, the concept of inheritance is used to create a hierarchy of analysis 

models. In this work, the term ―hierarchical strategy‖ is used to convey the idea that 

analysis models can be organized and managed hierarchically in order to rapidly set up a 

new analysis model.  New models are derived from an existing model whose 

information is either inherited or overridden by the new model. That is, the analytical 

tools are integrated such that a new model can be derived from an existing model 

without starting from scratch. For example, an initial step in analyzing a complex 

structure would be to use a coarse model. Depending on the results of the first analysis, 

the analyst might decide to refine a certain part of the coarse model to get a more 

detailed stress distribution. The analyst could also decide during the design process to 

make changes to certain parts of the structure. In these cases, all the analyst has to do is 

specify the ‗difference‘ or the ‗changes‘ that need to be made to the existing model. 

These ‗changes‘ are known as the Components in the terminology used in this 

hierarchical strategy whereas the new model that includes properties from the existing 

model as well as the component is known simply as the model. The existing model is 

known as the base model while the new model is called the derived or child model. The 

inheritance applies to different aspects of the model from geometric mesh information or 

material properties to load or boundary conditions to even solutions of analysis models. 

All the analyst needs to do is specify the ‗component‘ and the system takes care of 

building the new model. Therefore, changes in geometry, material properties, 

simplifying assumptions, loads, etc. can be propagated through a collection of models 

via inheritance. The hierarchical strategy shares much with classical global/local 

methods, but supplies much more ―infrastructure‖ to expedite analysis, especially 

parametric analysis.  

One of the most important aspects of this philosophy is the sharing of data by models in 

the hierarchy. This feature makes it ideal for cases like global/local analysis where 

results from a global analysis are used to provide the boundary conditions for the local 

model. Efficient data flow mechanisms are required and recursive functions were 

developed that traverse the hierarchical tree to implement this flow. This kind of 
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recursive strategy can be used to access data belonging to any model in the hierarchy. 

The recursive strategy is designed such that it can be used to perform tasks on particular 

models or a collection of models in the hierarchy. This mechanism gives a model in the 

hierarchy the ability to ‗interrogate‘ another model for information. Many of the features 

of the hierarchical strategy such as inheritance are built on the backbone provided by this 

mechanism. 

A robust as well as efficient mechanism was designed for implementing inheritance of 

geometry. This involved automatic mesh generation for a model based on the 

information from its base model and the component. The mesh generation follows a z-

order component mesh association. This means that a component lower in the hierarchy 

replaces any part of a component higher up in the hierarchy that occupies the same 

region in 3D space. This concept can be illustrated by a simple two dimensional case 

shown in Figure 5.1.  Three components are used to build hierarchical models and the 

corresponding model at each level is shown on the right. Thus, a component can replace 

elements over a number of components in its model path and not just its immediate 

parent model alone. The procedure to generate the mesh for a hierarchical model is more 

difficult when dealing with complicated geometries. At present, the system can handle 

inheritance of rectangular parallelepiped regions.  
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When creating an analysis model, the different components in the hierarchical model 

needs to be ‗glued‘ in order for it to behave as a single structure. In this system, the 

components are ‗digitally glued‘ by imposing multi-point constraints between nodes on 

the boundary interface in order to impose continuity of displacement. Again, Figure 5.1 

shows that nodes in one component could be slaved to nodes in a component a few 

levels down the model path. This process is automated to achieve considerable savings 

in the analyst‘s effort. The strategy used in analyzing this problem utilizes a robust 

boundary matching and sorting algorithm. The boundaries of the components are 

detected and matched with the corresponding component. The nodal positions of the 

more refined component boundary are then expressed in terms of the local coordinates of 

the boundary elements on the matching component. With this information, the nodes of 

A 

B 

C 

Model A 

Model B 

Model C 

Glue between Component C and Model B 

Glue between Component B and Model A 

Figure 5.1: Inheritance of geometry and ‗joining‘ components 
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the more refined component (which is usually the smaller microstructural scale) are then 

slaved to the master nodes on the other component by generating multi-point constraints 

that impose continuity at the interface between the different components of the model. 

Joining of dissimilar meshes at the interface is a common feature offered in most modern 

FEA. Alternate methods of imposing continuity such as using Interface elements [111] 

can be implemented into the system. A detailed discussion of the implementation of the 

inheritance is given in reference [156]. Several strategies are integrated into the analysis 

environment: classical homogenization of periodic media, spatially varying 

homogenization, macro elements [101-102], in situ homogenization [175] and various 

global/local methods for local refinement of models. A key characteristic of the 

environment is the ability to use various techniques in the same simulation and to easily 

change the techniques in the simulation as deemed necessary. 

5.3 Configuration 

The DCB specimen is assumed to be made of a laminate with 10 plies and plain weave 

tow architecture is assumed for the woven laminate. Figure 5.2 gives the dimensions of 

the DCB specimen that was analyzed. Aluminum tabs were added to the top and bottom 

surfaces to represent the hinges on the DCB. Owing to symmetry, only a quarter of the 

specimen needs to be modeled. Figure 5.2 also shows the finite element model for the 

DCB laminate and the boundary conditions that were imposed. Three-dimensional 20-

node isoparametric elements were used for all the models. The crack length (a0) was 

taken to be 75mm. A load of 1N was evenly distributed along the edge of the tab. 

The laminate is assumed to be fabricated using S2 Glass and SC-15 Epoxy. The 

orthotropic properties of the tows were calculated using an FE micromechanics model 

assuming a 78.5% fiber volume fraction. The tow fraction of the weave was 63.6% 

making the overall fiber fraction of the laminate 50%. Figure 5.3 shows the finite 

element model and dimensions for a plain weave full unit cell. The waviness ratio for the 

laminate was assumed to be 0.15. Effective properties for the weave were used to model 

the regions away from the crack tip. The effective properties of a plain weave laminate 

(with symmetric stacking) were calculated using an FE micromechanics model that used 
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only 1/32 of the unit cell by employing symmetry conditions. Table 5.1 gives the 

material properties that were used for the finite element models. 

 

L=150 mm 

a0=75 mm 

b= 24 mm 

12 mm 

w= 0.0 

Tx=Ty=0 

x 

y 

z 

P=1 N 

1.5 mm 

a0=75 mm 

150 mm Free Edge 

Interior  

2H=3mm 

Figure 5.2: Finite element model of DCB laminate 
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Table 5.1: Material Properties used in DCB finite element model 

Material Mechanical Properties 

S2 Glass/Epoxy Tow 

E11=76.42 GPa , E22=E33=20.18 GPa, 

υ12= υ13=0.26 , υ23=0.33, 

G12=G13=7.4 GPa, G23=4.03 GPa 

Neat Epoxy (SC-15) E= 2.82 GPa, υ=0.395 

Effective Weave 

Properties 

E11=E22=30.1 GPa, E33=10.6 GPa, 

υ12=0.114, υ13=υ23=0.418, 

G12=4.5 GPa, G13=G23=2.6 GPa 

 

5.4 Analysis of DCB Specimen 

Although the finite element analysis will not give the theoretical value of the stress at the 

crack tip, which is infinity, it is useful in identifying the trends in the stress variation due 

to its complex microstructure and loading. In addition to the stress distribution, the effect 

of the microstructure on the strain energy release rate (GI) is also investigated. The 

method used to calculate the GI is described in the next section. The other modes, GII 

and GIII, do not exist since the geometry, material and loading are symmetric about the 

delamination plane. 

2mm 

2mm 

0.3mm 

Figure 5.3: Finite element model of plain weave unit cell 
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The microstructure of a woven composite is at a larger scale than that of a tape laminate 

where fibers are aligned unidirectionally in a lamina. In general, the size of the 

microstructural scale can be defined by the size of the smallest periodic unit cell that can 

be used to homogenize the microstructure. In woven composites, there are at least two 

scales: a fiber tow scale and a larger woven layer scale where the tows form a weave. 

Due to the complex structure of the weave, the crack tip region should not be modeled 

using homogenized properties. At the very least, the tow architecture has to be 

considered. One could also go to a lower scale and consider the fiber/matrix scale in the 

tows. A thorough simulation of a DCB test would have to consider the effect of free 

edges and free surfaces of the laminate specimen. One difference with respect to a tape 

laminate specimen is that in a woven composite specimen, the complex tow architecture 

would affect the stresses at the crack front. The undulation of the tows as seen in the unit 

cell of a plain weave (Figure 5.3) would be expected to cause a varying stress 

distribution along the crack front, whereas in the case of a tape laminate there is no such 

undulation of tows.  

Based on these considerations, a hierarchy of models was generated for conducting the 

multi-scale stress analysis of the DCB specimen. Figure 5.4 illustrates the hierarchy of 

different meshes that were used in the analysis. At each level, the component mesh was 

provided and the system generated the new mesh by inheriting the rest of the 

information from its parent mesh. This saved a considerable amount of time involved in 

model generation. A coarse mesh (Mesh 1) made of rectangular parallelepiped (or brick) 

elements was taken as the starting point for building the hierarchy of meshes.  Mesh 2 

was generated by providing the system with a mesh for the aluminum tab. From this 

mesh onwards, the hierarchy splits three ways depending on which part of the DCB is 

the region of interest. The right-most branch in the hierarchy shown in Figure 5.4 zooms 

in on the crack front in the interior of the DCB. An intermediate interior mesh was 

generated before the tow architecture was introduced (Mesh 3) in order to provide for a 

gradual refinement towards the length scale of the weave‘s microstructure. Mesh 3 

discretely models the tows and matrix in the woven composite. The component mesh is 
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Mesh 1: Global coarse 1  

Mesh 2: Global coarse  2 

(with tab) 

Intermediate interior 

mesh  

Intermediate 

free edge 

mesh  

Intermediate full 

width mesh 

Mesh 4: Local, discrete 

, free edge 

Mesh 5: Local, refined, full 

width, brick elements 

Mesh 7: Local, 

refined, discrete, 

interior 

Mesh 3: Local, 

discrete, interior 

Figure 5.4: Hierarchy of finite element meshes (Mesh 7, 8 and 9 are not 

used in the current study) 

Mesh 6: Local, discrete, full width 
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made of two full unit cells that model the top ply in the bottom half of the DCB 

specimen. The other branch in the hierarchy (to its immediate left) refines the region on 

the crack front near the free edge. By way of an intermediate mesh, Mesh 4 in the 

hierarchy is created by using a discrete mesh similar to that used in Mesh 3. The matrix 

in Mesh 4 has been made transparent to show the underlying tows. The remaining 

branch models the full width of the model in order to verify the results obtained using 

the other branches as well as obtain the variation of stresses along the entire width of the 

DCB specimen. Again an intermediate full width mesh is used to bridge the variation in 

refinement. The hierarchy then splits into two more branches. Mesh 5 is generated using 

a refined mesh made of rectangular parallelepiped (or brick) elements. Mesh 6 is 

generated using a discrete mesh that spans the full width of the DCB along the crack 

front. Meshes 5 and 6 are considerably larger than the models in the other two branches 

since the entire width of the crack front is modeled using a refined mesh. In order to 

make comparisons of the results obtained using the discrete models that account for the 

variation in material properties with that using effective properties, the same meshes 

seen in Figure 5.4 were used to generate the models using effective properties. 

The boundary-matching and model-joining algorithm is currently limited in the sense 

that it cannot be used to interface a general boundary or surface. The current 

implementation limits this feature to only flat surfaces and one of the surfaces in the 

interface has to be made of rectangular element faces. Due to these limitations, models 

using Mesh 7 cannot be currently analyzed.  

5.5 Calculation of Strain Energy Release Rate 

The strain energy release rate (Gi) distribution was calculated from the finite element 

analysis results using a post-processing routine. The Virtual Crack Closure Technique 

[176] was used to obtain the Gi distribution. The procedure for calculating the GI uses 

the energy required to close the delamination over a short distance, a . The closure 

energy involves products of delamination front nodal forces and relative displacements 

behind the delamination front. The delamination front nodal forces can be determined by 
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actually closing the delamination over a . Another technique, which requires only a 

single solution, assumes that the current delamination front nodal forces are the same as 

they would be if the delamination length was reduced by a . The single solution 

method was used herein. 

The strain energy release rate calculation will be illustrated for the 20-node element, 

since this element was used for all of the analyses. Figure 5.5 shows a schematic of the 

delamination front region. The nodes of interest for the strain-energy release rate 

calculations are indicated by the filled circles. Because it is not appropriate to close the 

delamination over part of an element, there are four sets of nodes (indicated by the 

letters a, b, c and d) which are used to calculate the closure energies. The relative 

displacements are obtained by subtracting the displacements at nodes 
ia and 

ib from the 

displacements at nodes 
ia and

ib , respectively. Since only the lower half of the DCB 

specimen was modeled, the relative displacements were obtained by doubling the 

displacements at nodes 
ia and

ib . The forces are equal to the nodal forces transmitted 

across the delamination plane at nodes 
ic and

id . The forces are obtained by evaluating 

Figure 5.5: Schematic of the delamination front region 
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 for all elements which are connected to nodes 
ic  or 

id . There are two sets 

of energy products. One of the sets of energy products consists of the relative 

displacements for nodes 
ia and 

ia  multiplied by the forces for nodes 
ic . The other set of 

energy products consists of the relative displacements for nodes 
ib and 

ib  multiplied by 

the forces for nodes 
id . The energies equal ½ of these products. 

Strain-energy release rate is a measure of energy per unit area. Hence, the energy 

products must be normalized by the appropriate areas. Unfortunately, there is not a 

simple exact way to determine the appropriate areas. The primary complication is that 

the midside nodes and corner nodes are ―weighted‖ differently by the assumed element 

shape functions. The result is that, even if the strain-energy release rates are actually 

constant along the delamination front, there would be much larger energy products for 

the midside nodes than for the corner nodes. For example, in Figure 5.5, the energy 

products associated with nodes c2 and c4 would be much larger than for that associated 

with nodes c1 and c3. An approximate solution to this dilemma is as follows. The strain 

energy release is not calculated for locations like c2 and c4 along the delamination front. 

Instead, the energy products associated with those locations are split evenly between the 

adjacent nodes. For example, the energy associated with location c3 along the 

delamination front becomes 

 
3 3 3 2 2 2 2 2 2 4 4 4

1

2
a a c b b d a a c a a cE E E E E  (5.1) 

E  denotes the energy products associated with GI and the subscripts indicate the nodes 

involved. The area is approximated by the product of a  times the distance between the 

midside nodes on either side of the corner node being considered. For example, the area 

for node c3 is a  times the distance from node c2 to node c4. 
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5.6 Results and Discussion 

This section presents the results of the stress analysis on DCB specimen. An initial 

coarse mesh (Mesh 2 in Figure 5.4) using effective properties of the weave is used to 

model the DCB. Additional hierarchical models are then used to incorporate the complex 

microstructure of the weave. The effect of the microstructure on the stress distribution 

and the GI distribution are presented. The results of the interior and free edge models are 

compared with a larger model that uses a refined model along the full width of the beam. 

The stresses for all the models are extrapolated from the integration points to the nodal 

points. The stresses at a node are averaged between adjacent elements that have the same 

material properties. 

5.6.1 Stress Distribution 

A coarse model using Mesh 2 (Figure 5.4) was analyzed using the effective properties of 

the plain weave. The mesh was relatively coarse at the region near the crack front (2mm 

x 1mm x 0.3mm) but this model gave the a general trend of the stress distribution in the 

composite DCB specimen. The distribution of the out of plane normal stress (σzz), which 

is the component of main interest in this problem, is shown in Figure 5.6. Stress 

concentrations are seen at the crack tip which is what is expected when the two free ends 

of the double-cantilever beam are pulled apart. It was seen that the high stress gradients 

existed within an element‘s length on either side of the crack front. The maximum σzz 

Figure 5.6: Distribution of σzz around crack front for the coarse global model with 

homogenized properties 

5.89 
5.07 

σzz (MPa) 

8.34 
7.53 
6.71 

4.25 
3.44 
2.62 
1.80 
0.98 
0.16 
-0.65 
-1.47 
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stress component, which is indicated by location A in Figure 5.6, was calculated to be 

8.34 MPa. 

Two hierarchical models using Mesh 3 (Figure 5.4) were analyzed to obtain the stress 

distribution around the crack front in the interior. One model incorporated the variation 

in the material properties within the weave (discrete model) while the other used 

effective properties (homogeneous model) for the weave in all the elements. The 

elements near the crack front are refined such that the element size was down to 

0.166mm in the x and y direction as opposed to 1mm and 2 mm respectively in the 

coarse global model. The refined model with homogenized properties gave a maximum 

σzz around three times as large (25 MPa). Figure 5.7 shows the distribution of σzz in the 

crack tip region at the interior of the DCB (using Mesh 3 in Figure 5.4). It is seen from 

the contour plots that the stress distribution along the crack front in the homogeneous 

model is almost constant. On the other hand, the discrete model with the tow and matrix 

properties has a high degree of variation. This can be attributed to the undulation of the 

tows in the woven composite and thus resulting in the variation of the material properties 

in the region around the crack front. The line plot in Figure 5.7 gives the stress variation 

along the crack front. It is seen that the maximum stress in the discrete model is over 2.5 

times higher than in the homogeneous model. The periodic pattern of the stress 

distribution seems to be influenced by the pattern of the tows at the crack front. It can be 

seen that the highest stresses are in those regions where the tows that aligned along the 

long axis of the DCB are closest to the crack front. The other peak in the curve is when 

the tows aligned with the crack front are closest to the crack front. This suggests that the 

delamination would initiate in these regions and then propagate to the other regions in 

the crack front. This is reaffirmed by the results from the strain energy release rate 

calculations to be shown later in this section. No experimental work could be found in 

the literature that has reported such a behavior in crack propagation. There are slight 

undulations in the σzz distribution for the homogeneous model. This is attributed to the 

varying refinement within the mesh. It should be noted that the results obtained near the 

interface of the local model and the global model (on the left edge in Figure 5.7) are not 



129 

 

 

 

reliable. This is due to the errors that propagate from the boundary where the multi-point 

constraints are used to ‗join‘ the local model to the global model. Further verification has 

been conducted to check the reliability of the results obtained from the smaller 

hierarchical models and they are presented later on in this section.  

The undulation of the tows along the x-direction causes the variation seen in Figure 5.7. 

The microstructure of the woven composite should also have an effect on the stresses as 

the crack front advances. This is illustrated by the woven mat in Figure 5.8. The 

P  

Q  

P  

Q  

Discrete model σzz(MPa) Homogeneous model 

46.4 
40.6 

63.7 
57.9 
52.1 

34.8 
29.1 
23.3 
17.5 
11.8 
6.02 
0.25 
-5.51 

Homogeneous 

model  

Discrete model  

P  Q  

Figure 5.7: Comparison of σzz (MPa) distributions at the interior of crack front 
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configuration of the tows at the locations indicated by A and B are similar except that 

they are offset by a half periodic length in the direction along the crack front. It is known 

that the stresses at the crack front are affected by the crack length of the DCB specimen 

but in the case of a woven composite these stresses are also affected by its 

microstructure or the tow architecture. Therefore, the stress distribution can be expected 

to be almost identical if the phase shift and crack length is accounted for. This is not the 

case when the crack front is at location C, where the configuration of the tows is 

different from that at locations A and B. To determine the change in stress state when the 

A 
B 

C 

Crack front at 

location C  

Crack front at 

location A  

Cross section at 

location A  

Cross section at 

location C  

Figure 5.8: Comparison of stress distribution (MPa) when crack front is 

advanced by quarter periodic length 
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crack-tip location changes, a new model was generated where the boundary conditions 

are specified such that the position of the crack tip is advanced by a quarter periodic 

length. Figure 5.8 compares distribution of σzz when the crack front is located at the two 

different positions. To make the results comparable, the loading is such that moments at 

the crack tip are the same for both configurations. Since the crack front moves by only 

0.5mm, the load changes only by 0.66%. The line plot gives the variation along the crack 

front for both configurations. The corresponding cross-sections at the different locations 

are also given. The σzz stress component is much less when the crack front is at location 

C. The σzz distribution at location C also has a periodic pattern similar to the distribution 

when the crack front is a location A but the amplitude is almost 1/8
th

 while the peak 

stress is close to a quarter of that at location A. This is because the tows aligned along 

the DCB are closer to the crack front when it is positioned at location A than when it is 

at location C. It is evident from the crack front cross sections for the two configurations 

that location A has a higher tow fraction thus contributing more to the stiffness in the 

region. As a result, the mean σzz is much higher for location A than that for location C. 

This suggests that the rate at which the crack would grow would vary as the crack 

advances, since the local microstructure is changing. 

The stress state in the interior of the DCB specimen is considerably different from that at 

the free edges. The analysis of the coarse global model (Mesh 2) shows the σzz stress 

component (Figure 5.6) remains almost constant along the crack front except for the 

region near the free edge. A discrete hierarchical model using Mesh 4 (Figure 5.4) was 

generated to obtain the stress distribution near the free edge. This model gives the effect 

of the free edge up to a distance of 2mm from the free edge. A discrete model using 

Mesh 6 was also generated to get the stress distribution along the entire width of the 

beam. As shown by Figure 5.9, the stress distribution remains oscillatory as it 

approaches the free edge although its magnitude drops. The effect of the free edge 

appears to be gradual. For example, at 3mm into the DCB specimen, the peak σzz stress 

component is still 6.25% less than the corresponding value at the center of the beam. It 

can be seen that there is very good correlation between the results from the full width 
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discrete model and the free edge discrete model except near the boundary of the local 

model where it interfaces with the global model. The stress distribution is compared with 

the corresponding homogeneous model using Mesh 6. The slight undulation seen in the 

case for the homogeneous model is due to the varying mesh refinement within the model 

(since the same mesh was used for the homogeneous case). Another homogeneous 

model using only brick elements was generated (Mesh 5) to confirm this. It can be seen 

that this curve is smooth and does not have any undulations.  

5.6.2 Strain Energy Release Rate Distribution 

The strain energy release rate (GI) for a DCB made of a typical orthotropic material 

would be almost constant sufficiently away from the free edges. The homogeneous 

hierarchical models using Mesh 3, 4 and 6 were used to determine the GI distribution 

along the crack front. As shown in Figure 5.10, the GI distribution obtained from the full 

width homogeneous model starts from 1.51 J/m
2
 at the free edge and gradually increases 

and approaches a constant value of around 5.43 J/m
2
. Note that the smaller local models 

(the free edge homogeneous model and the interior homogeneous model) give a fairly 
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Figure 5.9: Comparison of σzz distribution (MPa) along entire crack front 
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accurate distribution of the GI as long as the region of interest is away from the boundary 

of the local model where the MPCs are used to join them to the global model.  

 

When the tow architecture is taken into consideration, the GI distribution obtained is 

considerably different. The GI distribution from the interior discrete model is compared 

with that from the corresponding homogeneous model. As shown in Figure 5.11, the GI 

follows a periodic pattern similar to the stress distribution. As mentioned earlier, the 

values near the boundary of the local model are not expected to be accurate. The GI 

reaches a maximum of almost two times the homogeneous GI value and its position 

corresponds to the point on the tow (aligned along the DCB) where it is closest to the 

crack front. Similarly the other maximum corresponds to the point where the tow aligned 

along the crack front is closest to the crack front. The minimum GI is seen in between 

two peaks where they contribute the least to the stiffness along the length of the beam 

due to the matrix pocket. This periodic nature seems to indicate that the crack 

propagation would not be uniform. It is also interesting to note that the mean GI obtained 

from the discrete model is higher (over 5%) than the GI obtained from the homogeneous 

model. 

Full width 

homogeneous model 

Free edge homogeneous 

model 

Interior homogeneous model  

Figure 5.10: GI distribution along crack front predicted by three homogeneous 

models 
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As seen with the stress distribution results, the GI distribution is expected to vary when 

the crack front position changes. This is shown in Figure 5.12 where the GI distribution 

for two configurations is plotted. It is seen that as the crack front location moves from A 

to C (Figure 5.8), the GI still follows a periodic pattern but the amplitude is less than that 

when the crack front is at location A. The maximum GI when the crack front is at 

location C is 5.75 J/m
2
 which is almost 10% more than the GI value obtained using the 

homogeneous model. Again, the values at the left edge of the local model should be 

ignored because of errors that propagate from the boundary where the multi-point 

constraints are imposed. The diminished periodic pattern of the GI distribution suggests 

that the crack propagation rate varies as the crack grows. 

As expected, the GI distribution near the free edge also is considerably different from 

that obtained when using effective properties.  Models using the discrete free edge and 

interior and full width meshes were used to calculate the GI distribution for the 

configurations when the crack front is at locations A and C. In both cases (Figure 5.13) it 

can be seen that the GI drops considerably as it reaches the free edge but it still maintains 

Discrete model 

Homogeneous 

model  

Figure 5.11: Comparison of GI distributions at the interior of crack front 
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is oscillatory pattern. Again, the GI reaches higher peaks when the crack front is at 

location A rather than location C.  

It can be seen that the GI distributions from the free edge and interior models are in close 

agreement with the results from the larger full width model in Figure 5.13(a) except 

when close to the boundaries of the local models. Similarly in Figure 5.13(b), the general 

trend of the GI distribution is obtained away from the boundary of the local models 

where the error is not too large. Thus, the hierarchical models with the smaller local 

models are reliable for obtaining a good estimate of the GI distribution along the regions 

of interest on the crack front. The full width model took over 6 hours to run on a single-

processor desktop computer while solving 180666 equations. On the other hand, the 

smaller models such as the free edge and interior models took less than an hour to solve 

50922 equations. This shows a considerable savings in analysis time when compared 

with running models that have large refined local models. More savings could be 

achieved if the discrete meshes had varying refinement such that only regions close to 

the crack front were highly refined. For the models analyzed in this work, the time taken 

to solve the equations dominated the run times. Therefore, run times when using the 
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Figure 5.12: Comparison of GI distribution when crack front is advanced by quarter 

periodic length 
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hierarchical system and conventional FEA approach would be comparable because the 

solver as such does not utilize any hierarchical characteristics. On the other hand, major 

savings were obtained in the time taken to generate the models. In a conventional 

approach, it would be an elaborate and time-consuming task to identify the boundaries 

and interfaces to the different regions of the model and ‗join‘ those using MPCs to 

generate a single model. On the other hand, when using the hierarchical system, this step 

is completely automated. The true potential is in the ability to generate and manage 

multiple models in a single hierarchy.  

5.7 Summary 

This section describes the use of a hierarchical strategy to perform a multiscale analysis 

of a woven composite DCB specimen that contains multiple microstructural scales 

(fiber/matrix, tow architecture, laminate). The strategy exploits the natural hierarchical 

character of model descriptions and simulation results to expedite analysis of problems. 

Hierarchical techniques were used in the development, organization, and management of 

finite element models, and for the post-processing of the results from the analyses. 

Models in the hierarchy are ‗joined‘ together by implementing a boundary matching 

routine that specifies multi-point constraints in order to impose continuity at the 

interfaces. The effect of the complex microstructure on the stress distribution and the GI 

distribution was presented. It was seen that the stresses and GI distribution follow a 

periodic pattern corresponding to the undulation of the tows in the woven composite, 

which suggests that the delamination would initiate in certain regions and propagate to 

the rest of the crack front. The effect of the microstructure on the stresses and GI as the 

crack advances was also investigated. The results suggested that there would likely be 

significant variation in the growth rate as the crack advanced. 
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6. IMPLEMENTATION AND VALIDATION OF OXIDATION MODEL 

6.1 Introduction 

The theory and the finite element formulation of the oxidation model were described in 

Section 3. The simulation of the oxidation behavior, as will be explained in this section, 

is a computationally expensive process and in some cases not even feasible for modeling 

complex configurations. This section is divided into two major sections. The 

implementation of the oxidation model is described first. This includes special 

approximations and strategies used to enhance the efficiency of the oxidation analysis. 

These strategies reduce the analysis time to a fraction of the standard implementation 

while giving reasonable results. The rest of the section discusses the tests conducted to 

validate the optimizations and strategies implemented to expedite the oxidation 

simulation. 

6.2 Implementation of Oxidation Model 

The oxidation model used herein is adopted from the work done by Pochiraju, 

Schoeppner and Tandon[7-9] who have used this model to simulate the oxidation of neat 

PMR-15 resin with reasonable accuracy compared to experimental observations. Section 

3 describes the theory behind the model and goes through the equations to derive the 

finite element formulation. It also describes approaches to obtain effective oxidation 

material properties that can be applied to periodic microstructures. The oxidation 

analysis is inherently more computation intensive than a simple diffusion analysis 

because of the complex governing equations. The oxidation state variable needs to be 

calculated for each integration point in the mesh at every time step. The oxidation model 

appears to require a more refined mesh and a smaller time step size compared to a 

corresponding diffusion model. This makes it even more important to explore methods 

to speed up the oxidation analysis without losing required accuracy. 

As with typical mechanical analyses, the accuracy of the solution depends on several 

factors, one of which is the element size. In the case of transient analyses like diffusion 

or oxidation, the solution also depends on the time step size. Depending on the material 
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properties and other values in the finite element formulas, there are limits to the element 

size and time step size beyond which meaningless results are obtained. Analyses were 

performed using COMSOL Multiphysics to confirm that other finite element packages 

had the same limitations. In addition to the basic approximation for the time integrations, 

there are several approximations made in the finite element formulation to handle the 

nonlinearity in the governing equations. The accuracy of these approximations depends 

on parameters such as the time step size as well. 

In general, the optimal time step size need not be constant throughout the simulation 

because of the nonlinear oxidation behavior. This means that the time step size can 

potentially be ramped up or down as the simulation is in progress so as to maintain the 

optimal time step size. To summarize, the following optimizations can be made to an 

oxidation simulation in order to make it run more efficiently: 

1. Optimal element size 

2. Optimal time step size 

3. Optimal time step size ramping 

Parametric studies were conducted to determine the optimized parameters for the 

materials that would be analyzed in this work. The latter part of this section will discuss 

the results of these parametric studies.  

The remainder of this section describes the oxidation behavior in neat PMR-15 resin. 

Certain characteristics of the oxidation behavior can be exploited to develop a strategy to 

speed up the analysis. For this purpose, oxidation of a simple configuration is 

considered. The simple configuration is a block of neat resin that is exposed to oxygen 

on one pair of opposite surfaces that are 40 mm apart and protected from oxygen on the 

other surfaces. This configuration can be analyzed using a 1-D model. Moreover, taking 

advantage of symmetry, only half of the block needs to be modeled. Table 6.1 gives the 

material properties used to model the neat PMR-15 resin. For a complete description of 

the different oxidation material properties, refer to Section 3.5. A uniform element size 

of 1micron and time step size of 0.15 minute was used for the simulation. 
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Figure 6.1 shows the predicted oxidation layer growth for the configuration over a 

period of 200 hours. Section 3.5.6 describes how the oxidation layer growth is 

determined. It can be seen that the resin oxidizes very quickly in the initial 20 hours or 

so and then gradually slows down to where the oxidation layer grows almost linearly. 

Also note that the thickness of zone II or the active zone remains fairly constant 

throughout the entire process. 

Table 6.1: Oxidation material properties for neat PMR-15 resin 

 Neat PMR-15 resin 

Diffusivity 

unoxD  

oxD  

 

53.6x10
-6

 mm
2
/min 

78.22x10
-6

 mm
2
/min 

R0 3.5 mol/(m
3
min) 

ox
 0.187 

C  0.79 mol/m
3
 

 
0.01-0.0067(t/40) : t < 40 

0.0033 :  t > 40 (t in hours) 

( )f C  
2

1
1 2 1

C C

C C
 

 0.919 

 

The difference between oxidation and diffusion-only is that for oxidation, the oxygen 

molecules do not diffuse as quickly because they are consumed in oxidizing the material. 

Thus, the reaction term in the governing equations gives the effect of a ‗moving barrier‘ 

that allows almost no oxygen to cross over to the other side of the active zone until there 

is a sufficient level of oxidation within the active zone. This is evident by looking at the 

concentration profiles across the model at different snap shots during the simulation. 

Figure 6.2 shows the concentration profiles in the model at t=2.5 hrs, 50 hrs and 100 hrs. 

It can be seen that all the profiles have a similar shape. The profiles drop almost linearly 

from the exposed edge up to the ‗moving barrier‘ and the concentration is practically 

zero for the rest of the model. The difference in each profile is that as time passes, the 

location of the ‗moving barrier‘ shifts in the direction of the oxygen flow. This 
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movement of the barrier is very slow compared to the diffusion-only process. This is 

illustrated in Figure 6.2 by the concentration profile of the corresponding diffusion 

model at 15 minutes. It shows that with only 15 minutes of diffusion, the oxygen 

concentration at every point in the model has already surpassed that of the oxidation 

model at 2.5 hours. Even after 100 hours of oxidation, the oxygen concentration is still 

practically zero past 0.06 mm whereas the corresponding concentration from the 

diffusion model after 15 minutes is more than 0.025 at 0.06 mm. This also explains why 

there is a close to linear drop of the concentration from the exposed edge to the ‗moving 

barrier‘. In each snapshot of concentration profile in the oxidation process, the region to 

the left of the moving barrier can be considered as a diffusion only region with fixed 

concentration boundary conditions – the specified concentration at the exposed 
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Figure 6.1: Predicted oxidation layer growth (Zone I+II, Zone II) in neat PMR-15 

resin 
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boundary and zero concentration at the location of the barrier. Since the barrier is 

moving very slowly, the concentration profiles at the various time steps look very 

similar to that for the corresponding diffusion-only problem at steady-state, which is a 

nearly linear variation of the concentration. Examination of this behavior gave way to a 

strategy to further expedite the oxidation simulation. This strategy was called the 

Adaptive Meshing Strategy and is described in detail in the next section. 

6.2.1 Adaptive Meshing Strategy 

The fact that the concentration of oxygen in the un-oxidized region of the material is 

practically zero can be exploited to speed up the analysis by constraining the degrees of 

freedom(dof) in most of the un-oxidized region to zero. This can lead to a considerable 

reduction in the number of unknowns to be solved for, especially in the initial period of 

oxidation because most of the material is un-oxidized at that time. The challenge is in 

determining which regions of the material should be constrained and developing an 

efficient algorithm so that this can be automated. The regions very close to the active 

zone should not be constrained since the active zone is slowly moving to the interior of 

Figure 6.2: Concentration profiles for oxidation and diffusion models. 
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the material with each time step and that can affect the solution. Also, the regions should 

not be permanently constrained because that implies that those regions will never get 

oxidized, which is not the case. 

Based on these requirements, the following algorithm was developed to automatically 

determine the regions to be constrained. A very small concentration value close to zero 

is chosen, say 0C , in order to determine which regions are to be constrained. If the 

concentration at a node is more than 0C , then that location is assumed to be inside the 

oxidation layer or close to it and therefore the dof for that node is left unconstrained. On 

the other hand, if the concentration at a node is less than 0C , then the node is assumed to 

be in the un-oxidized region and far enough from the active zone, therefore that dof is 

constrained. This check is not performed at every time step. Instead, the check is 

performed every 15 or 20 time steps or some optimal number of time steps (say, N) 

chosen depending on the rate the active zone is moving. Therefore, once a check is 

performed, the constrained dofs remain constrained for the subsequent time steps until 

the time step right before the next check. In this time step preceding the check, all the 

artificial constraints are removed and the full system of equations is solved. This allows 

a minute amount of oxygen to enter the previously constrained region. In the next time 

step, the check is performed, at which time some of the previously constrained dofs will 

be unconstrained because the oxygen concentration has increased by a small amount. 

This cycle is repeated throughout the simulation. This strategy speeds up the analysis by 

a large factor because in the standard analysis, every time step involves solution of the 

entire system of equations whereas in the adaptive mesh analysis, the entire system of 

equations is solved only every N time steps. During the other time steps, the system of 

equations solved is much smaller. The check to determine the region to be constrained is 

also performed only every N time steps and the computation effort used for the check is 

miniscule compared to the savings obtained by solving a smaller set of equations. In 

addition to those savings, whenever the check is performed and a region of the un-

oxidized material is constrained, the corresponding elements are also deactivated thereby 

speeding up the finite element assembly process as well.  
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The choice of the value of 0C  has an effect on the analysis because if the value is too 

large, regions that are close to the active zone will be constrained whereas if the value is 

too small, a smaller region is constrained and the strategy is not used to its maximum 

potential. Similarly, the number of time steps that is skipped before a check, N, also has 

an effect on the efficiency of the simulation. Parametric studies were performed by 

varying the two parameters, 0C and N on 1-, 2- and 3-D models. The results of this 

parametric study are presented in the validation section of this section.  

6.3 Optimization and Validation 

This section discusses the results of the tests conducted to optimize model parameters as 

described in the earlier sections of this section. The optimizations of the standard 

oxidation model are discussed first followed by the validation of the Adaptive Meshing 

Strategy. 

6.3.1 Optimization of Model Parameters 

Parametric studies were conducted to determine the optimal element size and time step 

size as well as the time step size ramping. In order to make comparisons, parametric 

studies were also conducted on corresponding diffusion models. Optimal element size 

and time step size were determined by analyzing the same configuration described in 

section 6.2. The diffusivity of the material for this parametric study was assumed to be 

53.6x10
-6

 mm
2
/min, which is the diffusivity of the un-oxidized PMR-15 resin. It is 

important to note that this parametric study is not extensive and does not look all the 

possible parameters. Therefore, the results from this parametric study, in essence, are 

valid only for material properties and other model parameters used in the study. In order 

to analyze other material systems, it would be advisable to determine the optimal 

parameters for that specific system. 

One-dimensional models were analyzed using various element sizes and time step sizes. 

The reference solution was assumed to be that obtained from using linear elements with 

a size of 1 micron and a time step size of 0.15 minutes. The variation of average 

concentration in the model with time was compared for the different models. It was 
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observed that the effect of the element size and time step size on the results were 

independent of each other. The element size was kept constant at 1 micron and models 

were analyzed with varying time step sizes and it was found that the time step size could 

be raised to over 10 minutes before any noticeable difference in the results were 

observed. When the time step size was kept constant at 0.15 minutes, the element size 

could be increased to at least 40 microns without any noticeable change in the results. A 

model with an element size of 40 microns and a time step size of 10 minutes also yielded 

the same behavior as the reference model. This behavior was seen for both linear and 

quadratic elements. In some instances, the nodal concentrations drop below zero but they 

are still considered numerical zeros and these negative concentrations do not have any 

significant effect on the results. The same results were obtained when a parametric study 

was conducted on two dimensional models with eight-node quadratic elements. A 

parametric study was also conducted to determine the effect of diffusivity on the 

allowable time step size. As expected, when the diffusivity is increased, the oxygen 

takes less time to saturate the material and the optimum time step size required in order 

to get a converged solution becomes smaller. It was also found that increasing the 

element size while keeping the time step size and diffusivity constant, eventually results 

in negative nodal concentrations.  

Similar to what was done for the diffusion analysis, the optimal mesh size and time step 

size were determined by analyzing the configuration described in section 6.2 using the 

material properties in Table 6.1. The reference solution was assumed to be that obtained 

from using linear elements with a size of 1 micron and a time step size of 0.15 minutes. 

The oxidation layer thicknesses were calculated for all the models and compared to 

determine the accuracy. The oxidation layer consists of a fully oxidized layer (Zone I) 

and the active reaction layer (Zone II). Although the Zone II layer is defined by having 

an oxidation level in between 0 and 1, for all the oxidation models described in this 

paper, a tolerance of 1% is allowed on those limits. Therefore, an element is assumed to 

have started oxidizing and is in Zone II if the oxidation level at each of the material 

integration points falls within a lower limit of 0.01 and an upper limit of 0.99. If the 
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oxidation state is above 0.99, the element is assumed to be un-oxidized and if it is below 

0.01 it is assumed to be fully oxidized. A post-processing routine was written that 

calculated the growth of the oxidation layer along a line in a model. This involved 

extrapolating the oxidation state values from the integration points to the nodal points, 

averaging the extrapolated values at a node if the node shared elements of the same 

material and solving for the location on the prescribed line where the oxidation level 

value met the specified upper and lower limits.  

Figure 6.3 shows the effect of the size of linear elements on the oxidation layer growth 

with a constant time step size of 0.15 minutes. It shows that the models using 4-micron 

and 8-micron size elements closely agree with the model using 1-micron elements 

whereas the model using 12-micron elements over predicts the thickness. The model 

with 8-micron elements shows a distinct oscillation in the curve. This is believed to be 

caused due to errors from extrapolation of the oxidation state values from the integration 

points to the nodal points. Nevertheless, it can be seen that upper bound of the curve is 

very close to the results of the 1-micron size model. The model with 4-micron elements 

shows slight oscillations as well but it is able to predict the thickness growth very well.  
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The effect of the time step size was also investigated by keeping the element size 

constant and varying the time step size. Figure 6.4 shows the oxidation layer growth for 

different models when the element size is kept constant at 2 microns and the time step 

size varies from 0.15 mins to 0.8 mins. It can be seen that the time step size can be 

doubled from 0.15 mins to 0.3 mins without any perceivable effect on the results. When 

the time step size is raised to 0.5 mins, some difference can be seen in the initial part of 

the simulation while the latter part still predicts the oxidation growth fairly well. 

Increasing the time step size to 0.8 mins affects the results considerably especially 

during the initial part of the simulation. This kind of behavior for the effect of time step 

size on the predicted oxidation growth was seen for both linear and corresponding 

quadratic elements. The trends also show that the time step size is more critical to the 

initial part of the simulation where the oxidation growth is nonlinear. For many of these 

models, the nodal concentrations calculated would be numerical zeroes that go below 

zero. When the program encounters such values, they are converted to zero so that it 
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neat resin (using linear elements and time step size of 0.15 mins) 
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does not use negative concentrations in the calculation of the reaction terms and the 

oxidation state, which would physically mean a reversal of the oxidation process.  

In order to speed up the analysis, the behavior of the model when the time step size is 

gradually increased was investigated. As seen from the results of the previous parametric 

study, a time step size of no more than 0.3 minutes was required to accurately model the 

initial part of the simulation where layer growth is highly nonlinear. The layer growth 

behavior becomes close to linear once the model has undergone oxidation for 40 hours, 

which is when the time-dependent material property,  changes from decreasing linearly 

with respect to time to a constant value of 0.0033. Based on this, a parametric study was 

conducted where the models used a time step size of 0.3 mins for the initial 40 hours of 

the simulation and for the other 160 hours, the different models used different time step 

sizes. The reference model used a time step size of 0.15 mins for the entire 200 hours. 

All the models used elements with a size of 2 microns. Figure 6.5 shows that when the 
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time step size is ramped up from 0.3 minute to 1 minute, the predicted oxidation growth 

curve is barely distinguishable from that of the reference model. The results are fairly 

reasonable even when the time step size is ramped up to 5 mins. As shown in Figure 6.5, 

the differences in the curves are considerable when the time step size is ramped to 10 

mins. Figure 6.5 show that the models also predict the Zone II thickness fairly well. 

Ramping up the time step size tremendously reduces the computational time required for 

the analysis compared to using a constant time step size of 0.3 minutes. A constant time 

step size of 0.3 mins used for simulating 200 hours of oxidation takes up 40,000 time 

steps whereas using a model that uses 0.3 mins for the first 40 hours and 5 mins for the 

remaining 160 hours takes up only 9920 time steps. This makes a computational savings 

of over 75%. 
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Figure 6.5: Oxidation layer growth (Zone I+II, Zone II) for neat resin (using 2 

micron linear elements and time step size of 0.30 mins for the first 40 hours 

and different ramped time step sizes thereafter) 
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6.3.2 Validation of Adaptive Meshing Strategy 

Parametric studies were performed to determine the optimal parameters for the Adaptive 

Meshing Strategy as well as potential computational savings. The one-dimensional 

configuration in section 6.2 is analyzed using the Adaptive Meshing Strategy described 

in section 6.2.1. The two parameters that were varied were 0C  and N. All the models in 

this particular parametric study use 1 micron size elements and time step size ramping 

where the first 40 hours use 0.3 minute time steps and the remaining 160 hours use 1 

minute time steps. The oxidation layer growth from the different models is compared 

with a reference model that uses the standard oxidation analysis. Figure 6.6 shows the 

oxidation layer growth for models that have a constant 0C  of 0.01 and three different N 

values of 50, 100 and 200. It shows that for N values of 50 and 100, the oxidation layer 

growth predicted is very close to that of the reference model. Even for the model with an 

N value of 200, it is seen that there is close agreement till about 40 hours after which the 

time step size is ramped up to 1 minute. This indicates that the value of the threshold 

concentration, 0C  is too high and that the oxidation front is creeping up to the 

constrained region and the active region of the mesh is not re-evaluated quickly enough. 

That is why for lower N values such as 50 or 100, the prediction of oxidation layer 

growth is much better. This means that if the threshold concentration, 0C  is lowered, 

that would make the constrained region smaller thereby taking it longer for the oxidation 

front to reach the region. Therefore, lowering 0C  should allow increasing N while 

maintaining the accuracy. This was validated by analyzing a similar set of models as 

earlier except with a 0C  value of 1e-3. Figure 6.7 shows that N value of 200 does a very 

good job of predicting the oxidation layer growth whereas when 0C  had a value of 1e-2, 

an N value of 200 did a very poor job of predicting the layer growth. Moreover, even an 

N value of 300 does a good job and it is only when it is increased to 400 that the 

accuracy of the prediction even starts to deteriorate. This same trend was seen when the 

C
0
 was lowered even further to 10

-4
 and 10

-5
. On the other hand, when C

0 
is lowered, the 

constrained region is reduced and the maximum potential of the Adaptive Meshing 

Strategy is not achieved. Figure 6.8 shows computational time savings achieved when 
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Figure 6.7: Oxidation layer growth (Zone I+II, Zone II) for neat resin (using 
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 and different N values) 
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Figure 6.6: Oxidation layer growth (Zone I+II, Zone II) for neat resin (using 
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using the Adaptive Meshing Strategy compared to the corresponding standard analysis 

with time step size ramping. The computation time savings is defined by 

 
time taken by Adaptive Meshing Strategy

computational time savings 1 100
time taken by standard analysis

 (6.1) 

 

Due to constraints with the computational resources, it was not possible to obtain 

accurate timings of the analysis but it still gives a good sense for the trends in the 

savings achieved when the value of 0C  is lowered. As illustrated in the figure, as the 

value of 0C  is lowered from 1e-2 to 1e-5, the computation time savings decreased from 

~68% to ~58%. 

In order to see how this analysis strategy fares when the dimensionality of the model is 

increased, the same configurations were analyzed using 2D and 3D models. The 2D 

mesh had dimensions of 200 x 10 elements using 8-noded 2D elements of size 1 micron. 

The 2D model had a total of 6421 dofs. The 3D model had dimensions of 5 x 5 x 200 

elements using 20-noded brick elements of size 1 micron. The 3D model had a total of 

26496 dofs. Again constraints on the computational resources prevented accurate 

timings of the analyses but it did give the same kind of trend for all the models analyzed. 

Figure 6.9 shows the computational time savings achieved when 0C  was kept at a 

constant value of 1e-3 and the value of N has been varied for the corresponding 1D, 2D 

and 3D models. The results were not conclusive enough to determine any strong trends. 

In general, it was seen that the percentage savings reduced for the 2D model compared 

to the 1D model. On the other hand, the 3D models generally gave a better percentage 

savings compared to the 1D models. It is estimated that this trend is due to the nature of 

the system of equations related to 1D, 2D and 3D models. For all the analyses performed 

in this work other than this parametric study, C
0
 was chosen to be 0.0001 mol/m

3
 and N 

was chosen to be 20 time steps. 
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Figure 6.9: Computational time savings for parametric study of 1D, 2D and 3D 

expedited analysis models with C
0
=10

-3
 and various N values) 
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6.4 Summary 

This section described the specific details regarding the implementation of the oxidation 

model for the simulation of oxidation in neat PMR-15 resin. It discusses the optimization 

of different mesh parameters including element size, time step size as well as the effect 

of changing the time step size during the simulation. Unfortunately, in spite of all these 

optimizations, the oxidation analysis is still very computationally expensive. Upon study 

of the oxidation behavior another analysis strategy is introduced to speed up the 

oxidation simulation. The latter half of this section describes the parametric studies 

performed to optimize the different model parameters as well as validate the Adaptive 

Meshing Strategy. 
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7. VALIDATION OF HOMOGENIZED OXIDATION PROPERTIES 

7.1 Introduction 

When simulating oxidation in a configuration made of composites, it is not practical to 

discretely model all the matrix and fibers in the composite because of modeling and 

computational challenges. The same situation is true in the case of textile composites. 

Similar to what is done in order to perform structural analysis of textile composites, 

homogenized properties are used to avoid modeling a microstructural scale thereby 

making the analysis tractable. The necessity is even more severe when simulating 

oxidation because the finite element formulation requires very refined meshes. 

Therefore, even discretely modeling the tow architecture scale in a single unit cell 

creates a very large model. Strategies for determining homogenized oxidation properties 

for unidirectional laminates or tows are described in section 3.5.7. In this section, the 

homogenization strategies are validated using various configurations so that they can be 

reliably used later to model oxidation in textile composites. The next section describes 

the material properties and the configurations analyzed. This is followed by the results of 

the analyses and a discussion of the accuracy of the homogenized properties. 

7.2 Material Properties and Configurations 

Three configurations were analyzed to determine the accuracy of the homogenized 

oxidation properties. The expressions described in section 3.5.7 were used to determine 

homogenized oxidation properties for tows with a fiber fraction of 28.49% and 50%.  

Table 6.1 specifies the material properties for the neat PMR-15 resin and Table 7.1 

specifies those computed for the homogenized tows.  

For a more accurate calculation of the diffusivity at Vf=50%, the actual value of D  in 

Figure 3.4 obtained from micromechanics (which is 0.3254) is used rather than 

calculating the value using the formula for the curve fit (which is 0.33). Mesh refinement 

and time step sizes were determined such that the analyses were computationally 

efficient while giving accurate results as described in the previous section. The three 

configurations are described next. 
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Table 7.1: Oxidation material properties for the homogenized tows 

 
Homogenized tow 

(Vf=28.49%) 

Homogenized tow 

(Vf=50%) 

Diffusivity 

unoxD  

oxD  

 

41.71 x10
-6

 mm
2
/min 

60.87 x10
-6

 mm
2
/min 

 

34.88 x10
-6

 mm
2
/min 

50.90 x10
-6

 mm
2
/min 

0R  2.50 mol/(m
3
min) 1.75 mol/(m

3
min) 

ox
 0.4186 0.5935 

C  0.564 mol/m
3
 0.395 mol/m

3
 

 
0.01-0.0067(t/40) : t < 40 

0.0033 :  t > 40 (t in hours) 

( )f C  
2

1
1 2 1

C C

C C
 

 0.919 

 

7.2.1 Configuration A 

This configuration is a unidirectional laminate idealized as having fibers arranged in a 

―square array‖ with twenty fibers in the x direction and infinite dimensions in the y and z 

directions. This is illustrated in Figure 7.1 showing a single layer of fibers from an 

infinite stack of such layers. Although the sketch shows a finite z dimension, the 

configuration is actually infinite in the z direction. The fibers are identical and have a 

diameter of 10 microns. The fiber volume fraction of the laminate is 50%. The laminate 

is exposed to air on both the left and right surfaces. Therefore, the composite begins 

oxidizing from the outer surface with the oxygen making its way into the interior of the 

laminate. By taking into consideration the symmetries, this configuration can be 

analyzed by modeling just ten fibers in a two-dimensional model as shown in Figure 7.1. 

The analysis region is also shaded in the sketch of the configuration. The left edge of the 

model is exposed to air whereas the right edge is impermeable. The ten fibers in the 

matrix are modeled discretely and the results from using this model will provide the 

reference solution. The fibers are modeled as voids since the fibers are assumed to be 

impermeable. The same configuration is analyzed in two other ways to test the accuracy 

of the effective properties. One is to model the configuration completely using 
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homogenized properties for the microstructure. Since this involves only one 

homogenized material in a simple one dimensional geometry, this can be analyzed using 

a 1D finite element model. The other way is to use a mixed model with three unit cells 

on the extremes modeled discretely and the four interior unit cells modeled using 

homogenized properties. Figure 7.2 shows a schematic of this model. This method will 

test the accuracy of the homogenized properties in models with heterogeneous materials. 

 

 

  

Homogenized unit 

cells 

Discretely modeled unit 

cells 

Figure 7.2: Mixed model for configuration A  

x 

y 

Exposed to 

air 

0i iq n

 

0i iq n

 

0i iq n

 

1 2 8 7 6 5 4 3 10 9 

Figure 7.1: Schematic and analysis region for configuration A with the numbering 

for each unit cell. 
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7.2.2 Configuration B 

This configuration is slightly more complex than the previous one in that the laminate is 

infinite only in the z direction. This can be considered as a square tow with 36 fibers 

packed in a square array as illustrated in Figure 7.3. Again, all the fibers have a diameter 

of 10 microns and are packed with a fiber fraction of 50%. The tow is exposed to air on 

all four lateral surfaces and starts oxidizing as the oxygen makes diffuses into the tow. 

Utilizing symmetry conditions, only the shaded region in the sketch needs to be 

modeled, as shown in Figure 7.3.  The left and bottom edges in the analysis model are 

exposed to air while the right and top edges are specified to be impermeable. 

 

  

x 

y 

Exposed to 

air 

0i iq n

 

0i iq n

 

Exposed to 

air 

1 2 

8 7 

6 5 4 

3 

9 

Figure 7.3: Schematic and analysis region for configuration B with the 

numbering for each unit cell. 
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7.2.3 Configuration C 

This configuration considers a slightly more realistic situation with an irregular 

distribution of fibers. A computer generated random microstructure was used to 

represent the microstructure in a tow (see Figure 7.4). The two dimensional 

microstructure assumes that the fibers run exactly parallel to each other in the z-

direction. This, of course, is not what happens in a typical tow but this configuration 

would be a reasonable precursor to modeling the much more complex (if at all 

achievable) realistic microstructure of a tow. The configuration C has 160 identical 

fibers with 10 micron diameter like the previous configurations but with an overall fiber 

fraction of 28.49%. The analysis region is assumed to be a square with a side of 210 

microns. The configuration is assumed to be exposed to air from the bottom edge and all 

the other surfaces are impermeable. Three idealizations are used to model the 

configuration. The first one discretely models the random microstructure shown in 

Figure 7.4. This idealization also brings to light the computational challenges involved 

in analyzing the oxidization behavior of complex microstructures. The second 

idealization uses a periodic microstructure. It is not possible to create a perfect square 

region using an array of 160 square unit cells because 160  is not a rational number. A 

close approximation was chosen using a square with a side measuring 12.5 square unit 

x 

y 
Exposed to air 

0i iq n

 

Figure 7.4: Analysis regions for the different configuration C idealizations. 
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cells (or 207.54 microns). Although the height of the periodic model is a half unit cell 

longer than the discrete model, this difference does not have any effect on the oxidation 

growth behavior for the 200 hour simulations that are analyzed in this work. Even after 

200 hours of oxidation, the oxidation front in a pure resin advances less than 100 

microns and the un-oxidized material on the other side of the front has insignificant 

influence on the oxidation growth up to that point.  For a periodic idealization, it is 

possible to analyze just a fraction of the configuration by taking advantage of symmetry. 

To analyze the idealized periodic configuration, a model with a width of a half unit cell 

and a height of 12.5 unit cells was chosen. The third idealization uses a homogenized 

material to model the configuration. The simple boundary conditions and the single 

homogenized material in the idealization allow the third configuration to be modeled 

using 1D elements. 

7.3 Results and Discussion 

Before determining the accuracy of the effective oxidation material properties, diffusion 

analyses were run for both configurations A and B to validate the accuracy of the 

effective diffusivities. Oxidation analyses were conducted for all three configurations 

(A, B and C). The results from the diffusion modeling are discussed first followed by 

that of the oxidation modeling. 

7.3.1 Diffusion Modeling 

The diffusion behavior was simulated using the un-oxidized PMR-15 resin diffusivity to 

model the material in the discrete models, which is 53.6x10
-6

 mm
2
/min. For the models 

that used homogenized materials, the corresponding effective diffusivity of the un-

oxidized resin was used, which for the case of a 50% fiber fraction tow is 34.88 x10
-6

 

mm
2
/min. 

Diffusion analyses were conducted on all three models representing configuration A: 

discrete model which serves as the reference solution, a fully homogeneous model and a 

mixed model as shown in Figure 7.1 and 7.2. The two-dimensional models that 

generated the results shown in Figure 7.5, 7.6 and 7.7 used meshes with a maximum 
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element length of 1.41x10
-3

mm and a time step size of 0.15 minutes. Figure 7.5 shows 

the concentration profiles in the discrete and mixed model at 5 hrs. It is seen that the 

concentration profiles are almost exactly the same in the first three unit cells on the left 

which is modeled discretely in both the discrete and mixed models. This shows that the 

effective properties in the homogenized region did not cause an adverse effect on the 

concentration profile in the discretely modeled region. The homogenized material has a 

different saturation concentration compared to the neat PMR-15 material as shown in 

Table 7.1, which is calculated using Eq.(48). The normalized concentration distribution 

will be continuous throughout the model based on the finite element formulation as 

explained in section 3. On the other hand, since the homogenized material has a different 

saturation concentration as compared to the neat resin, the concentration distribution 

(which is calculated using Eq.(13)) will have a discontinuity at the interface between the 

discrete and homogenized region. It is not convenient to make reasonable comparison 

between the two models by just looking at the concentration profiles. When the models 

compared have homogenized properties, it is perhaps more reasonable to compare 

volume averaged concentrations. 

Figure 7.6 shows the volume averaged concentration for the entire model as it grows 

over time. It shows that the curves from the homogeneous and mixed model fall exactly 

on top on the curve from the discrete model. To take a closer look at the results, the 

concentrations were averaged over each of the 10 unit cells in the configuration. The unit 

cells are numbered as shown in Figure 7.1. Figure 7.7 shows the average concentrations 

Figure 7.5: Concentration profiles in discrete and mixed models for configuration 

A under diffusion at 5 hours. 
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in each unit cell at three snapshots in the simulation: 15 mins, 150 mins and 375 mins 

into the simulation. For each snapshot, the average concentrations from the three 

different models are shown. The first three columns for each unit cell denote the average 

concentrations for t=15 mins, the next three for t=150 mins and the last three columns 

for t=375 mins. For each set of three columns, the first one denotes the discrete model, 

the second denotes the homogeneous model and the last one denotes the mixed model. 

The results show that both the models that use effective properties agree very well with 

the discrete model.  

Configuration B was analyzed for diffusion using both the discrete model and the fully 

homogenized model. The two-dimensional models that generated the results shown in 

Figure 7.8 and 7.9 used meshes with a maximum element length of 1.41x10
-3

mm and a 

time step size of 0.15 minutes. Figure 7.8 shows the average concentration in the entire 

model as it grows over time. The two models agree closely. The homogeneous model 

under predicts the average concentration in the beginning of the simulation and the 

difference reduces as time progresses. It is not surprising that the error reduces as the 

simulation progresses because both models are approaching the same steady state 

condition. Similar to the previous configuration, the average concentration was 

determined for each of the nine unit cells at two different times through the simulation. 

The unit cells are numbered as shown in Figure 7.3. Figure 7.9 shows the average 

concentration from the discrete and homogeneous in each unit cell at t=1.5 and 15 

minutes. The results in Figure 7.9 repeat the trend from Figure 7.8 in that the 

homogeneous model under predicts the concentrations and the predictions become closer 

in agreement as the simulation progresses. In this configuration, the concentration profile 

is more complicated than the earlier one because the oxygen is flowing in from two 

directions. This kind of complex loading appears to have an effect on how well the 

diffusion is modeled by the effective properties. Although it does not do a perfect job in 

simulating the oxygen flow in the beginning, the accuracy increases very quickly as the 

simulation progresses.  
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Figure 7.7: Variation of average concentration in each unit cell in configuration A 

at different times (in minutes) 
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Figure 7.6: Variation of average concentration in configuration A with time 
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7.3.2 Oxidation Modeling 

This section discusses the results from the oxidation simulation of configurations A, B 

and C.  In the oxidation analysis, there are primarily two types of data that are of interest 

– the concentration and the oxidation state. For configuration A and B, the concentration 

distribution will be discussed first followed by the oxidation state. For configuration C, 

only the oxidation state results are presented. 

Figure 7.10 shows the concentration profiles in the discrete and mixed model at 200 hrs. 

It is seen that the concentration profiles are almost exactly the same in the first three unit 

cells on the left which are modeled discretely in both the discrete and mixed models. 

This shows that the effective properties in the homogenized region did not cause an 

adverse effect on the concentration profile in the discretely modeled region. There is, as 

expected, a discontinuity in the concentration at the interface between the discrete and 

homogenized region just as seen in the diffusion analysis of configuration A.  

 

Just as the results for the diffusion analysis were presented, Figure 7.11 shows the 

average concentration growth in the model over time. The plot shows that the discrete 

model appears to have spurts of increase in the average concentration. This can be 

explained by the fact that the discrete model has fibers that are impermeable and do not 

oxidize. When the oxygen diffuses from the left end, the cross sectional area of the 

polymer material through which it can diffuse varies. The area decreases to a minimum 

where the fiber takes up the most space in the cross section  (indicated by A in Figure 

Figure 7.10: Concentration profiles in discrete and mixed models for 

configuration A at 200 hours. 

x 

y 

A B 
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7.10) and increases to a maximum when there is no fiber in the cross section (indicated 

by B). Therefore, when the oxygen is diffusing through the constricted regions, the 

process slows down and this effect shows up in the concentration growth. When the 

oxidation front (or the ‗moving barrier‘ as described in the previous section) passes the 

constricted pathways, the process speeds up for a while till the next constricted pathway 

comes along. The homogeneous model has no such spurts in the growth of the average 

concentration because the model assumes that it is all one homogeneous material 

without any impermeable fibers. On the other hand, the mixed model does show the 

spurts in concentration growth in the first part of the curve because the mixed model 

does have three discrete fibers modeled in the left end where the oxygen is entering the 

material. Although there are these oscillations when the fibers are discretely modeled, it 

is clearly seen that the models with the effective properties do follow the same general 

trend and appears to follow the mean line of the oscillating curves. 

Figure 7.12 shows the difference in the average concentration from the discrete and 

homogeneous in each unit cell at t=150 minutes and t=200 hours. While the 

homogeneous models always under predicted the average concentrations in the diffusion 

only analysis (see Figure 7.7 and 7.9), no such correlation was seen in the oxidation 

analysis. This can be attributed to the same reason for seeing spurts in the growth of the 

average concentration. As seen in Figure 7.11, depending on the simulation time, the 

homogeneous model fluctuates between under predicting and over predicting the 

average concentration. This same effect is what is seen in Figure 7.12. 

The Zone I and II thicknesses are measured for all the three models for configuration A: 

the fully discrete model, fully homogenized model and the mixed model. The zone 

thicknesses for the discrete and mixed models are assumed to be the thicknesses along 

the top or bottom edges of the model. Note that the model is symmetric about the 

horizontal mid-axis and therefore the oxidation layer growth will be symmetric about 

that line. Figure 7.13 shows growth of the oxidation layer (Zone I + II) for the three 

models as well as the variation of the active zone layer (Zone II). It can be seen that the 

effective properties do a good job in predicting the growth in both the homogenous and 
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Figure 7.12: Variation of average concentration in each unit cell in configuration 

A at different times under oxidation. 

Figure 7.11: Variation of average concentration in configuration A with time under 

oxidation 
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mixed model. The Zone II thickness is also found to be predicted fairly well considering 

that the Zone II thickness according to the discrete model appears to fluctuate erratically. 

Figure 7.14 shows the evolution of the oxidation layer in the discrete and mixed models. 

The three zones, Zone I (Fully oxidized), Zone II (Oxidizing) and Zone III (Un-

Oxidized) are color-coded by grey, red and blue respectively. Figure 7.14 shows the 

state of oxidation at six different times during the simulation, t= 150 mins, 25 hrs, 50 

hrs, 100 hrs, 150 hrs and 200 hrs. The snapshots in Figure 7.14 shows what has already 

been conveyed by Figure 7.13 in that the effective properties are able to simulate the 

oxidation layer growth fairly well for configuration A.  

Next, the oxidation analysis was performed for configuration B using two models – a 

discrete model and a homogeneous model. Figure 7.15 shows the concentration 

distribution in the two models at time, t=150 mins. The homogeneous model has the 

fibers drawn in light gray in order to expedite comparisons with the discrete model. 

While the concentrations contours do not exactly match, the contours in between the 

fibers do in some sense resemble corresponding contours in the homogeneous model. 

Figure 7.16 shows the growth of average concentration in the two models as simulation 

progresses. Similar to the concentration growth in discrete model for configuration A, it 

can be seen that the concentration growth for configuration B follows a similar 

oscillating trend. The plot shows that the homogeneous model under-predicts the 

average concentration for most of the simulation. It is understandable that the 

homogeneous model is not able to reproduce the wavy nature of the concentration 

growth in Figure 7.16 because that effect is caused by the microstructure. The 

homogenous model on the other hand, does not have such a microstructure. 
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Figure 7.14: Evolution of oxidation layer in discrete and mixed model for 

configuration A 
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Figure 7.13: Oxidation layer growth (Zone I+II and Zone I) for configuration A 
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The oxidation state from the two models is compared next. Figure 7.17 shows the 

oxidation state at different times in the simulation. As shown in Figure 7.15, the 
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Figure 7.16: Variation of average concentration in configuration B with time under 

oxidation 
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homogeneous model has the fibers drawn in light gray in order to expedite comparisons 

with the discrete model. The oxidation states for t=15 mins, 2.5 hrs, 5 hrs and 10 hrs are 

shown. The figures show that the homogeneous model is able to predict the oxidation 

layer growth fairly accurately.  

 

The discrete models that have been considered so far model only 9 or 10 fibers but the 

discrete model for configuration C models 160 fibers. This makes it a considerably 

larger model and more time-consuming compared to the previous models. Figure 7.18 

shows the contour plots of the oxidation state in the discrete and periodic models after 

undergoing 75 hours of oxidation. As expected the oxidation profile is irregular for the 

model with the discrete microstructure. Nevertheless, the variation in thickness and 

location of the oxidation layer from the exposed edge varies no more than 5% across the 

width. It is interesting to note that the periodic model predicts relatively the same 

t=15 mins t=2.5 hrs 

t=5 hrs t=10 hrs 

Figure 7.17: Evolution of oxidation layer in discrete and homogeneous models for 

configuration B 
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Figure 7.19: Oxidation layer growth (Zone I+II and Zone I) for configuration C 
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amount of oxidation growth as the random model which indicates that for this fiber 

volume fraction and distribution of fibers, the oxidation growth can be idealized by 

using a periodic array. While Figure 7.18 shows the oxidation state distribution at a 

single snapshot from the entire simulation, Figure 7.19 gives a sense of how the 

oxidation state evolved during the entire simulation. Figure 7.19 gives the oxidation 

layer growth over time for the random, periodic and homogenized idealizations. It shows 

the oxidation layer growth along the two edges (right and left) of the discrete model. 

While the two curves do not fall right on top of each other, they are very close. The 

curve from the periodic model is very close to the curves from the discrete model and 

follows the same trend but slightly under predicts the oxidation growth. The 

homogeneous model also follows the same trend but under predicts the growth even 

further. To make an easy comparison with the behavior if there were no fibers at all (i.e. 

pure resin), the oxidation growth curve from pure resin oxidation analysis (using a 1D 

model) is also included. This shows that the pure resin oxidizes slightly faster than when 

there are fibers in the resin which is expected since the fibers are assumed to be 

impermeable and do not oxidize. 

A typical homogenization process in structural mechanics results in being able to use a 

less refined homogenized model to replace the actual microstructure. This was generally 

found to be the case for the oxidation analysis as well. As discussed in the previous 

section, it is possible optimize the mesh parameters and use larger elements and time 

steps. In some configurations, including the ones described in this section, the element 

size is restricted by the need model the discrete geometry accurately. This restriction is 

greatly reduced when modeling homogenized regions. It is also easier to generate the 

models when a complex microstructure can be replaced by a simpler homogenized 

geometry. Another advantage is that sometimes a two dimensional model can be 

replaced with a one dimensional model that is much less computationally intensive. This 

was made use of when analyzing configuration A with a fully homogeneous model. The 

goal of this work is to eventually be able to correlate the effect of the oxidation on the 

mechanical response and damage progression of the composite. Keeping this in mind, 
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tracking the regions of oxidized or oxidizing material in the composite is what would be 

considered to impact the mechanical response. For the material system being considered 

in this work, the thickness of the active zone is found to be practically constant and the 

variation of oxidation state within this zone can be inconsequential in this regard, but 

this need not be the case for other composite systems. Further work needs to be 

performed in order to determine if some accuracy of the oxidation state variation in the 

active zone can be given up in exchange for better computational efficiency as long as 

the oxidation layer thicknesses are predicted with reasonable accuracy. 

7.4 Summary 

To simulate the oxidation of the textile composite, it is important to be able to use 

homogenized oxidation properties for the tow because it is practically impossible to 

discretely model all the fibers in a composite. Effective oxidation material properties 

were calculated for a unidirectional laminate/tow using the expressions described in 

section 3.5.7. Three configurations were analyzed to test the accuracy of the effective 

oxidation properties. The fibers were assumed to be impermeable and do not oxidize. All 

the configurations had 10 micron diameter circular fibers. Two of the configurations had 

the fibers in a square array packing with 50% fiber fraction whereas the third 

configuration had random microstructure with an overall fiber fraction of 28.5%. The 

configurations were discretely modeled to provide a reference solution. Idealizations 

with fully homogenized materials as well as mixed idealizations (both discrete and 

homogenized regions) were used to determine the accuracy of the effective properties. 

The concentration of oxygen in the model as well as the oxidation state of the materials 

in the composite was compared to the reference model. It was seen that the effective 

oxidation properties performed reasonably well for both configurations and were able to 

simulate the oxidation layer growth.  
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8. OXIDATION ANALYSIS OF TEXTILE COMPOSITES 

8.1 Introduction 

One of the primary goals of this work is to study the effect of oxidation on damage 

progression in textile composites. A precursor to the complete damage progression is the 

oxidation analysis of the textile composite. The information from the oxidation analysis 

will be used to degrade the mechanical properties of the textile composite in the damage 

progression model. In this work, the mechanical damage is assumed to not have an effect 

on the oxidation behavior. Therefore, the oxidation model and the damage progression 

model are only coupled in one direction, where the oxidation behavior has an effect on 

the damage model and not the other way round. As discussed in the previous section, 

simulating the oxidation behavior is a computationally intensive task. Conventional 

oxidation analysis of textile composites would require a full 3-D model and in spite of 

the savings from the adaptive meshing strategy described in Section 7, a full 3-D 

oxidation analysis would be exceedingly time-consuming. This section describes a 

hybrid modeling strategy developed to make oxidation analysis feasible. The validation 

of the strategy is also described followed by the simulation of oxidation of a plain weave 

composite configuration using the hybrid strategy. This section also describes the 

information that is generated from the hybrid modeling strategy, which can then be used 

in the coupled damage progression model to predict the mechanical behavior of the 

composite under oxidation. 

8.2 Hybrid Model 

Textile composites have multiple microstructural scales – the fiber/matrix scale, the tow 

architecture scale and laminate scale. As mentioned in the previous sections, it is not 

practical to discretely model all the fibers in the composite because of modeling and 

computational challenges. Effective oxidation material properties that are derived in 

Section 3 and validated in Section 7 are used to model the tows in the textile composite. 

The adaptive meshing strategy described in Section 6 gives considerable savings 

compared to the standard finite element method but unfortunately, it is not enough to 
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make the 3-D analysis of textile composites feasible. Given the length scales involved 

and the limitations on the element size, the mesh would require a huge number of 

elements. This would make generating the models extremely challenging, and analyzing 

the models practically impossible. Moreover, considering that the overall goal of this 

research effort is to couple the oxidation analysis with the damage progression analysis, 

the combination would be prohibitively expensive. In an effort to make this more 

feasible, a hybrid analysis was developed to make the oxidation analysis more efficient. 

The strategy applies to composite laminates that are exposed to oxygen from the top or 

bottom (or both) surfaces, but not the lateral surfaces. The strategy is illustrated in 

Figure 8.1, which shows a 1/8
th

 unit cell of a plain weave symmetrically stacked 2-ply 

laminate. The hybrid analysis takes the three-dimensional model and divides it up into 

individual analysis domains in the in-plane dimensions as shown in Figure 8.1. The 

strategy assumes that because of the boundary conditions applied on the model, the 

oxidation behavior will be such that the neighboring domains do not have an effect on 

each other, essentially assuming that oxygen does not flow from one domain to another. 

Therefore, the individual domains can be analyzed separately. Each individual domain is 

a three dimensional heterogeneous analysis region with curved material boundaries 

because of the undulation of the tows in the textile composite. The model assumes that 

the change in the diffusivity due to the undulation is not significant because the rotation 

Figure 8.1: Schematic of hybrid model for analyzing textile composites 
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domain  

3-D analysis 

domain 
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angles in actual composites are relatively small. The analysis also assumes that the 

undulations of the tows are not significant enough to cause an impact on the oxidation 

behavior. This assumption has been validated and is discussed in the next section. Based 

on this assumption, the individual 3-D domain can be converted into an equivalent 

domain with straight horizontal material boundaries based on the volume fraction of the 

different constituents in the domain as illustrated in Figure 8.1. Since the new equivalent 

domain has no inclined material boundaries, it can be analyzed with a simple 1-D model. 

Thus, the 3-D model shown in Figure 8.1 can be replaced by an array of 64 1-D models, 

thereby reducing analysis time significantly. The hybrid model is implemented in the 

finite element analysis package in such a way that the input to the model is the same as 

the conventional 3-D model. Additional pre-processing work is not required and the 

array of 1-D models is automatically generated and analyzed without the need for human 

interaction. Moreover, the 1-D models can be run in parallel on multi-core processors, 

thereby increasing the efficiency even further. This hybrid modeling strategy was 

validated by using a 2-D configuration. The validation including discussion of some of 

the oxidation behavior is described in the next section.  

8.3 Validation of Hybrid Model 

A simple 2-D heterogeneous configuration with two materials was chosen where the 

material boundary is straight but at an angle to the horizontal edge as shown in Figure 

8.2(a). The bottom edge is assumed to be exposed to oxygen whereas the other three 

edges are assumed to be impermeable. The configuration has the dimensions 200 

microns x 100 microns. The material in the lower region is assumed to be neat PMR-15 

resin and the other material is assumed to be a homogenized graphite/PMR-15 tow with 

a fiber fraction of 55.6%. The 2-D plane in the configuration is assumed to be the plane 

perpendicular to the fiber axis in the tow and therefore only the transverse diffusivities 

of the tow will be used in the 2-D analysis. The material properties of the tow are 

calculated using the formulas described in Section 3.5.7. The material properties of the 

resin are given in Table 6.1 and that of the homogenized tow using the aforementioned 

formulas are given in Table 8.1. The region is first divided into two domains and 
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converted into equivalent 1-D models as shown in Figure 8.2(b). To compare the 

oxidation layer growth predicted by the 1-D models with the behavior in the actual 2-D 

model, the oxidation layer growths along different vertical lines (numbered in Figure 

8.2(a)) in the 2-D model are compared. Figure 8.3(a) plots the oxidation growth given by 

the equivalent 1-D domain 1 model along with that along lines 1, 3 and 5. It shows that 

the 1-D result agrees very closely with that of line 3 and not so much with that of lines 1 

and 5, which are on the extreme edges of domain 1. Similar trends are seen in Figure 

8.3(b), which shows corresponding plots for domain 2. The domains are then further 

subdivided into domains 1-1, 1-2, 2-1 and 2-2 as shown in Figure 8.2(c). The 

corresponding oxidation growth plots for domains 1-1, 2-1, 1-2, and 2-2 are shown in 

Figure 8.3(c), (d), (e), and (f) respectively.  As expected, these results show that the 

equivalent 1-D domain models perform better at simulating the oxidation layer growth 

when the domain size is reduced.  

  

Figure 8.2: 2-D configuration for validating hybrid model 
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Table 8.1: Oxidation material properties for the homogenized tow (Vf=55.6%) 

 
Homogenized tow 

(Vf=55.6%) 

Transverse 

Diffusivity 

unoxD  

oxD  

 

33.07 x10
-6

 mm
2
/min 

48.27 x10
-6

 mm
2
/min 

0R  1.554 mol/(m
3
min) 

ox
 0.639 

C  0.3507 mol/m
3
 

 
0.01-0.0067(t/40) : t < 40 

0.0033 :  t > 40 (t in 

hours) 

( )f C  
2

1
1 2 1

C C

C C
 

 0.919 
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(a) Domain 1 (b) Domain 2 

Figure 8.3: Comparison of the oxidation layer growth from the different 1-D 

models with the growth in the 2D configuration 

(c) Domain 1-1 (d) Domain 2-1 

(e) Domain 1-2 (f) Domain 2-2 
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One interesting behavior that was noticed during the validation was that when simulating 

oxidation of a heterogeneous model with neat matrix and tow, the predicted oxidation 

growth seems counter-intuitive when compared to that of a model with neat matrix 

alone. Consider the equivalent 1-D configuration for domain 1 shown in Figure 8.4, 

which is a heterogeneous model with neat resin and homogenized tow. Figure 8.5 

compares the predicted oxidation layer growth for the configuration in Figure 8.4 with 

that of a pure resin model. One would intuitively expect that since the model with the 

tow is assumed to have inert and impermeable fibers, this would slow down the 

oxidation layer growth compared to a neat resin model that has no fibers. But Figure 8.5 

shows that the model with the resin and tow has a faster oxidation layer growth. On 

Figure 8.5: Comparison of oxidation layer growth in the domain 1 (resin/tow) 

model and neat resin model 
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Figure 8.4: Equivalent 1D configuration for domain 1 



182 

 

 

 

further investigation, it was seen that a number of factors influence this behavior. The 

tow in the model acts like a pseudo-barrier allowing the resin to saturate with oxygen 

much faster than the tow. Until the oxidation front reaches the vicinity of the material 

boundary, both the models behave in the same manner because the tow has no effect on 

the matrix that is being oxidized ahead of it. But once the tow begins to oxidize as well, 

the interface conditions regulate the flow of oxygen from the matrix into the tow and 

free oxygen starts to build up in the matrix. This is evidenced in Figure 8.6 which shows 

the oxygen concentration profile in the model at 100 hours. Figure 8.6 shows that the 

resin region in the resin/tow model (from 0 to 0.06 mm) has more oxygen than the same 

region in the neat resin model. The oxygen in the tow region (from 0.06 to 0.1 mm) is 

also more than that in the same region for the neat resin model. This could be due to a 

combination of factors. First, note that at 100 hours, the oxidation front has crossed the 

material boundary but is not too far from it. The material boundary is at 0.06mm and the 

oxidation front at 100 hours can be considered to be around 0.08mm, beyond which the 

oxygen concentration is practically zero. Secondly, the tow has less amount of resin that 

can be oxidized and therefore the maximum reaction rate is also less than that of the neat 

Figure 8.6: Comparison of concentration profile in the resin/tow model and 

neat resin model at 100 hours 
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resin. That also means that the region consumes less oxygen (for oxidation) than the neat 

resin. Since the reaction rate in the tow is less than that in the neat resin and the 

oxidation front is fairly close to the material boundary, the tow region between the 

material boundary and the oxidation front also starts accumulating more oxygen than the 

corresponding region in the neat resin. Figure 8.7 gives the amount of free oxygen in the 

model throughout the simulation. It shows that until about 60 hours, the resin/tow model 

and the neat resin model have the same amount of free oxygen, but after 60 hours the 

resin/tow model builds up more oxygen in its material. This is not to be confused with 

the amount of oxygen consumed in oxidizing the polymer in the resin and tow regions. 

The neat resin model is expected to consume more oxygen than the resin/tow model 

because it has more material that can be oxidized and this is shown in Figure 8.8. Once 

the oxygen starts to build up in the matrix, it becomes fully oxidized more quickly and 

all the incoming oxygen is directed into the tow region, which is then used up to oxidize 

the polymer in the tow. Also note that an oxidation level of 0.99 at a material point in the 

neat resin region indicates that 1% of the resin in the material has oxidized. On the other 

hand, saying that 1% of the resin in a material point in the tow region corresponds to an 

oxidation level defined by eq(3.134), which for this model is 0.99556. Figure 8.9 shows 

Figure 8.7: Comparison of amount of free oxygen in the resin/tow model and 

neat resin model 
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the oxidation level profile in the model at 100 hours. The inset plot in Figure 8.9 shows a 

close up of the oxidation state of the two models between 0.08mm and 0.095mm. It 

shows that the oxidation level in the resin/tow model dips below 0.99556 at about 

0.085mm (at location A) whereas in the neat resin model, it dips below 0.99 at about 

0.077mm   (at location B). This snapshot of the simulation at 100 hours shows what the 

oxidation profile in the two models looks like when the oxidation layer thickness in the 

resin/tow model is larger than that in the neat resin model. Overall, this oxidation 

behavior in the resin/tow model is due to a combination of factors such as the effective 

oxidation properties of the tow as well as the diffusion behavior in heterogeneous 

models and the relatively slow movement of the oxidation 

Figure 8.8: Comparison of amount of oxygen consumed in the resin/tow model and 

neat resin model  
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front into the interior of the material. It would also depend on the volume fraction of the 

constituent materials and the configuration of the materials in the heterogeneous model. 

Therefore, the location of the material boundary in the configuration also has an impact 

on the oxidation behavior. 

  

Figure 8.9: Comparison of oxidation level ( )  profile in the resin/tow model and 

neat resin model at 100 hours 
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8.4 Oxidation Analysis of Plain Weave Laminate 

Now that the hybrid modeling strategy has been validated, it can be used to simulate the 

oxidation behavior in textile composites and eventually coupled with the damage 

progression analysis to predict the mechanical behavior under oxidation. The 

configurations that are examined in this work are plain weave laminates exposed to 

oxygen at the top and bottom surfaces and the oxidation behavior is simulated only for 

200 hours. As discussed later in this section, after 200 hours of oxidation of the 

laminates with the material system that is considered in this work, the oxidation layer 

thickness does not exceed more than the thickness of a single ply. Therefore, based on 

the oxidation model implemented in this work, the growth of the oxidation layer would 

be the same regardless of whether it is a 2-ply laminate or if it has more than 2 plies. On 

the other hand, although the oxidation layer growth is the same, the number of plies 

could have an impact on the mechanical behavior and this is discussed in the next 

section. 

The hybrid model was used to simulate the oxidation behavior in a symmetric two-ply 

graphite/PMR-15 plain weave laminate. Both the top and bottom surfaces are exposed to 

oxygen. The composite is chosen to have a waviness ratio of 1/3. A full unit cell of the 

configuration is shown in Figure 8.10(a). By exploiting symmetry, it is possible to 

analyze the configuration using only 1/8
th

 of the full unit cell as shown in Figure 8.10(b) 

with a transparent matrix. The hybrid modeling technique is used on the reduced 

domain, which is automatically subdivided into an array of 64 1-D model as described in 

the previous section. Since both the warp and fill tows have the same oxidation material 

properties and the effects of the undulation are assumed to be insignificant, the four 

quadrants in Figure 8.10(b) are essentially identical, therefore the results from the 

corresponding 1-D models in the different quadrants will be the same. Additionally, 

within one quadrant (i.e. 1/32
nd

 of the unit cell), based on the same assumptions of 

ignoring the effects of undulation, the region is symmetric about the plane as shown in 

Figure 8.10(c). Therefore, the only unique results from the analysis are those from the 10 

domains numbered in Figure 8.10(d). Figure 8.11 gives the predicted oxidation layer 
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growth for the 10 domains. It shows that there is considerable variation in the oxidation 

layer growth behavior of the 10 domains. At the end of 200 hours of oxidation, the 

thickest layer is 0.11 mm (in Domain 9) which is only slightly larger than half the 

thickness of a single ply. Figure 8.10(c) shows that domain 10 has the largest amount of 

matrix with a very small region of tow in the middle whereas domain 1 has the largest 
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Figure 8.11: Oxidation layer growth in the 10 unique domains 
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amount of tow with a very small region of matrix at the two ends. Although domain 10 

has the largest amount of matrix, it is not the domain that has the thickest oxidation 

layer. This is because, as discussed earlier in section 8.2, in heterogeneous models the 

oxidation behavior is not very straightforward and depends on a number of factors such 

as the location of the material boundaries and the oxidation properties of each of the 

constituent materials. In each of the ten unique 1-D domains representing the weave 

microstructure, the material boundaries are at a different distance away from the exposed 

surface. This results in a varied oxidation behavior from the 1-D models. Since domain 

10 is almost all resin with a small region of tow in the middle, its oxidation behavior 

would be expected to be close to that of a neat resin. Similarly, since domain 1 is almost 

all tow with a small region of matrix at the two ends, its oxidation behavior would be 

expected to be close to that of a homogenized tow model. However, as explained earlier 

with the heterogeneous configuration, the behavior is not always close to that of the 

corresponding homogeneous model. Figure 8.12 shows the layer growth for domains 1 

and 10 as well as for a neat resin model and a homogenized tow model. It shows that 

domain 10 follows the same behavior as a neat resin model but once the oxidation front 

reaches the tow material, domain 10 has a slightly faster oxidation layer growth. For 

domain 1, the oxidation layer is only slightly thicker than that in an all tow model. 

Overall, the analysis shows that the oxidation front does not advance uniformly 

throughout the composite. At the end of 200 hours of oxidation, domain 1 has the 

smallest 
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oxidation layer with a thickness of 84.5 microns and domain 9 has the largest oxidation 

layer with a thickness of 110 microns. That is a range of over 25 microns, which is over 

30% of the domain 1 layer thickness. Therefore, it can be said that the tow architecture 

plays a significant role in the variation.  

8.5 Storage of Oxidation Behavior Data from Hybrid Model 

The oxidation behavior of the laminate is eventually used in the coupled damage 

progression model in order to predict the mechanical behavior under oxidation. In order 

to do this, the results from the oxidation analysis need to be passed on to the damage 

progression model. The results consist of the distribution of the oxidation level property 

in the laminate at different time steps in the simulation. The oxidation level data at the 

different time steps is needed by the damage progression model in order to degrade the 

mechanical properties of the composites based on how much of the material has 

oxidized. The value of the oxidation level at each integration point in the all the elements 

of the finite element model is kept track of in the memory and can be written to a file, 

similar to how the stress distribution in a model can be written to a file. If the oxidation 

Figure 8.12: Comparison of oxidation layer growth in domains 1 and 10 with that 

of a neat resin model and homogenized tow model 
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model and the damage progression model used the same discretization for the analysis 

domain, i.e. the same finite element mesh, then the information transfer is 

straightforward. The oxidation level distribution file can be read in by the damage 

progression model and all the oxidation level information would be available for 

performing the mechanical property degradation.  

However, when a hybrid model is used for the oxidation analysis, the information 

transfer to the damage progression model is not so straightforward. In the hybrid model, 

each individual 1-D domain is an approximation of the actual 3-D region that it 

represents in the laminate. Due to this reason, the oxidation level value distribution in 

the 1D model is not an exact representation of what the distribution would be if the 

actual 3-D domain was analyzed. For example, Figure 8.13 shows a 3D domain and its 

equivalent 1D domain. Point A in the 3D domain would be the geometrically equivalent 

point to Point B in the equivalent 1D domain, but note that the two points are located in 

different material regions of the models. Point A is located in the matrix region where as 

Point B is located in the tow region. However, because of the characteristic oxidation 

behavior, the mismatch in the geometry is only an issue when the oxidation front is in 

the vicinity of the material boundaries. Even when the oxidation front is near the 

material boundary, it is seen that errors due to this mismatch is not significant because 

the rotation angles of the tow in the laminates are not large enough.  

Another issue has to do with the amount of information that has to be transferred from 

the oxidation model to the damage progression model. For example, using the hybrid 

strategy on the 3D domain shown in Figure 8.10(b) would result in 64 1D domains. 

Assuming that the oxidation level distribution is post-processed and outputted by each 

1D model at 88 different time steps throughout the oxidation simulation, this would 

result in the creation of 88 x 64 = 5632 data sets. During the coupled simulation, at each 

of the 88 time steps, 64 different files need to be opened and the oxidation level 

information of each element in all the 1D models need to be read in. A strategy was 

sought that could reduce the number of file I/O operations as well as the amount of data 

that had transferred during the coupled analysis while maintaining reasonable accuracy. 
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The approximations that were made in the developed strategy and a description of the 

data that is transferred from the hybrid oxidation model to the damage model are 

described in the remainder of this section. 

Note that the value of the oxidation level at a material point can vary from 1 to 0 as 

described in section 3.5.1. A value of 1 denotes that the material is un-oxidized and a 

value of 0 denotes that the material is fully oxidized. Typically, a significant majority of 

the model is made up of either fully oxidized or un-oxidized material. A small fraction 

of the model has oxidation levels in the range between 1 and 0, which ideally denotes the 

active zone, or that the material has started oxidizing but it is not fully oxidized yet as 

shown in Figure 3.5. Therefore, instead of storing the oxidation level information for 

each element in the 1-D model, just the dimensions of the active zone is stored to 

represent the oxidation level profile for a particular time step. In this manner, the 

oxidation level profile in a 1D domain for all of the 88 time steps can be effectively 

compressed into a single file using only a fraction of the information. When the data is 

read in during the coupled simulation, the oxidation level profile is approximated using a 

linear variation of the oxidation level within the active zone. These approximations are 

Figure 8.13: 3D domain and equivalent 1D domain in hybrid modeling strategy 
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made based on a few assumptions. The active zone is assumed to be very small 

compared to the fully oxidized and un-oxidized region. Although the actual variation of 

the oxidation level in the active zone is not linear, the linear variation assumed in this 

model is assumed to be reliable for the material systems considered in this work. The 

simple linear approximations employed here are assumed to be reliable for the purposes 

of predicting mechanical behavior in the composites. Figure 8.14 shows the predicted 

oxidation level profile in a block of neat resin at 100 hours. The dotted line shows the 

approximated oxidation level profile. The location where the approximated oxidation 

level starts lowering from 1.0 is determined by the thickness of the oxidation layer or in 

other words the dimensions of the oxidation zones. The instructions to determine the 

dimensions of the different zones and the oxidation layer thickness are described in 

section 3.5.6. The location of the point where the approximated oxidation level reaches 0 

is also similarly determined by the dimensions of the active zone (typically it is the 

location where the predicted oxidation level reaches 0.01). During the initial stages of 

Figure 8.14: Oxidation Level profile in neat resin 1-D model at 100 hours 
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oxidation when there is no fully oxidized material, the predicted oxidation level does not 

drop all the way to 0. In this case, the linear approximation is based on the value of the 

predicted oxidation level at the location in the model that is exposed to oxygen. This is 

illustrated in Figure 8.15, which shows the oxidation level profile in neat resin at 1 hour. 

The predicted oxidation level at the exposed surface after 1 hour of oxidation is 0.1812 

and as shown in Figure 8.15, both the predicted profile and the approximate profile have 

the same oxidation level value at the exposed end. When analyzing heterogeneous 

models, the oxidation level profile is more complicated in that the profile is piece-wise 

continuous with the predicted oxidation level continuous within a single material. For 

example, in the heterogeneous configuration shown in Figure 8.4, the material boundary 

is at 0.06 mm. Figure 8.16 shows the predicted oxidation level profile for that 

configuration at 70 hours. The approximated oxidation 

level profile is also maintained as a piece-wise oxidation level profile for each material 

region. The approximated oxidation level value in either material region at the material 

boundary is same as the corresponding predicted oxidation level value for that location. 

Figure 8.15: Oxidation Level profile in neat resin 1-D model  at 1 hour 
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In order to save the approximated oxidation level profiles for the required time steps so 

that it can be used by the damage progression model in the coupled simulation, the 

oxidation level information for each material region in the 1D domain is stored using 

just four values – the beginning and end locations, and the beginning and end oxidation 

level values. This information is then used in the coupled damage progression model to 

determine the oxidation level at each integration point and degrade the mechanical 

properties based on the constitutive relations. 

 

8.6 Summary 

A conventional oxidation analysis of textile composites would require a full 3-D model. 

Based on the element size requirements, a finite element model of a textile composite 

would be very large, making it prohibitively expensive to simulate the oxidation 

behavior. This is in spite of the computational savings made possible by the adaptive 

meshing strategy described in Section 7. In order to make the oxidation analysis of 

Figure 8.16: Oxidation Level profile in heterogeneous 1-D model (see Figure 8.4) 

at 70 hours 
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textile composites more feasible, a hybrid modeling strategy is developed. The strategy 

involves dividing the full 3-D model into an array of representative 1-D models, which 

can be easily analyzed. Since the 1-D models are independent from each other, they can 

be run on multi-core processors making the analysis even more efficient. This section 

describes the hybrid modeling strategy and its validation. The hybrid model is then used 

to simulate oxidation in a plain weave Graphite/PMR-15 composite. The section also 

describes how the oxidation information from the hybrid model is maintained so that it 

can be used by the damage progression model for prediction of the mechanical behavior.
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9. PREDICTION OF DAMAGE IN TEXTILE COMPOSITES IN OXIDIZING 

ENVIRONMENTS 

9.1 Introduction 

The previous sections have laid the groundwork in order to be able to build the 

framework so that the effect of oxidation on the mechanical behavior of textile 

composites can be predicted. The last three sections describe the challenges and 

appropriate strategies for simulating the oxidation behavior in textile composites. 

Section 3 described the governing equations and finite element formulations required for 

the damage analysis, oxidation analysis and the coupled oxidation-damage progression 

model. This section begins with a brief overview of the different damage mechanisms in 

textile composites. This is followed by a description of how the coupled analysis model 

was used to predict the damage initiation and progression in the textile composites in 

oxidizing environments. The configurations that will be analyzed will be described 

including the material properties and the constitutive model that was used to implement 

the coupled analysis model. This will be followed by the results and discussion of the 

analysis and the parametric studies. 

9.2 Damage Mechanisms in Textile Composites  

Textile composites fail under different types of loadings exhibiting different types of 

damage mechanisms [177]. One common damage mechanism is transverse cracking in 

the matrix and tows. Other damage mechanisms seen in the tows are inter- and intra-tow 

delamination, fiber buckling and fiber breakage etc. Resin pockets in the composite can 

develop transverse matrix cracks (transverse to the loading direction) independent of the 

matrix cracks in the tows. Quaresimin et al. [177] observed three main damage 

mechanisms in twill weave composites under fatigue loading. They are layer 

delaminations, transverse matrix cracking and fiber failure. Figure 9.1 shows the 

micrographs illustrating these damage mechanisms. Quaresimin et al. [177] analyzed a 

number of laminates with different stacking sequences and saw that all three damage 
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Figure 9.1: Damage Mechanisms in woven composites [177] 

(b) Transverse matrix crack 

(b) Delamination 

Transverse 

crack 
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mechanisms were present under different types of fatigue loadings, but the sequence of 

appearance was different. It was also seen that only one predominant mechanism 

generally dictated the laminate behavior. 

Figure 9.2 shows a schematic of the different damage modes in a tow. The mode under 

which damage occurs in the material depends on which material allowable is exceeded. 

The failure criteria that are used in this work are discussed in the next section. The 

damage modes in the tows can be classified into four types as shown in Figure 9.2. The 

―1‖ direction denotes the fiber direction whereas the ―2‖ and ―3‖ directions are in-plane 

and out of plane transverse directions respectively. The coordinate axes defined by the 

―1‖, ―2‖ and ―3‖ direction are the principal coordinate axes of the tow, which is assumed 

to be transversely orthotropic. The finite element model of the composite accounts for 

the undulation of the tows and therefore the rotation angles for the material vary 

depending on the location of the material point in the tow. As illustrated in Figure 9.2, 

fiber breakage occurs under failure mode 11 and this damage mode is generally caused 

by excessive 
11

 stress in the tow. This failure mode is what generally causes the 

(c) Fiber Failure 

Figure 9.1: Continued. 



199 

 

 

 

ultimate failure of the composite. Transverse matrix cracking is generally one of early 

damage mechanisms seen in the tows. This type of damage mode is caused by excessive 

22
 or 

12
 stress components and classified as failure modes 22 and 12 respectively. 

Failure mode 33 and 13 can be caused by either 
33

 or 
13

 stress components and can 

result in intra- or inter-laminar delaminations. Figure 9.2 also shows the damage mode 

23 which is caused by 
23

 stress. 

 

9.2.1 Failure Criteria for Tows and Matrix 

As mentioned in the previous section, the condition for damage to occur and more 

specifically, which type of damage mechanism is in action, is determined based on what 

failure mode has been triggered. In order to determine if a failure mode has been 

Figure 9.2: Schematic of different damage modes in the tow of textile 

composites [5] 
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triggered, a suitable failure criterion is required. This section defines the failure criteria 

employed in all the models used in this work.  

Depending upon the property degradation scheme used, a material point in the matrix 

will be assumed to be isotropic or anisotropic after the damage has occurred. Since the 

matrix is initially isotropic, the global coordinate system and the material coordinate 

system are the same. On the other hand, the principal coordinate system is not 

necessarily the same as the global coordinate system. Moreover, the property 

degradation scheme used in this work assumes that the material will become anisotropic 

after mechanical damage. Therefore, it was assumed that there is no significant effect of 

choosing the maximum stress criterion over the principal stress criterion. In this 

particular work, the stress in the global coordinate system was used in the maximum 

stress criterion to determine failure modes in the matrix. However, future enhancements 

to the model should provide the option of choosing the maximum principal stress 

criterion if the material is not damaged. 

In the case of the tow material, the maximum stress criterion for anisotropic materials 

was used, which says that the failure occurs when any of the stress components in the 

material coordinates system exceeds its corresponding strength. The tows can fail under 

one or more damage modes such as fiber breaking and transverse cracking. The modes 

strongly affect the mechanical behavior of the structure. In this work, the tows are 

assumed to be transversely isotropic before any damage occurs. However, the tow in 

general would no longer be transversely isotropic after it has failed and its mechanical 

properties have been degraded. But the stress in the local coordinate system of the tow is 

continued to be used for the maximum stress failure criterion. If ij  are the stress 

components in the material coordinates system of the tow and ijS  are the corresponding 

strength values, then the failure criteria used in this work can be summarized as below: 

For isotropic matrix: 

 Max stress criterion 
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For transversely isotropic tow:  

 Max stress criterion   (9.1) 

 1ij

ijS
  Material point has failed in mode ij 

 1ij

ijS
 Material point has not failed 

The strength properties of the materials analyzed in this work is listed in section 9.3.1 

which defines the all material properties used in this work. 

9.3 Configuration 

The coupled analysis framework was used to investigate the mechanical behavior of a 

plain weave Graphite/PMR-15 composite in an oxidizing environment. The waviness 

ratio of the composite is assumed to be 1/3 and the fiber volume fraction in the tow is 

assumed to be 55.6%. The reason for choosing this fiber volume fraction was because of 

the availability of experimental engineering properties for this particular material system 

in the literature. The volume fraction of the tows in the composite is assumed to be 

63.6% and therefore the overall fiber fraction in the composite is 35.36%. The laminate 

consists of two plies and is assumed to be symmetrically stacked and infinite in the in-

plane directions. Figure 9.3 shows the full unit cell of the configuration. The laminate is 

assumed to be loaded under uniaxial stress conditions in the x-direction at a temperature 

of 288C. The material properties used to model the configuration will be assumed to be 

those at 288 C. However, in this current implementation of the coupled analysis model, 

the effects of thermal expansion and the shrinkage of resin under oxidation will be 

ignored. The configuration will be loaded to a pre-determined strain level and 

maintained at that level. The configuration is then exposed to oxygen from the top and 

bottom surfaces while the lateral surfaces are assumed to be impermeable. The laminate 

will be exposed to the oxygen for 200 hours at 288C. The damage in the laminate 

throughout this simulation will be tracked and the mechanical behavior will be recorded. 

The number of plies in the laminate was changed in a parametric study to determine its 
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effect on the mechanical behavior. Any changes from this basic configuration will be 

described as required when discussing the results of the parametric study.  

Exploiting symmetry conditions in this configuration allows reducing the analysis 

domain from a full unit cell to just 1/8
th

 of the unit cell as shown in Figure 9.4. For all 

the results discussed in this section, the analysis domain, which is the 1/8
th

 unit cell, is 

part of the bottom ply in the configuration. Therefore, the bottom surface of the model in 

Figure 9.4 is traction-free and exposed to oxygen. 

9.3.1 Material System 

The material system used for all the analyses discussed in this section is Graphite/PMR-

15 composite. The coupled model requires both the oxidation material properties as well 

as the mechanical properties for the tow and matrix in the composite. Note that the 

configuration is assumed to be at a temperature of 288 C throughout the entire 

simulation. The coupled model also requires the degradation schemes for the matrix and 

Figure 9.3: Two-ply plain weave composite configuration 
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the tow, for both the oxidation as well as mechanical damage. These degradation 

schemes are described in the next section.  

The oxidation material properties that are used in these models have already been 

described in the previous sections that discuss the oxidation behavior in composites. The 

oxidation material properties for the neat PMR-15 resin were obtained from ref [9]. The 

oxidation material properties for the tow were determined using the homogenization 

strategies described in Section 3. Table 6.1 gives the oxidation material properties for the 

neat PMR-15 resin and Table 8.1 gives the corresponding properties for the tow. 

Obtaining the mechanical properties for the Graphite/PMR-15 material system at 288 C 

is not easy since they tend to change over time and it may not be appropriate to use 

property data from different sources or manufacturers over different time periods. That 

being the case, it is also very difficult to obtain the entire set of required mechanical 

properties from one source in the literature. Moreover, some of the required properties at 

288 C are unavailable due to the lack of appropriate experimental techniques to 

determine them. The resin and the tow are also assumed to be linear elastic materials 

although elasto-plastic behavior of the polyimide resin would be expected to be more 

prominent at 288 C. Overall, the set of mechanical properties for the material system 

Figure 9.4: Analysis domain (1/8
th

 unit cell) with transparent matrix 
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used in this work was chosen from a combination of different sources in the literature 

and based on certain assumptions and estimates that are described below.  

The mechanical properties of the neat PMR-15 resin were chosen based on experimental 

data from Pochiraju and Tandon [153]. The Young‘s modulus of the neat resin was 

found to be 2.096 GPa and the Poisson‘s ratio is assumed to be 0.30 in Pochiraju and 

Tandon‘s work [153]. Based on the assumption that the neat matrix is isotropic, the 

Young‘s modulus and Poisson‘s ratio can be used to calculate the shear modulus. 

Pochiraju and Tandon [153] also provide the normal strength at room temperature and 

288 C. The shear strength of the neat PMR-15 resin is calculated by scaling the strength 

at room temperature based on the change in normal strength from room temperature to 

288 C. Table 9.1 contains the elastic moduli for neat PMR-15 resin that were used in this 

work. The strength properties that were discussed in this paragraph are provided under 

Set 1 in Table 9.2. The properties under Set 2 and the need for an additional set of 

strength properties are discussed in the next paragraph.  

The Graphite/PMR-15 tow is assumed to be transversely isotropic and therefore its 

elastic behavior is defined by five independent properties. The engineering properties for 

the tow were harder to obtain because the configuration requires properties at 288 C. The 

elastic moduli chosen were interpolated from work performed by Odegard and Kumosa 

[149], which looked at the effect of temperature on some of the engineering properties of 

a Graphite/PMR-15 unidirectional laminate (Vf=55.6%). Of the five independent 

properties required, E11, E22, v12 and G12 were obtained by interpolating from the data 

in Ref [149]. The Poisson‘s ratio in the transverse plane, v23, at 288 C was assumed to 

be the same as that at room temperature. The elastic moduli for the tow material are 

summarized in Table 9.1. All the strengths properties of the tow at 288C were not 

available in the literature. It is relatively difficult to determine all the strength properties 

for the tow. These properties, especially the matrix-dominated properties, are hard to 

determine, because of many factors like the material interface properties that influence 

the strengths. The 
22

 strength and 
12

 strength were interpolated from Odegard and 
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Kumosa‘s work[149]. Since, the tow is assumed to be transversely isotropic, the 
33

 

strength is the same as the 
22

 strength and the 
12

 strength is the same as the  
13

 

strength. Due to lack of experimental data for the fiber-dominated 
11

 strength, the 

corresponding strength from a Graphite/epoxy material system was used. However, the 

11
 strength is only consequential only during fiber-breakage which occurs during final 

failure of the composite. Therefore, this assumption was not considered to be significant 

because this work is more concerned with the damage initiation and progression then the 

final failure of the composite. Also, due to lack of experimental data for the 
23

 strength, 

it was assumed to be the 
23

 stress corresponding to the same strain level at which the 

12
 stress mode failed. These strength properties for the tow are summarized under Set 1 

in Table 9.2. Note that the 
22

strength of the tow in Set 1 is considerably lower than the 

normal strength of the neat resin. This would indicate that the tows would fail before the 

neat resin pockets in the composite. It is common for a composite to have a lower 

transverse tensile strength than the tensile strength of the neat resin [178]. However, 

since the properties for this material system were compiled from different sources and 

therefore as mentioned before, not particularly reliable, another set of assumed strengths 

were also chosen for the material system. In this new set of properties, the normal and 

shear strength of the neat resin were scaled down based on typical strength ratios 

between resin and tow transverse strengths in Graphite/Epoxy material systems. This 

additional set of strength properties for the material system used in this work is defined 

as Set 2 in Table 9.2. Having two sets of material properties would also give another 

perspective on the damage initiation and progression behavior based on the change in 

engineering properties.  
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Table 9.1: Elastic properties for the Graphite/PMR-15 material system [149,153] 

 
Resin 

Neat PMR-15 

Tow 

Graphite/PMR-15 

E11 2.096 GPa 124.05 GPa 

E22=E33 2.096 GPa 6.2 GPa 

G12=G13 0.806 GPa 1.62 GPa 

G23 0.806 GPa 1.929 GPa 

v12=v13 0.3 0.485 

v23 0.3 0.607 

 

Table 9.2: Strength properties for the Graphite/PMR-15 material system [149,153] 

 

Set 1 Set 2 

Resin 

Neat PMR-15 

Tow 

Graphite/PMR-15 

Resin 

Neat PMR-15 

Tow 

Graphite/PMR-15 

S11 41 2550 12 2550 

S22 41 18.91 12 19 

S33 41 18.91 12 19 

S12 73.72 36.83 12 37 

S23 73.72 43.85 12 44 

S13 73.72 36.83 12 37 

All strengths in MPa 

9.3.2 Constitutive Relations 

This section describes the different constitutive relations that are required to implement 

this coupled oxidation-damage progression model. This includes the mechanical 

property degradation schemes both due to mechanical loading as well as due to the effect 

of oxidation. The section also talks about how the two degradation schemes are 

combined and used in the coupled model to obtain the overall mechanical properties of 

the material based on the oxidation and damage state. 

9.3.2.1 Property degradation scheme based on mechanical damage 

When a failure mode is triggered during the damage analysis, the engineering properties 

are degraded to account for the change in mechanical behavior. This operation is 

conducted based on a property degradation scheme, which has been briefly discussed in 

section 3.3.8.2. In this work, the failure criteria and the property degradation scheme is 
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applied on each integration point within every element in the model. The property 

degradation scheme is implemented such that a material point that has already failed 

under a particular mode can fail under another mode. In such a case, the material 

properties are degraded based on which failure mode prescribes the larger degradation. 

Different property degradation schemes have been proposed in the literature by several 

researchers such as Whitcomb et al. [118], Blackketter et al. [82], Tamma et al. [124] 

and Zako et al. [123]. All these models share certain similarities and differences. They 

are similar in the sense that each of them controls the amount of degradation under 

different failure modes for both the tow and the matrix. Goyal [5] performed a 

comparison of the different degradation schemes and developed a common framework 

that allowed implementation of a wide variety of degradation schemes. 

For all the damage progression models in this work, the degradation scheme by 

Blackketter [82] was used. This type of degradation scheme has been widely used by 

many researchers [118-121] to predict initiation and progression of damage. The 

engineering properties are degraded as specified in eq(3.41). The degradation scheme 

used is different for the tow and the matrix.  

In the degradation scheme for the tow material, the values of the degradation parameters, 

ai (i=1 to 6) are 1, 5 or 100. Note that the value of the parameters in ai will be different 

under different damage modes. Table 9.3 gives the values of the degradation factors for 

the tow material under this scheme. The ―1‖ is the local fiber direction of the tow and 

―2‖ and ―3‖ are the local transverse directions of the tow. An ai value of 1 indicates that 

the modulus has not been degraded. An ai value of 5 indicates the modulus has been 

degraded to 20% of its original value and similarly an ai value of 100 indicates the 

modulus has been degraded to 1% of its original value. The reason that some of the 

moduli are degraded to 1% of the original rather than an absolute zero is to avoid 

numerical instabilities[82]. The shear moduli were not reduced to less than 20% of the 

original value under mode 
22

 and 
33

 failure because it is assumed that some shear 

stiffness remains due to frictional resistance still present on the failure plane [82].  
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For the matrix material, the property degradation was assumed to be the same under all 

the failure modes. The tensile moduli and Poisson‘s ratios of the matrix are reduced to 

1% of its original value whereas the shear moduli are reduced to 20% of its original 

value. The matrix is therefore assumed to become anisotropic after failure. Table 9.4 

gives the degradation factors for the matrix material.   

Table 9.3: Degradation parameters (ai) for engineering elastic properties of the tow [82] 

 Mode 
11

 Mode 
22

 Mode 
33

 Mode 
12

 Mode 
23

 Mode 
13

 

E11 100 1 1 1 1 1 

E22 100 100 1 100 100 1 

E33 100 1 100 1 100 100 

G12 100 5 1 100 100 1 

G23 100 5 5 1 100 1 

G13 100 1 5 1 100 100 

v12 100 1 1 1 1 1 

v23 100 100 1 100 100 1 

v13 100 1 1 1 1 1 

 

Table 9.4: Degradation parameters (ai) for engineering elastic properties of the matrix 

[82] 

 All Modes 

E11 100 

E22 100 

E33 100 

G12 5 

G23 5 

G13 5 

v12 100 

v23 100 

v13 100 

 

9.3.2.2 Property degradation scheme based on oxidation 

The effect of oxidation on the mechanical behavior of the composites is considered in 

the coupled analysis models used in this work. In reality, the mechanical behavior is 

probably more tightly coupled with the oxidation behavior than what is assumed in the 
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current model because the mechanical damage can affect the oxidation behavior by 

allowing more oxygen to penetrate the composite material. This can further affect the 

mechanical behavior because more oxidation will cause more damage in the composite. 

These complex effects are not considered in this current work. In this work, the 

oxidation is assumed to affect the mechanical behavior, but not the converse.  

A simple constitutive relation or property degradation scheme was developed to account 

for the effect of oxidation on the mechanical behavior and is described in section 3.6.1. 

For a general orthotropic material, the engineering moduli are modified according to 

eq(3.136). Unlike the property degradation scheme for mechanical damage, there is no 

failure criteria on which the degradation scheme is based.  

While the property degradation scheme due to mechanical damage typically reduces the 

value of the moduli, the same is not necessarily the case for the property degradation 

scheme for oxidation. Experimental work has shown that the stiffness of the fully 

oxidized matrix is typically larger than that of the un-oxidized material [9]. There is not 

enough data in the literature in order to determine all the degradation parameters, bi. In 

order to implement the degradation scheme for this work, the best available data in the 

literature was used where appropriate and estimates based on certain assumptions were 

used to the remaining parameters. The values of bi chosen for the matrix and tow 

materials in this work are given in Table 9.5. Experiments showed that the elastic 

modulus of the neat PMR-15 resin increased by about 20% when fully oxidized [9]. The 

same amount of increase is assumed to apply for the shear moduli. The Poisson‘s ratio is 

assumed to remain constant based on the assumption that the matrix remains isotropic 

after oxidation. The same challenges exist for obtaining accurate characterization data 

for tows or unidirectional laminates. The fiber is assumed to be impermeable and 

unaffected by the oxidation. Simple micromechanics analyses showed that effective tow 

properties were changed by a very small amount when the matrix moduli were increased 

by 20%. Since the change was insignificant, the degradation properties (bi) for the tow 

were assumed to be zero, meaning that the elastic properties of the tow were assumed to 
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remain constant after oxidation. Therefore, an undamaged material point in the tow was 

assumed to remain transversely isotropic after the material was oxidized.  

As mentioned in Section 3.6.1, the property degradation scheme based on oxidation also 

degrades the strength properties of the materials in the composite as defined by 

eq(3.138). There is no data in the literature that can be used to determine the strength 

degradation parameters, di. Due to this limitation, for all the models analyzed in this 

work, strength properties are assumed for the fully oxidized matrix and tow. Table 9.6 

gives the values of the strength degradation parameters chosen for the matrix and tow. 

The strengths for all stress components in the matrix are assumed to drop to half its 

value. In the case of the tow material, the 
11

 strength, which is the strength in the fiber 

direction, is assumed to drop to 95% of the original value whereas all the other strengths 

drop 50%.  

Table 9.5: Parameters (bi) for degrading engineering elastic properties of the matrix and 

tow 

 
Engineering property 

affected 

bi 

Matrix Tow 

1 E11 +0.2 0.0 

2 E22 +0.2 0.0 

3 E33 +0.2 0.0 

4 G12 +0.2 0.0 

5 G23 +0.2 0.0 

6 G13 +0.2 0.0 

7 v12 0 0.0 

8 v23 0 0.0 

9 v13 0 0.0 
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Table 9.6: Parameters (di) for degrading strength properties of the matrix and tow 

 
Strength property 

affected 

di 

Matrix Tow 

1 S11 -0.50 -0.05 

2 S22 -0.50 -0.50 

3 S33 -0.50 -0.50 

4 S12 -0.50 -0.50 

5 S23 -0.50 -0.50 

6 S13 -0.50 -0.50 

 

 

The overall mechanical moduli of the material are obtained by combining the two 

degradation schemes, both based on mechanical damage as well as oxidation, as 

described in Section 3.6.1. The expressions for the overall properties at a material point 

are given by the eq(3.139). Note that although the degradation scheme chosen in this 

work assumes that the matrix remains isotropic after oxidation, the overall mechanical 

properties obtained after accounting for mechanical damage need not necessarily 

represent an isotropic material. The parameters, ai, have a value of 1 if the material is not 

damaged and therefore in such a case, the matrix would remain isotropic. On the other 

hand, if the matrix is damaged under any mechanical failure mode, the matrix becomes 

anisotropic. Similarly, the tow need not remain transversely isotropic after the 

mechanical properties have been modified using eq(3.139). 
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9.4 Results and Discussion 

The coupled analysis model was used to simulate damage initiation and progression in 

the configuration described in section 9.3. The basic configuration described in Section 

9.3 is a two-ply laminate at 288 C with the top and bottom surfaces exposed to oxygen. 

The laminate is assumed to be infinite in the in-plane directions and has a uniaxial load 

in the x-direction. As described in Section 9.3.1, two sets of material properties were 

chosen to model the Graphite/PMR-15 material system. This section will discuss the 

results from the analyses performed using both sets of properties. A parametric study 

was also performed where the number of plies in the laminate was increased. The 

parametric study looked at two-, four- and six-ply laminates for both the sets of material 

properties. The results of this parametric study will be described in this section as well. 

9.4.1 Two-Ply Laminate 

The damage progression behavior of the laminate under mechanical load alone (i.e. no 

oxidation) is first discussed. The laminate is assumed to be quasi-statically loaded 

uniaxially while maintained at a temperature of 288 C. Since two sets of material 

properties were chosen to define the Graphite/PMR-15 material system, the damage 

analyses were performed on two models, one for each material property set. Note that 

the two sets of material properties have the same elastic moduli. The difference between 

the two sets of material properties is in the strengths properties as shown in Table 9.2. 

Figure 9.5 shows a plot of the volume averaged 
xx

 versus the volume averaged 
xx

 for 

both the models. As expected, the stress-strain behaviors are different for the two 

models. Figure 9.5 shows that the initial damage in the model using Set 1 properties 

causes a significant drop in load (indicated by A) compared to the initial damage in the 

model using Set 2 properties (indicated by B). This difference in behavior can be 

explained by looking at where the initial damage occurs. In the case of Set 1, in which 

the transverse tow strengths are much lower than the matrix strengths, damage initiated 

in the fill tow under compressive 33  damage mode. The observation that parts of the 

fill tow closer to the laminate mid-plane are under compression can be explained by 
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considering that warp tows are being stretched because of the load and therefore pushing 

on the fill tows in between. When the material properties of the damaged area in the fill 

tow are degraded, the amount of load carried by the tow reduces. In the case of Set 2, in 

which the resin has the lowest strengths, the damage initiates in the matrix pockets under 

tensile 33  damage mode but since the matrix doesn‘t carry as much load as the tows, 

the load drop is not as significant as that seen in the model with Set 1 properties. This 

explanation can be confirmed by looking at the damage evolution in the two models.  

Figure 9.6 shows the evolution of damage in the different constituents of the model 

using Set 1 material properties. It shows the location of the initial damage in the fill tows 

at a volume averaged 
xx

 strain level of 0.0935% strain. The initial damage occurs under 

compressive 33  damage mode. It can be seen that the matrix is the last constituent in 

the composite to have significant failure. Looking at the column for 0.6% strain in 

Figure 9.5: Volume averaged stress-volume averaged strain curves for the two-

ply laminate without oxidation 
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Figure 9.6 shows that the there is significant transverse damage in the fill and warp tows 

but there is hardly any damage in the matrix. This behavior was also expected based on 

the fact that the Set 1 material properties have the transverse tow strengths much lower 

than that of the matrix. 

In comparison, Figure 9.7 shows the evolution of damage in the model using Set 2 

material properties. In this case, it shows that the damage initiates in the matrix under 

tensile 33  mode near the mid-plane of the laminate at a volume averaged xx  strain 

level of 0.0473%. Note that the damage initiates at a much lower strain level when using 

Set 2 material properties versus those in Set 1. Although the initial damage in the Set 2 

model is in the matrix, the first significant drop in load is at a strain level of 0.128% 

(indicated by C in Figure 9.5) and it is caused by damage in the fill tow under 

compressive 33  failure mode. In comparison, the first significant drop in the Set 1 

model occurs at 0.0935% strain (indicated by A in Figure 9.5) under the same type of 

failure mode. The reason why the damage in the fill tow occurs at a higher strain level in 

the Set 2 model could be explained as follows. When the Set 2 laminate is at 0.0935% 

strain, there is already some damage in the matrix pockets. This would make the matrix 

pockets more compliant and thereby effectively reducing the constraints on the fill tow. 

The fill tows would be allowed to deform more freely than before matrix damage 

occurred and therefore relieving the 33  stresses in the fill tow. Thus, a larger load 

would be required to raise the 33  stress in the fill tow enough to cause damage. 
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Figure 9.6: Evolution of damage in the two-ply laminate configuration without oxidation using Set 1 material properties   
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In comparison to the evolution of damage in the Set 1 model, the matrix has much more 

damage at 0.6% strain. Also, there are slight differences between the damaged locations 

in the tows. This is probably because of the manner in which the load is transferred when 

different locations in the laminate start to fail. 

The results discussed up to this point considered only the effect of damage due to 

mechanical loading. Now the results from the coupled models are discussed. The 

coupled models simulate the mechanical behavior when the laminate is under a fixed 

mechanical loading and is then exposed to oxygen from the top and bottom surfaces for 

200 hours. These simulations are performed at different fixed mechanical loads. Similar 

simulations are performed on models with each set of material properties to determine 

the effect of the properties on the behavior.  

The behavior of the model using Set 1 material properties is discussed first. As 

illustrated in Figure 9.6, damage due to a mechanical-only load initiates at a strain level 

of 0.0935%. A coupled model simulation was performed at a strain level of 0.09% to see 

if the oxidization would initiate any damage. It was seen that there was no effect of 

oxidation on the damage behavior throughout the 200 hours. This is because, as shown 

in Figure 9.6, all the initial damage is located in the top half of the fill tow in the model, 

which implies that the stress failure index is highest in that region of the fill tow. This 

region in the model corresponds to the interior of the laminate because the analysis 

domain represents the lower half of the laminate. After 200 hours of oxidation, the 

oxidation front has not reached the interior of the laminate far enough to affect the 

engineering properties of the tow to cause damage. As defined in Table 9.5, the change 

in engineering moduli is not significant enough to affect the stresses. The changes in the 

strength properties are significant, but the regions with the stress concentrations are 

either not oxidized, or not oxidized enough to cause damage in the fill tows.  

The simulations were also performed at strain levels of 0.2% and 0.4%. Since the 

configuration is assumed to be already loaded to a constant strain level, the configuration 

should also be assumed to have the damage that would have ordinarily occurred without 

the influence of oxidation. This initial damage state for a particular load level is assumed 
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based on the corresponding damage state for the model from the standard damage 

progression analysis. In the model with Set 1 material properties at a strain level of 

0.2%, the damage at the beginning of the oxidation simulation is almost entirely in the 

fill tow as shown in Figure 9.6. There is no damage at all in the matrix. The only other 

damage in the configuration is one integration point in each warp tow that has failed in 

the 
33

 damage mode as shown in Figure 9.6. Figure 9.8 shows the evolution of damage 

as the oxidation progresses for 200 hours. After one hour of oxidation, there is new 

damage under 
22

 and 
33

  failure modes in the bottom region of the fill tow where the 

oxygen is slowly making its way into the interior of the laminate. The simulation also 

shows some slight damage in the matrix pocket closer to the exposed surface of the 

laminate. There is also some damage in the 
22

 failure mode in the lower half of the 

warp tow, which can be explained due to the oxidation front creeping into the interior of 

the laminate. The more interesting behavior is that regions of the top half of the warp 

tow fails in the 
33

 damage mode. This is interesting because the damage is seen after 

only one hour of oxidation, at which time the oxidation front has not reached even close 

to the top half of the model. This can be explained by the redistribution of the load in the 

configuration after material damage. As mentioned earlier, even before oxidation began, 

there was damage in the fill tow. Figure 9.8 shows that after only one hour of oxidation, 

there is significant damage in the fill tow, which renders most of the fill tow incapable of 

carrying load. This increases the load on the warp tow. The effect of the external load on 

the laminate is to straighten the undulating warp tows, which causes a tensile 33  in the 

top half of the tow. When the load on the warp tow increases, it also increases the 
33

 

stress in the top half of the tow making it exceed the strength. This behavior shows that 

the influence of oxidation on the mechanical behavior is not always localized and in 

some cases, its effect can be seen in the interior of the laminate where the material has 

not been oxidized. 

Figure 9.9 shows the initial damage state in the two-ply laminate at 0.4% strain before 

oxidation begins. It shows that there is very little damage in the matrix pockets. The fill 
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tow on the other hand has considerable damage in the 
22

 and 
33

 failure modes. Figure 

9.9 also shows that warp tow has some damage in the top half under mainly the 
33

  

failure mode. As the oxidation progresses, some build-up of 
11

 damage is seen in the 

lower matrix pocket as shown in Figure 9.9. There is little new damage in the fill tow 

since most of the tow was already damaged before the oxidation began. The warp tow 

sees considerable new damage under the 
22

 failure mode in the bottom half of the tow 

as oxidation progresses. This can be explained by the fact that the fill tow is mostly 

damaged and much of the load is now carried by the warp tow. Therefore, the warp tow 

would experience higher stresses. In addition to the higher stresses, the oxidation causes 

the strengths to drop by 50% thereby increasing the potential of failure.  

Figure 9.10 shows the plot of the volume averaged 
xx

 with the volume averaged 
xx

 for 

the Set 1 model indicating the drop in the volume average 
xx

 at the end of 200 hours of 

oxidation for the two simulations discussed earlier. It shows that for the 0.2% strain level 

simulation, the volume averaged 
xx

 stress reduced from the point labeled A to A‘ 

indicating a drop of 15% at the end of 200 hours of oxidation whereas in the case of the 

0.4% strain level, the corresponding stress dropped over 22% indicated by the line B-B‘. 

Figure 9.11 shows the volume averaged 
xx

 for all three simulations normalized with the 

initial volume averaged stress as the oxidation progresses over 200 hours. As mentioned 

earlier, at the 0.09% strain level, there was no new damage due to oxidation and 

therefore there was no drop in the volume averaged stress. Instead, there was a slight 

increase in the volume averaged stress due to the fact that the stiffness in the matrix 

increases when oxidized but the increase is so small that it is not noticeable in Figure 

9.11. In the case of the 0.2% strain level, a significant part of the stress drop occurs in 

the beginning of the oxidation process within the first two hours. This indicates that the 

damage that occurred in the remaining 198 hours was not significant enough to reduce 

the load in the laminate. In the case of the 0.4% strain level, a major portion of the stress 

drop occurs at a single time step at 53.33 hours when the stress drops to 78.3% of the  
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Figure 9.8: Evolution of damage due to oxidation in the two-ply laminate at 0.2% strain using Set 1 material properties 
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Figure 9.9: Evolution of damage due to oxidation in the two-ply laminate at 0.4% strain using Set 1 material properties  
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Figure 9.11: Variation in volume averaged stress due to oxidation for the 

Set 1 material two-ply laminate at different strain levels  
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Figure 9.10: Volume averaged stress-volume averaged strain for the Set 1 

material two-ply laminate showing drop in stress after 200 hours of oxidation 
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initial stress. The damage that occurs before and after that point accounts for just 0.7% 

of the total drop in load. 

The results from the simulations of the laminate using the Set 2 material properties are 

discussed next. Similar to the simulations on the laminates with Set 1 material 

properties, three simulations were performed with strain levels of 0.1%, 0.2% and 0.4%. 

In the simulation with 0.1% strain, the initial damage, as shown in Figure 9.12, is 

confined to mostly the inter-laminar matrix pocket. There is also slight damage under 

33
  failure mode in the top part of the warp tow. The coupled analysis shows that there 

is no new damage caused due to the effect of oxidation. This is similar to the model with 

Set 1 material properties and 0.09% strain, where the stress state in the oxidized 

materials is not significant enough to cause new damage. With 0.2% strain, the initial 

damage is, as expected, more widespread than that in the case with 0.1% strain. As 

shown in Figure 9.13, the damage in the inter-laminar matrix pocket has increased in 

addition to new 
11

  failure in the bottom matrix pocket. The fill tow has 
22

 and 
33

 

failure in regions from the bottom to the top, with more damage in the latter. Figure 9.13 

also shows that the damage in the warp tow increased. The simulation predicted that the 

damage in the lower matrix pocket grows mostly under 
11

 and 
22

 failure modes. The 

simulation also predicts, as shown in Figure 9.13, that there is new damage in the bottom 

part of the fill tow under the 
22

  failure mode. This can be explained as a direct effect 

of the oxidation of the tows which reduces the strength by as much as 50%. The warp 

tow also has new damage growth as an effect of the oxidation. As shown in Figure 9.13, 

the warp tow starts to see damage in the lower part of the tow under 
22

 failure mode as 

the oxidation progresses. The warp tow also starts to have 
33

 damage at the location 

indicated by A as the oxidation simulation nears the end of 200 hours. A similar 

simulation was performed for a constant strain level of 0.4%. In this case, the initial 

damage state is more extensive compared to the simulation with 0.2% strain. The matrix, 

fill tow and warp tow have considerable damage as shown in Figure 9.14. As expected, 

the coupled analysis predicted growth in the damage in the lower matrix pocket due to 
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oxidation. Most of this damage occurs under 
11

 failure mode along with 
22

 and 
33

 

failure modes. In the case of the fill tows, the oxidation causes additional damage in the 

lower part of the tow under 
22

 failure mode, as shown in Figure 9.14. Additional 

damage is also seen in the warp tow as an effect of the oxidation. The new damage in the 

warp tow occurs under 
22 33,  and 

13
 failure modes. 

Similar to Figure 9.10, Figure 9.15 shows the plot of the volume averaged 
xx

 versus 

volume averaged 
xx

 for the Set 2 model indicating the drop in the volume average 
xx

 

at the end of 200 hours of oxidation for the two simulations discussed earlier. Line A-A‘ 

shows that for the 0.2% strain level simulation, the volume averaged 
xx

 stress dropped 

13% at the end of 200 hours of oxidation whereas in the case of the 0.4% strain level, the 

corresponding stress dropped over 13.3% (indicated by line B-B‘). Figure 9.16 shows 

the volume averaged 
xx

 for all three simulations normalized with the initial volume 

averaged stress as the oxidation progresses over 200 hours. Just as the model with Set 1 

material properties at the 0.09% strain level, there was no new damage due to oxidation 

and the volume averaged stress actually increases slightly, although it is not noticeable 

in Figure 9.16. In the case of the other two strain levels, the drop in volume averaged 

stress is more gradual than the behavior seen in the corresponding models with Set 1 

material properties. Although there are some sudden drops in the volume averaged stress 

as seen in Figure 9.16, they are not as significant as the drops seen in Figure 9.11. This 

behavior is attributed to growth in the matrix damage observed in the Set 2 laminates 

that is not seen in the Set 1 laminates. 
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Figure 9.12: Evolution of damage due to oxidation in the two-ply laminate at 0.1% strain using Set 2 material properties   
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Figure 9.13: Evolution of damage due to oxidation in the two-ply laminate at 0.2% strain using Set 2 material properties  
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Figure 9.14: Evolution of damage due to oxidation in the two-ply laminate at 0.4% strain using Set 2 material properties 
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Figure 9.16: Variation in volume averaged stress due to oxidation for the Set 2 

material two-ply laminate at different strain levels  
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Figure 9.15: Volume averaged stress-volume averaged strain for the Set 2 

material two- ply laminate showing drop in stress after 200 hours of 

oxidation 
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9.4.2 Effect of Number of Plies in Laminate 

A parametric study was conducted to see if the number of plies in the laminate had any 

significant effect on the mechanical behavior under oxidation. In addition to the 

laminates that were discussed in the previous section, 4-ply and 6-ply laminates were 

analyzed for both Set 1 and Set 2 material properties. First, a damage progression 

analysis (i.e. no oxidation) was performed on the laminates to determine the mechanical 

behavior as the load on the laminate was increased. Figure 9.17 gives a plot of the 

volume averaged 
xx

 with the volume averaged 
xx

 for the different laminates using Set 

1 material properties. It shows that the overall behavior is not significantly different, 

which is not surprising. Figure 9.18 shows the same plot for the laminates with Set 2 

material properties. Again, the number of plies does not seem to have an effect on the 

overall behavior. Looking at the evolution of damage in the laminates revealed generally 

the same trends as seen in the 2-ply laminates. In the case of the Set 1 laminates, the fill 

tows had initial damage and continued to accumulate much more damage than the warp 

tows followed by the matrix, which had very little failure. In the case of Set 2 laminates, 

as seen in the corresponding 2-ply laminate, the damage initiates in the matrix followed 

by the fill tow failing considerably while the warp tow has less damage in comparison. 

The coupled simulations were performed on these laminates as was done for the 2-ply 

laminates discussed in the previous section. The laminates were analyzed at different 

strain levels and overall they showed the same trends as seen in the 2-ply laminates. If 

the strain levels are too low, for example at 0.1%, the oxidation was not found to have 

any significant effect of the mechanical behavior. The results from the 0.2% and 0.4% 

strain level simulations will be discussed here. Since the general trends are the same as 

compared to the 2-ply laminates, the evolution of damage in each laminate will not be 

discussed here. Instead, comparisons of the overall behavior will be discussed. 

Comparing the results from the 2-ply, 4-ply and 6-ply laminates is not easy since they do 

not follow the same load path as shown in Figure 9.18. It would definitely not make 

sense to make comparisons at same strain level using the predicted volume average 
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stress values because of the same reason. It makes more sense to look at the percentage 

drop in the volume average stress.  

Figure 9.18: Volume averaged stress-volume averaged strain curves for 

the laminate with Set 2 material properties 
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Figure 9.17: Volume averaged stress-volume averaged strain curves for the 

laminate with Set 1 material properties 
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Figure 9.19 shows the variation in normalized volume average stress at 0.2% strain for 

the 2-ply, 4-ply and 6-ply laminates using Set 1 materials. In the 2-ply laminate, under a 

0.2% strain level, the volume average stress drops 15% whereas in the 4-ply model, it 

drops only 3.4%, which indicates that the damage in the 4-ply laminate was not 

significant. This is intuitive since a smaller fraction of the laminate is getting oxidized 

when the number of plies increases from 2 to 4. However when the number of plies is 

increased from 4 to 6, the stress drop increases slightly from 3.4% to 5.2%. This 

particular trend could not be explained but as discussed later in this section, this counter-

intuitive behavior was not observed for the other material set or for other strain levels. 

Figure 9.19 also shows that all the Set 1 material laminates experience the significant 

drop in the volume average stress within 3 hours of oxidation. Figure 9.20 shows the 

variation of the normalized stress for the 0.4% strain level. It shows the percentage drop 

in the volume average stress at the end of 200 hours steadily reducing as the number of 

plies in the laminate increase. Comparison of Figures 9.19 and 9.20 shows that when the 

strain level was increased, the decrease in percentage load drop was more gradual with 

Figure 9.19: Variation in volume averaged stress due to oxidation for the 

various Set 1 material laminates at 0.2% strain level 
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the number of plies. In the case of 0.4% strain, the drop is 22.4% for a 2-ply laminate, 

14.8% for a 4-ply laminate and 9.5% for a 6-ply laminate. On the other hand, in the 

0.2% strain level, as seen in Figure 9.19, the percentage drop reduces from 15% to less 

than 6% as the number of plies is increased to 4 and 6. Note that this trend is specific to 

the laminates with Set 1 material properties and cannot be generalized. Similar 

simulations were performed on the corresponding laminates with Set 2 material 

properties and Figure 9.21 and 9.22 shows the variation in volume average stress for 

0.2% and 0.4% strain loading respectively. Again, a similar trend is seen where there is a 

significant reduction in the percentage drop in volume average stress at the end of 200 

hours (from 13% to 4.1%) for a 0.2% loading when the number of plies is increased 

from 2 to 4. When the number of plies is increased to 6, the drop is only 3.3%, which is 

a further reduction in the drop compared to the corresponding case in the Set 1 material 

laminates. Also, the variation in the normalized stress with respect to time is much more 

gradual in the Set 2 laminates as compared to the Set 1 laminates. When the strain level 
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Figure 9.20: Variation in volume averaged stress due to oxidation for the various 

Set 1 material laminates at 0.4% strain level 
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is increased to 0.4%, again similar trends are seen where the reduction in the percentage 

drop is not as drastic as that for 0.2% strain. Figure 9.22 shows that the percentage 

volume average stress drop at the end of 200 hours of oxidation reduces from 13.3% to 

7% when the number of plies go up from 2 to 4 and the drop further reduces to 5.2% 

when the number of plies is increased to 6. This behavior can be explained based on the 

fact that the oxidation process oxidizes the same amount of material in all these 

laminates. In the coupled simulations described in this work, the oxidation analysis does 

not depend on the stress or damage state in the laminate. Therefore, regardless of the 

number of plies, the oxidation layer thickness varies in the same manner in all the 

laminates. This also has to do with the fact that at the end of the 200 hour simulation, the 

maximum predicted oxidation layer thickness is less than the thickness of a single ply. 

Increasing the number of plies in the laminate effectively increases the amount of 

material that can carry load, but the oxidation process only affects the same amount of 

material regardless the number of plies. Therefore, it would be expected that the 

percentage drop in volume average stress, or load drop, would decrease as the number of 

plies increased.  

9.5 Summary 

The coupled analysis model described in Section 3 is used to predict the mechanical 

behavior of woven composite laminates that are under mechanical load as well as 

exposed to oxygen. The configuration that is analyzed and the complete parameters for 

the material system and the constitutive relations are described in this section. The 

current implementation of the coupled analysis model makes a number of assumptions 

when simulating the behavior of the laminate. The effects of thermal expansion and the 

shrinkage of the matrix due to oxidation are ignored. These are effects that need to be 

considered in future implementations of the coupled analysis model in order to represent 

more accurately the behavior of the underlying mechanisms. The effect of the stress and 

damage state on the oxidation behavior also needs to be considered in future 

enhancements of the coupled model. However, the analyses described in this work 

provide a framework for the implementation of a more robust tool to predict the 



234 

 

 

 

Figure 9.22: Variation in volume averaged stress due to oxidation for the 

various Set 2 material laminates at 0.4% strain level 
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Figure 9.21: Variation in volume averaged stress due to oxidation for the 

various Set 2 material laminates at 0.2% strain level 
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behavior of laminates under oxidation. Due to lack of a full set of reliable material 

properties, two sets of material properties were assumed to the represent the typical 

behavior of composite materials. Simulations were performed on laminates with both 

sets of properties. The predicted mechanical behavior due to the effect of oxidation was 

described. This included illustrating the initiation and progression of damage in the 

laminate. A parametric study was also performed to determine the effect of the number 

of plies on the mechanical behavior under oxidation.  
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10. CONCLUSIONS AND FUTURE WORK 

This research work has contributed in various ways to help develop a better 

understanding of textile composites and materials with complex microstructures in 

general. An instrumental part of this work was the development of a framework that 

made it convenient to perform multiscale/multiphysics analyses of advanced materials 

such as textile composites with complex microstructures. In addition to the studies 

conducted in this work, this framework lays the groundwork for continued research of 

these materials. This framework enabled a detailed multiscale stress analysis of a woven 

DCB specimen that revealed the effect of the complex microstructure on the stress and 

strain energy release rate distribution along the crack front. In addition to implementing 

an oxidation model, the framework was also used to implement strategies that expedited 

the simulation of oxidation in textile composites so that it would take only a few hours. 

Finally, a coupled diffusion/oxidation and damage progression analysis was 

implemented that was used to study the mechanical behavior of textile composites under 

mechanical loading as well as oxidation. The following sections discuss the conclusions 

drawn from the work performed to achieve the objectives of this research effort. This 

section concludes by mentioning some suggestions for possible future work. 

10.1 Development of Multiscale/Multiphysics Finite Element Framework 

A robust finite element framework was developed that is specially geared to perform 

multiscale/multiphysics analysis of textile composites. The developed framework, called 

BETA, uses the object-oriented programming paradigm and its design makes it 

convenient to maintain, enhance and extend the framework. The fact that it is developed 

in-house gives the advantage of having full access to the core of the software, which can 

be modified to adapt to any specialized method that a user is interested in implementing. 

This kind of access is not available when using commercial finite element packages. 

Having full access to the software also makes it an ideal teaching tool for researchers 

and students. The framework also allows the user to develop interfaces to other software 

to take advantage of their advanced features. BETA is portable across Windows and 

UNIX/LINUX platforms and can take advantage of multiple processors by using parallel 
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solvers for the finite element analysis. It also allows users to modify the code so that 

different steps of the finite element analysis can be parallelized to achieve better 

efficiency. The framework developed as part of this work is used to perform a multiscale 

analysis of textile composites. It is also used to implement a coupled multiphysics model 

that is used to predict the mechanical behavior of textile composites under oxidation. 

10.2 Multiscale Analysis of Woven DCB Specimen 

A detailed stress analysis of a woven composite DCB specimen was performed. Such a 

configuration contains many microstructural scales such as fiber/matrix, tow architecture 

and laminate and therefore, a multiscale analysis was required. Such an analysis that 

took into account the tow architecture of the DCB specimen could not be found in the 

literature. The finite element framework was used to implement a strategy where the 

natural hierarchical character of model descriptions and simulation results is exploited to 

expedite analysis of problems. Hierarchical techniques were used in the development, 

organization, and management of finite element models, and for the post-processing of 

the results from the analyses. Models in the hierarchy were ‗joined‘ together by 

implementing a boundary matching routine that specifies multi-point constraints in order 

to impose continuity at the interfaces. Using this strategy made it convenient to model 

the region near the crack front discretely accounting for the tow architecture whereas the 

regions away from the crack front were modeled using effective properties. In addition 

to the stresses, the strain energy release rate along the width of the crack front was also 

calculated. The effect of the complex microstructure on the stress distribution and the GI 

distribution was studied. It was seen that the stresses and GI distribution follow a 

periodic pattern corresponding to the undulation of the tows in the woven composite, 

which suggested that the delamination would initiate in certain regions and propagate to 

the rest of the crack front. The effect of the microstructure on the stresses and GI as the 

crack advances was also investigated. The results suggested that there would likely be 

significant variation in the growth rate as the crack advanced. 
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10.3 Simulation of Oxidation in Textile Composites 

The oxidation behavior of textile composites was simulated using the finite element 

framework that was developed as part of this work. This involved implementing various 

strategies because of the multiple scales of microstructure involved in the configuration. 

An oxidation model was implemented based on the model developed by Pochiraju et al 

to simulate oxidation in neat PMR-15 resin. Homogenized oxidation material properties 

for a unidirectional laminate or tow were determined assuming that the fiber was 

impermeable and un-oxidizable. The homogenized properties were validated using 

different configurations. It was also determined that the oxidation behavior in 

heterogeneous configurations is complex and depends on various factors such as the 

location of the material boundaries. The oxidation model had severe limitation on the 

element size and time step size based on the finite element formulation. Therefore, a 

typical oxidation analysis was very computation intensive and it was not feasible to 

simulate oxidation of a textile composite without strategies to expedite the analysis. 

Optimal element sizes were determined and the time step size was ramped up to achieve 

better efficiencies. An adaptive meshing strategy was also developed that exploited 

certain characteristic of the oxidation behavior to reduce the size of the problem. The 

adaptive meshing strategy was able to give computational time savings of over 60%. 

However, these strategies were not enough to make a full 3D oxidation analysis feasible. 

Therefore, a hybrid modeling strategy was developed that divided up a 3D analysis 

domain into an array of 1D domains which could then be solved in a matter of hours. 

The 1D models could also be analyzed independently on different processors in a multi-

core machine thereby increasing the efficiency even further. The hybrid model strategy 

was validated and used in conjunction with the adaptive meshing strategy to simulate 

oxidation of a plain weave laminate. The analysis revealed that the tow architecture of 

the textile composite had a significant effect on the oxidation behavior. After 200 hours 

of oxidation of a 200 micron thick ply, the smallest oxidation layer thickness was found 

to 84 microns whereas the largest was 110 microns. 
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10.4 Prediction of Damage Progression in Textile Composites under Oxidation 

The multiscale/multiphysics analysis framework was used to implement a coupled 

diffusion/oxidation and continuum damage analysis to study the mechanical behavior of 

textile composites in oxidizing environments. The current implementation of the coupled 

model considers only the effect of oxidation on the mechanical behavior and not vice 

versa. Since only one-way coupling was assumed, the oxidation simulation could be 

performed independently before the coupled analysis. The coupled analysis was used to 

predict progressive damage in a Graphite/PMR-15 plain weave laminate that is 

uniaxially loaded to a fixed strain level and then exposed to oxidation through the top 

and bottom surfaces. A constitutive model was developed that degrades the engineering 

properties depending on the mechanical state and how much the material has oxidized. 

Due to lack of a full set of reliable material properties, two sets of material properties 

were assumed to the represent the typical behavior of composite materials. The predicted 

mechanical behavior due to the effect of oxidation was described and an attempt was 

made to explain some of the behavior observed. The simulations showed the evolution 

of damage in the composite as it undergoes oxidation. It was seen that in some cases the 

effect of oxidation is not localized and that damage also occurs in regions that are not 

oxidized due to load redistribution. The simulations also showed the variation of the 

volume averaged stress in the laminate as the laminate oxidizes. It was seen that the 

strengths of the materials in the laminate had an effect on this behavior. A parametric 

study was also performed to determine the effect of the number of plies on the 

mechanical behavior under oxidation. The simulations predicted a significant drop in the 

load carried by a 2-ply laminate for different strain levels and the load drop reduced, as 

expected, when the number of plies was increased to 4 and 6. However, the proportion 

by which the load drop reduces was not very intuitive and indicates that the material 

properties and the microstructure of the textile laminates have a complicated effect on 

the behavior under oxidation. 
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10.5 Future Work 

Over the course of this research work, several ideas came up that might have 

successfully helped in advancing the understanding of these advanced materials. 

However, not all of them could be pursued due to various reasons. In addition to this, 

there are some obvious extensions to the research work presented in this dissertation. 

Many of them are listed below: 

1. The BETA framework supports several parallel solvers that can take advantage 

of the new multi-core machines available in the market today but in many cases, 

the dominant step is not the solving of the finite element equations. In transient 

analysis like diffusion/oxidation as well as damage progression analyses, 

operations that are performed over all the elements such as assembly or updating 

of state variables are the ones that take the most time. Unfortunately, BETA 

currently supports parallelization of these operations only for models that do not 

use multi-point constraints. A generalized parallelizing strategy for these types of 

operations would make analyses more efficient. 

2. For analyzing even smaller length scales, hybrid models directly linking 

atomistic regions to continuum finite element regions have been developed by 

several researchers. These include the FEAt model [179], the MAAD approach 

[180-181], the QuasiContinuum method [182-184] and the coupled atomistic and 

discrete dislocation plasticity (CADD) approach [185] and the bridging scale 

method [186]. Currently, the hierarchical strategies explained in this work are 

implemented only for the continuum mechanics regime. However, it might be 

worthwhile to explore the possibility of using these strategies in analyzing 

multiple scale problems involving the atomistic scale. 

3. The time integration scheme used for the diffusion/oxidation finite element 

formulation makes several assumptions to account for the nonlinearity in the 

governing equations. The Livermore Solver for Ordinary Differential Equations 

(LSODE)[187] could be an efficient alternative to the scheme that is currently 

used. 
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4. The current finite element formulation for the oxidation model assumes that the 

time step is small enough that the assumptions to account for the nonlinearity 

hold. Future extensions to the model could look at defining a residual and 

iterating to drive the residual to zero to account for the nonlinearity at each time 

step. 

5. When trying to replace a heterogeneous material with a homogenized material in 

an oxidation model, it is reasonable to assume that some or possibly all of these 

properties might change. In addition to the current homogenization strategy, 

there is at least one other possible approach for achieving this goal. One is to use 

a multi-scale analysis that keeps track of the ‗local‘ information such as 

oxidation state and actual average concentration in the constituent matrix in the 

homogenized material. Given this information, it would be possible to calculate 

the reaction rate R at a particular material point in the tow‘s constituent matrix 

using eq(3.90). Next, the effective reaction rate for the larger scale homogenized 

tow is determined by a simple rule of mixtures and plugged into the governing 

equations. When the equations for a time step are solved, the calculated 

concentrations are transformed back to the local scale using a rule of mixtures in 

order to keep track of the oxidation state of the constituent matrix. Thus, a 

continuous transfer of information between the two scales needs to be maintained 

throughout the simulation. 

6. In this work, the fibers in the tows are idealized to be in a square array and the 

fibers are assumed to be impermeable and do not oxidize. While there are other 

factors that can influence the oxidation behavior in composites such as the 

properties of the fiber/matrix interface or interphase, they are not taken into 

account for the homogenization model described in this work. Cracks in the 

matrix or along the fiber/matrix interface can also affect the oxidation behavior 

by allowing rapid ingress. Depending on the type of damage that is observed in 

these composites, it might be possible to account for their effects in the 

homogenized model. For example, if the damage is diffuse, the homogenized 
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properties can be degraded appropriately or if the damage is confined to certain 

areas, cracks can be introduced in the homogenized model. These and other such 

factors should be addressed in a likely extension to the model.  

7. The oxidation level information from the hybrid oxidation model is currently 

approximated as a single linear function to define the active zone. A better 

approximation could be made using a few more points to define a piecewise 

linear function for the active zone. 

8. A simple constitutive model or property degradation scheme was developed to 

account for the effect of oxidation on the mechanical behavior. This scheme can 

be modified and enhanced in the future when the effect of oxidation on the 

coupled oxidation-mechanical behavior is more accurately determined. This can 

also include a constitutive model to account for the effect of mechanical damage 

on the oxidation behavior, which would make the analysis fully coupled. 

9. The effects of thermal expansion and the shrinkage of the matrix due to oxidation 

are ignored in the current implementation of the coupled model. These are effects 

that should to be considered in future implementations of the coupled analysis 

model in order to more accurately represent the behavior of the underlying 

mechanisms. 
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